
Logical Methods in Computer Science
Vol. 10(3:25)2014, pp. 1–14
www.lmcs-online.org

Submitted Mar. 25, 2013
Published Sep. 23, 2014

CONSTRUCTING CATEGORIES AND SETOIDS OF SETOIDS IN TYPE

THEORY

ERIK PALMGREN a AND OLOV WILANDER b

a Stockholm University, Department of Mathematics, 106 91 Stockholm, Sweden.
e-mail address: palmgren@math.su.se

b Stockholm University, Department of Mathematics. Current affiliation: Sjöland & Thyselius, Box
6238, 102 34 Stockholm.
e-mail address: olov.wilander@st.se

Abstract. In this paper we consider the problem of building rich categories of setoids, in
standard intensional Martin-Löf type theory (MLTT), and in particular how to handle the
problem of equality on objects in this context. Any (proof-irrelevant) family F of setoids
over a setoid A gives rise to a category C(A,F) of setoids with objects A. We may regard
the family F as a setoid of setoids, and a crucial issue in this article is to construct rich
or large enough such families. Depending on closure conditions of F , the category C(A,F)
has corresponding categorical constructions. We exemplify this with finite limits. A very
large family F may be obtained from Aczel’s model construction of CZF in type theory.
It is proved that the category so obtained is isomorphic to the internal category of sets in
this model. Set theory can thus establish (categorical) properties of C(A,F) which may
be used in type theory. We also show that Aczel’s model construction may be extended
to include the elements of any setoid as atoms or urelements. As a byproduct we obtain
a natural extension of CZF, adding atoms. This extension, CZFU, is validated by the
extended model. The main theorems of the paper have been checked in the proof assistant
Coq which is based on MLTT. A possible application of this development is to integrate
set-theoretic and type-theoretic reasoning in proof assistants.

1. Introduction

Martin-Löf type theory (MLTT) and its manifestations, in proof assistants such as Agda
and Coq, is intended to be a framework for formalizing (constructive) mathematics on a
full scale. It is known that the intensional version of MLTT is sometimes difficult to employ
when formalizing mathematics that depends on having (propositional) equality between
sets or setoids. This may be troublesome in parts of category theory [15, 20] where an
equality on objects is a standard assumption. A typical situation is when we wish to deal
with some category of sets or setoids on equal footing to other categories. The built-in

2012 ACM CCS: [Theory of computation]: Logic; [Software and its engineering]: Software nota-
tions and tools—General programming languages—Language types—Functional languages.

Key words and phrases: Dependent type theory, setoids, formalization, categories, constructive set theory.
b This work was supported by a grant (Dnr 621-2008-5076) from the Swedish Research Council (VR).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(3:25)2014

c© E. Palmgren and O. Wilander
CC© Creative Commons

http://creativecommons.org/about/licenses

2 E. PALMGREN AND O. WILANDER

propositional equalities of type theory, given by the intensional identity types, are not
extensional enough for this work without further complications. The root of the problem
is that the intensional identity type of MLTT induces a non-trivial groupoid structure on
types [8]. This can be avoided by introducing extra elimination axioms like the K-axiom
of Streicher [18], the Uniqueness of Identity Proofs axiom, or weaker axioms [20]. Adding
these axioms is, however, an unsatisfactory solution according to the general philosophy of
MLTT, where the elimination rule is supposed to be generated by the introduction rule.

In this paper we consider solutions to this problem within the standard intensional
version of MLTT with one universe and W-types. In Section 4.1 we recall that any (proof-
irrelevant) family F of setoids over a setoid A gives rise to a category C(A,F) of setoids
with objects A. We may regard the family F as a setoid of setoids, and a crucial issue
here is to construct rich or large enough such families. Depending on closure conditions of
F , the category C(A,F) has corresponding categorical constructions. A first solution is to
explicitly construct F such that it is closed under particular constructions, here exemplified
by finite limits (Section 4.2). A smoother solution is however to employ a universe V of
iterative sets that forms a model of Aczel-Myhill constructive set theory (CZF), and consider
the category of setoids that the sets of V induces. This turns out to be a well-behaved
category of setoids, which is isomorphic to the internal category of sets of V (Theorem
5.5). Theorem 5.5 allows passage between the setoids of type theory and the sets of V .
The model and the theorem have been formalized in the proof assistant Coq, and give, in
principle, a method for formalizing further category-theoretic results in Coq that depend on
a good category of sets. This makes it possible to integrate set-theoretic and type-theoretic
reasoning, where set theory has a simpler language which is better adapted to solve certain
complications arising from transport functions of families of setoids, and type theory has a
more direct computational interpretation.

Models of CZF have previously been implemented in systems similar to Coq: in LEGO
by Mendler [12] and in Agda/Alfa by Takeyama [19]. See also Hickey [6] and Yu [21]
for work done in MetaPRL. However, we add a new twist here by allowing urelements or
atoms in the model, and importantly, giving the relation to setoids, via the notion of a
V -representable setoid (Section 5.2). Our formalized model moreover allows us to embed
an arbitrary setoid M in a CZF-universe V (M). As a bonus of the construction V (M), we
obtain a model of CZF with atoms (elements of M), which is formalized as a first-order
theory CZFU (Section 5.4). We end by some remarks on the formalization in Coq (Section
6).

2. Setoids

In the following we freely use the propositions-as-types principle in the logical arguments.
Thus we may speak of a proof q of a proposition Q, meaning that q is an element of type Q
which is written q : Q as usual. In our implementation in Coq this corresponds to avoiding
the built-in type Prop and using Set or Type for propositions. (See Section 6.)

Recall that a setoid A = (|A|,=A) is a type |A| with an equivalence relation =A. We
denote the constructions associated with proofs of reflexivity, symmetry and transitivity as
follows

ref(x) : x =A x (x : |A|)
p−1 : y =A x (x, y : |A|, p : x =A y)
q ◦ p : x =A z (x, y, z : |A|, p : x =A y, q : y =A z)

CONSTRUCTING CATEGORIES AND SETOIDS 3

We shall often write x ∈ A for x : |A| to simplify notation. For setoids A and B, an
extensional function f : A // B is a pair f = (|f |, extf) where |f | : |A| // |B| and extf is
a proof-object for extensionality of the operation |f |, that is that

(∀x, y ∈ A)(x =A y =⇒ |f |(x) =B |f |(y)).

We write f(x) for |f |(x).
For setoids A and B denote by Ext(A,B) the setoid of extensional functions from A

to B, with point-wise equality (=ext) as equivalence relation. The setoids and extensional
functions form an E-category, which shall be named Setoids here. We recall that an E-
category C has a type of objects with no equality assumed between them. The morphisms,
denoted HomC(A,B), from object A to B is a setoid and the composition operation

◦ : HomC(B,C)×HomC(A,B) //HomC(A,C)

is an extensional function. The usual laws for composition and identity are supposed to be
satisfied.

Example 2.1. Let F (x) (x : S) be a family of setoids indexed by a type S. Then an
E-category E(S,F) = E of setoids can be formed whose type of objects is S and where

HomE(a, b) = Ext(F (a), F (b)).

Remark 2.2. The E-category Setoids considered here (and elsewhere) is closely related to
the exact completion of a syntactic category arising from type theory (cf. [5]). The match
is not precise since the E-category is internal to type theory, whereas the exact completion
takes place on the meta-level. Barthe et al. [3] compare several variants of the notion of
setoid and their formalization in Coq. In their terminology we use total setoids but employ
Set-valued equivalence relations instead of their Prop-valued ones.

3. Families of setoids

A good notion of a family of setoids over a setoids is the following (compare the discussion
in [15]). A proof irrelevant family F of setoids over a setoid A — or just family of setoids
— consists of a setoid F (x) = (|F (x)|,=F (x)) for each x ∈ A, and for p : (x =A y) an
extensional function F (p) ∈ Ext(F (x), F (y)) which satisfies the conditions (F1) – (F3)
below.

(F1) F (ref(x)) =ext idF (x) for x ∈ A.
(F2) F (p) =ext F (q) for p, q : x =A y and x, y ∈ A. This is the proof-irrelevance condition,

since F (p) does not depend on p.
(F3) F (q) ◦ F (p) =ext F (q ◦ p) for p : x =A y, q : y =A z and x, y, z ∈ A.

The function F (p) is sometimes called a transport function. Because of condition (F2),
condition (F1) can be replaced by (F1’)

(∀x ∈ A)(∀p : x =A x)F (p) =ext idF (x)

and condition (F3) can be replaced by (F3’)

(∀x, y, z ∈ A)(∀p : x =A y)(∀q : y =A z)(∀r : x =A z)F (q) ◦ F (p) =ext F (r).

We shall sometimes use the notation x · p for F (p)(x) when F is clear from the context.

As can be seen from (F1) – (F3) a family F may be regarded as a functor (or rather
E-functor) from the discrete E-category A#, induced by A, to Setoids.

4 E. PALMGREN AND O. WILANDER

4. From families to categories of setoids

It is well-known that the E-category of setoids in Martin-Löf type theory forms a locally
cartesian closed (LCC) category; see [7]. It can moreover be shown to be a pretopos with
further properties [13]. In fact, one can straightforwardly verify in Coq (see for instance
[17]) that the E-category of setoids forms an LCC pretopos. For categories of setoids with
equality on objects the constructions are more delicate and this is the subject of this and
the next section.

Categories can be presented in an essentially algebraic way; cf. [10]. This is a useful
formulation especial for doing category theory internally to a category, but also in set
theory. A (small) category C is a triple of classes (sets) C0, C1, C2 consisting of objects,
arrows and composable arrows, equipped with class functions (functions) id : C0 // C1,
dom, cod : C1 // C0 and cmp, fst, snd : C2 // C1 that satisfy the axioms

1. dom(id(x)) = x,
2. cod(id(x)) = x,
3. dom(cmp(u)) = dom(fst(u)),
4. cod(cmp(u)) = cod(snd(u)),

41
2 . cod(fst(u)) = dom(snd(u)),

and

5. fst(u) = fst(v), snd(u) = snd(v) =⇒ u = v,
6. dom(f) = cod(g) =⇒ ∃u ∈ C2(snd(u) = f ∧ fst(u) = g),
7. fst(u) = id(y) =⇒ cmp(u) = snd(u),
8. snd(u) = id(x) =⇒ cmp(u) = fst(u),
9. fst(w) = fst(v), snd(v) = fst(u), snd(u) = snd(z), snd(w) = cmp(u), cmp(v) = fst(z) =⇒

cmp(w) = cmp(z).

The category Set of sets and functions can be constructed in the standard way in ZF or
CZF using these operations, and its categorical properties developed, following e.g. [4].

We can simply obtain a type-theoretic definition by replacing sets and classes with
setoids (with respective size restrictions) and functions by extensional functions.

A functor F : B // C is a triple of extensional functions Fk : Bk
// Ck, k = 0, 1, 2, such

that all operations of the categories are preserved, that is

F1 ◦ id = id ◦ F0,
F0 ◦ dom = dom ◦ F1,
F0 ◦ cod = cod ◦ F1,
F1 ◦ fst = fst ◦ F2,
F1 ◦ snd = snd ◦ F2,
F1 ◦ cmp = cmp ◦ F2.

The axioms 1 – 9 take a more familiar form if we rewrite them using the composition
predicate Comp(f, g, h) (or f ◦ g ≡ h) defined by

(∃u ∈ C2)(fst(u) = g ∧ snd(u) = f ∧ cmp(u) = h).

Remark 4.1. Any category C may be viewed as an E-category C by ignoring the equality
on objects and defining Hom

C
(a, b) to be the setoid

((Σf ∈ C1)[dom(f) = a ∧ cod(f) = b],∼)

where (f, p) ∼ (f ′, p) iff f =C1 f
′. Composition and identity are then defined in the obvious

way using the axioms above.

CONSTRUCTING CATEGORIES AND SETOIDS 5

We may even consider Hom as a proof-irrelevant family over the setoid C0 × C0. This
gives an equivalent notion of category which is perhaps more natural in the type-theoretic
language.

4.1. Construction of a category of setoids. We recall the following construction from
[15] and [20]. Any family F of setoids over a setoid A gives rise to a category of setoids
C = C(A,F) in the following way. The objects are given by the index setoid C0 = A, and
are thus equipped with equality, and the setoid of arrows C1 is

((Σx, y : |A|)Ext(F (x), F (y)),∼)

where two arrows are equal (x, y, f) ∼ (u, v, g) if, and only if, there are proof objects
p : x =A u and q : y =A v such that the diagram

F (u) F (v)
g

//

F (x)

F (u)

F (p)

��

F (x) F (y)
f

// F (y)

F (v)

F (q)

��

commutes, or equivalently

(∀t ∈ F (x))[f(t) · q =F (v) g(t · p)].

(Note that F (p) and F (q) are independent of p and q.) The domain and codomain maps
dom : C1 → C0 and cod : C1 → C0 are given by dom(x, y, f) = x and cod(x, y, f) = y. The
setoid C2 of composable maps is then

((Σh, k : |C1|)[cod(h) =C0 dom(k)],≈)

where (h, k, p) ≈ (h′, k′, p′) if and only if h ∼ h′ and k ∼ k′. The composition map
cmp : C2 // C1 is given by

cmp((x, y, f), (u, v, g), p) =def (x, v, g ◦ F (p) ◦ f).

Furthermore, let

fst((x, y, f), (u, v, g), p) =def (x, y, f) snd((x, y, f), (u, v, g), p) =def (u, v, g).

It is straightforward to verify

Theorem 4.2. If F is a family of setoids over a setoid A, then C = C(A,F) is a small
category.

Lemma 4.3. In the category C(A,F) the composition predicate Comp may be characterized
as follows

Comp((c, d, g), (a, b, f),h) ⇐⇒ (∃r : b =A c)(a, d, g ◦ F (r) ◦ f) ∼ h.

If b and c are definitionally equal, then F (r) is the identity map.

6 E. PALMGREN AND O. WILANDER

4.2. Closure conditions on families and categories. An important property of the
category of sets is that the terminal object (i.e. the singleton set) generates the category.
In such categories it is possible to interpret the internal logic in terms of elements; see [16].
We recall some definitions before proving that C(A,F) has the same property.

Let D be a category with terminal object 1. Recall that an element of an object X is
an arrow x : 1 //X. An arrow f : X // Y of the category is here called onto if for every
y : 1 // Y , there is some x : 1 //X with f ◦ x = y. The arrow is as usual mono if for any
g, h : U //X in D, fg = fh implies g = h. If each arrow f : X // Y in D that is both
onto and mono, is also an isomorphism, then we say that 1 is a strong generator for D. For
a family F of setoids over A, we say that c ∈ A represents a setoid C if F (c) is isomorphic
to C. We also say that F contains C (up to isomorphism). The category C(A,F) has a
strong generator whenever the family F contains the terminal object. This follows from the
straightforwardly proven result. Note that part (d) uses the type-theoretic choice principle
coming from Σ-elimination.

Proposition 4.4. Let F be a family of setoids indexed by the setoid A, and suppose that
c ∈ A represents the terminal setoid. Then

(a) c is the terminal object in C(A,F).
(b) If (a, b, f) is an arrow of C(A,F) then it is mono if and only if f : F (a) // F (b) is

injective.
(c) If (a, b, f) is an arrow of C(A,F) then it is onto if and only if f : F (a) // F (b) is

surjective.
(d) The terminal object of C(A,F) is a strong generator for the category.

If the family F is a universe, we get a category C(A,F) with closure conditions depend-
ing on the type-theoretic closure conditions of the universe. In [13] it was shown that by
letting A,F be a particular universe of U -small setoids, the category is a locally cartesian
closed pretopos with W . By a such a universe we mean that, for each a ∈ A, F (a) is a
setoid where both the underlying type |F (a)| and the truth-values of x =F (a) y are in the
type theoretic universe U . However, the construction of A and F in that paper used con-
structions going outside standard intensional type theory, in fact, a tacit assumption was
made of a principle (see [15, Theorem 5.2]) which is equivalent to Uniqueness of Identity
Proofs, which, in turn, is false in the groupoid model. In [20] a somewhat weaker axiom is
proposed, which may possibly let the constructions of [13] go through. We have constructed
(in Coq) a graded universe of setoids Aω, Fω , with no transfinite types, but closed under
grade bounded Π and Σ, as well as sums and coequalizers, to be able to mimic constructions
of categorical universes in extensional type theory [11]. However the expected categorical
properties of C(Aω, Fω) have turned out quite difficult to verify formally. In the next
subsection we present instead a method to taylor particular categorical universes which is
more manageable.

4.3. Direct construction of categorical universes. We present a method for construct-
ing categories of setoids closed under particular constructions, and exemplify with the con-
struction of pullbacks.

Let S be the inductive type defined by the rules

b : S

i : S j : S k : S

p(i, j, k) : S
. (4.1)

CONSTRUCTING CATEGORIES AND SETOIDS 7

The identity on this type is decidable and satisfies

I(S, p(i, j, k), p(i′ , j′, k′)) ⇐⇒ I(S, i, i′) ∧ I(S, j, j′) ∧ I(S, k, k′).

This forms the setoid of construction stages. The symbol b signifies the basic stage.
Let G be any family of setoids indexed by a setoid B. Then define by recursion on

s ∈ S, As and Fs, such that As is a setoid and Fs is family of setoids on As.
Let Ab = B and Fb = G.
Let

Ap(i,j,k) =
(

(Σa : Ai)(Σb : Aj)(Σc : Ak)(Σd : Ak)

[

(c =Ai
d)× (Fi(a) // Fk(c)) × (Fj(b) // Fk(d))

]

,∼
) (4.2)

where
(a, b, c, d, q, f, g) ∼ (a′, b′, c′, d′, q′, f ′, g′) (4.3)

is given by

(∃p1 : a =Ai
a′)(∃p2 : b =Aj

b′)(∃p3 : c =Ak
c′)(∃p4 : d =Ak

d′)

Fk(p3) ◦ f = f ′ ◦ Fi(p1) ∧ Fk(p4) ◦ g = g′ ◦ Fj(p2)
(4.4)

and then

Fp(i,j,k)(a, b, c, d, p, f, g) =
(

(Σx : Fi(a))(Σy : Fj(b))
[

Fk(p)(f(x)) =Fk(d) g(y))
]

,≈
)

.

where
(x, y, r) ≈ (x′, y′, r′) ⇐⇒def x =Fi(a) x

′ ∧ y =Fj(b) y
′.

For (p1, p2, p3, p4, q1, q2) : (a, b, c, d, p, f, g) ∼ (a′, b′, c′, d′, p′, f ′, g′), define

Fp(i,j,k)(p1, p2, p3, p4, q1, q2) : Fp(i,j,k)(a, b, c, d, p, f, g) // Fp(i,j,k)(a
′, b′, c′, d′, p′, f ′, g′)

by letting
Fp(i,j,k)(p1, p2, p3, p4, q1, q2)(x, y, r) = (Fi(p1)(x), Fj(p2)(y), r

′)

where r′ is some proof of

Fk(p
′)(f ′(Fi(p1)(x))) =Fk(d′) g

′(Fj(p2)(y))

(that can be obtained from (4.4)). It is straightforward to check that Fp(i,j,k) is a family
of setoids over Ap(i,j,k). Moreover the following is a pullback square in the E-category of
setoids

Fi(a) Fk(d)
Fk(p)◦f

//

Fp(i,j,k)(a, b, c, d, p, f, g)

Fi(a)

π1

��

Fp(i,j,k)(a, b, c, d, p, f, g) Fj(b)
π2

// Fj(b)

Fk(d)

g

��
,

(4.5)

where π1(x, y, r) = x and π2(x, y, r) = y.
Define using I-elimination, for p : I(A, s, s′),

transportλs.As
(p) : As

//As′

by letting C(s, s′, p) =def As
//As′ and transportλs.As

(ref(s)) = λx : As.x.
Finally we define

Aω = ((Σs : S)As,=ω)

8 E. PALMGREN AND O. WILANDER

where
(s, a) =ω (s′, a′) ⇐⇒def (∃p : I(S, s, s

′))transportλs.As
(p)(a) =As′

a′

and
Fω(s, a) = Fs(a),

and further for (p, q) : (s, a) =ω (s′, a′), we define

Fω(p, q)(x) = Fs′(q)(Hs,s′,p(x)),

where Hs,s′,p : Fs(a) // Fs′(transportλs.As
(p)(a)) is obtained by I-elimination with

C(s, s′, p) =def Fs(a) // Fs′(transportλs.As
(p)(a))

and Hs,s,ref(s) = λx : Fs(a).x. The identity type of S is decidable, so it enjoys the Unique-
ness of Identity Proofs property by Hedberg’s theorem [15]. Then one may easily verify
that Fω is a family of setoids over Aω. Furthermore the category C = C(Aω, Fω) given
by this family has chosen pullbacks, which means that there are two extensional functions
p1,p2 : M(C) //Ob(C) defined on the setoid of arrows with common codomain

M(C) = {(f, g) ∈ Arr(C)2 : cod(f) =Ob(C) cod(g)}

such that for all (f, g) ∈ M(C),

· ·
f

//

·

·

p1(f,g)

��

· ·
p2(f,g)

// ·

·

g

��

is a pullback. Using these constructions it is now possible to verify:

Theorem 4.5. The category C(Aω, Fω) has chosen pullbacks.

We expect that it should be possible to extend the construction above to other properties
(e.g. LCC pretoposes) by adding new construction stages to (4.1). The formal verification
will probably be quite cumbersome. However it is possible to obtain rich categorical uni-
verses that are smoother to construct and verify. In the next section we show that chosing
A and F to be induced by the Aczel universe V of iterative sets, the category C(A,F) gets
good categorical properties; see Theorem 5.5.

5. Aczel’s iterative sets and setoids

It is known that the category of sets inside Constructive Zermelo-Fraenkel set theory (CZF)
has good category-theoretic properties [4]. These can preferably be established on basis of
the essentially algebraic formulation of categories given in Section 4. Aczel [1] presented a
model of CZF in MLTT. This suggests that we may use such models of CZF to build useful
categories for type theory. The model builds on the iterative conception of set, which is
to say, a set is a, possibly infinite, well-founded tree, and where equality of sets is defined
in terms of bisimulation.

CONSTRUCTING CATEGORIES AND SETOIDS 9

5.1. Iterative sets with urelements. We consider here a modification of Aczel’s standard
model of CZF, to be able to add urelements or atoms. For a universe U, T (·), and a setoid
M = (|M |,=M) (of urelements), the set-theoretic universe V (M) = V is inductively defined
by the rules

a : U f : T (a) // V

sup(a, f) : V

b : |M |

atom(b) : V
.

The equality =V is the smallest relation satisfying the two rules

∀x : T (a).∃y : T (b).f(x) =V g(y) ∀y : T (b).∃x : T (a).f(x) =V g(y)

sup(a, f) =V sup(b, g)

a =M b

atom(a) =V atom(b)
.

The membership relation is defined by

u ∈V sup(a, f) ⇐⇒ ∃x : T (a).u =V f(x)

and declaring u ∈V atom(b) to be false. We have a =M b iff atom(a) =V atom(b), so that
equality of atoms is exactly that of the setoid. The standard model is the special case when
M is the empty setoid (no atoms).

We say that a setoid M = (|M |,=M) belongs to the universe U if there is some m : U
with |M | = T (m), and some e : |M | // |M | // U such that for all x, y : |M |,

x =M y ⇐⇒ T (e(x, y)).

For such setoids we have:

Lemma 5.1. If M is a setoid which belongs to U , then the relations x =V y and x ∈V y

are propositions in U .

It is crucial that the basic relations ∈ and = are interpreted as propositions in the
universe U in order to be able to verify that all bounded formulas (∆0-formulas) may be
used in the separation scheme of CZF. We will thus consider V (M) where the setoid M

belongs to U . There is no principal difficulty in extending the construction to finitely many
setoids of atoms.

5.2. V -representable setoids. We consider here for simplicity only pure sets, thus let
V = V (∅). For each u : V define the setoid

B(u) = (|B(u)|,=B(u))

of elements of V belonging to u by letting

|B(u)| = Σz : V.z ∈V u

and
(z, p) =B(u) (z

′, p′) ⇐⇒ z =V z′. (5.1)

Note that for a set u = sup(a, f), it holds that

B(sup(a, f)) ∼= (T (a),∼f)

where
x ∼f x

′ ⇐⇒ f(x) =V f(x′).

10 E. PALMGREN AND O. WILANDER

We define therefore
R(sup(a, f)) = (T (a),∼f).

It is thereby easy to find the setoid and its underlying type from the set. A setoid A is
V -representable iff there is some u : V and a bijection φ : A ∼= R(u). Let u = sup(a, f) and
v = sup(b, g). If we examine

Ext(R(u), R(v)),

the standard construction of the setoid of functions from R(u) to R(v), it has the underlying
type

Σh : T (a) // T (b).(∀x, y : T (a)(fx =V fy ⇒ g(hx) =V g(hy))) (5.2)

and equality ∼ defined by

(h, p) ∼ (h′, p′) iff ∀x : T (a).g(hx) =V g(h′x).

Let Fu,v denote the type in (5.2). Define

γ(h, p) = sup(a, λx.〈fx, g(hx)〉)

which gives the graph of the function h, when (h, p) : Fu,v. Suppose that the type Fu,v has
a code ϕu,v in U so that Fu,v = T (ϕu,v). Now we can form

vu = sup(ϕu,v, γ),

which is the set all of functions from u to v. Indeed we have

z ∈V vu iff z is a total and functional relation from u to v,

where the latter can be formally expressed as the conjunction of the following statements

(∀t ∈ V)(t ∈V z ⇒ (∃x, y ∈ V)(x ∈V u ∧ y ∈V v ∧ t =V 〈x, y〉)),

(∀x ∈ V)(x ∈V u⇒ (∃y ∈ V)(y ∈V v ∧ 〈x, y〉 ∈V z)),

(∀x, y, y′ ∈ V)(〈x, y〉 ∈V z ∧ 〈x, y′〉 ∈V z ⇒ y =V y′).

Note that these are the interpretations of the corresponding first-order CZF formulas in the
structure (V,=V ,∈V). We have the following bijective correspondence

Proposition 5.2. For any u = sup(a, f), v = sup(b, g) ∈ V , there is a bijection

ψ : R(vu) // Ext(R(u), R(v))

given by ψ(h, p) = (h, p).

Actually we have arrived at the standard definition of the function set by analyzing
representable sets and functions.

CONSTRUCTING CATEGORIES AND SETOIDS 11

5.3. Two isomorphic categories. The internal category of sets in V may be described
as follows. Define the category V to have as objects V0 the setoid V = (V,=V). The arrows
V1 has as underlying type

Σu ∈ V.Isarrow(u)

where Isarrow(u) is the predicate definable using CZF formulas

∃a, b, f ∈ V.u =V 〈〈a, b〉, f〉 ∧ f is a total and functional relation from a to b.

Equality (u, p) =V1
(u′, p′) is defined to be u =V u′. The setoid V2 of composable arrows

has for underlying type

Σw ∈ V.Σu, v ∈ V1.w =V 〈π1(u), π1(v)〉 ∧ codu =v dom v

and its equality is given by (w, p) ∼ (w′, p′) iff w =V w′. Again these can be given by
straightforward intepretations of first-order CZF-formulas. Composition cmp of arrows is
obtained by composition of relations in the usual set-theoretic way.

Theorem 5.3. V is a category.

A different category is constructed using the method of Section 4.1. We extend R(·) to
a family of setoids R̄ over the setoid V = (V,=V). Let R̄(α) = R(α) for α ∈ V . For a proof
object p for sup(a, f) =V sup(b, g), or equivalently, for

∀x : T (a).∃y : T (b).f(x) =V g(y) ∧ ∀y : T (b).∃x : T (a).f(x) =V g(y),

we thus have

∀x : T (a).f(x) =V g(π1(π1(p)(x))) and ∀y : T (b).f(π1(π2(p)(y))) =V g(y).

Let R̄(p)(x) = π1(π1(p)(x)). This defines an extensional function

R̄(p) : R(sup(a, f)) //R(sup(b, g)).

Lemma 5.4. R̄ is a family of setoids over (V,=V).

Proof. The function R̄(p) : R̄(sup(a, f)) //R̄(sup(b, g)), is independent of p. Indeed, if p, p′

are arbitrary and x ∼f x
′, then

g(R̄(p)(x)) =V f(x) =V f(x′) =V g(R̄(p′)(x).

This verifies (F2). If p : sup(a, f) =V sup(a, f), then f(R̄(p)(x)) =V f(x), so R̄(p)(x) ∼f x.
Hence R̄(p) is the identity, and (F1) is clear. Finally, we check (F3’). Suppose we have
three proof objects p : sup(a, f) =V sup(b, g), q : sup(b, g) =V sup(c, h) and r : sup(a, f) =V

sup(c, h). Expanding as above we have g(R̄(p)(x)) =V f(x) and h(R̄(q)(y)) =V g(y) for all
x and y. Thus

h(R̄(q)(R̄(p)(x))) =V g(R̄(p)(x)) =V f(x)

for all x. Now the third proof object gives similarly h(R̄(r)(x)) =V f(x) for all x. Hence
for all x,

R̄(q)(R̄(p)(x)) ∼h R̄(r)(x).

Thus R̄ is a family of setoids over (V,=V).

12 E. PALMGREN AND O. WILANDER

From the family (V, R̄), we may construct the category C = C(V, R̄), as in Section 4.1
and, then compare it to the category V above. The objects of the two categories are give
by the same setoid. Let F0 : C0 // V0 be the identity map. There is a bijection C1 // V1

given by
(a, b, f) 7→ 〈〈a, b〉, γ(|f |, extf)〉.

Further, this yields a bijection F2 : C2 // V2 by letting F1 act on the two component
arrows. It is then straightforward to verify that F0, F1 and F2 form a functor which is an
isomorphism. We have

Theorem 5.5. The categories C(V, R̄) and V are isomorphic.

5.4. CZFU – constructive sets with urelements. The model V (M) in Section 5.1
suggests an axiomatization of CZF with urelements or atoms. For an example of a classical
set theory with atoms, see e.g. [14]. In [1], a theory called CZFI, which is CZF extended
with a class of individuals, is mentioned but the axioms are not detailed in that paper. It is
not clear to us whether it is actually a version of the theory presented below. Nevertheless,
we propose the following axiomatization of CZF with atoms, CZFU.

The language is that of set theory, with a binary predicate for membership ∈, extended
with unary predicate S, for being a set. Define A(x) = ¬S(x). Write ∀Sx... for ∀x.S(x) ⇒ ...

and ∃Sx... for ∃x.S(x) ∧
The axioms are the following

0(C1) ∀x.S(x) ∨A(x). Each object is either a set or an atom.
0(C2) ∀xy.y ∈ x⇒ S(x). An object which has an element must be a set.
0(C3) ∀Sx.∀Sy.(∀z.z ∈ x ⇐⇒ z ∈ y) ⇒ x = y. Sets are determined by their elements.
0(C4) Let ϕ(x) be any formula. Then take set-induction for this formula as an axiom

(∀x.(∀y ∈ x.ϕ(x)) ⇒ ϕ(x)) ⇒ ∀x.ϕ(x).

Since atoms have no elements this is actually equivalent to

(∀x.A(x) ⇒ ϕ(x)) ⇒ (∀Sx.(∀y ∈ x.ϕ(x)) ⇒ ϕ(x)) ⇒ ∀x.ϕ(x).

0(C5) Union: ∀Sx.∃Su.(∀z.z ∈ u ⇐⇒ (∃y ∈ x)z ∈ y).
0(C6) Pairing: ∀xy.∃Su.(∀z.z ∈ u ⇐⇒ (z = x ∨ z = y)).
0(C7) Bounded separation: Let ϕ(x) be any bounded formula. Then take as an axiom:

∀Su.∃Sv.∀x.x ∈ v ⇐⇒ x ∈ u ∧ ϕ(x).

0(C8) Subset collection: for any formula ϕ

∀ab.∃Sc.∀u.(∀x ∈ a.∃y ∈ b.ϕ(x, y, u)) ⇒

∃d ∈ c.(∀x ∈ a.∃y ∈ d.ϕ(x, y, u)) ∧ (∀y ∈ d.∃x ∈ a.ϕ(x, y, u))

0(C9) Strong collection: for any formula ϕ

∀a.(∀x ∈ a.∃y.ϕ(x, y)) ⇒ ∃Sb.(∀x ∈ a.∃y ∈ b.ϕ(x, y)) ∧ (∀y ∈ b.∃x ∈ a.ϕ(x, y))

(C10) Infinity axiom:

∃Sx.∅ ∈ x ∧ (∀y ∈ x)y+ ∈ x.

Here y+ = {y, {y}}.

CONSTRUCTING CATEGORIES AND SETOIDS 13

If we add the purity axiom (everything is a set) we get a system, which is easily seen to be
equivalent to the standard CZF.

(Purity): ∀x.S(x).

Theorem 5.6. For any setoid M = (|M |,=M) belonging to U , the set-theoretic universe
V (M) is a model of CZFU. The model also verifies that there is a set containing all atoms,
that is

∃Sx.∀z.z ∈ x⇐⇒ A(z). (5.3)

Proof. The proof is similar to the verification in Aczel’s standard set-theoretic model in
case of the axioms C3 – C6, C8 – C10. The axioms C1 and C2 are directly verified by the
meaning of A and ∈V . As for axiom C7, bounded separation, we may use the standard
proof once we have noticed that by Lemma 5.1, a =V b and a ∈V b are in U , whenever M
is in U .

To verify (5.3) first construct a = sup(m, f) where m : U is such that T (m) = M and
f : M // V is given by f(t) = atom(t). Then for any z ∈ V , z ∈V a if, and only if, there
is t : T (m) such that z =V atom(t), that is A(t) is true.

6. The implementation in Coq and applications

In our Coq implementation [17] we understand setoids in the sense of propositions-as-types,
which means that the equality relation takes its truth values in Set or Type. This is in
contrast to the standard setoids of Coq where the equality relation is Prop-valued. (Cf.
total setoids of Barthe et al. [3].) We have used the built-in type Set to interpret the
universe U . The setoids belonging to U are therefore setoids based on Set and called just
setoids. What we call setoids in this paper is called Typeoid in the Coq code and they
are based on Type.

The V -sets and V (M)-sets are constructed using the generalized inductive definitions
available for Type of Coq. They could as well have been constructed using a general W-type.
In several places record types are used, which corresponds to Σ-type applications of MLTT.
The following theorems of the paper are formalized: Theorems 4.2, 4.4.(d), 4.5, 5.3, 5.5,
and 5.6.

We verify as well the Regular Extension Axiom (REA) [2] in our Coq implementation.
This axiom is crucial for formalizing transfinite inductive definitions in CZF. There are
important extensions of the REA [9] that unfortunately seem difficult to model in the Coq-
system, since the system currently lacks the ability to handle general inductive-recursive
definition.

Apart from using a set-theoretic universe to overcome the limitations of the built in
equality of intensional type theory, there are also possible practical utilizations in proof
development. An application of the kind of implementation presented here is to integrate
type-theoretic and set-theoretic methods in proofs. The set-theoretic methods make it
possible avoid certain coherence problems that may be difficult to solve in type theory, for
instance regarding families of setoids and involved inductive definitions. The type-theoretic
methods have the well known advantages with type checking that guide construction of
proofs, and a direct computational interpretation. One may develop theorems in CZF (or
CZFU) and then translate the first order formulas and proofs into the richer language that

14 E. PALMGREN AND O. WILANDER

is modelled in the Coq implementation. This translation can easily be done automatically,
and the development of the CZF theorems could be done in a theorem prover or proof
assistant that can handle intuitionistic logic.

References

[1] Peter Aczel. The type-theoretic interpretation of constructive set theory. In: A. Macintyre, L. Pacholski
and J. Paris (eds.), Logic Colloquium ’77. North-Holland, Amsterdam 1978.

[2] Peter Aczel. The type-theoretic interpretation of constructive set theory: inductive definitions. In: R.B.
Marcus, G.J. Dorn, and G.J.W. Dorn (eds.), Logic, Methodology, and Philosophy of Science VII, North-
Holland, Amsterdam and New York, 1986, pp. 17 – 49.

[3] Gilles Barthe, Venanzio Capretta and Olivier Pons. Setoids in type theory. Journal of Functional Pro-
gramming 13(2003), pp. 261–293.

[4] Benno van den Berg and Ieke Moerdijk. A unified approach to Algebraic Set Theory. In: S.B. Cooper, H.
Geuvers, A. Pillay and J. Väänänen (eds.) Logic Colloquium 2006, Lecture Notes in Logic, Cambridge
University Press 2009, pp. 18 – 37.

[5] Aurelio Carboni. Some free constructions in realizability and proof theory. Journal of Pure and Applied
Algebra 103 (1995), pp. 117 – 148.

[6] Jason J. Hickey. The MetaPRL Logical Programming Environment. PhD thesis, Cornell University,
Ithaca, NY, January 2001.

[7] Martin Hofmann. On the Interpretation of Type Theory in Locally Cartesian Closed Categories In:
Proceedings of Computer Science Logic, Lecture Notes in Computer Science, Springer, 1994, pp. 427 –
441.

[8] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In: G. Sambin and
J. Smith (eds.) Twenty-five years of constructive type theory (Venice, 1995), pp. 83 – 111, Oxford Logic
Guides, 36, Oxford Univ. Press, New York, 1998.

[9] Robert S. Lubarsky and Michael Rathjen. On the regular extension axiom and its variants. Mathematical
Logic Quarterly 49 (2003), pp. 513 – 518.

[10] Saunders Mac Lane. Categories for the Working Mathematician. 2nd ed. Springer 1997.
[11] Maria E. Maietti. Modular correspondences between dependent type theories and categorical universes

including pretopoi and topoi. Mathematical Structures in Computer Science 15 (2005), pp. 1089 –1149.
[12] Nax P. Mendler. Note: An Implementation of Constructive Set Theory in the LEGO System. Depart-

ment of Computer Science, Manchester University 1991.
[13] Ieke Moerdijk and Erik Palmgren. Type Theories, Toposes and Constructive Set Theory: Predicative

Aspects of AST. Annals of Pure and Applied Logic 114(2002), pp. 155 – 201.
[14] Yannis N. Moschovakis. Notes on Set Theory. Second Edition. Springer 2006.
[15] Erik Palmgren. Proof-relevance of families of setoids and identity in type theory. Archive for Mathemat-

ical Logic 51(2012), pp. 35 – 47.
[16] Erik Palmgren. Constructivist and Structuralist Foundations: Bishop’s and Lawvere’s Theories of Sets.

Annals of Pure and Applied Logic 163(2012), pp. 1384 – 1399.
[17] Erik Palmgren and Olov Wilander. www.math.su.se/~palmgren/coq/czf and setoids File repository

of the implementation described in the present paper.
[18] Thomas Streicher. Investigations into intensional type theory. Habilitation Thesis, Ludwig-Maximilians

Universität, Munich, 1993. http://www.mathematik.tu-darmstadt.de/~streicher/
[19] Makoto Takeyama. Personal communication.
[20] Olov Wilander. Constructing a small category of setoids. Mathematical Structures in Computer Science

22(2012), pp. 103 – 121.
[21] Xin Yu. Formalizing abstract algebra in constructive set theory. Master’s thesis, California Institute of

Technology, 2002.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Setoids
	3. Families of setoids
	4. From families to categories of setoids
	4.1. Construction of a category of setoids
	4.2. Closure conditions on families and categories
	4.3. Direct construction of categorical universes

	5. Aczel's iterative sets and setoids
	5.1. Iterative sets with urelements
	5.2. V-representable setoids
	5.3. Two isomorphic categories
	5.4. CZFU – constructive sets with urelements

	6. The implementation in Coq and applications
	References

