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ABSTRACT. Thefully enrichedyu-calculusis the extension of the propositionalcalculus with in-
verse programs, graded modalities, and nominals. Whilsfisdtility in several expressive fragments
of the fully enriched:-calculus is known to be decidable andfT IME-complete, it has recently been
proved that the full calculus is undecidable. In this paperstudy the fragments of the fully enriched
u-calculus that are obtained by dropping at least one of td&iadal constructs. We show that, in all
fragments obtained in this way, satisfiability is decidadolel EXPTIME-complete. Thus, we identify
a family of decidable logics that are maximal (and incompbzjain expressive power. Our results
are obtained by introducing two new automata models, stgpiiat their emptiness problems are
ExPTIME-complete, and then reducing satisfiability in the relevagics to these problems. The
automata models we introduce aveo-way graded alternating parity automataver infinite trees
(2GAPTSs) andully enriched automatéFEAS) over infinite forests. The former are a common gen-
eralization of two incomparable automata models from ttexdiure. The latter extend alternating
automata in a similar way as the fully enrichedalculus extends the standaretalculus.
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Inverse progr| Graded mod| Nominals Complexity
fully enrichedp-calculus X X X undecidable
full gradedp:-calculus X X ExPTIME (1lary2ary)
full hybrid p-calculus X X EXPTIME
hybrid graded.-calculus X X ExPTIME (lary/2ary)
gradedu-calculus X ExPTIME (lary/2ary)

Figure 1: Enriched:-calculi and previous results.

1. INTRODUCTION

The p-calculusis a propositional modal logic augmented with least andtgstdixpoint op-
erators [[Koz8B]. It is often used as a target formalism fobedding temporal and modal logics
with the goal of transferring computational and model-te&o properties such as thexETIME
upper complexity boundDescription logics (DLshare a family of knowledge representation lan-
guages that originated in artificial intelligen¢e [BM+03idacurrently receive considerable atten-
tion, which is mainly due to their use as an ontology languag®ominent applications such as the
semantic web [BHS02]. Notably, DLs have recently been stedided as the ontology language
OWL by the W3C committee. It has been pointed out by severhlaas that, by embedding DLs
into the u-calculus, we can identify DLs that are of very high expresgiower, but computation-
ally well-behaved[[CGL99, SV01, KSV02]. When putting thikea to work, we face the problem
that modern DLs such as the ones underlying OWL include akeenstructs that cannot easily
be translated into thg-calculus. The most important such constructs are inveisgrgms, graded
modalities, and nominals. Intuitively, inverse prograrigvato travel backwards along accessibil-
ity relations [Var98], nominals are propositional varebinterpreted as singleton séts [SV01], and
graded modalities enable statements about the number aéssars (and possibly predecessors) of
a state[[KSV0P]. All of the mentioned constructs are avadab the DLs underlying OWL.

The extension of th@-calculus with these constructs induces a family of endchealculi.
These calculi may or may not enjoy the attractive computatiroperties of the originaf.-
calculus: on the one hand, it has been shown that satistyainila number of the enriched calculi
is decidable and E,TiME-complete [CGL99, SVO1, KSV02]. On the other hand, it haently
been proved by Bonatti and Peron that satisfiability is uitddxe in thefully enrichedu-calculus
i.e., the logic obtained by extending tpecalculus with all of the above constructs simultaneously
[BPO4]. In computer science logic, it has always been a majgearch goal to identify decidable
logics that are as expressive as possible. Thus, the absubisreaise the question of maximal
decidable fragments of the fully enrichedcalculus. In this paper, we study this question in a
systematic way by considering all fragments of the fullyi@med ;-calculus that are obtained by
dropping at least one of inverse programs, graded modalitad nominals. We show that, in
all these fragments, satisfiability is decidable andPEIME-complete. Thus, we identify a whole
family of decidable logics that have maximum expressivity.

The relevant fragments of the fully enrichgecalculus are shown in Figuté 1 together with
the complexity of their satisfiability problem. The resudtsown in gray are already known from
the literature: the KEPTIME lower bound for the originali-calculus stems froni [FL79]; it has
been shown in[[SV01] that satisfiability in the full hybrigcalculus is in KPTIME; under the
assumption that the numbers inside graded modalities dexlda unary, the same result was proved
for the full gradedu-calculus in[CGL99]; finally, the same was also shown for(tien-full) graded
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p-calculus in [KSV02] under the assumption of binary codifgthis paper, we prove X TIME-
completeness of the full gradedcalculus and the hybrid gradedcalculus. In both cases, we allow
numbers to be coded in binary (in contrast, the techniqued ins[CGL99] involve an exponential
blow-up when numbers are coded in binary).

Our results are based on the automata-theoretic approdaxtnds the techniques in [KSV02,
[SV01,Var98]. They involve introducing two novel automataduls. To show that the full graded
u-calculus is in KPTIME, we introducetwo-way graded parity tree automata (2GAPT3hese
automata generalize in a natural way two existing, but inzam@ble automata models: two-way
alternating parity tree automata (2APTIs) [Var98] and (wme) graded alternating parity tree au-
tomata (GAPTs) [KSV02]. The phrase “two-way” indicatesttB&APTs (like 2APTs) can move
up and down in the tree. The phrase “graded” indicates th&tFZI5 (like GAPTS) have the ability
to count the number of successors of a tree node that it moveégamely, such an automaton can
move to at least or all butn successors of the current node, without specifying whidtesssors
exactly these are. We show that the emptines problem for Zds P EXPTIME by a reduction to
the emptiness of graded nondeterministic parity tree aatafGNPTSs) as introduced in [KSVI02].
This is the technically most involved part of this paper. fiow the desired upper bound for the full
gradedu-calculus, it remains to reduce satisfiability in this céllsuto emptiness of 2GAPTSs. This
reduction is based on the tree model property of the full gdadcalculus, and technically rather
standard.

To show that the hybrid graded-calculus is in XPTIME, we introducefully enriched au-
tomata (FEAsWwhich run on infinite forests and, like 2GAPTS, use a parityeptance condition.
FEAs extend 2GAPTSs by additionally allowing the automatosénd a copy of itself to some or
all roots of the forest. This feature of “jumping to the rdassin rough correspondence with the
nominals included in the full hybrigi-calculus. We show that the emptiness problem for FEAs
is in EXPTIME using an easy reduction to the emptiness problem for 2GAR®show that the
hybrid gradedu-calculus is in KPTIME, it thus remains to reduce satisfiability in this calculus to
emptiness of FEAs. Since the correspondence between nigririrthe ;.-calculus and the jumping
to roots of FEAs is only a rough one, this reduction is morécde than the corresponding one for
the full gradedu-calculus. The reduction is based on a forest model progsijtyyed by the hybrid
gradedpu-calculus and requires us to work with theo-wayautomata FEAs although the hybrid
gradedu-calculus does not offer inverse programs.

We remark that, intuitively, FEAs generalize alternatingoanata on infinite trees in a similar
way as the fully enricheg-calculus extends the standaretalculus: FEAS can move up to a node’s
predecessor (by analogy with inverse programs), move dowhleast: or all butn successors (by
analogy with graded modalities), and jump directly to thetsoof the input forest (which are the
analogues of nominals). Still, decidability of the empssg@roblem for FEAs does not contradict
the undecidability of the fully enriched-calculus since the latter does not enjoy a forest model
property [BP04], and hence satisfiability cannot be decig®dg forest-based FEAs.

The rest of the paper is structured as follows. The subségeetion introduces the syntax and
semantics of the fully enriched-calculus. The tree model property for the full gradedalculus
and a forest model property for the hybrid gradedalculus are then established in Secfibn 3. In
Section %, we introduce FEAs and 2GAPTs and show how the eegsiproblem for the former
can be polynomially reduced to that of the latter. In thigise¢ we also state our upper bounds for
the emptiness problem of these automata models. Thenp8Ekcis concerned with reducing the
satisfiability problem of enrichegd-calculi to the emptiness problems of 2GAPTs and FEAs. The
purpose of Sectionl 6 is to reduce the emptiness problem f&PAG to that of GNPTSs. Finally, we
conclude in Section] 7.
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2. ENRICHED p-CALCULI

We introduce the syntax and semantics of the fully enricheglculus. LetProp be a finite
set ofatomic propositionsVar a finite set ofpropositional variablesNom a finite set ohominals
and Prog a finite set ofatomic programs We useProg™ to denote the set dhverse programs
{a~ | a € Prog}. The elements oProg U Prog™ are calledorograms We assume™~ = a. The
set offormulas of the fully enriched-calculusis the smallest set such that

true andfalse are formulas;

p and—p, for p € Prop, are formulas;

o and—o, for o € Nom, are formulas;

z € Varis aformula;

w1 V w2 andy; A g9 are formulas itp; andys are formulas;

(n,a)p, and[n, a|p are formulas ifn is a non-negative integety is a program, and is a
formula;

e 1y.o(y) andry.po(y) are formulas ify is a propositional variable andy) is a formula containing
y as a free variable.

Observe that we use positive normal form, i.e., negatiopidied only to atomic propositions.

We call 1 andv fixpoint operatorsand use\ to denote a fixpoint operatqr or v. A propo-
sitional variabley occursfreein a formula if it is not in the scope of a fixpoint operatdy, and
boundedotherwise. Note thay may occur both bounded and free in a formula.séntencds a
formula that contains no free variables. For a formMjap(y), we write o(Ay.(y)) to denote the
formula that is obtained by one-step unfolding, i.e., reiplg each free occurrence gfin ¢ with
Ay.o(y). We often refer to thgraded modalitiegn, o) and[n, o]y asatleast formulagindallbut
formulasand assume that the integers in these operators are givaraiy boding: the contribution
of n to the length of the formulag:, o) and[n, o]y is [log n] rather tham. We refer to fragments
of the fully enrichedu-calculus using the names from Figlte 1. Hence, we say tlatraufa of the
fully enrichedp-calculus is also a formula of tHeybrid gradedu-calculus full hybrid p-calculus
andfull graded u-calculusif it does not have inverse programs, graded modalities,namiinals,
respectively.

The semantics of the fully enrichgdcalculus is defined in terms ofk&ipke structurei.e., a
tuple K = (W, R, L) where
e IV is a non-empty (possibly infinite) set sfates
e R :Prog — 2W*W assigns to each atomic program a binary relation dver
e L : Prop UNom — 2" assigns to each atomic proposition and nominal a set ofssaieh that

the sets assigned to nominals are singletons.

To deal with inverse programs, we extefdas follows: for each atomic progran) we set
R(a™) = {(v,u) : (u,v) € R(a)}. For a programy, if (w,w’) € R(«), we say that' is an
a-successopnf w. With succg (w, ) we denote the set af-successors ab.

Informally, anatleastformula (n, o) holds at a state of a Kripke structure if ¢ holds at
least inn + 1 a-successors ab. Dually, theallbut formula[n, a]¢ holds in a statev of a Kripke
structureK if ¢ holds in all but at most. a-successors ab. Note that—(n, o) is equivalent to
[n, a]—¢. Indeed;~(n, a)p holds in a statev if ¢ holds in less than + 1 a-successors ab, thus, at
mostn a-successors ab do not satisfy—¢, that is,[n, a]-¢ holds inw. The modalities )¢ and
[a]p of the standargi-calculus can be expressed(@sa)¢ and[0, o, respectively. The least and
greatest fixpoint operators are interpreted as in the stdndaalculus. Readers not familiar with
fixpoints might want to look af [Koz83, SE89, BS06] for ingttive examples and explanations of
the semantics of thg-calculus.
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To formalize the semantics, we introduce valuations. Gaé&mipke structure’ = (W, R, L)
and a sef{y1,...,y,} of propositional variables iVar, avaluationV : {yi,...,y,} — 2" is
an assignment of subsets Wdf to the variablegy, ..., y,. For a valuationV, a variabley, and a
setW’ C W, we denote by[y «+ W’] the valuation obtained frow by assigning’ to y. A
formula ¢ with free variables amongs, ..., y, is interpreted over the structuf€ as a mapping
© from valuations t@", i.e., o™ (V) denotes the set of states that satisfunder valuatior.
The mappingp’® is defined inductively as follows:

e true (V) = W andfalse” (V) = 0);

e for p € Prop U Nom, we havep’ (V) = L(p) and(—p)% (V) = W \ L(p);

e for y € Var, we haveyK(V) =V(y);

(1 Ap2) (V) = o (V) N (V)

(o1 V p2)5(V) = K(V) Uy (V);

((n, ) )K(V) {w: {w' € W: (w,0') € R(a) andw’ € " (V)}| > n};
([, o)™ (V) ={w: {uw' e W: ( w') € R(a) andw' & o%(V)} < n};
(-0 (1) % (V) = (W' S W oK (V]y « W) € W),

(ry ) (V) =U{W' S W : W’ C " (Vy « W)}

Note that, in the clauses for graded modalitiesjenotes a program, i.ex, can be either an
atomic program or an inverse program. Also, note that noaten is required for a sentence.

Let K = (W, R, L) be a Kripke structure ang a sentence. For a statec W, we say thatp
holdsat w in K, denotedK, w = ¢, if w € p(0). K is amodelof ¢ if there is aw € W such
that K, w = . Finally, ¢ is satisfiableif it has a model.

3. TREE AND FORESTMODEL PROPERTIES

We show that the full graded-calculus has the tree model property, and that the hybadegt
u-calculus has a forest model property. Regarding the Jatsterspeak of “a” (rather than “the”)
forest model property because it is an abstraction of theetsdfat is forest-shaped, instead of the
models themselves.

For a (potentially infinite) seX’, we useX ™ (X*) to denote the set of all non-empty (possibly
empty) words overX. As usual, forz,y € X*, we user - y to denote the concatenation ofand
y. Also, we use to denote the empty word and by convention we take = z, for eachr € X*.
Let N be a set of non-negative integers.f@xestis a setF’ C N that is prefix-closed, that is, if
xz-c€ Fwithz € NT andec € N, then alsar € F. The elements of are callechodes For every
x € F, the nodes: - ¢ € F with ¢ € N are thesuccessorsf z, andzx is theirpredecessorWe use
succ(x) to denote the set of all successorscan F'. A leaf is a node without successors, angat
is a node without predecessors. A forésis atreeif F' C {c¢-z | z € N*} for somec € N (the
root of F'). The root of a tred” is denoted withroot(F). If for somec, T'= FN{c-z | v € N*},
then we say thdl’ is the tree of F' rooted inc.

We call a Kripke structurdd = (W, R, L) aforest structuref

(i) W is aforest,
(i) Uneproguprog— L2(@) = {(w,v) € W x W | w is a predecessor or a successov pf

Moreover,K is directedif (w,v) € | R(a) implies thatv is a successor ab. If W is a tree,
then we callK atree structure

We call K = (W, R, L) adirected quasi-forest structuré (W, R’, L) is a directed forest
structure, wheré?’(a) = R(a) \ (W x N) for all a € Prog, i.e., K becomes a directed forest
structure after deleting all the edges entering a rodi/ofLet ¢ be a formula andq, . . ., ox the

a€Prog
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nominals occurring ip. A forest mode(resp.tree modelquasi-forest modgbf ¢ is a forest (resp.
tree, quasi-forest) structut® = (W, R, L) such that there are rootsg,...,c;, € W N N with
K,co = pandL(o;) = {¢;}, for1 < i < k. Observe that the roots, . .., ¢; do not have to be
distinct.

Using a standard unwinding technique such as in [Vdr98, KBM0is possible to show that
the full gradedu-calculus enjoys the tree model property, i.e., if a formullia satisfiable, it is also
satisfiable in a tree model. We omit details and concentnatin® similar, but more difficult proof
of the fact that the hybrid gradedcalculus has a forest model property.

Theorem 3.1. If a sentencep of the full gradedu-calculus is satisfiable, thep has a tree model.

In contrast to the full graded-calculus, the hybrid graded-calculus does not enjoy the tree
model property. This is, for example, witnessed by the fdamu

o A{0,a)(p1 A (0,a)(p2 A -+ (0, a) (Pr—1 A (0,@)0) -+ )
which generates a cycle of lengthf the atomic propositiong; are forced to be mutually exclusive
(which is easy using additional formulas). However, we aalodv [SV01,[KSV02] to show that
the hybrid gradedg:-calculus has a forest model property. More precisely, veggthat the hybrid
gradedu-calculus enjoys thgquasi-forest model property.e., if a formulay is satisfiable, it is also
satisfiable in a directed quasi-forest structure.

The proof is a variation of the original construction for thecalculus given by Streett and
Emerson in[[SE89]. It is an amalgamation of the construstimn the hybridu-calculus in[SVO1]
and for the hybrid gradeg-calculus in [KSV02]. We start with introducing the notiohawell-
founded adorned pre-model, which augments a model withiaeddl information that is relevant
for the evaluation of fixpoint formulas. Then, we show thay aatisfiable sentencg of the hy-
brid gradedu-calculus has a well-founded adorned pre-model, and thasach pre-model can be
unwound into a tree-shaped one, which can be converted iiteeted quasi-forest model gf

To determine the truth value of a Boolean formula, it sufficesonsider its subformulas. For
calculus formulas, one has to consider a larger collectfdormulas, the so called Fischer-Ladner
closure [FL79]. Theclosurecl(y) of a sentence> of the hybrid graded:-calculus is the smallest
set of sentences satisfying the following:

e pecl(p);

o if 11 Ao € cl(p) Orepy Vabe € cl(yp), then{wyy, 99} C cl(p);

o if (n,a)y € cl(p) or[n,aly € cl(p), theny € cl(y);

o if Ay.v(y) € cl(p), theny(Ay.1(y)) € cl(p).

An atomis a subsetd C cl(y) satisfying the following properties:

e if p € Prop U Nom occurs ingp, thenp € A iff —p & A;

if 1 A € (i), thenyy Aihg € Aff {11,402} C A;

if 1 Vo € cl(), thenyy V ihg € Aiff {1,100} N A F# 0

if Ay.(y) € cl(e), theniy.y(y) € Aiff p(A\y.(y)) € A.

The set of atoms op is denotecht(y). A pre-model( K, 7) for a sentence» of the hybrid graded

u-calculus consists of a Kripke structufé = (W, R, L) and a mappingr : W — at(y) that

satisfies the following properties:

e there iswy € W with ¢ € 7(wp);

e for p € Prop U Nom, if p € 7(w), thenw € L(p), and if—p € w(w), thenw ¢ L(p);

o if (n,a)y € m(w), then there is a sét C succr(w,a), such thatV’| > n andy € =(v) for all
veV,
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e if [n,a]y € w(w), then there is a sét C succr(w, a), such thatV| < n andvy € = (v) for all

v € succg(w,a) \ V.
If there is a pre-mode(K, 7) of ¢ such that for every state and ally) € 7(w), it holds that
K,w = v, thenK is clearly a model of. However, the definition of pre-models does not guarantee
thaty € 7(w) is satisfied atv if ¢ is a least fixpoint formula. In a nutshell, the standard apgino
for dealing with this problem is to enforce that it is possiti trace the evaluation of a least fixpoint
formula throughK such that the original formula is not regenerated infinitghgn. When tracing
such evaluations, a complication is introduced by disjonstand at least restrictions, which require
us to make a choice on how to continue the trace. To addresssthie, we adapt the notion of a
choice function of Streett and Emerson [SE89] to the hybriadigdy:-calculus.

A choice functionfor a pre-model( K, w) for ¢ is a partial functionch from W x cl(y¢) to

cl(p) U 2", such that for allw € W, the following conditions hold:
o if Y1 V1hg € w(w), thench(w, 1 V ) € {11,102} N (w);
o if (n,a)y € w(w), thench(w, (n,a)y)) =V C succg(w,a), such thatV| > n andy € 7(v)

forallv € V;
o if [n,a]y € m(w), thench(w, [n,aly) =V C succg(w,a), such thatV | < n andiy € w(v) for

allv € succg(w,a) \ V.
An adorned pre-modglK, 7, ch) of ¢ consists of a pre-modéK’, 7) of o and a choice functionh.
We now define the notion of a derivation between occurrentesriences in adorned pre-models,
which formalizes the tracing mentioned above. For an adbpre-model(K, r,ch) of ¢, the
derivation relation~~ C (W x cl(p)) x (W x cl(p)) is the smallest relation such that, for all
w € W, we have:

o if Y1 Vihy € 7'('('&0), then(w, iy V 1g) ~~ (’LU,Ch(lbl V9));

o if Y ANy € 7'('('&0), then(w, 1 A 2) ~ (w, 1) and(w, 1 A a) ~~ (w,9);

o if (n,a)y € w(w), then(w, (n,a)1p) ~ (v,1) for eachv € ch(w, (n,a)v);

o if [n,aly € m(w), then(w, [n,aly) ~ (v,1)) for eachv € succr(w, a) \ ch(w, [n,aly);

o if Ay.(y) € m(w), then(w, Ay v (y)) ~ (w, ¥ (Ay(y))).

A least fixpoint sentencgy.y(y) is regeneratedrom statew to statev in an adorned pre-model
(K, m,ch) of ¢ if there is a sequenc@ws, p1), ..., (wg, pr) € (W x cl(p))*, k > 1, such that
p = pr = py(y), w = wy, v = wy, the formulauy.y(y) is a sub-sentence of eaghin the
sequence, and for all < i < k, we have(w;, p;) ~» (wit+1, pi+1). We say that K, 7, ch) is well-
foundedif there is no least fixpoint sentengg.i(y) € cl(¢) and infinite sequence;, wo, . .. such
that, for eachi > 1, py.1(y) is regenerated fromv; to w;11. The proof of the following lemma
is based on signatures, i.e., sequence of ordinals thag¢gthe evaluation of least fixpoints. Itis a
minor variation of the one given for the originatcalculus in[SE89]. Details are omitted.

Lemma 3.2. Lety be a sentence of the hybrid gradgetalculus. Then:

(1) if ¢ is satisfiable, it has a well-founded adorned pre-model;

(2) if (K, ,ch)is awell-founded adorned pre-modelfthenK is a model ofp.
We now establish the forest model property of the hybrid gdadcalculus.

Theorem 3.3. If a sentencep of the hybrid graded:-calculus is satisfiable, thep has a directed
quasi-forest model.

Proof. Let o be satisfiable. By item (1) of Lemnia 8.2, there is a well-fathddorned pre-model
(K, m,ch) for p. We unwindK into a directed quasi-forest structuk& = (W', L', R’), and define
a corresponding mapping : W’ — at(y) and choice functiorh’ such that K’, 7, ch’) is again
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a well-founded adorned pre-model of Then, item (2) of LemmBa_3.2 yields that’ is actually a
model ofp.

Let K = (W, L, R), and letwy, € W such thatp € 7(wp). The set of state$V’ of K’ is
a subset of N as required by the definition of (quasi) forest structurew] we definek”’ in a
stepwise manner by proceeding inductively on the lengtheshents ofl¥/’. Simultaneously, we
definen’, ch’, and a mapping : W’ — W that keeps track of correspondences between states in
K'andK.

The base of the induction is as follows. et {w,...,w;} € W be a minimal subset such
thatwy € I and ifo is a nominal inp andL (o) = {w}, thenw € I. Define K’ by setting:
o W i={1,...,k};
e R'(a) :={(i,)) | (wi,w;) € R(a),1 <i< j <k} foralla € Prog;
e I'(p):={i|w; € L(p),1 <i<k}forall p € PropUNom.
Definer by settingr(i) = w; for 1 < i < k. Then,r’(w) is defined asr(7(w)) for all w € W',
andch’ is defined by settingh’ (w, ¢ V12) = ch(7(w), 11 V1)) for all 11 V1bs € 7’ (w). Choices
for atleast and allbut formulas are defined in the inductiep.s

In the induction step, we iterate over all € W’ of maximal length, and for each sueh
extendK’, 7, ch’, andr as follows. Let((a1,n1)¢1,v1), - .., ({@m, ) Vm, v ) be all pairs from
cl(¢) x W of this form such that for eact{a;, n;);, v;), we have(a;, n;)y; € m(w) andv; €
ch(r(w), (a;,n;);). Forl < i < m, define

ofvi) = { w-i otherwise

To extendK’, set

o W =W U{o(v1),...,0(vm)};

e R(a):=R'(a)U{(w,o(v;)) | a; =a,1 <i<m}forall a € Prog;

o I'(p):=L'(p)U{w-ieW|uv € L(p),1 <i<m}forall p € PropUNom.

Extendr andz’ by settingr(w - i) = v; andn’(w - i) = 7(v;) for all w - i € W', Finally, extend
ch’ by setting

o ch/(w - i,91 V1hg) := ch(v, 1 Vabo) for allw - i € W andyy V iy € 7' (w - 4);

o ch'(w, (n,a))) = {o(v) | v € ch(r(w), (n,a)y)} for all (n,a)y € 7' (w);

e ch'(w,[n,aly) :={o(v) | v € ch(r(w), [n,al) N{v1,...,vy}} forall [n,ay € 7'(w).

It is easily seen thak’ is a directed quasi-forest structure. Sindé, =, ch) is an adorned pre-
model of ¢, it is readily checked thatK’, ', ch’) is an adorned pre-model of as well. If a
sentenceuy.y(y) is regenerated fromtoy in (K’, 7, ch’), thenuy.1(y) is regenerated from(x)
to 7(y) in (K,m,ch). It follows that well-foundedness g, 7, ch) implies well-foundedness of
(K', 7', ch’). O

Note that the construction from this proof fails for the yué#nrichedy-calculus because the
unwinding of K duplicates states, and thus also duplicates incoming @dgesminals. Together
with inverse programs and graded modalities, this maytresyk”, ') not being a pre-model af.

4. ENRICHED AUTOMATA

Nondeterministic automata on infinite trees are a variatibnondeterministic automata on
finite and infinite words, seé [ThoB0] for an introductigklternating automataas first introduced
in [MS87], are a generalization of nondeterministic auttaméntuitively, while a nondeterministic
automaton that visits a nodeof the input tree sends one copy of itself to each of the ssoce®f
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x, an alternating automaton can send several copies of itst#ie same successor. In the two-way
paradigm [[Var98], an automaton can send a copy of itself éopttedecessor af, too. In graded
automatal[KSV02], the automaton can send copies of itsedf tamber of successors, without
specifying which successors these exactly are. Our mogrgeautomata model is that of fully
enriched automata, as introduced in the next subsectioaserautomata work on infinite forests,
include all of the above features, and additionally haveathiéity to send a copy of themselves to
the roots of the forest.

4.1. Fully enriched automata. We start with some preliminaries. Lét C N be a foresty a
node inF, andc € N. As a convention, we takér - ¢) - —1 = x andc - —1 as undefined. Avath

7 in F is a minimal setr C F such that some root of F' is contained inr and for everyx € ,

eitherz is a leaf or there exists@ac I such thatr - ¢ € 7. Given an alphabet, aX-labeled forest
is a pair(F, V'), whereF is a forest and” : F — X maps each node df to a letter inX. We call
(F,V) aX-labeled tredf F'is atree.

For a given sel’, let BT(Y") be the set of positive Boolean formulas ovér(i.e., Boolean
formulas built from elements il usingA andV), where we also allow the formulasue andfalse
andA has precedence over For asetX C Y and a formul& € BT (Y'), we say thatX satisfies
6 iff assigning true to elements IN and assigning false to elements¥n\ X makesf true. For

b> 0, let
(b)) {(0), (1),..., (b)}
(b)) = Ao}, [1],....[b]}
Dy (b)) U [[b]] U {—1,¢,(root), [root]}
A fully enriched automaton is an automaton in which the titgors function 6 maps a statg and
a lettero to a formula inB* (D, x Q). Intuitively, an atom((n), q) (resp.(|[n],q)) means that
the automaton sends copies in stat® n + 1 (resp. all butn) different successors of the current
node,(g, ¢) means that the automaton sends a copy in gtaiehe current nodd,—1, ¢) means that
the automaton sends a copy in stat® the predecessor of the current node, &dot), ¢) (resp.
([root], ¢)) means that the automaton sends a copy in gtébesome root (resp. all roots). When,
for instance, the automaton is in stgteeads a node, and

6(¢, V(2)) = (=1 q1) A (({root), g2) V ([root], g3)),

it sends a copy in statg@ to the predecessor and either sends a copy in gidi® some root or a
copy in stateys to all roots.

Formally, afully enriched automato(FEA, for short) is a tupled = (X, b, Q, 4, qo, F), Where
3} is a finite input alphabet) > 0 is a counting bound@ is a finite set of stateg), : Q x ¥ —
BT (D, x Q) is a transition functiongy € Q is an initial state, andr is an acceptance condition. A
run of A on an input:-labeled forestF, V') is anF' x Q-labeled tre€T,., r). Intuitively, a node in
T, labeled by(x, q) describes a copy of the automaton in stateat reads the node of F'. Runs
start in the initial state at a root and satisfy the transitielation. Thus, a ruZ,., r) has to satisfy
the following conditions:

(i) r(root(T})) = (c,qo) for some root of £ and
(i) for all y € T, with r(y) = (x,q) andd(q, V(x)) = 0, there is a (possibly empty) sét C
Dy, x @ such thatS satisfied) and for all(d, s) € S, the following hold:
— If d € {—1,¢}, thenz - d is defined and there is€ N such thaty - j € T, andr(y - j) =
(aj : da 3);
— If d = (n), then there is a se¥/ C succ(x) of cardinalityn + 1 such that for alk € M,
there isj € N such thaty - j € T,andr(y - j) = (z, s);
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— If d = [n], then there is a sét/ C succ(z) of cardinalityn such that for alk € succ(x) \
M, thereisj € Nsuchthaty - j € T, andr(y - j) = (2, s);
— If d = (root), then for some root € F and some € N such thaty - j € T,., it holds that

T(y]) = (C,S);
— If d = Jroot], then for each root € F there existsj € N such thaty - j € T, and
T(y]) = (C,S)-

Note that ifé = true, theny does not need to have successors. Moreover, since rfHssisfies
0 = false, there cannot be any run that takes a transition Wwith false.

A run (T, r) is acceptingif all its infinite paths satisfy the acceptance conditiore ¥énsider
here theparity acceptance conditiofiMos84,EJ91|, Tho97], wher& = {Fi, Fa,..., Fi} is such
that /1 C F, C ... C F, = Q. The numbelk of sets inF is called theindexof the automaton.
Given a run(T,.,r) and an infinite pathr C T, let Inf(7) C @ be the set of stateg such that
r(y) € F x {q} for infinitely manyy € x. A pathr satisfiesa parity acceptance condition
F =A{F,Fa,...,F} if the minimali with Inf(7) N F; # 0 is even. An automatoacceptsa
forest iff there exists an accepting run of the automatorherfarest. We denote b§(A) the set of
all >-labeled forests thatl accepts. Themptiness problerior FEAS is to decide, given a FEA,
whetherf(A) = 0.

4.2. Two-way graded alternating parity tree automata. A two-way graded alternating parity
tree automaton (2GAPT3 a FEA that accepts trees (instead of forests) and canmgt ja the root
of the input tree, i.e., it does not support transitignsot) and [root]. The emptiness problem for
2GAPTs is thus a special case of the emptiness problem forsFHEAthe following, we give a
reduction of the emptiness problem for FEAs to the emptipesblem for 2GAPTs. This allows
us to derive an upper bound for the former problem from theeufmund for the latter that is
established in Sectidd 6.

We show how to translate a FEA into a 2GAPTA’ such thatC(A’) consists of the forests
accepted by, encoded as trees. The encoding that we use is straightfiintteetree encodingpf
aX-labeled forestF, V) is theX W {root }-labeled tregT", V') obtained from{F, V') by adding a
fresh root labeled witfroot} whose children are the roots 6f

Lemma 4.1. Let A be a FEA running or¥-labeled forests withn states, index: and counting
boundb. There exists a 2GAPA’ that

(1) accepts exactly the tree encodings of forests acceptetidnd
(2) hasO(n) states, indeX, and counting bound.
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Proof. Supposed = (X,b,Q, 0, qo, F). DefineA’ as(X W {root},b,Q’, ¢, q, F'), whereQ’ and
¢" are defined as follows:

Q" = Qu{qgyq} W {somegally [ g€ Q}

&' (gp;root) = ((0),q0) A (0], ¢r)

8 (qb,0) = falseforall o # {root}
8 (gr,root) = false

5(gr o) = ([0),g,) forall o £ {root}

B (—1,some,) if o # root

¥'(someg,0) = { ((0), ) ! otherwise

, B (—1,ally) if o # root
o'(allg,0) = { ([0, q) otherwise

8 (q,0) = tran(d(q,0)) forallg € Q ando € ¥

Here,tran(3) replaces all atomgroot), ¢) in 5 with (¢, some,), and all atomg][root], ¢) in 3 with
(e,ally). The acceptance conditiof’ is identical toF = {Fi,...,F:}, except that allF; are
extended withy, and 7}, is extended withy, and all statesome, andall,. It is not hard to see that
A" acceptgT, V) iff A accepts the forest encoded &, V). U]

In Sectior[ 6, we shall prove the following result.

Theorem 4.2. The emptiness problem for a 2GART= (3,b,Q, 9, qo, F) with n states and index
k can be solved in tim@ + 2)0 (k% logk-logb?) |

By Lemmd4.1, we obtain the following corollary.

Corollary 4.3. The emptiness problem for a FEA= (X,b, Q, 0, qo, F) with n states and indek
can be solved in tim@ + 2)0(*#*logk-logb?)

5. EXPTIME UPPER BOUNDS FOR ENRICHEDu-CALCULI

We use Theoren 4.2 and Corolléryl4.3 to establisik BEME upper bounds for satisfiability in
the full gradedu-calculus and the hybrid gradedcalculus.

5.1. Full graded p-calculus. We give a polynomial translation of formulasof the full gradedu-
calculus into a 2GAPT,, that accepts the tree modelsyaf We can thus decide satisfiability of

by checking non-emptiness g A, ). There is a minor technical difficulty to be overcome: we use
Kripke structures with labeled edges, while the trees aeckpy 2GAPTs do not. This problem can
be dealt with by moving the label from each edge to the targé¢of the edge. For this purpose, we
introduce a new propositional symhg| for each prograna.. For a formulap, letT'(¢) denote the
set of all atomic propositions and all propositignssuch thaty is an (atomic or inverse) program
occurring ing. Theencodingof a tree structurdS = (W, R, L) is the2"(*)-labeled treg/\V, L*)
such that

L*(w) = {p € Prop | w € L(p)} U {pa | I(v,w) € R(cx) with w a-successor of in W}.

For a sentence, we use|¢| to denote théengthof ¢ with numbers inside graded modalities
coded in binary. Formally;| is defined by induction on the structurefn a standard way, where
in particular|(n, a)y| = |[n,ajy| = [log n] + 1 + [¢p|. We say that a formula countsup tob if
the maximal integer ilatleastandallbut formulas used ip isb — 1.
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Theorem 5.1. Given a sentenceg of the full gradedu-calculus that counts up tg we can construct
a 2GAPTA,, such thatA,,

(1) accepts exactly the encodings of tree models, of

(2) hasO(|¢|) states, indexO(|¢|), and counting bound.

The construction can be done in tir6¥ || ).

Proof. The automatori,, verifies thaty holds at the root of the encoded tree. To define the set
of states, we use the Fischer-Ladner clostife) of . It is defined analogously to the Fischer-
Ladner closurecl(-) for the hybrid graded:-calculus, as given in Sectidn 3. We defidg as
(21 b, cl(y), 8, p, F), where the transition functiofiis defined by setting, for at € 2F'(¥),

é(p,o) = (peo)
6(-p,0) = (p¢o)
(1 Npg,0) = (g,41) A (g, 12)
S(1 Vipg,0) = (g,41) V (g,12)
s(Ay(y),o) = (g,9(A\yy(y)))
5(<TL, a>1/),0') = ((_177;Z)) A (Evpa*) A (<TL - 1>7¢ /\pa)) \ ((’I’L>,¢ /\pa)
d((nya™)p,0) = ((=1L,9) A(e;pa) A((n—1),9 Apg-)) V ((n), % A pg-)
o([n,aly,o0) = ((=1,9) A&, pa-) A (], ¥ Apa)) V ([n —1],9 A pa)
§([n,a™ o) = ((=1,9) A&, pa) A ([n], ¥ Ape-)) V ([n—1],9 Ap,-)

In casen = 0, the conjuncts (resp. disjuncts) involving “- 1" are simply dropped in the last two
lines.

The acceptance condition df, is defined in the standard way as follows (see €.0. [KVWOO]).
For a fixpoint formulay € cl(y), the alternation level of) is the number of alternating fixpoint
formulas one has to “wrap with” to reach a sulsentencef p. Formally, lety) = \y.¢)'(y). The
alternation levelof ¢ in ¢, denotedl,, () is defined as follows [([BC96]): if) is a sentence, then
al,(¢) = 1. Otherwise, let = X'z.9)”(z) be the innermost or v subformula ofy that hasy as
a strict subformula. Then, i is free iny and\' # X, we haveal,(v)) = al,(§) + 1; otherwise,
aly(¥) = aly(§).

Let d be the maximum alternation level of (fixpoint) subformuldspo Denote byG, the set
of all v-formulas incl(y) of alternation leveli and by B; the set of allu-formulas incl(y) of
alternation level less than or equalitoNow, defineF := {Fy, Fi, ..., Faq, @} with Fy = () and
foreveryl <i <d, Fo;_1 = Fo;_o U B; andFy; = Fo;_1 U G;. Letw be a path. By definition of
F, the minimali with Inf(7) N F; # () determines the alternation level and typef the outermost
fixpoint formula \y.1(y) that was visited infinitely often om. The acceptance condition makes
sure that this formula is a-formula. In other words, every-formula that is visited infinitely often
on 7 has a super-formula that (i) isaformula and (ii) is also visited infinitely often. []

Let ¢ be a sentence of the full gradgecalculus with/ at-least subformulas. By Theorems]3.1,
42, and 51, the satisfiability gf can be checked in time bounded P8/“)) wherep(|y|) is a
polynomial (note that, in Theorem 4.2, k, log /¢, andlogb are all inO(|¢|)). This yields the
desired XPTIME upper bound. The lower bound is due to the fact thaptivalculus is EKPTIME-
hard [EL79].

Theorem 5.2. The satisfiability problem of the full gradedcalculus iSExpTIME-complete even if
the numbers in the graded modalities are coded in binary.
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5.2. Hybrid graded p-calculus. We reduce satisfiability in the hybrid gradedcalculus to the
emptiness problem of FEAs. Compared to the reduction pteddan the previous section, two
additional difficulties have to be addressed.

First, FEAs accept forests while the hybyiecalculus has only guastforest model property.
This problem can be solved by introducing in node labels nespgsitional symbols¢ which
do not occur in the input formula and represent an edge ldbeih the atomic program from
the current node to the (unique) root node labeled by nomindlet ©(y) denote the set of all
atomic propositions and nominals occurringdm@nd all propositiong,, and{¢ such that the atomic
programa and the nominab occur ing. Analogously to encodings of trees in the previous section,
theencodingof a directed quasi-forest structufé = (W, R, L) is the2€(¥)-labeled forest\V, L*)
such that

L*(w) = {p€PropUNom|w € L(p)} U
{pa | I(v,w) € R(a) with w successor of in W} U
{1%] 3w, v) € R(a) with L(o) = {v}}.

Second, we have to take care of the interaction between dynabelalities and the implicit
edges encoded via propositiofis. To this end, we fix some information about the structures ac-
cepted by FEAs already before constructing the FEA, namglihé¢ formulas from the Fischer-
Ladner closure that are satisfied by each nominal and (iintmeinals that are interpreted as the
same state. This information is provided by a so-called gu&e introduce guesses formally, we
need to extend the Fischer-Ladner closdie) for a formulay of the hybrid graded:-calculus
as follows: cl(¢) has to satisfy the closure conditions given for the hybriadgd .-calculus in
Sectior B and, additionally, the following:

e if Y € cl(p), then—1) € cl(y), where—) denotes the formula obtained frogmby dualizing all
operators and replacing every literal (i.e., atomic prdjms nominal, or negation thereof) with
its negation.

Let ¢ be a formula with nominal® = {o4,...,0,}. A guesdor ¢ is a pair(t, ~) wheret assigns
a subset(o) C cl(p) to eacho € O and~ is an equivalence relation a@n such that the following
conditions are satisfied, for all o’ € O:

(i) ¥ € t(o) or ) € t(o) for all formulasy € cl(y);

(i) o€ t(o);

(i) o~ o impliest(o) = t(0');

(iv) o+ o implies—o € t(o).
The intuition of a guess is best understood by consideriegfdlowing notion of compatibility.
A directed quasi-forest structul® = (W, R, L) is compatiblewith a guessG' = (¢, ~) if the
following conditions are satisfied, for all o’ € O:
e L(0) = {w} impliesthat{y € cl(y) | K,w = ¢} = t(o);
e L(o)=L(d)iff o~ 0.
We construct a separate FEA, ; for each guess for ¢ such thatp is satisfiable iffC(A, o) is
non-empty for some guegs. Since the number of guesses is exponential in the length we get
an ExpTIME decision procedure by constructing all of the FEAs and cimgclwhether at least one
of them accepts a non-empty language.

Theorem 5.3. Given a sentence of the hybrid graded.-calculus that counts up thand a guess

G for ¢, we can construct a FEA, ¢ such that

(1) if (F, V) is the encoding of a directed quasi-forest modebabmpatible with7, then(F, V')
ﬁ(AsovG)-
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(2) if L(A, ) # 0, then there is an encoding”, V') of a directed quasi-forest model pfcompat-
ible with G such that(F, V) € L(A, ), and
(3) Ay, hasO(|p]?) states, indexO(|¢), and counting bound.

The construction can be done in tir6¥ |o|?).

Proof. Let ¢ be a formula of the hybrid graded-calculus and> = (¢, ~) a guess forp. Assume

that the nominals occurring ip are O = {o1,...,0;}. For each formula) € cl(y), atomic

programa, ando € 29 let

e nom{ (o) ={o| ¢ €t(o) N15 E o};

e [nomj(c)|~ denote the number of equivalence clasSesf ~ such that some member 6f is
contalned imomg (o).

The automatomi,, ; verifies compatibility with, and ensures that holds in some root. As its set

of states, we use

Q=cd(p)U{gp}U{-0 Vi, |[1<i<kAyed(p)}Ufini|1<i<k}
SetA, ¢ = (2°¢).b,Q, 6, g0, F), where the transition functiod and the acceptance conditidn
is defined in the following. For alF € 2°(¥), define:

d(qo, o) = ((root), ©) A /\ ({root), 0;) A /\ ([root], ini;)

1<i<k 1<i<k
8(iniz,0) = (e,~0) v\ (e.7)
Yy€EL(0;)
6(-p,0) = (p & o)
61 N2, 0) = (g,91) A (g,92)
61 Vpo,0) = (g,91) V (¢,¢2)
§(AyY(y), o) = (g, (Ay.b(y)))
0([n,aly, o) = false if [nom? (a)\“ >n
S(insali) = (I — lnom® ()L p Am) A A\ (rootlmo v ) f pomy ()~ < m
o€nomy (o)
5((n 0}, @) = ((n — [nom% ()" Apa) A N\ ([root], oV 1)
oenomi(o)

In the last line, the first conjunct is omitted|ifom{ (o')|~ > n. The first two transition rules check
that each nominal occurs in at least one root and that thededaquasi-forest structure is compatible
with the guess~. Consider the last three rules, which are concerned witdegranodalities and
reflect the existence of implicit back-edges to nominalse Titst of these rules checks for allbut
formulas that are violated purely by back-edges. The othertles consist of two conjuncts, each.
In the first conjunct, we subtract the number of nominals tictvithere is an impliciz-edge and
that violate the formula) in question. This is necessary because(thend [-] transitions of the
automaton do not take into account implicit edges. In themsgconjunct, we send a copy of the
automaton to each nominal to which there isia@dge and that satisfigs Observe that satisfaction
of ¢ at this nominal is already guaranteed by the second rulectieatks compatibility withG. We
nevertheless need the second conjunct in the last two ratzsise, without the jump to the nominal,
we will be missing paths in runs of , ; (those that involve an implicit back-edge). Thus, it would
not be guaranteed that these paths satisfy the acceptamditia@o, which is defined below. This, in
turn, means that the evaluation of least fixpoint formulasisguaranteed to be well-founded. This
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point was missed in [SV01], and the same strategy used heteecamployed to fix the construction
in that paper.

The acceptance condition ¢f,, ; is defined as in the case of the full gradedalculus: let
d be the maximal alternation level of subformulas@fwhich is defined as in the case of the
full graded u-calculus. Denote byr; the set of all thev-formulas incl(p) of alternation level
i and by B; the set of allu-formulas incl(y) of alternation depth less than or equalitoNow,
F ={Fo, Fi,...,F2q,Q}, whereFy, = () and for everyl < i < d we haveFy;,_1 = Fo;_o U B;,
andFy; = Fo_1 UG;.

It is standard to show that ifF, V') is the encoding of a directed quasi-forest moHebf ¢
compatible withG, then (F,V) € L(A, ). Conversely, le{F, V) € L(Ay,q). If (F,V)is
nominal uniquei.e., if every nominal occurs only in the label of a singlet;at is not hard to show
that (F', V) is the encoding of a directed quasi-forest molebf o compatible withGG. However,
the automatom, ¢ does not (and cannot) guarantee nominal uniqueness. TdigistRoint (2) of
the theorem, we thus have to show that whené\(et,, ) # 0, then there is an element 6{ A, )
that is nominal unique.

Let (F,V) € L(A, ). From(F,V), we extract a new forestF’, V') as follows: Letr be a
run of A, ¢ on (F, V). Remove all trees fronk’ except those that occur inas witnesses for the
existential root transitions in the first transition ruleal@he modified foresf”’. Now modifyr into
arunr’ on F’: simply drop all subtrees rooted at nodes whose label réfeose of the trees that
are present i’ but not inF’. Now, 7’ is a run onf” because (i) the only existential root transitions
are in the first rule, and these are preserved by construcfi@ti andr’; and (ii) all universal root
transitions are clearly preserved as well. Algds accepting because every pathiis a path inr.
Thus,(F', V') € L(A,,¢) and it is easy to see that”, V') is nominal unique. O]

Combining Theoremb_3.3, Corollafy #.3, and Theoiem 5.3, biio an EPTIME-upper
bound for the hybrid graded-calculus. Again, the lower bound is fro [FLI79].

Theorem 5.4. The satisfiability problems of the full gradedcalculus and the hybrid graded-
calculus areExPTIME-complete even if the numbers in the graded modalities atea binary.

6. THE EMPTINESSPROBLEM FOR2GAPTs

We prove Theorer 4.2 and thus show that the emptiness praifl@@APTSs can be solved in
ExPTIME. The proof is by a reduction to the emptiness problem of gfaamdeterministic parity
tree automata (GNPTS) as introduced in [KSV02].

6.1. Graded nondeterministic parity tree automata. We introduce the graded nondeterministic
parity tree automata (GNPTSs) 6f [KSVI02]. For> 0, ab-boundis a pair in

By ={(>,0),(<,0),(>,1), (<, 1), (>,0), (<, 0)}-

For a setX, a subset” of X, and a (finite or infinite) word = x1z5--- € X* U X%, theweight
of P in t, denotedweight(P, t), is the number of occurrences of symbolg ithat are members of
P. That is,weight(P,t) = |{i : z; € P}|. For exampleweight({1,2},1241) = 3. We say that
t satisfies a-bound (>, n) with respect taP if weight(P,t) > n, andt satisfies a&-bound(<,n)
with respect taP if weight(P,t) < n.

For a setY’, we useB(Y') to denote the set of all Boolean formulas over atom¥ inEach
formulad € B(Y) induces a setat(d) C 2¥ such thatr € sat(f) iff = satisfiesd. For an
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integerb > 0, a b-counting constraintfor 2 is a relationC C B(Y) x B,. For example, if
Y = {v1,y2,y3}, then we can have

C={(y1 V2 (<,3),(y3,(<,2)), (1 Ay, (>, 1))}

Awordt = zyxy--- € (2V)* U (2Y)v satisfies theé-counting constrainC if for all (6,¢) € C,
the word¢ satisfies¢ with respect tosat(6), that is, wherd is paired with = (>,n), at least
n + 1 occurrences of symbols inhshould satisfyd, and whend is paired with¢ = (<,n), at
mostn occurrences satisf§. For example, the worty = ({y; }{y2}{y1, y3} does not satisfy the
constraintC above, as the number of setstinthat satisfieg;; A y3 is one. On the other hand, the
word to = {y2 }{y1 Hv1, v2, ys Hy1, y3} satisfiesC. Indeed, three sets i satisfyy; vV -y, two
sets satisfyys, and two sets satisfy; A ys.

We useC(Y,b) to denote the set of all-counting constraints fo2". We assume that the
integers in constraints are coded in binary.

We can now defingraded nondeterministic parity tree automd@NPTs, for short). A GNPT
is a tupleA = (X,b,Q,J,qo, F) WhereX, b, qo, andF are as in 2GAPTQ C 2V is the set of
states (i.e.@2 is encoded by a finite set of variables), and@ x ¥~ — C(Y,b) maps a state and a
letter to ab-counting constrain€ for 2¥ such that the cardinality af is bounded byog |Q|. For
defining runs, we introduce an additional notion. kzdie a node in &-labeled tre€T', V'), and let
x-i1,T -1, ... be the (finitely or infinitely many) successorsaoin T', wherei; < ;41 (the actual
ordering is not important, but has to be fixed). Then welasér) to denote the (finite or infinite)
word of labels induced by the successors, fa(z) = V(z -i1)V (z - i2)---. Given a GNPTA, a
run of A on aX-labeled tregT’, V') rooted inz is then a@-labeled tregT’, r) such that
e 7(2) = gp and
o for everyz € T, lab(z) satisfiesi(r(z), V (x)).

Observe that, in contrast to the case of alternating autyntaé input tree/7", V') and the run

(T, r) share the componefit. The run(T, r) is acceptingif all its infinite paths satisfy the parity
acceptance condition. A GNPacceptsa tree iff there exists an accepting run of the automaton on
the tree. We denote bg(A) the set of alb>-labeled trees that accepts.

We need two special cases of GNPDHRALL automata and &ETY automata. In BRALL
automata, for each € Q ando € X there is ag’ € @ such thaty(q,0) = {((—=0y), (<,0))},
wheref, € B(Y) is such thasat(6,) = {{¢'}}. Thus, a BRALL automaton is very similar to
a (non-graded) deterministic parity tree automaton, witeedransition function mapgando to
(¢,...,q) (and the out-degree of trees is not fixed). WF&TY automata, there is no acceptance
condition, and all runs are accepting. Note that this doésnean that 8FETY automata accept all
trees, as it may be that on some trees the automaton doesvecd han at all.

We need two simple results concerning GNPTSs. The followiag lheen stated (but not proved)

already in [KSV02].

Lemma 6.1. Given aFORALL GNPT A, with n; states and index;, and aSAFETY GNPT A,
with no states and counting bountg, we can define a GNPA with nyn, states, index;, and
counting bound., such thatC(A) = L(A;) N L(Asz).

Proof. We can use a simple product construction. Het= (3, b;, Q;, i, qo,i,}“(")) with Q; C 2%

fori € {1,2}. Assume w.l.o.g. that; NY, = (). We defined = (3,b2,Q, 9, (g0,1 U qo,2), F),

where

e Q={q1Uq | q €Qrandg € Q2} C2Y,whereY = Y| & Y5;

e forallo € ¥ andg = ¢1 U gz € Q with 61(q1,0) = {{(—6,), (<,0))} anddz (g2, 0) = C, we set
0(q,0) = Cu{<(ﬂ9;}), (<,0)}, Whereeg € B(Y)issuch thatat(efl) ={¢d €Q|{NQ1=q};
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o« F={F,...,Fi}withFi={qgeQ|qnQ, e FIV it FO = (FV . Fy,
It is not hard to check thad is as required. ]

The following result can be proved by an analogous produastraction.

Lemma 6.2. Given SAFETY GNPTsA; with n; states and counting bounds, i € {1,2}, we
can define &SAFETY GNPT A with nyny states and counting bourid= max{b;, b2} such that

6.2. Reduction to Emptiness of GNPTs. We now show that the emptiness problem of 2GAPTs
can be reduced to the emptiness problem of GNPTs that aree@plynentially larger. Letl =
(3,0,Q,9,q0, F) be a 2GAPT. We recall thakis a function from@ x X to BT (D, x Q), with

Dy = (b)) U[[b]] U {—1,e}. A strategy tredfor A is a2@*P» *@-labeled tre€T’, str). Intuitively,
the purpose of a strategy tree is to guide the automdtdny pre-choosing transitions that satisfy
the transition relation. For each lahel= str(x), we usehead(w) = {q | (¢,¢,¢') € w} to denote
the set of states for whicdtr chooses transitions at Intuitively, if A is in stateq € head(w), str
tells it to execute the transitioq$c, ¢’) | (¢,¢,¢) € w}. In the following, we usually consider only
thestr part of a strategy tree. Léf", V') be aX-labeled tree andl’, str) a strategy tree foA, based
on the samd’. Thenstr is astrategy forA on V if for all nodesz € T and all stateg € @), we
have:

(1) 0(qo, V(root(T))) = true or gy € head(str(root(7)));

(2) if ¢ € head(str(x)), then the sef(c,¢') : (q,¢,¢") € str(x)} satisfiesi(q, V (z)),

(3) if (q,¢,q") € str(x) with ¢ € {—1,¢}, then (i)z - ¢ is defined and (iip(¢’, V (z - ¢)) = true or
q € head(str(z - c)).

If Ais understood, we simply speak of a strategylan

Example 6.3. Let A = (X,0,Q,9,qo, F) be a 2GAPT such tha = {a,b,c}, Q@ = {qo, ¢,
¢2,q3}, andd is such thab(q,a) = ((0), ¢1) V ((0), g3) for g € {qo, g2}, ando(q1,b) = ((—1,q2) A
((1),43)) V ([1], q1). Consider the trees depicted in Figlite 2. From left to rigie first tree(7, V')
is a fragment of the input tree, the second tree is a fragnfentun (7., ) of Aon (T, V), and the
third tree is a fragment of a strategy tree suggesting timslrua label(w, a) of the input treew is
the node name ande X the label in the tree. In the run and strategy tree, only theltaare given,
but not the node names.

Strategy trees do not give full information on how to handénsitions((n),q) and([n], q)
as they do not say which successors should be used when iagethém. This is compensated
by promise trees A promise tree ford is a2@*?-labeled tre€T’, pro). Intuitively, if a run that
proceeds according taro visits a noder in stateq and chooses a movén), ¢') or ([n],¢’), then
the successors - i of « that inherit¢’ are those withg, ¢') € pro(x - i). Let (T, V') be aX-labeled
tree,str a strategy o/, and(T’, pro) a promise tree. We cabro apromise forA onstr if the states
promised to be visited byro satisfy the transitions chosen b, i.e., for every node: € T, the
following hold:

(1) forevery(q, (n),q") € str(z), there is a subsét/ C succ(z) of cardinalityn + 1 such that each
y € M satisfies(q, q’) € pro(y);

(2) for every(q,[n],q’) € str(z), there is a subse¥/ C succ(x) of cardinalityn such that each
y € succ(z) \ M satisfies(q, ¢’) € pro(y);

(3) if (¢,4") € pro(x), thend(¢', V(z)) = true or ¢’ € head(str(z)).
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(1,a) ()1/0) (q0: (0), 41).(gz: (0) )
/\ (11, q1)
(11,b) (12, a) (q1,—1,q2), (q1, (1), q3)

(1,q2) (111, g3) (112, g3)
(111, b) (112, a)
(12, g3)

Figure 2: A fragment of an input tree, a corresponding rud,itmstrategy tree.

Consider ax-labeled tregT, V'), a strategystr on V, and a promisero on str. An infinite
sequence of pair&eg, qo), (x1,41) - . . is atraceinduced bystr andpro if z( is the root ofT’, ¢ is
the initial state ofd and, for eachi > 0, one of the following holds:

e there is(q;, ¢, qi+1) € str(x;) withc = —10orc = ¢, x; - c defined, and; 11 = z; - ¢;

e str(x;) contains(q;, (n), gi+1) or (¢, [n], ¢i+1), there existg € N with ;41 = z; - j € T, and
(¢, qiv1) € pro(wiy1).

Let F = {F,...,Fx}. For each state € @, letindex(q) be the minimal such thay; € F;. For a

tracer, letindex(w) be the minimal index of states that occur infinitely ofterrinThen,r satisfies

F if it has even index. The strategyr and promisepro areacceptingif all the traces induced by

str andpro satisfy F.

In [KSV02], it was shown that a necessary and sufficient dindifor a tree(7, V') to be
accepted by a one-way GAPT is the existence of a strategyn IV and a promisero on str that
are accepting. We establish the same result for the caseAPZ&

Lemma6.4. A 2GAPTA accepts(T', V) iff there exist a strategytr for A on V' and a promisero
for A onstr that are accepting.

Proof. Let A = (X,b,Q, 6, qo, F) be a 2GAPT withF = {F1,..., Fx}, and let{(T, V') be the input
tree. Suppose first that acceptsT, V). Consider a two-player game airlabeled trees, Protago-
nist vs. Antagonist, such that Protagonist is trying to shiost A accepts the tree, and Antagonist
is challenging that. A configuration of the game is a paiflinc ). The initial configuration
is (root(T"), qp). Consider a configuratiof, ¢). Protagonist is first to move and chooses a set
P = {(c1,q1),...,(cm,am)} € D, x Q that satisfiesf(q, V (x)). If d(q,V (x)) = false, then
Antagonist wins immediately. P, is empty, Protagonist wins immediately. Antagonist resison
by choosing an elemertt;, ¢;) of P,. If ¢; € {—1,¢}, then the new configuration & - ¢;, g;).
If x - ¢; is undefined, then Antagonist wins immediatelyclf= (n), Protagonist chooses a subset
M C succ(x) of cardinalityn + 1, Antagonist wins immediately if there is no such subset ghd o
erwise responds by choosing an elemgof M. Then, the new configuration {g, ¢;). If ¢; = [n],
Protagonist chooses a sub3étC succ(z) of cardinality at most:, Antagonist wins immediately if
there is no such subset and otherwise responds by chooselgraent, of succ(xz)\ M. Protagonist
wins immediately if there is no such element. Otherwise niga@ configuration iy, ¢; ).

Consider now an infinite gamg, that is, an infinite sequence of immediately successiveegam
configurations. Leinf(Y") be the set of states @ that occur infinitely many times ilf. Protagonist
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wins if there is an even > 0 for which Inf(Y) N F; # 0 andInf(Y) N F; = O forall j < 1.
It is not difficult to see that a winning strategy of Protagdragainst Antagonist is essentially a
representation of a run of on (T, V) and vice versa. Thus, such a winning strategy existd iff
accepts this tree. The described game meets the conditiddst®5]. It follows that if Protagonist
has a winning strategy, then it has a memoryless strategyaistrategy whose moves do not depend
on the history of the game, but only on the current configorati
Since we assume that accepts the input tre@”, V'), Protagonist has a memoryless winning
strategy on7', V'). This winning strategy can be used to build a strategpn V' and a promis@ro
onstr in the following way. For each € T, str(z) andpro(z) are the smallest sets such that, for
all configurationgx, ¢) occurring in Protagonist’s winning strategy, if Protagtrihooses a subset
P ={(c1,q1),---,(cm,qm)} Of D, x Q in the winning strategy, then we have
() {q} x P, Cstr(z)and
(i) for each atom(c;, g;) of Py with ¢; = (n) (resp.c; = [n]) if M = {y1,...,yn+1} (resp.M =
{y1,...,yn}) is the set of successors chosen by Protagonist after Amitidtas chosefr;, ¢;),
then we havégq, ¢;) € pro(y) for eachy € M (resp. for eacly € succ(z) \ M).

Using the definition of games and the constructiostefit is not hard to show thattr is indeed a
strategy orl/. Similarly, it is easy to prove thafto is a promise osntr. Finally, it follows from the
definition of wins of Protagonist thatr andpro are accepting.

Assume now that there exist a strategyon |V and a promisero on str that are accepting.
Usingstr andpro, it is straightforward to inductively build an acceptingir{@’., ) of Aon (T, V):

e start with introducing the root of 7., and set(z) = (root(T), qo);
e if yis a leaf inT, with r(y) = (z,q) andd(q,V(x)) # true, then do the following for all
(¢,¢.q) € str(z):
— If ¢ = —1o0rc=¢, then add a fresh successprj toy in T, and set-(y - j) = (z - ¢,¢');
— If ¢ = (n) orc = [n], then for eacly € N with (¢,q’) € pro(x - j), add a fresh successgr ;'
toyinT,and set'(y-j') = (z-j,¢).
By Condition (3) of strategy treeg, - j is defined in the induction step. Using the properties of
strategies ori/ and of promises ostr, it is straightforward to show thgfl;., ) is a run. It thus
remains to prove that’,., r) is accepting. Letr be a path in7}., r). By definition of traces induced
by str andpro, the labeling ofr is a trace induced bstr andpro. Sincestr andpro are accepting,
SO isT. ]

Strategy and promise trees together serve as a witness deptaace of an input tree by a
2GAPT that, in contrast to a ru{Y;., r), has the same tree structure as the input tree. To translate
2GAPTs into GNPTSs, we still face the problem that tracesratsgies and promises can move both
up and down. To restrict attention to unidirectional paths,extend to our setting the notion of
annotation as defined in [Var98]. Annotations allow decosipga trace of a strategy and a promise
into a downward part and several finite parts thatdam®urs i.e., divert from the downward trace
and come back to the point of diversion.

Let A = (X,b,Q,6,q0, F) be a 2GAPT. Arannotation tregor A is a2@*{1-+}x@Japeled
tree (7', ann). Intuitively, (¢,7,¢') € ann(z) means that from node and state;, A can make a
detour and comes back towith stateq’ such that is the smallest index of all states that have been
seen along the detour. LEL, V') be aX-labeled treestr a strategy ori/, pro a promise orstr, and
(T, ann) an annotation tree. We calhn an annotation for onstr andpro if for every noder € T,
the following conditions are satisfied:

(1) If (g,e,¢") € str(x) then(g,index(¢'),q’) € ann(z);
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(2) if (¢,5'.¢') € ann(x) and (q j",q") € ann(z), then (g, min(5’, j"),q") € ann(z);
(3) If () z = Y i, (i) (¢,—1,¢) € str( ), (i) (¢',4,4") € ann(y) or ¢ = ¢" with index(¢') =
, (V) (¢",(n),q") € Str( ) or (¢",[n],q") € str(y), and (v) (¢",¢") € pro(z), then
(q,mln(lndex( ) j.index(¢")),q") € ann(z);
@ if@) y = @i, (i) (g,(n),q") € str(z) or (g,[n],¢") € str(z), (i) (q,¢') € pro(y),
(iv) (q’,j,q”) € ann(y) or ¢ = ¢” with index(¢’) = j, and (v) (¢",—1,¢") € str(y),
then (¢, min(index(¢’), j,index(¢"")),¢") € ann(z).

Example 6.5. Reconsider the 2GAPR = (X,b,Q, 4, qo, F) from Example 6.8, as well as the
fragments of the input tre€l’, V) and the strateggtr on (T, V') depicted in Figurél2. Assume
that there is a promispro on str with (¢o,q1) € pro(11) telling the automaton that if it executes
((0),q1) in stategy at node 1, it should send a copy in stateto node 11. Usingtr(1) and
Condition (4) of annotations, we can now deduce that, in amotationann on str and pro, we
have(qo, j,92) € ann(1) with j the minimum of the indexes @, ¢1, andq,.

Given an annotation tre@’, ann) onstr andpro, adownward tracer induced bystr, pro, and
ann is a sequenceéry, qo, to), (1,491, t1), . . . of triples, wherery = root(T'), qq is the initial state
of A, and for each > 0, one of the following holds:

(1) tiis (g, c,qi+1) € str(x;) for somec € [[b]]U[(b)], (¢i, gi+1) € pro(z;-d) for somed € N,

andxiﬂ =ux;-d

(1) tiis(gi,d,qi+1) € ann(x;) for somed € {1,... k}, andz;11 = ;.

In the first caseindex(t;) is the minimalj such thay; 1 € F; and in the second cadedex(t;) = d.
For a downward trace, index(r) is the minimalindex(t;) for all ¢; occurring infinitely often inr.
Note that a downward trace can loop indefinitely at a node € T° when, from some point > 0
on, all thet;, j > 14, are elements ofnn (and all thez; arex). We say that a downward trace
m satisfiesF = {F1,...,Fi} if index(7) is even. Given a strategytr, a promisepro on str, an
annotationann onstr andpro, we say thatnn is acceptingif all downward traces induced byr,
pro, andann satisfy F.

Lemma6.6. A 2GAPTA accepts(T, V) iff there exist a strategytr for A on V', a promisepro for
A onstr, and an annotatiorann for A onstr and pro such thatann is accepting.

Proof. Suppose first thatl accepts(7, V). By Lemmal6.}, there is a strategyr on V' and a
promisepro on str which are accepting. By definition of annotationssonand pro, it is obvious
that there exists a unique smallest annotatiom on str andpro in the sense that, for each node
in 7" and each annotatiomnn’, we haveann(z) C ann’(x). We show thatnn is accepting. Let
m = (o, qo,to), (x1,q1,t1), ... be a downward trace induced by, pro, andann. It is not hard
to construct a trace’ = (xzy,q;), (¢}, 4¢}),... induced bystr and pro that is accepting iffr is:
first expandr by replacing elements in of the form(}) with the detour asserted fayin, and then
projectr on the first two components of its elements. Details are detthié reader.

Conversely, suppose that there exist a strasegyn V', a promisepro onstr, and an annotation
ann onstr andpro such thatnn is accepting. By Lemma 8.4, it suffices to show ttaiandpro are
accepting. Letr = (¢, qo), (x1,41), ... be atrace induced bygr andpro. It is possible to construct
a downwards trace’ induced bystr, pro, andann that is accepting iffr is: whenever the step from
(z4,q;) 10 (wi41,¢i+1) IS such thate; 11 = z; - ¢ for somec € N, the definition of traces induced
by str andpro ensures that there ista= (¢;, ¢, ¢;+1) € str(x;) such that the conditions frofft)
are satisfied; otherwise, we consider the maximal subseguen g¢;), . .., (x;, ¢;) of = such that
xj = xz; - c for somec € N, and replace it with(z;, ¢;), (z;,¢;). By definition of annotations,
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there ist; = (¢;,d, ¢i+1) € ann(x;) such that the conditions fronf)(are satisfied. Again, we leave
details to the reader. []

In the following, we combine the input tree, the strategeg, pinomise, and the annotation into
one tree(T, (V,str, pro,ann)). The simplest approach to representing the strategy apére

input tree is to additionally label the nodes of the inpug tnéth an element af?* P, *?, However,

we can achieve better bounds if we represent strategiescoorpactly. Indeed, it suffices to store
for every pair of states, ¢’ € @, at most four different tuple§y, ¢, ¢’): two for ¢ € {e, -1} and

two for the minimaln and maximak’ such that(q, [n],¢'), (¢, (n'),q’) € str(y). Call the set of

all representations of strategiés,,. We can now define the alphabet of the combined trees. Given
an alphabet for the input tree, let2’ denote the extended signature for the combined trees, i.e.,
Y =3 X Lgy X 20%Q x 2@x{L k}xQ

Theorem 6.7. Let A be a 2GAPT running ox-labeled trees withn states, indeX and counting
boundb. There exists a GNPA’ running ony/-labeled trees witlC (+n*los k-logb?) states, index
nk, andb-counting constraints such that’ accepts a tree iffl accepts its projection oh.

Proof. Let A = (X,b,Q, d, qo, F) with F = {F1,..., Fr}. The automatord’ is the intersection
of three automatal;, A,, and A3. The automatord; is a SAFETY GNPT, and it accepts a tree
(T, (V,str, pro,ann)) iff stris a strategy orl/ and pro is a promise orstr. It is similar to the
corresponding automaton in [KSV02], but additionally hadake into account the capability of
2GAPTSs to travel upwards. The state setlgfis Q; := 2(@*@YQ_ et P € Q. Intuitively,

(a) pairs(q,q') € P represent obligations fgsro in the sense that if a node of an input tree
receives stat® in a run of 4, then(q, ¢) is obliged to be irpro(z);
(b) states; € P are used to memorize=ad(str(y)) of the predecessar of x.

This behaviour is easily implemented \dg’s transition relation. Usindalse in the transition func-
tion of A; and thus ensuring that the automaton blocks when encongten undesirable situation,
it is easy to enforce Conditions (2) to (3) of strategies, @otidition (3) of promises. The initial
state ofA; is {(qo, q0)}, which together with Condition (3) of promises enforces diton (1) of
strategies. It thus remains to treat Conditions (1) and {Ry@mises. This is again straightforward
using the transition function. For example,(if, (n),q’) € str(x), then we can use the conjunct
{(g,¢"), (>,n)) in the transition. Details of the definition of; are left to the reader. Clearly, the
automatond; has2°("*) states and counting bourd

The remaining automatd, and A3 do not rely on the gradedness of GNPTs. The automaton
Ao is both a SFFETY and FORALL GNPT. It accepts a tre€T’, (V,str, pro,ann)) iff ann is an
annotation. More preciselyd, checks that all conditions of annotations hold for each nede
of the input tree. The first two conditions are checked lgchyl analyzing the labelstr(x) and
ann(x). The last two conditions require to analygeo(z), str(y), andann(y), wherey is the
parent ofz. To accesstr(y) C Q x D, x Q andann(y) € Q x {1,...,k} x Q while processing
x, Ay must memorize these two sets in its states. Regarstirig), it suffices to memorize the
representation fromLg,. The number of such representations(4é2)”2, which is bounded by
90(n*1ogb®)  There are2k™” different annotations, and thus the overall number of stafed, is
bounded byp® (kn?logb?),

The automatoms is a FORALL GNPT, and it accepts a tré&’, (V, str, pro,ann)) iff ann is
accepting. By Lemma@.6, it thus follows thataccepts T, (V, str, pro, ann)) iff A acceptgT, V).
The automatonl; extends the automaton considered in [Var98] by taking intmant promise trees
and graded moves in strategies.
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We constructds in several steps. We first define a nondeterministic paritydvautomaton
(NPW) U overX'’. An input word toU corresponds to a path in an input tree4b We build U
such that it accepts an input word/path if this path gives tisa downward trace that violates the
acceptance conditior of A. An NPW is a tuple(¥, S, M, sq, F), whereX is the input alphabet,
S is the set of states)/ : S — 29 is the transition functionsy € S is the initial state, and
F ={Fi,Fa..., Fr} is a parity acceptance condition. Given a ward= apa; ... € X*, a run
r = qoq1 - - of U onw is such thaty = sg andg; 1 € M(g;,a;) forall i > 0.

We definelU = (X', S, M, sg, F') such thatS = (Q x @ x {1,...,k}) U{qacc}- Intuitively,

a run of U describes a downward trace inducedsby; pro, andann on the input path. Suppose
thatz is thei-th node in an input path to, r is a run ofU on that path, and théth state inr is

(4, gprev, j)- This means that describes a trace in which the state4obn the noder is ¢, while the
previous state at the parendf = wasg,,.,. Thus,A has executed a transitidib), ¢) or ([b], q) to
reach statg atx. For reaching the statg,..,, aty, A may or may not have performed a detouy at
as described bynn. Thej in (g, gyrev, 7) is the minimum index ofy and any state encountered on
this detour (if any).

We now define the transition functial/ formally. To this end, letq, gprev, j) € S and let
o = (V(x),str(z),pro(z),ann(z)). To defineM ({q, gprev, j), o), we distinguish between three
cases:

(1) if (Qprew Q) ¢ pro(m), thenM(<q’ Qprevaj>7 U) = @,
(2) otherwise and if7 = {c: (¢,¢,q) € ann(x)} is non-empty and some memberidfhas an odd
index, setM ({g, Q;m"evaj>> o) = {Qace};
(3) if neither (1) nor (2) apply, then we pl’, ¢}, 5") € M((q, Gprev, ), o) iff
e (q,¢,q") € str(x), with ¢ € (b)) U [[b]], ¢prep = g @nd;j’ = index(q’); or
® (q,d,qp.c,) € ann(z) for somed, (q,c,,c,q') € str(z) for somec € (b)) U [[b]], and
j' = min(d,index(q")).
In addition, M (¢ace, ) = {qacc}, for all o € X', For (1), note that iflgyc,q) & pro(x), then
pro does not permit downwards traces in whidrswitches fromy,,.., to ¢ when moving from the
parent ofx to x. Thus, the current run df does not correspond to a downward trace, &ndioes
not accept. The purpose of (2) is to check for traces that¢geght” at a node.

The initial statesy of U is defined asqo, qo, ¢), where? is such thatgy € F,. Note that
the choice of the second element is arbitrary, as the loaahise at the root of the input tree
is irrelevant. Finally, the parity condition &' = {Fj,F;,...,F,,}, whereF| = 0, F) =
Q x Q x {1} U{qqc.} and for eaclf with 2 < ¢ < k+1, we haveF;, = Q x Q x {¢{ —1}. Thus,U
accepts a word if this word corresponds to a path of the impetdn which there is a non-accepting
trace.

In order to getAs, we co-determinize the NPW and expand it to a tree automaton, i.e., a
FORALL GNPT onY’. That is, we first construct a deterministic parity word andbon U that
complementd/, and then replace a transitidd (¢, o) = ¢’ in U by a transition

My(q,0) = {{(-0y),(<,0))}
in A5 where the states f are encoded by some $étof variables and for every staié the formula
0, € B(Y) holds only in the subset d&f that encodeg’. By [Saf89/ Tho9F], the automatdh has
(nk)™F < 2nklognk states and indexk, thus so doess.

By Lemma[6.2, we can intersect the twar&TY automatad; and A, obtaining a SFETY
automaton witr2@(*kn*1ogb*) states and counting bourdd Moreover, by Lemm&B8l1, the obtained
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SAFETY automaton can be intersected with theRALL automatonAs yielding the desired GNPT
A’ with 20(kn*logk-logh?) states, counting bourid and indexnk. O

6.3. Emptiness of GNPTs. By extending results of [KV98, KVW00, KSV02], we provide ah a
gorithm for deciding emptiness of GNPTs. The general id¢a teanslate GNPTs into alternating
(non-graded) parity automata on words, and then to use atirexialgorithm from [[KV98] for
deciding emptiness of the latter.

A singleton-alphabet GNPT on full-trees (w-1GNPT)is a GNPT that uses a singleton alpha-
bet{a} and admits only a single input tré&,,, V), whereT,, is the full w-tree N* and V" labels
every node with the only symbal. Our first aim is to show that every GNPT can be converted
into anw-1GNPT such that (non)emptiness is preserved. We first ecbtva 1GNPT, which is a
single-alphabet GNPT.

Lemma6.8. LetA = (X,b,Q, 6, qo, F) be aGNPT. Then there isa 1IGNPT = ({a},b,Q’, 0, ¢{, F')
with L(A) = 0 iff L(A') = 0 and|Q’| < |Q]| x |S| + 1.

Proof. Let @ C 2¥. We may assume w.l.0.g. th&t C 22 for some setZ with Z NY = (). Now
define the components df as follows:

Q ={{s}}U{qUo,|geQroecx}C2 whereY' =Y & ZW{s};

e qp = {s}h

5/({3}7 CL) = {<true7 (§7 1)>7 </\y€q0 Yy N /\yGY\lIO Y, (>7 O)>7 <37 (§7 O)>}'

d'(q,a) =6(gNY,qNZ)U{(s,(<,0))} forallg € Q with g # {s};

o Fl={F,....,. FtwithF ={qeQ |¢NQ e F}if F={F,..., Fr}.

It is easy to see tha#l accepts(T, V) iff A’ accepts(T’,V'), whereT” is obtained fromI" by
adding an additional root, arid’ assigns the label to every node irf”. Intuitively, the additional
root enablesd’ to “guess” a label at the root of the original tree. Then, tidgel will be guessed
iteratively. []

In the next step, we translate dte1GNPTSs.

Lemma 6.9. Let A = ({a},b,Q,d,q0,F) be a 1GNPT. Then there exists arnlGNPT
A= ({a},b,Q, &, qo, F') such thatC(A) = 0 iff L(A') = D and|Q'| = |Q] + 1.
Proof. Define the components of as follows:
e @ =QU{{L}} C2¥ whereY’ =Y w{L};
o if 5(q,a) = {<91,fl>, ey <9k;§k>}- Seté’(q,a) = {<91 N —|_L,§1>, coy (O A —|_L,§k>}, for all
q € Qwith L ¢ ¢;
e 0'(q,a) = {(—L,(<,0))} forall ¢ € Q with L € q.
o F' = {F,....,.F}with Fl = F,andF, = F;U{q € Q | L € ¢}, for2 < i < k, if
F=A{F,....Fu}.
It is easy to see that(A) # 0 iff A’ accepts(T,,, V). Accepting runs can be translated back and
forth. When going from runs ofl to runs of A’, this involves of the children of each node with
nodes labeled_ L }. ]
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We are now ready to translate GNPTs to alternating word aat@mA single-alphabet alter-
nating parity word automaton (1APWi§ a tupleA = ({a}, Q, 4, g0, F), Wwhere{a} is the alphabet,
Q, qo, and.F are as in FEAs, and : Q x {a} — B*(Q). There is only a single possible input to
a 1APW, namely the infinite wordaa - - - . Intuitively, if A is in stateg on thei-th position of this
word andi(q,a) = ¢’ V (¢ A ¢"), thenA can send to positioh+ 1 either a copy of itself in statg¢
or one copy in state and one in statg”. The input word is accepted iff there is an accepting run of
A, where arun is a@-labeled tre€T,., r) such that
e r(root(7})) = qo;
e forall y € T, with r(y) = ¢ andd(q,a) = 0, there is a (possibly empty) s€tC @ such thatS

satisfied and for all¢’ € S, there isj € N such thaty - j € T, andr(y - j) = ¢'.

As for FEAs, a run(T,., r) is acceptingf all its infinite paths satisfy the acceptance condition.

For anw-1GNPTA = ({a},b,Q, 0,0, F), ¢ € Q,andP C @, the functionis_mother 4(q, P)
returnstrue if there is an infinite word € P“ that satisfies the counting constradiig, a), andfalse
otherwise.

Lemma6.10. For everyw-1GNPTA = ({a},b,Q, 4, qo, F), the LAPWA’ = ({a},Q, ¥, qo, F) is
such thatC(A) = 0 iff L(A’) = 0, where for allg € Q,

&'(g,a) = V A ¢

PCQ s.t.is-mother 4 (q,P) q€P

Proof. (sketch) First assume théf,,, V') € £(A). Then there exists an accepting r{#,, ) of A
on(T,,, V). Itis not difficult to verify that(7,, r) is also an accepting run &f . Conversely, assume
thata” € L£(A’). Then there is an accepting r¢f,., r) of A’. We define an accepting ruf,, ')
of A on(T,, V) by inductively defining”’. Along with s/, we define a mapping : 7,, — T, such
thatr’(x) = r(7(x)) for all € T,,. To start, set’(root(7,,)) = qo and7(root(7},)) = root(7}).
For the induction step, let € T;, such that”(y) is not yet defined for the successgrsf x. Since
(T,,r)is arun ofA” and by definition of’, there is aP C @ such that (ijs_mother 4 (r(7(z)), P)
and (ii) for allg € P, there is a successgrof 7(x) in T, with r(y) = ¢. By (i), there is a word
t = qiq2- -+ € P¥ that satisfies the counting constradift:(7(z)),a) = d(r'(z),a). Foralli > 1,
definer’(x - i) = ¢; and setr(z - i) to some successgrof 7(x) in T} such that-(y) = ¢; (which
exists by (ii)). Itis not hard to check thét,,, ') is indeed an accepting run dfon (7,,, V). [

Fora 1APWA = ({a},Q, 0, q0,F), q € Q,andP C @, the functionis_mother 4(q, P) returns
true if P satisfies the Boolean formutdq, a), andfalse otherwise.

Since the transition function of the automatdhfrom Lemmd6.1D is of size exponential in
the number of states of theeJGNPT A, we should not computd’ explicitly. Indeed, this is not
necessary since all we need frothis access toF andis_mother 4 and, as stated in the next lemma,
is_mother 4/ coincides withis_mother 4. The lemma is an immediate consequence of the definition
of the IAPW in Lemm&6.10.

Lemma6.11. LetA and A’ be asin Lemma6.10, with state §gtThenis_mother 4 = is_mother 4.

To decide the emptiness of 1APWs, we use the algorithm ffoOfq. It is a recursive pro-
cedure that accesses the transition function of the 1LAPW\oalis_mother. If started on a 1APW
with n states and indek, it makes at mose®(¥1°¢7) calls tois_mother and performs at most
20(klogn) gdditional steps.

To analyze its runtime requirements, we first determine onegiexity of computings_motherﬂ

IWe remark that the analogous Lemma 1[of [KSV02] is flawed beeétconsiders only trees of finite outdegree.
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Lemma 6.12. LetA = ({a},b,Q,d,qo, F) be anw-1GNPT withn states and counting bourid
Thenis_mother 4 can be computed in tiné’(logn),

Proof. Assume that we want to check whetlemother 4(g, P), for someq € Q andP C Q. Let
01, ...,0x be all formulas occurring i6' := 6(g, a). We construct a deterministic Buichi automaton
A= (3,Q, q,, ¢, F') oninfinite words that accepts precisely those wdrdsP* that satisfyC':

e Y = P;

¢ Q' =1{0,....b}"
o q) = {0}";
e §((i1,...,ix),p) is the vector (ji,...,jx), where for allh € {1,...,k}, we have

jn = min{b, i, + 1} if p € X' satisfiedd;,, andj, = i, otherwise;
e F’ consists of those tupl€s;, . . ., i;) such that for alh € {1, ..., k},

(1) there is ndy, (<,r)) € C with r < ip;

(2) forall (8, (>,r)) € C, we havei, > r.
By definition of GNPTSs, the cardinality af’ is bounded bylog n. Thus, A’ hasb'°s™ states. It
remains to note that the emptiness problem for determgrisichi word automata (is NRGSPACE-
complete[[VW94] and) can be solved in linear tihe [Var07]. ]

Now for the runtime of the algorithm. Led be a GNPT withn states, counting boung and
index k. To decide emptiness of, we convertA into anw-1GNPT A’ with n + 1 states, counting
boundb, and indexk, and then into a 1APWA” with n + 1 states and indek. By Lemmd6.1R, we
obtain the following result.

Theorem 6.13. Let A = (X,b,Q, J, qo, F) be a GNPT with@| = n, and indext. Then emptiness
of A can be decided in timg + 2)©(klogn),

6.4. Wrapping Up. Finally, we are ready to prove Theorém]4.2, which we restate for conve-
nience.

Theorem[d.2l The emptiness problem for a 2GART= (X, b, Q, ¢, qo, F) With n states and index
k can be solved in tim@ —+ 2)0(*#*logk-logb?) |

Proof. By Theoreni 6.7, we can convedtinto a GNPTA’ with 20 (kn*logk-logb?) states, indexk,
and counting bound. Thus, Theorern 6.13 yields the desired result. ]

A matching EXPTIME lower bound is inherited from nongraded, one-way altengatiee au-
tomata.

7. CONCLUSION

We have studied the complexity pfcalculi enriched with inverse programs, graded modaljtie
and nominals. Our analysis has resulted in a rather completere of the complexity of such
logics. In particular, we have shown that only the fully ehedu-calculus is undecidable, whereas
all its fragments obtained by dropping at least one of théckimg features inherit the attractive
computational behavior of the original, non-enrichedalculus.

From the perspective of the description logic OWL, the pietis as follows. Undecidability of
the fully enrichedu-calculus means that OWL extended with fixpoints is unddatelaThe decid-
able u-calculi identified in this paper give rise to natural fragrtseof OWL that remain decidable
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when enriched with fixpoints. Orthogonal to the investigasi carried out in this paper, it would
be interesting to understand whether there are any seauoledfeatures that can be added to OWL
without losing decidability. In particular, decidabiligf OWL extended with transitive closure is
still an open problem.
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