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Abstra
t. In this paper, we �rst introdu
e a lower bound te
hnique for the state 
om-

plexity of transformations of automata. Namely we suggest �rst 
onsidering the 
lass of

full automata in lower bound analysis, and later redu
ing the size of the large alphabet

via alphabet substitutions. Then we apply su
h te
hnique to the 
omplementation of non-

deterministi
 ω-automata, and obtain several lower bound results. Parti
ularly, we prove

an Ω((0.76n)n) lower bound for Bü
hi 
omplementation, whi
h also holds for almost ev-

ery 
omplementation or determinization transformation of nondeterministi
 ω-automata,

and prove an optimal (Ω(nk))n lower bound for the 
omplementation of generalized Bü
hi

automata, whi
h holds for Streett automata as well.

1. Introdu
tion

The 
omplementation problem of nondeterministi
 ω-automata, i.e. nondeterministi


automata over in�nite words, has various appli
ations in formal veri�
ation. For example

in automata-theoreti
 model 
he
king, in order to 
he
k whether a system represented by

automaton A1 satis�es a property represented by automaton A2, one 
he
ks that the inter-

se
tion of A1 with an automaton that 
omplements A2 is an automaton a

epting the empty

language [Kur94, VW94℄. In su
h a pro
ess, several types of nondeterministi
 ω-automata

are 
on
erned, in
luding Bü
hi, generalized Bü
hi, Rabin, Streett et
., and the 
omplexity

of 
omplementing these automata has 
aught great attention.

The 
omplementation of Bü
hi automata has been investigated for over forty years

[Var07℄. The �rst e�e
tive 
onstru
tion was given in [Bü
62℄, and the �rst exponential


onstru
tion was given in [SVW85℄ with a 2O(n2)
state blow-up (n is the number of states

of the input automaton). Even better 
onstru
tions with 2O(n logn)
state blow-ups were

given in [Saf88, Kla91, KV01℄, whi
h mat
h with Mi
hel's n! = 2Ω(n logn)
lower bound
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[Mi
88℄, and were thus 
onsidered optimal. However, a 
loser look reveals that the blow-up

of the 
onstru
tion in [KV01℄ is (6n)n, while Mi
hel's lower bound is only roughly (n/e)n =
(0.36n)n, leaving a big exponential gap hiding in the asymptoti
 notation

1

. Motivated by

this 
omplexity gap, the 
onstru
tion in [KV01℄ was further re�ned in [FKV06℄ to (0.97n)n.
On the other hand, Mi
hel's lower bound was never improved.

For generalized Bü
hi, Rabin and Streett automata, the best known 
onstru
tions are

in [KV05b, KV05a℄, whi
h are 2O(n lognk)
, 2O(nk logn)

and 2O(nk lognk)
respe
tively. Here

state blow-ups are measured in terms of both n and k, where k is the index of the input

automaton. Optimality problems of these 
onstru
tions have been vastly open, be
ause only

2Ω(n logn)
lower bounds were known by variants of Mi
hel's proof [Löd99℄.

What remains missing are stronger lower bound results. Tighter lower bounds usually

lead us into better understanding of the intri
a
y of the 
omplementation of nondeterministi


ω-automata, and are the main 
on
ern of this paper. Su
h understanding 
an suggest

methods to further optimize the 
onstru
tions, or to 
ir
umvent those di�
ult 
ases in

pra
ti
e.

To understand why we have so few strong lower bounds, we observe that at the 
ore of

almost every known lower bound is Mi
hel's result, whi
h was obtained in the traditional

way. That is, one �rst 
onstru
ts a parti
ular family of automata (An)n≥1, and then proves

that 
omplementing ea
h An requires a large state blow-up. The An+1 of Mi
hel's automata

family is depi
ted in Figure 1. Although ea
h An+1 has a simple stru
ture, it is not straight-

forward to see what language it a

epts, and nor is it 
lear at all how we 
an work with this

automaton for lower bound.

sf

s1 s2 sn

1 . . . n, ♯ 1 . . . n, ♯ 1 . . . n, ♯

1
2

n

Figure 1: Mi
hel's Automata Class

In many 
ases, identifying su
h an automata family is di�
ult, and is the main obsta-


le towards lower bounds. In this paper, we propose a new te
hnique to 
ir
umvent this

di�
ulty. Namely, we suggest �rst 
onsidering the family of full automata in lower bound

analysis, and later redu
ing the size of the large alphabet via alphabet substitutions. A

simple demonstration of su
h te
hnique is presented in Se
tion 3.

With the help of full automata, we tighten the state 
omplexity BC(n) of Bü
hi 
om-

plementation from (0.36n)n ≤ BC(n) ≤ (0.97n)n to (0.76n)n ≤ BC(n) ≤ (0.97n)n. Sur-

prisingly, this (0.76n)n lower bound also holds for every 
omplementation or determinization

transformation 
on
erning Bü
hi, generalized Bü
hi, Rabin, Streett, Muller, and parity au-

tomata. As to the 
omplementation of generalized Bü
hi automata, we prove an (Ω(nk))n

lower bound, mat
hing with the (O(nk))n upper bound in [KV05b℄. This lower bound also

holds for the 
omplementation of Streett automata and the determinization of generalized

1

In 
ontrast, for the 
omplementation of nondeterministi
 �nite automata over �nite words, the 2n blow-

up of the subset 
onstru
tion [RS59℄ was justi�ed by a tight lower bound [SS78℄, whi
h works even if the

alphabet 
on
erned is binary [Jir05℄.
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Bü
hi automata into Rabin automata. A summary of our lower bounds is given in Se
tion

6.

Full Automata and Sakoda and Sipser's Languages. It turns out that the notion

of full automata is similar to Sakoda and Sipser's languages in [SS78℄. Their language Bn

a
tually 
orresponds to the ∆-graphs of the words a

epted by some full automaton. Also as

pointed to us by Christos A. Kapoutsis, the te
hnique of alphabet substitution was somewhat

impli
it in Sakoda and Sipser's paper (but presented in a somewhat obs
ure way, refer to

the paragraph before their Theorem 4.3.2). So the full automata te
hnique is more like a

new treatment of some te
hniques in the Sakoda and Sipser's paper, rather than a totally

new invention. Compared to Sakoda and Sipser's languages, the notion of full automata

enjoys a simple de�nition and is very handy to use. It is also more readily to be extended

to other kinds of automata like alternating automata.

For un
lear reasons, Sakoda and Sipser's languages were rarely applied to �elds other

than 2-way automata after their paper. We hope that our treatment will make a 
lear

exposition of the te
hniques and demonstrate their usefulness in problems on automata over

one-way inputs as well.

2. Basi
 Definitions

A (nondeterministi
) automaton is a tuple A = (Σ, S, I,∆, ∗) with alphabet Σ, �nite
state set S, initial state set I ⊆ S, transition relation ∆ ⊆ S × Σ × S and ∗ some extra


omponents. Parti
ularly A is deterministi
 if |I| = 1 and for all p ∈ S and a ∈ Σ,
|{q ∈ S | 〈p, a, q〉 ∈ ∆}| ≤ 1.

For a word w = a(0)a(1) . . . a(l−1) ∈ Σ∗
with length(w) = l ≥ 0, a �nite run of A from

state p to q over w is a �nite state sequen
e ρ = ρ(0)ρ(1) . . . ρ(l) ∈ S∗
su
h that ρ(0) = p,

ρ(l) = q and 〈ρ(i), a(i), ρ(i + 1)〉 ∈ ∆ for all 0 ≤ i < l. We say that ρ visits a state set T if

ρ(i) ∈ T for some 0 ≤ i ≤ l. We write p
w

−→ q if a �nite run from p to q over w exists, and

p
w

−→
T

q if in addition the run visits T .

A (Nondeterministi
) Finite Word Automaton (NFW for short) is an automaton A =
(Σ, S, I,∆, F ) with �nal state set F ⊆ S. A �nite word w is a

epted by A if there is a

�nite run over w from an initial state to a �nal state. The language a

epted by A, denoted

by L(A), is the set of words a

epted by A, and its 
omplement Σ∗\L(A) is denoted by

LC(A).
For an ω-word α = α(0)α(1) · · · ∈ Σω

, i.e., an in�nite sequen
e of letters in Σ, a (in�nite)
run of A over α is an in�nite state sequen
e ρ = ρ(0)ρ(1) · · · ∈ Sω

su
h that ρ(0) ∈ I and

〈ρ(i), α(i), ρ(i + 1)〉 ∈ ∆ for all i ≥ 0. We let Occ(ρ) = {q ∈ S | ρ(i) = q for some i ∈ N},
Inf(ρ) = {q ∈ S | ρ(i) = q for in�nitely many i ∈ N}, and write ρ[l1, l2] to denote the in�x

ρ(l1)ρ(l1 + 1) . . . ρ(l2) of ρ.
An (nondeterministi
) ω-automaton is an automaton A = (Σ, S, I,∆, Acc) with a

ep-

tan
e 
ondition Acc, whi
h is used to de
ide if a run ρ of A is su

essful. There are many

types of ω-automata 
onsidered in the literature [Tho90℄. Here we 
onsider six of the most


ommon types:

• Bü
hi automaton, where Acc = F ⊆ S is a �nal state set, and ρ is su

essful if

Inf(ρ) ∩ F 6= ∅.
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• generalized Bü
hi automaton, where Acc = {F1, . . . , Fk} is a list of �nal state sets,

and ρ is su

essful if Inf(ρ) ∩ Fi 6= ∅ for all 1 ≤ i ≤ k.
• Rabin automaton, where Acc = {〈G1, B1〉, . . . , 〈Gk, Bk〉} is a list of pairs of state

sets, and ρ is su

essful if for some 1 ≤ i ≤ k, Inf(ρ)∩Gi 6= ∅ and Inf(ρ)∩Bi = ∅.
• Streett automaton, where Acc = {〈G1, B1〉, . . . , 〈Gk, Bk〉} is a list of pairs of state

sets, and ρ is su

essful if for all 1 ≤ i ≤ k, if Inf(ρ)∩Bi 6= ∅, then Inf(ρ)∩Gi 6= ∅.
• Muller automaton, where Acc = F ⊆ Powerset(S) is a set of state sets, and ρ is

su

essful if Inf(ρ) ∈ F .

• parity automaton, where Acc is a mapping c : S → {0 . . . l}, and ρ is su

essful if

min{c(q)|q ∈ Inf(ρ)} is even.

An ω-word α is a

epted by A if it has a su

essful run. The ω-language a

epted by A,

denoted by L(A), is the set of ω-words a

epted by A, and its 
omplement Σω\L(A) is

denoted by LC(A). The number k, if de�ned, is 
alled the index of A.

We refer to the above six types of ω-automata as the 
ommon types. Following the


onvention in [KV05a℄, we will use a
ronyms like NBW, NGBW, NRW et
. to refer to

Nondeterministi
 Bü
hi/generalized Bü
hi/Rabin/et
. Word automata. Two simple fa
ts

about these 
ommon types of ω-automata are useful for us:

fA
t 2.1. [Löd99℄(1) For every NBW A and every 
ommon type T , there exists an T
automaton A′

with the same number of states su
h that A′
is equivalent to A.

(2) For every deterministi
 ω-automaton A of a 
ommon type T whi
h is not Bü
hi

nor generalized Bü
hi, there exists a deterministi
 ω-automaton A′
of a 
ommon type (not

ne
essarily also T ) with the same number of states (and index, if appli
able) su
h that A′


omplements A.

To visualize the behavior of automata over input words, we introdu
e the notion of ∆-

graphs. If A = (Σ, S, I,∆, ∗) is an automaton, then for a �nite word w = a(0)a(1) . . . a(l −
1) ∈ Σ∗

of length l, or an ω-word w = a(0)a(1) · · · ∈ Σω
of length l = ∞, the ∆-graph of w

under A is the dire
ted graph GA
w = (V A

w , EA
w ) with vertex set V A

w = {〈p, i〉 | p ∈ S, 0 ≤ i ≤
l, i ∈ N} and edge set EA

w de�ned as: for all p, q ∈ S and 0 ≤ i < l, 〈〈p, i〉, 〈q, i + 1〉〉 ∈ EA
w

i� 〈p, a(i), q〉 ∈ ∆. For a subset T of S, we say that a vertex 〈p, i〉 is a T -vertex if p ∈ T . By

de�nition p
w

−→ q i� there is a path (in the dire
ted sense) in GA
w from 〈p, 0〉 to 〈q, length(w)〉

and p
w

−→
T

q if furthermore the path visits some T -vertex.

Finally we de�ne the state 
omplexity

2

fun
tions. Assume that T is either NFW or

some 
ommon type of ω-automata. Then for a T automaton A, CT (A) is de�ned as the

minimum number of states of a T automaton that 
omplements A, i.e., a

epts LC(A). For
n ≥ 1, CT (n) is the maximum of CT (A) over all T automata with n states. If indi
es are

de�ned for T , then CT (n, k) is the maximum of CT (A) over all T automata with n states

and index k.

2

In some literature, instead of merely 
ounting the number of states, sizes of transition relations et
. are

also taken into a

ount to better measure the sizes of automata. Here we prefer state 
omplexity be
ause it

is a measure easier to study, and its lower bound results usually imply lower bounds on �size� 
omplexity, if

the automata witnessing the lower bound are over a not too large alphabet.
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3. The Full Automata Te
hnique

In the re
ently emerging area of state 
omplexity (see [Yu05℄ for a survey) or in the

theory of ω-automata, we often 
on
ern proving theorems of su
h �avor:

Theorem 3.1. [Jir05℄ For ea
h n ≥ 1, there exists an NFW An with n states over {a, b}
su
h that CNFW(An) ≥ 2n.

In other words, we want to prove a lower bound for the state 
omplexity of a transfor-

mation (NFW 
omplementation in this 
ase, 
an be determinization et
.), and furthermore,

we hope that the automata family witnessing the lower bound ((An)n≥1 in this 
ase) is

over a �xed small alphabet. Su
h 
laims are usually di�
ult to prove. The apparently easy

Theorem 3.1 was not proved until 2005 by a very te
hni
al proof in [Jir05℄

3

, after the e�orts

in [SS78, Bir93, HK02℄. To understand the di�
ulty involved, we �rst review the traditional

approa
h people attempt at su
h results:

Step I: Identify an automata family (An)n≥1 with ea
h An having n states.

Step II: Prove that to transform ea
h An needs a large state blow-up.

Almost every known lower bound was obtained in this way, in
luding Theorem 3.1 and

the aforementioned Mi
hel's lower bound. In su
h an approa
h, Step I is well-known to be

di�
ult. Identifying the suitable family (An)n≥1 requires both ingenuity and lu
k. Even

worse, most automata families that people try are natural ones with simple stru
tures, while

the ones witnessing the desired lower bound 
ould be highly unnatural and 
omplex. Finding

the right family (An)n≥1 seems to be a major obsta
le towards lower bound results.

Now we introdu
e the notion of full automata to 
ir
umvent this obsta
le.

De�nition 3.2. Given state set S, initial state set I, and extra 
omponents ∗, a full automa-

ton A = (Σ, S, I,∆, ∗) is an automaton with alphabet Σ = Powerset(S ×S) and transition

relation ∆ de�ned as: for all p, q ∈ S and a ∈ Σ, 〈p, a, q〉 ∈ ∆ i� 〈p, q〉 ∈ a.
By de�nition, the alphabet 
ontains every binary relation over S, and therefore is of a

big size of 2|S|
2
. Due to su
h ri
h alphabets, every automaton has some embedding in a full

automaton with the same number of states. It is then not di�
ult to see that transforming

an automaton 
an be redu
ed to transforming a full automaton, and full automata are the

most di�
ult automata to transform.

To be spe
i�
, if we 
onsider NFW 
omplementation, then:

Theorem 3.3. For all n ≥ 1, CNFW(n) = CNFW(A) for some full NFW A with n states.

The theorem follows from the following lemma.

Lemma 3.4. If A1 is an NFW with n states, then there is a full NFW A2 with n states

su
h that CNFW(A2) ≥ CNFW(A1).

Proof. By de�nition of CNFW, it su�
es to show that for some full NFW A2 with n states,

if there is an NFW CA2 that 
omplements A2, then there is an NFW CA1 
omplementing

A1 with the same number of states as CA2.

Let A1 = (Σ1, S1, I1,∆1, F1), and 
onsider the full NFW A2 = (Σ2, S1, I1,∆2, F1) with
respe
t to S1, I1 and F1. For ea
h a1 ∈ Σ1, de�ne letter ∆1(a1) in Σ2 = P(S1 × S1) as:

〈p1, q1〉 ∈ ∆1(a1) i� 〈p1, a1, q1〉 ∈ ∆1, for all p1, q1 ∈ S1. By de�nition of full automata,

3

The result is a
tually slightly stronger in that his An has only one initial state. (In some literature

NFWs are not allowed to have multiple initial states.)



6 Q. YAN

〈p1, a2, q1〉 ∈ ∆2 i� 〈p1, q1〉 ∈ a2, for all p1, q1 ∈ S1, a2 ∈ Σ2. So we have 〈p1, a1, q1〉 ∈
∆1 i� 〈p1,∆1(a1), q1〉 ∈ ∆2, for all a1 ∈ Σ1, p1, q1 ∈ S1. For an arbitrary word α =
a(0)a(1) . . . a(l− 1) ∈ Σ∗

1, 
onsider word α′ = ∆1(a(0))∆1(a(1)) . . .∆1(a(l− 1)) ∈ Σ∗
2. Then

every state sequen
e ρ1 = ρ1(0)ρ1(1) . . . ρ1(l) ∈ S∗
1 is a run of A1 over α i� ρ1 is a run of A2

over α′
. Sin
e A1 and A2 share the same initial and �nal state sets, ρ1 is su

essful i� ρ2 is

su

essful. So α ∈ L(A1) i� α′ ∈ L(A2).
Let CA2 = (Σ2, SC , IC ,∆C , FC) be an NFW that 
omplements L(A2). So α′ ∈ L(A2)

i� α′ /∈ L(CA2). De�ne CA1 to be the NFW (Σ1, SC , IC ,∆
′
C , FC), where ∆′

C is de�ned as

〈p2, a1, q2〉 ∈ ∆′
C i� 〈p2,∆1(a1), q2〉 ∈ ∆C , for all p2, q2 ∈ SC and a1 ∈ Σ1. Similarly every

state sequen
e ρC = ρC(0)ρC (1) . . . ρC(l) ∈ S∗
C is a su

essful run of CA2 over α′

i� ρC is a

su

essful run of CA1 over α. So α′ ∈ L(CA2) i� α ∈ L(CA1).
Now for every α ∈ Σ∗

1, α ∈ L(A1) i� α /∈ L(CA1). Therefore CA1 with the same number

of states as CA2 
omplements A1 as required.

Theorem 3.3 implies that to prove a lower bound for NFW 
omplementation (without

taking the size of the alphabet into a

ount), we 
an simply set (An)n≥1 to be some family

of full NFWs in Step I. Similarly, the same applies to NBW 
omplementation:

Theorem 3.5. For all n ≥ 1, CNBW(n) = CNBW(A) for some full NBW A with n states.

Now we apply full automata to obtain a simple proof of Theorem 3.1.

Proof. (of Theorem 3.1) We �rst prove a 2n lower bound for CNFW(n). For ea
h n ≥ 1,
let FAn = (Σn, Sn, In,∆n, Fn) be the full NFW with Sn = In = Fn = {s0, . . . , sn−1}. It

su�
es to prove that CNFW(FAn) ≥ 2n.
For ea
h subset T ⊆ Sn, let Id(T ) denote the letter {〈q, q〉 | q ∈ T} and let uT = Id(T ),

vT = Id(Sn\T ). Figure 2(a) depi
ts one example of uT vT 's ∆-graph. Sin
e all states in

FAn are both initial and �nal, a word w of length l is a

epted by FAn i� there is a path

from an 〈si, 0〉 vertex to an 〈sj , l〉 vertex in the ∆-graph of w under FAn. In parti
ular

uT vT is not a

epted by FAn. Suppose that some NFW CA 
omplements FAn. So for ea
h

T ⊆ Sn, there is a state q̂T of CA su
h that q̂I
uT−→ q̂T and q̂T

vT−→ q̂F for some initial state q̂I
and �nal state q̂F of CA. If we prove that q̂T1 6= q̂T2 whenever T1 6= T2, then CA has at least

2n states as required. Suppose by 
ontradi
tion that q̂T1 = q̂T2 for some T1 6= T2. W.l.o.g.

there is a state s of FAn in T1\T2. Then s
uT1−→ s

vT2−→ s and hen
e uT1vT2 ∈ L(FAn). On

the other hand, for some initial state q̂I and �nal state q̂F of CA, q̂I
uT1−→ q̂T1 = q̂T2

vT2−→ q̂F .
So uT1vT2 ∈ L(CA), 
ontradi
tion.

The above proof is not fully satisfying in that the automata family witnessing the

lower bound is over an exponentially growing alphabet. To �x a binary alphabet and prove

Theorem 3.1, we introdu
e a Step III in whi
h we do �alphabet substitution�, as we now

illustrate.

We �rst re�ne the above proof of CNFW(FAn) ≥ 2n by restri
ting the number of di�erent
letters involved. For two words u, v ∈ Σ∗

n, we say that u is equivalent to v with respe
t to

FAn, or simply u ∼ v, if for all p, q ∈ Sn, p
u
→ q i� p

v
→ q. A little thought shows that

if we substitute ea
h Id(T ) letter used in the above proof by some equivalent words, the

proof still works. First we 
onsider the alphabet {ci}0≤i<n with ci = Id(Sn\{si}). Then for

ea
h T ⊆ Sn, Id(T ) ∼ Πs/∈T ci, the 
on
atenation of all ci's with si /∈ T in lexi
ographi
al

order (any other �xed order will do). This is illustrated in Figure 2(b). Then 
onsider the

alphabet {a, b} with a = {〈si+1, si〉 | 0 ≤ i < n − 1} ∪ {〈s0, sn−1〉} and b = Id(Sn\{s0}),
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s3 s3

s2 s2

s1 s1

s0 s0

uT vT

(a) uT vT

s3 s3

s2 s2

s1 s1

s0 s0

c1 c3

(b) c1c3 ∼ Id(T )

s3 s3

s2 s2

s1 s1

s0 s0

a b a a a

(
) abaaa ∼ c1

s0 s1

s2s3

a

a

aa

b

bb

(d) A4

Figure 2: Examples

then for ea
h 0 ≤ i < n, ci ∼ aiban−i
, as illustrated in Figure 2(
). So if we substitute ea
h

letter Id(T ) in the above proof by the equivalent word Πsi /∈Ta
iban−i

, the proof still works.

After the above re�nement of the proof, the part of FAn related to letters other than

{a, b} is in fa
t irrelevant to the proof. So An = FAn ↾ {a, b}, the restri
tion of FAn to

{a, b}, or formally the NFW An = ({a, b}, Sn, In, ∆n∩ (Sn×{a, b}×Sn), Fn), also satis�es
that CNFW(An) ≥ 2n, as required (A4 is depi
ted in 2(d)).

We 
all the above te
hnique of setting (An)n≥1 to be a family of full automata and

adding the step of alphabet substitution the �full automata te
hnique�. Setting (An)n≥1 to

be full automata is 
ru
ial here, whi
h in essen
e delays the trouble of identifying (An)n≥1

to the later analysis of transforming full automata. This makes our life easier be
ause the

latter is usually playing with words, whi
h is 
learly easier than 
onstru
ting automata,

espe
ially with the ri
h alphabet of full automata. As to the step of alphabet substitution,

our experien
e is that it 
ould be te
hni
al some time, but rarely di�
ult.

4. Bü
hi Complementation

4.1. Kupferman and Vardi's Constru
tion. We �rst brie�y introdu
e the state-of-the-

art 
onstru
tion for Bü
hi 
omplementation by Kupferman and Vardi in [FKV06℄, the idea

of whi
h is important in our lower bound. Di�erent from [FKV06℄, we will 
ontinue to

work with our ∆-graphs rather than introdu
ing the notion of run graphs. For x ∈ N, let
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[x] denote the set {0, 1, . . . , x} and let [x]odd and [x]even denote the sets of odd and even

numbers in [x] respe
tively.

De�nition 4.1. Given an NBW A = (Σ, S, I,∆, F ) of n states, and an ω-word α, a 
o-

Bü
hi ranking (C-Ranking for short) for GA
α (i.e. the ∆-graph of α under A) is a partial

fun
tion f from V A
α to the rank set [2n− 2] su
h that:

(i): For all verti
es 〈q, l〉 ∈ V A
α , f(〈q, l〉) is unde�ned i� there is no path (in the dire
ted

sense) from some 〈qI , 0〉 vertex with qI ∈ I to 〈q, l〉.
(ii): For all verti
es 〈q, l〉 ∈ V A

α , if f(〈q, l〉) is odd, then q /∈ F .
(iii): For all edges 〈〈q, l〉, 〈q′, l + 1〉〉 ∈ EA

α , if f(〈q, l〉) is de�ned, then f(〈q, l〉) ≥
f(〈q′, l + 1〉).

We say that f is odd if for every path in GA
α , there are in�nitely many verti
es that are

assigned odd ranks by f .

Lemma 4.2. [KV01℄ The ω-word α is not a

epted by A i� there is an odd C-ranking for

GA
α .

Proof. We prove the if dire
tion here to give a sense of the idea of C-ranking. For every

in�nite path from a 〈qI , 0〉 vertex for some qI ∈ I, the ranks along the path do not in
rease

by (iii) and so will get trapped in some �xed rank from some point on. Sin
e f is odd, this

�xed rank is odd, and thus by (ii), F -verti
es are never visited sin
e then. In other words,

every run of A over α visits F �nitely often and hen
e α is not a

epted by A.

A level ranking

4

for A is a partial fun
tion g : S −→ [2n − 2] su
h that if g(q) is odd,
then q /∈ F . Ea
h C-ranking 
an be �sli
ed� into su
h level rankings. It was shown in [KV01℄

that existen
e of an odd C-ranking for GA
α 
an be de
ided by an NBW CA whi
h guesses

an odd C-ranking level by level, and 
he
ks the validity in a lo
al manner. By Lemma 4.2,

CA 
omplements A. In the 
onstru
tion of CA, distin
t sets of states are used to handle

di�erent level rankings, and the number of su
h level rankings is the major fa
tor of the

(6n)n blow-up.

We say that a level ranking g for A is tight if (i): the maximum rank in the range of g
is some odd number 2m− 1 in [2n− 2]odd, and (ii): for every j ∈ [2m]odd, there is a state q
with g(q) = j. In su
h a 
ase, g is also 
alled a TL(m)-ranking (with 1 ≤ m < n). It was
further shown in [FKV06℄ that we 
an restri
t attention to tight level rankings and use less

states in CA. By a 
areful numeri
al analysis [FKV06℄, a (0.97)n upper bound was proved

for the number of states of CA and thus for Bü
hi 
omplementation.

4.2. Lower Bound. We turn now to lower bound. By Theorem 3.5, it su�
es to 
onsider

full NBWs. We de�ne FBn for n > 1 to be the full NBW (Σn, Sn, In,∆n, Fn) with In =
{s0, . . . , sn−2}, Fn = {sf} and Sn = In ∪ Fn. We also use S′

n = In to denote the �main�

states.

We �rst try to 
onstru
t an ω-word αn not a

epted by FBn su
h that a great number of

tight level rankings would have to be present in every C-ranking for GFBn
αn

. Sin
e the number

of tight level rankings is the major fa
tor of the state blow-up in Kupferman and Vardi's


onstru
tion, this would produ
e a hard 
ase for the 
onstru
tion. For su
h purpose, we

4

Our de�nitions of level ranking and tight level ranking here are slightly di�erent from [FKV06℄.
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onsider a spe
ial 
lass of tight level rankings for FBn, Q-rankings. We say that a TL(m)-
ranking g for FBn is a Q(m)-ranking if g (q) is de�ned for ea
h q ∈ S′

n and is unde�ned for

q = sf . We start de�ning our di�
ult ω-word αn by de�ning its 
omposing segments.

Lemma 4.3. For every pair of Q-rankings (f, g), there exists a word wf,g su
h that:

(i): For all p, q ∈ S′
n, p

wf,g
−→ q i� (fi(p) > fi+1(q) or fi(p) = fi+1(q) ∈ [2m]odd).

(ii): For all p, q ∈ S′
n, p

wf,g
−→
Fn

q i� fi(p) > fi+1(q).

(iii): For all p, q ∈ Sn, if p
wf,g
−→ q then p, q /∈ Fn.

Proof. We �rst illustrate the 
onstru
tion using a typi
al example depi
ted in Fig. 3. As in

Fig. 3, the verti
es of the ∆-graph of wf,g are separated by the wider spa
e below c(f, g)
into two parts. We say that ea
h (si, j) vertex in the left part is ranked f(si) by f , and
ea
h (si, j) vertex in the right part is ranked g(si) by g. So when one follows a path from a

leftmost vertex v1 to a rightmost vertex v2, either one goes to a next vertex with the same

rank, or one visits a 〈sf , j〉 vertex and then goes to a vertex with a rank lower by one. This

explains the only if dire
tion of (ii). Also note that v1 and v2 
annot have the same even

ranks be
ause in the middle of this pro
ess, one has to go to a vertex with an odd rank to

pass c(f, g). So the only if dire
tion in (i) holds too. For the if dire
tions of (i) and (ii),

suppose one wants to go from a leftmost vertex v1 with rank r to a rightmost vertex v2 with
rank r′ and that either r > r′ or r = r′ ∈ [2m]odd. Let t be an odd rank su
h that r ≥ t ≥ r′.
Then by the 
onstru
tion, one 
an go from v1 to some vertex with rank t in the left part,

pass through c(f, g) with rank t, and then 
ontinue to go to v2 in the right part. Note that

in the pro
ess, if rank ever de
reases, then an 〈sf , j〉 vertex must have been visited. So the

if dire
tions of (i) and (ii) hold as well. Condition (iii) is obviously true.

f(s)

−

3

2

3

1

s

sf

s0

s1

s2

s3

g(s)

−

2

1

3

0

s

sf

s0

s1

s2

s3

d(f, 3, 2) d(f, 2, 1) c(f, g) d(g, 3, 2) d(g, 2, 1) d(g, 1, 0)

Figure 3: ∆-graph of wf,g

For later purposes, we expli
itly present our 
onstru
tion for wf,g. For a Q(m)-ranking
h, we de�ne the state sets Rankh(r) = {q ∈ S′

n | r = h(q)} for r ∈ [2m] and Oddh to be the

union of Rankh(r)'s with r ∈ [2m]odd. Also for ea
h T ⊆ S′
n, de�ne letters in Σn as Id(T ) =

{〈q, q〉 | q ∈ T}, T toF (T ) = Id(S′
n)∪{〈q, sf 〉 | q ∈ T}, FtoT (T ) = Id(S′

n)∪{〈sf , q〉 | q ∈ T}
and c(f, g) = {〈p, q〉 | f(p) = g(q) ∈ [2m]odd, p, q ∈ S′

n}. For a Q(m)-ranking h and

r, r′ ∈ [2m], we write d(h, r, r′) to denote the word T toF (Rankh(r)) · FtoT (Rankh(r
′)).

Then if r1, r2 . . . , rk are the ranks in [2m] that are images of h in des
ending order, we let

uh = d(h, r1, r2) ·d(h, r2, r3) · · · · ·d(h, rk−1, rk). Finally, wf,g is de�ned to be uf ·c(f, g) ·ug .
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Lemma 4.4. Let f0, f1, . . . , fl be a list of Q(m)-rankings with l > 0, and let w be the word

wf0,f1wf1,f2 . . . wfl−1fl. Also let p, q ∈ S′
n, then:

(i) If f0(p) > fl(q) or f0(p) = fl(q) ∈ [2m]odd, then p
w

−→ q.

(ii) If f0(p) > fl(q), then p
w

−→
Fn

q.

Proof. If l = 1, then w = wf0,f1 , and the properties follow from Theorem 4.3 trivially. So

we assume that l > 1. Let t be an odd rank su
h that f0(p) ≥ t ≥ fl(q). By de�nition

of Q(m)-ranking, there exists a state sequen
e q1, q2, . . . , ql−1 su
h that fi(qi) = t for all

1 ≤ i ≤ l − 1 . So qi
wfi,fi+1
−→ qi+1 for all 1 ≤ i < l − 1. Also be
ause f0(p) ≥ t ≥ fl(q), we

have p
wf0,f1−→ q1 and ql−1

wfl−1,fl
−→ q. Con
atenate these together, we have p

w
−→ q, and (i) is

satis�ed. If f0(p) > fl(q), then either f0(p) > t or t > fl(q), and hen
e either p
wf0,f1−→
Fn

q1 or

ql−1

wfl−1,fl
−→
Fn

q. So p
w

−→
Fn

q, and (ii) is satis�ed.

Let L(n,m) be the number of di�erent Q(m)-rankings and let L(n) be max
1≤m<n

L(n,m).

From now on we �x m su
h that L(n) = L(n,m) and may simply write L for L(n). Clearly
there exists an in�nite looping enumeration f0, f1, . . . of Q(m)-rankings su
h that fi 6= fj
for all i 6= j, 0 ≤ i, j < L, and fi = fjL+i for all i, j ≥ 0. Our �di�
ult� ω-word αn is then

the ω-word w0w1 . . . where wi = wfi,fi+1
for all i ≥ 0.

Lemma 4.5. The ω-word αn is not in L(FBn).

Proof. If there is a su

essful run ρ of FBn over αn, then there is an in�nite state sequen
e

q0q1 · · · ∈ Sω
n su
h that qi

wi−→ qi+1 for all i ≥ 0 and qi
wi−→
Fn

qi+1 for in�nitely many i ∈ N. So

by the 
onstru
tion of wi = wfi,fi+1
, fi(qi) ≥ fi+1(qi+1) for all i ≥ 0 and fi(qi) > fi+1(qi+1)

for in�nitely many i ∈ N. This is impossible sin
e f0(q0) is �nite.

Re
all that Kupferman and Vardi's 
onstru
tion uses distin
t state sets to handle di�er-

ent TL(m)-rankings. It turns out that if a 
omplement automaton of FBn does not have as

many states as Q(m)-rankings, it would be �
onfused� by αn together with another 
omplex

ω-word α′
derived from αn.

Lemma 4.6. For ea
h n > 1 and ea
h ω-automaton CA with less than L states, if ρ is a

run of CA over αn /∈ L(FBn), then there is a run ρ′ of CA over some ω-word α′ ∈ L(FBn)
with Occ(ρ′) = Occ(ρ) and Inf(ρ′) = Inf(ρ).

Proof. Suppose that CA = (Σn, Ŝ, Î , ∆̂, Acc) is an ω-automaton with less than L states and

ρ = ρ(0)ρ(1) · · · ∈ Ŝω
is a run of CA over αn. Let k0, k1, . . . be a number sequen
e su
h

that k0 = 0, ki+1 − ki = length(wi) for all i ≥ 0. So the ki's mark the positions where the

wi's 
on
atenate. Therefore ρ(ki)
wi−→ ρ(ki+1) for all i ≥ 0. De�ne for ea
h 0 ≤ i < L the

nonempty set:

Q̂i = {q̂ ∈ Ŝ | ρ(kjL+i) = q̂ for in�nitely many j ∈ N}.

Sin
e CA has less than L states, there exists some state q̂ in Q̂i ∩ Q̂j for some i 6= j, 0 ≤
i, j < L. In parti
ular one has, by de�nition, fi 6= fj . W.l.o.g. there is a q ∈ S′

n with

fi(q) > fj(q). By de�nitions of Q̂i and Occ(ρ), there is a t1 ∈ N su�
iently large su
h that
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ρ(kt1L+i) = q̂, every state in Occ(ρ) o

urs in ρ[0, kt1L+i], and that ρ(t′) ∈ Inf(ρ) for all

t′ > kt1L+i. By de�nitions of Inf(ρ) and Q̂j , there is a su�
iently large t2 > t1 su
h that

ρ(kt2L+j) = q̂ and every state in Inf(ρ) o

urs in ρ[kt1L+i, kt2L+j]. Let u = w0 . . . wt1L+i−1

and v = wt1L+i . . . wt2L+j−1. Finally let α′
be uvω.

Let qI ∈ S′
n be su
h that f0(qI) = 2m− 1 ≥ fi(q) = ft1L+i(q). By Lemma 4.4, qI

u
−→ q.

Similarly, sin
e ft1L+i(q) = fi(q) > fj(q) = ft2L+j(q), by Lemma 4.4 we have q
v

−→
Fn

q.

Together we have qI
u

−→ q
v

−→
Fn

q
v

−→
Fn

q . . . and α′
is a

epted by FBn.

Finally, note that ρ′ = ρ[0, kt1L+i] · (ρ[kt1L+i+1, kt2L+j])
ω
is a run over α′

, and we have

guaranteed that Occ(ρ′) = Occ(ρ) and Inf(ρ′) = Inf(ρ) as required.

Theorem 4.7. For every n > 1, L(n) ≤ CNBW(FBn) ≤ CNBW(n), where L(n) = Θ((0.76n)n).

Proof. By Lemma 4.6, every NBW that 
omplements FBn must have at least L(n) states,
otherwise both αn and α′

n would be a

epted by FBn, leading to 
ontradi
tion. By a numer-

i
al analysis of L(n) very similar to the one in [FKV06℄, we have that L(n) = Θ((0.76n)n).
For 
ompleteness, we present the detail of the analysis in appendix.

4.3. Alphabet. Following the proof of Theorem 4.7, one 
onstru
ts full NBWs witnessing

the lower bound over a very large alphabet, whi
h we rarely 
onsider in pra
ti
e. In this

subse
tion, we show that by using alphabet substitutions like in the proof of Theorem 3.1,

the NBWs witnessing the lower bound 
an be also over a �xed alphabet.

We say two words u and v from Σ∗
n are equivalent with respe
t to FBn, or simply u ≈ v,

if for all p, q ∈ S′
n: (i) p

u
−→ q i� p

v
−→ q, and, (ii) p

u
−→
Fn

q i� p
v

−→
Fn

q. Then if one repla
es

ea
h letter involved in the lower bound proof by an equivalent word over some alphabet Γ,
one shows that FBn ↾ Γ also witnesses the same L(n) lower bound.

Lemma 4.8. There is an alphabet Γ of size 7 su
h that for ea
h pair 〈f, g〉 of Q(m)-rankings
for FBn, there is a word in Γ∗

equivalent to wf,g.

Proof. Let Γ be the alphabet 
ontaining the following 7 letters:

• rotate = {〈si+1, si〉 | 0 ≤ i < n− 2} ∪ {〈s0, sn−2〉, 〈sf , sf 〉},
• clear0 = Id(Sn\{s0}),
• swap01 = (Id(S′

n) ∪ {〈s0, s1〉, 〈s1, s0〉})\{〈s0, s0〉, 〈s1, s1〉},
• copy01 = Id(S′

n) ∪ {〈s1, s0〉},
• 0toF = Id(Sn) ∪ {〈s0, sf 〉},
• Fto0 = Id(Sn) ∪ {〈sf , s0〉},
• clearF = Id(S′

n).

Only three types of letters are relevant in the proof of Theorem 4.7: T toF (T ), FtoT (T ) and
c(f, g). For ea
h T ⊆ S′

n, one 
an verify that:

• T toF (T ) ≈ clearF ·
∏

si∈T

(rotatei · 0toF · rotaten−1−i).

• FtoT (T ) ≈
∏

si∈T

(rotatei · Fto0 · rotaten−1−i) · clearF .
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As to c(f, g), the task is a bit more 
ompli
ated, and let us view it in a di�erent way. For a

word w, de�ne set rj = {i|si
w

−→ sj, 0 ≤ i < n− 1} for every 0 ≤ j < n− 1. Clearly for two

words u and v, the following are equivalent:

• p
u

−→ q i� p
v

−→ q for all p, q ∈ S′
n.

• rj(u) = rj(v) for all 0 ≤ j < n− 1.

So it is su�
ient to �nd for ea
h c(f, g) a word w over {rotate, clear0, swap01, copy01} su
h

that rj(w) = rj(c(f, g)) for all 0 ≤ j < n− 1.
Appending ea
h letter a to the end of a word w 
hanges the 
ontent of the ri(w)'s.

Consider these three types of words in Γ∗
:

(1) swapi,j =























rotatei · swap01 · rotaten−1−i
if i+ 1 = j

(swapi,i+1 · swapi+1,i+2 · · · · · swapj−1,j)
·(swapj−2,j−1 · swapj−3,j−2 · · · · · swapi,i+1)

if i+ 1 < j

swapj,i if i > j
the empty word if i = j

.

(2) copyi,j =

{

swap01 · copy01 · swap01 if i = 1 and j = 0
swap0,i · swap1,j · copy01 · swap1,j · swap0,i otherwise

.

(3) cleari = swap0,i · clear0 · swap0,i
One 
an verify that appending a swapi,j to w ex
hanges the 
ontent of ri(w) and rj(w),
appending a copyi,j sets ri(w) to be ri(w) ∪ rj(w), and appending a cleari empties ri(w).
Obviously these three operations allow one to rea
h arbitrary (ri(w))0≤i<n−1 
on�gurations,

in
luding (ri(c(f, g)))0≤i<n−1, as needed.

So Bn = FBn ↾ Γ, the restri
tion of FBn to the alphabet Γ, satis�es that CNBW(Bn) ≥
L(n), and we have:

Theorem 4.9. For ea
h n > 1, there exists an NBW Bn with n states over a seven letters

alphabet su
h that L(n) ≤ CNBW(Bn).

4.4. Other Transformations. Surprisingly, our lower bound on Bü
hi 
omplementation

extends to almost every 
omplementation or determinization transformation of nondeter-

ministi
 ω-automata, via a redu
tion making use of Lemma 4.6.

Theorem 4.10. For ea
h n > 1 and ea
h 
ommon type T1 of nondeterministi
 ω-automata,

there exists a T1 automaton An with n states over a �xed alphabet su
h that:

(i): For ea
h 
ommon type T2, every T2 automaton that 
omplements L(An) has at

least L(n) states.
(ii): For ea
h 
ommon type T2 that is not Bü
hi nor generalized Bü
hi

5

, every deter-

ministi
 T2 automaton that a

epts L(An) has at least L(n) states.

Proof. For ea
h 
ommon type T1, by Fa
t 2.1, there is a T1 automaton An equivalent to

NBW FBn with also n states [Löd99℄. (i) Suppose that an automaton CA of a 
ommon

type a

epts LC(An)= LC(FBn). Sin
e a

eptan
e of ω-automata of a 
ommon type only

depends on the Inf set of a run, the 
laim 
an be obtained by applying Lemma 4.6. (ii)

If some deterministi
 T2 automaton with less than L(n) states a

epts L(An), and T2 is

not Bü
hi or generalized Bü
hi, then by Fa
t 2.1 there is a deterministi
 ω-automaton of

5

Deterministi
 Bü
hi or generalized Bü
hi automata are stri
tly weaker in expressive power than the

other 
ommon types of ω-automata.
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a 
ommon type (not ne
essarily T2) 
omplementing L(An) with also less than L(n) states
[Löd99℄, 
ontrary to (i). Finally, the alphabet of An 
an be �xed like in the proof of Theorem

4.9.

For the transformations involved in this theorem, less than half already had nontrivial

lower bounds like n! by Mi
hel's proof or the bun
h of proofs by Löding [Löd99℄, while

the others only have trivial or weak 2Ω(n)
lower bounds. These bounds are summarized in

Se
tion 6.

5. Complementation of Generalized Bü
hi Automata

We turn now to NGBW 
omplementation. For NGBWs, state 
omplexity is prefer-

ably measured in terms of both the number of states n and index k, where index measures

the size of the a

eptan
e 
ondition. By applying full automata, doing a hard 
ase anal-

ysis for the 
onstru
tion in [KV05b℄ based on GC-ranking, and using a generalization of

Mi
hel's te
hnique, we prove an (Ω(nk))n lower bound, mat
hing with the (O(nk))n bound

in [KV05b℄. This lower bound also extends to the 
omplementation of Streett automata and

the determinization of generalized Bü
hi automata into Rabin automata.

5.1. Standard Full Generalized Bü
hi Automata FBn,k. We �rst de�ne full NGBW
automata whi
h we will show to witness our desired lower bound.

We say a generalized Bü
hi a

eptan
e 
ondition Acc = {F1, F2, . . . , Fk} is minimal, if

no Fi, Fj pair with i 6= j satis�es that Fi ⊆ Fj . Note that if su
h a pair exists, Fj 
an

be removed from Acc without altering the ω-language de�ned. So we will only 
onsider

minimal a

eptan
e 
onditions. By the Sperner's theorem in 
ombinatori
s [Lub66℄, if Acc
is minimal, then k ≤

( n
⌊n/2⌋

)

.

De�nition 5.1. For n > 1 and 1 < k ≤
(

n−1
⌊(n−1)/2⌋

)

, the standard full NGBW FBn,k =

(Σn, Sn, In,∆n, Accn,k) is an NGBW with |Sn| = n, In = Sn and a minimal a

eptan
e


ondition Accn,k. Let snf be one of its state. We denote Sn\{snf} as S′
n. Accn,k is de�ned

as an arbitrary �xed set {F1, F2, . . . , Fk} ⊆ P(S′
n) su
h that: (i) |Fi| = ⌊(n− 1)/2⌋ for ea
h

Fi ∈ Accn,k. (ii) For ea
h q ∈ S′
n, the number of Fi's in Accn,k that do not 
ontain q is at

least ⌊k/2⌋.

We must show that there is really su
h a minimal Accn,k satisfying (i) and (ii). First

let Accn,k be a 
olle
tion of arbitrary k distin
t subsets of S′
n of ⌊(n − 1)/2⌋ states and

thus (i) is satis�ed. De�ne χq for ea
h q ∈ S′
n as the number of Fi's in Accn,k that 
ontain

q. By double 
ounting,

∑

q∈S′
n

χq =
k
∑

i=1
|Fi|. So if |χp − χq| ≤ 1 for all p, q ∈ S′

n, then for

all q ∈ S′
n, χq ≤ ⌈k⌊(n−1)/2⌋

n−1 ⌉ ≤ ⌈k/2⌉ and (ii) is also satis�ed. Suppose χp − χq > 1 for

some p, q ∈ S′
n. A little thought shows that there is an Fi ∈ Accn,k su
h that p ∈ Fi and

(Fi\{p}) ∪ {q} /∈ Accn,k. Repla
e Fi in Accn,k by (Fi\{p}) ∪ {q} and we make |χp − χq|
stri
tly smaller. Repeat this till |χp − χq| ≤ 1 for all p, q ∈ S′

n. Then 
ondition (ii) is also

satis�ed.
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5.2. A Generalization of Mi
hel's Te
hnique. We generalize the te
hnique used in

Mi
hel's proof for Bü
hi 
omplementation [Mi
88℄ so that a tighter analysis of NGBW

omplementation be
omes possible.

De�nition 5.2. A generalized 
o-Bü
hi segment (GC-segment for short) w of an NGBW
B is a word su
h that wω /∈ L(B). Two GC-segments w1, w2 of B 
on�i
t if all ω-words in

the form wk0
1 (wk1

1 wk2
2 )ω, ki > 0 are in L(B). A set W of GC-segments of B is a 
on�i
t set

for B if every two distin
t GC-segments in W 
on�i
t.

Lemma 5.3. If W is a 
on�i
t set for NGBW B, then CNGBW(B) ≥ |W |.

Proof. Suppose that some NGBW CB = (Σ, Ŝ, Î, ∆̂, F̂ ) 
omplements B, then for ea
h GC-

segment w of B in W , CB a

epts wω
. For every two distin
t GC-segments w1, w2 ∈ W ,

let l1 = length(w1), l2 = length(w2), and let ρ(0)ρ(1) . . . and ρ′(0)ρ′(1) . . . be CB's two
su

essful runs over wω

1 and wω
2 respe
tively. De�ne

Q̂1 = {q̂ ∈ Ŝ | ρ(i · l1) = q̂ for in�nitely many i ∈ N}

and

Q̂2 = {q̂ ∈ Ŝ | ρ′(i · l2) = q̂ for in�nitely many i ∈ N}.

Clearly Q̂1 and Q̂2 are nonempty. It su�
es to show that Q̂1 ∩ Q̂2 = ∅, sin
e it implies that

the number of states of CB is no less than the number of GC-segments in W .

Suppose by 
ontradi
tion that some q̂ is in Q̂1 ∩ Q̂2. By de�nition of Q̂1, there is a

su�
iently large k0 > 0 su
h that ρ(k0l1) = q̂ and for ea
h i ≥ k0l1, ρ(i) ∈ Inf(ρ). So

ρ[0, k0l1] is a �nite run over wk0
1 from some initial state q̂I of CB to q̂, i.e., q̂I

w
k0
1−→ q̂. By

de�nitions of Q̂1 and Inf(ρ), there is a su�
iently large k1 > 0 su
h that ρ((k0 + k1)l1) = q̂

and in addition ρ[k · l1, (k0 + k1)l1] is a �nite run from q̂ to q̂ over wk1
1 whi
h visits every

state in Inf(ρ). Similarly we have that for some k′0 and k2 > 0, ρ′[k′0l2, (k
′
0 + k2)l2] is a

�nite run from q̂ to q̂ over wk2
2 whi
h visits exa
tly every state in Inf(ρ′). We 
onstru
t a

new run as follows:

ρnew = ρ[0, k0l1] ·
(

ρ[k0l1 + 1, (k0 + k1)l1] · ρ
′[k′0l2 + 1, (k′0 + k2)l2]

)ω
,

whi
h is a run over α = wk0
1 (wk1

1 wk2
2 )ω with Inf(ρnew) = Inf(ρ)∪ Inf(ρ′). As ρ and ρ′ are

both su

essful, ρnew is also su

essful by de�nition of generalized Bü
hi automata. So α is

a

epted by CB. However, as w1 and w2 
on�i
t, α is a

epted by B too, 
ontradi
tion.

Corollary 5.4. If W is a 
on�i
t set for NGBW B, then every NSW (nondeterministi


Streett automaton) that 
omplements B has at least |W | states.

Proof. Streett automata also satisfy that if ρ and ρ′ are both su

essful runs, then every

run ρnew satisfying Inf(ρnew) = Inf(ρ) ∪ Inf(ρ′) is also su

essful. So the same proof as

of Lemma 5.3 applies here.

5.3. A Con�i
t Set for FBn,k. It remains to de�ne a large 
on�i
t set for FBn,k. The

following 
on
ept of pseudo generalized 
o-Bü
hi level ranking is adapted from the 
on
ept of

generalized 
o-Bü
hi level ranking in the NGBW 
omplementation 
onstru
tion in [KV05b℄.

De�nition 5.5. A pseudo generalized 
o-Bü
hi level ranking (PGCL-ranking for short) for

FBn,k is a pair 〈f, g〉 su
h that f is a bije
tion from S′
n to {1, . . . , n− 1} and g is a fun
tion

from S′
n to {1, 2, . . . , k} su
h that ea
h q ∈ S′

n is not 
ontained in Fg(q).
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By de�nition of FBn,k, there are at least ⌊k/2⌋ 
hoi
es for the value of g(q) for ea
h

q ∈ S′
n. So there are at least (n− 1)!× (⌊k/2⌋)n−1

many di�erent PGCL-rankings, whi
h is

(Ω(nk))n by Stirling's formula.

Let G be a set of state sets. In the following, we use notations in the form p
w

−→
G,!B

q to

denote that there is a �nite run over w from p to q su
h that the run visits every state set

F in G, but it does not visit B. Either G or B will be omitted if is empty. In the following,

we set F = {F1, . . . , Fk}.

Lemma 5.6. For ea
h PGCL-ranking 〈f, g〉, there exists a word segf,g with the properties

that for all p, q ∈ S′
n :

(i): If p = q, i.e., f(p) = f(q), then there is a unique �nite run of FBn,k over segf,g

from p to q, and it is in the form p
segf,g

−−−−−−−−−→
F\Fg(p),!Fg(p)

q.

(ii): If f(p) > f(q), then there is a unique �nite run of FBn,k over segf,g from p to q,

and it is in the form p
segf,g
−→
F

q.

(iii): If f(p) < f(q), then there is no �nite run of FBn,k from p to q over segf,g.

Proof. For notational 
onvenien
e, we use notation like

[ ⊕p1→p2,
⊖p3→p4,⊖p5→p5

]

to denote letter

{〈q, q〉 | q ∈ S′
n} ∪ {〈p1, p2〉}\{〈p3, p4〉, 〈p5, p5〉}. We also de�ne a 
hoi
e fun
tion c(i, p) for

ea
h i ∈ {1, . . . , k} and state p ∈ S′
n with g(p) 6= i su
h that c(i, p) equals to some arbitrary

�xed element in Fi\Fg(p).

For ea
h r ∈ {1, . . . , n− 1}, let p ∈ S′
n be su
h that f(p) = r, and de�ne:

ur =
∏

i 6=g(p),1≤i≤k
s=c(i,p)

[

⊕p → s, ⊖p → p,
⊕s → snf , ⊖s → s

] [

⊕s → p, ⊖p → p,
⊕snf → s, ⊖s → s

]

.

(Re
all that ΠU means the 
on
atenation of all words in U in lexi
ographi
al order.) Then

for ea
h q ∈ S′
n, there is a unique �nite run over ur from q to q, and it is in the form

q
ur−→

F\Fg(p),!Fg(p)

q if p = q, or q
ur

−→
!Fg(p)

q otherwise.

For ea
h r = {2, 3, . . . , n− 1}, let p, q, s ∈ S′
n be su
h that f(p) = r, f(q) = r− 1 and s

be an arbitrary state in Fg(p). De�ne:

vr =

[

⊕p → s , ⊖s → s ,

⊕s → snf

] [

⊕s → q , ⊖s → s ,

⊕snf → s

]

.

Then there is a unique �nite run over vr from p to q, and it is in the form p
vr−→

Fg(p)

q. Also

for every q′ ∈ S′
n, there is a unique �nite run over vr from q′ to q′, and it is in the form

q′
vr−→

!Fg(p)

q′.

Finally let segf,g be un−1vn−1un−2vn−2 . . . v2u1.

To see that segf,g satis�es the required properties, �rst note that for all p ∈ S′
n, p

ur−→
!Fg(p)

p

and p
vr−→

!Fg(p)

p. For property (i), for every p ∈ S′
n with f(p) = r, there exists a unique �nite

run over segf,g, and it is in the form:

p
un−1vn−1...ur+1vr+1
−−−−−−−−−−−−−→

!Fg(p)

p
ur−−−−−−−−−→

F\Fg(p),!Fg(p)

p
vrur−1...v2u1
−−−−−−−−→

!Fg(p)

p,
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that is, p
segf,g

−−−−−−−−−→
F\Fg(p),!Fg(p)

p as required. For property (ii), for every p, q ∈ S′
n with f(p) = r1 >

r2 = f(q), let sr ∈ S′
n be su
h that f(sr) = r for ea
h r1 > r > r2. There is a unique �nite

run over segf,g, and it is in the form:

p
un−1vn−1...ur1+1vr1+1
−−−−−−−−−−−−−−→ p

ur1−−−−−−−−−→
F\Fg(p),!Fg(p)

p
vr1−−−→
Fg(p)

sr1−1

ur1−1vr1−1
−−−−−−−→ sr1−2 . . . sr2+1

ur2+1vr2+1
−−−−−−−→ q

ur2 ...v2u1
−−−−−−→ q,

that is, p
segf,g
−→
F

q as required. Property (iii) is easy to verify.

Remark 5.7. From the proof of the above lemma, it follows that an alphabet of size

polynomial in n is su�
ient to des
ribe {segf,g|f, g are PGCL-rankings}.

Lemma 5.8. For ea
h PGCL-ranking 〈f, g〉 for FBn,k, word segf,g is a GC-segment of

FBn,k.

Proof. Let l = length(segf,g), and let ρ = ρ(0)ρ(1) . . . be a run of FBn,k over segωf,g in the

form ρ(0)
segf,g
−→ ρ(l)

segf,g
−→ ρ(2l) . . . . Note that by the 
onstru
tion of segf,g, ρ(i · l) ∈ S′

n and

f(ρ(i · l)) is de�ned for all i ≥ 0. Then by property (iii), f(ρ(0)) ≥ f(ρ(l)) ≥ f(ρ(2l)) ≥ . . .
and then for some t ∈ N, f(ρ(t′ · l)) = f(ρ(t · l)) for all t′ > t, that is ρ(t′ · l) = ρ(t · l)
for all t′ > t sin
e f is a bije
tion. Let j = g(ρ(t · l)). By property (i), Fj is not visited

in ρ[t′ · l, (t′ + 1) · l] for all t′ ≥ t. So Inf(ρ) ∩ Fj = ∅ and hen
e segωf,g is not a

epted by

FBn,k.

Lemma 5.9. The set W = {segf,g | 〈f, g〉 is a PGCL-ranking for FBn,k} is a 
on�i
t set

of size (Ω(nk))n for FBn,k.

Proof. Suppose 〈f1, g1〉 and 〈f2, g2〉 are two distin
t PGCL-rankings. Let w1 = segf1,g1 and
w2 = segf2,g2. There are two 
ases.

Case: I: f1 and f2 are two di�erent bije
tions. So there exist p, q ∈ S′
n su
h that

f1(p) > f1(q) and f2(p) < f2(q). By property (i), p
w1−→ p, q

w2−→ q and so p
wm−1

1−→

p, q
wm−1

2−→ q for all m > 0. By property (ii), p
w1−→
F

q and q
w2−→
F

p. So for all m > 0,

p
wm

1−→
F

q and q
wm

2−→
F

p. Now for every ω-word α in the form wk0
1 (wk1

1 wk2
2 )ω, ki > 0, we


onstru
t a su

essful run over α as p
w

k0
1−→ p

w
k1
1−→
F

q
w

k2
2−→
F

p
w

k1
1−→
F

q
w

k2
2−→
F

p . . . . So α is

a

epted by FBn,k and w1 
on�i
ts with w2.

Case: II: f1 = f2 but g1 6= g2. Let p ∈ S′
n be su
h that g1(p) 6= g2(p). By property (i),

p
w1−−−−−−−−−−→

F\Fg1(p)
,!Fg1(p)

p and p
w2−−−−−−−−−−→

F\Fg2(p)
,!Fg2(p)

p. As g1(p) 6= g2(p), p
w

k1
1 w

k2
2−−−−−→

F
p for every

k1, k2 > 0. Now for every ω-word α in the form wk0
1 (wk1

1 wk2
2 )ω, ki > 0, we 
onstru
t

a su

essful run over α as p
w

k0
1−→ p

w
k1
1 w

k2
2−−−−−→

F
p

w
k1
1 w

k2
2−−−−−→

F
p . . . . So α is a

epted by

FBn,k and w1 
on�i
ts with w2.

Finally, the size of W is just the number of di�erent PGCL-rankings for FBn,k, whi
h is

(Ω(nk))n.
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5.4. Results.

Theorem 5.10. For n > 1 and 1 < k ≤
( n−1
⌊(n−1)/2⌋

)

, CNGBW(n, k) = (Ω(nk))n.

Proof. The theorem follows from Lemma 5.3 and Lemma 5.9 dire
tly.

This mat
hes neatly

6

with the (O(nk))n 
onstru
tion in [KV05b℄, and thus settles the

state 
omplexity of NGBW 
omplementation. Like Mi
hel's result, this lower bound 
an

be extended to NSW 
omplementation and the determinization of NGBW into DRW (state


omplexity denoted by DNGBW→DRW(n, k)):

Theorem 5.11. For all n > 1 and 1 < k ≤
(

n−1
⌊(n−1)/2⌋

)

, CNSW(n, k) = (Ω(nk))n and

DNGBW→DRW(n, k) = (Ω(nk))n.

Proof. By Fa
t 2.1 there is an NSW Sn,k equivalent to ea
h FBn,k with the same number of

states and the same index. By Corollary 5.4 and Lemma 5.9, every NSW that 
omplements

FBn,k has (Ω(nk))n states. So CNSW(Sn,k) = (Ω(nk))n and CNSW(n, k) = (Ω(nk))n.
Suppose by 
ontradi
tion that R is a DRW with less than |W | states that a

epts

L(FBn,k), then by Fa
t 2.1 there is a DSW S 
omplementing FBn,k with the same number

of states as R, 
ontrary to Corollary 5.4. So DNGBW→DRW(n, k) = (Ω(nk))n.

Remark 5.12. For the above lower bound, by Remark 5.7, the alphabet involved in the

proof is of a size polynomial in n. It seems di�
ult to �x a 
onstant alphabet, but we


onje
ture this to be possible if we aim at a weaker bound like 2Ω(n lognk)
.

6. Summary

In the following table, we brie�y summarize our lower bounds. Here �Any� means

any 
ommon type of nondeterministi
 ω-automata (and the two Any's 
an be di�erent).

�
o.� means 
omplementation and �det.� means determinization. �L.B.� /�U.B.� stands for

lower/upper bound. Weak 2Ω(n)
lower bounds are 
onsidered trivial.

# Transformation Previous L.B. Our L.B. Known U.B.

1 NBW

o.

−→ NBW Ω((0.36n)n) [Mi
88℄ Ω((0.76n)n) O((0.97n)n) [FKV06℄

2 Any


o. or det.

−→ Any trivial or n! [Löd99℄ 2Ω(n logn)
-

3 NBW
det.

−→ DMW trivial

7 2Ω(n logn) 2O(n logn)
[Saf89℄

4 NRW


o.

−→ NRW trivial

8 2Ω(n logn) 2O(nk logn)
[KV05a℄

5 NGBW

o.

−→ NGBW Ω((n/e)n) [Mi
88℄ (Ω(nk))n (O(nk))n [KV05b℄

6 NSW

o.

−→ NSW Ω((n/e)n) [Löd99℄ (Ω(nk))n 2O(nk log(nk))
[KV05a℄

7 NGBW
det.

−→ DRW Ω((n/e)n) [Löd99℄ (Ω(nk))n 2O(nk log(nk))
[Saf89℄

In parti
ular, lower bound #2 implies that the 2Ω(n logn)
blow-up is inherent in the


omplementation and determinization of nondeterministi
 ω-automata, 
orresponding to

the 2n blow-up of �nite automata. The spe
ial 
ase #3 justi�es that Safra's 
onstru
tion is

optimal in state 
omplexity for the determinization of Bü
hi automata into Muller automata.

6

The gap hidden in the notation (Θ(nk))n 
an be at most c
n
for some c, while the gap hidden in the

more widely used notation 2Θ(n lognk)

an be as large as (nk)n.
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We single out this result be
ause this determinization 
onstru
tion is tou
hed in almost every

introdu
tory material on ω-automata, and its optimality problem was expli
itly left open in

[Löd99℄.

For many of these transformations, it is still interesting to try to narrow the 
omplexity

gap, and here we dis
uss three of them. First, the 
omplexity gap of Bü
hi 
omplementation,

although signi�
antly narrowed, is still exponential. By analyzing the di�eren
e between

the lower and upper bounds, one 
an �nd that the gap is mainly 
aused by the use of the

state 
omponent O in [FKV06℄ to maintain the states along paths that have not visited

an odd vertex sin
e the last time O has been empty. So we should investigate how many

states are really ne
essary for su
h a purpose. Se
ond, for Streett 
omplementation, the gap

is still quite large. We feel that e�orts should be �rst taken to optimize the 
onstru
tion

in [KV05a℄. Third, it is interesting to see if an Ω(nn) or similar lower bound exists for

the determinization of NBWs into Muller or Rabin automata. Su
h would imply that

determinization is harder than 
omplementation for ω-automata, unlike the 
ase of automata

over �nite words. Of 
ourse, one 
an also work on the reverse dire
tion, trying to design

ranking based 
onstru
tions for determinization, whi
h 
ould have good 
omplexity bound

as well as better appli
ability to pra
ti
e.

Finally, we remark that the full automata te
hnique has been quite essential in obtaining

our lower bound results. It is also possible to extend the full automata te
hnique to other

kinds of automata, like alternating automata or tree automata. We hope that the full

automata te
hnique will stimulate the dis
overy of new results in automata theory.
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Appendix A. Numeri
al Analysis of L(n)

In this se
tion, we prove that L(n) = Θ((0.76n)n). The analysis is very similar to the

one in [FKV06℄, but we still present it here for 
ompleteness. In the following, we write

f(n) ≈ g(n) if two fun
tions di�er by only a polynomial fa
tor in n. For example, by

Stirling's formula, n! ≈ (n/e)n.
Let T (n,m) denote the number of fun
tions from {1 . . . n} onto {1 . . . m}. The following

estimate of T (n,m) is impli
it in Temme [Tem93℄:

Lemma A.1. [Tem93℄For 0 < β < 1, let x be the positive real number solving βx = 1−e−x
,

and let a = − lnx+β ln(ex−1)−(1−β)+(1−β) ln(1/β−1). Then T (n, ⌊βn⌋) ≈ (M [β]n)n,

where M [β] = ea−β
(

β
1−β

)1−β
.

To prove a lower bound for L(n), we �rst express L(n,m) in the following form:

Lemma A.2. L(n,m) =
∑n−1

t=m

(n−1
t

)

T (t,m)mn−1−t
.

Proof. To 
ount the number of di�erent Q(m)-ranking, we �x t, whi
h denotes the number

of states that have odd ranks. Then there are

(n−1
t

)

ways to 
hoose whi
h t states have

odd ranks, and there are T (t,m) ways to assign these t states the m di�erent odd ranks.
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Moreover, for ea
h of the other n − 1 − t states in S′
n, there are m ways to 
hoose whi
h

even rank it is assigned.

Theorem A.3. L(n) = Ω((cln)
n), where cl = 0.76.

Proof. By the previous lemma, L(n) = max
m=1...n−1

∑n−1
t=m

(

n−1
t

)

T (t,m)mn−1−t
. Sin
e we do

not 
are about polynomial fa
tors,

∑n−1
t=m 
an be repla
ed by max

t=m...n−1
, and we 
an repla
e

m! by (m/e)m and

(n−1
t

)

by

nn

tt(n−t)n−t as well. Also let γ = m/n and β = t/n, then we

have:

L(n) ≈ max
0<γ≤β<1

nn(βn)−βn((1− β)n)−(1−β)n · (M [γ/β]βn)βn · (γn)n−1−βn

≈ max
0<γ≤β<1

(h(β, γ)n)n, where h (β, γ) = (1− β)β−1(M [γ/β])βγ1−β
.

Computed by the Mathemati
a software, h(β, γ) = 0.7645 when β = 0.7236, γ = 0.5744.
So (0.76n)n is an asymptoti
 lower bound for L(n).
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