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ABSTRACT. In this paper, we first introduce a lower bound technique for the state com-
plexity of transformations of automata. Namely we suggest first considering the class of
full automata in lower bound analysis, and later reducing the size of the large alphabet
via alphabet substitutions. Then we apply such technique to the complementation of non-
deterministic w-automata, and obtain several lower bound results. Particularly, we prove
an Q((0.76n)™) lower bound for Biichi complementation, which also holds for almost ev-
ery complementation or determinization transformation of nondeterministic w-automata,
and prove an optimal (2(nk))"™ lower bound for the complementation of generalized Biichi
automata, which holds for Streett automata as well.

1. INTRODUCTION

The complementation problem of nondeterministic w-automata, i.e. nondeterministic
automata over infinite words, has various applications in formal verification. For example
in automata-theoretic model checking, in order to check whether a system represented by
automaton A satisfies a property represented by automaton Ao, one checks that the inter-
section of A; with an automaton that complements A5 is an automaton accepting the empty
language VW94]. In such a process, several types of nondeterministic w-automata
are concerned, including Biichi, generalized Biichi, Rabin, Streett etc., and the complexity
of complementing these automata has caught great attention.

The complementation of Biichi automata has been investigated for over forty years
[Var07]. The first effective construction was given in [Biic62], and the first exponential
construction was given in [SVWR5] with a 20("*) state blow-up (n is the number of states
of the input automaton). Even better constructions with 20(nlogn) gtate blow-ups were
given in [Saf88, Kla91, [KVO0I], which match with Michel’s n! = 2912 Jower bound
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[Mic88], and were thus considered optimal. However, a closer look reveals that the blow-up
of the construction in [KV01] is (6n)™, while Michel’s lower bound is only roughly (n/e)” =
(0.36n)™, leaving a big exponential gap hiding in the asymptotic notation]. Motivated by
this complexity gap, the construction in [KV0I] was further refined in [FKV06] to (0.97n)™.
On the other hand, Michel’s lower bound was never improved.

For generalized Biichi, Rabin and Streett automata, the best known constructions are
in [KV0O5b, [KV05a), which are 20(nlognk) 9O0(nklogn) g 90(nklognk) regpectively. Here
state blow-ups are measured in terms of both n and k, where k is the index of the input
automaton. Optimality problems of these constructions have been vastly open, because only
2Unlogn) Jower bounds were known by variants of Michel’s proof [Ld99)].

What remains missing are stronger lower bound results. Tighter lower bounds usually
lead us into better understanding of the intricacy of the complementation of nondeterministic
w-automata, and are the main concern of this paper. Such understanding can suggest
methods to further optimize the constructions, or to circumvent those difficult cases in
practice.

To understand why we have so few strong lower bounds, we observe that at the core of
almost every known lower bound is Michel’s result, which was obtained in the traditional
way. That is, one first constructs a particular family of automata (A;)n,>1, and then proves
that complementing each A, requires a large state blow-up. The A,,4+1 of Michel’s automata
family is depicted in Figure[ll Although each A, has a simple structure, it is not straight-
forward to see what language it accepts, and nor is it clear at all how we can work with this
automaton for lower bound.

1...n,4 1...n,4 1...n,4
Figure 1: Michel’s Automata Class

In many cases, identifying such an automata family is difficult, and is the main obsta-
cle towards lower bounds. In this paper, we propose a new technique to circumvent this
difficulty. Namely, we suggest first considering the family of full automata in lower bound
analysis, and later reducing the size of the large alphabet via alphabet substitutions. A
simple demonstration of such technique is presented in Section Bl

With the help of full automata, we tighten the state complexity BC(n) of Biichi com-
plementation from (0.36n)" < BC(n) < (0.97n)" to (0.76n)" < BC(n) < (0.97n)". Sur-
prisingly, this (0.76n)™ lower bound also holds for every complementation or determinization
transformation concerning Biichi, generalized Biichi, Rabin, Streett, Muller, and parity au-
tomata. As to the complementation of generalized Biichi automata, we prove an (Q(nk))"
lower bound, matching with the (O(nk))™ upper bound in [KV05b]. This lower bound also
holds for the complementation of Streett automata and the determinization of generalized

1y contrast, for the complementation of nondeterministic finite automata over finite words, the 2" blow-
up of the subset construction |[RS59] was justified by a tight lower bound [SS78|, which works even if the
alphabet concerned is binary [Jir05].
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Biichi automata into Rabin automata. A summary of our lower bounds is given in Section
1ol

Full Automata and Sakoda and Sipser’s Languages. It turns out that the notion
of full automata is similar to Sakoda and Sipser’s languages in [SST8]. Their language B,
actually corresponds to the A-graphs of the words accepted by some full automaton. Also as
pointed to us by Christos A. Kapoutsis, the technique of alphabet substitution was somewhat
implicit in Sakoda and Sipser’s paper (but presented in a somewhat obscure way, refer to
the paragraph before their Theorem 4.3.2). So the full automata technique is more like a
new treatment of some techniques in the Sakoda and Sipser’s paper, rather than a totally
new invention. Compared to Sakoda and Sipser’s languages, the notion of full automata
enjoys a simple definition and is very handy to use. It is also more readily to be extended
to other kinds of automata like alternating automata.

For unclear reasons, Sakoda and Sipser’s languages were rarely applied to fields other
than 2-way automata after their paper. We hope that our treatment will make a clear
exposition of the techniques and demonstrate their usefulness in problems on automata over
one-way inputs as well.

2. BASIC DEFINITIONS

A (nondeterministic) automaton is a tuple A = (3,51, A, *) with alphabet X, finite
state set S, initial state set I C S, transition relation A C S x ¥ x S and * some extra
components. Particularly A is deterministic if |I| = 1 and for all p € S and a € X,
{ad € S[(p,a,q) € A} <1

For a word w = a(0)a(1)...a(l—1) € ¥* with length(w) = [ > 0, a finite run of A from
state p to ¢ over w is a finite state sequence p = p(0)p(1)...p(I) € S* such that p(0) = p,
p(l) = q and (p(i),a(i), p(i + 1)) € A for all 0 < i < . We say that p visits a state set T if
p(i) € T for some 0 < i <[. We write p —, ¢ if a finite run from p to ¢ over w exists, and
P %) q if in addition the run visits 7.

A (Nondeterministic) Finite Word Automaton (NFW for short) is an automaton A =
(3,S,I,A, F) with final state set F C S. A finite word w is accepted by A if there is a
finite run over w from an initial state to a final state. The language accepted by A, denoted
by L(A), is the set of words accepted by A, and its complement ¥*\L(A) is denoted by
LE(A).

For an w-word a = a(0)a(1) - - - € £, i.e., an infinite sequence of letters in ¥, a (infinite)
run of A over « is an infinite state sequence p = p(0)p(1)--- € S* such that p(0) € I and
(p(i),a(i),p(i + 1)) € A for all i > 0. We let Oce(p) = {q € S| p(i) = ¢ for some i € N},
Inf(p) ={q € S| p(i) = q for infinitely many i € N}, and write p[l1,l2] to denote the infix
p(l)p(li +1) ... p(l2) of p.

An (nondeterministic) w-automaton is an automaton A = (X, 5,1, A, Acc) with accep-
tance condition Acc, which is used to decide if a run p of A is successful. There are many
types of w-automata considered in the literature [Tho90]. Here we consider six of the most
common types:

e Biichi automaton, where Acc = F C S is a final state set, and p is successful if

Inf(p)NF #0.
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e generalized Biichi automaton, where Acc = {F1,..., Fi} is a list of final state sets,
and p is successful if Inf(p) N F; # 0 for all 1 <14 < k.
e Rabin automaton, where Acc = {(G1,B1),...,(Gk, Bi)} is a list of pairs of state
sets, and p is successful if for some 1 < i < k, Inf(p)NG; # 0 and Inf(p)N B; = (.
e Streett automaton, where Acc = {(G1,B1),...,{Gg,Bi)} is a list of pairs of state
sets, and p is successful if for all 1 <4 < k, if Inf(p)N B; # 0, then Inf(p)NG; # 0.
e Muller automaton, where Acc = F C Powerset(S) is a set of state sets, and p is
successful if Inf(p) € F.
e parity automaton, where Acc is a mapping ¢ : S — {0...1}, and p is successtul if
min{c(q)|lqg € Inf(p)} is even.
An w-word « is accepted by A if it has a successful run. The w-language accepted by A,
denoted by L(A), is the set of w-words accepted by A, and its complement X\ L(A) is
denoted by £¢(A). The number k, if defined, is called the index of A.

We refer to the above six types of w-automata as the common types. Following the
convention in [KV05a], we will use acronyms like NBW, NGBW, NRW etc. to refer to
Nondeterministic Biichi/generalized Biichi/Rabin/etc. Word automata. Two simple facts
about these common types of w-automata are useful for us:

fAct 2.1. [Lod99|(1) For every NBW A and every common type T, there exists an T
automaton A" with the same number of states such that A’ is equivalent to A.

(2) For every deterministic w-automaton A of a common type T which is not Biichi
nor generalized Biichi, there exists a deterministic w-automaton A’ of a common type (not
necessarily also T ) with the same number of states (and index, if applicable) such that A’
complements A.

To visualize the behavior of automata over input words, we introduce the notion of A-
graphs. If A= (X,S5,I,A,x) is an automaton, then for a finite word w = a(0)a(1)...a(l —
1) € ¥* of length [, or an w-word w = a(0)a(1)--- € X« of length [ = oo, the A-graph of w
under A is the directed graph G* = (V;A, EZ) with vertex set VA = {(p,i) | p € 5,0 <i <
l,i € N} and edge set E/A defined as: for all p,q € S and 0 < i <1, {{p,i), (g, + 1)) € B
iff (p,a(i),q) € A. For a subset T of S, we say that a vertex (p, i) is a T-vertex if p € T. By
definition p =+ ¢ iff there is a path (in the directed sense) in Gz from (p, 0) to (g, length(w))
and p %) q if furthermore the path visits some T-vertex.

Finally we define the state complezityg functions. Assume that 7 is either NFW or
some common type of w-automata. Then for a 7 automaton A, C7(A) is defined as the
minimum number of states of a 7 automaton that complements A, i.e., accepts L (A). For
n > 1, Cr(n) is the maximum of C(A) over all 7 automata with n states. If indices are
defined for 7, then C7(n,k) is the maximum of C7(A) over all T automata with n states
and index k.

2In some literature, instead of merely counting the number of states, sizes of transition relations etc. are
also taken into account to better measure the sizes of automata. Here we prefer state complexity because it
is a measure easier to study, and its lower bound results usually imply lower bounds on “size” complexity, if
the automata witnessing the lower bound are over a not too large alphabet.
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3. THE FuLL AUTOMATA TECHNIQUE

In the recently emerging area of state complexity (see [Yu03] for a survey) or in the
theory of w-automata, we often concern proving theorems of such flavor:

Theorem 3.1. [Jir05] For each n > 1, there exists an NFW A, with n states over {a,b}
such that Cnrw (Ay) > 2™,

In other words, we want to prove a lower bound for the state complexity of a transfor-
mation (NFW complementation in this case, can be determinization etc.), and furthermore,
we hope that the automata family witnessing the lower bound ((A;),>1 in this case) is
over a fixed small alphabet. Such claims are usually difficult to prove. The apparently easy
Theorem [3.T] was not proved until 2005 by a very technical proof in ﬂma after the efforts
in [SST78|, Bir93l [HK02]. To understand the difficulty involved, we first review the traditional

approach people attempt at such results:

Step I: Identify an automata family (A,),>1 with each A,, having n states.
Step II: Prove that to transform each A, needs a large state blow-up.

Almost every known lower bound was obtained in this way, including Theorem BI] and
the aforementioned Michel’s lower bound. In such an approach, Step I is well-known to be
difficult. Identifying the suitable family (A;)n>1 requires both ingenuity and luck. Even
worse, most automata families that people try are natural ones with simple structures, while
the ones witnessing the desired lower bound could be highly unnatural and complex. Finding
the right family (A;)n>1 seems to be a major obstacle towards lower bound results.

Now we introduce the notion of full automata to circumvent this obstacle.

Definition 3.2. Given state set .S, initial state set I, and extra components *, a full automa-
ton A= (X,S,I,A,x) is an automaton with alphabet ¥ = Powerset(S x S) and transition
relation A defined as: for all p,q € S and a € X, (p,a,q) € A iff (p,q) € a.

By definition, the alphabet contains every binary relation over S, and therefore is of a
big size of 25 *. Due to such rich alphabets, every automaton has some embedding in a full
automaton with the same number of states. It is then not difficult to see that transforming
an automaton can be reduced to transforming a full automaton, and full automata are the
most difficult automata to transform.

To be specific, if we consider NF'W complementation, then:

Theorem 3.3. For alln > 1, Cxrw(n) = Onrw (A) for some full NFW A with n states.
The theorem follows from the following lemma.

Lemma 3.4. If Ay is an NF'W with n states, then there is a full NFW Ay with n states
such that Cxrw (Az2) > Cnrw (Ar).

Proof. By definition of Cxpw, it suffices to show that for some full NFW As with n states,
if there is an NF'W C.Ajs that complements As, then there is an NF'W C.A; complementing
Ay with the same number of states as CAs.

Let A; = (El,Sl,Il,Al,Fl), and consider the full NFW Ay = (EQ,Sl,Il,AQ,Fl) with
respect to S1,I; and Fy. For each a1 € Xj, define letter Aj(a1) in Xy = P(S] x S7) as:
(p1,q1) € Aq(ay) iff (p1,a1,q1) € Ay, for all p;,q1 € S1. By definition of full automata,

3The result is actually slightly stronger in that his A, has only one initial state. (In some literature
NFWs are not allowed to have multiple initial states.)
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(p1,a2,q1) € A9 iff (p1,q1) € ag, for all p1,q1 € S1,a2 € Xo. So we have (p1,a1,q1) €
Aq iff (p1,Aq1(a1),q1) € Ag, for all a1 € ¥q,p1,q1 € S;. For an arbitrary word a =
a(0)a(l)...a(l—1) € X7, consider word o/ = A;(a(0))A(a(1))...A1(a(l—1)) € 5. Then
every state sequence p1 = p1(0)p1(1)...p1(l) € S7 is a run of A; over « iff p; is a run of Ay
over o/. Since A; and Aj share the same initial and final state sets, p; is successful iff ps is
successful. So a € L(A;) iff o € L(Ay).

Let CAs = (X2, Sc, Ic, Ac, Fo) be an NFW that complements £(Az). So o € L(A3)
iff o/ ¢ L(CA2). Define CA; to be the NFW (34, S¢, Ic, A, Fc), where A, is defined as
(p2,a1,q2) € Ay iff (p2,A1(a1),q2) € A, for all py, g2 € Sc and a; € X;. Similarly every
state sequence pc = pc(0)pc(1) ... pc(l) € Sg is a successful run of CAy over o' iff p¢ is a
successful run of CA; over a.. So o/ € L(CAg) iff o € L(CAy).

Now for every a € 37, o € L( A1) iff o« ¢ L(CA1). Therefore CA; with the same number
of states as C. Ay complements 4; as required. ]

Theorem [3.3] implies that to prove a lower bound for NFW complementation (without
taking the size of the alphabet into account), we can simply set (Ay,)n>1 to be some family
of full NFWs in Step I. Similarly, the same applies to NBW complementation:

Theorem 3.5. For alln > 1, Cxpw(n) = Cnpw(A) for some full NBW A with n states.
Now we apply full automata to obtain a simple proof of Theorem [B11

Proof. (of Theorem [B.I]) We first prove a 2" lower bound for Cxpw(n). For each n > 1,
let FA, = (3,,Sn, In, Ay, F,,) be the full NFW with S,, = I, = F,, = {sg,...,8n-1}. It
suffices to prove that Cxpw (FA,) > 2.

For each subset T C S,,, let Id(T') denote the letter {{(q,q) | ¢ € T'} and let up = Id(T),
v = 1d(S,\T). Figure depicts one example of urvr’s A-graph. Since all states in
F A, are both initial and final, a word w of length [ is accepted by F.A,, iff there is a path
from an (s;,0) vertex to an (sj,l) vertex in the A-graph of w under FA,. In particular
upvr is not accepted by FA,. Suppose that some NFW CA complements F.A,,. So for each
T C S, there is a state ¢r of CA such that §; — g and Gy — §p for some initial state gy
and final state ¢r of CA. If we prove that ¢, # ¢, whenever 17 # T5, then CA has at least
2™ states as required. Suppose by contradiction that ¢, = ¢p, for some 77 # T5. W.lo.g.

there is a state s of F A, in T1\Ts. Then s 21, ¢ 72 5 and hence un vy, € L(FA,). On

the other hand, for some initial state ¢; and final state §r of CA, ¢y REN ar, = qn, REEN qr.
So un vy, € L(CA), contradiction.

The above proof is not fully satisfying in that the automata family witnessing the
lower bound is over an exponentially growing alphabet. To fix a binary alphabet and prove
Theorem B.I] we introduce a Step III in which we do “alphabet substitution”, as we now
illustrate.

We first refine the above proof of Cnpw (F.A;,) > 2" by restricting the number of different
letters involved. For two words u,v € 3, we say that w is equivalent to v with respect to
FA,, or simply u ~ v, if for all p,q € S,, p = q iff p > ¢. A little thought shows that
if we substitute each Id(T) letter used in the above proof by some equivalent words, the
proof still works. First we consider the alphabet {¢; }o<i<n with ¢; = Id(S,\{si}). Then for
each T' C Sy, Id(T) ~ Hsgpc;, the concatenation of all ¢;’s with s; ¢ T in lexicographical
order (any other fixed order will do). This is illustrated in Figure Then consider the
alphabet {a,b} with a = {(s;+1,%) | 0 < i <n —1} U{(so,sp-1)} and b = Id(S,\{s0}),
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ur vT C1 Cc3
<«<— —pa— —» <«<— —pa— —»
SO o——>e ® S0 S0 ——>o—>0 5(
S1e —»0 5] S1e —»e 5]
52 —»e e S2
S3 e o—»eS3
(a) urvr
a b a a a
<«<— —Pea——Pa— —Pa——Pa——»
S0 S0
S1 S1
S92 S2
83 83
(c) abaaa ~ c1 (d) A4

Figure 2: Examples

then for each 0 < i < n, ¢; ~ a’ba™*, as illustrated in Figure So if we substitute each
letter /d(T") in the above proof by the equivalent word HsiiTazba"_i, the proof still works.

After the above refinement of the proof, the part of F.A, related to letters other than
{a,b} is in fact irrelevant to the proof. So A, = FA, | {a,b}, the restriction of FA, to
{a,b}, or formally the NFW A,, = ({a, b}, Sy, I, AN (S, x {a,b} x S,,), Fy,), also satisfies
that Cnpw (A,) > 2", as required (A4 is depicted in . O

We call the above technique of setting (Ay)n>1 to be a family of full automata and
adding the step of alphabet substitution the “full automata technique”. Setting (Ay)n>1 to
be full automata is crucial here, which in essence delays the trouble of identifying (A )n>1
to the later analysis of transforming full automata. This makes our life easier because the
latter is usually playing with words, which is clearly easier than constructing automata,
especially with the rich alphabet of full automata. As to the step of alphabet substitution,
our experience is that it could be technical some time, but rarely difficult.

4. BUcHI COMPLEMENTATION

4.1. Kupferman and Vardi’s Construction. We first briefly introduce the state-of-the-
art construction for Biichi complementation by Kupferman and Vardi in [FKV06|, the idea
of which is important in our lower bound. Different from [FKV06], we will continue to
work with our A-graphs rather than introducing the notion of run graphs. For z € N, let
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[z] denote the set {0,1,...,z} and let [2]°% and [2]°**™ denote the sets of odd and even
numbers in [x] respectively.

Definition 4.1. Given an NBW A = (3,5,1,A, F) of n states, and an w-word «, a co-
Biichi ranking (C-Ranking for short) for G2 (i.e. the A-graph of o under A) is a partial
function f from VA to the rank set [2n — 2] such that:

(i): For all vertices {q,1) € VA, f({g,1)) is undefined iff there is no path (in the directed
sense) from some (qr,0) vertex with ¢; € I to (q,1).

(ii): For all vertices (q,1) € VA, if f({g,1)) is odd, then q ¢ F.

(iii): For all edges ({(g,1),(¢,l + 1)) € EZ, if f({(g,1)) is defined, then f({g,1)) >

F(d 1+ 1)), " B

We say that f is odd if for every path in G, there are infinitely many vertices that are
assigned odd ranks by f.

Lemma 4.2. [KVO0I| The w-word « is not accepted by A iff there is an odd C-ranking for
Gil.

Proof. We prove the if direction here to give a sense of the idea of C-ranking. For every
infinite path from a (g7, 0) vertex for some ¢; € I, the ranks along the path do not increase
by (iii) and so will get trapped in some fixed rank from some point on. Since f is odd, this
fixed rank is odd, and thus by (ii), F-vertices are never visited since then. In other words,
every run of A over « visits F' finitely often and hence « is not accepted by A. L]

A level rankingd for A is a partial function g : § —» [2n — 2] such that if g(q) is odd,
then g ¢ F. Each C-ranking can be “sliced” into such level rankings. It was shown in [KV01]
that existence of an odd C-ranking for G2 can be decided by an NBW C.A which guesses
an odd C-ranking level by level, and checks the validity in a local manner. By Lemma [4.2]
CA complements A. In the construction of C.A, distinct sets of states are used to handle
different level rankings, and the number of such level rankings is the major factor of the
(6n)™ blow-up.

We say that a level ranking g for A is tight if (i): the maximum rank in the range of g
is some odd number 2m — 1 in [2n — 2]°¥ and (ii): for every j € [2m]°, there is a state ¢
with ¢g(¢) = j. In such a case, g is also called a TL(m)-ranking (with 1 < m < n). It was
further shown in [FKV06| that we can restrict attention to tight level rankings and use less
states in CA. By a careful numerical analysis [FKV06], a (0.97)" upper bound was proved
for the number of states of C.A and thus for Biichi complementation.

4.2. Lower Bound. We turn now to lower bound. By Theorem 3.5 it suffices to consider
full NBWs. We define FB,, for n > 1 to be the full NBW (X, Sy, In, An, Fy,) with I, =
{s0,...,Sn—2}, Fn = {sf} and S,, = I,, U F,,. We also use S;, = I,, to denote the “main”
states.

We first try to construct an w-word o, not accepted by FB,, such that a great number of
tight level rankings would have to be present in every C-ranking for G- an' Since the number
of tight level rankings is the major factor of the state blow-up in Kupferman and Vardi’s
construction, this would produce a hard case for the construction. For such purpose, we

40ur definitions of level ranking and tight level ranking here are slightly different from [FKV06].
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consider a special class of tight level rankings for FB,,, Q-rankings. We say that a TL(m)-
ranking g for FB,, is a Q(m)-ranking if g (q) is defined for each ¢ € S}, and is undefined for
q = sy. We start defining our difficult w-word a;, by defining its composing segments.

Lemma 4.3. For every pair of Q-rankings (f,g), there exists a word wy 4 such that:

(i): For all p,q€ S, p wwﬂ q iff (filp) > fir1(q) or fi(p) = fir1(q) € [2m]°™).
(i): For all p,q € S}, p 4 ¢ if fi(b) > fia(0)-

(iii): For all p,q € Sy, if p 2% q then p,q ¢ F,.

Proof. We first illustrate the construction using a typical example depicted in Fig. Bl As in
Fig. Bl the vertices of the A-graph of wy, are separated by the wider space below c(f, g)
into two parts. We say that each (s;,j) vertex in the left part is ranked f(s;) by f, and
each (s;,j) vertex in the right part is ranked g(s;) by ¢g. So when one follows a path from a
leftmost vertex v; to a rightmost vertex vy, either one goes to a next vertex with the same
rank, or one visits a (s, j) vertex and then goes to a vertex with a rank lower by one. This
explains the only if direction of (ii). Also note that v; and vy cannot have the same even
ranks because in the middle of this process, one has to go to a vertex with an odd rank to
pass ¢(f,g). So the only if direction in (i) holds too. For the if directions of (i) and (ii),
suppose one wants to go from a leftmost vertex vy with rank r to a rightmost vertex vy with
rank 7/ and that either r > 7/ or r =/ € [2m]°¥. Let t be an odd rank such that r > ¢ > 7.
Then by the construction, one can go from v; to some vertex with rank ¢ in the left part,
pass through ¢(f, g) with rank ¢, and then continue to go to vy in the right part. Note that
in the process, if rank ever decreases, then an (sf,j) vertex must have been visited. So the
if directions of (i) and (ii) hold as well. Condition (iii) is obviously true.

s f(s) 032 d(f,21) e(f,g) dg,3,2) d(g,2,1) d(g,1,0)

————— N—————N————N—————N—————N—————-Pg(s) S

Sf — e o — Sf
so 3 2 S0
s1 2 1 s1
52 3 3 52
s3 1 0 s3

Figure 3: A-graph of wy,

For later purposes, we explicitly present our construction for wy . For a Q(m)-ranking
h, we define the state sets Rankp(r) = {q € S}, | r = h(q)} for r € [2m] and Odd}, to be the
union of Ranky,(r)’s with r € [2m]°. Also for each T C S, define letters in ¥, as Id(T) =
{(g.9) | 4 € T}, TtoF(T) = Id(S,)U{{g,57) | g € T}, FtoT(T) = Id(S,) U{{ss.q) | ¢ € T}
and ¢(f,9) = {{p,q) | f(p) = g(q) € [2m]*¥, p,q € S},}. For a Q(m)-ranking h and
r,r’ € [2m], we write d(h,r,r") to denote the word TtoF(Rankp(r)) - FtoT (Ranky(r")).
Then if r1,7r2...,7r; are the ranks in [2m] that are images of h in descending order, we let
up = d(h,r1,72)-d(h,72,73) - --d(h,r)—1,7)). Finally, wy 4 is defined to be us-c(f, g) ug.[]
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Lemma 4.4. Let fo, f1,..., fi be a list of Q(m)-rankings with | > 0, and let w be the word
W, fLWFL fo oo We_y f,- Also let p,q € Sw/w then:

(i) If fo(p) > fi(q) or fo(p) = fi(q) € [2m]°%, then p — q.
(i) If fo(p) > filq), then p %) q.

Proof. If | = 1, then w = wy, f,, and the properties follow from Theorem B3 trivially. So
we assume that [ > 1. Let ¢ be an odd rank such that fo(p) > ¢t > fi(¢). By definition
of Q(m)-ranking, there exists a state sequence q1,qs,...,q—1 such that f;(¢;) = t for all

1<i<i-1. Sog wjﬁf gi+1 for all 1 <4 <1 —1. Also because fo(p) >t > fi(q), we

Wiy, f1 W11 w N -
have p — ¢ and ¢g_1 — ¢. Concatenate these together, we have p — ¢, and (i) is

satisfied. If fo(p) > fi(q), then either fo(p) >t or t > fi(q), and hence either p w%;l q or

W_1,f1 w ey - .
qi—1 ?) q. Sop 7) q, and (ii) is satisfied. L]

n

Let L(n,m) be the number of different Q(m)-rankings and let L(n) be | max L(n,m).
m<n

From now on we fix m such that L(n) = L(n,m) and may simply write L for L(n). Clearly
there exists an infinite looping enumeration fo, fi,... of Q(m)-rankings such that f; # f;
for all i # j,0 <4,j < L, and f; = fjr4; for all 4,5 > 0. Our “difficult” w-word «, is then

the w-word wowy ... where w; = wy, ., for all 7 > 0.

Lemma 4.5. The w-word o, is not in L(FB,,).

Proof. If there is a successful run p of FB,, over a,,, then there is an infinite state sequence
qoq1 - - - € S¥ such that ¢; L @i+1 for all ¢ > 0 and g; %) @i+1 for infinitely many ¢ € N. So

by the construction of w; = wy, 1., fi(¢:) > fit1(gi+1) for all i > 0 and fi(q;) > fi+1(qi+1)
for infinitely many 7 € N. This is impossible since fy(qo) is finite.

Recall that Kupferman and Vardi’s construction uses distinct state sets to handle differ-
ent TL(m)-rankings. It turns out that if a complement automaton of F15,, does not have as
many states as Q(m)-rankings, it would be “confused” by «, together with another complex
w-word o derived from ay,.

Lemma 4.6. For each n > 1 and each w-automaton CA with less than L states, if p is a
run of CA over ay, & L(FBy,), then there is a run p' of CA over some w-word o/ € L(FB,,)
with Oce(p') = Oce(p) and Inf(p') = Inf(p).

Proof. Suppose that CA = (3, S, f, A, Acc) is an w-automaton with less than L states and
p=p0)p(l)--- € 5 is a run of CA over a,. Let ko, ki,... be a number sequence such
that kg = 0, ki11 — ki = length(w;) for all ¢ > 0. So the k;’s mark the positions where the

wy’s concatenate. Therefore p(k;) —= p(kiy1) for all i > 0. Define for each 0 < i < L the
nonempty set:

Qi ={q € S| p(kjr+i) = G for infinitely many j € N}.
Since CA has less than L states, there exists some state ¢ in QZ N Qj for some ¢ # 5,0 <

i,j < L. In particular one has, by definition, f; # f;. W.lo.g. thereis a ¢ € S;, with
fi(q) > f;(q). By definitions of ); and Occ(p), there is a t; € N sufficiently large such that



LOWER BOUNDS FOR COMPLEMENTATION OF w-AUTOMATA 11

p(ki,L+i) = q, every state in Occ(p) occurs in p0, ki, 14i], and that p(t') € Inf(p) for all
t' > ki, p+i. By definitions of Inf(p) and Qj, there is a sufficiently large to > t; such that
p(kty1+5) = G and every state in Inf(p) occurs in p(ks, 144, kty145]. Let u=wq ... wy 4i-1
and v = Wy, 14 - .. Wey4j—1. Finally let o/ be uv®.

Let g7 € S!, be such that fo(qr) = 2m—1> fi(q) = fi,1+i(q). By Lemmald, ¢/ — q.

Similarly, since fi,14i(q) = fi(q) > fj(q) = ftor+j(q), by Lemma B4 we have ¢ FL> q.
Together we have q; — ¢ FL> q FL> q... and o is accepted by FB,.

Finally, note that p" = p[0, k¢, 144) - (p[kt; L+ + 1, Kty 45])* is a run over ¢/, and we have
guaranteed that Occ(p') = Occ(p) and Inf(p') = Inf(p) as required. O

Theorem 4.7. For everyn > 1, L(n) < Cxpw(FBp) < Cnpw(n), where L(n) = 0((0.76n)™) |

Proof. By Lemma [L.6] every NBW that complements F,, must have at least L(n) states,
otherwise both «a;, and o/, would be accepted by FB,,, leading to contradiction. By a numer-
ical analysis of L(n) very similar to the one in [FKV06], we have that L(n) = 0((0.76n)™).
For completeness, we present the detail of the analysis in appendix. []

4.3. Alphabet. Following the proof of Theorem [4.7], one constructs full NBWs witnessing
the lower bound over a very large alphabet, which we rarely consider in practice. In this
subsection, we show that by using alphabet substitutions like in the proof of Theorem [B.1],
the NBWs witnessing the lower bound can be also over a fixed alphabet.

We say two words v and v from 3 are equivalent with respect to FB,,, or simply u ~ v,

if for all p,q € S/ (i) p — q iff p = ¢, and, (ii) p Fi> qiff p FL> g. Then if one replaces

each letter involved in the lower bound proof by an equivalent word over some alphabet I,
one shows that B, | I' also witnesses the same L(n) lower bound.

Lemma 4.8. There is an alphabet T' of size 7 such that for each pair (f,g) of Q(m)-rankings
for FB,, there is a word in I'* equivalent to wy 4.

Proof. Let T be the alphabet containing the following 7 letters:
rotate = {{si41,50) | 0 <1 < 1.~ 2} U {{s0,5n_2), (57,5}
clear0 = Id(S,\{so}),
swap0l = (1d(Sy,) U {(s0, 1), (51, 50)})\{(s0, S0), {s1,51)},
copy01 = 1d(S)) U {(s1,50)},
OtoF = I1d(Spn) U {(s0,5¢)},
Fto0 = I1d(Sp) U {(s¢,s0)},
e clearF = 1d(S)).
Only three types of letters are relevant in the proof of Theorem A7t TtoF (T), FtoT(T') and
c(f,g). For each T C S/, one can verify that:

o TtoF(T) ~ clearF - H (rotate’ - OtoF - rotate™ 177,
s; €T
o FtoT(T) =~ H (rotate® - Fto0 - rotate™ 17%) - clearF.
s; €T
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As to ¢(f, g), the task is a bit more complicated, and let us view it in a different way. For a
word w, define set r; = {i|s; — 57,0 <i <n— 1} for every 0 < j < n — 1. Clearly for two
words u and v, the following are equivalent:

o p—qiff p s qforallp,geS.

o rj(u) =rj(v) forall0 <j<n—1
So it is sufficient to find for each ¢(f, g) a word w over {rotate, clear0, swap01, copy01} such
that rj(w) = r;j(c(f,g)) forall0 <j <n—1.

Appending each letter a to the end of a word w changes the content of the r;(w)’s.

Consider these three types of words in I'*:

rotate’ - swap01 - rotate™ 1= ifi4+1=3j
(swap;iy1 - SWaPi41i42 - -+ - SWaAP;j_1,5) ifit1<j
(1) swapij = -(swapj;-1-swapjzj2---- - swapiit1)
swapj,; ifi>g
the empty word ifi=jy
swap01 - copy01 - swap01 ifi=1andj=0
(2) copyi; = Swama - . 01 - . . herwi
Do, - swapi ;- copy0l - swapy j - swapy ; otherwise

(3) clear; = swapy,; - clear0 - swapg ;
One can verify that appending a swap; ; to w exchanges the content of r;(w) and r;(w),
appending a copy; ; sets ri(w) to be r;(w) U r;j(w), and appending a clear; empties r;(w).
Obviously these three operations allow one to reach arbitrary (r;(w))o<i<n—1 configurations,
including (7(¢(f, 9)))o<i<n—1, as needed. O

So B, = FB, | T, the restriction of B, to the alphabet I, satisfies that Cxpw (B,,) >
L(n), and we have:

Theorem 4.9. For each n > 1, there exists an NBW B, with n states over a seven letters
alphabet such that L(n) < Cxpw(By).

4.4. Other Transformations. Surprisingly, our lower bound on Biichi complementation
extends to almost every complementation or determinization transformation of nondeter-
ministic w-automata, via a reduction making use of Lemma [4.0]

Theorem 4.10. For each n > 1 and each common type T1 of nondeterministic w-automata,
there exists a T1 automaton A, with n states over a fized alphabet such that:

(i): For each common type Ta, every To automaton that complements L(A,) has at
least L(n) states.

(ii): For each common type Ta that is not Biichi nor generalized B’L’ichE, every deter-
ministic T automaton that accepts L(Ay,) has at least L(n) states.

Proof. For each common type 77, by Fact 2] there is a 7; automaton A, equivalent to
NBW FB,, with also n states [L6d99]. (i) Suppose that an automaton CA of a common
type accepts LE(A,)= LY (FB,). Since acceptance of w-automata of a common type only
depends on the Inf set of a run, the claim can be obtained by applying Lemma 6] (ii)
If some deterministic 72 automaton with less than L(n) states accepts L£(A,,), and Tz is
not Biichi or generalized Biichi, then by Fact 2] there is a deterministic w-automaton of

SDeterministic Biichi or generalized Biichi automata are strictly weaker in expressive power than the
other common types of w-automata.
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a common type (not necessarily 73) complementing £(.A,) with also less than L(n) states
|IL6d99], contrary to (i). Finally, the alphabet of A,, can be fixed like in the proof of Theorem
49 (]

For the transformations involved in this theorem, less than half already had nontrivial
lower bounds like n! by Michel’s proof or the bunch of proofs by Léding [L5d99], while
the others only have trivial or weak 2%(™ lower bounds. These bounds are summarized in
Section

5. COMPLEMENTATION OF GENERALIZED BUCHI AUTOMATA

We turn now to NGBW complementation. For NGBWs, state complexity is prefer-
ably measured in terms of both the number of states n and index k, where index measures
the size of the acceptance condition. By applying full automata, doing a hard case anal-
ysis for the construction in [KV05b] based on GC-ranking, and using a generalization of
Michel’s technique, we prove an (€(nk))"™ lower bound, matching with the (O(nk))™ bound
in [KV05b]. This lower bound also extends to the complementation of Streett automata and
the determinization of generalized Biichi automata into Rabin automata.

5.1. Standard Full Generalized Biichi Automata FB5,, ;. We first define full NGBW
automata which we will show to witness our desired lower bound.

We say a generalized Biichi acceptance condition Acc = {Fy, Fy, ..., Fi} is minimal, if

no Fj, F; pair with ¢ # j satisfies that F; C Fj;. Note that if such a pair exists, F} can
be removed from Acc without altering the w-language defined. So we will only consider
minimal acceptance conditions. By the Sperner’s theorem in combinatorics [Lub66], if Acc
is minimal, then k& < (Ln?ZJ)'
Definition 5.1. For n > 1 and 1 < k < (L(n71_1)1/2j)7 the standard full NGBW FB,, ;. =
(X0, Sny In, Ay, Accp i) is an NGBW with |S,,| = n, I, = S, and a minimal acceptance
condition Acc,, . Let s, ¢ be one of its state. We denote S, \{s,s} as S},. Accy i is defined
as an arbitrary fixed set {F1, Fy, ..., Fx} C P(S),) such that: (i) |F;| = [(n —1)/2] for each
F; € Accp . (ii) For each ¢ € S}, the number of F;’s in Accy, i, that do not contain ¢ is at
least |k/2].

We must show that there is really such a minimal Accy, , satisfying (i) and (ii). First
let Accy, i be a collection of arbitrary k distinct subsets of S, of [(n — 1)/2] states and
thus (i) is satisfied. Define x, for each ¢ € S}, as the number of F;’s in Accy, ;, that contain

k
q. By double counting, Y x4 = > |Fi|.- Soif [xp — xq| < 1 for all p,q € S}, then for
q€eSsy, i=1

all ¢ € 57, xq < (W} < [k/2] and (ii) is also satisfied. Suppose x, — x4 > 1 for
some p,q € S,,. A little thought shows that there is an F; € Acc, ) such that p € F; and
(Fi\{p}) U{q} ¢ Acc, . Replace F; in Acc,y by (F;\{p}) U {q} and we make |x, — x4
strictly smaller. Repeat this till |x, — x4 < 1 for all p,¢q € S},. Then condition (ii) is also
satisfied.
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5.2. A Generalization of Michel’s Technique. We generalize the technique used in
Michel’s proof for Biichi complementation [Mic88| so that a tighter analysis of NGBW
complementation becomes possible.

Definition 5.2. A generalized co-Biichi segment (GC-segment for short) w of an NGBW
B is a word such that w* ¢ L£(B). Two GC-segments w1, ws of B conflict if all w-words in
the form w? (wiw52)* k; > 0 are in £(B). A set W of GC-segments of B is a conflict set
for B if every two distinct GC-segments in W conflict.

Lemma 5.3. If W is a conflict set for NGBW B, then Cngw(B) > |W/|.

Proof. Suppose that some NGBW CB = (%, S.I,A, F) complements B, then for each GC-
segment w of B in W, CB accepts w*. For every two distinct GC-segments wi,wy € W,
let I; = length(wy), la = length(ws), and let p(0)p(1)... and p'(0)p'(1)... be CB’s two
successful runs over wy and w§ respectively. Define

Q1={Ge S| pli-ly) = ¢ for infinitely many i € N}
and A A

Q2=1{G€ S |p(i-ly) =g for infinitely many i € N}.
Clearly Ql and Qg are nonempty. It suffices to show that Ql N Qg = (), since it implies that
the number of states of CB is no less than the number of GC-segments in W.

Suppose by contradiction that some ¢ is in Q1N Qo. By definition of Ql, there is a
sufficiently large ko > 0 such that p(kol1) = ¢ and for each ¢ > koly, p(i) € Inf(p). So
ko

p[0, kolq] is a finite run over w'fo from some initial state §; of CB to ¢, i.e., qr 3 q. By
definitions of @, and Inf(p), there is a sufficiently large k1 > 0 such that p((ko +k1)l1) = ¢
and in addition p[k - I1, (ko + k1)l1] is a finite run from § to § over w'' which visits every
state in Inf(p). Similarly we have that for some k{, and ko > 0, p'[kyle, (ki + k2)l2] is a
finite run from ¢ to ¢ over w§2 which visits exactly every state in Inf(p"). We construct a
new run as follows:

Prew = P[0, koly] - (p[k‘oh + 1, (ko + k1)la] - pl[k‘élz + 1, (/-{36 + k‘2)l2])w )

which is a run over o = w (W wh2)* with Inf(ppew) = Inf(p) UInf(p'). As p and p' are
both successful, pnew is also successful by definition of generalized Biichi automata. So « is
accepted by CB. However, as wy and wo conflict, a is accepted by B too, contradiction. []

Corollary 5.4. If W is a conflict set for NGBW B, then every NSW (nondeterministic
Streett automaton) that complements B has at least |W| states.

Proof. Streett automata also satisfy that if p and p’ are both successful runs, then every
TUD Prey Satisfying Inf(pnew) = Inf(p) U Inf(p') is also successful. So the same proof as
of Lemma [5.3] applies here. Il

5.3. A Conflict Set for FB, ;. It remains to define a large conflict set for FB,, ;. The
following concept of pseudo generalized co-Biichi level ranking is adapted from the concept of
generalized co-Biichi level ranking in the NGBW complementation construction in [KV05b].

Definition 5.5. A pseudo generalized co-Biichi level ranking (PGCL-ranking for short) for
FB, is a pair (f,g) such that f is a bijection from S}, to {1,...,n—1} and g is a function
from S, to {1,2,...,k} such that each ¢ € S, is not contained in Fy .
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By definition of FB, i, there are at least |k/2] choices for the value of g(q) for each
q € S'. So there are at least (n — 1)! x (|k/2])"~! many different PGCL-rankings, which is
(Q(nk))™ by Stirling’s formula.

Let G be a set of state sets. In the following, we use notations in the form p Q%B q to

denote that there is a finite run over w from p to ¢ such that the run visits every state set
Fin G, but it does not visit B. Either G or B will be omitted if is empty. In the following,
we set F ={F,..., Fy}.

Lemma 5.6. For each PGCL-ranking (f,g), there exists a word segs, with the properties
that for all p,q € S, :

(i): If p = q, i.e., f(p) = f(q), then there is a unique finite run of FBy, over segs g
Segf’g

F\Ey(p) F(p)
(ii): If f(p) > f(q), then there is a unique finite run of FBy i over segsq from p to q,

and it is in the form p S%g q.

from p to q, and it is in the form p

(iii): If f(p) < f(q), then there is no finite run of FBy i from p to q over segyq.

Proof. For notational convenience, we use notation like [@pgﬁﬁ—éﬁ’ _>p5] to denote letter

{{g,q9) | ¢ € S.,} U{(p1,p2) \{(P3,P4), (P5,p5)}. We also define a choice function ¢(i,p) for
each ¢ € {1,...,k} and state p € S}, with g(p) # ¢ such that ¢(i,p) equals to some arbitrary
fixed element in F;\Fy .

For each r € {1,...,n — 1}, let p € S/, be such that f(p) = r, and define:

I [@p—m, 9p—>p,H@8—>p, ©p = p,

Uy, =
" ®s = Spp, Os— s Bspf =S, ©s—s

i#g(p),1<i<k

s=c(i,p)
(Recall that IIU means the concatenation of all words in U in lexicographical order.) Then
for each ¢ € S/, there is a unique finite run over u, from ¢ to ¢, and it is in the form

Ur

qif p=ygq, orgq - q otherwise.
FNEg )+ Fy(p) Fy(p)
For each r = {2,3,...,n— 1}, let p,q,s € S}, be such that f(p) =7, f(¢) =r—1and s

be an arbitrary state in Fy ). Define:

v — ®p — s, @s%s,}[@s%q, os —+ s,
e

Ds = Spf Dsnf — s

Then there is a unique finite run over v, from p to ¢, and it is in the form p F”—’”) q. Also
g(p)

for every ¢’ € SJ,, there is a unique finite run over v, from ¢’ to ¢/, and it is in the form

/ Ur !

qa — q.

YEy(p)

Finally let segs 4 be up_1vn_1uUp—2v,—2 ... vou1.

To see that segy 4 satisfies the required properties, first note that for all p € S}, p ';—T> P
“Fg(p)

and p ';—’"> p. For property (i), for every p € S), with f(p) = r, there exists a unique finite

“Fg(p)
run over segy 4, and it is in the form:

Un—1Un—1---Ur4+1Ur+1 Ur VrUr—1...02U1

p
Wy (p) ]:\lqb(p)vll?g(p) Wy (p)
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that is, p S N p as required. For property (ii), for every p,q € S}, with f(p) =r1 >

FANFg(p): Fy(p)
ro = f(q), let s, € S/, be such that f(s,) = r for each 1 > r > ro. There is a unique finite
run over segy 4, and it is in the form:

Un—1Un—1.--Ur  +1Vry+1 Urq Urq
p e | » P Sr1—1
F\Fy(p) > Fg(p) Fy(p)
Ury—1Ury—1 Urg+1Urg+1 Urg ... V2U1
—————— Sp =2 Spotl q q,
. seg . oy .
that is, p 7,39 q as required. Property (iii) is easy to verify. []

Remark 5.7. From the proof of the above lemma, it follows that an alphabet of size
polynomial in n is sufficient to describe {segs 4|f, g are PGCL-rankings}.

Lemma 5.8. For each PGCL-ranking (f,g) for FB, , word segsq is a GC-segment of
FBy k-

Proof. Let | = length(segyq), and let p = p(0)p(1)... be a run of FB, j over segf  in the

form p(0) iy p(1) iy p(21).... Note that by the construction of segy 4, p(i-1) € S}, and

f(p(i-1)) is defined for all ¢ > 0. Then by property (iii), f(p(0)) > f(p(l)) > f(p(20)) > ...
and then for some ¢t € N, f(p(t'-1)) = f(p(t-1)) for all ¢’ > ¢, that is p(t' - 1) = p(t - 1)
for all ¢ > ¢ since f is a bijection. Let j = g(p(t - 1)). By property (i), F} is not visited
in pft"- 1, (t' +1) -] for all ' > t. So Inf(p) N Fj = 0 and hence seg%, is not accepted by
FBy, k- ]
Lemma 5.9. The set W = {segs4 | (f,g) is a PGCL-ranking for FB, 1} is a conflict set
of size (Q(nk))™ for FBy k.

Proof. Suppose (f1,g1) and (f2, g2) are two distinct PGCL-rankings. Let w; = segy, 4, and
wo = segf, g,- Lhere are two cases.

Case: I: f1 and fy are two different bijections. So there exist p,q € S/, such that

m—1

. w
fip) > fi(g) and fo(p) < fo(q). By property (i), p == p, ¢ —» q and so p ==
m—1
D, q Z, q for all m > 0. By property (ii), p %) q and ¢ % p. So for all m > 0,

wi™ w .
D 71> q and ¢ 72> p. Now for every w-word « in the form w’fo (w’flwlgz)“, k; >0, we

ko kq ko kq ko
wy wy Wy wy Wy .
construct a successful run over  as p — p 7) q 7) P 7) q 7) p.... So «is

accepted by FB, j and wy conflicts with ws.
Case: II: f; = fo but g1 # g2. Let p € S!, be such that g1(p) # g2(p). By property (i),

ky, k2
w1 w2 Wy~ Wy
pand p ————— p. As g1(p) # g2(p), p ——— p for every
}—\Fg1(p)’!Fg1(p) ]:\ng(p)7!F92(p) F
k1,ks > 0. Now for every w-word « in the form w]fo (w]f1 wé”)“, k; > 0, we construct
ko k1 ko k1 ko
Wy Wy~ Wy Wy~ Wy -
a successful run over v as p — p = P = p.... So « is accepted by

F By and wy conflicts with ws.

Finally, the size of W is just the number of different PGCL-rankings for FB3,, ;,, which is
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5.4. Results.
Theorem 5.10. Forn >1 and 1 <k g(wﬁ_l)lm), CnaBw (n, k) = (Q(nk))™.
Proof. The theorem follows from Lemma [5.3] and Lemma directly. ]

This matches neatlyld with the (O(nk))™ construction in [KV05b], and thus settles the
state complexity of NGBW complementation. Like Michel’s result, this lower bound can
be extended to NSW complementation and the determinization of NGBW into DRW (state
complexity denoted by Dngsw—DrW (1, k)):

Theorem 5.11. For alln > 1 and 1 < k S(L(nri_l)l/gj); Cnsw(n, k) = (Q(nk))" and
DneBw—prw (1, k) = (Q(nk))".

Proof. By Fact [ZI]there is an NSW &, ;, equivalent to each FB,, j, with the same number of
states and the same index. By Corollary 5.4land Lemma [5.9] every NSW that complements
FBy 1 has (Q(nk))" states. So Onsw(Sp k) = ((nk))" and Cnsw(n, k) = (Q(nk))".
Suppose by contradiction that R is a DRW with less than |W| states that accepts
L(FBy 1), then by Fact 2] there is a DSW S complementing FB5,, j, with the same number
of states as R, contrary to Corollary 5.4l So Dngew—Drw (1, k) = (Q(nk))™. O

Remark 5.12. For the above lower bound, by Remark (5.7 the alphabet involved in the
proof is of a size polynomial in n. It seems difficult to fix a constant alphabet, but we
conjecture this to be possible if we aim at a weaker bound like 2(nlognk),

6. SUMMARY

In the following table, we briefly summarize our lower bounds. Here “Any” means
any common type of nondeterministic w-automata (and the two Any’s can be different).
“co.” means complementation and “det.” means determinization. “L.B.” /“U.B.” stands for

lower /upper bound. Weak 224) Jower bounds are considered trivial.

# Transformation Previous L.B. Our L.B. Known U.B.

1| NBW 22 NBW | Q((0.36n)") [Mic88] | Q((0.76n)™) | O((0.97n)™) [FKV06]
2 Anyco'i()iet' Any | trivial or n! [L3d99] | 29%(nlogn) -

3 | NBW &% DMW trivial’ 28(nlogn) 20(nlogn) [GafR)

4 | NRW % NRW trivial® 2ftnlogn) | 9O (nklogn) [KY()5a]
5 | NGBW 2 NGBW | Q((n/e)") [Mic88] | (Q(nk))" (O(nk))"™ [KV0O5b)
6 | NSW = NSW Q((n/e)”) [Lod99] | (Qnk))™ | 200Fkloe(k)) [KV(5a]
7 | NGBW &% DRW | Q((n/e)") [Lod99] | (Qnk))m | 20(rklog(nk) [Suf0)

In particular, lower bound #2 implies that the 2%(1°8™) blow-up is inherent in the
complementation and determinization of nondeterministic w-automata, corresponding to
the 2™ blow-up of finite automata. The special case #3 justifies that Safra’s construction is
optimal in state complexity for the determinization of Biichi automata into Muller automata.

6The gap hidden in the notation (©(nk))" can be at most ¢ for some ¢, while the gap hidden in the
more widely used notation 2°(™1°87%) can be as large as (nk)™.
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We single out this result because this determinization construction is touched in almost every
introductory material on w-automata, and its optimality problem was explicitly left open in
[L599].

For many of these transformations, it is still interesting to try to narrow the complexity
gap, and here we discuss three of them. First, the complexity gap of Biichi complementation,
although significantly narrowed, is still exponential. By analyzing the difference between
the lower and upper bounds, one can find that the gap is mainly caused by the use of the
state component O in [FKV06| to maintain the states along paths that have not visited
an odd vertex since the last time O has been empty. So we should investigate how many
states are really necessary for such a purpose. Second, for Streett complementation, the gap
is still quite large. We feel that efforts should be first taken to optimize the construction
in [KV05a]. Third, it is interesting to see if an Q(n™) or similar lower bound exists for
the determinization of NBWs into Muller or Rabin automata. Such would imply that
determinization is harder than complementation for w-automata, unlike the case of automata
over finite words. Of course, one can also work on the reverse direction, trying to design
ranking based constructions for determinization, which could have good complexity bound
as well as better applicability to practice.

Finally, we remark that the full automata technique has been quite essential in obtaining
our lower bound results. It is also possible to extend the full automata technique to other
kinds of automata, like alternating automata or tree automata. We hope that the full
automata technique will stimulate the discovery of new results in automata theory.

Acknowledgement. 1 thank Orna Kupferman and Moshe Vardi for the insightful discussion
and the extremely valuable suggestions. I thank Enshao Shen for his kind support and
guidance. I also thank the anonymous referees for the detailed and useful comments.
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ApPPENDIX A. NUMERICAL ANALYSIS OF L(n)

In this section, we prove that L(n) = ©((0.76n)™). The analysis is very similar to the
one in [FKVO06], but we still present it here for completeness. In the following, we write
f(n) = g(n) if two functions differ by only a polynomial factor in n. For example, by
Stirling’s formula, n! ~ (n/e)™.

Let T'(n,m) denote the number of functions from {1...n} onto {1...m}. The following
estimate of T'(n,m) is implicit in Temme [Tem93|:

Lemma A.1l. [Tem93|For 0 < 8 < 1, let x be the positive real number solving fx =1—e™ %,

andleta = —Inz+BIn(e®*—1)—(1-6)+(1-8)In(1/8-1). Then T(n,|Bn]) ~ (M [B3]n)",
1-8

where M [B] = e2P (%)

To prove a lower bound for L(n), we first express L(n,m) in the following form:

Lemma A.2. L(n,m) = Y120 (") T(t,m)m"~ 1=t .

t=m t

Proof. To count the number of different QQ(m)-ranking, we fix ¢, which denotes the number
of states that have odd ranks. Then there are (";1) ways to choose which ¢ states have
odd ranks, and there are T'(t,m) ways to assign these ¢ states the m different odd ranks.
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Moreover, for each of the other n — 1 — ¢ states in S),, there are m ways to choose which
even rank it is assigned. []

Theorem A.3. L(n) = Q((¢n)"), where ¢; = 0.76.

Proof. By the previous lemma, L(n) = max :‘:_nlq (";1)T(t,m)m”_1_t. Since we do

not care about polynomial factors, Z?:_nll can be replaced by ,_max , and we can replace

m! by (m/e)™ and (";1) by ﬁ as well. Also let v = m/n and 8 = t/n, then we

have: ]
L(n) =~ 0<¥{135<<1n"(6n)_5”((1 _ ﬁ)n)—(l—ﬁ)n . (M[V/ﬁ]ﬁn)ﬁn . (,yn)n—l—,é’n
~  max_(A(B,7)n)", where h(8,7) = (1 )7 (M[/8])"7' .
<y<B<1

Computed by the Mathematica software, h(8,v) = 0.7645 when § = 0.7236,v = 0.5744.
So (0.76n)™ is an asymptotic lower bound for L(n).

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.



	1. Introduction
	Full Automata and Sakoda and Sipser's Languages

	2. Basic Definitions
	3. The Full Automata Technique
	4. Büchi Complementation
	4.1. Kupferman and Vardi's Construction
	4.2. Lower Bound
	4.3. Alphabet
	4.4. Other Transformations

	5. Complementation of Generalized Büchi Automata
	5.1. Standard Full Generalized Büchi Automata FBn,k
	5.2. A Generalization of Michel's Technique
	5.3. A Conflict Set for FBn,k
	5.4. Results

	6. Summary
	References
	Appendix A. Numerical Analysis of L(n)

