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Abstract. Canonical inference rules and canonical systems are defined in the framework
of non-strict single-conclusion sequent systems, in which the succeedents of sequents can
be empty. Important properties of this framework are investigated, and a general non-
deterministic Kripke-style semantics is provided. This general semantics is then used to
provide a constructive (and very natural), sufficient and necessary coherence criterion for
the validity of the strong cut-elimination theorem in such a system. These results suggest
new syntactic and semantic characterizations of basic constructive connectives.

1. Introduction

There are two traditions concerning the definition and characterization of logical con-
nectives. The better known one is the semantic tradition, which is based on the idea that
an n-ary connective ⋄ is defined by the conditions which make a sentence of the form
⋄(ϕ1, . . . , ϕn) true. The other is the proof-theoretic tradition (originated from [9] — see e.g.
[14] for discussions and references). This tradition implicitly divides the connectives into
basic connectives and compound connectives, where the latter are defined in terms of the
basic ones. The meaning of a basic connective, in turn, is determined by a set of derivation
rules which are associated with it. Here one usually has in mind a natural deduction or a
sequent system, in which every logical rule is an introduction rule (or perhaps an elimination
rule, in the case of natural deduction) of some unique connective. However, it is well-known
that not every set of rules can be taken as a definition of a basic connective. A minimal
requirement is that whenever some sentence involving exactly one basic connective is prov-
able, then it has a proof which involves no other connectives. In “normal” sequent systems,
in which every rule except cut has the subformula property, this condition is guaranteed
by a cut-elimination theorem. Therefore only sequent systems for which such a theorem
obtains are considered as useful for defining connectives.

In [3] the semantic and the proof-theoretic traditions were shown to be equivalent for
a a large family of what may be called semi-classical connectives (which includes all the
classical connectives, as well as many others). In these papers multiple-conclusion canonical
(= ‘ideal’) propositional rules and systems were defined in precise terms. A simple coherence
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criterion for the non-triviality of such a system was given, and it was shown that a canonical
system is coherent if and only if it admits cut-elimination. Semi-classical connectives were
characterized using canonical rules in coherent canonical systems. In addition, each of
these connectives was given a semantic characterization. This characterization uses two-
valued non-deterministic truth-tables – a natural generalization of the classical truth-tables.
Moreover, it was shown there how to translate a semantic definition of a connective to a
corresponding proof-theoretic one, and vice-versa.1

In this paper we attempt to provide similar characterizations for the class of basic
constructive connectives.

What exactly is a constructive connective? Several different answers to this question
have been given in the literature, each adopting either of the traditions described above (but
not both!). Thus in [12] McCullough gave a purely semantic characterization of constructive
connectives, using a generalization of the Kripke-style semantics for intuitionistic logic. On
the other hand Bowen suggested in [7] a quite natural proof-theoretic criterion for (basic)
constructivity: an n-ary connective ⋄, defined by a set of sequent rules, is constructive if
whenever a sequent of the form ⇒ ⋄(ϕ1, . . . , ϕn) is provable, then it has a proof ending by
an application of one of right-introduction rules for ⋄.

In what follows we generalize and unify the syntactic and the semantic approaches by
adapting the ideas and methods used in [3]. The crucial observation on which our theory is
based is that every connective of a “normal” single-conclusion sequent system that admits
cut-elimination is necessarily constructive according to Bowen’s criterion (because without
using cuts, the only way to derive ⇒ ⋄(ϕ1, . . . , ϕn) in such a system is to prove first the
premises of one of its right-introduction rules). This indicates that only single-conclusion
sequent rules are useful for defining constructive connectives. In addition, for defining basic
connectives, only canonical derivation rules (in a sense similar to that used in [3]) should
be used. Therefore, our proof-theoretic characterization of basic constructive connectives
is done using cut-free single-conclusion canonical systems. These systems are the natural
constructive counterparts of the multiple-conclusion canonical systems of [3]. On the other
hand, McCullough’s work suggests that an appropriate counterpart of the semantics of non-
deterministic truth-tables should be given by a non-deterministic generalization of Kripke-
style semantics.

General single-conclusion canonical rules and systems were first introduced and inves-
tigated in [4]. A general non-deterministic Kripke-style semantics for such systems was
also developed there, and a constructive necessary and sufficient coherence criterion for
their non-triviality was provided. Moreover: it was shown that a system of this kind ad-
mits a strong form of cut-elimination iff it is coherent. However, [4] dealt only with strict
single-conclusion systems, in which the succeedents of sequents contain exactly one formula.
Unfortunately, in such a framework it is impossible to have canonical rules even for a crucial
connective like intuitionistic negation. To solve this, we move here to Gentzen’s original
(non-strict) single-conclusion framework, in which the succeedents of sequents contain at
most one formula. There is a price to pay, though, for this extension of the framework. As
we show below, in this more general framework we lose the equivalence between the sim-
ple coherence criterion of [3, 4] and non-triviality, as well as the equivalence proved there
between simple cut-elimination and strong cut-elimination. Hence the theory needs some
major changes.

1It might be interesting to note that every connective in this framework can be viewed as basic.
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In the rest of this paper we first redefine the notions of a canonical inference rule
and a canonical system in the framework of non-strict single-conclusion sequent systems.
Then we turn to the semantic point of view, and present a corresponding general non-
deterministic Kripke-style semantics. We show that every canonical system induces a class
of non-deterministic Kripke-style frames, for which it is strongly sound and complete. This
general semantics is then used to show that a canonical system G is coherent iff it admits
a strong form of non-triviality, and this happens iff the strong cut-elimination theorem is
valid for G.

Taken together, the results of this paper suggest that a basic constructive connective
is a connective that can be defined using a set of canonical rules in a coherent (non-strict)
single-conclusion sequent system. We show that this class is broader than that suggested
in [12], and includes connectives that cannot be expressed by the four basic intuitionistic
connectives. Examples include the “converse non-implication” and “not-both” connectives
from [7], as well as the weak implication of primal intuitionistic logic from [10]. These
connectives were left out by McCullough’s deterministic semantic characterization because
their semantics is strictly non-deterministic.

2. Preliminaries

In what follows L is a propositional language, F is its set of wffs, p, q denote atomic
formulas, ψ,ϕ, θ denote arbitrary formulas (of L), T and U denote subsets of F , Γ,∆,Σ,Π
denote finite subsets of F , and E,F denote subsets of F with at most one element. We
assume that the atomic formulas of L are p1, p2, . . . (in particular: p1, . . . , pn are the first n
atomic formulas of L).

Notation. For convenience we sometimes discard parentheses for sets, and write e.g. just ψ
instead of {ψ}. We also employ other standard abbreviations, like Γ,∆ instead of Γ ∪∆.

Definition 2.1. A Tarskian consequence relation (tcr for short) for L is a binary relation
⊢ between sets of formulas of L and formulas of L that satisfies the following conditions:

Strong Reflexivity: if ϕ ∈ T then T ⊢ ϕ.
Monotonicity: if T ⊢ ϕ and T ⊆ T ′ then T ′ ⊢ ϕ.
Transitivity (cut): if T ⊢ ψ and T , ψ ⊢ ϕ then T ⊢ ϕ.

In the non-strict framework, it is natural to extend Definition 2.1 as follows:

Definition 2.2. An Extended Tarskian consequence relation (etcr for short) for L is a
binary relation ⊢ between sets of formulas of L and singletons or empty sets of formulas of
L that satisfies the following conditions:

Strong Reflexivity: if ϕ ∈ T then T ⊢ ϕ.
Monotonicity: if T ⊢ E, T ⊆ T ′, and E ⊆ E′, then T ′ ⊢ E′.
Transitivity (cut): if T ⊢ ψ and T , ψ ⊢ E then T ⊢ E.

Intuitively, “T ⊢ ” means that T is inconsistent (i.e. T ⊢ ϕ for every formula ϕ).

Definition 2.3. An L-substitution is a function σ : F → F , such that for every n-ary con-
nective ⋄ of L, we have: σ(⋄(ψ1, . . . , ψn)) = ⋄(σ(ψ1), . . . , σ(ψn)). Obviously, a substitution
is determined by the values it assigns to atomic formulas. A substitution is extended to
sets of formulas in the obvious way: σ(T ) = {σ(ϕ) | ϕ ∈ T } (in particular, σ(∅) = ∅).
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Definition 2.4. An etcr ⊢ for L is structural if for every L-substitution σ and every T
and E, if T ⊢ E then σ(T ) ⊢ σ(E). ⊢ is finitary iff the following condition holds for every
T and E: if T ⊢ E then there exists a finite Γ ⊆ T such that Γ ⊢ E. ⊢ is consistent (or
non-trivial) if p1 6⊢ p2.

It is easy to see that there are exactly four inconsistent structural etcrs in any given
language: T ⊢ E for every T and E; T ⊢ E for every E and nonempty T ; T ⊢ E for every
T and nonempty E; and T ⊢ E for every nonempty T and nonempty E. These etcrs are
obviously trivial, so we exclude them from our definition of an extended logic:

Definition 2.5. A propositional extended logic is a pair 〈L,⊢〉, where L is a propositional
language, and ⊢ is an etcr for L which is structural, finitary, and consistent.

Sequents, which are the main tool for introducing extended logics, are defined as follows:

Definition 2.6. A non-strict single-conclusion sequent is an expression of the form (Γ ⇒ E)
where Γ and E are finite sets of formulas, and E is either a singleton or empty. A non-
strict single-conclusion Horn clause is a non-strict single-conclusion sequent which consists
of atomic formulas only.

Convention. From now on, by “sequent (clause)” we shall mean “non-strict single-conclusion
sequent (Horn clause)”.

Definition 2.7. A sequent of the form (Γ ⇒ {ϕ}) is called definite. A sequent of the form
(Γ ⇒ ∅) is called negative.

Notation. We mainly use s to denote a sequent and S to denote a set of sequents. We usually
omit the outermost parentheses of sequents to improve readability. For convenience, we shall
denote a sequent of the form Γ ⇒ ∅ by Γ ⇒ , and a sequent of the form Γ ⇒ {ϕ} by Γ ⇒ ϕ.

3. Canonical Systems

The following definitions formulate in exact terms the structure of sequent rules (and
systems) that can be used to define basic constructive connectives. We first define right-
introduction rules and their applications, and then deal with left-introduction rules.

Definition 3.1.

(1) A single-conclusion canonical right-introduction rule for a connective ⋄ of arity n is an
expression of the form:

{Πi ⇒ Ei}1≤i≤m/ ⇒ ⋄(p1, . . . , pn)

where m ≥ 0, and Πi ∪ Ei ⊆ {p1, . . . , pn} for every 1 ≤ i ≤ m. The clauses Πi ⇒ Ei

(1 ≤ i ≤ m) are the premises of the rule, while ⇒ ⋄(p1, . . . , pn) is its conclusion.
(2) An application of the rule {Πi ⇒ Ei}1≤i≤m/ ⇒ ⋄(p1, . . . , pn) is any inference step of

the form:
{Γ, σ(Πi) ⇒ σ(Ei)}1≤i≤m

Γ ⇒ σ(⋄(p1, . . . , pn))

where Γ is a finite set of formulas and σ is an L- substitution.
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A canonical right-introduction rule may have negative premises (negative sequents serv-
ing as premises). Obviously, in applications of such a rule, a right context formula cannot
be added to its negative premises. Left-introduction rules are somewhat more complicated,
since in their applications it is not impossible to add a right context formula to the negative
premises and to the conclusion. However, in the general case there might also be negative
premises which do not allow such an addition of a right context. Accordingly, in what
follows we split the set of premises of a canonical left-introduction rule into two sets: hard
premises which do not allow right context, and soft premises, which do allow it.

Definition 3.2.

(1) A single-conclusion canonical left-introduction rule for a connective ⋄ of arity n is an
expression of the form:

〈{Πi ⇒ Ei}1≤i≤m, {Σj ⇒}1≤j≤k〉/ ⋄ (p1, . . . , pn) ⇒

where m,k ≥ 0, Πi ∪ Ei ⊆ {p1, . . . , pn} for 1 ≤ i ≤ m, and Σj ⊆ {p1, . . . , pn} for
1 ≤ j ≤ k. The clauses Πi ⇒ Ei (1 ≤ i ≤ m) are called the hard premises of the rule,
Σj ⇒ (1 ≤ j ≤ k) are its soft premises, and ⋄(p1, . . . , pn) ⇒ is its conclusion.

(2) An application of the rule
〈{Πi ⇒ Ei}1≤i≤m, {Σi ⇒}1≤i≤k〉/ ⋄ (p1, . . . , pn) ⇒ is any inference step of the form:

{Γ, σ(Πi) ⇒ σ(Ei)}1≤i≤m {Γ, σ(Σi) ⇒ E}1≤i≤k

Γ, σ(⋄(p1, . . . , pn)) ⇒ E

where Γ ⇒ E is an arbitrary sequent, and σ is an L- substitution.

Remark 3.3. Note that definite premises of a canonical left-introduction rules are all hard
premises, as they do not allow the addition of a right context.

Convention. From now on, by “canonical right-introduction (left-introduction) rule” we shall
mean “single-conclusion canonical right-introduction (left-introduction) rule”.

Examples 3.4. We give some examples for canonical rules.

Implication: The two usual rules for implication are:

〈{⇒ p1}, {p2 ⇒}〉 / p1 ⊃ p2 ⇒ and {p1 ⇒ p2} / ⇒ p1 ⊃ p2

Applications of these rules have the form:

Γ ⇒ ψ Γ, ϕ⇒ E
Γ, ψ ⊃ ϕ⇒ E

Γ, ψ ⇒ ϕ
Γ ⇒ ψ ⊃ ϕ

Absurdity]: In intuitionistic logic there is no right-introduction rule for the absurdity
constant ⊥, and there is exactly one left-introduction rule for it:

〈∅, ∅〉 / ⊥ ⇒

Applications of this rule provide new axioms:

Γ,⊥ ⇒ E

Negation: Unlike in [4], in this new framework it is possible to handle negation as a basic
connective, using the following standard rules:

〈{⇒ p1}, ∅〉 / ¬p1 ⇒ and {p1 ⇒} / ⇒ ¬p1
Applications of these rules have the form:

Γ ⇒ ψ
Γ,¬ψ ⇒ E

Γ, ψ ⇒
Γ ⇒ ¬ψ
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Semi-Implication: In [10] ❀ was introduced using the following two rules:

〈{⇒ p1}, {p2 ⇒}〉 / p1 ❀ p2 ⇒ and {⇒ p2} / ⇒ p1 ❀ p2

Applications of these rules have the form:

Γ ⇒ ψ Γ, ϕ⇒ E
Γ, ψ ❀ ϕ⇒ E

Γ ⇒ ϕ
Γ ⇒ ψ ❀ ϕ

Affirmation: Let the connective ⊲ be defined using the following rules:

〈∅, {p1 ⇒}〉 / ⊲ p1 ⇒ and {⇒ p1} / ⇒⊲ p1
Applications of these rules have the form:

Γ, ϕ⇒ E
Γ,⊲ ϕ⇒ E

Γ ⇒ ϕ
Γ ⇒⊲ ϕ

Weak Affirmation: Let the connective ◮ be defined using the following rules:

〈{p1 ⇒}, ∅〉 / ◮ p1 ⇒ and {⇒ p1} / ⇒◮ p1
Applications of these rules have the form:

Γ, ϕ⇒
Γ,◮ ϕ⇒ E

Γ ⇒ ϕ
Γ ⇒◮ ϕ

Note that the left-introduction rule for ◮ includes one hard negative premise, to which
no right context can be added. As a result, ◮ ϕ⇒ ϕ is not provable.

Bowen’s connectives: In [7], Bowen introduced an extension of the basic intuitionistic
calculus with two new intuitionistic connectives2. He defined these connectives by the
following canonical rules:

〈{p2 ⇒ p1}, ∅〉 / p1 6⊂ p2 ⇒ and {(p1 ⇒), (⇒ p2)} / ⇒ p1 6⊂ p2

〈{(⇒ p1), (⇒ p2)}, ∅〉/p1 | p2 ⇒ and {p1 ⇒}/⇒ p1 | p2 {p2 ⇒}/⇒ p1 | p2
Applications of these rules have the form:

Γ, ψ ⇒ ϕ
Γ, ϕ 6⊂ ψ ⇒ E

Γ, ϕ⇒ Γ ⇒ ψ
Γ ⇒ ϕ 6⊂ ψ

Γ ⇒ ϕ Γ ⇒ ψ
Γ, ϕ | ψ ⇒ E

Γ, ϕ⇒
Γ ⇒ ϕ | ψ

Γ, ψ ⇒
Γ ⇒ ϕ | ψ

Definition 3.5. A non-strict single-conclusion sequent system is called canonical if it sat-
isfies the following conditions:

(1) Its axioms are the sequents of the form ϕ⇒ ϕ.
(2) Weakening and cut are among its rules. Applications of these rules have the form:

Γ ⇒ E
Γ,∆ ⇒ E

Γ ⇒
Γ ⇒ ψ

Γ ⇒ ϕ ∆, ϕ⇒ E
Γ,∆ ⇒ E

(3) Each of its other rules is either a canonical right-introduction rule or a canonical left-
introduction rule.

Convention. From now on, by canonical system we shall mean “non-strict single-conclusion
canonical system”.

2He also presented “neither-nor” connective, which we do not describe here, since this connective can be
expressed by the four basic intuitionistic connectives.
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Definition 3.6. Let G be a canonical system, and let S ∪{s} be a set of sequents. S ⊢seq
G

s
iff there exists a derivation in G of s from S. The sequents of S are called the assumptions
(or non-logical axioms) of such a derivation.

Definition 3.7. The etcr ⊢G which is induced by a canonical system G is defined by:
T ⊢G E iff there exists a finite Γ ⊆ T such that ⊢seq

G
Γ ⇒ E.

Proposition 3.8. ⊢G is a structural and finitary etcr for every canonical system G.

Proposition 3.9. T ⊢G E iff {⇒ ψ | ψ ∈ T } ⊢seq
G

⇒ E.

We leave the easy proofs of the last two propositions to the reader.

4. Consistency and Coherence

Consistency (or non-triviality) is a crucial property of a deductive system. The goal of
this section is to find a constructive criterion for it in the framework of canonical systems.

Definition 4.1. A canonical system G is called consistent iff 6⊢seq
G

p1 ⇒ p2.

Proposition 4.2. A canonical system G is consistent iff ⊢G is consistent.

In multiple-conclusion canonical systems ([3]), as well as in strict single-conclusion
canonical systems ([4]), consistency is equivalent to coherence. Roughly speaking, a coherent
system is a system in which the rules cannot lead to new conflicts: the conclusions of two
rules can contradict each other only if their joint set of premises is already inconsistent.
Next we adapt this criterion to the present case:

Definition 4.3. A set R of canonical rules for an n-ary connective ⋄ is called coherent iff
S1 ∪S2 ∪S3 is classically inconsistent whenever R contains both 〈S1, S2〉/ ⋄ (p1, . . . , pn) ⇒
and S3/ ⇒ ⋄(p1, . . . , pn).

Remark 4.4. It is known that a set of clauses is classically inconsistent iff the empty clause
can be derived from it using only cuts.

Example 4.5. Every connective introduced in Example 3.4, has a coherent set of rules.
For example, for the two rules for implication we have S1 = { ⇒ p1}, S2 = {p2 ⇒ }, S3 =
{p1 ⇒ p2}, and S1 ∪ S2 ∪ S3 is the classically inconsistent set {( ⇒ p1), (p2 ⇒ ), (p1 ⇒ p2)}
(from which the empty sequent can be derived using two cuts). For the two rules for semi-
implication we have S1 = { ⇒ p1}, S2 = {p2 ⇒ }, S3 = { ⇒ p2}, and S1 ∪ S2 ∪ S3 is the
classically inconsistent set {( ⇒ p1), (p2 ⇒ ), ( ⇒ p2)} (from which the empty sequent can
be derived using one cut).

Definition 4.6. A canonical system G is called coherent iff for each connective ⋄, the set
of rules in G for ⋄ is coherent.

Unfortunately, the next example shows that in the present case coherence is not neces-
sary for consistency.

Example 4.7. Let G be a canonical system for a language which includes a single unary
connective ◦, having the following rules:

〈∅, {p1 ⇒}〉 / ◦ p1 ⇒ and {p1 ⇒} / ⇒ ◦p1
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Applications of these rules have the form:

Γ, ϕ⇒ E
Γ, ◦ϕ ⇒ E

Γ, ϕ⇒
Γ ⇒ ◦ϕ

Obviously, G is not coherent. However, it can easily be proved (using induction) that the
only sequents provable in G from no assumptions are the sequents of the form Γ ⇒ ψ,
where ◦nψ ∈ Γ for some n ≥ 0 (here ◦0ψ = ψ and ◦n+1ψ = ◦ ◦n ψ). In particular, p1 ⇒ p2
is not provable in G from no assumptions, and so G is consistent.

To overcome this difficulty, we define a stronger notion of consistency, and show that
in the context of non-strict canonical systems, the coherence criterion is equivalent to this
stronger notion.

Definition 4.8. A canonical systemG is called strongly consistent iff (⇒ p1), (p2 ⇒) 6⊢seq
G

⇒.

Proposition 4.9. Every strongly consistent canonical system is also consistent.

Proof. Let G be an inconsistent canonical system. Then ⊢seq
G

p1 ⇒ p2. Using the assump-
tions (⇒ p1), (p2 ⇒) and two cuts we get (⇒ p1), (p2 ⇒) ⊢seq

G
⇒.

The following derivation shows that the system from Example 4.7 is not strongly consistent,
and so strong consistency is indeed strictly stronger than consistency.

p1 ⇒

p1 ⇒ p1
◦p1 ⇒ p1

◦ ⇒
p1 ⇒
⇒ ◦p1

⇒ ◦

⇒ p1 cut

⇒ cut

We note that strong consistency is a very natural demand from a system: in strongly
inconsistent systems it suffices to have one provable sequent of the form ψ ⇒, and one
provable sequent of the form ⇒ ϕ, to make every sequent provable.

Theorem 4.10. Every strongly consistent canonical system is coherent.

Proof. Let G be an incoherent canonical system. This means that G includes two rules
〈S1, S2〉/⋄ (p1, . . . , pn) ⇒ and S3/ ⇒ ⋄(p1, . . . , pn), such that the set of clauses S1∪S2∪S3
is classically satisfiable. Let v be an assignment in {t, f} that satisfies all the clauses in
S1 ∪ S2 ∪ S3. Define a substitution σ by:

σ(p) =

{

p1 v(p) = t
p2 v(p) = f

Since v satisfies all the clauses in S1 ∪ S2 ∪ S3, for every Π ⇒ E ∈ S1 ∪ S2 ∪ S3 we have
p2 ∈ σ(Π) or p1 ∈ σ(E). Hence, every element of σ(S1 ∪ S2 ∪ S3) can be derived from
(⇒ p1), (p2 ⇒) by weakening. Now by applying the rules 〈S1, S2〉/ ⋄ (p1, . . . , pn) ⇒ and
S3/ ⇒ ⋄(p1, . . . , pn) to these sequents we get proofs from (⇒ p1), (p2 ⇒) of the sequents
⇒ σ(⋄(p1, . . . , pn)) and σ(⋄(p1, . . . , pn)) ⇒. That (⇒ p1), (p2 ⇒) ⊢seq

G
⇒ then follows using

a cut.
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The last theorem implies that coherence is a necessary demand from any acceptable canon-
ical system G. In the sequel (Corollary 6.10) we show that coherence is also sufficient to
ensure strong consistency.

Remark 4.11. Our coherence criterion can be proved to be equivalent (for fully-structural
sequent systems) to the reductivity criterion defined in [8]. However, in the framework of [8]
a connective essentially has infinitely many introduction rules, while our framework makes
it possible to convert these infinite sets of rules into finite ones.

5. Semantics for Canonical Systems

In this section we generalize Kripke semantics for intuitionistic logic to arbitrary coher-
ent canonical systems. For this we use non-deterministic Kripke frames and semiframes.

Definition 5.1. Let 〈W,≤〉 be a nonempty partially ordered set. Let U be a set of formulas.
A function v :W ×U → {t, f} is called persistent iff for every a ∈W and ϕ ∈ U , v(a, ϕ) = t
implies that v(b, ϕ) = t for every b ∈W such that a ≤ b.

Definition 5.2. Let U be a set of formulas closed under subformulas. A U-semiframe is a
triple W = 〈W,≤, v〉 such that:

(1) 〈W,≤〉 is a nonempty partially ordered set.
(2) v is a persistent function from W × U to {t, f}.

When U = F a U -semiframe is also called an L-frame.

Remark 5.3. To understand the need to consider semiframes, we note that to be useful
and effective, a denotational semantics of a propositional logic should be analytic. This
means that in order to determine whether a sequent s follows from a set S of sequents, it
should be sufficient to consider partial valuations, defined only on the set of subformulas
of the formulas in S ∪ {s}. In the present case, such partial valuations are provided by
semiframes.

Definition 5.4. Let W = 〈W,≤, v〉 be a U -semiframe.

(1) A sequent Γ ⇒ E is locally true in a ∈W iff Γ∪E ⊆ U , and either v(a, ψ) = f for some
ψ ∈ Γ, or E = {ϕ} and v(a, ϕ) = t.

(2) A sequent is true (or absolutely true) in a ∈W iff it is locally true in every b ≥ a.
(3) W is a model of a sequent s iff s is true in every a ∈W (equivalently, if s is locally true

in every a ∈W ). It is a model of a set S of sequents if it is a model of every s ∈ S.
(4) W is a model of a formula ϕ iff v(a, ϕ) = t for every a ∈ W . It is a model of a theory

T if it is a model of every ϕ ∈ T .

Remark 5.5. From the point of view of local truth, a sequent is understood according
to its classical interpretation as a disjunction (either one of the formulas in its left side is
“false” or its right side is “true”). On the other hand, the notion of absolute truth is based
on viewing a sequent as expressing a real (constructive) entailment between its two sides.
Note that because of the persistence condition, for sequents of the form ⇒ ϕ there is no
difference between local truth in a or absolute truth in a. Obviously, W is a model of such
a sequent iff it is a model of ϕ.
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Persistence is the only general condition which is satisfied by the semantics of every
coherent canonical system. In addition, to every specific canonical system corresponds a
set of constraints which are directly related to its set of canonical rules. The idea is that
a canonical rule for a connective ⋄ imposes restrictions on the truth-values that can be
assigned to ⋄-formulas. Next we describe these restrictions.

Definition 5.6. Let W = 〈W,≤, v〉 be a U -semiframe.

(1) An L-substitution σ (locally) satisfies a sequent Γ ⇒ E in a ∈ W iff σ(Γ) ⇒ σ(E) is
(locally) true in a3.

(2) An L-substitution fulfils a canonical right-introduction rule in a ∈ W (with respect to
W) iff it satisfies in a every premise of the rule.

(3) An L-substitution fulfils a canonical left-introduction rule in a ∈ W (with respect to
W) iff it satisfies in a every hard premise of the rule, and locally satisfies in a every soft
premise of the rule.

(4) Let r be a canonical rule for an n-ary connective ⋄. W respects r iff for every a ∈W and
every substitution σ: if σ fulfils r in a and σ(⋄(p1, . . . , pn)) ∈ U then σ locally satisfies
conclusion of r in a.

Note that absolute truth is used for premises of right introduction rules, as well as for
hard premises of left introduction rules. Local truth is used only for soft premises of left
introduction rule. This is the main difference between this semantics and the one described
in [4] for the strict framework. In [4], the difference between absolute and local truth
corresponds to the syntactic distinction between definite and negative sequents (absolute
truth is used for definite premises, and local truth is used for negative premises). In the
present case, since negative sequents may also serve as premises of right introduction rules
and as hard premises of left introduction rules, this syntactic distinction is irrelevant for
the semantics definition.

Remark 5.7. Because of the persistence condition, a definite sequent of the form ⇒ ψ is
satisfied in a by σ iff v(a, σ(ψ)) = t.

Examples 5.8. We describe the semantic effects of some rules from Example 3.4.

Negation: An L-frame W = 〈W,≤, v〉 respects the rule (¬ ⇒) if v(a,¬ψ) = f whenever
v(a, ψ) = t. Because of the persistence condition, if v(b,¬ψ) = f for some b ≥ a then
v(a,¬ψ) = f . And so, W respects (¬ ⇒) if v(a,¬ψ) = f whenever v(b, ψ) = t for some
b ≥ a. It respects (⇒ ¬) if v(a,¬ψ) = t whenever v(b, ψ) = f for every b ≥ a. Hence
the two rules together impose exactly the well-known Kripke semantics for intuitionistic
negation.

Implication: An L-frame W = 〈W,≤, v〉 respects the rule (⊃⇒) iff for every a ∈ W ,
v(a, ϕ ⊃ ψ) = f whenever v(b, ϕ) = t for every b ≥ a and v(a, ψ) = f (the latter –
because ψ ⇒ is an instance of a soft premise). Because of the persistence condition, this
is equivalent to v(a, ϕ ⊃ ψ) = f whenever v(a, ϕ) = t and v(a, ψ) = f . Again by the
persistence condition, v(a, ϕ ⊃ ψ) = f iff v(b, ϕ ⊃ ψ) = f for some b ≥ a. Hence, we
get: v(a, ϕ ⊃ ψ) = f whenever there exists b ≥ a such that v(b, ϕ) = t and v(b, ψ) = f .
W respects (⇒⊃) iff for every a ∈ W , v(a, ϕ ⊃ ψ) = t whenever for every b ≥ a, either
v(b, ϕ) = f or v(b, ψ) = t. Hence the two rules together impose exactly the well-known
Kripke semantics for intuitionistic implication ([11]). It is easy to verify that the same
applies to conjunction and disjunction, using the usual rules for these connectives.

3When E = ∅, recall that σ(∅) = ∅.
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Semi-Implication: An L-frame W = 〈W,≤, v〉 respects the rule (❀⇒) under the same
conditions it respects (⊃⇒). W respects (⇒❀) iff for every a ∈ W , v(a, ϕ ❀ ψ) = t
whenever v(a, ψ) = t (recall that this is equivalent to v(b, ψ) = t for every b ≥ a). Note
that in this case the two rules for ❀ do not always determine the value assigned to
ϕ ❀ ψ: if v(a, ψ) = f , and there is no b ≥ a such that v(b, ϕ) = t and v(b, ψ) = f ,
then v(a, ϕ ❀ ψ) is free to be either t or f . So the semantics of this connective is
non-deterministic.

Converse Non-Implication: An L-frame W = 〈W,≤, v〉 respects the rule (6⊂⇒) provided
that v(a, ϕ 6⊂ ψ) = f whenever for every b ≥ a either v(b, ϕ) = t or v(b, ψ) = f . Because
of the persistence condition, this is equivalent to v(a, ϕ 6⊂ ψ) = f if either there exists
some b ≥ a such that v(b, ϕ) = t, or if v(b, ψ) = f for every b ≥ a. It respects (⇒6⊂)
if v(a, ϕ 6⊂ ψ) = t whenever v(b, ϕ) = f and v(b, ψ) = t for every b ≥ a. Because of
the persistence condition, this is equivalent to v(a, ϕ 6⊂ ψ) = t whenever v(a, ψ) = t and
v(b, ϕ) = f for every b ≥ a. This implies that v(a, ϕ 6⊂ ψ) is free when v(b, ϕ) = f for
every b ≥ a, v(a, ψ) = f , and there exists b ≥ a such that v(b, ψ) = t. For example,
consider the following two {p1, p2, p1 6⊂ p2}-semiframes:

p1 = f

p2 = t

p1 6⊂ p2 = tp1 6⊂ p2 = f

p2 = f

p1 = f p1 = f

p2 = t

p1 6⊂ p2 = tp1 6⊂ p2 = t

p2 = f

p1 = f

While there is no difference between these two semi-frames with respect to atomic for-
mulas, the truth-values assigned to p1 6⊂ p2 in one of their two worlds are different. Now
both semiframes respect the two rules of 6⊂. Hence the semantics of this connective is
non-deterministic.4

Not Both: An L-frame W = 〈W,≤, v〉 respects the rule (|⇒) if v(a, ϕ | ψ) = f whenever
v(b, ϕ) = t and v(b, ψ) = t for every b ≥ a. Because of the persistence condition, this is
equivalent to v(a, ϕ | ψ) = f whenever v(b, ψ) = v(b, ϕ) = t for some b ≥ a. It respects
(⇒|)1 if v(a, ϕ | ψ) = t whenever v(b, ϕ) = f for every b ≥ a. It respects (⇒|)2 if
v(a, ϕ | ψ) = t whenever v(b, ψ) = f for every b ≥ a. This implies that v(a, ϕ | ψ) is free
when there exist b1, b2 ≥ a such that v(b1, ϕ) = v(b2, ψ) = t, but there does not exist
b ≥ a such that v(b, ϕ) = v(b, ψ) = t (this is possible because the order relation does not
have to be linear). Again, the induced semantics is non-deterministic.

Affirmation: An L-frame W = 〈W,≤, v〉 respects the rule (⊲⇒) if v(a,⊲ ψ) = f whenever
v(a, ψ) = f . It respects (⇒⊲) if v(a,⊲ ψ) = t whenever v(a, ψ) = t. This means that
for every a ∈W , v(a,⊲ ψ) simply equals v(a, ψ).

Weak Affirmation: An L-frame W = 〈W,≤, v〉 respects the rule (◮⇒) if v(a,◮ ψ) = f
whenever v(b, ψ) = f for every b ≥ a. It respects (⇒◮) if v(a,◮ ψ) = t whenever
v(b, ψ) = t for every b ≥ a. Because of the persistence condition, this is equivalent to
v(a,◮ ψ) = t whenever v(a, ψ) = t. This implies that v(a,◮ ψ) is free when v(a, ψ) = f
and v(b, ψ) = t for some b ≥ a. Again, we obtain non-deterministic semantics.

Definition 5.9. Let G be a canonical system. A U -semiframe is G-legal iff it respects all
the canonical rules of G.

4Note that no semantic characterizations for “converse non-implication” and “not both” were presented
in [7], where these connectives were first introduced.
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We can now give the definition of the semantic relations induced by a canonical system:

Definition 5.10. LetG be a coherent canonical system, and let S∪{s} be a set of sequents.
S �

seq
G

s iff every G-legal L-frame which is a model of S is also a model of s.

Definition 5.11. Let G be a coherent canonical system. The semantic etcr �G between
formulas which is induced by G is defined by: T �G E iff every G-legal L-frame which is
a model of T is also a model of E.

Again we have:

Proposition 5.12. T �G E iff {⇒ ψ | ψ ∈ T } �
seq
G

⇒ E.

6. Soundness, Completeness, Cut-elimination

In this section we show that the syntactic and semantic consequence relations between
sequents which are induced by a given coherent canonical system are identical. In addition,
we present a semantic proof of cut-elimination for arbitrary coherent canonical systems.
There are a lot of similarities between the proofs of this section and the corresponding
proofs in [4]. However, the proofs in [4] correspond to different definitions, and so, for the
sake of completeness, we include here the full proofs.

Theorem 6.1. Every coherent canonical system G is strongly sound with respect to the
semantics of G-legal frames. In other words: If S ⊢seq

G
s then S �

seq
G

s.

Proof. Assume that S ⊢seq
G

s, and W = 〈W,≤, v〉 is a G-legal model of S. We show that s
is locally true in every a ∈W . Since the axioms of G and the assumptions of S trivially
have this property, and the cut and weakening rules obviously preserve it, it suffices to show
that the property of being locally true in every a ∈ W is also preserved by applications of
the logical rules of G.

• Suppose Γ ⇒ σ(⋄(p1, . . . , pn)) is derived from {Γ, σ(Πi) ⇒ σ(Ei)}1≤i≤m using the rule
r = {Πi ⇒ Ei}1≤i≤m/⇒ ⋄(p1, . . . , pn). Assume that all the premises of this applica-
tion have the required property. We show that so does its conclusion. Let a ∈W . If
v(a, ψ) = f for some ψ ∈ Γ, then obviously Γ ⇒ σ(⋄(p1, . . . , pn)) is locally true in a.
Assume otherwise. Then the persistence condition implies that v(b, ψ) = t for every
ψ ∈ Γ and b ≥ a. Thus our assumption concerning the sequents {Γ, σ(Πi) ⇒ σ(Ei)}1≤i≤m

entails that for every b ≥ a and 1 ≤ i ≤ m, either v(b, ψ) = f for some ψ ∈ σ(Πi), or
Ei = {qi} (i.e. Ei is not empty) and v(b, σ(qi)) = t. It follows that for 1 ≤ i ≤ m,
Πi ⇒ Ei is satisfied in a by σ. Thus, σ fulfils r in a. Since W respects r, it follows that
v(a, σ(⋄(p1, . . . , pn))) = t.

• Now we deal with left-introduction rules. Suppose Γ, σ(⋄(p1, . . . , pn)) ⇒ E is derived
from {Γ, σ(Πi) ⇒ σ(Ei)}1≤i≤m and {Γ, σ(Σi) ⇒ E}1≤i≤k, using the left-introduction rule
r = 〈{Πi ⇒ Ei}1≤i≤m, {Σi ⇒}1≤i≤k〉/ ⋄ (p1, . . . , pn) ⇒. Assume that all the premises of
this application have the required property. We show that so does its conclusion. Let
a ∈W . If v(a, ψ) = f for some ψ ∈ Γ or E = {θ} and v(a, θ) = t, then we are done.
Assume otherwise. Then E is either empty or E = {θ} and v(a, θ) = f , and (by the
persistence condition) v(b, ψ) = t for every ψ ∈ Γ and b ≥ a. Thus our assumption con-
cerning the sequents {Γ, σ(Πi) ⇒ σ(Ei)}1≤i≤m entails that for every b ≥ a and 1 ≤ i ≤ m,
either v(b, ψ) = f for some ψ ∈ σ(Πi), or Ei = {qi} and v(b, σ(qi)) = t. This immediately
implies that the hard premises of r are satisfied in a by σ. Since E is either empty or
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E = {θ} and v(a, θ) = f , our assumption concerning {Γ, σ(Σi) ⇒ E}1≤i≤k entails that
for every 1 ≤ i ≤ k, v(a, ψ) = f for some ψ ∈ σ(Σi). Hence the soft premises of r are
locally satisfied in a by σ. Thus, σ fulfils r in a. Since W respects r, it follows that
v(a, σ(⋄(p1, . . . , pn))) = f .

For the converse, we define S-proofs and prove the following key result.

Definition 6.2. Let S be sets of sequents. A proof P in a canonical system is called an
S-proof iff the cut formula of every cut in P occurs in S.

Theorem 6.3. Let G be a coherent canonical system in L, and let S ∪ {s} be a set of
sequents in L. Then either there is an S-proof of s from S in G, or there is a G-legal
L-frame which is model of S, but not a model of s.

Proof. Assume that s = Γ0 ⇒ E0 does not have an S-proof from S in G. We construct a
G-legal L-frame W which is a model of S but not of s. Let U be the set of subformulas of
S ∪ {s}. Given a subset E of U which is either a singleton or empty, call a theory T ⊆ U
E-maximal if there is no finite Γ ⊆ T such that Γ ⇒ E has an S-proof from S, but every
proper extension T ′ ⊆ U of T contains such a finite subset Γ. Obviously, if Γ ∪ E ⊆ U
and Γ ⇒ E has no S-proof from S, then Γ can be extended to a theory T ⊆ U which is
E-maximal. In particular: Γ0 can be extended to a E0-maximal theory T0.

Now let W = 〈W,⊆, v〉, where:

• W is the set of all extensions of T0 in U which are E-maximal for some E ⊆ U (recall
that E is either singleton or empty).

• v is defined inductively as follows. For atomic formulas:

v(T , p) =

{

t p ∈ T
f p 6∈ T

Suppose v(T , ψi) has been defined for every T ∈W and 1 ≤ i ≤ n.
We let v(T , ⋄(ψ1, . . . , ψn)) = t iff at least one of the following holds with respect to the
semiframe constructed so far:
(1) There exists a right-introduction rule for ⋄ which is fulfilled in T by a substitution σ

such that σ(pi) = ψi (1 ≤ i ≤ n).
(2) ⋄(ψ1, . . . , ψn) ∈ T , and there do not exist T ′ ∈W and a left-introduction rule r for

⋄, such that T ⊆ T ′, and r is fulfilled in T ′ by a substitution σ such that σ(pi) = ψi

(1 ≤ i ≤ n).

First we prove that W is an L-frame:

• W is not empty because T0 ∈W .
• We prove by structural induction that v is persistent:
For atomic formulas v is trivially persistent since the order is ⊆.
Assume that v is persistent for ψ1, . . . , ψn. We prove its persistence for ⋄(ψ1, . . . , ψn).
So assume that v(T , ⋄(ψ1, . . . , ψn)) = t and T ⊆ T ∗. By the definition of v there are two
possibilities:
(1) There exists a right-introduction rule for ⋄ which is fulfilled in T by a substitu-

tion σ such that σ(pi) = ψi (1 ≤ i ≤ n). This is also trivially true in T ∗, and so
v(T ∗, ⋄(ψ1, . . . , ψn)) = t.
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(2) ⋄(ψ1, . . . , ψn) ∈ T , and there do not exist T ′ ∈W and a left-introduction rule r for
⋄, such that T ⊆ T ′, and r is fulfilled in T ′ by a substitution σ such that σ(pi) = ψi

(1 ≤ i ≤ n). Then ⋄(ψ1, . . . , ψn) ∈ T ∗ (since T ⊆ T ∗), and there cannot exist T ′ ∈W
and a left-introduction rule r for ⋄, such that T ∗ ⊆ T ′, and r is fulfilled in T ′ by such a
substitution σ (otherwise the same would hold for T ). Hence v(T ∗, ⋄(ψ1, . . . , ψn)) = t
in this case too.

Next we prove that W is G-legal:

(1) The right-introduction rules are directly respected by the first condition in the definition
of v.

(2) Let r be a left-introduction rule for ⋄, and let T ∈ W . Suppose that r is fulfilled in T
by a substitution σ, such that σ(pi) = ψi (1 ≤ i ≤ n). Then neither of the conditions
under which v(T , ⋄(ψ1, . . . , ψn)) = t can hold:
(a) The second condition explicitly excludes the option that r is fulfilled by σ (in any

T ′ ∈W such that T ⊆ T ′, including T itself).
(b) The first condition cannot be met because the coherence of G does not allow the

sets of premises (of a right-introduction rule and a left-introduction rule for the
same connective) to be locally satisfied together. Hence the two rules cannot be
both fulfilled by the same substitution in the same element of W . To see this,
assume by way of contradiction that S1 and S2 are the sets of premises of a left-
introduction rule for ⋄, S3 is the set of premises of a right-introduction rule for ⋄,
and there exists T ∈W in which the three sets of premises are locally satisfied by
a substitution σ such that σ(pi) = ψi (1 ≤ i ≤ n). Let u be an assignment in {t, f}
in which u(pi) = v(T , ψi). Since σ locally satisfies in T the three sets of premises,
u classically satisfies S1, S2 and S3. This contradicts the coherence of G.

It follows that v(T , ⋄(ψ1, . . . , ψn)) = f , as required.

It remains to prove that W is a model of S but not of s. For this we first prove that the
following hold for every T ∈W and every formula ψ ∈ U :

(a): If ψ ∈ T then v(T , ψ) = t.
(b): If T is {ψ}-maximal then v(T , ψ) = f .

We prove (a) and (b) together by a simultaneous induction on the complexity of ψ. For
atomic formulas they easily follow from the definition of v, and the fact that p⇒ p is an
axiom. For the induction step, assume that (a) and (b) hold for ψ1, . . . , ψn ∈ U . We prove
them for ⋄(ψ1, . . . , ψn) ∈ U .

• Assume that ⋄(ψ1, . . . , ψn) ∈ T , but v(T , ⋄(ψ1, . . . , ψn)) = f . By the definition of v,
since ⋄(ψ1, . . . , ψn) ∈ T there should exist T ′ ∈W , T ⊆ T ′, and a left-introduction rule,
r = 〈{Πi ⇒ Ei}1≤i≤m, {Σi ⇒}1≤i≤k〉/ ⋄ (p1, . . . , pn) ⇒, fulfilled in T ′ by a substitution σ
such that σ(pi) = ψi (1 ≤ i ≤ n). As σ locally satisfies in T ′every sequent in {Σi ⇒}1≤i≤k,
then for every 1 ≤ i ≤ k there exists ψji ∈ σ(Σi) with v(T

′, ψji) = f . By the induction hy-
pothesis this implies that for every 1 ≤ i ≤ k, there exists ψji ∈ σ(Σi) such that ψji /∈ T ′.
Let E be the set for which T ′ is maximal. Then for every 1 ≤ i ≤ k there is a finite ∆i ⊆ T ′

such that ∆i, ψji ⇒ E has an S-proof from S, and therefore ∆i, σ(Σi) ⇒ E has such a
proof. This in turn implies that there must exist 1 ≤ i0 ≤ m such that Γ, σ(Πi0) ⇒ σ(Ei0)
has no S-proof from S for any finite Γ ⊆ T ′. Indeed, if such a proof exists for every
1 ≤ i ≤ m, we would use the k proofs of ∆i, σ(Σi) ⇒ E for 1 ≤ i ≤ k, the m proofs for
Γi, σ(Πi) ⇒ σ(Ei) for 1 ≤ i ≤ m, some trivial weakenings, and the left-introduction rule
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r to get an S-proof from S of the sequent ∪i=k
i=1∆i,∪

i=m
i=1 Γi, ⋄(ψ1, . . . , ψn) ⇒ E. Since

⋄(ψ1, . . . , ψn) ∈ T , this would contradict the E-maximality of T ′. Using this i0, extend
T ′ ∪ σ(Πi0) to a σ(Ei0)-maximal theory T ′′. By the induction hypothesis, v(T ′′, ψ) = t
for every ψ ∈ σ(Πi0), and if Ei0 = {q} (i.e. Ei0 is not empty) then v(T ′′, σ(q)) = f . Since
T ′ ⊆ T ′′, this contradicts the fact that σ satisfies Πi0 ⇒ Ei0 in T ′.

• Assume that T is {⋄(ψ1, . . . , ψn)}-maximal, but that v(T , ⋄(ψ1, . . . , ψn)) = t. Obviously,
⋄(ψ1, . . . , ψn) /∈ T (because ⋄(ψ1, . . . , ψn) ⇒ ⋄(ψ1, . . . , ψn) is an axiom). Hence there ex-
ists a right-introduction rule, r = {Πi ⇒ Ei}1≤i≤m/⇒ ⋄(p1, . . . , pn), which is fulfilled in
T by a substitution σ such that σ(pi) = ψi (1 ≤ i ≤ n). As in the previous case, there
must exist 1 ≤ i0 ≤ m such that Γ, σ(Πi0) ⇒ σ(Ei0) has no S-proof from S for any finite
Γ ⊆ T (if such a proof exists for every 1 ≤ i ≤ m with finite Γi ⊆ T than we could have
an S-proof from S of ∪i=m

i=1 Γi ⇒ ⋄(ψ1, . . . , ψn) using the m proofs of Γi, σ(Πi) ⇒ σ(Ei),
some weakenings and r). Using this i0, extend T ∪ σ(Πi0) to a σ(Ei0)-maximal theory
T ′. By the induction hypothesis v(T ′, ψ) = t for every ψ ∈ σ(Πi0), and if Ei0 = {q} (i.e.
Ei0 is not empty) then v(T ′, σ(q)) = f . Since T ⊆ T ′, this contradicts the fact that σ
satisfies Πi0 ⇒ Ei0 in T .

Next we note that (b) can be strengthened as follows:

(c) If ψ ∈ U , T ∈W and there is no finite Γ ⊆ T such that Γ ⇒ ψ has an S-proof from S,
then v(T , ψ) = f .

Indeed, under these conditions T can be extended to a {ψ}-maximal theory T ′. Now
T ′ ∈W , T ⊆ T ′, and by (b), v(T ′, ψ) = f . Hence also v(T , ψ) = f .

Now (a) and (b) together imply that v(T0, ψ) = t for every ψ ∈ Γ0 ⊆ T0, and if E0 = {θ}
(i.e. E0 is not empty) then v(T0, θ) = f . Hence W is not a model of s. We end the proof
by showing that W is a model of S. So let ψ1, . . . , ψn ⇒ E ∈ S and let T ∈W , where T is
F -maximal. Assume by way of contradiction that ψ1, . . . , ψn ⇒ E is not locally true in T .
Therefore, v(T , ψi) = t for 1 ≤ i ≤ n. By (c), for every 1 ≤ i ≤ n there is a finite Γi ⊆ T
such that Γi ⇒ ψi has an S-proof from S. Now, there are two cases:

(1) Assume E = {θ}. Since ψ1, . . . , ψn ⇒ θ is not locally true in T , v(T , θ) = f . This
implies (by (a)) that θ /∈ T . Since T is F -maximal, it follows that there is a finite
∆ ⊆ T such that ∆, θ ⇒ F has an S-proof from S. Now from Γi ⇒ ψi (1 ≤ i ≤ n),
∆, θ ⇒ F , and ψ1, . . . , ψn ⇒ θ one can infer Γ1, . . . ,Γn,∆ ⇒ F by n + 1 S-cuts (on
ψ1, . . . , ψn and θ). Hence, Γ1, . . . ,Γn,∆ ⇒ F has an S-proof from S.

(2) Assume E is empty. Γ1, . . . ,Γn ⇒ follows from the sequents Γi ⇒ ψi (1 ≤ i ≤ n) and
ψ1, . . . , ψn ⇒ by n S-cuts (on ψ1, . . . , ψn). Using weakening (if F is not empty), it
follows that Γ1, . . . ,Γn ⇒ F has an S-proof from S.

In both cases we showed an S-proof from S of a sequent of the form Γ ⇒ F , where Γ ⊆ T .
This contradicts the F -maximality of T .

Remark 6.4. This proof suggests that weakening on the right side of sequents can be
limited to apply only to negative sequents of the set of assumptions of the derivation.
Recall that by proposition 3.9, T ⊢G E iff {⇒ ψ | ψ ∈ T } ⊢seq

G
⇒ E. Thus if one is only

interested in consequence relations between formulas, there are no negative sequents in the
set of assumptions, and so the right weakening rule is superfluous.

Theorem 6.5 (Soundness and Completeness). Every coherent canonical system G is
strongly sound and complete with respect to the semantics of G-legal frames. In other
words:
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(1) S ⊢seq
G

s iff S �
seq
G

s.
(2) T ⊢G E iff T �G E.

Proof. (1) is immediate from Theorem 6.3 and Theorem 6.1. (2) follows from (1) using the
reductions given in Proposition 3.9 and Proposition 5.12.

Corollary 6.6 (Compactness). Let G be a coherent canonical system. If S �
seq
G

s then
there exists a finite S ′ ⊆ S such that S ′ �

seq
G

s.

We use Theorem 6.3 to prove a general cut-elimination theorem.

Definition 6.7. Let s be a sequent, S be a set of sequents, and G be a canonical system.

(1) G admits cut-elimination iff whenever ⊢seq
G

s, there exists a proof of s without cuts (i.e.
there exists a ∅-proof).

(2) ([2]) G admits strong cut-elimination iff whenever S ⊢seq
G

s, there exists an S-proof of
s from S.

Notice that cut-elimination is a special case of strong cut-elimination with an empty
S. Also notice that by cut-elimination we mean here just the existence of proofs without
(certain forms of) cuts, rather than an algorithm to transform a given proof to a cut-free
one (for the assumption-free case the term cut-admissibility is sometimes used).

Theorem 6.8 (General Strong Cut-Elimination Theorem). Every coherent canonical sys-
tem G admits strong cut-elimination.

Proof. Assume S ⊢seq
G

s. By Theorem 6.5, S �
seq
G

s, and so there does not exist a G-legal
L-frame which is model of S, but not a model of s. By Theorem 6.3, there is an S-proof of
s from S.

Remark 6.9. In [2], a strengthening of the cut-elimination theorem was suggested for
Gentzen’s original systems for classical logic. The notion of a hyper-resolution rule (or
hyper-cut rule) was defined, and it was proven that this special kind of cuts is the only one
needed in derivations of a sequent from a non-empty set of sequents. Following the proof
of Theorem 6.3, we can show the same in the present case. Let hyper-cut1 and hyper-cut2
be the rules which allow the following two derivations:

ψ1, . . . , ψn ⇒ θ Γ1 ⇒ ψ1 . . . Γn ⇒ ψn ∆, θ ⇒ F
Γ1, . . . ,Γn,∆ ⇒ F

ψ1, . . . , ψn ⇒ Γ1 ⇒ ψ1 . . . Γn ⇒ ψn

Γ1, . . . ,Γn ⇒

Call ψ1, . . . , ψn ⇒ E, where E = {θ} in the first derivation and empty in the second, the
nucleus of the rule. The last theorem can be strengthened as follows: if S ⊢seq

G
s, then

there exists a proof of s from S, which uses only axioms, canonical rules, weakenings and
hyper-cuts with elements of S as nuclei.

Corollary 6.10. The conditions below are equivalent for a canonical system G:

(1) G is strongly consistent.
(2) G is coherent.
(3) G admits strong cut-elimination.
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Proof. (1) implies (2) by Theorem 4.10. (2) implies (3) by Theorem 6.8. Finally, in a
canonical system the only sequents which are provable from {(⇒ p1), (p2 ⇒)} using only
cuts on p1 or p2 are: axioms, sequents of the form Γ ⇒ p1, sequents of the form Γ, p2 ⇒ E,
and sequents that contain a non-atomic formula. Thus there is no way to derive ⇒ from
{(⇒ p1), (p2 ⇒)}, using only cuts on p1 or p2. Hence (3) implies (1).

Corollary 6.11. If G is a coherent canonical system in L then 〈L,�G〉 (or equivalently
〈L,⊢G〉) is an extended logic.

6.1. Strict Canonical Systems. In [4] strict single-conclusion canonical systems were
investigated. These systems are canonical systems, in which derivations can only contain
definite sequents. Now we show that the results of [4] about these systems can be derived
from results of the present paper. For this purpose, we concentrate on a smaller set of
canonical systems, for which we are able to strengthen Corollary 6.10.

Definition 6.12. A canonical system is called definite if its right-introduction rules have
only definite clauses as premises, and its left-introduction rules have only definite clauses
as hard premises.

Example 6.13. Every canonical system in which the set of logical rules is a subset of the
set of rules for ⊃,⊥,❀,⊲ (of Example 3.4) is definite.

Corollary 6.14. The conditions below are equivalent for a definite canonical system G:

(1) G is strongly consistent.
(2) G is coherent.
(3) G admits strong cut-elimination.
(4) G admits cut-elimination.
(5) G is consistent.

Proof. (1),(2),(3) are equivalent by Corollary 6.10 for every canonical system. (3) trivially
implies (4). (4) implies (5), since in a canonical system there is no way to derive p1 ⇒ p2
without using cuts. Finally, a proof similar to that of Theorem 1 in [4], (or Theorem 4.10
of this paper) shows that (5) implies (2).

Remark 6.15. Strong cut-elimination and cut-elimination are not equivalent in the general
case. To see this, consider the systemG given in Example 4.7. As explained there, a sequent
Γ ⇒ E can be proved in G from no assumptions iff it is of the form Γ ⇒ ψ, where ◦nψ ∈ Γ
for some n ≥ 0. It is easy to see that every sequent of this form can be proved without using
cuts, and so G admits cut-elimination. However, G does not admit strong cut-elimination.
For example, one must apply cut on ◦p to derive the empty sequent from the sequent p1 ⇒ .

To derive results about strict canonical systems, we prove the following lemma.

Lemma 6.16. Let G be a definite canonical system, and let S ∪ {s} be a set of definite
sequents. If there exists a proof P of s from S in G, then there also exists a proof P ′ of s
from S in which every sequent is a definite sequent, and every cut formula in P ′ also serves
as a cut-formula in P .
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Proof. It is easy to see that starting from definite assumptions, the only way one can produce
a negative sequent in a definite canonical system is by an application of a left-introduction
rule of the form:

{Γ, σ(Πi) ⇒ σ(Ei)}1≤i≤m {Γ, σ(Σi) ⇒}1≤i≤k

Γ, σ(⋄(p1, . . . , pn)) ⇒

Since G is definite, the sequent inferred in steps of this kind cannot be used in the rest of
the proof, unless right weakening is applied on a descendant of this sequent. Applying the
same weakening before steps of this kind will turn the sequent into a definite one, keeping
the rest of the proof valid. Finally, this modification does not affect the set of cut-formulas
used in the proof.

Now define a new strict provability relation ⊢seq1
G

for definite canonical systems. ⊢seq1
G

is
defined as in Definition 3.6, except that it allows only definite sequents in proofs. By Lemma
6.16 it immediately follows that a definite system admits cut-elimination with respect to
⊢seq1
G

, iff it admits cut-elimination with respect to ⊢seq
G

. The same applies to strong cut-
elimination and consistency. Therefore for definite canonical systems, Corollary 6.14 ensures
that coherence, cut-elimination, strong cut-elimination, and consistency5 are equivalent also
with respect to ⊢seq1

G
.

7. Analycity and Decidability

In this section we show that the semantics of G-legal frames is analytic in the intuitive
sense described in Remark 5.3.

Theorem 7.1 (Analycity). Let U1,U2 be sets of formulas closed under subformulas, such
that U1 ⊂ U2. Let G be a coherent canonical system for L. The semantics of G-legal frames
is analytic in the following sense: If W1 = 〈W,≤, v1〉 is a G-legal U1-semiframe, then v1
can be extended to a function v2 so that W2 = 〈W,≤, v2〉 is a G-legal U2-semiframe.

Proof. Similar to the proof of Theorem 6 from [4].

Remark 7.2. In particular, the last theorem shows that every G-legal U -semiframe, can
be extended to a G-legal L-frame.

The following two theorems are consequences of Theorem 7.1 and the soundness and
completeness theorems.

Theorem 7.3 (Conservativity). Let G1 be a coherent canonical system in a language L1,
and let G2 be a coherent canonical system in a language L2. Assume that L2 is an extension
of L1 by some set of connectives, and that G2 is obtained from G1 by adding to the latter
canonical rules for connectives in L2−L1. Then G2 is a conservative extension of G1 (i.e.:
if all sequents in S ∪ s are in L1 then S ⊢seq

G1
s iff S ⊢seq

G2
s).

Proof. Suppose that S 6⊢seq
G1

s. Then there is G1-legal model W of S which is not a model
of s. Since the set of formulas of L1 is a subset of the set of formulas of L2 which is closed
under subformulas, Theorem 7.1 implies that W can be extended to a G2-legal model of S
which is not a model of s. Hence S 6⊢seq

G2
s.

5Note that strong consistency is trivial in this case, since the empty sequent is not allowed to appear in
derivations.
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Theorem 7.4 (Decidability). Let G be a coherent canonical system. Then G is strongly
decidable: Given a finite set S of sequents, and a sequent s, it is decidable whether S ⊢seq

G
s

or not.

Proof. Let U be the set of subformulas in S ∪ {s}. From Theorem 7.1 and the proof of
Theorem 6.3 it easily follows that in order to decide whether S ⊢seq

G
s it suffices to check

all triples of the form 〈W,⊆, v′〉 where W ⊆ 2U and v′ : W × U → {t, f}, and see if any of
them is a G-legal U -semiframe which is a model of S but not a model of s.

Remark 7.5. The last two theorems can also be proved directly from the cut-elimination
theorem.

Strong conservativity and strong decidability of ⊢G and �G are easy corollaries of the
previous theorems and the reductions given in Proposition 3.9 and Proposition 5.12.

8. Conclusions and Further Work

Now we present our answer to the question from the introduction: “what is a basic
constructive connective?”.

A basic constructive connective is a connective defined by a set of rules in
some coherent canonical system.

Theorem 6.8 ensures that the proof-theoretic criterion for constructivity, described in the
introduction, is met. Theorem 7.3 ensures that a set of rules for some connective can indeed
be seen as a definition of that connective, because it shows that in coherent canonical
systems the same set of rules defines the same connective regardless of the rules for the
other connectives.

In Section 5, the proof-theoretic characterization of basic constructive connectives was
matched by a (non-deterministic) Kripke-style semantics. This semantics is modular, al-
lowing to separate the semantic effect of each derivation rule. However, we did not provide
there an independent semantic characterization of (basic) constructive connectives. We
leave this issue to a future work. Another future goal is to extend our results to first-order
logic, and identify constructive quantifiers as well (for semi-classical quantifiers this was
done in [5]).
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