
Logical Methods in Computer Science
Vol. 7 (2:6) 2011, pp. 1–32
www.lmcs-online.org

Submitted May 29, 2010
Published May 5, 2011

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗

RENATE A. SCHMIDT AND DMITRY TISHKOVSKY

School of Computer Science, The University of Manchester, UK
e-mail address: {renate.schmidt,dmitry.tishkovsky}@manchester.ac.uk

Abstract. This paper presents a method for synthesising sound and complete tableau
calculi. Given a specification of the formal semantics of a logic, the method generates a set
of tableau inference rules that can then be used to reason within the logic. The method
guarantees that the generated rules form a calculus which is sound and constructively
complete. If the logic can be shown to admit finite filtration with respect to a well-defined
first-order semantics then adding a general blocking mechanism provides a terminating
tableau calculus. The process of generating tableau rules can be completely automated and
produces, together with the blocking mechanism, an automated procedure for generating
tableau decision procedures. For illustration we show the workability of the approach for
a description logic with transitive roles and propositional intuitionistic logic.

1. Introduction

Tableau-based reasoning is popular in many areas of computer science and various branches
of logic. For description logics and ontology reasoning they provide the main method for
doing reasoning (see, for example, [5, 24]; some recent work is [32, 30]). For modal logics
and applications such as multi-agent systems tableau approaches are frequently used (see,
for example, [18, 13, 21, 29, 14, 23]; some recent work is [20, 6]). Tableau calculi have
been developed and are being used for non-classical logics such as intuitionistic logic [18, 3],
conditional logic [2], logics of metric and topology [27] and hybrid logics [37, 10, 15]. Rather
than developing tableau calculi one by one for individual logics, it is possible to develop
tableau calculi in a systematic way for large classes of logics. This is evident from the
literature in all these areas and studies such as [22, 17, 3].

In this paper we want to go further and investigate the possibility to generate tableau
calculi automatically from the specification of a logic. We assume that the logic of interest
is defined by a high-level specification of its formal semantics. Our aim is to turn this into
a set of inference rules that provides a sound and complete deduction calculus for the logic.
Ideally we also want to be able to guarantee termination if the logic is decidable. Automated
synthesis of calculi is a challenging problem and in general it is of course not possible to turn
every specification of a logic into a sound, complete and terminating deduction calculus.

1998 ACM Subject Classification: F.4.1, I.2.3, I.2.4.
Key words and phrases: calculus synthesis, tableau calculi, soundness, completeness, decidability, descrip-

tion logic, modal logic, first-order logic, automated reasoning.
∗ The paper is an extended and improved version of [34].

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (2:6) 2011

c© R. A. Schmidt and D. Tishkovsky
CC© Creative Commons

http://creativecommons.org/about/licenses

2 R. A. SCHMIDT AND D. TISHKOVSKY

It is however possible to describe classes of logical specifications for which the problem is
solvable uniformly.

In previous work we have shown that it is possible to synthesise tableau calculi for
modal logics by translation to first-order logic combined with first-order resolution [31]. In
this approach the semantic specification of a logic is transformed into clausal form and then
a set of inference rules. Soundness and completeness of the generated calculus follows from
the soundness and completeness of the simulating resolution refinement used. In the present
paper we introduce another approach for generating tableau calculi. Rather than proceeding
via simulation by resolution, our approach generates a tableau calculus directly from the
specification of a logic. For traditional modal logics essentially the same tableau calculi
can be obtained, but for more expressive dynamic modal logics and description logics the
method in [31] produces calculi with introduction rules, whereas the method in this paper
can be used to produce calculi with only elimination rules.

In other previous work we have described a framework for turning sound and complete
tableau calculi into decision procedures [33]. The key for this framework is the unrestricted
blocking mechanism from [32] which is added to the given calculus in order to turn it
into a terminating calculus. Enhancing a tableau calculus with the unrestricted blocking
mechanism produces a terminating tableau calculus, whenever the logic can be shown to
admit finite filtration with respect to its semantics [33]. More specifically, the prerequisites
are that the following conditions all hold.

(1) The logic admits the effective finite model property shown by a filtration argument.
(2) The tableau calculus is sound and constructively complete.
(3) A weak form of subexpression property holds for tableau derivations.

Constructive completeness is a slightly stronger notion than completeness and means that
for every open branch in a tableau there is a model which reflects all the expressions (for-
mulae) occurring on the branch. The subexpression property says that every expression in
a derivation is a subexpression of the input expression with respect to a finite subexpression
closure operator.

In order to be able to exploit this ‘termination through blocking’ result from [33], in
this paper, our goal is to synthesise tableau calculi that satisfy the prerequisites (2) and (3).
It turns out that, provided the specification of the semantics of the logic is well-defined in a
certain sense, the subexpression property can be imposed on the generated calculus. Crucial
is the separation of the syntax of the logic from the ‘extras’ in the meta-language needed
for the semantic specification of the logic. The process of generating tableau calculi can be
completely automated and gives, together with the unrestricted blocking mechanism and the
results in [32, 33], an automated procedure for generating tableau decision procedures for
logics, whenever they have the effective finite model property with respect to a well-defined
first-order semantics, that is, condition (1) holds.

The tableau synthesis method introduced in this paper works as follows. The user
defines the formal semantics of the given logic in a many-sorted first-order language so that
certain well-definedness conditions hold. The semantic specification of the logic is then
automatically reduced to Skolemised implicational forms which are further transformed
into tableau inference rules. Combined with a set of default closure and equality rules, the
generated rules provide a sound and constructively complete calculus for the logic. Under
certain conditions the set of rules can be further refined. If the logic can be shown to admit

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 3

finite filtration, then the generated calculus can be automatically turned into a terminating
calculus by adding the unrestricted blocking mechanism from [32].

The method is intended to be as general as possible, and cover as many logics as possible.
Our main focus is non-classical logics and description logics. As case studies we consider the
application of the method to propositional intuitionistic logic IPC [28] and the description
logic SO. Propositional intuitionistic logic provides a nearly perfect example because the
semantics of the logical connectives is not Boolean and the semantics is restricted by a
background theory. In addition, the logic is simple. SO is the extension of the description
logic ALC with singleton concepts (or nominals) and transitive roles. SO is a fragment of
many expressive description logics considered in the literature [4] and is the analogue of the
hybrid [9] version of the standard modal logic K4 [8].

The paper is structured as follows. Section 2 defines the apparatus for specifying the
logic of interest. It consists of two languages, a language for specifying the syntax of the
logic and a language for specifying its semantics. How to specify the semantics of a logic is
described in Section 3. Because there are many ways of writing semantic specifications, in
this paper, we focus on what we call well-defined semantic specifications for which sound
and complete tableau calculi can be generated. The tableau generation process is presented
in Section 4, and Section 5 proves soundness and constructive completeness of the generated
calculus. Sections 6 and 7 discuss two techniques for refining a calculus. The first refinement
aims at reducing branching in derivations. The second refinement aims at reducing the use
of extraneous constructs in the language of the tableau calculus. In Section 8 we show
how the unrestricted blocking mechanism of [32] can be used to obtain terminating tableau
calculi for logics with the effective finite model property. To illustrate the approach we
use the description logic SO as a running example throughout the paper. In Section 9
the approach is applied to propositional intuitionistic logic. The paper concludes with a
discussion of the approach.

The paper is written using terminology of description logics, but all the results apply
equally to modal logics and other non-classical logics. In most cases where we use the word
‘expression’ we could have equally used the words ‘formula’ or ‘logical term’.

2. The Specification Languages

In order for the user to specify the semantics of the given logic for which they want to
develop a tableau calculus there are two specification languages:

(1) an object language for defining the syntax of the logic, and
(2) a meta-language for specifying the semantics of the logic.

For the sake of generality the object language, denoted by L, is a many-sorted pro-
positional language, thus allowing for the specification of many-sorted propositional logics
including modal logics, description logics and other non-classical logics.

Throughout the paper the standard notation ω is used for the smallest infinite countable
ordinal, that is, ω = {0, 1, 2, . . .}.

Let Sortsdef

={0, 1, . . . , N} be the index set of the sorts of the object language. The idea
is that, for n = 1, . . . , N , symbols of sort n are interpreted as n-ary relations and symbols
of sort 0 are interpreted as domain elements. Of the sorts, the sort 1 is regarded as the
primary sort.

Let Conn be a countable set of the logical connectives of the logic to be specified. Every
connective σ in Conn is associated with a tuple (i1, i2, . . . , im+1) ∈ Sorts(m+1), wherem ≥ 0.

4 R. A. SCHMIDT AND D. TISHKOVSKY

The last argument im+1 is the sort of the expression obtained by applying σ to expres-
sions of sorts i1, i2, . . . , im, respectively. We say that σ is an m-ary connective of sort
(i1, i2, . . . , im+1).

The object language L is defined over an alphabet given by a set of sorts Sorts, a
set of connectives Conn, a countable set of variable symbols {pij | i ∈ Sorts, j ∈ ω},

and a countable set of constant symbols {qij | i ∈ Sorts, j ∈ ω}. L is defined as the set

of expressions over the alphabet closed under the connectives in Conn. More formally, let
L

def
=

⋃

i∈Sorts L
i, where each Li denotes the set of expressions of sort i defined as the smallest

set of expressions satisfying the following conditions:

• All variables pij and all constants qij in the alphabet are expressions belonging to Li.

• For every connective σ ∈ Conn of sort (i1, i2 . . . , im+1), σ(E1, . . . , Em) is an expression
belonging to Lim+1 , whenever E1, . . . , Em belong to Li1 , . . . ,Lim , respectively.

Symbols, expressions and connectives in the language L are also referred to as L-symbols, L-
expressions and L-connectives. Variables and constants in L are called atomic L-expressions.
We refer to expressions in L0 as individuals, expressions in L1 as concepts, and expressions
in L2 as roles. That is, individuals are expressions of sort 0, concepts are expressions (or
formulae) of the primary sort and roles are expressions (or formulae) of sort 2.

For an L-expression E, the notation E(p1, . . . , pm) indicates that p1, . . . , pm are (dis-
tinct) variables occurring in the expression E. To avoid ambiguity in this notation we
standardly assume that all the variables of the language L are linearly ordered by an order-
ing <v and p1 <v · · · <v pm. E(E1, . . . , Em) denotes the expression obtained by uniformly
substituting Ei into pi, for all i = 1, . . . ,m. Similarly, if X is a set of L-expressions depend-
ing on variables p1, . . . , pm, we indicate this as X(p1, . . . , pm) and denote by X(E1, . . . , Em)
the set of expressions which are instances of expressions from X under uniform substitution
of the expressions E1, . . . , Em into p1, . . . , pm, respectively.

Throughout the paper we use the logic SO as a running example. Recall that SO is the
description logic ALC extended with nominals, or singleton concepts, and transitive roles.

The object language LSO for specifying the syntax of SO consists of three sorts,
namely 0, 1 and 2 for individuals, concepts, and roles, respectively. Atomic expressions
of sort 0 are individual variables from a countable set {p0j | j ∈ ω}. We denote individual

variables also by ℓ0, ℓ1, The variables p1j are of sort 1 and are the concept symbols. In

this paper concept symbols are denoted by p0, p1, The variables p2j of sort 2 are the
atomic roles and are denoted by r0, r1,

The connectives in LSO are the following:

• The ‘singleton concept’ connective {·} of the sort (0, 1). That is, {ℓ} is a concept for
every individual ℓ.

• The Boolean connectives ⊔ and ¬ of sorts (1, 1, 1) and (1, 1), respectively. As usual, we
use infix notation for ⊔ and prefix notation for ¬. Thus, C ⊔D and ¬C are concepts for
any concept expressions C and D.

• The existential restriction connective ∃ · .· of sort (2, 1, 1). That is, ∃r.C is a concept for
any role expression r and concept expression C.

Thus, expressions of LSO are built from individuals, concept symbols and role symbols
using the given connectives, and there are no other expressions in LSO. In this language,
individual and role expressions are allowed to be atomic only.

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 5

The meta-language in which the semantics of the given logic is specified is a many-
sorted first-order language with equality and is denoted by FO(L). FO(L) extends the
object language L, the idea being that L-expressions are represented as terms in FO(L)
and L-connectives as functions.

Formally, FO(L) is defined as an extension of L with one additional sort, namely N + 1,
additional symbols, the standard first-order connectives ¬, ∨, ∧, →, the equivalence con-
nective ≡, first-order quantifiers ∃ and ∀, and the equality predicate ≈. Thus the sorts
of FO(L) are Sorts ∪ {N + 1} = {0, . . . , N,N + 1}. We call the additional sort N + 1
the domain sort, and symbols over this sort are called the domain symbols. The additional
symbols comprise of a countable set of variable symbols {x, y, z, x0, y0, z0, . . .} of the domain
sort, a countable set of constants {a, b, c, a0, b0, c0, . . .} of the domain sort, function symbols
{f, g, h, f0, g0, h0, . . .}mapping argument terms to terms of sortN+1, and a countable set of
constant predicate symbols {P,Q,R, P0, Q0, R0, . . .} of the domain sort (that is, argument
terms are required to be terms of sort N +1). Intuitively, the domain sort contains symbols
necessary for formalising semantic properties of the domain elements of interpretations of
the target logic.

In addition, FO(L) contains the symbols ν0, . . . , νN , one for each sort in Sorts of the
object language. In particular, ν0 is a unary function symbol of sort (0, N + 1) (that is, a
function from sort 0 to sort N + 1). Each of the remaining νi is a predicate symbol of sort
(i,N + 1, . . . , N + 1) with arity i+ 1.

The purpose of these symbols is to define the semantics of the connectives of the logic
by using conditions similar to satisfaction conditions in standard definitions. ν0 can be
viewed as the interpretation mapping for individuals (represented as terms) in the object
language. All other νn can be viewed as interpretation mappings for expressions in the
object language; they can be viewed as the ‘holds’ or ‘satisfaction’ predicates.

Finally, for every sort we assume the presence in FO(L) of a binary predicate symbol
representing the equality predicate for that sort. For reasons of simplicity, we use one
symbol, namely ≈, for each of the equality predicates.

Formulae in FO(L) are just first-order formulae defined over the symbols of FO(L),
where each expression in L is represented by a term in FO(L). In particular, each variable
symbol pij in Li is represented by a variable of sort i in FO(L), each constant symbol qij
in Li is represented by a constant of sort i in FO(L), and every connective σ is represented
by a function of the same sort as σ.

To illustrate how expressions of a logic are represented in a meta-language we continue
our running example. According to our definitions the meta-language FO(LSO) for SO is
a first-order language with sorts 0, 1, 2 and 3. The interpretation symbols are ν0 (which is
a function symbol) and the holds predicate symbols ν1 and ν2. Also included in FO(LSO)
is the equality predicate symbol ≈.

Every variable of LSO is represented by a variable of the corresponding sort in FO(LSO).
Thus, every individual variable ℓ in LSO is represented by a variable of sort 0 in FO(LSO).
Every concept symbol p in LSO is represented by a variable of sort 1, and every role
symbol r in LSO by a variable of sort 2 in FO(LSO). Connectives of the object language
become function symbols of an appropriate sort in FO(LSO). Thus, every expression in LSO

becomes a first-order term of the corresponding sort. For instance, the concept expression
∃r.p is represented as a term of sort 1.

6 R. A. SCHMIDT AND D. TISHKOVSKY

Whereas the sorts 0, 1, and 2 are the sorts in the object language LSO, the sort 3 is
a separate sort in FO(LSO) with its own sets of variables, individual constants, function
symbols, and symbols of predicate constants. Sort 3 is the domain sort for SO.

Finally, for every individual ℓ, ν0(ℓ) is a term of sort 3 in FO(LSO), and ν1(C, t)
and ν2(r, t, t

′) are atomic formulae of FO(LSO), for any concept expression C, any role
expression r, and any terms t and t′ of sort 3.

Before we describe how a logic can be defined in the meta-language FO(L) in the next
section, we fix some more notation and terminology. Let w denote a sequence of first-order
variables, that is w

def

=w1, . . . , wn. Similarly, let ∀w denote the universal quantifier prefix on
all variables w1, . . . , wn, that is, ∀w

def
=∀w1 · · · ∀wn. For any set S of formulae, ∀S denotes

the universal closure of S, that is, the set

∀S
def
= {∀w φ(w) | φ(w) ∈ S}.

For every first-order formula ψ we let

∼ψ
def

=

{

ψ′, provided ψ = ¬ψ′,

¬ψ, otherwise.

Formulae of FO(L) in which all occurrences of the L-variables pij (of sorts i = 0, . . . , N)
are free are called L-open formulae. An L-open sentence is an L-open formula that does
not have free occurrences of variables of the domain sort N + 1.

For example, the formula

∀y (ν1(∃r.p, y) ∧ ν2(r, x, y))

is an LSO-open formula because the variables p and r occur only freely. Because the
variable x of domain sort 3 also occurs freely, it is not an LSO-open sentence. In contrast,
the formula

∀y (ν1(∃r.p, y) ∧ ∀x ν2(r, x, y))

is an LSO-open sentence, because all the occurrences of the domain variables x and y are
bound by quantifiers and all the occurrences of p and r are unbound. The formulae

∀p∀y (ν1(∃r.p, y) ∧ ν2(r, x, y)) and ∀r (ν1(∃r.p, y) ∧ ν2(r, x, y))

are not LSO-open because of the presence of quantified variables of sorts other than the
domain sort (p and r). (The symbol ∃ in ∃r.p should not be confused with the existential
quantifier of first-order logic.)

For any set S of L-open formulae in FO(L) and a set X of L-expressions, let

S↾X
def

= {φ(E1, . . . , Em) | φ(p1, . . . , pm) ∈ S and

all L-expressions occurring in φ(E1, . . . , Em) belong to X}.

S↾X is the set of instances of formulae in S under substitutions into the variables of L that
do not contain expressions outside X.

Suppose, for example,

S
def
= {ν1(∃r.p, y), ν1(¬p, x)} and X

def
= {r0, p0, p, p ⊓ p0,∃r0.p0}.

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 7

Then the instantiations of formulae in S relative to X are

ν1(∃r0.p0, x), ν1(∃r0.p, x), ν1(∃r0.p ⊓ p0, x), ν1(∃r0.∃r0.p0, x),

ν1(¬p0, x), ν1(¬p, x), ν1(¬(p ⊓ p0), x), ν1(¬∃r0.p0, x).

The only formula in this list where all L-subexpressions belong to X is ν1(∃r0.p0, y). Thus

S↾X = {ν1(∃r0.p0, y)}.

The formula ν1(∃r0.p, y) does not belong to S↾X because ∃r0.p does not belong to X. Other
instances do not belong to S↾X for similar reasons.

3. Specifying the Semantics of an Object Language

First, we define the model structures in terms of which the semantics of the object language
is then defined.

An L-structure is a tuple I
def
=(L0, . . . ,LN ,∆I , νI0 , . . . , ν

I
N , a

I , . . . , P I , . . .) where ∆I is

a non-empty set, ν0(ℓ)
I ∈ ∆I for every individual ℓ ∈ L0, νIn ⊆ Ln× (∆I)n, for 0 < n ≤ N .

aI ∈ ∆I and P I ⊆ (∆I)m, where m is the arity of P . For simplicity we omit the sets
L0, . . . ,LN and simply write

I = (∆I , νI0 , . . . , ν
I
N , a

I , . . . , P I , . . .).

Observe that an L-structure I is a first-order interpretation of the language FO(L).

For our sample logic SO an LSO-structure is given by a tuple I = (∆I , νI0 , ν
I
1 , ν

I
2).

This means, the νIi are arbitrary interpretation functions for SO-expressions. As yet no
additional conditions are assumed. In the description logic literature instead of a family
of holds relations νi just one holds relation ν is used, resulting in the simpler and more
familiar notation for an interpretation, namely I = (∆I , νI).

A valuation in I is a mapping ι from the set of variables and constants of FO(L) to
L ∪ ∆I such that ι(pij), ι(q

i
j) ∈ Li, and ι(xj), ι(aj) ∈ ∆I . We use the standard notation

I, ι |= φ to indicate a (first-order) formula φ is true in the (first-order) interpretation I
under valuation ι. Given a set of formulae S, we write I, ι |= S if I, ι |= φ for every
formula φ in S.

We say that a valuation ι in an L-structure is canonical if every variable and constant
of any sort i = 0, . . . , N is mapped to itself, that is, ι(pij) = pij and ι(qij) = qij for every

variable pij and constant qij in the language L. This means that the canonical valuation of
any term of sort i = 0, . . . , N is the term itself.

It is not difficult to see that any L-open formula φ is satisfiable in an L-structure iff it
is satisfiable in an L-structure under a canonical valuation.

We write S |=c S
′ for sets of formulae S and S′, if, for every L-structure I and a

canonical valuation ι in I, I, ι |= S implies I, ι |= S′. Similarly, we write I |=c S iff there
is a canonical valuation ι such that I, ι |= S.

Satisfiability for expressions of the given logic is defined only for expressions of the
primary sort, that is, concept expressions. We say a concept expression C is satisfiable in I
if there is an element a in ∆I such that (C, a) ∈ νI1 , or equivalently, I |=c ∃x ν1(C, x). A
concept expression C is valid in I if I |=c ∀x ν1(C, x).

Next we describe how the semantics of a given logic can be specified in FO(L), where L
is the object language of the logic.

8 R. A. SCHMIDT AND D. TISHKOVSKY

∀x (x ≈ x) ∀x∀y (x ≈ y → y ≈ x) ∀x∀y∀z (x ≈ y ∧ y ≈ z → x ≈ z)

∀x1 · · · ∀xn∀yi (P (x1, . . . , xn) ∧ xi ≈ yi → P (x1, . . . xi−1, yi, xi+1, xn))

∀p ∀x1 · · · ∀xn∀yi (νn(p, x1, . . . , xn) ∧ xi ≈ yi → νn(p, x1, . . . xi−1, yi, xi+1, xn))

∀p1 · · · ∀pm∀x1 · · · ∀xn∀yi (xi ≈ yi →

f(p1, . . . , pm, x1, . . . , xn) ≈ f(p1, . . . , pm, x1, . . . xi−1, yi, xi+1, . . . , xn))

Figure 1: Default equality axioms in FO(L).

Let S be any set of L-open sentences in FO(L) and σ be a connective of a sort
(i1, . . . , im, n). A formula φσ in the language of S defines the connective σ with respect
to S if it does not contain σ and the following holds:

∀S |= ∀p1 . . . ∀pm ∀x (νn(σ(p1, . . . , pm), x) ≡ φσ(p1, . . . , pm, x)). (3.1)

Here p1, . . . , pm are variables of sorts i1, . . . , im respectively. If there is a formula φσ which
defines σ with respect to S, we also say S defines σ and

∀x (νn(σ(p1, . . . , pm), x) ≡ φσ(p1, . . . , pm, x)),

which is an L-open sentence, is a σ-definition with respect to S. Connective definitions are
always L-open sentences, that is, they do not contain any quantifiers over variables of sorts
0, . . . , N (these are implicitly regarded as being universally quantified).

By definition, a (first-order) semantic specification of the object language L is a set
S of L-open FO(L)-sentences defining the connectives of L. For the sake of generality we
always include the standard equality axioms listed in Figure 1 in a semantic specification S.
This ensures that ≈ is a congruence on every sort in any first-order interpretation of FO(L).
We assume the set of σ-definitions with respect to S of all the connectives σ of L is fixed
and explicitly given as the set S0.

Intuitively, a specification S of a semantics of the given logic is an axiomatisation in the
language FO(L) of a class of L-structures where each L-connective σ has an unambiguous
representation. Because the Beth definability property holds for first-order logic we can
assume that all such representations are explicit, that is, every connective σ is defined by
an explicit formula φσ. The collection of explicit definitions of all the connectives constitutes
the set S0. Since there are many ways of axiomatising the same (axiomatisable) class of
first-order structures and choosing explicit representations for connectives, there are many
ways of specifying a semantics and choosing a set of semantic definitions for a semantic
specification. Axiomatisations of the empty class of L-structures are all inconsistent and,
hence, semantic specifications can be inconsistent.

As an example we give a semantic specification for the logic SO. Suppose SSO consists
of the following LSO-open sentences together with the default equality axioms.

Connective definitions:

∀x
(

ν1({ℓ}, x)≡ ν0(ℓ) ≈ x
)

∀x
(

ν1(¬p, x)≡¬ν1(p, x)
)

∀x
(

ν1(p ⊔ q, x)≡ ν1(p, x) ∨ ν1(q, x)
)

∀x
(

ν1(∃r.p, x)≡∃y
(

ν2(r, x, y) ∧ ν1(p, y)
))

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 9

Transitivity axiom:

∀x∀y∀z
(

(ν2(r, x, y) ∧ ν2(r, y, z)) → ν2(r, x, z)
)

The first four sentences are the connective definitions of LSO and constitute the set S0
SO.

The fifth sentence does not belong to S0
SO. It is the transitivity axiom specifying that all

role symbols r are transitive. If we wanted to specify that only a subset of the role symbols
are transitive, this can be done by including one transitivity axiom for each role (constant)
symbol that is meant to be transitive.

Because, in general, there are many possibilities of axiomatising the same class of L-
structures, there are many possibilities for specifying the semantics of a logic. In this
paper we restrict our attention to semantic specifications in forms that are standard in the
literature for non-classical logics.

We say a semantic specification S is normalised, if it consists of three disjoint parts,
that is, S = S+∪S−∪Sb, where S+, S− and Sb are disjoint sets of sentences satisfying the
following:

(n1) S+ is a set of L-open sentences of the form:

ξE+
def

= ∀x (νn(E(p1, . . . , pm), x) → φE+(p1, . . . , pm, x)).

(n2) S− is a set of L-open sentences of the form:

ξE−
def
= ∀x (φE−(p1, . . . , pm, x) → νn(E(p1, . . . , pm), x)).

(n3) All L-expressions occurring in Sb are atomic.

Here, E denotes any L-expression.
In this definition we assume that multiple sentences of the form (n1) for the same

expression E in S+ and S− are all equivalently reduced to a single sentence ξE+ . Similarly

for (n2) and ξE− . The intuition is that S+ and S− define the semantics of the connectives.
S+ defines it for positive occurrences of expressions E (with free variables p1, . . . , pm),
while S− defines it for negative occurrences of expressions E. We refer to Sb as the
background theory of the semantics S. In particular, Sb includes the equality axioms from
Figure 1.

A semantic specification in the form S0∪Sb can be turned into normalised form by de-
composing each connective definition in S0 into two implications. In fact, S0 and S+ ∪ S−

play the same role in axiomatising L-connectives in FO(L) modulo the background the-
ory Sb.

The sample semantic specification SSO can be normalised by decomposing the connect-
ive definitions in S0

SO into S+
SO-sentences and S

−
SO-sentences as follows.

S+
SO-sentences:

∀x
(

ν1({ℓ}, x)→ ν0(ℓ) ≈ x
)

∀x
(

ν1(¬p, x)→¬ν1(p, x)
)

∀x
(

ν1(p ⊔ q, x)→ ν1(p, x) ∨ ν1(q, x)
)

∀x
(

ν1(∃r.p, x)→∃y
(

ν2(r, x, y) ∧ ν1(p, y)
))

10 R. A. SCHMIDT AND D. TISHKOVSKY

S−
SO-sentences:

∀x
(

ν0(ℓ) ≈ x→ ν1({ℓ}, x)
)

∀x
(

¬ν1(p, x)→ ν1(¬p, x)
)

∀x
(

ν1(p, x) ∨ ν1(q, x)→ ν1(p ⊔ q, x)
)

∀x
(

∃y
(

ν2(r, x, y) ∧ ν1(p, y)
)

→ ν1(∃r.p, x)
)

The background theory Sb
SO of SO consists of this sentence,

∀x∀y∀z
(

(ν2(r, x, y) ∧ ν2(r, y, z)) → ν2(r, x, z)
)

,

specifying transitivity of roles plus the default equality axioms.
It is worth noting that the symbol E in definitions (n1) and (n2) denotes an arbitrary

expression in L. This means that E does not necessarily have the form σ(p1, . . . , pn) where σ
is a connective. For example, a specification might be:

ξE+
def
= ∀x (ν1(∃r.∃r.p, x) → ν1(∃r.p, x))

In this case E
def
=∃r.∃r.p and φE+

def
=ν1(∃r.p, x).

It is convenient to introduce notation for the set of instantiations of the right hand sides
and left hand sides of the ξE+ and ξE− , respectively. For every L-expression E, let

ΦE
+

def
= {φF+(E1, . . . , Em, x) | E = F (E1, . . . , Em) for some ξ

F (p1,...,pm)
+ from S} and

ΦE
−

def
= {φF−(E1, . . . , Em, x) | E = F (E1, . . . , Em) for some ξ

F (p1,...,pm)
− from S}.

Thus, ΦE
+ (respectively ΦE

−) is the set of instantiations of succedents (respectively ante-
cedents) of positive (respectively negative) specifications in S, where the antecedents (re-
spectively succedents) match the given expression E.

For example, in the case of our specification for SO and E = ∃r.(p ⊔ q), we have

Φ
∃r.(p⊔q)
+ = Φ

∃r.(p⊔q)
− = {∃y (ν2(r, x, y) ∧ ν1(p ⊔ q, y))}.

Let ≺ be any ordering on L-expressions. For any L-expression E and any set X of
L-expressions we define

sub≺(E)
def

= {E′ | E′ ≺ E} and sub≺(X)
def

=
⋃

E∈X

sub≺(E).

That is, sub≺(X) is the set of all expressions ≺-smaller than some expression in X. We
often write sub≺(E1, . . . , Em) rather than sub≺({E1, . . . , Em}).

Any normalised specification S of a semantics induces a relation ≺ on expressions
as follows. Let ≺ be the smallest transitive relation satisfying: E′ ≺ E whenever E =
F (E1, . . . , Em), for some L-expressions E1, . . . , Em, and E′ occurs in φF+(E1, . . . , Em, x)

or φF−(E1, . . . , Em, x), respectively, for some sentence ξ
F (p1,...,pm)
+ or ξ

F (p1,...,pm)
− in S. The

reflexive closure of ≺ is denoted by �.
Recall that S0 denotes the set of L-open sentences that define the L-connectives. A

semantic specification S is well-defined iff S is normalised and the following conditions are
all true.

(wd1) ∀S0,∀Sb |= ∀S,
(wd2) the relation ≺ induced by S is a well-founded ordering on L-expressions, and

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 11

(wd3) for every expression E = σ(E1, . . . , Em),

∀S0, Sb↾sub≺(E) |=c ∀x
((

∧

ΦE
+ → φσ(E1, . . . , Em, x)

)

∧
(

φσ(E1, . . . , Em, x) →
∨

ΦE
−

))

.

Condition (wd3) follows from the following first-order condition:

(wd3′) for every connective σ,

∀S0, Sb↾sub≺(σ(p)) |=c ∀x
((

∧

Φ
σ(p)
+ → φσ(p, x)

)

∧
(

φσ(p, x) →
∨

Φ
σ(p)
−

))

.

Because we can assume that S0 is also a normalised semantic specification, it similarly
induces a relation ≺0 that can be assumed to be a well-founded ordering. Standardly, the
semantics of a logic is defined by induction over the interpretation of the connectives and
primitives (that is, constants, and variables) which is homomorphically lifted to arbitrary
L-expressions. This is equivalent to assuming a well-founded ordering on expressions of L.
For any reasonable definition of a semantics such a well-founded ordering exists. Thus,
although it is not difficult to imagine formulae φσ such that ≺0 is not well-founded, we
assume that the φσ are chosen in such a way that it is possible to lift the semantics of
L-primitives to arbitrary L-expressions, that is, ≺0 is well-founded.

In the case of SSO, because S
+
SO and S−

SO are obtained by decomposing the set S0
SO, the

two orderings ≺ and ≺0 coincide. Similar to many cases of description and modal logics, ≺
and ≺0 are both just the direct subexpression ordering on LSO.

There are different semantic specifications which describe the same class of L-structures.
As we have just noted, some semantic specifications already allow the lifting of the semantics
from atomic expressions to arbitrary L-expressions. We assume that S0 ∪ Sb is such a spe-
cification and implicitly accommodates L-connectives. According to this definition, a well-
defined semantic specification S is equivalent to S0 ∪Sb modulo the background theory Sb.
This is ensured by condition (wd1) and the assumption that S defines all L-connectives
in S0. Through condition (wd2), S imposes its own inductive structure on L-expressions.
Condition (wd3) specifies a correlation between S and S0 on instances of L-expressions. It
can be seen that S0 ∪ Sb is a well-defined semantic specification itself.

Let us consider if the semantic specification of SO above is well-defined. The first con-
dition is satisfied because SSO = S0

SO ∪Sb
SO. The second condition is satisfied because ≺ is

the direct subexpression ordering. Condition (wd3′) is true for all SO connectives. For

instance, consider the case of σ = ∃ · .·. Since Φ∃r.p
+ = Φ∃r.p

− = {∃y (ν2(r, x, y) ∧ ν1(p, y))},
the formula

∀x
(

(

∃y (ν2(r, x, y) ∧ ν1(p, y)) → φσ(r, p, x)
)

∧
(

φσ(r, p, x) → ∃y (ν2(r, x, y) ∧ ν1(p, y))
)

)

,

on the right hand side of condition (wd3′), is a tautology. In a similar way, the condi-
tion (wd3′) can be checked for the other connectives.

A (propositional) logic L over the language L is a subset of concepts in L which is closed
under arbitrary substitutions of variables with expressions of the same sorts. A logic L is
first-order definable iff there is a semantic specification SL such that L coincides with the
set of all concepts that are valid in all L-structures satisfying ∀SL, that is,

L = {C ∈ L1 | ∀SL |=c ∀x ν1(C, x)}.

12 R. A. SCHMIDT AND D. TISHKOVSKY

For a fixed semantic specification SL of a logic L, if I is an L-structure satisfying SL
then by definition I is a model of L or simply an L-model (with respect to SL).

4. Synthesising a Tableau Calculus

First, we give the needed basic definitions for the kind of tableau calculi our method gen-
erates.

Let T denote a tableau calculus comprising of a set of inference rules. A tableau deriv-
ation or tableau for T is a finitely branching, ordered tree whose nodes are sets of formulae
in FO(L). Assuming that S is the input set of concept expressions in L to be tested for
satisfiability the root node of the tableau is the set {ν1(C, a) | C ∈ S}, where a denotes a
fresh constant of the domain sort. For a finite set S, a can be viewed as the Skolem constant
introduced by Skolemising the FO(L)-formula ∃x

∧

C∈S ν1(C, x). (This can be naturally
expanded to infinite sets of concepts but this is not essential for the paper.)

Successor nodes are constructed in accordance with a set of inference rules in the cal-
culus. The inference rules have the general form

X0

X1| . . . |Xn

,

where both the numeratorX0 and all denominatorsXi are finite sets of negated or unnegated
atomic formulae in the language FO(L). The formulae in the numerator are called premises,
while the formulae in the denominators are called conclusions. n is called the branching
factor of the rule. The numerator and all the denominators are non-empty, but n may be
zero, in which case the denominators are not present and the rule is a closure rule. Closure
rules are also written X0/⊥. If the branching factor n is greater than one, the rule is a
branching rule. An inference rule is applicable to a selected formula φ in a node of the
tableau, if φ together with other formulae in the node, are simultaneous instantiations of all
the premises of the rule. Then n successor nodes are created which contain the formulae of
the current node and the appropriate instances of Xi. We assume that any rule is applied
at most once to the same set of premises, which is a standard assumption for tableau
derivations.

We use the notation T (S) for a finished (in the limit) tableau built by applying the rules
of the calculus T starting with the set S (of L-concepts) as input. That is, we assume that
all branches in the tableau are fully expanded and all applicable rules have been applied
in T (S). We assume that all the rules of the calculus are applied non-deterministically to
a tableau. This means that we do not assume any order of rule application and, at any
given node, an arbitrary rule is chosen for the node expansion from all the rules which are
applicable to formulae of the node.

In a tableau, a maximal path from the root node is called a branch. For a branch B
of a tableau we write φ ∈ B to indicate that the formula φ has been derived in B, that
is, φ belongs to a node of the branch B. Our notion of a tableau branch can be viewed
in two ways. On the one hand, one can view it as having procedural flavour as a path of
nodes in the tableau derivation. On the other hand, a branch can be identified with the
set-theoretical union of the nodes in it.

A branch of a tableau is closed if a closure rule has been applied in this branch, otherwise
the branch is called open. The tableau T (S) is closed if all its branches are closed and T (S)
is open otherwise. The calculus T is sound iff for any (possibly infinite) set of concepts S,

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 13

each T (S) is open whenever S is satisfiable. T is complete iff for any (possibly infinite)
unsatisfiable set of concepts S there is a T (S) which is closed.

Now, let L be a first-order definable propositional logic over L and SL a well-defined
semantic specification of L, that is, conditions (wd1)–(wd3) hold for SL. We now describe
how tableau rules can be synthesised from SL. If SL is not already normalised we first
normalise it. Thus assume SL = S+

L ∪ S−
L ∪ Sb

L.

Next we take a positive specification ξE+ in S+
L . Eliminate existential quantifiers using

Skolemisation and equivalently rewrite ξE+ into the following implicational form

∀x1 · · · ∀xn



νn(E(p1, . . . , pm), x1, . . . , xn) →

J
∨

j=1

Kj
∧

k=1

ψjk



 ,

where each ψjk denotes a literal. This is always possible. The implication is now turned
into the rule:

ρ+(ξ
E
+)

def

=
νn(E(p1, . . . , pm), x1, . . . , xn), y1 ≈ y1, . . . , ys ≈ ys

ψ11, . . . , ψ1K1
| · · · | ψJ1, . . . , ψJKJ

,

where y1, . . . , ys denote the free variables occurring in ψjk which do not occur among the
variables x1, . . . , xn. Essentially, the antecedent of the implication has become the main
premise in the numerator and the succedent has been turned into the denominators of the
rule. We say the rule corresponds to ξE+ . This is repeated for each positive specification

in S+
L .

Analogously, we generate a tableau rule for each negative specification ξE− in S−
L . The

corresponding rules have the form

ρ−(ξ
E
−)

def
=

¬νn(E(p1, . . . , pm), x1, . . . , xn), y1 ≈ y1, . . . , ys ≈ ys
ψ11, . . . , ψ1K1

| · · · | ψJ1, . . . , ψJKJ

.

This is obtained by Skolemising the contrapositive of ξE− and then equivalently rewriting it
to an implication of the form

∀x1 · · · ∀xn



¬νn(E(p1, . . . , pm), x1, . . . , xn) →
J
∨

j=1

Kj
∧

k=1

ψjk



 ,

where each ψjk denotes a literal.

We refer to the rules ρ+(ξ
E
+) and ρ−(ξ

E
−) generated in this way, as the decomposition

rules.
If the right hand sides of the implicational forms contain free variables yi then these are

assumed to be universally quantified and the generated rules are γ-rules in the Smullyan
classification. Our use of the equalities yi ≈ yi in the premises of the generated rules is a
bit non-standard, and can be omitted if this is preferred. We use the equalities to achieve
domain predication, which makes explicit that applying γ-rules only instantiates with terms
(domain elements) that occur on the current branch.

The sentences in the background theory of SL are turned into rules by first equivalently
transforming them into Skolemised disjunctive normal form. More specifically, let ξ be an

14 R. A. SCHMIDT AND D. TISHKOVSKY

P (x1, . . . , xn)

x1 ≈ x1, . . . , xn ≈ xn
νn(p, x1, . . . , xn)

p ≈ p, x1 ≈ x1, . . . , xn ≈ xn
x ≈ y

y ≈ x

P (x1, . . . , xn), xi ≈ yi
P (x1, . . . , xi−1, yi, xi+1, . . . , xn)

¬P (x1, . . . , xn)

x1 ≈ x1, . . . , xn ≈ xn
¬νn(p, x1, . . . , xn)

p ≈ p, x1 ≈ x1, . . . , xn ≈ xn
x ≈ y, y ≈ z

x ≈ z

νn(p, x1, . . . , xn), xi ≈ yi
νn(p, x1, . . . , xi−1, yi, xi+1, . . . , xn)

f(p1, . . . , pm, x1, . . . , xn) ≈ f(p1, . . . , pm, x1, . . . , xn), xi ≈ yi
f(p1, . . . , pm, x1, . . . , xn) ≈ f(p1, . . . , pm, x1, . . . xi−1, yi, xi+1, . . . , xn)

Figure 2: Default equality rules for predicates and functions occurring in SL.

arbitrary sentence in Sb
L. It is first equivalently rewritten to

∀x1 · · · ∀xn

J
∨

j=1

Kj
∧

k=1

ψjk(p1, . . . , pm, x1, . . . , xn), (4.1)

where each ψjk denotes a literal, and is then turned into the corresponding rule, namely

ρ(ξ)
def
=

p1 ≈ p1, . . . , pm ≈ pm, x1 ≈ x1, . . . , xn ≈ xn
ψ11, . . . , ψ1K1

| · · · | ψJ1, . . . , ψJKJ

.

The p1, . . . , pm, x1, . . . , xn are the variables appearing in (4.1). The purpose of the equalities
in the premises is domain predication and can optionally be omitted. Rules corresponding
to sentences in Sb

L are called theory rules.
For example, the generated decomposition rules for the existential restriction operator

in the description logic SO are

ν1(∃r.p, x)

ν2(r, x, f(r, p, x)), ν1(p, f(r, p, x))
and

¬ν1(∃r.p, x), y ≈ y

¬ν2(r, x, y) | ¬ν1(p, y)
.

f(r, p, x) in the left rule is the Skolem term introduced for the quantifier ∃y in the connective
definition of ∃ · .·. The intuition is that for each r, each p and each x matching the premise
of the rule there is an element f(r, p, x) so that the conclusions of the rule are both true.
The transitivity property for roles in the background theory of the semantic specification
of SO is transformed to the rule

r ≈ r, x ≈ x, y ≈ y, z ≈ z

¬ν2(r, x, y) | ¬ν2(r, y, z) | ν2(r, x, z)
.

These rules are not the familiar rules used in standard description logic tableau systems,
but in Section 6 we see how to get those by rule refinement.

The equality rules are generated in essentially the same way from the equality axioms in
the background theory and are refined in accordance with the method described in Section 6.
Figure 2 lists the full set of the refined equality rules included by default in the generated
tableau calculus.

Since in our formalisation the equality predicate(s) are also used as domain predicate(s)
in order to keep track of the ground terms that occur in the tableau branches, we include
rules which ensure that expressions of the form t ≈ t are treated as domain predicates and

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 15

appear in every branch of a tableau for every term t in the branch. These are the first four
rules in Figure 2. In particular, these rules ensure that for any term occurring in a literal
(¬)P (t1, . . . , tn) or (¬)νn(q, t1, . . . , tn) on any branch, the equalities t1 ≈ t1, . . . , tn ≈
tn and q ≈ q are added to the branch. The rules also state reflexivity of the equality
predicate(s). The remaining rules are variations of standard rules for equality. The rules in
row three and four ensure that ≈ is a congruence relation for predicates on terms occurring
in a branch. The rule in the last row is a congruence rule for function symbols f occurring
in a branch including Skolem function symbols.

We note that the equality predicate ≈ is treated as an ordinary constant predicate
symbol of the meta-language FO(L) and, hence, can occur in any place where an ordinary
predicate symbol P can occur.

Finally the generated tableau calculus also includes the following closure rules.

νn(p, x), ¬νn(p, x)

⊥

P (x), ¬P (x)

⊥
(4.2)

for each sort n and every constant predicate symbol P occurring in the semantic specifica-
tion SL of the logic.

We use TL to denote the generated tableau calculus. In summary, it consists of these
rules.

(t1) The decomposition rules ρσ+(ξ) and ρ
σ
−(ξ

′) corresponding to all positive specifications ξ

in S+
L and all negative specifications ξ′ in S−

L .

(t2) The theory rules ρ(ζ) corresponding to all sentences ζ in the background theory Sb
L.

(t3) The equality rules of Figure 2.
(t4) The closure rules (4.2).

Note for each connective there are exactly two decomposition rules in the calculus TL, one
for unnegated occurrences and one for negated occurrences of the connective.

For SO the described approach generates the tableau rules listed in Figure 3.

5. Ensuring Soundness and Constructive Completeness

We first prove soundness of the calculus TL synthesised from a normalised semantic spe-
cification SL. It is possible to prove that every rule of the generated calculus TL preserves
satisfiability of FO(L)-formulae. That is, if all premises of a rule are true in an L-model I
(under a canonical valuation) then the conclusions of some branch are also true. This is the
case because the transformation of the semantic specification ensures that the definitions
of the rules basically mimic the semantic definitions. Hence, soundness is ensured.

Theorem 5.1 (Soundness). Let TL be a tableau calculus generated from a normalised se-
mantic specification SL of a logic L. Then TL is sound for L, that is, for every possibly
infinite set of concepts S satisfiable in an L-model, any finished tableau derivation TL(S) is
open.

Now, we prove constructive completeness of TL. Let B denote an arbitrary branch in a
TL-tableau derivation. We define the following relation ∼B with respect to B:

t∼B t
′ def

⇐⇒ t ≈ t′ ∈ B,

16 R. A. SCHMIDT AND D. TISHKOVSKY

Decomposition rules:

ν1({ℓ}, x)

ν0(ℓ) ≈ x

¬ν1({ℓ}, x)

ν0(ℓ) 6≈ x

ν1(¬p, x)

¬ν1(p, x)

¬ν1(¬p, x)

ν1(p, x)

ν1(p1 ∨ p2, x)

ν1(p1, x) | ν1(p2, x)

¬ν1(p1 ∨ p2, x)

¬ν1(p1, x), ¬ν1(p2, x)

ν1(∃r.p, x)

ν2(r, x, f(r, p, x)), ν1(p, f(r, p, x))

¬ν1(∃r.p, x), y ≈ y

¬ν2(r, x, y) | ¬ν1(p, y)

Transitivity rule:
r ≈ r, x ≈ x, y ≈ y, z ≈ z

¬ν2(r, x, y) | ¬ν2(r, y, z) | ν2(r, x, z)

Equality congruence rules:

x ≈ y

x ≈ x, y ≈ y

x 6≈ y

x ≈ x, y ≈ y

x ≈ y

y ≈ x

x ≈ y, y ≈ z

x ≈ z

ν1(p, x)

p ≈ p, x ≈ x

¬ν1(p, x)

p ≈ p, x ≈ x

ν2(r, x, y)

r ≈ r, x ≈ x, y ≈ y

¬ν2(r, x, y)

r ≈ r, x ≈ x, y ≈ y

ν1(p, x), x ≈ y

ν1(p, y)

ν2(r, x, y), x ≈ z

ν2(r, z, y)

ν2(r, x, y), y ≈ z

ν2(r, x, z)

f(r, p, x) ≈ f(r, p, x), x ≈ y

f(r, p, x) ≈ f(r, p, y)

Closure rules:

ν1(p, x), ¬ν1(p, x)

⊥

ν2(r, x, y), ¬ν2(r, x, y)

⊥

x ≈ y, x 6≈ y

⊥

Figure 3: Generated tableau rules for SO.

for any ground terms t and t′ of the domain sort N + 1 in B. Let ‖t‖
def
={t′ | t∼B t

′} be the
equivalence class of an element t. The presence of the rules of Figure 2 ensures that ∼B is
a congruence relation on all domain ground terms in B.

We say a model I, under a (canonical) valuation ι, reflects an expression E of the sort n
occurring in a branch B iff for all ground terms t1, . . . , tn we have that

• (E, ι(t1), . . . , ι(tn)) ∈ ν
I
n whenever νn(E, t1, . . . , tn) ∈ B, and

• (E, ι(t1), . . . , ι(tn)) /∈ ν
I
n whenever ¬νn(E, t1, . . . , tn) ∈ B.

Similarly, I reflects predicate constant P from B under a (canonical) valuation ι in I iff for
all ground terms t1, . . . , tn we have that

• (ι(t1), . . . , ι(tn)) ∈ P I whenever P (t1, . . . , tn) ∈ B, and
• (ι(t1), . . . , ι(tn)) /∈ P I whenever ¬P (t1, . . . , tn) ∈ B.

A model I reflects branch B under a valuation ι, if I reflects all predicate constants and
expressions occurring in B under ι.

A tableau calculus TL is said to be constructively complete (for L) iff for any given set
of concept S, if B is an open branch in a tableau derivation TL(S) then there is an L-model
I such that:

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 17

(m1) The domain ∆I of I is the set of the equivalence classes ‖t‖ for each ground term t
occurring in B.

(m2) I reflects B under the canonical projection valuation π defined by π(t)
def
=‖t‖, for every

ground term t occurring in B.

It is clear that if TL is constructively complete then TL is complete for L.
Suppose now that SL is a well-defined semantic specification and ≺0 is a well-founded

ordering on L-expressions induced by the set S0
L of the definitions of the connectives of the

form (3.1) with respect to SL.
Let B be an open branch in a finished tableau derivation in TL. We define interpretations

of predicate symbols in I(B) by induction on ≺0 as follows:

• For every n-ary constant predicate symbol P in SL,

P I(B) def
= {(‖t1‖, . . . , ‖tn‖) | P (t1, . . . , tn) ∈ B}.

• For every n = 1, . . . , N the interpretation ν
I(B)
n of the νn symbols is defined as the smallest

subset of Ln × (∆I(B))n satisfying both the following, for every variable or constant p of
the sort n, every connective σ, and any expressions E1, . . . , Em:

(p, ‖t1‖, . . . , ‖tn‖) ∈ νI(B)n ⇐⇒ νn(p, t1, . . . , tn) ∈ B,

(σ(E1, . . . , Em), ‖t1‖, . . . , ‖tn‖) ∈ ν
I(B)
n

⇐⇒ I(B) |=c φ
σ(E1, . . . , Em, ‖t1‖, . . . , ‖tn‖).

In what follows, we say that I(B) reflects an expression E (a predicate P , or a branch B)
if I(B) reflects E (P , or B, respectively) under the canonical projection valuation π, and
omit any explicit reference to π.

A consequence of the definition of I(B) is that the definitions of the connectives are
valid in I(B):

Lemma 5.2. I(B) |= ∀S0
L.

Lemma 5.3. Let X be any set of expressions occurring in B. Suppose I(B) reflects all the
expressions from X. Then I(B) |=c S

b
L↾X.

Proof. Consider any ξ ∈ Sb
L and suppose the Skolemised form of ξ is as in (4.1), that is:

ξ(p1, . . . , pm) ≡ ∀x1 · · · ∀xn

J
∨

j=1

Kj
∧

k=1

ψjk(p1, . . . , pm, x1, . . . , xn).

Let E1, . . . , Em be any expressions from X and t1, . . . , tn any ground terms of sort N + 1
occurring in B. By rule ρ(ξ), there is a j = 1, . . . , J such that, for all k = 1, . . . ,Kj , the

literals ψjk(E1, . . . , Em, t1, . . . , tn) are in the branch B. Since Sb
L does not contain non-

atomic expressions of the language L we have that I(B) |=c ψjk(E1, . . . , Em, ‖t1‖, . . . , ‖tn‖)
by the assumptions of the lemma for every k = 1, . . . ,Kj . This implies that I(B) |=c

ξ(E1, . . . , Em, ‖t1‖, . . . , ‖tn‖).

18 R. A. SCHMIDT AND D. TISHKOVSKY

Corollary 5.4. I(B) |=c S
b
L.

Proof. From the definition of I(B) and the closure rules we get that P (t1, . . . , tn) ∈ B

implies (‖t1‖, . . . , ‖tn‖) ∈ P I(B), ¬P (t1, . . . , tn) ∈ B implies (‖t1‖, . . . , ‖tn‖) /∈ P I(B),

νn(p, t1, . . . , tn) ∈ B implies (p, ‖t1‖, . . . , ‖tn‖) ∈ ν
I(B)
n , and ¬νn(p, t1, . . . , tn) ∈ B implies

(p, ‖t1‖, . . . , ‖tn‖) /∈ ν
I(B)
n for every constant predicate symbol P , n = 0, . . . , N , and prim-

itive p of sort n. Thus, I(B) |=c S
b
L by Lemma 5.3.

Lemma 5.5. I(B) reflects the branch B.

Proof. By simultaneous induction on the well-founded ordering ≺ induced by SL we show
that for all n = 1, . . . , N , for every E, and all domain ground terms t1, . . . , tn (of sort N+1)
in B, we have that

• (E, ‖t1‖, . . . , ‖tn‖) ∈ ν
I(B)
n whenever νn(E, t1, . . . , tn) ∈ B, and

• (E, ‖t1‖, . . . , ‖tn‖) /∈ ν
I(B)
n whenever ¬νn(E, t1, . . . , tn) ∈ B.

We have the following two cases which correspond to the base case of the induction and to
the induction step:

Case E = p. This case follows from the definition of I(B).
Case E = σ(E1, . . . , Em). Suppose νn(E, t1, . . . , tn) ∈ B. Let ξF+ be such that E =

F (F1, . . . , Fm) for some F1, . . . , Fm and the Skolemised form of the corresponding φF+ is as
follows

φF+(p1, . . . , pm, x1, . . . , xn) ≡

J
∨

j=1

Kj
∧

k=1

ψjk(p1, . . . , pm, x1, . . . , xn).

Then by rule ρ+(ξ
F
+) there is a j = 1, . . . , J such that, for all k = 1, . . . ,Kj , the lit-

erals ψjk(F1, . . . , Fm, t1, . . . , tn) are in B. Further, for every expression E′(F1, . . . , Fm)
which occurs in ψjk(F1, . . . , Fm, t1, . . . , tn), where k = 1, . . . ,Kj , we have E′(F1, . . . , Fm) ≺
F (F1, . . . , Fm) = E. Thus, by the induction hypothesis, for every k = 1, . . . ,Kj , I(B) |=c

ψjk(F1, . . . , Fm, ‖t1‖, . . . , ‖tn‖). Consequently, we have

I(B) |=c φ
F
+(F1, . . . , Fm, ‖t1‖, . . . , ‖tn‖)

and, hence, I(B) |=c ΦE
+(‖t1‖, . . . , ‖tn‖). By Lemma 5.3, I(B) |=c S

b
L↾sub≺(E). Since

I(B) |= ∀S0
L, we obtain I(B) |=c φσ(E1, . . . , Em, ‖t1‖, . . . , ‖tn‖) and, therefore, by the

definition of I(B), we have (E, ‖t1‖, . . . , ‖tn‖) ∈ ν
I(B)
n .

The second implication for negative literals is proved similarly.

As a consequence we obtain the following theorem.

Theorem 5.6 (Constructive completeness). Let TL be a tableau calculus generated from a
well-defined semantic specification SL of a logic L. Then TL is constructively complete.

Proof. We only need to prove that I(B) |= ∀SL. However, this follows from ∀S0
L,∀S

b
L |= ∀SL

since I(B) |= ∀Sb
L by Lemma 5.5 and Lemma 5.3.

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 19

6. Refining Rules by Turning Conclusions into Premises

Generally the degree of branching of the generated rules is higher than is necessary. Further-
more, representation of the generated rules involves the additional symbols of the language
FO(L) creating a syntactic overhead which may not always be justified. To address these
problems in this section, and the next, we introduce two techniques for refining the gener-
ated rules.

The first technique reduces the number of branches of a rule by constraining the rule
with additional premises and deriving fewer conclusions. Suppose r is a tableau rule in a
sound and constructively complete tableau calculus TL. Suppose r has this form.

r
def
=

X0

X1 | · · · | Xm

.

Let Xi = {ψ1, . . . , ψk} be one of the denominators of the rule r for some i ∈ {1, . . . ,m}.
Without loss of generality we assume that i = 1.

Consider the rules rj with j = 1, . . . , k defined by

rj
def
=

X0 ∪ {∼ψj}

X2 | · · · | Xm

.

Each rj is obtained from the rule r by removing the first denominator X1 and adding the
negation of one of the formulae in X1 as a premise. We can drop any domain predication
equalities from the numerator when they are not necessary.

Let r denote a rule in TL. We denote by ref(r, TL) the refined tableau calculus obtained
from TL by replacing the rule r with rules r1, . . . , rk. It is clear that the calculus ref(r, TL) is
sound. In general, ref(r, TL) is however not constructively complete. Nevertheless, analysis
of the proofs of Lemma 5.5 and Lemma 5.3 shows that the following theorem is true.

Theorem 6.1. Let TL be a tableau calculus generated from a well-defined specification SL
of the logic L. Let r be the rule X0/X1 | · · · | Xm in TL and suppose ref(r, TL) is a refined
version of TL. Further, suppose B is an open branch in a ref(r, TL)-tableau derivation and
for every set Y of L-expressions from B the following holds.

If all expressions in Y are reflected in I(B) then for every E1, . . . , El ∈ Y ,

X0(E1, . . . , El, t1, . . . , tn) ⊆ B implies

I(B) |= Xi(E1, . . . , El, ‖t1‖, . . . , ‖tn‖), for some i = 1, . . . ,m.
(†)

Then, B is reflected in I(B).

Roughly, condition (†) says that the replaced rule r is admissible in the model I(B) as-
sociated with B constructed using the refined calculus ref(r, TL). An immediate consequence
is the following.

Corollary 6.2. If the condition of Theorem 6.1 holds for every open branch B of any
ref(r, TL)-tableau derivation then the refined calculus ref(r, TL) is constructively complete.

Generalising this refinement to turning more than one denominator into premises is
not difficult. Theorem 6.1 can be reformulated to accommodate this generalisation and the
formulation of Corollary 6.2 does not change then.

20 R. A. SCHMIDT AND D. TISHKOVSKY

We observe that the condition (†) is implied by the following condition:

if X0(E1, . . . , El, t1, . . . , tn) ⊆ B and I(B) 6|= X1(E1, . . . , El, ‖t1‖, . . . , ‖tn‖)

then Xi(E1, . . . , El, t1, . . . , tn) ⊆ B, for some i = 2, . . . ,m.
(‡)

This follows by an induction argument on the well-founded ordering ≺.
For example, consider the generated rule for negative occurrences of the existential

restriction operator given in Section 4.

¬ν1(∃r.p, x), y ≈ y

¬ν2(r, x, y) | ¬ν1(p, y)

In most description logics it can be replaced with the more often seen rule:

¬ν1(∃r.p, x), ν2(r, x, y)

¬ν1(p, y)
.

In such cases, condition (‡) has the following form.

If ¬ν1(∃E.F, t) ∈ B and I(B) |= ν2(E, t, t
′) then ¬ν1(F, t

′) ∈ B.

For description and modal logics such as SO the proof of this condition is typically part
of the proof of the completeness theorem for the calculus which is standardly proved by
induction on the well-founded relation ≺ (or equivalently, by induction on the way formulae
are derived on a branch). For SO condition (‡) can be proved separately and implies that
condition (†) is true for every branch of the refined tableau. Thus, this rule refinement
preserves constructive completeness.

The default equality rules (given in Figure 2) added to every generated calculus are
already in refined form. The rules that would be produced from the semantic specification
of equality in Figure 1 have a different form. For example, the congruence rule

νn(p, x), xi ≈ yi
νn(p, x1, . . . , xi−1, yi, xi+1, . . . , xn)

is a refined form (obtained in two steps) of the following rule:
p ≈ p, x1 ≈ x1, . . . , xn ≈ xn, yi ≈ yi

¬νn(p, x) | xi 6≈ yi | νn(p, x1, . . . , xi−1, yi, xi+1, . . . , xn)
.

Transitivity of a role r provides another example where rule refinement converts the
rule

r ≈ r, x ≈ x, y ≈ y, z ≈ z

¬ν2(r, x, y) | ¬ν2(r, y, z) | ν2(r, x, z)
into the more familiar rule

ν2(r, x, y), ν2(r, y, z)

ν2(r, x, z)
.

Condition (†) holds in this case since it follows from the definition of I(B) that I(B) reflects
all atomic formulae of the form ν2(r, x, y) for any role symbol r in the branch B.

As a negative example let us consider the possibility of replacing the rule for disjunction

ν1(p ⊔ q, x)

ν1(p, x) | ν1(q, x)
(⊔)

by this rule.
ν1(p ⊔ q, x), ¬ν1(p, x)

ν1(q, x)
(⊔′)

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 21

In KE tableau calculi this rule is used together with an analytic cut rule [16]. This raises
the question whether a cut rule is essential for completeness and whether the (⊔′)-rule alone
would suffice instead of (⊔).

Consider a tableau calculus T without any other rules to decompose positive occurrences
of disjunctions except the standard rule (⊔). Suppose T ′ is the calculus where the (⊔)-rule
has been replaced by the (⊔′)-rule. That is, T ′def= ref((⊔), T). Examination reveals that
condition (†) in Theorem 6.1 does not hold for T ′. Given a formula ν1(p⊔q, a), the branch B0

containing only ν1(p⊔q, a) is fully expanded. The interpretation I(B0) constructed from B0

as defined in the previous section reflects the expressions p and q. The instantiation of the
premise of the (⊔)-rule with the expressions p and q belongs to the branch B0, that is,
ν1(p ⊔ q, a) ∈ B0, but I(B0) 6|= ν1(p, a) and I(B0) 6|= ν1(q, a). This means condition (†) fails
for B0 and Y

def

={p, q}.
The following example shows that T ′ is in fact incomplete. Let B1 be the branch with

formulae ν1(¬p ⊔ ¬q, a), ν1(p, a), ν1(q, a). The branch is fully expanded, because the (⊔′)-
rule is not applicable. However the formulae are unsatisfiable. This is why KE tableau
calculi typically contain an analytic cut rule for completeness.

7. Refinement based on Exploiting the Expressivity of the Logic

In some cases, the object logic L is expressive enough to represent its own semantics. For
example, in the case of standard modal logics, any Kripke frame condition can be encoded if
a slightly more expressive hybrid modal language is used [8, 9]. This phenomenon leads us to
consider a second kind of refinement, where all ‘holds’ predicates ν1, . . . , νN and additional
predicates of FO(L) are expressible via validity of special expressions of the primary sort
(concepts) of the object logic.

What does it mean for logic L to be expressive enough to represent its own semantics?
Assume that for every n = 0, . . . , N and every n-ary predicate constant P occurring in the
specification SL, there are expressions

C+
n (p, ℓ1, . . . , ℓn), C−

n (p, ℓ1, . . . , ℓn), D+
P (ℓ1, . . . , ℓn) and D−

P (ℓ1, . . . , ℓn)

of the primary sort (concepts), depending on variable p of sort n and individual variables
ℓ1, . . . , ℓn of sort 0, such that the following all hold.

∀SL |= ∀x
(

ν1(C
+
n (p, ℓ1, . . . , ℓn), x) → νn(p, ν0(ℓ1), . . . , ν0(ℓn))

)

(7.1)

∀SL |= ∀x
(

ν1(C
−
n (p, ℓ1, . . . , ℓn), x) → ¬νn(p, ν0(ℓ1), . . . , ν0(ℓn))

)

(7.2)

∀SL |= ∀x
(

ν1(D
+
P (ℓ1, . . . , ℓn), x) → P (ν0(ℓ1), . . . , ν0(ℓn))

)

(7.3)

∀SL |= ∀x
(

ν1(D
−
P (ℓ1, . . . , ℓn), x) → ¬P (ν0(ℓ1), . . . , ν0(ℓn))

)

(7.4)

It is worth noting that because the equality theory is included in the specification SL the
following also hold:

∀SL |= ∀x
(

ν1(D
+
≈(ℓ1, ℓ2), x) → ν0(ℓ1) ≈ ν0(ℓ2)

)

,

∀SL |= ∀x
(

ν1(D
−
≈(ℓ1, ℓ2), x) → ν0(ℓ1) 6≈ ν0(ℓ2)

)

.

If there are expressions such that (7.1)–(7.4) are true it is possible to express all tableau
rules in TL in the object language L itself as follows.

22 R. A. SCHMIDT AND D. TISHKOVSKY

Let ε be a one-to-one mapping of domain variables to variables of sort 0. Now we
only need to replace every positive occurrence of νn(E, x1, . . . , xn) in TL with the concept
C+
n (E, ε(x1), . . . , ε(xn)), every (negative) occurrence of ¬νn(E, x1, . . . , xn) in TL with the

concept C−
n (E, ε(x1), . . . , ε(xn)). Similarly, all predicate constants P need to be replaced

with occurrences of D+
P or D−

P depending on the polarity of P . Then the domain sort N+1
of the meta-language FO(L) is reflected by the sort 0.

A small technical complication is caused by functions in FO(L) (Skolem functions and
Skolem constants, in particular) occurring in the generated tableau rules. For them there
may not be corresponding function symbols in the object language L. This can be addressed
by introducing new connectives fg into L for every function g (including constants) of FO(L)
so that for any p1, . . . , pm, ℓ1, . . . , ℓn, the term fg(p1, . . . , pm, ℓ1, . . . , ℓn) is of sort 0 and its
semantics is defined by

ν0(fg(p1, . . . , pm, ℓ1, . . . , ℓn))
def

= g(p1, . . . , pm, ν0(ℓ1), . . . , ν0(ℓn)).

An alternative is to introduce unique, new individual constants (for every p1, . . . , pm,
ℓ1, . . . , ℓn) instead of new connectives.

If T is a tableau calculus for the logic L we denote by tr(T) the refined tableau calculus
obtained by replacing every positive occurrence of νn(E, x1, . . . , xn) in TL by the concept
C+
n (E, ε(x1), . . . , ε(xn)), every occurrence of ¬νn(E, x1, . . . , xn) by C

−
n (E, ε(x1), . . . , ε(xn)),

every positive occurrence of a predicate constants P by D+
P , every negative occurrence of a

predicate constants P by D−
P , and every function g with the new connective fg.

Theorem 7.1. Let T be a sound and complete tableau calculus for a logic L. If there are
expressions such that (7.1)–(7.4) then tr(T) is sound and complete. If, in addition, T is
constructively complete then tr(T) is also constructively complete for L.

To illustrate the refinement introduced in this section we enrich the object language
of SO with an additional connective. In particular, we add the colon connective :, with
sort (0, 1, 1), defined by:

∀x
(

ν1(ℓ : p, x) ≡ ν1(p, ν0(ℓ))
)

.

We also introduce connectives which correspond to Skolem functions into the object lan-
guage.

This allows us to find object expressions for defining the predicates ≈, ν1 and ν2 in the
language of the logic:

C+
1 (p, ℓ)

def
= ℓ : p, C−

1 (p, ℓ)
def
= ℓ : ¬p,

C+
2 (r, ℓ1, ℓ2)

def
= ℓ1 : ∃r.{ℓ2}, C−

2 (r, ℓ1, ℓ2)
def
= ℓ1 : ¬∃r.{ℓ2},

D+
≈(ℓ1, ℓ2)

def

= ℓ1 : {ℓ2}, D−
≈(ℓ1, ℓ2)

def

= ℓ1 : ¬{ℓ2}.

This means the notation of the tableau calculus can be refined and simplified. The refined
and simplified rules are given in Figure 4. Comparing Figure 3 and Figure 4 we can see
that the refined formulations of the rules

ν1({ℓ}, x)

ν0(ℓ) ≈ x

¬ν1({ℓ}, x)

ν0(ℓ) 6≈ x

ν1(¬p, x)

¬ν1(p, x)

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 23

Decomposition rules:

ℓ : ¬¬p

ℓ : p

ℓ : (p ⊔ q)

ℓ : p | ℓ : q

ℓ : ¬(p ⊔ q)

ℓ : ¬p, ℓ : ¬q

ℓ : ∃r.p

ℓ : ∃r.{f(r, p, ℓ)}, f(r, p, ℓ) : p

ℓ : ¬∃r.p, ℓ : ∃r.{ℓ′}

ℓ′ : ¬p

Transitivity rule:

ℓ : ∃r.{ℓ′}, ℓ′ : ∃r.{ℓ′′}

ℓ : ∃r.{ℓ′′}

Equality congruence rules:

ℓ : {ℓ′}

ℓ′ : {ℓ}

ℓ : ¬{ℓ′}

ℓ′ : {ℓ′}

ℓ : p

ℓ : {ℓ}

ℓ : ¬∃r.{ℓ′}

ℓ′ : {ℓ′}

ℓ : p, ℓ : {ℓ′}

ℓ′ : p

ℓ : ∃r.{ℓ′}, ℓ′ : {ℓ′′}

ℓ : ∃r.{ℓ′′}

f(r, p, ℓ) : {f(r, p, ℓ)}, ℓ : {ℓ′}

f(r, p, ℓ) : {f(r, p, ℓ′)}

Closure rule:
ℓ : p, ℓ : ¬p

⊥

Figure 4: Refined tableau rules for SO.

are all redundant and can be removed from the refined tableau calculus since their premises
coincide with the conclusions. Furthermore, the refined equality congruence rules equival-
ently reduce to a smaller set of rules. For instance, the refined rule of transitivity of the
equality

ℓ : {ℓ′}, ℓ′ : {ℓ′′}

ℓ : {ℓ′′}
can be derived from the following rules.

ℓ : {ℓ′}

ℓ′ : {ℓ}

ℓ : p, ℓ : {ℓ′}

ℓ′ : p

Finally, the closure rule for equality is subsumed by the usual closure rule.
By Theorems 6.1 and 7.1 the rules in Figure 4 provide a sound and (constructively)

complete labelled tableau calculus for the logic SO.

8. Termination through Unrestricted Blocking

We say a tableau calculus T is terminating (for satisfiability) iff for every finite set of
concepts S every closed tableau T (S) is finite and every open tableau T (S) has a finite
open branch.

For some logics, for example, modal logic K, the synthesised tableau calculi are ter-
minating but in general they are not. In order to guarantee termination, various blocking
mechanisms have been developed. Generally one can distinguish between at least three
kinds of blocking techniques: those that reuse domain terms, those that are based on case
analysis over conjectured equality constraints between domain terms and equality reas-
oning, and specialised loop checking mechanisms. Approaches based on reusing domain
terms have been used for minimal model generation for classical logic [11, 12]. Approaches

24 R. A. SCHMIDT AND D. TISHKOVSKY

based on conjectured equality constraints include [7, 26, 32]. Loop checking mechanisms
are based on comparing sets of concepts (expressions of sort 1) labelled by the same domain
terms (or individuals) with minimal equality reasoning and without explicitly conjectured
equality constraints and backtracking. Several such loop checking mechanisms have been
developed for different modal and description logics, but also hybrid logics and other lo-
gics [25, 5, 24, 10, 14].

In this section we adopt the unrestricted blocking mechanism of [32] to obtain termin-
ating tableau calculi. An alternative that could also be used is blocking through reusing
domain terms, but this would have required changing the rules of the calculus. Both unres-
tricted blocking and blocking through reuse of terms are less specialised and more generic
than standard loop checking mechanisms.

Though introduced for deciding expressive description logics with role negation, the
applicability of the unrestricted blocking mechanism is not limited to description logics [33].
It provides a powerful method for obtaining tableau decision procedures for logics with the
effective finite model property (with respect to their semantics).

A logic L has the effective finite model property iff there is a computable function µ,
with the set of all finite sets of concept expressions as domain and a subset of the set of
natural numbers as range, such that the following holds: For every finite set of concept
expressions S, if S is satisfiable in an L-model then there is a finite L-model for S with the
number of elements in the domain not exceeding µ(S).

The unrestricted blocking mechanism is based on adding the following rule, called the
unrestricted blocking rule, to a sound and complete tableau calculus.

x ≈ x, y ≈ y

x ≈ y | x 6≈ y
(ub)

In our context the idea is that the rule conjectures whether pairs of domain terms (of
sort N + 1 in FO(L)) on the current branch are equal or not. In the left branch two
such terms are conjectured to be equal. If this leads to a contradiction then they cannot be
equal, which is the information carried by the right branch. The rule is generally sound, thus
adding it to any sound and (constructive) complete tableau calculus preserves soundness
and (constructive) completeness.

For termination it is crucial to impose additional restrictions on the application of the
rules in the tableau calculus that introduce new domain terms to the derivation. This is
achieved by defining an ordering < on terms and imposing conditions (c1) and (c2) below
on the calculus.

In particular, let < be an ordering of terms of the domain sort N+1 in the branch which
is a linear extension of the order of the introduction of the terms during the derivation. That
is, t < t′, whenever the first appearance of term t′ in the branch is strictly later than the
first appearance of term t. The mentioned conditions are:

(c1) If t ≈ t′ appears in a branch and t < t′, then possible applications of any rules to
formulae with the term t′ producing new terms of the domain sort are not performed.

(c2) In every open branch there is some node from which point onwards before any applica-
tion of any rules which produce new terms of the domain sort all possible applications
of the (ub) rule have been performed.

Condition (c1) specifies that term-producing rules may only be applied to formulae where
the domain terms are the smallest representatives in their equivalence classes. The positive
rule for ∃ · .· is the only term-producing rule in the calculus for SO. Condition (c2) says

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 25

that at some point in a branch the unrestricted blocking rule has been applied exhaustively
before the application of term-producing rules.

For a tableau calculus T we denote by T + (ub) a tableau calculus obtained from T by
adding the above blocking mechanism based on the unrestricted blocking rule.

According to [33], one of the prerequisites for termination of the calculus T + (ub)
is the subexpression property of T . Let � be a reflexive and transitive ordering on L-
expressions. Following [33], we say that a tableau calculus T is compatible with sub�,
or has the subexpression property with respect to �, iff for every set of concepts S, all
L-expressions occurring in the tableau derivation T (S) belong to sub�(S).

Given a well-defined semantic specification S the process of construction of T from S
described in Section 4 ensures that every rule of T is monotone with respect to the ordering≺
induced by S. That is, every L-expression in each conclusion of a rule is not greater with
respect to ≺ than L-expressions in the premises of the rule. Therefore, we can conclude
that T has the subexpression property with respect to the reflexive closure of the ordering ≺.
Thus:

Lemma 8.1. Let � be a reflexive closure of the ordering ≺ induced by a well-defined
semantic specification S. Then the tableau calculus T generated from S has the subexpression
property with respect to �.

This property is a necessary condition for termination of the calculus enhanced by the
unrestricted blocking rule mechanism [32, 33]. Another necessary condition for termination
is finiteness of sub�. The operator sub mapping sets of concepts to sets of expressions is
finite iff sub(S) is finite for every finite set of concepts S. By König’s Infinity Lemma, sub�

is finite whenever ≺ is well-founded and finitely branching. Therefore:

Lemma 8.2. Let � be a reflexive closure of the ordering ≺ induced by a well-defined
semantic specification S. If S+ ∪ S− is finite then the operator sub� is finite.

Reformulating the main result in [33] in terms of the notation of this paper gives us:

Theorem 8.3. Let L be a logic and T be a sound and constructively complete tableau calcu-
lus for a semantic specification SL of the logic L. Then T +(ub) is sound and constructively
complete for SL. Furthermore, T +(ub) is terminating for L, if the following conditions all
hold:

(1) There is a finite closure operator sub (defined on sets of concepts of the language of L)
such that T is compatible with sub.

(2) L has the effective finite model property with respect to SL.

From this theorem and Theorems 5.1, 5.6, 6.1, 7.1 and Lemmas 8.1 and 8.2 it follows that
the extensions of the generated and refined tableau calculi with unrestricted blocking are
sound and (constructively) complete. Moreover, if it is known that the given logic has
the effective finite model property with respect to a finite semantic specification then both
extensions are terminating as well.

It is well known that SO has the effective finite model property with respect to SSO,
and clearly SSO has a finite number of statements. As a consequence, a terminating tableau
calculus for SO is obtained if the calculus in Figure 4 is enhanced with the unrestricted
blocking mechanism as described above. Using the refinements in Section 7 the unrestricted

26 R. A. SCHMIDT AND D. TISHKOVSKY

blocking rule can be transformed as follows.

ℓ : {ℓ}, ℓ′ : {ℓ′}

ℓ : {ℓ′} | ℓ : ¬{ℓ′}
(ub′)

Let TSO be a tableau calculus comprising of the rules listed in Figure 4 and the rule (ub′).

Theorem 8.4. The calculus TSO is sound and constructively complete for SO. Further-
more, TSO is terminating provided that conditions (c1) and (c2) are both true for TSO-
derivations.

In the calculus TSO, the imposed conditions (c1) and (c2) are restrictions on applications
of the rule

ℓ : ∃r.p

ℓ : ∃r.{f(r, p, ℓ)}, f(r, p, ℓ) : p
.

Following [33], the calculus TSO can be turned into a deterministic decision procedure using
breadth-first search or depth-first search.

The calculus TSO presents a new terminating tableau calculus for SO or equivalent
hybrid logics. The main difference to existing tableau approaches (in a similar style) for SO
or equivalent hybrid logics is that the individuals (or nominals) are handled differently. To
force termination typically either equality or subset ancestor loop checking is used, and
often transitivity is handled by a propagation rule.

9. Synthesising Tableau Calculi for Intuitionistic Logic

We consider another example to illustrate the method. Propositional intuitionistic logic IPC
is a logic where the ‘holds’ predicates ν1, . . . , νN cannot be expressed in the language of the
logic. It is non-Boolean and provides an example of a logic where the background theory
interacts with the definitions of the connectives.

The language of intuitionistic logic is a one-sorted language defined over a countable set
of propositional symbols p, q, p1, p2, . . ., and the standard connectives are →,∨,∧,⊥. The
semantic specification SIPC in FO(L) is given by (confer [28]):

Connective definitions:

∀x
(

ν1(⊥, x)≡ ⊥
)

∀x
(

ν1(p ∧ q, x)≡ ν1(p, x) ∧ ν1(q, x)
)

∀x
(

ν1(p ∨ q, x)≡ ν1(p, x) ∨ ν1(q, x)
)

∀x
(

ν1(p→ q, x)≡ ∀y
(

R(x, y) → (ν1(p, y) → ν1(q, y)
))

Background theory:

∀xR(x, x)
∀x∀y (R(x, y) ∧R(y, x) → x ≈ y)

∀x∀y∀z (R(x, y) ∧R(y, z) → R(x, z))
∀x∀y

(

ν1(p, x) ∧R(x, y) → ν1(p, y)
)

The connective definitions impose the usual requirements for truth of a formula in a world
of an intuitionistic Kripke model. For instance, the definition of implication expresses
in FO(L) the property that an implication of q from p is true in a world x if and only if q is
true in every successor of x whenever p is true in that successor. R is the domain predicate
symbol representing a partial order, which is specified by the first three sentences of the

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 27

Decomposition rules:

ν1(⊥, x)

⊥

¬ν1(⊥, x)

¬⊥
ν1(p ∧ q, x)

ν1(p, x), ν1(q, x)

¬ν1(p ∧ q, x)

¬ν1(p, x) | ¬ν1(q, x)

ν1(p ∨ q, x)

ν1(p, x) | ν1(q, x)

¬ν1(p ∨ q, x)

¬ν1(p, x), ¬ν1(q, x)

ν1(p → q, x), y ≈ y

¬R(x, y) | ¬ν1(p, y) | ν1(q, y)

¬ν1(p → q, x)

R(x, f(p, q, x)), ν1(p, f(p, q, x)), ¬ν1(q, f(p, q, x))

Theory rules:
x ≈ x

R(x, x)

x ≈ x, y ≈ y

¬R(x, y) | ¬R(y, x) | x ≈ y

x ≈ x, y ≈ y, z ≈ z

¬R(x, y) | ¬R(y, z) | R(x, z)
p ≈ p, x ≈ x, y ≈ y

¬ν1(p, x) | ¬R(x, y) | ν1(p, y)

Closure rules:

ν1(p, x), ¬ν1(p, x)

⊥

R(x, y), ¬R(x, y)

⊥

Figure 5: Generated tableau rules for intuitionistic logic.

background theory. The last sentence in the background theory specifies monotonicity of
the truth of formulae (of sort 1).

For intuitionistic logic the orderings ≺0 and ≺ coincide. The ordering ≺ on subexpres-
sions induced by the semantic definition of the connectives is the smallest ordering satisfying
E1 ≺ E1σE2 and E2 ≺ E1σE2, for each σ ∈ {→,∨,∧} and any intuitionistic formulae E1

and E2. That is, ≺ is the direct subexpression ordering on intuitionistic formulae. Thus,
the closure operator sub� induced by the reflexive closure � of the ordering ≺ is finite.

The tableau rules generated from the specification SIPC are those listed in Figure 5.
Together with the equality rules of Figure 2, they form a calculus, which is sound and
constructively complete for intuitionistic logic. This is a consequence of Theorems 5.1
and 5.6.

Refining the generated rules yields the rules listed in Figure 6. Using Theorem 6.1 we
conclude that together with the equality rules these rules provide a sound and constructively
complete tableau calculus for intuitionistic logic. We denote this calculus by TIPC.

Similarly to the case of SO, because intuitionistic logic has the effective finite model
property, by Theorem 8.3 together with Lemmas 8.1 and 8.2, a terminating tableau cal-
culus for IPC is obtained if the calculus TIPC is enhanced with the unrestricted blocking
mechanism.

Theorem 9.1. The tableau calculus TIPC + (ub) is sound, constructively complete and
terminating for IPC.

Following [33], TIPC +(ub) can be turned into deterministic decision procedures for IPC
using breadth-first search or depth-first search.

28 R. A. SCHMIDT AND D. TISHKOVSKY

Decomposition rules:

ν1(⊥, x)

⊥

ν1(p ∧ q, x)

ν1(p, x), ν1(q, x)

¬ν1(p ∧ q, x)

¬ν1(p, x) | ¬ν1(q, x)

ν1(p ∨ q, x)

ν1(p, x) | ν1(q, x)

¬ν1(p ∨ q, x)

¬ν1(p, x), ¬ν1(q, x)

ν1(p→ q, x), R(x, y)

¬ν1(p, y) | ν1(q, y)

¬ν1(p → q, x)

R(x, f(p, q, x)), ν1(p, f(p, q, x)), ¬ν1(q, f(p, q, x))

Theory rules:

x ≈ x

R(x, x)

R(x, y), R(y, x)

x ≈ y

R(x, y), R(y, z)

R(x, z)

ν1(p, x), R(x, y)

ν1(p, y)

Closure rules:

ν1(p, x), ¬ν1(p, x)

⊥

Figure 6: Refined tableau rules for intuitionistic logic.

10. Discussion and Conclusions

The method introduced in this paper automatically produces a sound and constructively
complete tableau calculus from the semantic first-order specification of a many-sorted logic.
The method is directly applicable to many non-classical logics and covers many types of
ground tableau calculi commonly found in the literature.

On one hand, the formalisation is based on ideas used in the implementation of tableau
decision procedures for modal and description logics in the MetTeL system [35, 36]. The
MetTeL system provides a core for tableau derivations, which does not depend on a lo-
gical language. Due to this language flexibility, without any modification of the core code,
the prover constructs (sound, complete, and terminating) tableau derivations for standard
modal logics, superintuitionistic logics (via the Gödel translation), many description logics,
as well as for logics of metrics and topology for which it was originally written. Termination
is achieved via an implementation of generalisations of standard blocking mechanisms as
well as the unrestricted blocking mechanism. This means that MetTeL provides an imple-
mentation of a tableau decision procedure for description logics with full support of the role
negation operator, which can not currently be handled by other tableau-based description
and modal logic theorem provers. On the other hand, the results of this paper provide
the theoretical foundation for the correct behaviour of tableau algorithms implemented in
MetTeL.

More importantly, the results can be viewed as providing a mathematical formalisation
and generalisation of tableau development methodologies. The formalisation separates the
creative part of tableau calculus development, which needs to be done by a human developer,
and the automatic part of the development process, which can be left to an automated
(currently first-order) prover and an automated tableau synthesiser. In general, there is
no algorithm for checking that an arbitrarily given binary relation forms a well-founded
ordering. Therefore the creative part is writing down the semantic specification of the
object logic so that the conditions of well-foundedness of the orderings ≺0 and ≺ hold. The

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 29

automatic part deals with verification of the first-order conditions (wd1) and (wd3′), and
the generation of tableau rules from the (well-defined) semantics provided by the developer.

For common modal and description logics conditions (wd1) and (wd3) are simple to
check, even trivial in many cases. In fact, a developer usually implicitly formalises the logic’s
semantics S in such a way that S = S0 ∪ Sb. This is the case for almost all known logics.
If the specification of the semantics satisfies S = S0 ∪ Sb then conditions (wd1) and (wd3)
hold trivially and the orderings ≺0 and ≺ coincide. This means the ordering used for the
specification of the semantics of the logical connectives (which is usually well-founded) is
enough for tableau synthesis.

The following are examples of first-order definable logics, which all have a normalised
and well-defined semantic specification according to the definitions in Section 3:

• most description logics, including ALCO, SO, ALBO [32], SHOIQ [24];
• most propositional modal logics, including K, K4, S4, KD45, S5;
• propositional intuitionistic logic [28] and many Kripke-complete propositional superintu-
itionistic logics;

• the logic of metric and topology [27].

This paper also presents a general method for proving (constructive) completeness of tableau
calculi. In addition, the generated rules can be transformed to the rules with lower branching
factors provided that condition (†) has been proved by induction on the ordering ≺ for the
refined calculus.

With enough expressivity for representing the basics of the semantics within the logic
it is possible to simplify the language of the tableau calculus. In this case, the obtained
calculus is similar to tableau calculi for description logics with singleton concepts, but also
hybrid modal logic [10] and labelled tableau calculi [18, 21]. Otherwise, the calculus has
the same flavour as standard tableau calculi for intuitionistic logic, where every node in a
tableau derivation is characterised by two complementary sets of true and false formulae
(concepts).

That the generated calculi are constructively complete has the added advantage that
models can be effectively generated from open, finished branches in tableau derivations.
This means that the synthesised tableau calculi can be used for finding models. If the
calculus includes the unrestricted blocking mechanism various strategies on the application
of the unrestricted blocking rule can be employed for obtaining models with minimal domain
sizes.

As case studies we considered tableau synthesis for propositional intuitionistic logic
and the description logic SO with singleton concepts and transitive roles. We believe the
approach is also applicable to most known, first-order definable modal and description logics
including the ones mentioned above. Non first-order translatable logics such as propositional
dynamic logic are currently beyond the scope of the method.

The tableau calculi generated are Smullyan-type tableau calculi, that is, ground se-
mantic tableau calculi. We believe that other types of tableau calculi can be generated
using the same techniques. We expect that generating unlabelled tableau calculi without
explicit background predicates or domain terms will be possible, at least to some extent,
but this is not immediate. One possibility would be to investigate if these can be derived
as further refinements of the labelled tableau calculi generated by method presented in this
paper. Such a line of investigation would be interesting and shed more light on the rela-
tionship between different kinds of tableau calculi. Exploiting the known relationships to

30 R. A. SCHMIDT AND D. TISHKOVSKY

other deduction methods we expect synthesis of non-tableau approaches is possible as well,
but all this is future work.

Further investigations are needed to explore the extension of the framework to generate
calculi based on propagation rules which incorporate frame correspondence properties into
the definition of connectives to replace the theory rules for modal and description logics
(for example, transitivity for the logic SO). It is clear though that this is a much harder
problem because guaranteeing completeness becomes more difficult. It is also clear that no
results at the same level of generality as for the use of theory rules in this paper can be
expected.

A future goal is to further reduce human involvement in the development of calculi by
finding appropriate automatically verifiable conditions for refined calculi to be generated.

We plan to implement the methodology as an automatic generator of tableau calculi.
This will give users the ability to obtain tableau calculi very easily and without needing
to have relevant knowledge of tableau-based reasoning or experience in developing tableau
calculi. Combined with a prover engineering platform such as LoTREC [19] or the Tableau
Workbench [1] there is even the potential to build systems that would allow users to get im-
plemented provers from the specification of logics. LoTREC and the Tableau Workbench
are generic systems for building tableau-based theorem provers for non-classical logics. Cur-
rently they allow users to define tableau procedures by flexibly specifying the set of tableau
rules, the search strategies, the blocking technique and the optimisation techniques to be
used. This is then compiled into a specialised prover for the specified procedure. Enhanced
with the tableau synthesis methodology, such systems could allow the user to define just
the logic and produce an implemented prover for this logic.

References

[1] P. Abate and R. Goré. The Tableaux Work Bench. In M. C. Mayer and F. Pirri, eds, Proceedings of the
12th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX’03), vol. 2796 of Lecture Notes in Computer Science, pp. 230–236. Springer, 2003.

[2] R. Alenda, N. Olivetti, C. Schwind, and D. Tishkovsky. Tableau calculi for CSL over minspaces. In
A. Dawar and H. Veith, eds, Proceedings of the 19th Annual Conference of the European Association
for Computer Science Logic (CSL’10), vol. 6247 of Lecture Notes in Computer Science, pp. 52–66.
Springer, 2010.

[3] A. Avellone, P. Miglioli, U. Moscato, and M. Ornaghi. Generalized tableau systems for intemediate
propositional logics. In D. Galmiche, ed., Proceedings of the 6th International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’97), vol. 1227 of Lecture Notes in
Computer Science, pp. 43–61. Springer, 1997.

[4] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider. Description Logic
Handbook. Cambridge University Press, 2003.

[5] F. Baader and U. Sattler. An overview of tableau algorithms for description logics. Studia Logica,
69:5–40, 2001.

[6] P. Balbiani, H. P. van Ditmarsch, A. Herzig, and T. De Lima. Tableaux for public announcement logic.
Journal of Logic and Computation, 20(1):55–76, 2010.

[7] P. Baumgartner and R. A. Schmidt. Blocking and other enhancements for bottom-up model generation
methods. In U. Furbach and N. Shankar, eds, Proceedings of the 3rd International Joint Conference on
Automated Reasoning (IJCAR’06), vol. 4130 of Lecture Notes in Artificial Intelligence, pp. 125–139.
Springer, 2006.

[8] P. Blackburn, M. de Rijke, and V. Venema. Modal Logic. Cambridge University Press, 2001.
[9] P. Blackburn and J. Seligman. What are hybrid languages? In M. Kracht, M. de Rijke, H. Wansing,

and M. Zakharyaschev, eds, Advances in Modal Logic, Volume 1, pp. 41–62. CSLI Publications, 1998.

AUTOMATED SYNTHESIS OF TABLEAU CALCULI ∗ 31

[10] T. Bolander and P. Blackburn. Termination for hybrid tableaus. Journal of Logic and Computation,
17(3):517–554, 2007.

[11] F. Bry and R. Manthey. Proving finite satisfiability of deductive databases. In E. Börger,
H. Kleine Büning, and M. M. Richter, eds, Proceedings of the 1st Workshop on Computer Science
Logic (CSL’87), vol. 329 of Lecture Notes in Computer Science, pp. 44–55. Springer, 1988.

[12] F. Bry and S. Torge. A deduction method complete for refutation and finite satisfiability. In J. Dix,
L. Fariñas del Cerro, and U. Furbach, eds, Proceedings of the 6th European Conference on Logics in
Artificial Intelligence (JELIA’98), vol. 1489 of Lecture Notes in Computer Science, pp. 1–17. Springer,
1998.

[13] M. A. Castilho, L. Fariñas del Cerro, O. Gasquet, and A. Herzig. Modal tableaux with propagation
rules and structural rules. Fundamenta Informaticae, 3–4(32):281–297, 1997.

[14] M. Cialdea Mayer and S. Cerrito. Ground and free-variable tableaux for variants of quantified modal
logics. Studia Logica, 69:97–131, 2001.

[15] M. Cialdea Mayer and S. Cerrito. Nominal substitution at work with the global and converse modalities.
In L. Beklemishev, V. Goranko, and V. Shehtman, eds, Advances in Modal Logic, vol. 8, pp. 57–74.
College Publications, 2010.

[16] M. D’Agostino and M. Mondadori. The taming of the cut. Classical refutations with analytic cut.
Journal of Logic and Computation, 4(3):285–319, 1994.

[17] L. Fariñas del Cerro and O. Gasquet. A general framework for pattern-driven modal tableaux. Logic
Journal of the IGPL, 10(1):51–83, 2002.

[18] M. Fitting. Proof methods for modal and intuitionistic logics. Kluwer, 1983.
[19] O. Gasquet, A. Herzig, D. Longin, and M. Sahade. LoTREC: Logical tableaux research engineering

companion. In B. Beckert, ed., Proceedings of the 14th International Conference on Automated Reas-
oning with Analytic Tableaux and Related Methods (TABLEAUX’05), vol. 3702 of Lecture Notes in
Computer Science, pp. 318–322. Springer, 2005.

[20] V. Goranko and D. Shkatov. Tableau-based decision procedure for full coalitional multiagent temporal-
epistemic logic of linear time. In C. Sierra, C. Castelfranchi, K. S. Decker, and J. S. Sichman, eds,
Proceedings of the 8th International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS’09), pp. 969–976. IFAAMAS, 2009.

[21] R. Goré. Tableau methods for modal and temporal logics. In M. D’Agostino, D. M. Gabbay, R. Hähnle,
and J. Posegga, eds, Handbook of Tableau Methods. Springer, 1999.

[22] A. Heuerding. Sequent calculi for proof search in some modal logics. PhD thesis, Universität Bern, 1998.
[23] I. Horrocks, U. Hustadt, U. Sattler, and R. A. Schmidt. Computational modal logic. In P. Blackburn,

J. van Benthem, and F. Wolter, eds, Handbook of Modal Logic, pp. 181–245. Elsevier, 2007.
[24] I. Horrocks and U. Sattler. A tableau decision procedure for SHOIQ. Journal of Automated Reasoning,

39(3):249–276, 2007.
[25] G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Routledge, London, 1968.
[26] U. Hustadt and R. A. Schmidt. On the relation of resolution and tableaux proof systems for description

logics. In T. Dean, ed., Proceedings of the 16th International Joint Conference on Artificial Intelligence
(IJCAI’99), pp. 110–115. Morgan Kaufmann, 1999.

[27] U. Hustadt, D. Tishkovsky, F. Wolter, and M. Zakharyaschev. Automated reasoning about metric
and topology (System description). In M. Fisher, W. van der Hoek, B. Konev, and A. Lisitsa, eds,
Proceedings of the 10th European Conference on Logics in Artificial Intelligence (JELIA’06), vol. 4160
of Lecture Notes in Artificial Intelligence, pp. 490–493. Springer, 2006.

[28] S. A. Kripke. Semantical analysis of intuitionistic logic I. In J. N. Crossley and M. A. E. Dummett, eds,
Formal Systems and Recursive Functions, pp. 92–130. North-Holland, 1965.

[29] F. Massacci. Single step tableaux for modal logics: Computational properties, complexity and method-
ology. Journal of Automated Reasoning, 24(3):319–364, 2000.

[30] B. Motik, R. Shearer, and I. Horrocks. Hypertableau reasoning for description logics. Journal of Artificial
Intelligence Research, 36:165–228, 2009.

[31] R. A. Schmidt. Developing modal tableaux and resolution methods via first-order resolution. In G. Gov-
ernatori, I. M. Hodkinson, and Y. Venema, eds, Advances in Modal Logic, Volume 6, pp. 1–26. College
Publications, 2006.

[32] R. A. Schmidt and D. Tishkovsky. Using tableau to decide expressive description logics with role neg-
ation. In K. Aberer, K.-S. Choi, N. Noy, D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika,

32 R. A. SCHMIDT AND D. TISHKOVSKY

D. Maynard, R. Mizoguchi, G. Schreiber, and P. Cudré-Mauroux, eds, Proceedings of the 6th Interna-
tional Semantic Web Conference and the 2nd Asian Semantic Web Conference (ISWC’07), vol. 4825
of Lecture Notes in Computer Science, pp. 438–451. Springer, 2007.

[33] R. A. Schmidt and D. Tishkovsky. A general tableau method for deciding description logics, modal logics
and related first-order fragments. In A. Armando, P. Baumgartner, and G. Dowek, eds, Proceedings of
the 4th International Joint Conference on Automated Reasoning (IJCAR’08), vol. 5195 of Lecture Notes
in Computer Science, pp. 194–209. Springer, 2008.

[34] R. A. Schmidt and D. Tishkovsky. Automated synthesis of tableau calculi. In M. Giese and A. Waaler,
eds, Proceedings of the 18th International Conference on Automated Reasoning with Analytic Tableaux
and Related Methods (TABLEAUX’09), vol. 5607 of Lecture Notes in Artificial Intelligence, pp. 310–324.
Springer, 2009.

[35] D. Tishkovsky. MetTeL system. http://www.mettel-prover.org .
[36] D. Tishkovsky, R. A. Schmidt, and M. Khodadadi. MetTeL: A tableau prover with logic-independent

inference engine. In G. Metcalfe and K. Brünnler, eds, Automated Reasoning with Analytic Tableaux
and Related Methods (TABLEAUX’11), Lecture Notes in Computer Science. Springer, 2011. To appear.

[37] M. Tzakova. Tableau calculi for hybrid logics. In N. V. Murray, ed., Proceedings of the 8th International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’99),
vol. 1617 of Lecture Notes in Computer Science, pp. 278–292. Springer, 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

http://www.mettel-prover.org

	1. Introduction
	2. The Specification Languages
	3. Specifying the Semantics of an Object Language
	4. Synthesising a Tableau Calculus
	5. Ensuring Soundness and Constructive Completeness
	6. Refining Rules by Turning Conclusions into Premises
	7. Refinement based on Exploiting the Expressivity of the Logic
	8. Termination through Unrestricted Blocking
	9. Synthesising Tableau Calculi for Intuitionistic Logic
	10. Discussion and Conclusions
	References

