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Abstract. A system of linear dependent types for the λ-calculus with full higher-order
recursion, called dℓPCF, is introduced and proved sound and relatively complete. Com-
pleteness holds in a strong sense: dℓPCF is not only able to precisely capture the functional
behavior of PCF programs (i.e. how the output relates to the input) but also some of their
intensional properties, namely the complexity of evaluating them with Krivine’s Machine.
dℓPCF is designed around dependent types and linear logic and is parametrized on the
underlying language of index terms, which can be tuned so as to sacrifice completeness for
tractability.

1. Introduction

Type systems are powerful tools in the design of programming languages. While they have
been employed traditionally to guarantee weak properties of programs (e.g. “well-typed
programs cannot go wrong”), it is becoming more and more evident that they can be useful
when stronger properties are needed, such as security [33, 32], termination [6], monadic
temporal properties [26] or resource bounds [25, 11].

One key advantage of type systems seen as formal methods is their simplicity and
their close relationship with programs — checking whether a program has a type or even
inferring the (most general) type of a program is often decidable. The price to pay is the
incompleteness of most type systems: there are programs satisfying the property at hand
which cannot be given a type. This is in contrast with other formal methods, like program
logics [2] where completeness is always a desirable feature, although it only holds relatively
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Figure 1: Type Systems and Program Logics

to an oracle. Graphically, the situation is similar to the one in Figure 1: type systems are
bound to be in the lower left corner of the diagram, where both the degree of completeness
and the complexity of the property under consideration is low; program logics, on the other
hand, are confined to the upper-right corner, where checking for derivability is almost always
undecidable.

One specific research field in which the just-described scenario manifests itself is implicit
computational complexity, in which one aims at defining characterizations of complexity
classes by programming languages and logical systems. Many type systems have been in-
troduced capturing, for instance, the polynomial time computable functions [23, 5, 4]. All
of them, under mild assumptions, can be employed as tools to certify programs as asymp-
totically time efficient. However, a tiny slice of the polytime programs are generally typable,
since the underlying complexity class FP is only characterized in a purely extensional sense
— for every function in FP there is at least one typable program computing it.

The main contribution of this paper is a type system for the λ-calculus with full recur-
sion, called dℓPCF, which is sound and complete. Types of dℓPCF are obtained, in the spirit
of DML [36, 35], by decorating types of ordinary PCF [31, 21] with index terms. These are
first-order terms freely generated from variables, function symbols and a few more term
constructs. They are indicated with metavariables like I, J,K. Type decoration reflects the
standard decomposition of types into linear types (as suggested by linear logic [18]), and is
inspired by recent works on the expressivity of bounded logics [13].

Index terms and linear types permit to describe program properties with a fine granu-
larity. More precisely, dℓPCF enjoys the following two properties:
‚ Soundness: if t is a program and $K t : NatrI, Js, then t evaluates to a natural number
which lies between I and J and this evaluation takes at most pK ` 1q ¨ |t| steps;

‚ Completeness: if t is typable in PCF and evaluates to a natural number n in m steps,
then $I t : Natrn,ns, where I ď m.

Completeness of dℓPCF holds not only for programs (i.e. terms of ground types) but also
for functions on the natural numbers (see Section 5.3 for further details). Moreover, typing
judgments tell us something about the functional behavior of programs but also about their
non-functional one, namely the number of steps needed to evaluate the term in Krivine’s
Abstract Machine.

As the title of this paper suggests, completeness of dℓPCF holds in a relative sense.
Indeed, the behavior of programs can be precisely captured only in presence of a complete
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oracle for the truth of certain assumptions in typing rules. This is exactly what happens in
program logics such as Floyd-Hoare’s logic, where all true partial correctness assertions can
be derived provided one is allowed to use all true sentences of first order arithmetic as axioms
[10]. In dℓPCF, those assumptions take the form of (in)equalities between index terms, to
be verified when function symbols are interpreted as partial functions on natural numbers
according to an equational program E . Actually, the whole of dℓPCF is parametrized on
such an E , but while soundness holds independently of the specific E , completeness, as is to
be expected, holds only if E is sufficiently powerful to encode all total computable functions
(i.e. if E is universal). In other words, dℓPCF can be claimed to be not a type system, but
a family of type systems obtained by taking a specific E as the underlying “logic” of index
terms. The simpler E , the easier type checking and type inference are; the more complex
E , the larger the class of captured programs.

The design of dℓPCF has been very much influenced by linear logic [18], and in particular
by systems of indexed and bounded linear logic [19, 13], which have been recently shown
to subsume other ICC systems as for the class of programs they capture [13]. One of
the many ways to “read” dℓPCF is as a variation on the theme of BLL [19] obtained by
generalizing polynomials to arbitrary functions. The idea of going beyond a restricted,
fixed class of bounds comes from Xi’s work on DML [36, 35]. Cost recurrences for first order
DML programs have been studied [20]. No similar completeness results for dependent types
are known, however.

2. Types and Program Properties: An Informal Account

Consider the following program:

dbl “ fix f.λx. ifz x then 0 else spspfpppxqqqq.

In a monomorphic, traditionally designed type system like PCF [31, 21], the term dbl

receives type Nat Ñ Nat. As a consequence, dbl computes a function on natural numbers
without “going wrong”: it takes in input a natural number, and produces in output another
natural number (if any). The type Nat Ñ Nat, however, does not give any information about
which specific function on the natural numbers dbl computes. Indeed, in PCF (and in most
real-world programming languages) any program computing a function on natural numbers,
being it for instance the identity function or (a unary version of) the Ackermann function,
can be typed by Nat Ñ Nat.

Some modern type systems allow one to construct and use types like τ “ Natras Ñ
Natr2ˆ as, which tell not only what set or domain (the interpretation of) the term belongs
to, but also which specific element of the domain the term actually denotes. The type τ ,
for example, could be attributed only to those programs computing the function n ÞÑ 2ˆn,
including dbl. Types of this form can be constructed in dependent and sized type theories
[36, 6]. The type system dℓPCF introduced in this paper offers this possibility, too. But, as
a first contribution, it further allows to specify imprecise types, like Natr5,8s, which stands
for the type of those natural numbers between 5 and 8 (included).

A property of programs which is completely ignored by ordinary type systems is ter-
mination, at least if full recursion is in the underlying language. Typing a term t with
Nat Ñ Nat does not guarantee that t, when applied to a natural number, terminates. In
PCF this is even worse: t could possibly diverge itself ! Consider, as another example, a
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slight modification of dbl, namely

omega “ fix f.λx. ifz x then 0 else spspfpxqqq.

It behaves as dbl when fed with 0, but it diverges when it receives a positive natural number
as an argument. But look: omega is not so different from dbl. Indeed, the second can be
obtained from the first by feeding not x but ppxq to f . And any type systems in which
dbl and omega are somehow recognized as being fundamentally different must be able to
detect the presence of p in dbl and deduct termination from it. Indeed, sized types [6] and
dependent types [34] are able to do so.

Going further, we could ask the type system to be able not only to guarantee termi-
nation, but also to somehow evaluate the time or space consumption of programs. For
example, we could be interested in knowing that dbl takes a polynomial number of steps to
be evaluated on any natural number. This cannot be achieved neither using classical type
systems nor using systems of sized types, at least when traditionally formulated. However,
some type systems able to control the complexity of programs exist. Good examples are
type systems for amortized analysis [25, 22] or those using ideas from linear logic [5, 4].
In those type systems, typing judgements carry, besides the usual type information, some
additional information about the resource consumption of the underlying program. As an
example, dbl could be given a type as follows

$I dbl : Nat Ñ Nat

where I is some cost information for dbl. This way, building a type derivation and inferring
resource consumption can be done at the same time.

The type system dℓPCF we propose in this paper makes some further steps in this
direction. First of all, it combines some of the ideas presented above with the ones of
bounded linear logic. BLL allows one to explicitly count the number of times functions use
their arguments (in rough notation, !mσ ⊸ τ says that the argument of type σ is used m

times). This permits to extract natural cost functions from type derivations. The cost of
evaluating a term will be measured by counting how many times function arguments need to
be copied during evaluation. Making this information explicit in types permits to compute
the cost step by step during the type derivation process. By the way, previous works by
the first author [12] show that this way of attributing a cost to (proofs seen as) programs is
sound and precise as a way to measure their time complexity. Intuitively, typing judgements
in dℓPCF can be thought as:

$J t : !m Natras ⊸ NatrIs.

where I and J can be derived while building a type derivation, exploiting the information
carried by the modalities. In fact, the quantitative information in !m allows to statically
determine the number of times any subterm will be copied during evaluation. But this is
not sufficient: analogously to what happens in BLL, dℓPCF makes types more parametric. A
rough type as !nσ ⊸ τ is replaced by the more parametric type ra ă ns ¨σ ⊸ τ , which tells
us that the argument will be used n times, and each instance has type σ where, however
the variable a is instantiated with a value less than n. This allows to type each copy of the
argument differently but uniformly, since all instances of σ have the same PCF skeleton.
This form of uniform linear dependence is actually crucial in obtaining the result which
makes dℓPCF different from similar type systems, namely completeness.
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Finally, as already stressed in the Introduction, dℓPCF is also parametric in the class of
functions (in the form of an equational program E) that can be used to reason about types
and costs. This permits to tune the type system, as described in Section 6 below.

Anticipating on the next section, we can say that dbl can be typed as follows in dℓPCF:

$E
a dbl : rb ă a ` 1s ¨ Natras ⊸ Natr2 ˆ as.

This tells us that the argument will be used a ` 1 times by dbl, and that the cost of
evaluation will be itself proportional to a.

3. dℓPCF

In this section, the language of programs and the type system dℓPCF for it will be introduced
formally. Some of their basic properties will be described. The type system dℓPCF is based
on the notion of an index term whose semantics, in turn, is defined by an equational
program. As a consequence, all these notions must be properly introduced and are the
subject of Section 3.1 below.

3.1. Index Terms and Equational Programs. Syntactically, index terms are built ei-
ther from function symbols from a given signature or by applying any of two special term
constructs.

Formally, a signature Σ is a pair pS, αq where S is a finite set of function symbols and
α : S Ñ N assigns an arity to every function symbol. Index terms on a given signature
Σ “ pS, αq are generated by the following grammar:

I, J,K ::“ a | fpI1, . . . , Iαpfqq |
ÿ

aăI

J |
I,J
ï

a

K,

where f P S and a is a variable drawn from a set V of index variables. We assume the
symbols 0, 1 (with arity 0) and `, ´ (with arity 2) are always part of Σ. An index term in

the form
ř

aăI J is a bounded sum, while one in the form
ÏI,J

a K is a forest cardinality. For
every natural number n, the index term n is just

1 ` 1 ` . . . ` 1
loooooooomoooooooon

n times

.

Index terms are meant to denote natural numbers, possibly depending on the (unknown)
values of variables. Variables can be instantiated with other index terms, e.g. ItJ{au.
So, index terms can also act as first order functions. What is the meaning of the function
symbols from Σ? It is the one induced by an equational program E . Formally, an equational
program E over a signature Σ and a set of variables V is a set of equations in the form t “ s

where both t and s are terms in the free algebra OpΣ,Vq over Σ and V. We are interested
in equational programs guaranteeing that, whenever symbols in Σ are interpreted as partial
functions over N and 0, 1, ` and ´ are interpreted in the usual way, the semantics of
any function symbol f can be uniquely determined from E . This can be guaranteed by,
for example, taking E as an Herbrand-Gödel scheme [30] or as an orthogonal constructor
term rewriting system [3]. One may wonder why the definition of index terms is parametric
on Σ and E . As we will see in Section 6, being parametric this way allows us to tune our
concrete type system from a highly undecidable but truly powerful machinery down to a
tractable but less expressive formal system. An example of an equational program over
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the signature Σ consisting of three function symbols gt, add and mult of arity two is the
following sequence of equations:

gtp0, bq “ 0;

gtpa ` 1,0q “ 1;

gtpa ` 1, b ` 1q “ gtpa, bq;

addp0, bq “ b;

addpa ` 1, bq “ addpa, bq ` 1;

multp0, bq “ 0;

multpa ` 1, bq “ addpb, multpa, bqq.

What about the meaning of bounded sums and forest cardinalities? The first is very
intuitive: the value of

ř

aăI J is simply the sum of all possible values of J with a taking the
values from 0 up to I, excluded. Forest cardinalities, on the other hand, require some more
effort to be described. Informally,

ÏI,J
a K is an index term denoting the number of nodes in

a forest composed of J trees described using K. All the nodes in the forest are (uniquely)
identified by natural numbers. These are obtained by consecutively visiting each tree in
pre-order, starting from I. The term K has the role of describing the number of children
of each forest node n by properly instantiating the variable a, e.g the number of children
of the root (of the leftmost tree in the forest) is Kt0{au. More formally, the meaning of a
forest cardinality is defined by the following two equations:

I,0
ï

a

K “ 0; (3.1)

I,J`1
ï

a

K “

˜

I,J
ï

a

K

¸

` 1 `

¨

˝

I`1`
Ï

I,J
a K,KtI`

Ï

I,J
a K{au

ï

a

K

˛

‚. (3.2)

Equation (3.1) says that a forest of 0 trees contains no nodes. Equation (3.2) tells us that
a forest of J ` 1 trees contains:
‚ the nodes in the first J trees;
‚ and the nodes in the last tree, which are just one plus the nodes in the immediate
subtrees of the root, considered themselves as a forest.

To better understand forest cardinalities, consider the following forest comprising two trees:

0

1

2

��������
5 6

❃❃❃❃❃❃❃❃

3

��������
4

❃❃❃❃❃❃❃❃

7

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤

✤

✤

✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

8

9

⑦⑦⑦⑦⑦⑦⑦⑦
11

❅❅❅❅❅❅❅

10 12

and consider an index term K with a free index variable a such that Ktn{au “ 3 for n “ 1;
Ktn{au “ 2 for n P t2, 8u; Ktn{au “ 1 when n P t0, 6, 9, 11u; and Ktn{au “ 0 when
n P t3, 4, 7, 10, 12u. That is, K describes the number of children of each node in the forest.

Then
Ï

0,2
a K “ 13 since it takes into account the entire forest;

Ï

0,1
a K “ 8 since it takes
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into account only the leftmost tree;
Ï

8,1
a K “ 5 since it takes into account only the second

tree of the forest; finally,
Ï

2,3
a K “ 6 since it takes into account only the three trees (as a

forest) in the dashed rectangle.
One may wonder what is the role of forest cardinalities in the type system. Actually,

they play a crucial role in the treatment of recursive calls, where the unfolding of recursion
produces a tree-like structure whose size is just the number of times the (recursively de-
fined) function will be used globally. Note that the value of a forest cardinality could also
be undefined. For instance, this happens when infinite trees, corresponding to diverging
recursive computations, are considered.

The expression JIKEρ denotes the meaning of I, defined by induction along the lines of
the previous discussion, where ρ : V Ñ N is an assignment and E is an equational program
giving meaning to the function symbols in I. Since E does not necessarily interpret such
symbols as total functions, and moreover, the value of a forest cardinality can be undefined,
JIKEρ can be undefined itself. A constraint is an inequality in the form I ď J. A constraint

is true in an assignment ρ if JIKEρ and JJKEρ are both defined and the first is smaller or equal
to the latter. Now, for a subset φ of V, and for a set Φ of constraints involving variables in
φ, the expression

φ; Φ |ùE I ď J (3.3)

denotes the fact that the truth of I ď J semantically follows from the truth of the constraints
in Φ. The expression φ; Φ |ùE I ě 0 indicates that (the semantics of) I is defined for the
relevant values of the variables in φ; this is usually written as φ; Φ |ùE I ó.

Similarly, one can define the meaning of expressions like φ; Φ |ùE I “ J or φ; Φ |ùE I » J,
the latter standing for the equality of I and J in the sense of Kleene, i.e. φ; Φ |ùE I ó if
and only if φ; Φ |ùE J ó, and if φ; Φ |ùE I ó then φ; Φ |ùE I “ J. When both φ and Φ are
empty, such expressions can be written in a much more concise form, e.g. I » J stands for
H;H |ùE I » J.

The following two lemmas about forest cardinalities are useful, and will be crucial when
proving the Substitution Lemma.

Lemma 3.1. For every index terms I, J,K,H, we have:

I`J,K
ï

a

H »
J,K
ï

a

Hta ` I{au.

Proof. The proof is by coinduction on the definition of
ÏI`J,K

a H by distinguishing the cases
for the different values of K. For K » 0 we have both:

I`J,0
ï

a

H » 0;
J,0
ï

a

Hta ` I{au » 0.

For K » L ` 1 we have:

I`J,L`1
ï

a

H »
I`J,L
ï

a

H ` 1 `
I`J`1`

Ï

I`J,L
a H,HtI`J`

Ï

I`J,L
a H{au

ï

a

H,

and analogously

J,L`1
ï

a

Hta ` I{au »
J,L
ï

a

Hta ` I{au ` 1 `
J`1`

Ï

J,L
a Hta`I{au,HtI`J`

Ï

J,L
a Hta`I{au{au

ï

a

Hta ` I{au.

This concludes the proof.
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Lemma 3.2. For every index term of the shape
Ï

1,J
a I we have:

1,J
ï

a

I »
ÿ

băJ

0,1
ï

a

Ita ` 1 `
1,b
ï

a

I{au.

Proof. The proof is by coinduction on the definition of
Ï

1,J
a I by distinguishing the cases

for the different values of J. For J » 0, we have both:

1,0
ï

a

I » 0;
ÿ

bă0

0,1
ï

a

Ita ` 1 `
1,b
ï

a

I{au » 0.

For J » L ` 1 we have
1,L`1
ï

a

I » K ` 1 `
K`2,ItK`1{au

ï

a

I

and
ÿ

băL`1

0,1
ï

a

Ita ` 1 `
1,b
ï

a

I{au » H `
0,1
ï

a

Ita ` 1 `
1,L
ï

a

I{au,

where K is
Ï

1,L
a I and H is

ř

băL

Ï

0,1
a Ita ` 1 `

Ï

1,b
a I{au. Now, by definition and by

Lemma 3.1, we have

0,1
ï

a

Ita ` 1 `
1,L
ï

a

I{au » 1 `
1,ItK`1{au

ï

a

Ita ` 1 ` K{au » 1 `
K`2,ItK`1{au

ï

a

I.

This concludes the proof.

Before embarking in the description of the type system, a further remark on the role
of index terms could be useful. Index terms are not meant to be part of programs but of
types. As a consequence, computation will not be carried out on index terms but on proper
terms, which are the subject of Section 3.2 below.

3.2. The Type System. Terms are generated by the following grammar:

t ::“x | n | sptq | pptq | λx.t | tu

| ifz t then u else v | fix x.t

where n ranges over natural numbers and x ranges over a set of variables. As usual, terms
which are equal modulo α-conversion are considered equal. This, in turn, allows to define
the notion of substitution in the standard way. The set of head subterms of any term t can
be defined easily by induction on the structure of t, e.g. the head subterms of t “ uv are t

itself and the head subterms of u (but not those of v).
A notion of size |t| for a term t will be useful in the sequel. This can be defined as

follows:

|x| “ 1; |λx.t| “ |t| ` 1;

|n| “ 1; |tu| “ |t| ` |u| ` 1;

|sptq| “ |t| ` 2; | ifz t then u else v| “ |t| ` |u| ` |v| ` 1;

|pptq| “ |t| ` 2; |fix x.t| “ |t| ` 1.
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Γ, x : σ $ x : σ

Γ, x : σ $ t : τ

Γ $ λx.t : σ Ñ τ

Γ $ t : σ Ñ τ Γ $ u : σ
Γ $ tu : τ

Γ $ n : Nat
Γ $ t : Nat

Γ $ sptq : Nat
Γ $ t : Nat

Γ $ pptq : Nat

Γ $ t : Nat Γ $ u : σ Γ $ v : σ
Γ $ ifz t then u else v : σ

Γ, x : σ $ t : σ

Γ $ fix x.t : σ

Figure 2: The PCF Type System.

pλx.tqu Ñ ttu{xu spnq Ñ n ` 1 ppn ` 1q Ñ n pp0q Ñ 0

ifz 0 then u else v Ñ u ifz n ` 1 then u else v Ñ v

fix x.t Ñ ttfix x.t{xu
t Ñ u

sptq Ñ spuq
t Ñ u

pptq Ñ ppuq
t Ñ v

tu Ñ vu

t Ñ w
ifz t then u else v Ñ ifz w then u else v

Figure 3: Weak-head Reduction

Notice that for technical reasons size is defined in a slightly nonstandard way: every integer
constant has size 1.

Lemma 3.3. If t is a term and u is a subterm of t, then |u| ď |t|.

Terms can be typed by a well-known type system called PCF. Types are those generated
by the basic type Nat and the binary type constructor Ñ. Typing rules are in Figure 2. A
notion of weak-head reduction Ñ can be easily defined: see Figure 3. A term t is said to
be a program if it can be given the PCF type Nat in the empty context.

Almost all the definitions about dℓPCF in this and the next sections should be un-
derstood as parametric on an equational program E over a signature Σ. For the sake of
simplicity, however, we will often avoid to explicitly mention E and leave it implicit.

dℓPCF can be seen as a refinement of PCF obtained by a linear decoration of its type
derivations. Basic and modal types are defined as follows:

σ, τ ::“ NatrI, Js | A ⊸ σ; basic types

A,B ::“ ra ă Is ¨ σ; modal types

where I, J range over index terms and a ranges over index variables. NatrIs is syntactic
sugar for NatrI, Is. Modal types need some comments. As a first approximation, they can
be thought of as quantifiers over type variables. So, a type like A “ ra ă Is ¨ σ acts as a
binder for the index variable a in the basic type σ. Moreover, the condition a ă I says
that A consists of all the instances of the basic type σ where the variable a is successively
instantiated with the values from 0 to (the value of) I ´ 1, i.e. σt0{au, . . . , σtI ´ 1{au .
For those readers who are familiar with linear logic, and in particular with BLL, the modal
type ra ă Is ¨ σ is a generalization of the BLL formula !aăpσ to arbitrary index terms. As
such it can be thought of as representing the type σt0{au b ¨ ¨ ¨ b σtI ´ 1{au. In analogy
to what happens in the standard linear logic decomposition of the intuitionistic arrow,
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φ; Φ |ùE I ó
φ; Φ |ùE J ó

φ; Φ $E NatrI, Js ó
pNat.tq

φ; Φ $E A ó
φ; Φ $E σ ó

φ; Φ $E A ⊸ σ ó
p⊸ .tq

φ, a; Φ, a ă I $E σ ó
φ; Φ |ùE I ó

φ; Φ $E ra ă Is ¨ σ ó
pr´s ¨ .tq

Figure 4: Well-defined Types

φ; Φ |ùE K ď I
φ; Φ |ùE J ď H

φ; Φ $E NatrI, Js Ď NatrK,Hs
pNat.lq

φ; Φ $E B Ď A

φ; Φ $E σ Ď τ

φ; Φ $E A ⊸ σ Ď B ⊸ τ
p⊸ .lq

φ, a; Φ, a ă I $E σ Ď τ

φ; Φ |ùE J ď I

φ; Φ $E ra ă Is ¨ σ Ď ra ă Js ¨ τ
pr´s ¨ .lq

Figure 5: The Subtyping Relation

i.e. !A ⊸ B “ A ñ B, it is sufficient to restrict to modal types appearing in negative
position.Finally, for those readers with some knowledge of DML, modal types are in a way
similar to DML’s subset sort constructions [35].

We always assume that index terms appearing inside types are defined for all the rel-
evant values of the variables in φ. This is captured by the judgement φ; Φ $E σ ó, whose
rules are in Figure 4.

In the typing rules, modal types need to be manipulated in an algebraic way. For this
reason, two operations on modal types need to be introduced. The first one is a binary
operation Z on modal types. Suppose that A “ ra ă Is ¨ µta{cu and that B “ rb ă Js ¨
µtI ` b{cu. In other words, A consists of the first I instances of µ, i.e. µt0{cu, . . . , µtI´1{cu
while B consists of the next J instances of µ, i.e. µtI ` 0{cu, . . . , µtI ` J ´ 1{cu. Their sum
A Z B is naturally defined as a modal type consisting of the first I ` J instances of µ, i.e.
rc ă I ` Js ¨µ. An operation of bounded sum on modal types can be defined by generalizing
the idea above. Suppose that A “ rb ă Js ¨ σt

ř

dăa Jtd{au ` b{cu. Then its bounded sum
ř

aăIA is rc ă
ř

aăI Js ¨ σ.
To every type σ corresponds a type p|σ|q of ordinary PCF, namely a type built from the

basic type Nat and the arrow operator Ñ:

p|NatrI, Js|q “ Nat;

p|ra ă Is ¨ σ ⊸ τ |q “ p|σ|q Ñ p|τ |q.

Central to dℓPCF is the notion of subtyping. An inequality relation Ď between (basic
and modal) types can be defined by way of the formal system in Figure 5. This relation
corresponds to lifting index inequalities at the type level. The equivalence φ; Φ $ σ – τ
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holds when both φ; Φ $ σ Ď τ and φ; Φ $ τ Ď σ can be derived from the rules in Figure 5.
φ; Φ $ σ ó is syntactic sugar for φ; Φ $ σ Ď σ.

It is now time to introduce the main object of this paper, namely the type system
dℓPCF. Typing judgements of dℓPCF are expressions in the form

φ; Φ; Γ $E
I t : σ, (3.4)

where Γ is a typing context, that is, a set of term variable assignments of the shape x : A
where each variable x occurs at most once. The expression (3.4) can be informally read as
follows: for every values of the index variables in φ satisfying Φ, t can be given type σ and
cost I once its free term variables have types as in Γ. In proving this, equations from E can
play a role.

Typing rules are in Figure 6, where binary and bounded sums are used in their natural
generalization to contexts. A type derivation is nothing more than a tree built according to
typing rules. A precise type derivation is a type derivation such that all premises in the form
σ Ď τ (respectively, in the form I ď J) are required to be in the form σ – τ (respectively,
I “ J).

First of all, observe that the typing rules are syntax-directed: given a term t, all type
derivations for t end with the same typing rule, namely the one corresponding to the last
syntax rule used in building t. In particular, no explicit subtyping rule exists, but subtyping
is applied to the context in every rule. A syntax-directed type system offers a key advantage:
it allows one to prove the statements about type derivations by induction on the structure
of terms. This greatly simplifies the proof of crucial properties like subject reduction.

Typing rules have premises of three different kinds:
‚ Of course, typing a term requires typing its immediate subterms, so typing judgements
can be rule premises.

‚ As just mentioned, typing rules allow to subtype the context Γ, so subtyping judgements
can be themselves rule premises.

‚ The application of typing rules (and also of subtyping rules, see Figure 5) sometimes
depends on the truth of some inequalities between index terms in the model induced by
E .

As a consequence, typing rules can only be applied if some relations between index terms
are consequences of the constraints in Φ. These assumptions have a semantic nature, but
could of course be verified by any sound formal system. Completeness (see Section 5),
however, only holds if all true inequalities can be used as assumptions. As a consequence,
type inference but also type (derivation) checking are bound to be problematic from a
computational point of view. See Section 6 for a more thorough discussion on this issue.

As a last remark, note that each rule can be seen as a decoration of a rule of ordinary
PCF. More: for every dℓPCF type derivation π of φ; Φ; Γ $E

I t : σ there is a structurally
identical derivation in PCF for the same term, i.e. a derivation p|π|q ⊲ p|Γ|q $ t : p|σ|q.

3.3. An Example. In this section, we will show how dℓPCF can give a sensible type to the
example we talked about in the Introduction, namely

dbl “ fix f.λx. ifz x then 0 else spspfpppxqqqq.

First, let us take a look at a subterm of dbl, namely t “ ifz x then 0 else spspfpppxqqqq.
In plain PCF, t receives the type Nat in an environment where x has type Nat and f has
type Nat Ñ Nat. Presumably, a dℓPCF type for t can be obtained by decorating in an
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φ; Φ |ùE 0 ď J φ; Φ |ùE 1 ď I
φ; Φ $E σt0{au Ď τ

φ; Φ $E pra ă Is ¨ σq ó φ; Φ $E Γ ó

φ; Φ; Γ, x : ra ă Is ¨ σ $E
J x : τ

V
φ; Φ; Γ, x : ra ă Is ¨ σ $E

J t : τ

φ; Φ; Γ $E
J λx.t : ra ă Is ¨ σ ⊸ τ

L

φ; Φ; Γ $E
J t : ra ă Is ¨ σ ⊸ τ

φ, a; Φ, a ă I;∆ $E
K u : σ

φ; Φ $E Σ Ď Γ Z
ř

aăI ∆
φ; Φ |ùE H ě J ` I `

ř

aăIK

φ; Φ;Σ $E
H tu : τ

A

φ; Φ $E NatrI ` 1, J ` 1s Ď NatrK,Hs
φ; Φ; Γ $E

L t : NatrI, Js

φ; Φ; Γ $E
L sptq : NatrK,Hs

S

φ; Φ |ùE K ě 0

φ; Φ |ùE I ď n

φ; Φ |ùE n ď J
φ; Φ $E Γ ó

φ; Φ; Γ $E
K n : NatrI, Js

N

φ; Φ $E NatrI ´ 1, J ´ 1s Ď NatrK,Hs
φ; Φ; Γ $E

L t : NatrI, Js

φ; Φ; Γ $E
L pptq : NatrK,Hs

P

φ; Φ; Γ $E
K t : NatrI, Js

φ; Φ, I ď 0;∆ $E
H u : σ

φ; Φ, J ě 1;∆ $E
H v : σ

φ; Φ $E Σ Ď Γ Z ∆
φ; Φ |ùE L ě K ` H

φ; Φ;Σ $E
L ifz t then u else v : σ

F

φ, b; Φ, b ă L; Γ, x : ra ă Is ¨ σ $E
K t : τ

φ; Φ $E τt0{bu Ď µ

φ, a, b; Φ, a ă I, b ă L $E τt
Ïb`1,a

b I ` b ` 1{bu Ď σ

φ; Φ $E Σ Ď
ř

băL Γ

φ; Φ |ùE
Ï

0,1
b I ď L,M

φ; Φ |ùE N ě M ´ 1 `
ř

băL K

φ; Φ;Σ $E
N fix x.t : µ

R

Figure 6: Typing Rules

appropriate way the type above. In other words, we are looking for a type derivation with
conclusion:

φ; Φ;x : ra ă Is ¨ NatrJs, f : rb ă Ks ¨ prc ă Hs ¨ NatrLs ⊸ NatrMsq $E

N t : NatrPs.

But how should we proceed? What we would like, at the end of the day, is being able to
describe how the value of t depends on the value of x, so we could look for a type derivation
in this form:

d;H;x : rIs ¨ Natrds, f : rb ă Ks ¨ prHs ¨ Natrd ´ 1s ⊸ Natr2pd ´ 1qsq $E
N t : Natr2ds,
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where ra ă Is (respectively, rc ă Hs) has been abbreviated into rIs (respectively, rHs) because
the bound variable a (respectively, c) does not appear free in the underlying type. But how
to give values to I, K, and H? One could be tempted to define I simply as 2, since there
are two occurrences of x in t. However, in view of the role played by x and f in dbl, I
should be rather defined taking into account the number of times x will be copied along the
computation of dbl on any input. A good guess could be, for example, d ` 1. Similarly, H
could be d. But how about K? How many times f is used? If d “ 0, then f is not called,
while if d ą 0, the function is called once. In other words, a guess for H could be gtpd,0q.
Here we use the infix notation ą for the operator gt just to improve readability. Let us
now try to build a derivation for

d;H;x : rd ` 1s ¨ Natrds, f : rd ą 0s ¨ prds ¨ Natrd ´ 1s ⊸ Natr2pd ´ 1qsq $E
0 t : Natr2ds.

Actually, it has the following shape:

π ⊲ d;H;x : r1s ¨ Natrds $E
0 x : Natrds

ρ ⊲ d; d ď 0;x : rds ¨ Natrds, f : rd ą 0s ¨ prds ¨ Natrd ´ 1s ⊸ Natr2pd ´ 1qsq $E
0 0 : Natr2ds

ν ⊲ d; d ą 0; x : rds ¨ Natrds, f : rd ą 0s ¨ prds ¨ Natrd ´ 1s ⊸ Natr2pd ´ 1qsq $E
0 spspfpppxqqqq : Natr2ds

d;H;x : rd ` 1s ¨ Natrds, f : rd ą 0s ¨ prds ¨ Natrd ´ 1s ⊸ Natr2pd ´ 1qsq $E
0 t : Natr2ds

where assignments to types in the form r0s ¨ σ have been omitted from contexts. Now, π
and ρ can be easily built, while ν requires a little effort: it is the type derivation

µ ⊲ d; d ą 0; f : rd ą 0s ¨ prds ¨ Natrd ´ 1s ⊸ Natr2pd ´ 1qsq $E
0 f : rds ¨ Natrd ´ 1s ⊸ Natr2pd ´ 1qs

ξ ⊲ d; d ą 0;x : r1s ¨ Natrds $E
0 ppxq : Natrd ´ 1s

d;d ą 0;x : rds ¨ Natrds, f : rd ą 0s ¨ prds ¨ Natrd ´ 1s ⊸ Natr2pd ´ 1qsq $E
0 fpppxqq : Natr2pd ´ 1qs

d; d ą 0;x : rds ¨ Natrds, f : rd ą 0s ¨ prds ¨ Natrd ´ 1s ⊸ Natr2pd ´ 1qsq $E
0 spfpppxqqq : Natr2d ´ 1s

d; d ą 0;x : rds ¨ Natrds, f : rd ą 0s ¨ prds ¨ Natrd ´ 1s ⊸ Natr2pd ´ 1qsq $E
0 spspfpppxqqqq : Natr2ds

where µ and ξ are themselves easily definable. Summing up, t can indeed be given the type
we wanted it to have. As a consequence, we can say that

d;H; f : rd ą 0s ¨ prds ¨ Natrd ´ 1s ⊸ Natr2pd ´ 1qsq $E
0
λx.t : rd ` 1s ¨ Natrds ⊸ Natr2ds.

However, we have only solved half of the problem, since the last step (namely typing the
fixpoint) is definitely the most complicated. In particular, the rule R requires an index
variable b which somehow ranges over all recursive calls. A different but related type can
be given to λx.t, namely

a, b; b ă a ` 1; f : ra ą bs ¨ pra ´ bs ¨ Natra ´ b ´ 1s ⊸ Natr2pa ´ b ´ 1qsq
$E

0
λx.t : ra ´ b ` 1s ¨ Natra ´ bs ⊸ Natr2pa ´ bqs.

By the way, this does not require rebuilding the entire type derivation (see the properties
in the forthcoming Section 3.4). Let us now check whether the judgement above can be the
premise of the rule R. Following the notation in the typing rule R we can stipulate that:

I ” a ą b;

J ” a;

K ” 0;

L ” a ` 1;
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and

σ ” ra ´ bs ¨ Natra ´ b ´ 1s ⊸ Natr2pa ´ b ´ 1qs;

τ ” ra ´ b ` 1s ¨ Natra ´ bs ⊸ Natr2pa ´ bqs;

µ ” τt0{bu ” ra ` 1s ¨ Natras ⊸ Natr2as;

Γ ” Σ ” H.

We can then conclude that, since a ă pa ą bq implies a “ 0:

a;H |ù
0,1
ï

b

I “ a ` 1 “ J;

a, b; a ă pa ą bq |ù
b`1,a
ï

b

I “ 0;

a;H |ù τt
b`1,a
ï

b

I ` b ` 1{bu “ τtb ` 1{bu “ σ;

and, ultimately, that a;H;H $E
a dbl : µ.

3.4. Properties. This section is mainly concerned with Subject Reduction. Subject Re-
duction will only be proved for closed terms, since the language is endowed with a weak
notion of reduction and, as a consequence, reduction cannot happen in the scope of lambda
abstractions. The system dℓPCF enjoys some nice properties that are both necessary in-
termediate steps towards proving subject reduction and essential ingredients for proving
soundness and relative completeness. These properties permit to manipulate judgements
being sure that derivability is preserved.

First of all, the constraints Φ in a typing judgement can be made stronger without
altering the rest:

Lemma 3.4 (Constraint Strenghtening). Let φ; Φ; Γ $I t : σ and φ; Ψ |ùE Φ. Then,
φ; Ψ; Γ $I t : σ.

Proof. It follows easily by definition of φ; Ψ |ùE Φ.

Note that a sort of strengthening also holds for weights.

Lemma 3.5 (Weight Monotonicity). Let φ; Φ; Γ $I t : σ and φ; Φ |ùE I ď J. Then,
φ; Φ; Γ $J t : σ.

Proof. It follows easily by induction on the derivation proving φ; Φ; Γ $I t : σ. In particular,
observe that all rules altering the weight are designed in such a way as to allow the latter
to be lifted up.

Whenever a parameter in a subtyping judgment needs to be specialized, we can simply
substitute it with an index term.

Lemma 3.6 (Index Term Substitution Respects Subtyping). Let φ, a; Φ $ θ Ď γ and I be
an index term. Then, φ; ΦtI{au,Ψ $ θtI{au Ď γtI{au whenever φ; Ψ |ù I ó.

Proof. Easy.
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Subtyping can be freely applied both to the context Γ (contravariantly) and to the type
σ (covariantly), leaving the rest of the judgement unchanged:

Lemma 3.7 (Subtyping). Suppose φ; Φ;x1 : A1, . . . , xn : An $I t : σ and φ; Φ $ Bi Ď Ai

for 1 ď i ď n and φ; Φ $ σ Ď τ . Then, φ; Φ;x1 : B1, . . . , xn : Bn $I t : τ .

Proof. By induction on the structure of a derivation π for

φ; Φ;x1 : A1, . . . , xn : An $I t : σ.

Let us examine some interesting cases:
‚ If π is just

φ; Φ |ùE 0 ď J φ; Φ |ùE 1 ď I
φ; Φ $E µt0{au Ď σ

φ; Φ $E pra ă Is ¨ µq ó φ; Φ $E Γ ó

φ; Φ; Γ, x : ra ă Is ¨ µ $E
J x : σ

V

then, by assumption we have that B ” ra ă Ks ¨ γ and φ; Φ $ ra ă Ks ¨ γ Ď ra ă Is ¨ µ.
Moreover, by assumption we have φ; Φ $ σ Ď τ . From φ; Φ $ ra ă Ks ¨ γ Ď ra ă Is ¨ µ,
it follows that φ; Φ, a ă K $ γ Ď µ and that φ; Φ |ù I ď K. By Lemma 3.6, φ; Φ $
γt0{au Ď µt0{au, which by transitivity of Ď implies φ; Φ $E γt0{au Ď τ . Now, if ∆ is
a context such that (with a slight abuse of notation) φ; Φ $E ∆ Ď Γ, then φ; Φ $E ∆ ó.
Summing up,

φ; Φ |ùE 0 ď J φ; Φ |ùE 1 ď K
φ; Φ $E γt0{au Ď τ

φ; Φ $E pra ă Ks ¨ γq ó φ; Φ $E ∆ ó

φ; Φ;∆, x : ra ă Ks ¨ γ $E
J x : τ

V

‚ If π is
φ; Φ; Γ $E

J t : ra ă Is ¨ µ ⊸ σ

φ, a; Φ, a ă I;∆ $E
K u : µ

φ; Φ $E Σ Ď Γ Z
ř

aăI∆
φ; Φ |ùE H ě J ` I `

ř

aăIK

φ; Φ;Σ $E
H tu : σ

A

but we have φ; Φ $E σ Ď τ and φ; Φ $E Θ Ď Σ, then by induction hypothesis we
can easily conclude that φ; Φ; Γ $E

J t : ra ă Is ¨ µ ⊸ τ and, by transitivity of Ď, that
φ; Φ $E Θ Ď Γ Z

ř

aăI∆. As a consequence:

φ; Φ; Γ $E
J t : ra ă Is ¨ µ ⊸ τ

φ, a; Φ, a ă I;∆ $E
K u : µ

φ; Φ $E Θ Ď Γ Z
ř

aăI∆
φ; Φ |ùE H ě J ` I `

ř

aăIK

φ; Φ;Θ $E
H tu : τ

A

The other cases are similar.

Weakening holds for term contexts:

Lemma 3.8 (Context Weakening). Let φ; Φ; Γ $I t : σ. Then, φ; Φ; Γ,∆ $I t : σ whenever
φ; Φ $ ∆ ó.

Proof. Easy, by induction on the derivation proving φ; Φ; Γ $I t : σ.
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Another useful transformation on type derivations is substitution of an index variable
for an index term:

Lemma 3.9 (Index Term Substitution). Let φ, a; Φ; Γ $I t : σ. Then we have

φ; ΦtJ{au,Ψ;ΓtJ{au $ItJ{au t : σtJ{au

for every J such that φ,Ψ |ùE J ó.

Proof. By induction on the structure of a derivation π for

φ, a; Φ; Γ $I t : σ.

Let us examine some cases:
‚ If π is just

φ, a; Φ |ùE 0 ď I φ, a; Φ |ùE 1 ď K
φ, a; Φ $E µt0{bu Ď σ

φ, a; Φ $E prb ă Ks ¨ µq ó φ, a; Φ $E Γ ó

φ, a; Φ; Γ, x : rb ă Ks ¨ µ $E
I x : σ

V

then of course we have that φ; ΦtJ{au,Ψ |ùE 0 ď ItJ{au and that φ; ΦtJ{au,Ψ |ùE

1 ď KtJ{au. By Lemma 3.6, one obtains φ; ΦtJ{au,Ψ $E pµt0{buqtJ{au Ď σtJ{au.
Please observe that b can be assumed not to occur free in J, and as a consequence
pµt0{buqtJ{au ” pµtJ{auqt0{bu. Similarly, φ; ΦtJ{au,Ψ $E pprb ă Ks ¨ µqtJ{auq ó and
φ; ΦtJ{au,Ψ $E ΓtJ{au ó. Again, prb ă Ks¨µqtJ{au is syntactically identical to rb ă KtJ{aus¨
µtJ{au. As a consequence:

φ; ΦtJ{au,Ψ |ùE 0 ď ItJ{au φ; ΦtJ{au,Ψ |ùE 1 ď KtJ{au
φ; ΦtJ{au,Ψ $E pµtJ{auqt0{bu Ď σtJ{au

φ; ΦtJ{au,Ψ $E prb ă KtJ{aus ¨ µtJ{auq ó φ; ΦtJ{au,Ψ $E pΓtJ{auq ó

φ; ΦtJ{au,Ψ;ΓtJ{au, x : rb ă KtJ{aus ¨ µtJ{au $E

ItJ{au x : σtJ{au
V

‚ If π is
φ, a; Φ; Γ, x : rb ă Ks ¨ µ $I t : τ

φ, a; Φ; Γ $I λx.t : rb ă Ks ¨ µ ⊸ τ
L

then, by the induction hypothesis we get

φ; ΦtJ{au,Ψ;ΓtJ{au, x : rb ă KtJ{aus ¨ µtJ{au $ItJ{au t : τtJ{au.

As a consequence, we can conclude by

φ; ΦtJ{au,Ψ;ΓtJ{au, x : rb ă KtJ{aus ¨ µtJ{au $ItJ{au t : τtJ{au

φ; ΦtJ{au,Ψ;ΓtJ{au $ItJ{au λx.t : prb ă Ks ¨ µ ⊸ τqtJ{au
L

since rb ă KtJ{aus ¨ µtJ{au ⊸ τtJ{au ” prb ă Ks ¨ µ ⊸ τqtJ{au.
The other cases are similar.

A particularly useful instance of Lemma 3.9 is the following:

Lemma 3.10 (Instantiation). Let φ, a; Φ, a ă I $K t : σ. If φ; Ψ |ùE J ă I, then,
φ; ΦtJ{au,Ψ $KtJ{au t : σtJ{au.

Proof. By Lemma 3.9 and Lemma 3.7.



LINEAR DEPENDENT TYPES AND RELATIVE COMPLETENESS 17

Moreover a Generation Lemma will be useful.

Lemma 3.11 (Generation).
1. Let φ; Φ; Γ $K λx.t : σ, then σ “ ra ă Is ¨ τ ⊸ µ and φ; Φ; Γ, x : ra ă Is ¨ τ $K t : µ;
2. Let φ; Φ; Γ $K 0 : NatrI, Js, then φ; Φ |ùE I “ 0;
3. Let φ; Φ; Γ $K n ` 1 : NatrI, Js, then φ; Φ |ùE J ě 1.

Proof. All the points are immediate by an inspection of the rules.

We are now ready to embark on a proof of Subject Reduction. As usual, the first step
is a Substitution Lemma:

Lemma 3.12 (Term Substitution). Let φ, a; Φ, a ă I;H $J t : σ and φ; Φ;x : ra ă Is ¨
σ,∆ $K u : τ . Then we have φ; Φ;∆ $H utt{xu : τ for some H such that φ; Φ |ùE H ď
K ` I `

ř

aăI J.

Proof. As usual, this is an induction on the structure of a type derivation for u. All relevant
inductive cases require some manipulation of the type derivation for t. The previous lemmas
give exactly the right degree of “malleability”. Let π be a derivation for

φ; Φ;x : ra ă Is ¨ σ,∆ $K u : τ.

Let us examine some interesting cases, dependently on the shape of π:
‚ Consider π to be just

φ; Φ |ùE 0 ď K φ; Φ |ùE 1 ď I
φ; Φ $E σt0{au Ď τ

φ; Φ $E pra ă Is ¨ σq ó φ; Φ $E ∆ ó

φ; Φ;∆, x : ra ă Is ¨ σ $K x : τ
V

Since φ;H |ù 0 ó, applying Lemma 3.10 we have

φ; Φt0{au;H $Jt0{au t : σt0{au

and since Φ does not contain free occurrences of a we obtain:

φ; Φ;H $Jt0{au t : σt0{au.

Now, by applying Lemma 3.8, Lemma 3.5 and Lemma 3.7 we can conclude

φ; Φ;∆ $K`I`
ř

aăI
J t : τ

since clearly

φ; Φ |ù Jt0{au ď K ` I `
ÿ

aăI

J.

‚ Let us consider the case π ends by an instance of the A rule. In particular, without loss
of generality we can consider a situation as the following:

φ; Φ;x : ra ă Ks ¨ γ $L v : rb ă Ns ¨ µ ⊸ τ

φ, b; Φ, b ă N;x : ra ă Hs ¨ pγtK ` a `
ř

dăb Htd{bu{auq $M u : µ
φ; Φ $ ra ă Is ¨ σ Ď ra ă K `

ř

băNHs ¨ γ
φ; Φ |ù Q ě L ` N `

ř

băNM

φ; Φ;x : ra ă Is ¨ σ $Q vu : τ
A

By definition of subtyping, φ; Φ, a ă I $ σ Ď γ, and φ; Φ |ùE K ` P ď I, where
P ”

ř

băN H. So, by Lemma 3.4, we have

φ; Φ, a ă K ` P;H $J t : σ
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and by Lemma 3.7 we have

φ; Φ, a ă K ` P;H $J t : γ

(since φ; Φ, a ă K ` P $ σ Ď γ). Applying again Lemma 3.4 we obtain

φ; Φ, a ă K;H $J t : γ

and by induction hypothesis we get

φ; Φ;H $T vtt{xu : rb ă Ns ¨ µ ⊸ τ

with φ; Φ |ùE T ď L ` K `
ř

aăK J. We observe that

φ, b, c; Φ, a ď K ` c `
ÿ

dăb

Htd{bu, b ă N, c ă H |ùE a ă K ` P.

By Lemma 3.4 we get

φ, b, c; Φ, a ď K ` c `
ÿ

dăb

Htd{bu, b ă N, c ă H;H $J t : γ

and by Lemma 3.9 and Lemma 3.7 we obtain

φ; Φ, a ă H, b ă N;H $R t : γtK ` a `
ÿ

dăb

Htd{bu{au,

where R ” JtK ` a `
ř

dăb Htd{bu{au. By induction hypothesis, we get

φ; Φ, b ă N;H $S utt{xu : µ

with φ; Φ |ùE S ď M ` H `
ř

aăH R. And we can conclude as follows:

φ; Φ;H $T vtt{xu : rb ă Ns ¨ µ ⊸ τ

φ; Φ;H $S utt{xu : µ

φ; Φ;H $T`N`
ř

băJ
S vtt{xuutt{xu : τ

A

Please observe that:

φ; Φ |ùE T ` N `
ÿ

băJ

S ď pL ` K `
ÿ

aăK

Jq ` N `
ÿ

băN

pM ` H `
ÿ

aăH

Rq

ď pL ` N `
ÿ

băN

Mq ` pK `
ÿ

băN

Hq ` p
ÿ

aăK

J `
ÿ

băN

ÿ

aăH

Rq

ď pL ` N `
ÿ

băN

Mq ` pK `
ÿ

băN

Hq `
ÿ

aăK`
ř

băN
H

J

ď Q ` I `
ÿ

aăI

J.

The other cases are similar.
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Theorem 3.13 (Subject Reduction). Let φ; Φ;H $I t : σ and t Ñ u. Then, φ; Φ;H $J u :
σ, where φ; Φ |ù J ď I.

Proof. By induction on the structure of a derivation π for φ; Φ;H $I t : σ Let us examine
the distinct cases:
‚ Suppose π is

φ; Φ;H $K λx.t : ra ă Hs ¨ τ ⊸ σ

φ; Φ, a ă H;H $L u : τ
φ; Φ |ù K ` H `

ř

aăH L ď I

φ; Φ;H $I pλx.tqu : σ
A

By Lemma 3.11, Point 1, we have φ; Φ;x : ra ă Hs ¨ τ $K t : σ. Then by Lemma 3.12 we
can conclude:

φ; Φ;H $J ttu{xu : σ

for φ; Φ |ùE J ď K ` H `
ř

aăH L ď I.
‚ Suppose π is

φ; Φ;H $K 0 : NatrK,Hs
φ; Φ,H ď 0;H $L v : σ
φ; Φ,K ě 1;H $L w : σ

φ; Φ |ù K ` L ď I

φ; Φ;H $I ifz 0 then v else w : σ
F

By Lemma 3.11, Point 2, we have φ; Φ |ùE H ď 0. So, by Lemma 3.4 we can conclude
φ; Φ;H $L v : σ.

‚ Suppose π is
φ; Φ;H $K n ` 1 : NatrK,Hs

φ; Φ,H ď 0;H $L v : σ
φ; Φ,K ě 1;H $L w : σ

φ; Φ |ù K ` L ď I

φ; Φ;H $I ifz n ` 1 then v else w : σ
F

By Lemma 3.11, Point 3, we have φ; Φ |ùE K ě 1. So, by Lemma 3.4 we have φ; Φ;H $L

w : σ.
‚ Suppose π is

φ; Φ $
Ï

0,1
b J ď L,P

φ, b; Φ, b ă L;x : ra ă Js ¨ µ $K t : τ
φ; Φ $ τt0{bu Ď σ

φ, a, b; Φ, a ă J, b ă L $ τt
Ïb`1,a

b J ` b ` 1{bu Ď µ

φ,Φ |ù P ´ 1 `
ř

băLK ď I

φ; Φ;H $I fix x.t : σ
R

The index term J describes a tree TJ (in the sense of forest cardinalities, see Section 3.1)
which in turn represents the tree of recursive calls. TJ looks as follows:

¨

♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

⑥⑥
⑥⑥
⑥⑥
⑥⑥

❋❋
❋❋

❋❋
❋❋

❋

T
1
J T

2
J . . . T

Jt0{bu
J
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where T
i
J represents the tree of recursive calls triggered by the i-th call to x in t. We

first proceed by giving a type to t which somehow corresponds to the root of TJ. This
will be done by substituting b for 0 in the derivation we get as an hypothesis of π. Since
φ; Φ |ùE 0 ă L, by Lemma 3.10 we have

φ; Φ;x : ra ă Jt0{bus ¨ σt0{bu $Kt0{bu t : τt0{bu.

From the hypothesis φ; Φ $ τt0{bu Ď σ and by the Subtyping Lemma, we obtain

φ; Φ;x : ra ă Jt0{bus ¨ σt0{bu $Kt0{bu t : σ.

Our objective now is building one type derivation for fix x.t that somehow reflect the

Jt0{bu subtrees T1
J, . . . ,T

Jt0{bu
J . Speaking more formally, we want to prove that:

φ; Φ, a ă Jt0{bu $R fix x.t : σt0{bu (3.5)

where
φ; Φ |ù Kt0{bu ` Jt0{bu `

ÿ

aăJt0{bu

R ď I.

That would immediately lead to the thesis. To reach (3.5), we proceed by first defining
two index terms with a quite intuitive informal semantics:
‚ First of all, we define M to be

Ï

0,1
b Jtb ` 1 `

Ï

1,c
b J{bu. Observe that c occurs free

in M; indeed, M counts the number of nodes in the tree T
c
J.

‚ Another useful index term is N, which is defined to be 1` b`
ř

căaM. N is designed
as to return the label of a node in T

a
J given a and the offset b. In other words, TJtN{bu

is a recursion tree isomorphic to T
a
J.

Now, if we substitute b for N in one of the premises of π, we get

φ, a, b; Φ, a ă Jt0{bu, b ă Mta{cu;x : rd ă JtN{bus ¨ µtd{autN{bu

$KtN{bu t : τtN{bu. (3.6)

Since by Lemma 3.2 we have
ř

căeM »
Ï

1,e
b J we know that

0,1
ï

b

JtN{bu »
0,1
ï

b

Jt1 ` b `
ÿ

căa

M{bu »
0,1
ï

b

Jt1 ` b `
1,a
ï

b

J{bu » Mta{cu. (3.7)

Now, consider the problem of determining the index (in TJ) of the pd` 1q-th children of
a node of index b inside T

a
J. There are two equivalent ways to compute it:

‚ either you start from N, but then you substitute b by b ` 1 `
Ïb`1,d

b JtN{bu;

‚ or you simply consider N ` 1 `
ÏN`1,d

b J.
In the first case, you compute the desired index by merely instantiating N appropriately,
while in the second case you use N without altering it. The observation above can be
formalized as follows:

φ, a, b, d; Φ, a ă Jt0{bu, b ă Mta{cu, d ă JtN{bu $

τtN{butb ` 1 `
b`1,d
ï

b

JtN{bu{bu » τtN ` 1 `
N`1,d
ï

b

J{bu.
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By Lemma 3.10, we also obtain:

φ, a, b, d; Φ, a ă Jt0{bu, b ă Mta{cu, d ă JtN{bu $

τtN{butb ` 1 `
b`1,d
ï

b

JtN{bu{bu Ď σtd{autN{bu. (3.8)

Now, (3.6), (3.7) and (3.8) can be put together by way of rule R, and one then conclude
that

φ; Φ, a ă Jt0{bu;H $Mta{cu´1`
ř

băMta{cu KtN{bu fix x.t : τtNt0{bu{bu.

But instantiating one of the hypothesis’ of π, we obtain

φ, a; Φ, a ă Jt0{bu $ τt
1,a
ï

b

J ` 1{bu Ď µt0{bu.

By Lemma 3.2, we can prove that
Ï

1,a
b J ` 1 “ Nt0{bu. Indeed, this is quite intuitive:

the index of the root of Ta
J can be computed in two equivalent ways through J or through

N. As a consequence,

φ; Φ, a ă Jt0{bu;H $R fix x.t : σt0{bu,

where R ” Mta{cu ´ 1 `
ř

băMta{cu KtN{bu. But we are done, since

φ; Φ |ù Kt0{bu ` Jt0{bu `
ÿ

aăJt0{bu

R

” Kt0{bu ` Jt0{bu `
ÿ

aăJt0{bu

pMta{cu ´ 1 `
ÿ

băMta{cu

KtN{buq

“ pJt0{bu `
ÿ

aăJt0{bu

pMta{cu ´ 1qq ` Kt0{bu `
ÿ

aăJt0{bu

ÿ

băMta{cu

KtN{bu

ď
1,Jt0{bu

ï

b

J ` Kt0{bu `
ÿ

aăJt0{bu

ÿ

băMta{cu

KtN{bu

ď P ´ 1 `
ÿ

băL

K ď I.

This concludes the proof.

4. Intensional Soundness

Subject Reduction already implies an extensional notion of soundness for programs: if a
term t can be typed with $K t : NatrI, Js, then its normal form (if any) is a natural number
between JIK and JJK. However, Subject Reduction does not tell us whether the evaluation of
t terminates, and in how much time. Has K anything to do with the complexity of evaluating
t? The only information that can be extracted from the Subject Reduction Theorem is that
K does not increase along reduction.

In this section, Intensional Soundness (Theorem 4.6 below) for the type system dℓPCF

will be proved. A Krivine’s Machine KPCF for PCF programs will be first defined in Section
4.1. Given a program (i.e. a closed term of base type), the machine KPCF either evaluates it
to normal form or diverges. A formal connection between the machine KPCF and the type
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Term Environment Stack Term Environment Stack

tu ρ ξ Ñ t ρ pu, ρq ¨ ξ
λx.t ρ c ¨ ξ Ñ t c ¨ ρ ξ

x pt0, ρ0q ¨ ¨ ¨ ptn, ρnq ξ Ñ tx ρx ξ

ifz t then u else v ρ ξ Ñ t ρ pu, v, ρq ¨ ξ
fix x.t ρ ξ Ñ t pfix x.t, ρq ¨ ρ ξ

n ρ s ¨ ξ Ñ n ` 1 ρ ξ

n ρ p ¨ ξ Ñ n ´ 1 ρ ξ

0 ρ pt, u, µq ¨ ξ Ñ t µ ξ

n ` 1 ρ pt, u, µq ¨ ξ Ñ u µ ξ

sptq ρ ξ Ñ t ρ s ¨ ξ
pptq ρ ξ Ñ t ρ p ¨ ξ

Figure 7: The KPCF Transition Steps.

system dℓPCF will be established by means of a weighted typability notion for machine
configurations, introduced in Section 4.2. This notion is the fundamental ingredient to keep
track of the number of machine steps.

4.1. The KPCF Machine. The Krivine’s Machine has been introduced as a natural device
to evaluate pure lambda-terms under a weak-head notion of reduction [27]. Here, the stan-
dard Krivine’s Machine is extended to a machine KPCF which handles not only abstractions
and applications, but also constants, conditionals and fixpoints.

The configurations of the machine KPCF, ranged over by C,D, . . ., are triples C “ pt, ρ, ξq
where ρ and ξ are two additional constructions: ρ is an environment, that is a (possibly
empty) finite sequence of closures; while ξ is a (possibly empty) stack of contexts. Stacks
are ranged over by ξ, θ, . . .. A closure, as usual, is a pair c “ pt, ρq where t is a term and
ρ is an environment. A context is either a closure, a term s, a term p, or a triple pu, v, ρq
where u, v are terms and ρ is an environment.

The transition steps between configurations of the KPCF machine are given in Figure
7. The transition rules require some comments. First of all, a näıve management of name
variables is used. A more effective description however, could be given by using standard
de Bruijn indexes. Note that the triple pu, v, ρq is used as a context for the conditional
construction; moreover, in a recursion step, a copy of the recursive term is put in a closure
on the top of the current environment. As usual, the symbol Ñ˚ denotes the reflexive and
transitive closure of the transition relation Ñ. The relation Ñ˚ implements weak-head
reduction. Weak-head normal form and the normal form coincide for programs. So the
machine KPCF is a correct device to evaluate programs. For this reason, the notation t ó n

can be used as a shorthand for pt, ε, εq Ñ˚ pn, ρ, εq. Moreover, notations like C ón could
also be used to stress that C reduces to an irreducible configuration in exactly n steps. The
proof of the formal correctness of the abstract machine is outside the scope of this paper,
however it should be clear that it could be obtained as a simple extension of the original
one [27].

Intensional Soundness will be proved by studying how the weight I of any program t

evolves during the evaluation of t by KPCF. This is possible because every reduction step
in t is decomposed into a number of transitions in KPCF, and this decomposition highlights
when, precisely, the weight changes. The same would be more difficult when performing
plain reduction on terms. Proving Intensional Soundness this way requires, however, to keep
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Closures

φ; Φ;x1 : ra ă I1s ¨ τ1, . . . , xn : ra ă Ins ¨ τn $K t : σ
φ, a; Φ, a ă Ii $E

Hi
ci : τi

φ; Φ |ù J ě K ` I1 ` . . . ` In `
ř

aăI1
H1 ` . . . `

ř

aăIn
Hn.

φ; Φ $E
J pt, c1 ¨ ¨ ¨ cnq : σ

Stacks

φ; Φ |ùE J ě 0

φ; Φ $E σ Ď τ

φ; Φ $E
J ε : pσ, τq

φ; Φ, a ă I $E
K c : γ

φ; Φ $E
H θ : pµ, τq

φ; Φ |ùE J ě H `
ř

aăIK ` I

φ; Φ $E
J c ¨ θ : pra ă Is ¨ γ ⊸ µ, τq

φ; Φ $E
J θ : pNatrK,Hs, τq

φ; Φ $E NatrI ` 1,L ` 1s Ď NatrK,Hs

φ; Φ $E
J s ¨ θ : pNatrI,Ls, τq

φ; Φ $E
J θ : pNatrK,Hs, τq

φ; Φ $E NatrI ´ 1,L ´ 1s Ď NatrK,Hs

φ; Φ $E
J p ¨ θ : pNatrI,Ls, τq

φ; Φ, I ď 0 $E
K pt, ρq : µ

φ; Φ,L ě 1 $E
K pu, ρq : µ

φ; Φ $E
H θ : pµ, τq

φ; Φ |ùE J ě K ` H

φ; Φ $E
J pt, u, ρq ¨ θ : pNatrI,Ls, τq

Configurations

φ; Φ $E
K pt, ρq : σ φ; Φ $E

J ξ : pσ, τq φ; Φ |ùE I ě K ` J

φ; Φ $E
I pt, ρ, ξq : τ

Figure 8: Lifting dℓPCF Typing to Closures, Stacks and Configurations.

track of the types and weights of all objects in a machine configuration. In other words, the
type system should be somehow generalized to an assignment system on configurations.

4.2. Types and Weights for Configurations. Assigning types and weights to configura-
tions amounts to somehow keeping track of the nature of all terms appearing in environments
and stacks. This is captured by the rules in Figure 8. A formal connection between typed
terms and typed configurations could be established as expected, and such connection could
be shown to be preserved by reduction. However, the following lemma is everything we need
in the sequel:

Lemma 4.1. Let t P P. Then, φ; Φ;H $E
I t : σ if and only if φ; Φ $E

I pt, ε, εq : σ.

Analogous notions of typability for closures, stacks and configurations can be given
following the simpler type discipline of PCF proper. They can be obtained by simplifying
those for dℓPCF, see Figure 9. If C Ñ D and π is a derivation of $ C : σ, then a derivation
ρ of $ D : σ can be easily obtained by manipulating π, and we write π Ñ ρ.
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Closures
x1 : τ1, . . . , xn : τn $ t : σ $ ci : τi

$ pt, c1 ¨ ¨ ¨ cnq : σ

Stacks

ε : pσ, σq

$ c : γ $ θ : pµ, τq

$ c ¨ θ : pγ Ñ µ, τq

$ θ : pNat, τq

$ s ¨ θ : pNat, τq

$ θ : pNat, τq

$ p ¨ θ : pNat, τq

$ pt, ρq : µ $ pu, ρq : µ $ θ : pµ, τq

$ pt, u, ρq ¨ θ : pNat, τq

Configurations

$ pt, ρq : σ $ ξ : pσ, τq

$ pt, ρ, ξq : τ

Figure 9: Extending PCF Typing to Closures, Stacks and Configurations.

4.3. Measure Decreasing and Intensional Soundness. An important property of Kriv-
ine’s Machine says that during the evaluation of programs only subterms of the initial
program are recorded in the environment. This justifies the notion of size for configura-
tions, denoted |C|, that will be used in the sequel. This is defined as |pt, ρ, ξq| “ |t| ` |ξ|.
The size |ξ| of a stack ξ is defined as the sum of sizes of its elements, where |pt, ρq| “ |t|,
|s| “ |p| “ 1, and |pt, u, ρq| “ |t| ` |u|. Moreover, another consequence of the same property
is the following lemma.

Lemma 4.2. Let t P P and let C “ pt, ε, εq. Then, for each D “ pu, ρ, ξq such that C Ñ˚ D

and for each v occurring in ρ or ξ, |v| ď |t|.

Proof. Easy, by induction on the length of the reduction C Ñ˚ D. In fact, a strengthening
of the statement is needed for induction to work. In particular, not only |v| ď |t| for every
v in ρ and ξ, but also for the non-head subterms of u.

Intensional Soundness (Theorem 4.6) expresses the fact that for a program t P P such
that H;H;H $E

I t : NatrJ,Ks, the number JIKEρ is a good estimate of the number of steps

needed to evaluate t. Moreover, thanks to Subject Reduction, the numbers JJKEρ and JKKEρ
give an upper and a lower bound, respectively, to the result of such an evaluation. This is
proved by showing that during reduction a measure, expressed as the combination of the
weight and the size of a configuration, decreases. In turn, this requires extending some of
the properties in Section 3.4 from terms to configurations. As an example, substitution
holds on configurations, too:

Lemma 4.3. If φ, a; Φ $E
H pt, ρq : σ, then φ; ΦtJ{au,Ψ $E

HtJ{au pt, ρq : σtJ{au for every J

such that φ,Ψ |ùE J ó.

Proof. By induction on the proof of φ, a; Φ $E
H pt, ρq : σ, using Lemma 3.9.



LINEAR DEPENDENT TYPES AND RELATIVE COMPLETENESS 25

Moreover, type derivations for closures can be “split”, exactly as terms:

Lemma 4.4. Let φ; Φ $E ra ă Is ¨ σ Ď ra ă J ` Ks ¨ τ and let φ, a; Φ, a ă I $E
H pt, ρq : σ

Then, both pφ, a; Φ, a ă Jq $E
H pt, ρq : τ and φ, a; Φ, a ă K $E

HtJ`a{au pt, ρq : τtJ ` a{au.

The key step towards Intensional Soundness is the following:

Lemma 4.5 (Weighted Subject Reduction). Suppose that pt, ε, εq Ñ˚ D Ñ E and let D be
such that φ; Φ $E

I D : σ. Then φ; Φ $E
J E : σ, and one of the following holds:

1. φ; Φ |ù I “ J but |D| ą |E|;
2. φ; Φ |ù I ą J and |E| ă |D| ` |t|.

Proof. The proof is by cases on the reduction D Ñ E. Condition 1 can be shown to
apply to all the cases but the one in which D “ px, ρ, ξq. In that one, weight decreasing
relies on the side condition in the typing rule for variables, while the bound on the size
increasing comes from Lemma 4.2. We just present some cases, the others can be obtained
analogously:
‚ Consider the case D ” p ifz w then u else v, ρ, ξq. We want to prove Point 1, namely
that E ” pt, ρ, pu, v, ρq ¨ ξq is such that φ; Φ $J E : σ where φ; Φ |ù I “ J and |D| ą |E|.
The latter is immediate:

|D| “ 1 ` |w| ` |u| ` |v| ` |ξ| ą |w| ` p|u| ` |v|q ` |ξ|

“ |w| ` |pu, v, ρq ¨ ξ| “ |E|.

Let us consider the former. By inspecting a proof of φ; Φ $E
I D : σ, we can easily derive

the following judgments (where ρ ” c1, . . . , cn):

φ; Φ; x1 : ra ă Kw
1 s ¨ µ1, . . . , xn : ra ă Kw

n s ¨ µn $Iw w : NatrH,Ls; (4.1)

φ; Φ,L ď 0;x1 : ra ă Kuv
1 s ¨ µ1tKw

1 ` a{au, . . . , xn : ra ă Kuv
n s ¨ µntKw

n ` a{au $Iuv u : τ ; (4.2)

φ; Φ,H ě 1;x1 : ra ă Kuv
1 s ¨ µ1tKw

1 ` a{au, . . . , xn : ra ă Kuv
n s ¨ µntKw

n ` a{au $Iuv v : τ ; (4.3)

φ, a; Φ, a ă Ki $Ici
ci : µi; (4.4)

φ; Φ $Iξ
ξ : pτ, σq. (4.5)

where

φ; Φ $ ra ă Kis ¨ τi Ď ra ă Kw
i s ¨ µi Z ra ă Kuv

i s ¨ µitK
w
i ` a{au; (4.6)

φ; Φ |ù I ě Iw ` Iuv ` K1 ` . . . ` Kn `
ÿ

aăK1

Ic1 ` . . . `
ÿ

aăKn

Icn ` Iξ. (4.7)

By Lemma 4.4 applied to (4.4) and exploiting (4.6), we obtain that

φ, a; Φ, a ă Kw
i $Ici

ci : µi;

φ, a; Φ, a ă Kuv
i $IcitKw`a{au ci : µitK

w ` a{au.

By way of (4.1), (4.2) and (4.3), we obtain

φ; Φ,L ď 0 $Ipw,ρq
pw, ρq : NatrH,Ls;

φ; Φ,H ě 1 $Ipuv,ρq
pu, ρq : τ ;

φ; Φ $Ipuv,ρq
pv, ρq : τ ;



26 U. DAL LAGO AND M. GABOARDI

where

Ipw,ρq ” Iw ` Kw
1 ` . . . ` Kw

n `
ÿ

aăKw
1

Ic1 ` . . . `
ÿ

aăKw
n

Icn ;

Ipuv,ρq ” Iuv ` Kuv
1 ` . . . ` Kuv

n `
ÿ

aăKuv
1

Ic1tKw
1 ` a{au

ÿ

aăKuv
n

IcntKw
n ` a{au.

So, by definition and by (4.5) we have that φ; Φ $Iuv`Iξ pu, v, ρq ¨ ξ : pNatrH,Ls, tq.
Thus, we can conclude that φ; Φ $I E : σ (since from (4.7), it easily follows that
φ; Φ |ù I ě Ipw,ρq ` Ipuv,ρq ` Iξ).

‚ Consider the case D ” pλx.u, ρ, c ¨ ξq. We want to prove Point 1, namely that E “
pu, c ¨ ρ, ξq is such that φ; Φ $J E : σ where φ; Φ |ù I “ J and |D| ą |E|. The latter is
immediate, so let us consider the former. By inspecting a proof of φ; Φ $E

I D : σ, we
can easily derive the following judgments (where ρ ” c1, . . . , cn), in particular using the
Generation Lemma:

φ; Φ;x1 : ra ă K1s ¨ µ1, . . . , xn : ra ă Kns ¨ µn, x : ra ă Hs ¨ γ $Iu u : τ ; (4.8)

φ, a; Φ, a ă Ki $Ici
ci : µi; (4.9)

φ, a; Φ, a ă H $Ic c : γ; (4.10)

φ; Φ $Iξ ξ : pτ, σq. (4.11)

Moreover:

φ; Φ $ I ě Iu ` K1 ` . . . ` Kn `
ÿ

aăK1

Ic1 ` . . . `
ÿ

aăKn

Icn ` H `
ÿ

aăH

Ic ` Iξ.

From (4.8), (4.9) and (4.10), we obtain φ; Φ;H $Ic¨ρ pu, c ¨ ρq : τ , where

Ic¨ρ ” Iu ` K1 ` . . . ` Kn `
ÿ

aăK1

Ic1 ` . . . `
ÿ

aăKn

Icn ` H `
ÿ

aăH

Ic.

This, together with (4.11) easily yields the thesis.
‚ Consider the case D ” pn, ρ, s ¨ ξq. Again, we want to prove Point 1, that is E “

pn ` 1, ρ, ξq is such that φ; Φ $J E : σ, where φ; Φ |ù I “ J and |D| ą |E|. The latter is
easy:

|D| “ |n| ` |s ¨ ξ| “ 2 ` |ξ| ` 1 ą 1 ` |ξ| “ |n ` 1| ` |ξ| “ |E|,

so we consider the former. By inspecting a proof of φ; Φ $E
I D : σ, we can easily

derive the following judgments (where ρ ” c1, . . . , cn) in particular using the Generation
Lemma:

φ; Φ;x1 : ra ă K1s ¨ µ1, . . . , xn : ra ă Kns ¨ µn $In n : NatrH,Ls; (4.12)

φ, a; Φ, a ă Ki $Ici
ci : µi; (4.13)

φ; Φ $Iξ ξ : pNatrM,Ns, σq. (4.14)

Moreover:

φ; Φ |ù I ě In ` K1 ` . . . ` Kn `
ÿ

aăK1

Ic1 ` . . . `
ÿ

aăKn

Icn ` Iξ; (4.15)

φ; Φ $ NatrH ` 1,L ` 1s Ď NatrM,Ns. (4.16)

From (4.12) and (4.16), we get

φ; Φ;x1 : ra ă K1s ¨ µ1, . . . , xn : ra ă Kns ¨ µn $In n ` 1 : NatrM,Ns.
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This, together with (4.13), allows us to reach φ; Φ $Ipn`1,ρq
pn ` 1, ρq : NatrM,Ns, where

Ipn`1,ρq ” In ` K1 ` . . . ` Kn `
ÿ

aăK1

Ic1 ` . . . `
ÿ

aăKn

Icn .

By (4.14), the thesis can be easily reached.
‚ Consider the case D “ pfix x.u, ρ, ξq. Yet another time, we want to prove Point 1,
that is E “ pu, pfix x.u, ρq ¨ ρ, ξq is such that φ; Φ $J E : σ, where φ; Φ |ù I “ J and
|D| ą |E|. The latter is easy, as usual:

|D| “ |fix x.u| ` |ξ| ą |u| ` |ξ| “ |E|,

so we consider the former. By inspecting a proof of φ; Φ $E
I D : σ, we can easily derive

the following judgments (where ρ ” c1, . . . , cn):

φ, b; Φ, b ă H;x1 : ra ă K1s ¨ µ1, . . . , xn : ra ă Kns ¨ µn, x : ra ă Ls ¨ γ $Iu u : τ ; (4.17)

φ, a; Φ, a ă Mi $Ici
ci : ηi; (4.18)

φ; Φ $Iξ ξ : pδ, σq. (4.19)

Moreover:

φ; Φ $ τt0{bu Ď δ;

φ, a, b; Φ, a ă L, b ă H $ τt
b`1,a
ï

b

L ` b ` 1{bu Ď γ;

φ; Φ $ ra ă Mis ¨ ηi Ď

ÿ

băH

ra ă Kis ¨ µi;

φ; Φ |ù
0,1
ï

b

L ď H,N;

φ; Φ |ù I ě N ´ 1 `
ÿ

băH

Iu ` M1 ` . . . ` Mn `
ÿ

aăM1

Ic1 ` . . . `
ÿ

aăMn

Icn ` Iξ.

By manipulations of the indices similar to the one used in the proof of Subject Reduction,
we can derive the following from (4.17), given the judgments above:

φ; Φ; Γ, x : ra ă Lt0{bus ¨ γt0{bu $Iut0{bu u : δ;

φ; Φ, a ă Lt0{bu;∆ $Pta{cu´1`
ř

băPta{cu IutR{bu fix x.u : γt0{bu.

In the equations above,

P ”
0,1
ï

b

Ltb ` 1 `
0,c
ï

b

L{bu;

R ” 1 ` b `
ÿ

căa

P;

and Γ,∆ can be chosen in such a way as to guarantee:

φ; Φ $x1 : ra ă M1s ¨ η1, . . . , xn : ra ă Mns ¨ ηn –
ÿ

aăLt0{bu

∆ Z Γ

Ď x1 :
ÿ

băH

ra ă K1s ¨ µ1, . . . , xn :
ÿ

băH

ra ă Kns ¨ µn.
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So we have that
φ; Φ $Ipu,pfix x.u,ρq¨ρq

pu, pfix x.u, ρq ¨ ρq : δ,

where

Ipu,pfix x.u,ρq¨ρq ” Iut0{bu ` Lt0{bu `
ÿ

aăLt0{bu

pPta{cu ´ 1 `
ÿ

băPta{cu

IutN{buq

` M1 ` . . . ` Mn `
ÿ

aăM1

Ic1 ` . . . `
ÿ

aăMn

Icn .

The value of Ipu,pfix x.u,ρq¨ρq can then be proved to be equal or smaller than

N ´ 1 `
ÿ

băH

Iu ` M1 ` . . . ` Mn `
ÿ

aăM1

Ic1 ` . . . `
ÿ

aăMn

Icn ,

under the hypotheses in φ. This immediately yields the thesis, given (4.19).
‚ Consider the case D “ pxm, ppt0, ρ0q, . . . , ptn, ρnqq, ξq. We want to prove Point 2, that is
E “ ptm, ρm, ξq is such that φ; Φ $J E : σ, where φ; Φ |ù I ą J and |E| ă |D| ` |t|. The
latter is immediate by Lemma 4.2, so we consider the former. By inspecting a proof of
φ; Φ $E

I D : σ, we can easily derive the following judgments

φ; Φ;x1 : ra ă K1s ¨ µ1, . . . , xn : ra ă Kns ¨ µn $Ixm xm : τ ; (4.20)

φ, a; Φ, a ă Ki $Ipti,ρiq
pti, ρiq : µi; (4.21)

φ; Φ $Iξ ξ : pτ, σq. (4.22)

Moreover:

φ; Φ |ù Km ě 1; (4.23)

φ; Φ $ µmt0{au Ď τ ; (4.24)

φ; Φ $ I ě Ixm ` K1 ` . . . ` Kn `
ÿ

aăK1

Ipt1,ρ1q ` . . . `
ÿ

aăKn

Iptn,ρnq ` Iξ. (4.25)

From (4.21) where i “ m, (4.23), and (4.24), one obtains that φ; Φ $Iptm,ρmqt0{au

ptm, ρmq : τ and, by (4.22), that

φ; Φ $Iptm,ρmqt0{au`Iξ E : σ.

But from (4.25) and (4.23) one easily infer that

φ; Φ |ù I ą Iptm,ρmqt0{au ` Iξ,

that is the thesis.
This concludes the proof.

It is worth noticing that if Φ is inconsistent, the inequality φ; Φ |ù I ą J in Lemma 4.5,
Point 2, does not necessary imply that weight strictly decreases. Indeed, Intensional Sound-
ness only holds in presence of a consistent set of constraints:

Theorem 4.6 (Intensional Soundness). Let $I t : NatrJ,Ks and t ón m. Then, n ď
|t| ¨ pJIK ` 1q.

Proof. By induction on n, making essential use of Lemma 4.5 and Lemma 4.2.
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Please observe that an easy consequence of Theorem 4.6 is intensional soundness for
functions. As an example, if a;H;H $I t : rb ă Js¨Natras ⊸ NatrK,Hs, then the complexity
of evaluating t n is at most p|t n|q ¨ pJItn{auK ` 1q. Observe, however, that |t n| does not
depend on n, since |n| “ 1.

5. Relative Completeness

This section is devoted to proving relative completeness for the type system dℓPCF. In fact,
two relative completeness theorems will be presented. The first one (Theorem 5.6) states
relative completeness for programs: for each PCF program t that evaluates to a numeral n
there is a type derivation in dℓPCF whose index terms capture both the number of reduction
steps and the value of n. The second one (Theorem 5.12) states relative completeness for
functions: for each PCF term t : Nat Ñ Nat computing a total function f in time expressed
by a function g there exists a type derivation in dℓPCF whose index terms capture both the
extensional behavior f and the intensional property embedded into g.

Relative completeness does not hold in general. Indeed, it holds only when the underly-
ing equational program E is universal, i.e. when it is sufficiently expressive as to encode all
total computable functions. A universal equational program is introduced in Section 5.1.

Relative completeness for programs will be proved using a weighted form of Subject
Expansion (Theorem 5.5) similar to the one holding in intersection type theories. This will
be proved in Section 5.2. The proof of relative completeness for functions needs a further
step: a uniformization result (Lemma 5.11) relying on the properties of the universal model.
This is the subject of Section 5.3.

5.1. Universal Equational Program. Since the class of equational programs is clearly
recursively enumerable, it can be put in one-to-one correspondence with natural numbers,
using a coding scheme x¨y à la Gödel. Such a coding, as usual, can be used to define a
universal equational program U that is able to simulate all equational programs (including
itself).

Let xE , fy be the natural number coding an equational program E and a function symbol
f among the ones defined in it. This can be easily computed from (a description of) E and
f. A signature ΣU containing just the symbol empty of arity 0 and the symbols pair and
eval of arity 2 (plus some auxiliary symbols) is sufficient to define the universal program
U . For each f of arity n, the equational program U satisfies

JevalpxE , fy, pairingnpx1, . . . , xnqqKUρ “ Jfpx1, . . . , xnqKEρ ,

where pairingnpt1, . . . , tnq is defined by induction on n:

pairing0 ” empty;

pairingn`1pt1, . . . , tn`1q ” pairppairingnpt1, . . . , tnq, tn`1q.

This way, U acts as an interpreter for any equational program. Such a universal program
U can be defined as a finite sequence of equations, similarly to what happens in the con-
struction of, e.g., universal Turing machines.

The universal equational program U enjoys some nice properties which are crucial when
proving Subject Expansion. The following lemma says, for example, that sums and bounded
sums can always be formed (modulo –) whenever index terms are built and reasoned about
using the universal program:
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Lemma 5.1. 1. For every A and B such that φ; Φ $U A ó, φ; Φ $U B ó, and p|A|q “ p|B|q,
there are C and D such that φ; Φ $U C – A, φ; Φ $U D – B and C Z D is defined.

2. For every A and I such that φ, a; Φ, a ă I $U A ó and φ; Φ $U I ó, there is B such that
φ, a; Φ, a ă I $U B – A and

ř

aăI B is defined.

Proof. These are inductions on the structure of the involved formulas. Actually, it is con-
venient to enrich the statements above (which only deals with modal types) with similar
statements involving basic types, this way facilitating the inductive argument.

5.2. Subject Expansion and Relative Completeness for Programs. Weighted Sub-
ject Expansion (Theorem 5.5 below) says that typing is preserved while weights increase
by at most one along any KPCF expansion step. This is somehow the converse of Weighted
Subject Reduction. Weighted Subject Expansion, however, does not hold in general but
only when the underlying equational program is universal.

In order to prove Weighted Subject Expansion, only typing that carry precise infor-
mation should be considered. As an example, we write φ; Φ ,I C : σ if we can derive
φ; Φ $I C : σ by precise type derivations. The type of a precisely-typable configuration,
in other words, carries exact information about the value of the objects at hand. One can
easily extend the above notation to type derivations for closures and stacks. Recall that
a precise type derivation is a type derivation such that all premises in the form σ Ď τ

(respectively, in the form I ď J) are actually required to be in the form σ – τ (respectively,
I “ J).

Furthermore, only specific typing transformations should be considered, namely those
that leave the weight information unaltered. In order to achieve this, some properties of
precise typability for the KPCF machine should be exploited. As an example, if a closure
φ; Φ ,I pt, ρq : σ, then φ; Φ ,J pt, ρq : τ whenever τ and J such that φ; Φ $ σ – τ and
φ; Φ |ù I “ J. This is a natural variation on the Subtyping Lemma for terms (Lemma 3.7).

Finally, it is worth noticing that by considering an inconsistent set of constraints Φ, it
is possible to make any closure pt, ρq typable with type σ (in the sense of PCF) to be also
typable in the sense of dℓPCF: φ; Φ ,I pt, ρq : τ whenever p|τ |q “ σ and for every index term
I. This says that inconsistent sets cover a role similar to the ω-rule in intersection type
systems.

The following two lemmas will be useful in the sequel, and allow to “join” apparently
uncorrelated typing judgements into one:

Lemma 5.2. Let θ be the substitution ta ` I{au. Suppose that π ⊲ φ, a; Φ, a ă I ,H c : σ,
that ρ ⊲ φ, a; Φθ, a ă J ,Hθ c : σθ, and that p|π|q “ p|ρ|q. Then, φ, a; Φ, a ă I ` J ,H c : σ.

Proof. By simultaneous induction on π and ρ. We make essential use of the implicit as-
sumption about the universality of the underlying equational program.

Lemma 5.3. Let θ be the substitution t
ř

căa Jtc{au`b{cu. Suppose that π ⊲ φ, a, b; Φθ, a ă
I, b ă J ,Hθ c : σθ. Then, φ, a; Φ, c ă

ř

aăI J ,H c : σ.

Proof. By induction on the derivation π, again using the properties of a universal equational
program.
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But there are even other ways to turn two typing derivations into a more general one,
again relying on the semantic nature of dℓPCF:

Lemma 5.4. Suppose that π ⊲ φ; Φ, I ď J ,K c : σ, that ρ ⊲ φ; Φ, I ą J ,K c : σ, and that
p|π|q “ p|ρ|q. Then, φ; Φ ,K c : σ.

It is now time to state Weighted Subject Expansion, since all the necessary ingredients
have been introduced:

Theorem 5.5 (Weighted Subject Expansion). Suppose that π ⊲ φ; Φ ,I D : σ and that
ρ Ñ p|π|q, where ρ ⊲$ C : p|σ|q. Then ν ⊲ φ; Φ ,J C : σ, where φ; Φ |ù J ď I ` 1 and
p|ν|q “ ρ. Moreover, ν can be effectively computed from π and ρ.

Proof. The proof is by cases on the shape of the reduction C Ñ D. We just present some
cases, the others can be obtained analogously.
‚ Consider the case

C ” p0, ρ, pt, u, µq ¨ ξq Ñ pt, µ, ξq ” D.

By assumption we have that C is typable in PCF and that φ; Φ ,I D : σ. So, we have
that

φ; Φ ,Ipt,µq
pt, µq : τ ;

φ; Φ ,Iξ ξ : pτ, σq;

φ; Φ |ù I “ Ipt,µq ` Iξ;

for some Ipt,µq and Iξ. We clearly also have that φ; Φ,0 ď 0 ,Ipt,µq
pt, µq : τ . Φ,1 ď 0 is

an inconsistent set of constraints, and since C is typable in PCF (as remarked above),
we also have that φ; Φ,1 ď 0 ,Ipt,µq

pu, µq : τ . This implies, in particular, that φ,Φ ,I

pt, u, µq ¨ ξ : pNatr0s, σq. Now, assume that ρ “ pt1, ρ1q ¨ . . . ¨ ptn, ρnq where for every
1 ď i ď n, pti, ρiq is typable in PCF. Since Φ, a ă 0 is inconsistent, we have that

φ, a; Φ, a ă 0 ,0 pti, ρiq : µi

for some µi. By Lemma 3.8 we can build a derivation for

φ; Φ;x1 : ra ă 0s ¨ µ1, . . . , xn : ra ă 0s ¨ µn ,0 0 : Natr0s.

So, we have that
φ; Φ ,0 p0, ρq : Natr0s.

Summing up, we obtain that
φ; Φ ,I C : σ,

from which the thesis easily follows, since φ; Φ |ù I ď I ` 1.
‚ Consider the case

C ” pλx.t, ρ, c ¨ ξq Ñ pt, c ¨ ρ, ξq ” D.

By assumption we have that C is typable in PCF and that φ; Φ ,I D : σ. So, we have
that

φ; Φ;x1 : ra ă K1s ¨ τ1, . . . , xn : ra ă Kns ¨ τn ,It t : µ;

φ, a; Φ, a ă Ki ,Ici
ci : τi;

φ; Φ ,Iξ ξ : pµ, σq;
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where:
φ; Φ |ù I “ It ` K1 ` . . . ` Kn `

ÿ

aăK1

Ic1 ` . . . `
ÿ

aăKn

Icn ` Iξ.

For simplicity and without loosing any generality, we can consider the case where c ¨ ρ ”
c1 . . . cn with x ” x1 and c ” c1. So, in particular we can build a derivation ending as
follows:

φ; Φ;x1 : ra ă K1s ¨ τ1, . . . , xn : ra ă Kns ¨ τn ,It t : µ

φ; Φ;x2 : ra ă K2s ¨ τ2, . . . , xn : ra ă Kns ¨ τn ,It λx1.t : ra ă K1s ¨ τ1 ⊸ µ

and thus we have that φ; Φ ,Ipλx.t,ρq
pλx.t, ρq : ra ă K1s ¨ τ1 ⊸ µ, where

Ipλx.t,ρq ” It ` K2 ` . . . ` Kn `
ÿ

aăK2

Ic2 ` . . . `
ÿ

aăKn

Icn .

Further, we have that

φ; Φ ,Iξ`K1`
ř

aăK1
Ic1

c1 ¨ ξ : pra ă K1s ¨ τ1 ⊸ µ, σq

and, as an easy consequence, that

φ; Φ ,Ipλx.t,ρq`Iξ`K1`
ř

aăK1
Ic1

C : σ.

This easily leads to the conclusion, since

φ; Φ |ù I “ It ` K1 ` . . . ` Kn `
ÿ

aăK1

Ic1 ` . . . `
ÿ

aăKn

Icn ` Iξ

“ Ipλx.t,ρq ` Iξ ` K1 `
ÿ

aăK1

Ic1 .

‚ Consider the case

C ” pfix x.t, ρ, ξq Ñ pt, pfix x.t, ρq ¨ ρ, ξq ” D.

By assumption we have that C is typable in PCF and that φ; Φ ,I D : σ. So, we have
that

φ; Φ;x1 : ra ă K1s ¨ τ1, . . . , xn : ra ă Kns ¨ τn ,It t : µ; (5.1)

φ, a; Φ, a ă Ki ,Ici
ci : τi; (5.2)

φ; Φ ,Iξ ξ : pµ, σq; (5.3)

where:
φ; Φ |ù I “ It ` K1 ` . . . ` Kn `

ÿ

aăK1

Ic1 ` . . . `
ÿ

aăKn

Icn ` Iξ. (5.4)

For simplicity and without losing any generality, we can consider the case where pfix x.t, ρq¨
ρ ” c1 . . . cn with x ” x1 and pfix x.t, ρq ” c1. As a consequence, we can conclude that:

φ, a; Φ, a ă K1; Γ ,Ifix x.t fix x.t : τ1; (5.5)

φ, a, b; Φ, a ă K1, b ă Hi ,Jci
ci : µi; (5.6)

where Γ ” x2 : rb ă H2s ¨ µ2, . . . , xn : rb ă Hns ¨ µn, and

φ, a; Φ, a ă K1 |ù Ic1 “ Ifix x.t ` H2 ` . . . ` Hn `
ÿ

băH2

Jc2 ` . . . `
ÿ

băHn

Jcn . (5.7)

Our objective now is to prove that

φ,Φ ,Ipfix x.t,ρq
pfix x.t, ρq : µ, (5.8)
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where φ,Φ |ù Ipfix x.t,ρq “ I ´ Iξ. The thesis easily follows from (5.8). To do that, we
proceed by spelling out what the premises of (5.5) are. They are:

φ, a, b; Φ, a ă K1, b ă
0,1
ï

b

P;x : rc ă Ps ¨ γt
b`1,c
ï

b

P ` b ` 1{bu,∆ ,Jt t : γ, (5.9)

and the following two:

φ, a; Φ, a ă K1 , τ1 – γt0{bu;

φ, a; Φ, a ă K1 , Γ –
ÿ

bă
Ï

0,1
b

P

∆;

where P and Jt are index terms such that

φ, a; Φ, a ă K1 |ù Ifix x.t “
0,1
ï

b

P ´ 1 `
ÿ

bă
Ï

0,1
b

P

Jt. (5.10)

Now, consider an index term N such that

φ; Φ |ù
0,1
ï

b

N “ 1 `
ÿ

aăK1

0,1
ï

b

P

Such an index term can be easily defined from P and K1, given that the underlying
equational program is assumed to be universal. For the same reasons, one can define
types δ and η, a type context Σ and an index term R such that the following holds
(where θ is t1 `

ř

aăa

Ï

0,1
b P ` b{bu):

φ; Φ , ηt0{bu “ µ; φ, a, b; Φ, a ă K1, b ă
0,1
ï

b

P , ηθ “ γ;

φ; Φ , δt0{bu “ τ1; φ, a, b, c; Φ, a ă K1, b ă
0,1
ï

b

P, c ă P, , δθ “ γt
b`1,c
ï

b

P ` b ` 1{bu;

φ; Φ , Rt0{bu “ It; φ, a, b; Φ, a ă K1, b ă
0,1
ï

b

P |ù Rθ “ Jt;

φ; Φ , Σt0{bu – Γ; φ, a, b; Φ, a ă K1, b ă
0,1
ï

b

P , Σθ – ∆.

This is possible since the type derivations for (5.1) and (5.9) have exactly the same PCF
skeleton. By transforming them according to the equations above, one can merge them
into one with conclusion:

φ, b; Φ, b ă
0,1
ï

b

N;x : ra ă Ns ¨ δ,Σ ,R t : η.

So, by using again the R rule we obtain:

φ; Φ;
ÿ

bă
Ï

0,1
b

N

Σ ,Ï

0,1
b

N´1`
ř

bă
Ï0,1

b
N
R
fix x.t : µ.
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We are not at (5.8), however: it is still necessary to type ρ appropriately. But note that
we have:

φ,Φ ,
ÿ

bă
Ï

0,1
b

N

Σ “ Γ Z
ÿ

bă
Ï

0,1
b

N´1

∆ “ Γ Z
ÿ

aăK1

ÿ

bă
Ï

0,1
b

P

∆ “ Γ Z
ÿ

aăK1

Γ.

So we can find types β2, . . . , βn such that
ÿ

bă
Ï

0,1
b

N

Σ “ x2 : ra ă K2 `
ÿ

aăK1

H2s ¨ β2, . . . , xn : ra ă Kn `
ÿ

aăK1

Hns ¨ βn,

where for every 2 ď i ď n,

φ, a; Φ, a ă Ki , βi – τi;

φ, a; Φ, a ă K1, b ă Hi , βitKi ` b `
ÿ

aăa

Hi{au – µi.

Similarly, one can define index terms Q2, . . . ,Qn such that

φ, a; Φ, a ă Ki |ù Qi “ Ici ;

φ, a; Φ, a ă K1, b ă Hi |ù QitKi ` b `
ÿ

aăa

Hi{au “ Jci .

By relabelling the type derivations of (5.2) and (5.6) (which are structurally equal)
according to the types and index terms introduced above, one obtains:

φ, a; Φ, a ă K1 `
ÿ

aăK1

Hi ,Qi
ci : βi;

From this it follows that φ; Φ ,Ipfix x.t,ρq
pfix x.t, ρq : µ, where

Ipfix x.t,ρq ”
´ 0,1

ï

b

N ´ 1 `
ÿ

bă
Ï

0,1
b

N

R
¯

`
´

K2 `
ÿ

aăK1

H2 ` ¨ ¨ ¨ ` Kn `
ÿ

aăK1

Hn`

ÿ

aăpK2`
ř

aăK1
H2q

Q2 ` ¨ ¨ ¨ `
ÿ

aăpKn`
ř

aăK1
Hnq

Qn

¯

.

Let us separately analyze the two thunks in which the expression above can be decom-
posed. On the one hand we have that:

φ; Φ |ù
0,1
ï

b

N ´ 1 `
ÿ

bă
Ï

0,1
b

N

R “
ÿ

aăK1

0,1
ï

b

P ` It `
ÿ

aăK1

ÿ

bă
Ï

0,1
b

P

Jt

“
ÿ

aăK1

Ifix x.t ` K1 ` It.

On the other hand, let us observe that

φ; Φ |ù
ÿ

aăpK2`
ř

aăK1
H2q

Q2 ` ¨ ¨ ¨ `
ÿ

aăpKn`
ř

aăK1
Hnq

Qn

“
ÿ

aăK2

Ic2 `
ÿ

aăK2

ÿ

băH2

Jc2 ` . . . `
ÿ

aăKn

Icn `
ÿ

aăKn

ÿ

băHn

Jcn .

Combining the equations above with (5.4), (5.7) and (5.10), one easily reaches φ; Φ |ù
Ipfix x.t,ρq “ I ´ Iξ, which is the thesis.
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‚ Consider the case

C ” p ifz w then u else v, ρ, ξq Ñ pw, ρ, pu, v, ρq ¨ ξq ” D.

By assumption we have that C is typable in PCF and that φ; Φ ,I D : σ. So, we have
that

φ; Φ;x1 : ra ă K1s ¨ τ1, . . . , xn : ra ă Kns ¨ τn ,Iw w : NatrHs; (5.11)

φ, a; Φ, a ă Ki ,Ici
ci : τi; (5.12)

φ; Φ,H ď 0 ,Ipu,v,ρq
pu, ρq : µ; (5.13)

φ; Φ,1 ď H ,Ipu,v,ρq
pv, ρq : µ; (5.14)

φ; Φ ,Iξ ξ : pµ, σq; (5.15)

where ρ ” c1 . . . cn. Moreover:

φ; Φ |ù I “ Iw ` K1 ` . . . ` Kn `
ÿ

aăK1

Ic1 ` . . . `
ÿ

aăKn

Icn ` Ipu,v,ρq ` Iξ. (5.16)

By further spelling out (5.13) and (5.14), we obtain the following:

φ; Φ,H ď 0;x1 : ra ă H1s ¨ γ1, . . . , xn : ra ă Hns ¨ γn ,Iu u : µ; (5.17)

φ, a; Φ,H ď 0, a ă Hi ,Jci
ci : γi; (5.18)

φ; Φ,1 ď H;x1 : ra ă L1s ¨ δ1, . . . , xn : ra ă Lns ¨ δn ,Iv v : µ; (5.19)

φ, a; Φ,1 ď H, a ă Li ,Mci
ci : δi; (5.20)

where

φ; Φ,H ď 0 |ù Ipu,v,ρq “ Iu ` H1 ` . . . ` Hn `
ÿ

aăH1

Jc1 ` . . . `
ÿ

aăHn

Jcn ;

φ; Φ,1 ď H |ù Ipu,v,ρq “ Iv ` L1 ` . . . ` Ln `
ÿ

aăL1

Mc1 ` . . . `
ÿ

aăLn

Mcn .

Please notice how the type derivations for (5.12), (5.18) and (5.20) are structurally
identical, i.e., their PCF counterparts are the same. Now, let us build index terms
N1, . . . ,Nn, Pc1 , . . . ,Pcn , Iuv and types η1, . . . , ηn such that:

φ; Φ,H ď 0 |ù Ni “ Hi;

φ; Φ,1 ď H |ù Ni “ Li;

φ; Φ,H ď 0 |ù Iuv “ Iu;

φ; Φ,1 ď H |ù Iuv “ Iv;

φ; Φ, a ă Ki |ù Pci “ Ici ;

φ; Φ,H ď 0, a ă Hi |ù Pcita ` Ki{au “ Jci ;

φ; Φ,1 ď H, a ă Li |ù Pcita ` Ki{au “ Mci ;

φ; Φ, a ă Ki , ηi – τi;

φ; Φ,H ď 0, a ă Hi , ηita ` Ki{au – γi;

φ; Φ,1 ď H, a ă Li , ηita ` Ki{au – δi.

As a consequence, one can rewrite (5.11), (5.17) and (5.19) as follows:
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φ; Φ;x1 : ra ă K1s ¨ η1, . . . , xn : ra ă Kns ¨ ηn ,Iw w : NatrHs;

φ; Φ,H ď 0;x1 : ra ă N1s ¨ η1ta ` K1{au, . . . , xn : ra ă Nns ¨ ηnta ` Kn{au ,Iuv u : µ;

φ; Φ, 1 ď H;x1 : ra ă N1s ¨ η1ta ` K1{au, . . . , xn : ra ă Nns ¨ ηnta ` Kn{au ,Iuv v : µ;

from which one obtains

φ; Φ;x1 : ra ă K1 ` N1s ¨ η1, . . . , xn : ra ă Kn ` Nns ¨ ηn ,Iw`Iuv ifz w then u else v : µ.

Similarly, one obtains that

φ, a; Φ, a ă Ki ` Ni ,Pci
ci : ηi;

and, as a consequence, that φ; Φ ,IC C : σ, where

IC ” Iw ` Iuv ` K1 ` N1 ` . . . ` Kn ` Nn `
ÿ

aăK1`N1

Pc1 ` . . . `
ÿ

aăKn`Nn

Pcn .

But observe that

φ; Φ,H ď 0 |ù IC “ Iw ` Iu ` K1 ` . . . ` Kn `
ÿ

aăK1

Pc1 ` . . . `
ÿ

aăKn

Pcn

` N1 ` . . . ` Nn `
ÿ

aăN1

Pta ` K1{au ` ¨ ¨ ¨ `
ÿ

aăNn

Pta ` Kn{au

“ Iw ` Iu ` K1 ` . . . ` Kn `
ÿ

aăK1

Ic1 ` . . . `
ÿ

aăKn

Icn

` H1 ` . . . ` Hn `
ÿ

aăH1

Jc1 ` ¨ ¨ ¨ `
ÿ

aăHn

Jcn

“ Iw ` K1 ` . . . ` Kn `
ÿ

aăK1

Ic1 ` . . . `
ÿ

aăKn

Icn ` Ipu,v,ρq “ I.

Similarly, one can prove that φ; Φ,1 ď H |ù IC “ I. Summing up, we get φ; Φ |ù IC “ I,
which is the thesis.

‚ Consider the case

C ” pxm, ppt0, ρ0q, . . . , ptn, ρnqq, ξq Ñ ptm, ρm, ξq ” D.

By assumption we have that C is typable in PCF and that φ; Φ ,I D : σ. So, we have
that

φ; Φ ,Iptm,ρmq
ptm, ρmq : τ ; (5.21)

φ; Φ ,Iξ ξ : pτ, σq; (5.22)

where φ; Φ |ù I “ Iptm,ρmq ` Iξ. Any closure pti, ρiq (where 1 ď i ď n but i ‰ m) can be
typed as follows:

φ; Φ, a ă 0 ,0 pti, ρiq : µi

for some type µi. This is because all these closures are by hypothesis typable in PCF

and, moreover, Φ, a ă 0 is inconsistent. For obvious reasons,

φ; Φ, a ă 1 ,Iptm,ρmq
ptm, ρmq : τ.
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Finally, we can build the following type derivation

φ; Φ , τt0{bu Ď τ

φ; Φ;x1 : ra1 ă 0s ¨ µ1, . . . , xm : ra ă 1s ¨ τ, . . . , xn : ran ă 0s ¨ µn ,0 xm : τ

But all this implies that φ; Φ ,IC C : σ where φ; Φ |ù IC “ I ` 1, which implies the
thesis.

This concludes the proof.

Relative completeness for programs is a direct consequence of Weighted Subject Ex-
pansion:

Theorem 5.6 (Relative Completeness for Programs). Let t be a PCF program such that
t ón m. Then, there exist two index terms I and J such that JIKU ď n and JJKU “ m and
such that the term t is typable in dℓPCF as $U

I t : NatrJs.

Proof. By induction on n using Weighted Subject Expansion and Lemma 4.1.

5.3. Uniformization and Relative Completeness for Functions. It is useful to recall
that by relative completeness for functions we mean the following: for each PCF term t

computing a total function f in time expressed by a function g there exists a type derivation
in dℓPCF whose index terms capture both the extensional functional behavior f and the
intensional property g. Anticipating on what follows, and using an intuitive notation, this
can be expressed by a typing judgement like

a;H;x : Natras $gpaq t : Natrfpaqs.

In order to show this form of relative completeness, a uniformization result for type deriva-
tions needs to be proved.

Suppose that tπunPN is a sufficiently “regular” (i.e. recursively enumerable) family of
type derivations such that any πn is mapped by p| ¨ |q to the same PCF type derivation.
Uniformization tells us that with the hypothesis above, there is a single type derivation
π which captures the whole family tπnunPN. In other words, uniformization is an extreme
form of polymorphism. Note that, for instance, uniformization does not hold in intersection
types, where uniform typing permits only to define small classes of functions [28, 8, 9].

More formally, a family tπnunPN of type derivations is said to be recursively enumerable
if there is a computable function f which, on input n, returns (an encoding of) πn. Similarly,
recursively enumerable families of index terms, types and modal types can be defined.

It is easy to turn “uniform families” of semantic entailments into one compact form:

Lemma 5.7. 1. If for every n P N it holds that φ; Φtn{au |ùE Itn{au » Jtn{au, then
φ, a; Φ |ùE I » J.

2. If for every n P N it holds that φ; Φtn{au |ùE Itn{au ď Jtn{au, then φ, a; Φ |ùE I ď J.

Proof. This is just an trivial consequence of the way semantic entailment is defined. Sup-
pose, for example, that for every n P N the following holds φ; Φtn{au |ùE Itn{au » Jtn{au.
Now, what should we do to prove φ, a; Φ |ùE I » J? We should prove that for every value
of the variables in φ, a satisfying Φ, I and J are equal in the sense of Kleene. But this is
just what the hypothesis ensures.
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Before embarking on the proof of uniformization for type derivations, it makes sense to
prove the same result for index terms and types, respectively.

Lemma 5.8 (Uniformizing Index Terms). Suppose that:
1. tInunPN is recursively enumerable, where for every n P N, In is an index term on a

signature ΣU ;
2. There is a finite set of variables φ “ a1, . . . , am such that any variables appearing in any

In is in φ

Then there is a term I on the signature ΣU such that φ;H $U Itn{au » In for every n.

Proof. Consider the function f : Nm`1 Ñ N defined as follows:

px0, x1, . . . , xmq ÞÑ JIx0
KUra1Ðx1,...,anÐxms.

An algorithm computing f can be defined as follows:
‚ From x0, compute Ix0

. Again, this can be done effectively.
‚ Evaluate Ix0

where the variables a1, . . . , an takes values x1, . . . , xn, respectively.
In other words, f is computable. Thus, the existence of a term I like the one required is a
consequence of the universality of the equational program U .

Observe how the index terms in tInunPN need not be defined for all values of the variables
occurring in them. More: their domains of definition can all be different. The way I is
defined, however, ensures that JItn{auK is defined iff JInK is defined. Uniformizing types
requires a little more care:

Lemma 5.9 (Uniformizing Types and Modal Types). Suppose that tπnunPN is recursively
enumerable and that:
1. for every n P N, πn ⊲ φ; Φn $U σn ó;
2. for every n,m P N, p|σn|q “ p|σm|q;
3. every Φn have the form In1 ď Jn1 , . . . , I

n
m ď Jnm, where m does not depend on n.

Then there is one type σ such that:
1. φ, a; Φ $U σ ó;
2. Φ “ I1 ď J1, . . . , Im ď Jm;
3. for every 1 ď p ď m, both φ;H $U Iptn{au » Inp and φ;H $U Jptn{au » Jnp ;

4. for every n P N, it holds that φ; Φtn{au $U σtn{au – σn.
Moreover, the same statement holds for modal types.

Proof. The proof goes by induction on the structure of the type p|σ0|q and of the modal
type p|A0|q. An essential ingredient in the proof is, of course, Lemma 5.8. Suppose, as an
example, that p|σ0|q ” Nat. This implies that there are index terms Kn,Hn such that, for
every n P N,

σn ” NatrKn,Hns.

Now, let I1, J1, . . . , Im, Jm,K,H be the index terms obtained from the families

tIn1unPN, tJn1unPN, . . . , tInmunPN, tJnmunPN, tKnunPN, tHnunPN

through Lemma 5.8. Let Φ be just I1 ď J1, . . . , Im ď Jm and let σ be NatrK,Hs. From
πn ⊲ φ; Φn $U σn ó, it follows that

φ; Φtn{au |ùU Ktn{au ó; (5.23)

φ; Φtn{au |ùU Htn{au ó . (5.24)
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By Lemma 5.7, it follows that

φ, a; Φ |ùU K ó;

φ, a; Φ |ùU H ó;

which implies φ, a; Φ $U σ ó. From (5.23) and φ;H $U Ktn{au » Kn, it follows that

φ; Φtn{au |ùU Ktn{au “ Kn.

Similarly, from 5.24 one obtains

φ; Φtn{au |ùU Htn{au “ Hn.

As a consequence, φ; Φtn{au $U σtn{au – σn.

Now that we are able to unify a denumerable family of types into one, we have all the
necessary tools to turn a family of judgements into one. For subtyping judgments, the task is
relatively simple, because types and index terms occurring inside any subtyping derivation
also occur in its conclusion:

Lemma 5.10 (Uniformizing Subtyping Judgments). If for every n P N it holds that
φ; Φtn{au $E σtn{au Ď τtn{au, then φ, a; Φ $E σ Ď τ .

Proof. This is an induction on the structure of a proof of σ. If, as an example, σ ” NatrI, Js,
then τ ” NatrK,Hs. From the hypothesis, we know that

φ; Φtn{au $E Ktn{au ď Itn{au;

φ; Φtn{au $E Jtn{au ď Htn{au.

By Lemma 5.7, we can conclude that

φ; Φ $E K ď I;

φ; Φ $E J ď H;

which immediately yields the thesis.

In typing judgments, on the other hand, there can be types and index terms which occur
in the derivation, but not in its conclusion — think about how applications are typed. We
then need to impose some further constraints on the kind of (type derivation) families which
we can unify:

Lemma 5.11 (Uniformizing Typing Judgments). If for every n P N it holds that πn ⊲

φ; Φtn{au; Γtn{au $U

Itn{au t : σtn{au, where tπnunPN is recursively enumerable and such

that p|πn|q “ p|πm|q for every n,m P N, then φ, a; Φ; Γ $U
I t : σ.

Proof. The proof goes by induction on the structure of t. Some interesting cases:
‚ Suppose that t is a variable x. Then πn has the following shape:

φ; Φtn{au |ùU 0 ď Jtn{au φ; Φtn{au |ùU 1 ď Itn{au
φ; Φtn{au $U σtn{aut0{bu Ď τtn{au

φ; Φtn{au $U pra ă Itn{aus ¨ σq ó φ; Φtn{au $U ∆tn{au ó

φ; Φtn{au;∆tn{au, x : rb ă Itn{aus ¨ σtn{au $U

Jtn{au x : τtn{au
V



40 U. DAL LAGO AND M. GABOARDI

Notice that σtn{aut0{bu is literally the same as σt0{butn{au. Lemma 5.7 and Lemma 5.11
allow us to derive the following

φ, a; Φ |ùU 0 ď J;

φ, a; Φ |ùU 1 ď I;

φ, a; Φ $U σt0{bu Ď τ ;

φ, a; Φ $U pra ă Is ¨ σq ó;

φ, a; Φ $U ∆ ó;

from which the thesis easily follows.
‚ Suppose that t is uv. Then the derivations in tπnunPN have the following shape:

φ; Φtn{au; Γn $U
Jn

t : rb ă Ins ¨ σn ⊸ τtn{au
φ, b; Φtn{au, b ă In;∆n $U

Kn
u : σn

φ; Φtn{au $U Σtn{au Ď Γn Z
ř

băIn
∆n

φ; Φtn{au |ùU Htn{au ě Jn ` In `
ř

băIn
Kn

φ; Φtn{au; Σtn{au $U

Htn{au tu : τtn{au
A

By Lemma 5.8 and Lemma 5.9, there are index terms I, J,K and a type σ, and typing
contexts Γ and ∆ such that the following holds:

φ;H |ùU Itn{au » In;

φ;H |ùU Jtn{au » Jn;

φ, b; b ă Itn{au |ùU Ktn{au » Kn;

φ, b; Φ, b ă I $U σ ó;

φ, b; Φtn{au, b ă Itn{au $U σtn{au – σn;

φ, b; Φ, b ă I $U Γ ó;

φ, b; Φtn{au, b ă Itn{au $U Γtn{au – Γn;

φ, b; Φ, b ă I $U ∆ ó;

φ, b; Φtn{au, b ă Itn{au $U ∆tn{au – ∆n.

From the above, we first of all obtain

φ; Φtn{au |ùU Htn{au ě Jtn{au ` Itn{au `
ÿ

băItn{au

Ktn{au,

that by Lemma 5.7 becomes

φ, a; Φ |ùU H ě J ` I `
ÿ

băI

K.

Analogously, this time through Lemma 5.10, one easily reach

φ, a; Φ $U Σ Ď Γ Z
ÿ

băI

∆.
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Again, one can reach

φ; Φtn{au; Γtn{au $U

Jtn{au t : rb ă Itn{aus ¨ σtn{au ⊸ τtn{au;

φ, b; Φtn{au, b ă Itn{au;∆tn{au $U

Ktn{au u : σtn{au;

to which one can apply the induction hypothesis. The thesis easily follows.
This concludes the proof.

Uniformization is the key to prove relative completeness for functions from relative
completeness for programs:

Theorem 5.12 (Relative Completeness for Functions). Suppose that t is a PCF term such
that $ t : Nat Ñ Nat. Moreover, suppose that there are two (total and computable) functions

f, g : N Ñ N such that t n ógpnq fpnq. Then there are terms I, J,K with JI ` JK ď g and

JKK “ f , such that

a;H;H $U
I t : rb ă Js ¨ Natras ⊸ NatrKs.

Proof. A consequence of relative completeness for programs (Theorem 5.6) and Lemma
5.11. Indeed, a type derivation for a;H;H $I t : rb ă Js ¨Natras ⊸ NatrKs can be obtained
simply by uniformizing all type derivations πn for programs in the form tn. In turn, those
type derivations can be built effectively by way of Subject Expansion.

6. On the Undecidability of Type Checking

As we have seen in the last two sections, dℓPCF is not only sound, but complete: all true
typing judgements involving programs can be derived, and this can be indeed lifted to
first-order functions, as explained in Section 5.3.

There is a price to pay, however. Checking a type derivation for correctness is un-
decidable in general, simply because it can rely on semantic assumptions in the form of
inequalities between index terms, or on subtyping judgements, which themselves rely on
the properties of the underlying equational program E . If E is sufficiently involved, e.g. if
we work with U , there is no hope to find a decidable complete type checking procedure. In
this sense, dℓPCF is a non-standard type system.

Indeed, dℓPCF is not actually a type system, but rather a framework in which various
distinct type systems can be defined. Concrete type systems can be developed along two
axes: on the one hand by concretely instantiating E , on the other by choosing specific
and sound formal systems for the verification of semantic assumptions. This way sound
and possibly decidable type systems can be derived. Even if completeness can only be
achieved if E is universal, soundness holds for every equational program E . Choosing a
simple equational program E results in a (incomplete) type system for which the problem
of checking the inequalities can be much easier, if not decidable. And even if E remains
universal, assumptions could be checked using techniques such as abstract interpretation or
theorem proving.

By the way, the just described phenomenon is not peculiar to dℓPCF. Unsurprisingly,
program logics have similar properties, since the rule

p ñ r truP tsu s ñ q

tpuP tqu
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is part of most relatively complete Hoare-Floyd logics and, of course, the premises p ñ r

and s ñ q have to be taken semantically for completeness to hold.

7. dℓPCF and Implicit Computational Complexity

One of the original motivations for the studies which lead to the definition of dℓPCF came
from Implicit Computational Complexity. There, one aims at giving characterizations of
complexity classes which can often be turned into type systems or static analysis methodolo-
gies for the verification of resource usage of programs. Historically [24, 29], what prevented
most ICC techniques to find concrete applications along this line was their poor expressive
power: the class of programs which can be recognized as being efficient by (tools derived
from) ICC systems is often very small and does not include programs corresponding to
natural, well-known algorithms. This is true despite the fact that ICC systems are exten-
sionally complete — they capture complexity classes seen as classes of functions. The kind
of Intensional Completeness enjoyed by dℓPCF is much stronger: all PCF programs with a
certain complexity can be proved to be so by deriving a typing judgement for them.

Of course, dℓPCF is not at all an implicit system: bounds appear everywhere! On
the other hand, dℓPCF allows to analyze the time complexity of higher-order functional
programs directly, without translating them into low level programs. In other words, dℓPCF
can be viewed as an abstract framework where to experiment new implicit computational
complexity techniques.

8. Related Work

Other type systems can be proved to satisfy completeness properties similar to the ones
enjoyed by dℓPCF.

The first example that comes to mind is the one of intersection types. In intersec-
tion type disciplines, the class of strongly and weakly normalizable lambda terms can be
captured [16]. Recently, these results have been refined in such a way that the actual com-
plexity of reduction of the underlying term can be read from its type derivation [14, 7].
What intersection types lack is the possibility to analyze the behavior of a functional term
in one single type derivation — all function calls must be typed separately [28, 8, 9]. This is
in contrast with Theorem 5.12 which gives a unique type derivation for every PCF program
computing a total function on the natural numbers.

Another example of type theories which enjoy completeness properties are refinement
type theories [17], as shown in [15]. Completeness, however, only holds in a logical sense:
any property which is true in all Henkin models can be captured by refinement types. The
kind of completeness we obtain here is clearly more operational: the result of evaluating a
program and the time complexity of the process can both be read off from its type.

As already mentioned in the Introduction, linear logic has been a great source of inspi-
ration for the authors. Actually, it is not a coincidence that linear logic was a key ingredient
in the development of one of the earliest fully-abstract game models for PCF. Indeed, dℓPCF
can be seen as a way to internalize history-free game semantics [1] into a type system. And
already BLL and QBAL, both precursors of dℓPCF, have been designed being greatly in-
spired by the geometry of interaction. dℓPCF is a way to study the extreme consequences
of this idea, when bounds are not only polynomials but arbitrary first-order total functions
on natural numbers.
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