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ABSTRACT. The fully enrichedµ-calculusis the extension of the propositionalµ-calculus with in-
verse programs, graded modalities, and nominals. While satisfiability in several expressive fragments
of the fully enrichedµ-calculus is known to be decidable and EXPTIME-complete, it has recently been
proved that the full calculus is undecidable. In this paper,we study the fragments of the fully enriched
µ-calculus that are obtained by dropping at least one of the additional constructs. We show that, in all
fragments obtained in this way, satisfiability is decidableand EXPTIME-complete. Thus, we identify
a family of decidable logics that are maximal (and incomparable) in expressive power. Our results
are obtained by introducing two new automata models, showing that their emptiness problems are
EXPTIME-complete, and then reducing satisfiability in the relevantlogics to these problems. The
automata models we introduce aretwo-way graded alternating parity automataover infinite trees
(2GAPTs) andfully enriched automata(FEAs) over infinite forests. The former are a common gen-
eralization of two incomparable automata models from the literature. The latter extend alternating
automata in a similar way as the fully enrichedµ-calculus extends the standardµ-calculus.
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Inverse progr. Graded mod. Nominals Complexity
fully enrichedµ-calculus x x x undecidable
full gradedµ-calculus x x EXPTIME (1ary/2ary)
full hybrid µ-calculus x x EXPTIME

hybrid gradedµ-calculus x x EXPTIME (1ary/2ary)
gradedµ-calculus x EXPTIME (1ary/2ary)

Figure 1: Enrichedµ-calculi and previous results.

1. INTRODUCTION

Theµ-calculusis a propositional modal logic augmented with least and greatest fixpoint op-
erators [Koz83]. It is often used as a target formalism for embedding temporal and modal logics
with the goal of transferring computational and model-theoretic properties such as the EXPTIME

upper complexity bound.Description logics (DLs)are a family of knowledge representation lan-
guages that originated in artificial intelligence [BM+03] and currently receive considerable atten-
tion, which is mainly due to their use as an ontology languagein prominent applications such as the
semantic web [BHS02]. Notably, DLs have recently been standardized as the ontology language
OWL by the W3C committee. It has been pointed out by several authors that, by embedding DLs
into theµ-calculus, we can identify DLs that are of very high expressive power, but computation-
ally well-behaved [CGL99, SV01, KSV02]. When putting this idea to work, we face the problem
that modern DLs such as the ones underlying OWL include several constructs that cannot easily
be translated into theµ-calculus. The most important such constructs are inverse programs, graded
modalities, and nominals. Intuitively, inverse programs allow to travel backwards along accessibil-
ity relations [Var98], nominals are propositional variables interpreted as singleton sets [SV01], and
graded modalities enable statements about the number of successors (and possibly predecessors) of
a state [KSV02]. All of the mentioned constructs are available in the DLs underlying OWL.

The extension of theµ-calculus with these constructs induces a family of enriched µ-calculi.
These calculi may or may not enjoy the attractive computational properties of the originalµ-
calculus: on the one hand, it has been shown that satisfiability in a number of the enriched calculi
is decidable and EXPTIME-complete [CGL99, SV01, KSV02]. On the other hand, it has recently
been proved by Bonatti and Peron that satisfiability is undecidable in thefully enrichedµ-calculus,
i.e., the logic obtained by extending theµ-calculus with all of the above constructs simultaneously
[BP04]. In computer science logic, it has always been a majorresearch goal to identify decidable
logics that are as expressive as possible. Thus, the above results raise the question of maximal
decidable fragments of the fully enrichedµ-calculus. In this paper, we study this question in a
systematic way by considering all fragments of the fully enrichedµ-calculus that are obtained by
dropping at least one of inverse programs, graded modalities, and nominals. We show that, in
all these fragments, satisfiability is decidable and EXPTIME-complete. Thus, we identify a whole
family of decidable logics that have maximum expressivity.

The relevant fragments of the fully enrichedµ-calculus are shown in Figure 1 together with
the complexity of their satisfiability problem. The resultsshown in gray are already known from
the literature: the EXPTIME lower bound for the originalµ-calculus stems from [FL79]; it has
been shown in [SV01] that satisfiability in the full hybridµ-calculus is in EXPTIME; under the
assumption that the numbers inside graded modalities are coded in unary, the same result was proved
for the full gradedµ-calculus in [CGL99]; finally, the same was also shown for the(non-full) graded
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µ-calculus in [KSV02] under the assumption of binary coding.In this paper, we prove EXPTIME-
completeness of the full gradedµ-calculus and the hybrid gradedµ-calculus. In both cases, we allow
numbers to be coded in binary (in contrast, the techniques used in [CGL99] involve an exponential
blow-up when numbers are coded in binary).

Our results are based on the automata-theoretic approach and extends the techniques in [KSV02,
SV01, Var98]. They involve introducing two novel automata models. To show that the full graded
µ-calculus is in EXPTIME, we introducetwo-way graded parity tree automata (2GAPTs). These
automata generalize in a natural way two existing, but incomparable automata models: two-way
alternating parity tree automata (2APTs) [Var98] and (one-way) graded alternating parity tree au-
tomata (GAPTs) [KSV02]. The phrase “two-way” indicates that 2GAPTs (like 2APTs) can move
up and down in the tree. The phrase “graded” indicates that 2GAPTs (like GAPTs) have the ability
to count the number of successors of a tree node that it moves to. Namely, such an automaton can
move to at leastn or all butn successors of the current node, without specifying which successors
exactly these are. We show that the emptines problem for 2GAPT is in EXPTIME by a reduction to
the emptiness of graded nondeterministic parity tree automata (GNPTs) as introduced in [KSV02].
This is the technically most involved part of this paper. To show the desired upper bound for the full
gradedµ-calculus, it remains to reduce satisfiability in this calculus to emptiness of 2GAPTs. This
reduction is based on the tree model property of the full gradedµ-calculus, and technically rather
standard.

To show that the hybrid gradedµ-calculus is in EXPTIME, we introducefully enriched au-
tomata (FEAs)which run on infinite forests and, like 2GAPTs, use a parity acceptance condition.
FEAs extend 2GAPTs by additionally allowing the automaton to send a copy of itself to some or
all roots of the forest. This feature of “jumping to the roots” is in rough correspondence with the
nominals included in the full hybridµ-calculus. We show that the emptiness problem for FEAs
is in EXPTIME using an easy reduction to the emptiness problem for 2GAPTs.To show that the
hybrid gradedµ-calculus is in EXPTIME, it thus remains to reduce satisfiability in this calculus to
emptiness of FEAs. Since the correspondence between nominals in theµ-calculus and the jumping
to roots of FEAs is only a rough one, this reduction is more delicate than the corresponding one for
the full gradedµ-calculus. The reduction is based on a forest model propertyenjoyed by the hybrid
gradedµ-calculus and requires us to work with thetwo-wayautomata FEAs although the hybrid
gradedµ-calculus does not offer inverse programs.

We remark that, intuitively, FEAs generalize alternating automata on infinite trees in a similar
way as the fully enrichedµ-calculus extends the standardµ-calculus: FEAs can move up to a node’s
predecessor (by analogy with inverse programs), move down to at leastn or all butn successors (by
analogy with graded modalities), and jump directly to the roots of the input forest (which are the
analogues of nominals). Still, decidability of the emptiness problem for FEAs does not contradict
the undecidability of the fully enrichedµ-calculus since the latter does not enjoy a forest model
property [BP04], and hence satisfiability cannot be decidedusing forest-based FEAs.

The rest of the paper is structured as follows. The subsequent section introduces the syntax and
semantics of the fully enrichedµ-calculus. The tree model property for the full gradedµ-calculus
and a forest model property for the hybrid gradedµ-calculus are then established in Section 3. In
Section 4, we introduce FEAs and 2GAPTs and show how the emptiness problem for the former
can be polynomially reduced to that of the latter. In this section, we also state our upper bounds for
the emptiness problem of these automata models. Then, Section 5 is concerned with reducing the
satisfiability problem of enrichedµ-calculi to the emptiness problems of 2GAPTs and FEAs. The
purpose of Section 6 is to reduce the emptiness problem for 2GAPTs to that of GNPTs. Finally, we
conclude in Section 7.



4 P. A. BONATTI, C. LUTZ, A. MURANO, AND M. Y. VARDI

2. ENRICHED µ-CALCULI

We introduce the syntax and semantics of the fully enrichedµ-calculus. LetProp be a finite
set ofatomic propositions, Var a finite set ofpropositional variables, Nom a finite set ofnominals,
andProg a finite set ofatomic programs. We useProg− to denote the set ofinverse programs
{a− | a ∈ Prog}. The elements ofProg ∪ Prog− are calledprograms. We assumea−− = a. The
set offormulas of the fully enrichedµ-calculusis the smallest set such that

• true andfalse are formulas;
• p and¬p, for p ∈ Prop, are formulas;
• o and¬o, for o ∈ Nom, are formulas;
• x ∈ Var is a formula;
• ϕ1 ∨ ϕ2 andϕ1 ∧ ϕ2 are formulas ifϕ1 andϕ2 are formulas;
• 〈n, α〉ϕ, and [n, α]ϕ are formulas ifn is a non-negative integer,α is a program, andϕ is a

formula;
• µy.ϕ(y) andνy.ϕ(y) are formulas ify is a propositional variable andϕ(y) is a formula containing
y as a free variable.

Observe that we use positive normal form, i.e., negation is applied only to atomic propositions.
We callµ andν fixpoint operatorsand useλ to denote a fixpoint operatorµ or ν. A propo-

sitional variabley occursfree in a formula if it is not in the scope of a fixpoint operatorλy, and
boundedotherwise. Note thaty may occur both bounded and free in a formula. Asentenceis a
formula that contains no free variables. For a formulaλy.ϕ(y), we writeϕ(λy.ϕ(y)) to denote the
formula that is obtained by one-step unfolding, i.e., replacing each free occurrence ofy in ϕ with
λy.ϕ(y). We often refer to thegraded modalities〈n, α〉ϕ and[n, α]ϕ asatleast formulasandallbut
formulasand assume that the integers in these operators are given in binary coding: the contribution
of n to the length of the formulas〈n, α〉ϕ and[n, α]ϕ is ⌈log n⌉ rather thann. We refer to fragments
of the fully enrichedµ-calculus using the names from Figure 1. Hence, we say that a formula of the
fully enrichedµ-calculus is also a formula of thehybrid gradedµ-calculus, full hybrid µ-calculus,
and full gradedµ-calculusif it does not have inverse programs, graded modalities, andnominals,
respectively.

The semantics of the fully enrichedµ-calculus is defined in terms of aKripke structure, i.e., a
tupleK = 〈W,R,L〉 where

• W is a non-empty (possibly infinite) set ofstates;
• R : Prog → 2W×W assigns to each atomic program a binary relation overW ;
• L : Prop ∪ Nom → 2W assigns to each atomic proposition and nominal a set of states such that

the sets assigned to nominals are singletons.

To deal with inverse programs, we extendR as follows: for each atomic programa, we set
R(a−) = {(v, u) : (u, v) ∈ R(a)}. For a programα, if (w,w′) ∈ R(α), we say thatw′ is an
α-successorof w. With succR(w,α) we denote the set ofα-successors ofw.

Informally, anatleastformula〈n, α〉ϕ holds at a statew of a Kripke structureK if ϕ holds at
least inn + 1 α-successors ofw. Dually, theallbut formula [n, α]ϕ holds in a statew of a Kripke
structureK if ϕ holds in all but at mostn α-successors ofw. Note that¬〈n, α〉ϕ is equivalent to
[n, α]¬ϕ. Indeed,¬〈n, α〉ϕ holds in a statew if ϕ holds in less thann+1 α-successors ofw, thus, at
mostn α-successors ofw do not satisfy¬ϕ, that is,[n, α]¬ϕ holds inw. The modalities〈α〉ϕ and
[α]ϕ of the standardµ-calculus can be expressed as〈0, α〉ϕ and[0, α]ϕ, respectively. The least and
greatest fixpoint operators are interpreted as in the standard µ-calculus. Readers not familiar with
fixpoints might want to look at [Koz83, SE89, BS06] for instructive examples and explanations of
the semantics of theµ-calculus.
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To formalize the semantics, we introduce valuations. Givena Kripke structureK = 〈W,R,L〉
and a set{y1, . . . , yn} of propositional variables inVar, a valuationV : {y1, . . . , yn} → 2W is
an assignment of subsets ofW to the variablesy1, . . . , yn. For a valuationV, a variabley, and a
setW ′ ⊆ W , we denote byV[y ← W ′] the valuation obtained fromV by assigningW ′ to y. A
formulaϕ with free variables amongy1, . . . , yn is interpreted over the structureK as a mapping
ϕK from valuations to2W , i.e.,ϕK(V) denotes the set of states that satisfyϕ under valuationV.
The mappingϕK is defined inductively as follows:

• trueK(V) =W andfalseK(V) = ∅;
• for p ∈ Prop ∪ Nom, we havepK(V) = L(p) and(¬p)K(V) =W \ L(p);
• for y ∈ Var, we haveyK(V) = V(y);
• (ϕ1 ∧ ϕ2)

K(V) = ϕK1 (V) ∩ ϕK2 (V)
• (ϕ1 ∨ ϕ2)

K(V) = ϕK1 (V) ∪ ϕK2 (V);
• (〈n, α〉ϕ)K (V) = {w : |{w′ ∈W : (w,w′) ∈ R(α) andw′ ∈ ϕK(V)}| > n};
• ([n, α]ϕ)K(V) = {w : |{w′ ∈W : (w,w′) ∈ R(α) andw′ 6∈ ϕK(V)}| ≤ n};
• (µy.ϕ(y))K(V) =

⋂
{W ′ ⊆W : ϕK(V[y ←W ′]) ⊆W ′};

• (νy.ϕ(y))K(V) =
⋃
{W ′ ⊆W :W ′ ⊆ ϕK(V[y ←W ′])}.

Note that, in the clauses for graded modalities,α denotes a program, i.e.,α can be either an
atomic program or an inverse program. Also, note that no valuation is required for a sentence.

LetK = 〈W,R,L〉 be a Kripke structure andϕ a sentence. For a statew ∈ W , we say thatϕ
holdsatw in K, denotedK,w |= ϕ, if w ∈ ϕK(∅). K is amodelof ϕ if there is aw ∈ W such
thatK,w |= ϕ. Finally,ϕ is satisfiableif it has a model.

3. TREE AND FORESTMODEL PROPERTIES

We show that the full gradedµ-calculus has the tree model property, and that the hybrid graded
µ-calculus has a forest model property. Regarding the latter, we speak of “a” (rather than “the”)
forest model property because it is an abstraction of the models that is forest-shaped, instead of the
models themselves.

For a (potentially infinite) setX, we useX+ (X∗) to denote the set of all non-empty (possibly
empty) words overX. As usual, forx, y ∈ X∗, we usex · y to denote the concatenation ofx and
y. Also, we useε to denote the empty word and by convention we takex · ε = x, for eachx ∈ X∗.
Let IN be a set of non-negative integers. Aforest is a setF ⊆ IN+ that is prefix-closed, that is, if
x · c ∈ F with x ∈ IN+ andc ∈ IN, then alsox ∈ F . The elements ofF are callednodes. For every
x ∈ F , the nodesx · c ∈ F with c ∈ IN are thesuccessorsof x, andx is theirpredecessor. We use
succ(x) to denote the set of all successors ofx in F . A leaf is a node without successors, and aroot
is a node without predecessors. A forestF is a tree if F ⊆ {c · x | x ∈ IN∗} for somec ∈ IN (the
root of F ). The root of a treeF is denoted withroot(F ). If for somec, T = F ∩ {c · x | x ∈ IN∗},
then we say thatT is the tree ofF rooted inc.

We call a Kripke structureK = 〈W,R,L〉 a forest structureif
(i) W is a forest,

(ii)
⋃
α∈Prog∪Prog− R(α) = {(w, v) ∈W ×W | w is a predecessor or a successor ofv}.

Moreover,K is directedif (w, v) ∈
⋃
a∈Prog R(a) implies thatv is a successor ofw. If W is a tree,

then we callK a tree structure.
We call K = 〈W,R,L〉 a directed quasi-forest structureif 〈W,R′, L〉 is a directed forest

structure, whereR′(a) = R(a) \ (W × IN) for all a ∈ Prog, i.e.,K becomes a directed forest
structure after deleting all the edges entering a root ofW . Let ϕ be a formula ando1, . . . , ok the
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nominals occurring inϕ. A forest model(resp.tree model, quasi-forest model) of ϕ is a forest (resp.
tree, quasi-forest) structureK = 〈W,R,L〉 such that there are rootsc0, . . . , ck ∈ W ∩ IN with
K, c0 |= ϕ andL(oi) = {ci}, for 1 ≤ i ≤ k. Observe that the rootsc0, . . . , ck do not have to be
distinct.

Using a standard unwinding technique such as in [Var98, KSV02], it is possible to show that
the full gradedµ-calculus enjoys the tree model property, i.e., if a formulaϕ is satisfiable, it is also
satisfiable in a tree model. We omit details and concentrate on the similar, but more difficult proof
of the fact that the hybrid gradedµ-calculus has a forest model property.

Theorem 3.1. If a sentenceϕ of the full gradedµ-calculus is satisfiable, thenϕ has a tree model.

In contrast to the full gradedµ-calculus, the hybrid gradedµ-calculus does not enjoy the tree
model property. This is, for example, witnessed by the formula

o ∧ 〈0, a〉(p1 ∧ 〈0, a〉(p2 ∧ · · · 〈0, a〉(pn−1 ∧ 〈0, a〉o) · · · ))

which generates a cycle of lengthn if the atomic propositionspi are forced to be mutually exclusive
(which is easy using additional formulas). However, we can follow [SV01, KSV02] to show that
the hybrid gradedµ-calculus has a forest model property. More precisely, we prove that the hybrid
gradedµ-calculus enjoys thequasi-forest model property, i.e., if a formulaϕ is satisfiable, it is also
satisfiable in a directed quasi-forest structure.

The proof is a variation of the original construction for theµ-calculus given by Streett and
Emerson in [SE89]. It is an amalgamation of the constructions for the hybridµ-calculus in [SV01]
and for the hybrid gradedµ-calculus in [KSV02]. We start with introducing the notion of a well-
founded adorned pre-model, which augments a model with additional information that is relevant
for the evaluation of fixpoint formulas. Then, we show that any satisfiable sentenceϕ of the hy-
brid gradedµ-calculus has a well-founded adorned pre-model, and that any such pre-model can be
unwound into a tree-shaped one, which can be converted into adirected quasi-forest model ofϕ.

To determine the truth value of a Boolean formula, it sufficesto consider its subformulas. Forµ-
calculus formulas, one has to consider a larger collection of formulas, the so called Fischer-Ladner
closure [FL79]. Theclosurecl(ϕ) of a sentenceϕ of the hybrid gradedµ-calculus is the smallest
set of sentences satisfying the following:

• ϕ ∈ cl(ϕ);
• if ψ1 ∧ ψ2 ∈ cl(ϕ) orψ1 ∨ ψ2 ∈ cl(ϕ), then{ψ1, ψ2} ⊆ cl(ϕ);
• if 〈n, a〉ψ ∈ cl(ϕ) or [n, a]ψ ∈ cl(ϕ), thenψ ∈ cl(ϕ);
• if λy.ψ(y) ∈ cl(ϕ), thenψ(λy.ψ(y)) ∈ cl(ϕ).

An atomis a subsetA ⊆ cl(ϕ) satisfying the following properties:
• if p ∈ Prop ∪ Nom occurs inϕ, thenp ∈ A iff ¬p 6∈ A;
• if ψ1 ∧ ψ2 ∈ cl(ϕ), thenψ1 ∧ ψ2 ∈ A iff {ψ1, ψ2} ⊆ A;
• if ψ1 ∨ ψ2 ∈ cl(ϕ), thenψ1 ∨ ψ2 ∈ A iff {ψ1, ψ2} ∩A 6= ∅;
• if λy.ψ(y) ∈ cl(ϕ), thenλy.ψ(y) ∈ A iff ψ(λy.ψ(y)) ∈ A.

The set of atoms ofϕ is denotedat(ϕ). A pre-model〈K,π〉 for a sentenceϕ of the hybrid graded
µ-calculus consists of a Kripke structureK = 〈W,R,L〉 and a mappingπ : W → at(ϕ) that
satisfies the following properties:

• there isw0 ∈W with ϕ ∈ π(w0);
• for p ∈ Prop ∪ Nom, if p ∈ π(w), thenw ∈ L(p), and if¬p ∈ π(w), thenw 6∈ L(p);
• if 〈n, a〉ψ ∈ π(w), then there is a setV ⊆ succR(w, a), such that|V | > n andψ ∈ π(v) for all
v ∈ V ;
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• if [n, a]ψ ∈ π(w), then there is a setV ⊆ succR(w, a), such that|V | ≤ n andψ ∈ π(v) for all
v ∈ succR(w, a) \ V .

If there is a pre-model〈K,π〉 of ϕ such that for every statew and allψ ∈ π(w), it holds that
K,w |= ψ, thenK is clearly a model ofϕ. However, the definition of pre-models does not guarantee
thatψ ∈ π(w) is satisfied atw if ψ is a least fixpoint formula. In a nutshell, the standard approach
for dealing with this problem is to enforce that it is possible to trace the evaluation of a least fixpoint
formula throughK such that the original formula is not regenerated infinitelyoften. When tracing
such evaluations, a complication is introduced by disjunctions and at least restrictions, which require
us to make a choice on how to continue the trace. To address this issue, we adapt the notion of a
choice function of Streett and Emerson [SE89] to the hybrid gradedµ-calculus.

A choice functionfor a pre-model〈K,π〉 for ϕ is a partial functionch from W × cl(ϕ) to
cl(ϕ) ∪ 2W , such that for allw ∈W , the following conditions hold:

• if ψ1 ∨ ψ2 ∈ π(w), thench(w,ψ1 ∨ ψ2) ∈ {ψ1, ψ2} ∩ π(w);
• if 〈n, a〉ψ ∈ π(w), thench(w, 〈n, a〉ψ) = V ⊆ succR(w, a), such that|V | > n andψ ∈ π(v)

for all v ∈ V ;
• if [n, a]ψ ∈ π(w), thench(w, [n, a]ψ) = V ⊆ succR(w, a), such that|V | ≤ n andψ ∈ π(v) for

all v ∈ succR(w, a) \ V .
An adorned pre-model〈K,π, ch〉 of ϕ consists of a pre-model〈K,π〉 of ϕ and a choice functionch.
We now define the notion of a derivation between occurrences of sentences in adorned pre-models,
which formalizes the tracing mentioned above. For an adorned pre-model〈K,π, ch〉 of ϕ, the
derivation relation ⊆ (W × cl(ϕ)) × (W × cl(ϕ)) is the smallest relation such that, for all
w ∈W , we have:

• if ψ1 ∨ ψ2 ∈ π(w), then(w,ψ1 ∨ ψ2) (w, ch(ψ1 ∨ ψ2));
• if ψ1 ∧ ψ2 ∈ π(w), then(w,ψ1 ∧ ψ2) (w,ψ1) and(w,ψ1 ∧ ψ2) (w,ψ2);
• if 〈n, a〉ψ ∈ π(w), then(w, 〈n, a〉ψ)  (v, ψ) for eachv ∈ ch(w, 〈n, a〉ψ);
• if [n, a]ψ ∈ π(w), then(w, [n, a]ψ)  (v, ψ) for eachv ∈ succR(w, a) \ ch(w, [n, a]ψ);
• if λy.ψ(y) ∈ π(w), then(w, λy.ψ(y))  (w,ψ(λy.ψ(y))).

A least fixpoint sentenceµy.ψ(y) is regeneratedfrom statew to statev in an adorned pre-model
〈K,π, ch〉 of ϕ if there is a sequence(w1, ρ1), . . . , (wk, ρk) ∈ (W × cl(ϕ))∗, k > 1, such that
ρ1 = ρk = µy.ψ(y), w = w1, v = wk, the formulaµy.ψ(y) is a sub-sentence of eachρi in the
sequence, and for all1 ≤ i < k, we have(wi, ρi)  (wi+1, ρi+1). We say that〈K,π, ch〉 is well-
foundedif there is no least fixpoint sentenceµy.ψ(y) ∈ cl(ϕ) and infinite sequencew1, w2, . . . such
that, for eachi ≥ 1, µy.ψ(y) is regenerated fromwi to wi+1. The proof of the following lemma
is based on signatures, i.e., sequence of ordinals that guides the evaluation of least fixpoints. It is a
minor variation of the one given for the originalµ-calculus in [SE89]. Details are omitted.

Lemma 3.2. Letϕ be a sentence of the hybrid gradedµ-calculus. Then:

(1) if ϕ is satisfiable, it has a well-founded adorned pre-model;
(2) if 〈K,π, ch〉 is a well-founded adorned pre-model ofϕ, thenK is a model ofϕ.

We now establish the forest model property of the hybrid gradedµ-calculus.

Theorem 3.3. If a sentenceϕ of the hybrid gradedµ-calculus is satisfiable, thenϕ has a directed
quasi-forest model.

Proof. Let ϕ be satisfiable. By item (1) of Lemma 3.2, there is a well-founded adorned pre-model
〈K,π, ch〉 for ϕ. We unwindK into a directed quasi-forest structureK ′ = 〈W ′, L′, R′〉, and define
a corresponding mappingπ′ : W ′ → at(ϕ) and choice functionch′ such that〈K ′, π′, ch′〉 is again
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a well-founded adorned pre-model ofϕ. Then, item (2) of Lemma 3.2 yields thatK ′ is actually a
model ofϕ.

Let K = 〈W,L,R〉, and letw0 ∈ W such thatϕ ∈ π(w0). The set of statesW ′ of K ′ is
a subset of IN+ as required by the definition of (quasi) forest structures, and we defineK ′ in a
stepwise manner by proceeding inductively on the length of elements ofW ′. Simultaneously, we
defineπ′, ch′, and a mappingτ : W ′ → W that keeps track of correspondences between states in
K ′ andK.

The base of the induction is as follows. LetI = {w1, . . . , wk} ⊆ W be a minimal subset such
thatw0 ∈ I and ifo is a nominal inϕ andL(o) = {w}, thenw ∈ I. DefineK ′ by setting:

• W ′ := {1, . . . , k};
• R′(a) := {(i, j) | (wi, wj) ∈ R(a), 1 ≤ i ≤ j ≤ k} for all a ∈ Prog;
• L′(p) := {i | wi ∈ L(p), 1 ≤ i ≤ k} for all p ∈ Prop ∪ Nom.
Defineτ by settingτ(i) = wi for 1 ≤ i ≤ k. Then,π′(w) is defined asπ(τ(w)) for all w ∈ W ′,
andch′ is defined by settingch′(w,ψ1∨ψ2) = ch(τ(w), ψ1 ∨ψ2) for all ψ1∨ψ2 ∈ π

′(w). Choices
for atleast and allbut formulas are defined in the induction step.

In the induction step, we iterate over allw ∈ W ′ of maximal length, and for each suchw
extendK ′, π′, ch′, andτ as follows. Let(〈a1, n1〉ψ1, v1), . . . , (〈am, nm〉ψm, vm) be all pairs from
cl(ϕ) × W of this form such that for each(〈ai, ni〉ψi, vi), we have〈ai, ni〉ψi ∈ π(w) andvi ∈
ch(τ(w), 〈ai, ni〉ψi). For1 ≤ i ≤ m, define

σ(vi) =

{
j if vi = τ(j), 1 ≤ j ≤ k
w · i otherwise.

To extendK ′, set

• W ′ :=W ′ ∪ {σ(v1), . . . , σ(vm)};
• R′(a) := R′(a) ∪ {(w, σ(vi)) | ai = a, 1 ≤ i ≤ m} for all a ∈ Prog;
• L′(p) := L′(p) ∪ {w · i ∈W | vi ∈ L(p), 1 ≤ i ≤ m} for all p ∈ Prop ∪ Nom.
Extendτ andπ′ by settingτ(w · i) = vi andπ′(w · i) = π(vi) for all w · i ∈ W ′. Finally, extend
ch′ by setting

• ch′(w · i, ψ1 ∨ ψ2) := ch(vi, ψ1 ∨ ψ2) for all w · i ∈W ′ andψ1 ∨ ψ2 ∈ π
′(w · i);

• ch′(w, 〈n, a〉ψ) := {σ(v) | v ∈ ch(τ(w), 〈n, a〉ψ)} for all 〈n, a〉ψ ∈ π′(w);
• ch′(w, [n, a]ψ) := {σ(v) | v ∈ ch(τ(w), [n, a]ψ) ∩ {v1, . . . , vm}} for all [n, a]ψ ∈ π′(w).

It is easily seen thatK ′ is a directed quasi-forest structure. Since〈K,π, ch〉 is an adorned pre-
model ofϕ, it is readily checked that〈K ′, π′, ch′〉 is an adorned pre-model ofϕ as well. If a
sentenceµy.ψ(y) is regenerated fromx to y in (K ′, π′, ch′), thenµy.ψ(y) is regenerated fromτ(x)
to τ(y) in (K,π, ch). It follows that well-foundedness of〈K,π, ch〉 implies well-foundedness of
〈K ′, π′, ch′〉.

Note that the construction from this proof fails for the fully enrichedµ-calculus because the
unwinding ofK duplicates states, and thus also duplicates incoming edgesto nominals. Together
with inverse programs and graded modalities, this may result in 〈K ′, π′〉 not being a pre-model ofϕ.

4. ENRICHED AUTOMATA

Nondeterministic automata on infinite trees are a variationof nondeterministic automata on
finite and infinite words, see [Tho90] for an introduction.Alternating automata, as first introduced
in [MS87], are a generalization of nondeterministic automata. Intuitively, while a nondeterministic
automaton that visits a nodex of the input tree sends one copy of itself to each of the successors of



THE COMPLEXITY OF ENRICHEDµ-CALCULI 9

x, an alternating automaton can send several copies of itselfto the same successor. In the two-way
paradigm [Var98], an automaton can send a copy of itself to the predecessor ofx, too. In graded
automata [KSV02], the automaton can send copies of itself toa numbern of successors, without
specifying which successors these exactly are. Our most general automata model is that of fully
enriched automata, as introduced in the next subsection. These automata work on infinite forests,
include all of the above features, and additionally have theability to send a copy of themselves to
the roots of the forest.

4.1. Fully enriched automata. We start with some preliminaries. LetF ⊆ IN+ be a forest,x a
node inF , andc ∈ IN. As a convention, we take(x · c) · −1 = x andc · −1 as undefined. Apath
π in F is a minimal setπ ⊆ F such that some rootr of F is contained inπ and for everyx ∈ π,
eitherx is a leaf or there exists ac ∈ F such thatx · c ∈ π. Given an alphabetΣ, aΣ-labeled forest
is a pair〈F, V 〉, whereF is a forest andV : F → Σ maps each node ofF to a letter inΣ. We call
〈F, V 〉 aΣ-labeled treeif F is a tree.

For a given setY , let B+(Y ) be the set of positive Boolean formulas overY (i.e., Boolean
formulas built from elements inY using∧ and∨), where we also allow the formulastrue andfalse
and∧ has precedence over∨. For a setX ⊆ Y and a formulaθ ∈ B+(Y ), we say thatX satisfies
θ iff assigning true to elements inX and assigning false to elements inY \ X makesθ true. For
b > 0, let

〈〈b〉〉 = {〈0〉, 〈1〉, . . . , 〈b〉}
[[b]] = {[0], [1], . . . , [b]}
Db = 〈〈b〉〉 ∪ [[b]] ∪ {−1, ε, 〈root〉, [root]}

A fully enriched automaton is an automaton in which the transition function δ maps a stateq and
a letterσ to a formula inB+(Db × Q). Intuitively, an atom(〈n〉, q) (resp.([n], q)) means that
the automaton sends copies in stateq to n + 1 (resp. all butn) different successors of the current
node,(ε, q) means that the automaton sends a copy in stateq to the current node,(−1, q) means that
the automaton sends a copy in stateq to the predecessor of the current node, and(〈root〉, q) (resp.
([root], q)) means that the automaton sends a copy in stateq to some root (resp. all roots). When,
for instance, the automaton is in stateq, reads a nodex, and

δ(q, V (x)) = (−1, q1) ∧ ((〈root〉, q2) ∨ ([root], q3)),

it sends a copy in stateq1 to the predecessor and either sends a copy in stateq2 to some root or a
copy in stateq3 to all roots.

Formally, afully enriched automaton(FEA, for short) is a tupleA = 〈Σ, b,Q, δ, q0,F〉, where
Σ is a finite input alphabet,b > 0 is a counting bound,Q is a finite set of states,δ : Q × Σ →
B+(Db×Q) is a transition function,q0 ∈ Q is an initial state, andF is an acceptance condition. A
run of A on an inputΣ-labeled forest〈F, V 〉 is anF ×Q-labeled tree〈Tr, r〉. Intuitively, a node in
Tr labeled by(x, q) describes a copy of the automaton in stateq that reads the nodex of F . Runs
start in the initial state at a root and satisfy the transition relation. Thus, a run〈Tr, r〉 has to satisfy
the following conditions:

(i) r(root(Tr)) = (c, q0) for some rootc of F and
(ii) for all y ∈ Tr with r(y) = (x, q) andδ(q, V (x)) = θ, there is a (possibly empty) setS ⊆

Db ×Q such thatS satisfiesθ and for all(d, s) ∈ S, the following hold:
− If d ∈ {−1, ε}, thenx · d is defined and there isj ∈ IN such thaty · j ∈ Tr andr(y · j) =

(x · d, s);
− If d = 〈n〉, then there is a setM ⊆ succ(x) of cardinalityn + 1 such that for allz ∈ M ,

there isj ∈ IN such thaty · j ∈ Trandr(y · j) = (z, s);



10 P. A. BONATTI, C. LUTZ, A. MURANO, AND M. Y. VARDI

− If d = [n], then there is a setM ⊆ succ(x) of cardinalityn such that for allz ∈ succ(x) \
M , there isj ∈ IN such thaty · j ∈ Tr andr(y · j) = (z, s);

− If d = 〈root〉, then for some rootc ∈ F and somej ∈ IN such thaty · j ∈ Tr, it holds that
r(y · j) = (c, s);

− If d = [root], then for each rootc ∈ F there existsj ∈ IN such thaty · j ∈ Tr and
r(y · j) = (c, s).

Note that ifθ = true, theny does not need to have successors. Moreover, since no setS satisfies
θ = false, there cannot be any run that takes a transition withθ = false.

A run 〈Tr, r〉 is acceptingif all its infinite paths satisfy the acceptance condition. We consider
here theparity acceptance condition[Mos84, EJ91, Tho97], whereF = {F1,F2, . . . ,Fk} is such
thatF1 ⊆ F2 ⊆ . . . ⊆ Fk = Q. The numberk of sets inF is called theindexof the automaton.
Given a run〈Tr, r〉 and an infinite pathπ ⊆ Tr, let Inf(π) ⊆ Q be the set of statesq such that
r(y) ∈ F × {q} for infinitely many y ∈ π. A path π satisfiesa parity acceptance condition
F = {F1,F2, . . . ,Fk} if the minimal i with Inf(π) ∩ Fi 6= ∅ is even. An automatonacceptsa
forest iff there exists an accepting run of the automaton on the forest. We denote byL(A) the set of
all Σ-labeled forests thatA accepts. Theemptiness problemfor FEAs is to decide, given a FEAA,
whetherL(A) = ∅.

4.2. Two-way graded alternating parity tree automata. A two-way graded alternating parity
tree automaton (2GAPT)is a FEA that accepts trees (instead of forests) and cannot jump to the root
of the input tree, i.e., it does not support transitions〈root〉 and [root]. The emptiness problem for
2GAPTs is thus a special case of the emptiness problem for FEAs. In the following, we give a
reduction of the emptiness problem for FEAs to the emptinessproblem for 2GAPTs. This allows
us to derive an upper bound for the former problem from the upper bound for the latter that is
established in Section 6.

We show how to translate a FEAA into a 2GAPTA′ such thatL(A′) consists of the forests
accepted byA, encoded as trees. The encoding that we use is straightforward: thetree encodingof
aΣ-labeled forest〈F, V 〉 is theΣ ⊎ {root}-labeled tree〈T, V ′〉 obtained from〈F, V 〉 by adding a
fresh root labeled with{root} whose children are the roots ofF .

Lemma 4.1. Let A be a FEA running onΣ-labeled forests withn states, indexk and counting
boundb. There exists a 2GAPTA′ that

(1) accepts exactly the tree encodings of forests accepted byA and
(2) hasO(n) states, indexk, and counting boundb.
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Proof. SupposeA = 〈Σ, b,Q, δ, q0,F〉. DefineA′ as〈Σ ⊎ {root}, b,Q′, δ′, q′0,F
′〉, whereQ′ and

δ′ are defined as follows:
Q′ = Q ⊎ {q′0, qr} ⊎ {someq, allq | q ∈ Q}

δ′(q′0, root) = (〈0〉, q0) ∧ ([0], qr)

δ′(q′0, σ) = false for all σ 6= {root}

δ′(qr, root) = false

δ′(qr, σ) = ([0], qr) for all σ 6= {root}

δ′(someq, σ) =

{
(−1, someq) if σ 6= root

(〈0〉, q) otherwise

δ′(allq, σ) =

{
(−1, allq) if σ 6= root

([0], q) otherwise

δ′(q, σ) = tran(δ(q, σ)) for all q ∈ Q andσ ∈ Σ

Here,tran(β) replaces all atoms(〈root〉, q) in β with (ε, someq), and all atoms([root], q) in β with
(ε, allq). The acceptance conditionF ′ is identical toF = {F1, . . . ,Fk}, except that allFi are
extended withqr andFk is extended withq0 and all statessomeq andallq. It is not hard to see that
A′ accepts〈T, V 〉 iff A accepts the forest encoded by〈T, V 〉.

In Section 6, we shall prove the following result.

Theorem 4.2. The emptiness problem for a 2GAPTA = 〈Σ, b,Q, δ, q0,F〉 with n states and index
k can be solved in time(b+ 2)O(n3·k2·log k·log b2).

By Lemma 4.1, we obtain the following corollary.

Corollary 4.3. The emptiness problem for a FEAA = 〈Σ, b,Q, δ, q0,F〉 with n states and indexk
can be solved in time(b+ 2)O(n3·k2·log k·log b2).

5. EXPTIME UPPER BOUNDS FOR ENRICHEDµ-CALCULI

We use Theorem 4.2 and Corollary 4.3 to establish EXPTIME upper bounds for satisfiability in
the full gradedµ-calculus and the hybrid gradedµ-calculus.

5.1. Full graded µ-calculus. We give a polynomial translation of formulasϕ of the full gradedµ-
calculus into a 2GAPTAϕ that accepts the tree models ofϕ. We can thus decide satisfiability ofϕ
by checking non-emptiness ofL(Aϕ). There is a minor technical difficulty to be overcome: we use
Kripke structures with labeled edges, while the trees accepted by 2GAPTs do not. This problem can
be dealt with by moving the label from each edge to the target node of the edge. For this purpose, we
introduce a new propositional symbolpα for each programα. For a formulaϕ, letΓ(ϕ) denote the
set of all atomic propositions and all propositionspα such thatα is an (atomic or inverse) program
occurring inϕ. Theencodingof a tree structureK = 〈W,R,L〉 is the2Γ(ϕ)-labeled tree〈W,L∗〉
such that

L∗(w) = {p ∈ Prop | w ∈ L(p)} ∪ {pα | ∃(v,w) ∈ R(α) with w α-successor ofv in W}.

For a sentenceϕ, we use|ϕ| to denote thelengthof ϕ with numbers inside graded modalities
coded in binary. Formally,|ϕ| is defined by induction on the structure ofϕ in a standard way, where
in particular|〈n, α〉ψ| = |[n, α]ψ| = ⌈log n⌉+ 1 + |ψ|. We say that a formulaϕ countsup tob if
the maximal integer inatleastandallbut formulas used inϕ is b− 1.
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Theorem 5.1. Given a sentenceϕ of the full gradedµ-calculus that counts up tob, we can construct
a 2GAPTAϕ such thatAϕ
(1) accepts exactly the encodings of tree models ofϕ,
(2) hasO(|ϕ|) states, indexO(|ϕ|), and counting boundb.

The construction can be done in timeO(|ϕ|).

Proof. The automatonAϕ verifies thatϕ holds at the root of the encoded tree. To define the set
of states, we use the Fischer-Ladner closurecl(ϕ) of ϕ. It is defined analogously to the Fischer-
Ladner closurecl(·) for the hybrid gradedµ-calculus, as given in Section 3. We defineAϕ as
〈2Γ(ϕ), b, cl(ϕ), δ, ϕ,F〉, where the transition functionδ is defined by setting, for allσ ∈ 2Γ(ϕ),

δ(p, σ) = (p ∈ σ)
δ(¬p, σ) = (p 6∈ σ)

δ(ψ1 ∧ ψ2, σ) = (ε, ψ1) ∧ (ε, ψ2)
δ(ψ1 ∨ ψ2, σ) = (ε, ψ1) ∨ (ε, ψ2)
δ(λy.ψ(y), σ) = (ε, ψ(λy.ψ(y)))
δ(〈n, a〉ψ, σ) = ((−1, ψ) ∧ (ε, pa−) ∧ (〈n − 1〉, ψ ∧ pa)) ∨ (〈n〉, ψ ∧ pa)
δ(〈n, a−〉ψ, σ) = ((−1, ψ) ∧ (ε, pa) ∧ (〈n − 1〉, ψ ∧ pa−)) ∨ (〈n〉, ψ ∧ pa−)
δ([n, a]ψ, σ) = ((−1, ψ) ∧ (ε, pa−) ∧ ([n], ψ ∧ pa)) ∨ ([n− 1], ψ ∧ pa)
δ([n, a−]ψ, σ) = ((−1, ψ) ∧ (ε, pa) ∧ ([n], ψ ∧ pa−)) ∨ ([n− 1], ψ ∧ pa−)

In casen = 0, the conjuncts (resp. disjuncts) involving “n − 1” are simply dropped in the last two
lines.

The acceptance condition ofAϕ is defined in the standard way as follows (see e.g. [KVW00]).
For a fixpoint formulaψ ∈ cl(ϕ), the alternation level ofψ is the number of alternating fixpoint
formulas one has to “wrapψ with” to reach a sub-sentenceof ϕ. Formally, letψ = λy.ψ′(y). The
alternation levelof ψ in ϕ, denotedalϕ(ψ) is defined as follows ([BC96]): ifψ is a sentence, then
alϕ(ψ) = 1. Otherwise, letξ = λ′z.ψ′′(z) be the innermostµ or ν subformula ofϕ that hasψ as
a strict subformula. Then, ifz is free inψ andλ′ 6= λ, we havealϕ(ψ) = alϕ(ξ) + 1; otherwise,
alϕ(ψ) = alϕ(ξ).

Let d be the maximum alternation level of (fixpoint) subformulas of ϕ. Denote byGi the set
of all ν-formulas incl(ϕ) of alternation leveli and byBi the set of allµ-formulas incl(ϕ) of
alternation level less than or equal toi. Now, defineF := {F0,F1, . . . ,F2d, Q} with F0 = ∅ and
for every1 ≤ i ≤ d, F2i−1 = F2i−2 ∪Bi andF2i = F2i−1 ∪Gi. Letπ be a path. By definition of
F , the minimali with Inf(π) ∩ Fi 6= ∅ determines the alternation level and typeλ of the outermost
fixpoint formulaλy.ψ(y) that was visited infinitely often onπ. The acceptance condition makes
sure that this formula is aν-formula. In other words, everyµ-formula that is visited infinitely often
onπ has a super-formula that (i) is aν-formula and (ii) is also visited infinitely often.

Letϕ be a sentence of the full gradedµ-calculus withℓ at-least subformulas. By Theorems 3.1,
4.2, and 5.1, the satisfiability ofϕ can be checked in time bounded by2p(|ϕ|) wherep(|ϕ|) is a
polynomial (note that, in Theorem 4.2,n, k, log ℓ, and log b are all inO(|ϕ|)). This yields the
desired EXPTIME upper bound. The lower bound is due to the fact that theµ-calculus is EXPTIME-
hard [FL79].

Theorem 5.2. The satisfiability problem of the full gradedµ-calculus isEXPTIME-complete even if
the numbers in the graded modalities are coded in binary.
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5.2. Hybrid graded µ-calculus. We reduce satisfiability in the hybrid gradedµ-calculus to the
emptiness problem of FEAs. Compared to the reduction presented in the previous section, two
additional difficulties have to be addressed.

First, FEAs accept forests while the hybridµ-calculus has only aquasi-forest model property.
This problem can be solved by introducing in node labels new propositional symbols↑ao which
do not occur in the input formula and represent an edge labeled with the atomic programa from
the current node to the (unique) root node labeled by nominalo. Let Θ(ϕ) denote the set of all
atomic propositions and nominals occurring inϕ and all propositionspa and↑ao such that the atomic
programa and the nominalo occur inϕ. Analogously to encodings of trees in the previous section,
theencodingof a directed quasi-forest structureK = 〈W,R,L〉 is the2Θ(ϕ)-labeled forest〈W,L∗〉
such that

L∗(w) = {p ∈ Prop ∪ Nom | w ∈ L(p)} ∪

{pa | ∃(v,w) ∈ R(a) with w successor ofv in W} ∪

{↑ao | ∃(w, v) ∈ R(a) with L(o) = {v}}.
Second, we have to take care of the interaction between graded modalities and the implicit

edges encoded via propositions↑ao . To this end, we fix some information about the structures ac-
cepted by FEAs already before constructing the FEA, namely (i) the formulas from the Fischer-
Ladner closure that are satisfied by each nominal and (ii) thenominals that are interpreted as the
same state. This information is provided by a so-called guess. To introduce guesses formally, we
need to extend the Fischer-Ladner closurecl(ϕ) for a formulaϕ of the hybrid gradedµ-calculus
as follows: cl(ϕ) has to satisfy the closure conditions given for the hybrid gradedµ-calculus in
Section 3 and, additionally, the following:

• if ψ ∈ cl(ϕ), then¬ψ ∈ cl(ϕ), where¬ψ denotes the formula obtained fromψ by dualizing all
operators and replacing every literal (i.e., atomic proposition, nominal, or negation thereof) with
its negation.

Letϕ be a formula with nominalsO = {o1, . . . , ok}. A guessfor ϕ is a pair(t,∼) wheret assigns
a subsett(o) ⊆ cl(ϕ) to eacho ∈ O and∼ is an equivalence relation onO such that the following
conditions are satisfied, for allo, o′ ∈ O:

(i) ψ ∈ t(o) or¬ψ ∈ t(o) for all formulasψ ∈ cl(ϕ);
(ii) o ∈ t(o);
(iii) o ∼ o′ impliest(o) = t(o′);
(iv) o 6∼ o′ implies¬o ∈ t(o′).

The intuition of a guess is best understood by considering the following notion of compatibility.
A directed quasi-forest structureK = (W,R,L) is compatiblewith a guessG = (t,∼) if the
following conditions are satisfied, for allo, o′ ∈ O:

• L(o) = {w} implies that{ψ ∈ cl(ϕ) | K,w |= ψ} = t(o);
• L(o) = L(o′) iff o ∼ o′.

We construct a separate FEAAϕ,G for each guessG for ϕ such thatϕ is satisfiable iffL(Aϕ,G) is
non-empty for some guessG. Since the number of guesses is exponential in the length ofϕ, we get
an EXPTIME decision procedure by constructing all of the FEAs and checking whether at least one
of them accepts a non-empty language.

Theorem 5.3. Given a sentenceϕ of the hybrid gradedµ-calculus that counts up tob and a guess
G for ϕ, we can construct a FEAAϕ,G such that

(1) if 〈F, V 〉 is the encoding of a directed quasi-forest model ofϕ compatible withG, then〈F, V 〉 ∈
L(Aϕ,G),
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(2) if L(Aϕ,G) 6= ∅, then there is an encoding〈F, V 〉 of a directed quasi-forest model ofϕ compat-
ible withG such that〈F, V 〉 ∈ L(Aϕ,G), and

(3) Aϕ,G hasO(|ϕ|2) states, indexO(|ϕ|), and counting boundb.

The construction can be done in timeO(|ϕ|2).

Proof. Let ϕ be a formula of the hybrid gradedµ-calculus andG = (t,∼) a guess forϕ. Assume
that the nominals occurring inϕ areO = {o1, . . . , ok}. For each formulaψ ∈ cl(ϕ), atomic
programa, andσ ∈ 2Θ(ϕ), let

• noma
ψ(σ) = {o | ψ ∈ t(o) ∧ ↑

a
o ∈ σ};

• |noma
ψ(σ)|

∼ denote the number of equivalence classesC of ∼ such that some member ofC is
contained innoma

ψ(σ).

The automatonAϕ,G verifies compatibility withG, and ensures thatϕ holds in some root. As its set
of states, we use

Q = cl(ϕ) ∪ {q0} ∪ {¬oi ∨ ψ, | 1 ≤ i ≤ k ∧ ψ ∈ cl(ϕ)} ∪ {inii | 1 ≤ i ≤ k}.

SetAϕ,G = 〈2Θ(ϕ), b,Q, δ, q0,F〉, where the transition functionδ and the acceptance conditionF
is defined in the following. For allσ ∈ 2Θ(ϕ), define:

δ(q0, σ) = (〈root〉, ϕ) ∧
∧

1≤i≤k

(〈root〉, oi) ∧
∧

1≤i≤k

([root], inii)

δ(inii, σ) = (ε,¬oi) ∨
∧

γ∈t(oi)

(ε, γ)

δ(¬p, σ) = (p 6∈ σ)
δ(ψ1 ∧ ψ2, σ) = (ε, ψ1) ∧ (ε, ψ2)
δ(ψ1 ∨ ψ2, σ) = (ε, ψ1) ∨ (ε, ψ2)
δ(λy.ψ(y), σ) = (ε, ψ(λy.ψ(y)))
δ([n, a]ψ, σ) = false if |noma

¬ψ(σ)|
∼ > n

δ([n, a]ψ, σ) = ([n− |noma
¬ψ(σ)|

∼], ψ ∧ pa) ∧
∧

o∈noma
ψ
(σ)

([root],¬o ∨ ψ) if |noma
¬ψ(σ)|

∼ ≤ n

δ(〈n, a〉ψ, σ) = (〈n− |noma
ψ(σ)|

∼〉, ψ ∧ pa) ∧
∧

o∈noma
ψ
(σ)

([root],¬o ∨ ψ)

In the last line, the first conjunct is omitted if|noma
ψ(σ)|

∼ > n. The first two transition rules check
that each nominal occurs in at least one root and that the encoded quasi-forest structure is compatible
with the guessG. Consider the last three rules, which are concerned with graded modalities and
reflect the existence of implicit back-edges to nominals. The first of these rules checks for allbut
formulas that are violated purely by back-edges. The other two rules consist of two conjuncts, each.
In the first conjunct, we subtract the number of nominals to which there is an implicita-edge and
that violate the formulaψ in question. This is necessary because the〈·〉 and [·] transitions of the
automaton do not take into account implicit edges. In the second conjunct, we send a copy of the
automaton to each nominal to which there is ana-edge and that satisfiesψ. Observe that satisfaction
of ψ at this nominal is already guaranteed by the second rule thatchecks compatibility withG. We
nevertheless need the second conjunct in the last two rules because, without the jump to the nominal,
we will be missing paths in runs ofAϕ,G (those that involve an implicit back-edge). Thus, it would
not be guaranteed that these paths satisfy the acceptance condition, which is defined below. This, in
turn, means that the evaluation of least fixpoint formulas isnot guaranteed to be well-founded. This
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point was missed in [SV01], and the same strategy used here can be employed to fix the construction
in that paper.

The acceptance condition ofAϕ,G is defined as in the case of the full gradedµ-calculus: let
d be the maximal alternation level of subformulas ofϕ, which is defined as in the case of the
full gradedµ-calculus. Denote byGi the set of all theν-formulas incl(ϕ) of alternation level
i and byBi the set of allµ-formulas incl(ϕ) of alternation depth less than or equal toi. Now,
F = {F0,F1, . . . ,F2d, Q}, whereF0 = ∅ and for every1 ≤ i ≤ d we haveF2i−1 = F2i−2 ∪Bi,
andF2i = F2i−1 ∪Gi.

It is standard to show that if〈F, V 〉 is the encoding of a directed quasi-forest modelK of ϕ
compatible withG, then 〈F, V 〉 ∈ L(Aϕ,G). Conversely, let〈F, V 〉 ∈ L(Aϕ,G). If 〈F, V 〉 is
nominal unique, i.e., if every nominal occurs only in the label of a single root, it is not hard to show
that 〈F, V 〉 is the encoding of a directed quasi-forest modelK of ϕ compatible withG. However,
the automatonAϕ,G does not (and cannot) guarantee nominal uniqueness. To establish Point (2) of
the theorem, we thus have to show that wheneverL(Aϕ,G) 6= ∅, then there is an element ofL(Aϕ,G)
that is nominal unique.

Let 〈F, V 〉 ∈ L(Aϕ,G). From〈F, V 〉, we extract a new forest〈F ′, V ′〉 as follows: Letr be a
run ofAϕ,G on 〈F, V 〉. Remove all trees fromF except those that occur inr as witnesses for the
existential root transitions in the first transition rule. Call the modified forestF ′. Now modifyr into
a runr′ onF ′: simply drop all subtrees rooted at nodes whose label refersto one of the trees that
are present inF but not inF ′. Now,r′ is a run onF ′ because (i) the only existential root transitions
are in the first rule, and these are preserved by constructionof F ′ andr′; and (ii) all universal root
transitions are clearly preserved as well. Also,r′ is accepting because every path inr′ is a path inr.
Thus,〈F ′, V ′〉 ∈ L(Aϕ,G) and it is easy to see that〈F ′, V ′〉 is nominal unique.

Combining Theorems 3.3, Corollary 4.3, and Theorem 5.3, we obtain an EXPTIME-upper
bound for the hybrid gradedµ-calculus. Again, the lower bound is from [FL79].

Theorem 5.4. The satisfiability problems of the full gradedµ-calculus and the hybrid gradedµ-
calculus areEXPTIME-complete even if the numbers in the graded modalities are coded in binary.

6. THE EMPTINESSPROBLEM FOR2GAPTS

We prove Theorem 4.2 and thus show that the emptiness problemof 2GAPTs can be solved in
EXPTIME. The proof is by a reduction to the emptiness problem of graded nondeterministic parity
tree automata (GNPTs) as introduced in [KSV02].

6.1. Graded nondeterministic parity tree automata. We introduce the graded nondeterministic
parity tree automata (GNPTs) of [KSV02]. Forb > 0, ab-boundis a pair in

Bb = {(>, 0), (≤, 0), (>, 1), (≤, 1), . . . , (>, b), (≤, b)}.

For a setX, a subsetP of X, and a (finite or infinite) wordt = x1x2 · · · ∈ X
∗ ∪Xω, theweight

of P in t, denotedweight(P, t), is the number of occurrences of symbols int that are members of
P . That is,weight(P, t) = |{i : xi ∈ P}|. For example,weight({1, 2}, 1241) = 3. We say that
t satisfies ab-bound(>,n) with respect toP if weight(P, t) > n, andt satisfies ab-bound(≤, n)
with respect toP if weight(P, t) ≤ n.

For a setY , we useB(Y ) to denote the set of all Boolean formulas over atoms inY . Each
formula θ ∈ B(Y ) induces a setsat(θ) ⊆ 2Y such thatx ∈ sat(θ) iff x satisfiesθ. For an
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integerb ≥ 0, a b-counting constraintfor 2Y is a relationC ⊆ B(Y ) × Bb. For example, if
Y = {y1, y2, y3}, then we can have

C = {〈y1 ∨ ¬y2, (≤, 3)〉, 〈y3, (≤, 2)〉, 〈y1 ∧ y3, (>, 1)〉}.

A word t = x1x2 · · · ∈ (2Y )∗ ∪ (2Y )ω satisfies theb-counting constraintC if for all 〈θ, ξ〉 ∈ C,
the wordt satisfiesξ with respect tosat(θ), that is, whenθ is paired withξ = (>,n), at least
n + 1 occurrences of symbols int should satisfyθ, and whenθ is paired withξ = (≤, n), at
mostn occurrences satisfyθ. For example, the wordt1 = ∅{y1}{y2}{y1, y3} does not satisfy the
constraintC above, as the number of sets int1 that satisfiesy1 ∧ y3 is one. On the other hand, the
word t2 = {y2}{y1}{y1, y2, y3}{y1, y3} satisfiesC. Indeed, three sets int2 satisfyy1 ∨ ¬y2, two
sets satisfyy3, and two sets satisfyy1 ∧ y3.

We useC(Y, b) to denote the set of allb-counting constraints for2Y . We assume that the
integers in constraints are coded in binary.

We can now definegraded nondeterministic parity tree automata(GNPTs, for short). A GNPT
is a tupleA = 〈Σ, b,Q, δ, q0,F〉 whereΣ, b, q0, andF are as in 2GAPT,Q ⊆ 2Y is the set of
states (i.e.,Q is encoded by a finite set of variables), andδ : Q × Σ → C(Y, b) maps a state and a
letter to ab-counting constraintC for 2Y such that the cardinality ofC is bounded bylog |Q|. For
defining runs, we introduce an additional notion. Letx be a node in aΣ-labeled tree〈T, V 〉, and let
x · i1, x · i2, . . . be the (finitely or infinitely many) successors ofx in T , whereij < ij+1 (the actual
ordering is not important, but has to be fixed). Then we uselab(x) to denote the (finite or infinite)
word of labels induced by the successors, i.e.,lab(x) = V (x · i1)V (x · i2) · · · . Given a GNPTA, a
run of A on aΣ-labeled tree〈T, V 〉 rooted inz is then aQ-labeled tree〈T, r〉 such that
• r(z) = q0 and
• for everyx ∈ T , lab(x) satisfiesδ(r(x), V (x)).

Observe that, in contrast to the case of alternating automata, the input tree〈T, V 〉 and the run
〈T, r〉 share the componentT . The run〈T, r〉 is acceptingif all its infinite paths satisfy the parity
acceptance condition. A GNPTacceptsa tree iff there exists an accepting run of the automaton on
the tree. We denote byL(A) the set of allΣ-labeled trees thatA accepts.

We need two special cases of GNPT: FORALL automata and SAFETY automata. In FORALL

automata, for eachq ∈ Q andσ ∈ Σ there is aq′ ∈ Q such thatδ(q, σ) = {〈(¬θq′), (≤, 0)〉},
whereθq′ ∈ B(Y ) is such thatsat(θq′) = {{q′}}. Thus, a FORALL automaton is very similar to
a (non-graded) deterministic parity tree automaton, wherethe transition function mapsq andσ to
〈q′, . . . , q′〉 (and the out-degree of trees is not fixed). In SAFETY automata, there is no acceptance
condition, and all runs are accepting. Note that this does not mean that SAFETY automata accept all
trees, as it may be that on some trees the automaton does not have a run at all.

We need two simple results concerning GNPTs. The following has been stated (but not proved)
already in [KSV02].

Lemma 6.1. Given aFORALL GNPTA1 with n1 states and indexk1, and aSAFETY GNPTA2

with n2 states and counting boundb2, we can define a GNPTA with n1n2 states, indexk1, and
counting boundb2, such thatL(A) = L(A1) ∩ L(A2).

Proof. We can use a simple product construction. LetAi = (Σ, bi, Qi, δi, q0,i,F
(i)) with Qi ⊆ 2Yi

for i ∈ {1, 2}. Assume w.l.o.g. thatY1 ∩ Y2 = ∅. We defineA = (Σ, b2, Q, δ, (q0,1 ∪ q0,2),F),
where

• Q = {q1 ∪ q2 | q1 ∈ Q1 andq2 ∈ Q2} ⊆ 2Y , whereY = Y1 ⊎ Y2;
• for all σ ∈ Σ andq = q1 ∪ q2 ∈ Q with δ1(q1, σ) = {〈(¬θq), (≤, 0)〉} andδ2(q2, σ) = C, we set
δ(q, σ) = C∪{〈(¬θ′q), (≤, 0)〉}, whereθ′q ∈ B(Y ) is such thatsat(θ′q) = {q

′ ∈ Q | q′∩Q1 = q};
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• F = {F1, . . . ,Fk} with Fi = {q ∈ Q | q ∩Q1 ∈ F
(1)
i } if F (1) = {F

(1)
1 , . . . ,F

(1)
k }.

It is not hard to check thatA is as required.

The following result can be proved by an analogous product construction.

Lemma 6.2. Given SAFETY GNPTsAi with ni states and counting boundsbi, i ∈ {1, 2}, we
can define aSAFETY GNPTA with n1n2 states and counting boundb = max{b1, b2} such that
L(A) = L(A1) ∩ L(A2).

6.2. Reduction to Emptiness of GNPTs. We now show that the emptiness problem of 2GAPTs
can be reduced to the emptiness problem of GNPTs that are onlyexponentially larger. LetA =
〈Σ, b,Q, δ, q0,F〉 be a 2GAPT. We recall thatδ is a function fromQ × Σ to B+(D−

b × Q), with

D−
b := 〈〈b〉〉 ∪ [[b]] ∪ {−1, ε}. A strategy treefor A is a2Q×D−

b
×Q-labeled tree〈T, str〉. Intuitively,

the purpose of a strategy tree is to guide the automatonA by pre-choosing transitions that satisfy
the transition relation. For each labelw = str(x), we usehead(w) = {q | (q, c, q′) ∈ w} to denote
the set of states for whichstr chooses transitions atx. Intuitively, if A is in stateq ∈ head(w), str
tells it to execute the transitions{(c, q′) | (q, c, q′) ∈ w}. In the following, we usually consider only
thestr part of a strategy tree. Let〈T, V 〉 be aΣ-labeled tree and〈T, str〉 a strategy tree forA, based
on the sameT . Thenstr is astrategy forA on V if for all nodesx ∈ T and all statesq ∈ Q, we
have:

(1) δ(q0, V (root(T ))) = true or q0 ∈ head(str(root(T )));
(2) if q ∈ head(str(x)), then the set{(c, q′) : (q, c, q′) ∈ str(x)} satisfiesδ(q, V (x)),
(3) if (q, c, q′) ∈ str(x) with c ∈ {−1, ε}, then (i)x · c is defined and (ii)δ(q′, V (x · c)) = true or

q′ ∈ head(str(x · c)).

If A is understood, we simply speak of a strategy onV .

Example 6.3. Let A = 〈Σ, b,Q, δ, q0,F〉 be a 2GAPT such thatΣ = {a, b, c}, Q = {q0, q1,
q2, q3}, andδ is such thatδ(q, a) = (〈0〉, q1)∨ (〈0〉, q3) for q ∈ {q0, q2}, andδ(q1, b) = ((−1, q2)∧
(〈1〉, q3))∨ ([1], q1). Consider the trees depicted in Figure 2. From left to right,the first tree〈T, V 〉
is a fragment of the input tree, the second tree is a fragment of a run〈Tr, r〉 of A on 〈T, V 〉, and the
third tree is a fragment of a strategy tree suggesting this run. In a label〈w, a〉 of the input tree,w is
the node name anda ∈ Σ the label in the tree. In the run and strategy tree, only the labels are given,
but not the node names.

Strategy trees do not give full information on how to handle transitions(〈n〉, q) and ([n], q)
as they do not say which successors should be used when executing them. This is compensated
by promise trees. A promise tree forA is a 2Q×Q-labeled tree〈T, pro〉. Intuitively, if a run that
proceeds according topro visits a nodex in stateq and chooses a move(〈n〉, q′) or ([n], q′), then
the successorsx · i of x that inheritq′ are those with(q, q′) ∈ pro(x · i). Let 〈T, V 〉 be aΣ-labeled
tree,str a strategy onV , and〈T, pro〉 a promise tree. We callpro apromise forA on str if the states
promised to be visited bypro satisfy the transitions chosen bystr, i.e., for every nodex ∈ T , the
following hold:
(1) for every(q, 〈n〉, q′) ∈ str(x), there is a subsetM ⊆ succ(x) of cardinalityn+1 such that each

y ∈M satisfies(q, q′) ∈ pro(y);
(2) for every(q, [n], q′) ∈ str(x), there is a subsetM ⊆ succ(x) of cardinalityn such that each

y ∈ succ(x) \M satisfies(q, q′) ∈ pro(y);
(3) if (q, q′) ∈ pro(x), thenδ(q′, V (x)) = true or q′ ∈ head(str(x)).
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〈1, a〉

✠

〈11, b〉

❘

〈12, a〉

✠ ❘

〈111, b〉 〈112, a〉

(1, q0)

☛

(11, q1)

✠ ❄ ❘

(1, q2) (111, q3) (112, q3)

❄
(12, q3)

(q0, 〈0〉, q1),(q2, 〈0〉, q3)

✠ ❘

(q1,−1, q2), (q1, 〈1〉, q3)

✠ ❘

Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.

Consider aΣ-labeled tree〈T, V 〉, a strategystr on V , and a promisepro on str. An infinite
sequence of pairs(x0, q0), (x1, q1) . . . is a trace induced bystr andpro if x0 is the root ofT , q0 is
the initial state ofA and, for eachi ≥ 0, one of the following holds:

• there is(qi, c, qi+1) ∈ str(xi) with c = −1 or c = ε, xi · c defined, andxi+1 = xi · c;
• str(xi) contains(qi, 〈n〉, qi+1) or (qi, [n], qi+1), there existsj ∈ IN with xi+1 = xi · j ∈ T , and
(qi, qi+1) ∈ pro(xi+1).

LetF = {F1, . . . ,Fk}. For each stateq ∈ Q, let index(q) be the minimali such thatq ∈ Fi. For a
traceπ, let index(π) be the minimal index of states that occur infinitely often inπ. Then,π satisfies
F if it has even index. The strategystr and promisepro areacceptingif all the traces induced by
str andpro satisfyF .

In [KSV02], it was shown that a necessary and sufficient condition for a tree〈T, V 〉 to be
accepted by a one-way GAPT is the existence of a strategystr onV and a promisepro on str that
are accepting. We establish the same result for the case of 2GAPTs.

Lemma 6.4. A 2GAPTA accepts〈T, V 〉 iff there exist a strategystr for A onV and a promisepro
for A on str that are accepting.

Proof. LetA = 〈Σ, b,Q, δ, q0,F〉 be a 2GAPT withF = {F1, . . . ,Fk}, and let〈T, V 〉 be the input
tree. Suppose first thatA accepts〈T, V 〉. Consider a two-player game onΣ-labeled trees, Protago-
nist vs. Antagonist, such that Protagonist is trying to showthatA accepts the tree, and Antagonist
is challenging that. A configuration of the game is a pair inT × Q. The initial configuration
is (root(T ), q0). Consider a configuration(x, q). Protagonist is first to move and chooses a set
P1 = {(c1, q1), . . . , (cm, qm)} ⊆ D−

b × Q that satisfiesδ(q, V (x)). If δ(q, V (x)) = false, then
Antagonist wins immediately. IfP1 is empty, Protagonist wins immediately. Antagonist responds
by choosing an element(ci, qi) of P1. If ci ∈ {−1, ε}, then the new configuration is(x · ci, qi).
If x · ci is undefined, then Antagonist wins immediately. Ifci = 〈n〉, Protagonist chooses a subset
M ⊆ succ(x) of cardinalityn+ 1, Antagonist wins immediately if there is no such subset and oth-
erwise responds by choosing an elementy of M . Then, the new configuration is(y, qi). If ci = [n],
Protagonist chooses a subsetM ⊆ succ(x) of cardinality at mostn, Antagonist wins immediately if
there is no such subset and otherwise responds by choosing anelementy of succ(x)\M . Protagonist
wins immediately if there is no such element. Otherwise, thenew configuration is(y, qi).

Consider now an infinite gameY , that is, an infinite sequence of immediately successive game
configurations. LetInf(Y ) be the set of states inQ that occur infinitely many times inY . Protagonist
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wins if there is an eveni > 0 for which Inf(Y ) ∩ Fi 6= ∅ and Inf(Y ) ∩ Fj = ∅ for all j < i.
It is not difficult to see that a winning strategy of Protagonist against Antagonist is essentially a
representation of a run ofA on 〈T, V 〉 and vice versa. Thus, such a winning strategy exists iffA
accepts this tree. The described game meets the conditions in [Jut95]. It follows that if Protagonist
has a winning strategy, then it has a memoryless strategy, i.e., a strategy whose moves do not depend
on the history of the game, but only on the current configuration.

Since we assume thatA accepts the input tree〈T, V 〉, Protagonist has a memoryless winning
strategy on〈T, V 〉. This winning strategy can be used to build a strategystr onV and a promisepro
on str in the following way. For eachx ∈ T , str(x) andpro(x) are the smallest sets such that, for
all configurations(x, q) occurring in Protagonist’s winning strategy, if Protagonist chooses a subset
P1 = {(c1, q1), . . . , (cm, qm)} of D−

b ×Q in the winning strategy, then we have

(i) {q} × P1 ⊆ str(x) and
(ii) for each atom(ci, qi) of P1 with ci = 〈n〉 (resp.ci = [n]) if M = {y1, . . . , yn+1} (resp.M =
{y1, . . . , yn}) is the set of successors chosen by Protagonist after Antagonist has chosen(ci, qi),
then we have(q, qi) ∈ pro(y) for eachy ∈M (resp. for eachy ∈ succ(x) \M ).

Using the definition of games and the construction ofstr, it is not hard to show thatstr is indeed a
strategy onV . Similarly, it is easy to prove thatpro is a promise onstr. Finally, it follows from the
definition of wins of Protagonist thatstr andpro are accepting.

Assume now that there exist a strategystr on V and a promisepro on str that are accepting.
Usingstr andpro, it is straightforward to inductively build an accepting run 〈Tr, r〉 of A on 〈T, V 〉:

• start with introducing the rootz of Tr, and setr(z) = (root(T ), q0);
• if y is a leaf inTr with r(y) = (x, q) and δ(q, V (x)) 6= true, then do the following for all
(q, c, q′) ∈ str(x):
− If c = −1 or c = ε, then add a fresh successory · j to y in Tr and setr(y · j) = (x · c, q′);
− If c = 〈n〉 or c = [n], then for eachj ∈ IN with (q, q′) ∈ pro(x · j), add a fresh successory · j′

to y in Tr and setr(y · j′) = (x · j, q′).

By Condition (3) of strategy trees,y · j is defined in the induction step. Using the properties of
strategies onV and of promises onstr, it is straightforward to show that〈Tr, r〉 is a run. It thus
remains to prove that〈Tr, r〉 is accepting. Letπ be a path in〈Tr, r〉. By definition of traces induced
by str andpro, the labeling ofπ is a trace induced bystr andpro. Sincestr andpro are accepting,
so isπ.

Strategy and promise trees together serve as a witness for acceptance of an input tree by a
2GAPT that, in contrast to a run〈Tr, r〉, has the same tree structure as the input tree. To translate
2GAPTs into GNPTs, we still face the problem that traces in strategies and promises can move both
up and down. To restrict attention to unidirectional paths,we extend to our setting the notion of
annotation as defined in [Var98]. Annotations allow decomposing a trace of a strategy and a promise
into a downward part and several finite parts that aredetours, i.e., divert from the downward trace
and come back to the point of diversion.

Let A = 〈Σ, b,Q, δ, q0,F〉 be a 2GAPT. Anannotation treefor A is a2Q×{1,...,k}×Q-labeled
tree〈T, ann〉. Intuitively, (q, i, q′) ∈ ann(x) means that from nodex and stateq, A can make a
detour and comes back tox with stateq′ such thati is the smallest index of all states that have been
seen along the detour. Let〈T, V 〉 be aΣ-labeled tree,str a strategy onV , pro a promise onstr, and
〈T, ann〉 an annotation tree. We callann an annotation forA onstr andpro if for every nodex ∈ T ,
the following conditions are satisfied:

(1) If (q, ε, q′) ∈ str(x) then (q, index(q′), q′) ∈ ann(x) ;
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(2) if (q, j′, q′) ∈ ann(x) and (q′, j′′, q′′) ∈ ann(x) , then(q,min(j′, j′′), q′′) ∈ ann(x) ;
(3) if (i) x = y · i , (ii) (q,−1, q′) ∈ str(x) , (iii) (q′, j, q′′) ∈ ann(y) or q′ = q′′ with index(q′) =

j , (iv) (q′′, 〈n〉, q′′′) ∈ str(y) or (q′′, [n], q′′′) ∈ str(y) , and (v) (q′′, q′′′) ∈ pro(x) , then
(q,min(index(q′), j, index(q′′′)), q′′′) ∈ ann(x) ;

(4) if (i) y = x · i , (ii) (q, 〈n〉, q′) ∈ str(x) or (q, [n], q′) ∈ str(x) , (iii) (q, q′) ∈ pro(y) ,
(iv) (q′, j, q′′) ∈ ann(y) or q′ = q′′ with index(q′) = j , and (v) (q′′,−1, q′′′) ∈ str(y) ,
then (q,min(index(q′), j, index(q′′′)), q′′′) ∈ ann(x) .

Example 6.5. Reconsider the 2GAPTA = 〈Σ, b,Q, δ, q0,F〉 from Example 6.3, as well as the
fragments of the input tree〈T, V 〉 and the strategystr on 〈T, V 〉 depicted in Figure 2. Assume
that there is a promisepro on str with (q0, q1) ∈ pro(11) telling the automaton that if it executes
(〈0〉, q1) in stateq0 at node 1, it should send a copy in stateq1 to node 11. Usingstr(1) and
Condition (4) of annotations, we can now deduce that, in any annotationann on str andpro, we
have(q0, j, q2) ∈ ann(1) with j the minimum of the indexes ofq0, q1, andq2.

Given an annotation tree〈T, ann〉 on str andpro, adownward traceπ induced bystr, pro, and
ann is a sequence(x0, q0, t0), (x1, q1, t1), . . . of triples, wherex0 = root(T ), q0 is the initial state
of A, and for eachi ≥ 0, one of the following holds:

(†) ti is (qi, c, qi+1) ∈ str(xi) for somec ∈ [[b]]∪ [〈b〉], (qi, qi+1) ∈ pro(xi ·d) for somed ∈ IN,
andxi+1 = xi · d

(‡) ti is (qi, d, qi+1) ∈ ann(xi) for somed ∈ {1, . . . , k}, andxi+1 = xi.

In the first case,index(ti) is the minimalj such thatqi+1 ∈ Fj and in the second case,index(ti) = d.
For a downward traceπ, index(π) is the minimalindex(ti) for all ti occurring infinitely often inπ.
Note that a downward traceπ can loop indefinitely at a nodex ∈ T when, from some pointi ≥ 0
on, all thetj , j ≥ i, are elements ofann (and all thexj arex). We say that a downward trace
π satisfiesF = {F1, . . . ,Fk} if index(π) is even. Given a strategystr, a promisepro on str, an
annotationann on str andpro, we say thatann is acceptingif all downward traces induced bystr,
pro, andann satisfyF .

Lemma 6.6. A 2GAPTA accepts〈T, V 〉 iff there exist a strategystr for A onV , a promisepro for
A on str, and an annotationann for A on str andpro such thatann is accepting.

Proof. Suppose first thatA accepts〈T, V 〉. By Lemma 6.4, there is a strategystr on V and a
promisepro on str which are accepting. By definition of annotations onstr andpro, it is obvious
that there exists a unique smallest annotationann on str andpro in the sense that, for each nodex
in T and each annotationann′, we haveann(x) ⊆ ann′(x). We show thatann is accepting. Let
π = (x0, q0, t0), (x1, q1, t1), . . . be a downward trace induced bystr, pro, andann. It is not hard
to construct a traceπ′ = (x′0, q

′
0), (x

′
1, q

′
1), . . . induced bystr andpro that is accepting iffπ is:

first expandπ by replacing elements inπ of the form(‡) with the detour asserted byann, and then
projectπ on the first two components of its elements. Details are left to the reader.

Conversely, suppose that there exist a strategystr onV , a promisepro onstr, and an annotation
ann on str andpro such thatann is accepting. By Lemma 6.4, it suffices to show thatstr andpro are
accepting. Letπ = (x0, q0), (x1, q1), . . . be a trace induced bystr andpro. It is possible to construct
a downwards traceπ′ induced bystr, pro, andann that is accepting iffπ is: whenever the step from
(xi, qi) to (xi+1, qi+1) is such thatxi+1 = xi · c for somec ∈ IN, the definition of traces induced
by str andpro ensures that there is ati = (qi, c, qi+1) ∈ str(xi) such that the conditions from(†)
are satisfied; otherwise, we consider the maximal subsequence (xi, qi), . . . , (xj , qj) of π such that
xj = xi · c for somec ∈ IN, and replace it with(xi, qi), (xj , qj). By definition of annotations,
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there isti = (qi, d, qi+1) ∈ ann(xi) such that the conditions from (‡) are satisfied. Again, we leave
details to the reader.

In the following, we combine the input tree, the strategy, the promise, and the annotation into
one tree〈T, (V, str, pro, ann)〉. The simplest approach to representing the strategy as partof the
input tree is to additionally label the nodes of the input tree with an element of2Q×D−

b
×Q. However,

we can achieve better bounds if we represent strategies morecompactly. Indeed, it suffices to store
for every pair of statesq, q′ ∈ Q, at most four different tuples(q, c, q′): two for c ∈ {ε,−1} and
two for the minimaln and maximaln′ such that(q, [n], q′), (q, 〈n′〉, q′) ∈ str(y). Call the set of
all representations of strategiesLstr. We can now define the alphabet of the combined trees. Given
an alphabetΣ for the input tree, letΣ′ denote the extended signature for the combined trees, i.e.,
Σ′ = Σ× Lstr × 2Q×Q × 2Q×{1,...,k}×Q.

Theorem 6.7. LetA be a 2GAPT running onΣ-labeled trees withn states, indexk and counting
boundb. There exists a GNPTA′ running onΣ′-labeled trees with2O(kn2·log k·log b2) states, index
nk, andb-counting constraints such thatA′ accepts a tree iffA accepts its projection onΣ.

Proof. Let A = 〈Σ, b,Q, δ, q0,F〉 with F = {F1, . . . ,Fk}. The automatonA′ is the intersection
of three automataA1, A2, andA3. The automatonA1 is a SAFETY GNPT, and it accepts a tree
〈T, (V, str, pro, ann)〉 iff str is a strategy onV and pro is a promise onstr. It is similar to the
corresponding automaton in [KSV02], but additionally has to take into account the capability of
2GAPTs to travel upwards. The state set ofA1 isQ1 := 2(Q×Q)∪Q. LetP ∈ Q1. Intuitively,
(a) pairs(q, q′) ∈ P represent obligations forpro in the sense that if a nodex of an input tree

receives stateP in a run ofA, then(q, q′) is obliged to be inpro(x);
(b) statesq ∈ P are used to memorizehead(str(y)) of the predecessory of x.

This behaviour is easily implemented viaA1’s transition relation. Usingfalse in the transition func-
tion ofA1 and thus ensuring that the automaton blocks when encountering an undesirable situation,
it is easy to enforce Conditions (2) to (3) of strategies, andCondition (3) of promises. The initial
state ofA1 is {(q0, q0)}, which together with Condition (3) of promises enforces Condition (1) of
strategies. It thus remains to treat Conditions (1) and (2) of promises. This is again straightforward
using the transition function. For example, if(q, 〈n〉, q′) ∈ str(x), then we can use the conjunct
〈(q, q′), (>,n)〉 in the transition. Details of the definition ofA1 are left to the reader. Clearly, the
automatonA1 has2O(n2) states and counting boundb.

The remaining automataA2 andA3 do not rely on the gradedness of GNPTs. The automaton
A2 is both a SAFETY and FORALL GNPT. It accepts a tree〈T, (V, str, pro, ann)〉 iff ann is an
annotation. More precisely,A2 checks that all conditions of annotations hold for each nodex
of the input tree. The first two conditions are checked locally by analyzing the labelsstr(x) and
ann(x). The last two conditions require to analyzepro(x), str(y), and ann(y), wherey is the
parent ofx. To accessstr(y) ⊆ Q×D−

b ×Q andann(y) ⊆ Q× {1, . . . , k} ×Q while processing
x, A2 must memorize these two sets in its states. Regardingstr(y), it suffices to memorize the
representation fromLstr. The number of such representations is(4b2)n

2

, which is bounded by
2O(n2·log b2). There are2kn

2

different annotations, and thus the overall number of states ofA2 is
bounded by2O(kn2·log b2).

The automatonA3 is a FORALL GNPT, and it accepts a tree〈T, (V, str, pro, ann)〉 iff ann is
accepting. By Lemma 6.6, it thus follows thatA′ accepts〈T, (V, str, pro, ann)〉 iff A accepts〈T, V 〉.
The automatonA3 extends the automaton considered in [Var98] by taking into account promise trees
and graded moves in strategies.
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We constructA3 in several steps. We first define a nondeterministic parity word automaton
(NPW)U overΣ′. An input word toU corresponds to a path in an input tree toA′. We buildU
such that it accepts an input word/path if this path gives rise to a downward trace that violates the
acceptance conditionF of A. An NPW is a tuple〈Σ, S,M, s0,F〉, whereΣ is the input alphabet,
S is the set of states,M : S → 2S is the transition function,s0 ∈ S is the initial state, and
F = {F1,F2 . . . ,Fk} is a parity acceptance condition. Given a wordw = a0a1 . . . ∈ Σω, a run
r = q0q1 · · · of U onw is such thatq0 = s0 andqi+1 ∈M(qi, ai) for all i ≥ 0.

We defineU = 〈Σ′, S,M, s0,F
′〉 such thatS = (Q × Q × {1, . . . , k}) ∪ {qacc}. Intuitively,

a run ofU describes a downward trace induced bystr, pro, andann on the input path. Suppose
thatx is thei-th node in an input path toU , r is a run ofU on that path, and thei-th state inr is
〈q, qprev, j〉. This means thatr describes a trace in which the state ofA on the nodex is q, while the
previous state at the parenty of x wasqprev. Thus,A has executed a transition(〈b〉, q) or ([b], q) to
reach stateq atx. For reaching the stateqprev at y,A may or may not have performed a detour aty
as described byann. Thej in 〈q, qprev, j〉 is the minimum index ofq and any state encountered on
this detour (if any).

We now define the transition functionM formally. To this end, let〈q, qprev, j〉 ∈ S and let
σ = (V (x), str(x), pro(x), ann(x)). To defineM(〈q, qprev, j〉, σ), we distinguish between three
cases:

(1) if (qprev, q) 6∈ pro(x), thenM(〈q, qprev, j〉, σ) = ∅;
(2) otherwise and ifH = {c : (q, c, q) ∈ ann(x)} is non-empty and some member ofH has an odd

index, setM(〈q, qprev, j〉, σ) = {qacc};
(3) if neither (1) nor (2) apply, then we put〈q′, q′prev, j

′〉 ∈M(〈q, qprev, j〉, σ) iff
• (q, c, q′) ∈ str(x), with c ∈ 〈〈b〉〉 ∪ [[b]], q′prev = q andj′ = index(q′); or
• (q, d, q′prev) ∈ ann(x) for somed, (q′prev, c, q

′) ∈ str(x) for somec ∈ 〈〈b〉〉 ∪ [[b]], and
j′ = min(d, index(q′)).

In addition,M(qacc, σ) = {qacc}, for all σ ∈ Σ′. For (1), note that if(qprev, q) 6∈ pro(x), then
pro does not permit downwards traces in whichA switches fromqprev to q when moving from the
parent ofx to x. Thus, the current run ofU does not correspond to a downward trace, andU does
not accept. The purpose of (2) is to check for traces that “getcaught” at a node.

The initial states0 of U is defined as〈q0, q0, ℓ〉, whereℓ is such thatq0 ∈ Fℓ. Note that
the choice of the second element is arbitrary, as the local promise at the root of the input tree
is irrelevant. Finally, the parity condition isF ′ = {F ′

1,F
′
2, . . . ,F

′
k+1}, whereF ′

1 = ∅, F ′
2 =

Q×Q×{1}∪{qacc} and for eachℓ with 2 < ℓ ≤ k+1, we haveF ′
ℓ = Q×Q×{ℓ− 1}. Thus,U

accepts a word if this word corresponds to a path of the input tree on which there is a non-accepting
trace.

In order to getA3, we co-determinize the NPWU and expand it to a tree automaton, i.e., a
FORALL GNPT onΣ′. That is, we first construct a deterministic parity word automatonŨ that
complementsU , and then replace a transitioñM(q, σ) = q′ in Ũ by a transition

Mt(q, σ) = {〈(¬θq′), (≤, 0)〉}

inA3 where the states of̃U are encoded by some setY of variables and for every stateq′, the formula
θq′ ∈ B(Y ) holds only in the subset ofY that encodesq′. By [Saf89, Tho97], the automatoñU has
(nk)nk ≤ 2nk·lognk states and indexnk, thus so doesA3.

By Lemma 6.2, we can intersect the two SAFETY automataA1 andA2 obtaining a SAFETY

automaton with2O(kn2·log b2) states and counting boundb. Moreover, by Lemma 6.1, the obtained
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SAFETY automaton can be intersected with the FORALL automatonA3 yielding the desired GNPT
A′ with 2O(kn2·log k·log b2) states, counting boundb, and indexnk.

6.3. Emptiness of GNPTs. By extending results of [KV98, KVW00, KSV02], we provide an al-
gorithm for deciding emptiness of GNPTs. The general idea isto translate GNPTs into alternating
(non-graded) parity automata on words, and then to use an existing algorithm from [KV98] for
deciding emptiness of the latter.

A singleton-alphabet GNPT on fullω-trees (ω-1GNPT)is a GNPT that uses a singleton alpha-
bet{a} and admits only a single input tree〈Tω, V 〉, whereTω is the full ω-tree IN+ andV labels
every node with the only symbola. Our first aim is to show that every GNPT can be converted
into anω-1GNPT such that (non)emptiness is preserved. We first convert to a 1GNPT, which is a
single-alphabet GNPT.

Lemma 6.8. LetA = 〈Σ, b,Q, δ, q0,F〉 be a GNPT. Then there is a 1GNPTA′ = 〈{a}, b,Q′, δ′, q′0,F
′〉

withL(A) = ∅ iff L(A′) = ∅ and |Q′| ≤ |Q| × |Σ|+ 1.

Proof. LetQ ⊆ 2Y . We may assume w.l.o.g. thatΣ ⊆ 2Z for some setZ with Z ∩ Y = ∅. Now
define the components ofA′ as follows:

• Q′ = {{s}} ∪ {q ∪ σ, | q ∈ Q ∧ σ ∈ Σ} ⊆ 2Y
′
, whereY ′ = Y ⊎ Z ⊎ {s};

• q′0 = {s};
• δ′({s}, a) = {〈true, (≤, 1)〉, 〈

∧
y∈q0

y ∧
∧
y∈Y \q0

¬y, (>, 0)〉, 〈s, (≤, 0)〉};
• δ′(q, a) = δ(q ∩ Y, q ∩ Z) ∪ {〈s, (≤, 0)〉} for all q ∈ Q with q 6= {s};
• F ′ = {F ′

1, . . . ,F
′
k} with F ′

i = {q ∈ Q
′ | q ∩Q ∈ Fi} if F = {F1, . . . ,Fk}.

It is easy to see thatA accepts〈T, V 〉 iff A′ accepts〈T ′, V ′〉, whereT ′ is obtained fromT by
adding an additional root, andV ′ assigns the labela to every node inT ′. Intuitively, the additional
root enablesA′ to “guess” a label at the root of the original tree. Then, the label will be guessed
iteratively.

In the next step, we translate toω-1GNPTs.

Lemma 6.9. Let A = 〈{a}, b,Q, δ, q0 ,F〉 be a 1GNPT. Then there exists anω-1GNPT
A′ = 〈{a}, b,Q′, δ′, q0,F

′〉 such thatL(A) = ∅ iff L(A′) = ∅ and |Q′| = |Q|+ 1.

Proof. Define the components ofA′ as follows:

• Q′ = Q ∪ {{⊥}} ⊆ 2Y
′
, whereY ′ = Y ⊎ {⊥};

• if δ(q, a) = {〈θ1, ξ1〉, . . . , 〈θk, ξk〉}, setδ′(q, a) = {〈θ1 ∧ ¬⊥, ξ1〉, . . . , 〈θk ∧ ¬⊥, ξk〉}, for all
q ∈ Q with ⊥ /∈ q;
• δ′(q, a) = {〈¬⊥, (≤, 0)〉} for all q ∈ Q with ⊥ ∈ q.
• F ′ = {F ′

1, . . . ,F
′
k} with F ′

1 = F1, andF ′
i = Fi ∪ {q ∈ Q′ | ⊥ ∈ q}, for 2 ≤ i ≤ k, if

F = {F1, . . . ,Fk}.

It is easy to see thatL(A) 6= ∅ iff A′ accepts〈Tω, V 〉. Accepting runs can be translated back and
forth. When going from runs ofA to runs ofA′, this involves of the children of each node with
nodes labeled{⊥}.
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We are now ready to translate GNPTs to alternating word automata. Asingle-alphabet alter-
nating parity word automaton (1APW)is a tupleA = 〈{a}, Q, δ, q0,F〉, where{a} is the alphabet,
Q, q0, andF are as in FEAs, andδ : Q × {a} → B+(Q). There is only a single possible input to
a 1APW, namely the infinite wordaaa · · · . Intuitively, if A is in stateq on thei-th position of this
word andδ(q, a) = q′ ∨ (q ∧ q′′), thenA can send to positioni+ 1 either a copy of itself in stateq′

or one copy in stateq and one in stateq′′. The input word is accepted iff there is an accepting run of
A, where arun is aQ-labeled tree〈Tr, r〉 such that

• r(root(Tr)) = q0;
• for all y ∈ Tr with r(y) = q andδ(q, a) = θ, there is a (possibly empty) setS ⊆ Q such thatS

satisfiesθ and for allq′ ∈ S, there isj ∈ IN such thaty · j ∈ Tr andr(y · j) = q′.

As for FEAs, a run〈Tr, r〉 is acceptingif all its infinite paths satisfy the acceptance condition.

For anω-1GNPTA = 〈{a}, b,Q, δ, q0 ,F〉, q ∈ Q, andP ⊆ Q, the functionis motherA(q, P )
returnstrue if there is an infinite wordt ∈ Pω that satisfies the counting constraintδ(q, a), andfalse
otherwise.

Lemma 6.10. For everyω-1GNPTA = 〈{a}, b,Q, δ, q0 ,F〉, the 1APWA′ = 〈{a}, Q, δ′, q0,F〉 is
such thatL(A) = ∅ iff L(A′) = ∅, where for allq ∈ Q,

δ′(q, a) =
∨

P⊆Q s.t. is motherA(q,P )

∧

q∈P

q.

Proof. (sketch) First assume that〈Tω, V 〉 ∈ L(A). Then there exists an accepting run〈Tω, r〉 of A
on〈Tω, V 〉. It is not difficult to verify that〈Tω, r〉 is also an accepting run ofA′. Conversely, assume
thataω ∈ L(A′). Then there is an accepting run〈Tr, r〉 of A′. We define an accepting run〈Tω, r′〉
of A on 〈Tω, V 〉 by inductively definingr′. Along with r′, we define a mappingτ : Tω → Tr such
thatr′(x) = r(τ(x)) for all x ∈ Tω. To start, setr′(root(Tω)) = q0 andτ(root(Tω)) = root(Tr).
For the induction step, letx ∈ Tω such thatr′(y) is not yet defined for the successorsy of x. Since
〈Tr, r〉 is a run ofA′ and by definition ofδ′, there is aP ⊆ Q such that (i)is motherA(r(τ(x)), P )
and (ii) for all q ∈ P , there is a successory of τ(x) in Tr with r(y) = q. By (i), there is a word
t = q1q2 · · · ∈ P

ω that satisfies the counting constraintδ(r(τ(x)), a) = δ(r′(x), a). For all i ≥ 1,
definer′(x · i) = qi and setτ(x · i) to some successory of τ(x) in Tr such thatr(y) = qi (which
exists by (ii)). It is not hard to check that〈Tω, r′〉 is indeed an accepting run ofA on 〈Tω, V 〉.

For a 1APWA = 〈{a}, Q, δ, q0 ,F〉, q ∈ Q, andP ⊆ Q, the functionis motherA(q, P ) returns
true if P satisfies the Boolean formulaδ(q, a), andfalse otherwise.

Since the transition function of the automatonA′ from Lemma 6.10 is of size exponential in
the number of states of theω-1GNPTA, we should not computeA′ explicitly. Indeed, this is not
necessary since all we need fromA′ is access toF andis motherA′ and, as stated in the next lemma,
is motherA′ coincides withis motherA. The lemma is an immediate consequence of the definition
of the 1APW in Lemma 6.10.

Lemma 6.11. LetA andA′ be as in Lemma 6.10, with state setQ. Thenis motherA = is motherA′ .

To decide the emptiness of 1APWs, we use the algorithm from [KV98]. It is a recursive pro-
cedure that accesses the transition function of the 1APW only via is mother. If started on a 1APW
with n states and indexk, it makes at most2O(k logn) calls to is mother and performs at most
2O(k logn) additional steps.

To analyze its runtime requirements, we first determine the complexity of computingis mother.1

1We remark that the analogous Lemma 1 of [KSV02] is flawed because it considers only trees of finite outdegree.
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Lemma 6.12. LetA = 〈{a}, b,Q, δ, q0,F〉 be anω-1GNPT withn states and counting boundb.
Thenis motherA can be computed in timebO(logn).

Proof. Assume that we want to check whetheris motherA(q, P ), for someq ∈ Q andP ⊆ Q. Let
θ1, . . . , θk be all formulas occurring inC := δ(q, a). We construct a deterministic Büchi automaton
A′ = 〈Σ′, Q′, q′0, δ

′, F ′〉 on infinite words that accepts precisely those wordst ∈ Pω that satisfyC:

• Σ′ = P ;
• Q′ = {0, . . . , b}k;
• q′0 = {0}

k;
• δ′((i1, . . . , ik), p) is the vector (j1, . . . , jk), where for all h ∈ {1, . . . , k}, we have
jh = min{b, ih + 1} if p ∈ Σ′ satisfiesθh, andjh = ih otherwise;
• F ′ consists of those tuples(i1, . . . , ik) such that for allh ∈ {1, . . . , k},

(1) there is no〈θh, (≤, r)〉 ∈ C with r < ih;
(2) for all 〈θh, (>, r)〉 ∈ C, we haveih ≥ r.

By definition of GNPTs, the cardinality ofC is bounded bylog n. Thus,A′ hasblogn states. It
remains to note that the emptiness problem for deterministic Büchi word automata (is NLOGSPACE-
complete [VW94] and) can be solved in linear time [Var07].

Now for the runtime of the algorithm. LetA be a GNPT withn states, counting boundb, and
indexk. To decide emptiness ofA, we convertA into anω-1GNPTA′ with n + 1 states, counting
boundb, and indexk, and then into a 1APWA′′ with n+1 states and indexk. By Lemma 6.12, we
obtain the following result.

Theorem 6.13. LetA = 〈Σ, b,Q, δ, q0,F〉 be a GNPT with|Q| = n, and indexk. Then emptiness
ofA can be decided in time(b+ 2)O(k·logn).

6.4. Wrapping Up. Finally, we are ready to prove Theorem 4.2, which we restate here for conve-
nience.

Theorem 4.2. The emptiness problem for a 2GAPTA = 〈Σ, b,Q, δ, q0,F〉 with n states and index
k can be solved in time(b+ 2)O(n2·k2·log k·log b2).

Proof. By Theorem 6.7, we can convertA into a GNPTA′ with 2O(kn2·log k·log b2) states, indexnk,
and counting boundb. Thus, Theorem 6.13 yields the desired result.

A matching EXPTIME lower bound is inherited from nongraded, one-way alternating tree au-
tomata.

7. CONCLUSION

We have studied the complexity ofµ-calculi enriched with inverse programs, graded modalities,
and nominals. Our analysis has resulted in a rather completepicture of the complexity of such
logics. In particular, we have shown that only the fully enrichedµ-calculus is undecidable, whereas
all its fragments obtained by dropping at least one of the enriching features inherit the attractive
computational behavior of the original, non-enrichedµ-calculus.

From the perspective of the description logic OWL, the picture is as follows. Undecidability of
the fully enrichedµ-calculus means that OWL extended with fixpoints is undecidable. The decid-
ableµ-calculi identified in this paper give rise to natural fragments of OWL that remain decidable
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when enriched with fixpoints. Orthogonal to the investigations carried out in this paper, it would
be interesting to understand whether there are any second-order features that can be added to OWL
without losing decidability. In particular, decidabilityof OWL extended with transitive closure is
still an open problem.

Acknowledgements. We are grateful to Orna Kupferman and Ulrike Sattler for helpful discussions
of [SV01, KSV02].
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