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Abstract. We provide a complete description of the Wadge hierarchy for deterministi-
cally recognisable sets of infinite trees. In particular we give an elementary procedure to
decide if one deterministic tree language is continuously reducible to another. This extends
Wagner’s results on the hierarchy of ω-regular languages of words to the case of trees.

1. Introduction

Two measures of complexity of recognisable languages of infinite words or trees have
been considered in literature: the index hierarchy, which reflects the combinatorial com-
plexity of the recognising automaton and is closely related to µ-calculus, and the Wadge
hierarchy, which is the refinement of the Borel/projective hierarchy that gives the deepest
insight into the topological complexity of languages. Klaus Wagner was the first to discover
remarkable relations between the two hierarchies for finite-state recognisable (ω-regular)
sets of infinite words [14]. Subsequently, decision procedures determining an ω-regular
language’s position in both hierarchies were given [4, 7, 15].

For tree automata the index problem is only solved when the input is a deterministic
automaton [9, 13]. As for topological complexity of recognisable tree languages, it goes much
higher than that of ω-regular languages, which are all ∆0

3. Indeed, co-Büchi automata over
trees may recognise Π1

1-complete languages [8], and Skurczyński [12] proved that there are
even weakly recognisable tree languages in every finite level of the Borel hierarchy. This
may suggest that in the tree case the topological and combinatorial complexities diverge.
On the other hand, the investigations of the Borel/projective hierarchy of deterministic
languages [5, 8] reveal some interesting connections with the index hierarchy.

Wagner’s results [14, 15], giving rise to what is now called the Wagner hierarchy
(see [10]), inspire the search for a complete picture of the two hierarchies and the relations
between them for recognisable tree languages. In this paper we concentrate on the Wadge
hierarchy of deterministic tree languages: we give a full description of the Wadge-equivalence
classes forming the hierarchy, together with a procedure calculating the equivalence class
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of a given deterministic language. In particular, we show that the hierarchy has the height

ωω·3 + 3, which should be compared with ωω for regular ω-languages [15], ωω2
for deter-

ministic context-free ω-languages [1], (ωCK
1 )ω for ω-languages recognised by deterministic

Turing machines [11], or an unknown ordinal ξ > (ωCK
1 )ω for ω-languages recognised by

nondeterministic Turing machines, and the same ordinal ξ for nondeterministic context-free
languages [2].

The key notion of our argument is an adaptation of the Wadge game to tree languages,
redefined entirely in terms of automata. Using this tool we construct a collection of canonical
automata representing the Wadge degrees of all deterministic tree languages. Then we
provide a procedure calculating the canonical form of a given deterministic automaton,
which runs within the time of finding the productive states of the automaton (the exact
complexity of this problem is unknown, but not worse than exponential).

2. Automata

We use the symbol ω to denote the set of natural numbers {0, 1, 2, . . .}. For an alphabet
Σ, Σ∗ is the set of finite words over Σ and Σω is the set of infinite words over Σ. The
concatenation of words u ∈ Σ∗ and v ∈ Σ∗ ∪ Σω will be denoted by uv, and the empty
word by ε. The concatenation is naturally generalised for infinite sequences of finite words
v1v2v3 . . . . The concatenation of sets A ⊆ Σ∗, B ⊆ Σ∗ ∪Σω is AB = {uv : u ∈ A, v ∈ B}.

A tree is any subset of ω∗ closed under the prefix relation. An element of a tree is usually
called a node. A leaf is any node of a tree which is not a (strict) prefix of some other node.
A Σ-labelled tree (or a tree over Σ) is a function t : dom t → Σ such that dom t is a tree.
For v ∈ dom t we define t.v as a subtree of t rooted in v, i. e., dom (t.v) = {u : vu ∈ dom t},
t.v(u) = t(vu).

A full n-ary Σ-labeled tree is a function t : {0, 1, . . . , n − 1}∗ → Σ. The symbol TΣ will
denote the set of full binary trees over Σ. From now on, if not stated otherwise, a “tree”
will mean a full binary tree over some alphabet.

Out of a variety of acceptance conditions for automata on infinite structures, we choose
the parity condition. A nondeterministic parity automaton on words can be presented as
a tuple A = 〈Σ, Q, δ, q0, rank〉, where Σ is a finite input alphabet, Q is a finite set of states,
δ ⊆ Q × Σ × Q is the transition relation, and q0 ∈ Q is the initial state. The meaning
of the function rank : Q → ω will be explained later. Instead of (q, σ, q1) ∈ δ one usually

writes q
σ

−→ q1. A run of an automaton A on a word w ∈ Σω is a word ρw ∈ Qω such that

ρw(0) = q0 and if ρw(n) = q, ρw(n + 1) = q1, and w(n) = σ, then q
σ

−→ q1. A run ρw is
accepting if the highest rank repeating infinitely often in ρw is even; otherwise ρw is rejecting.
A word is accepted by A if there exists an accepting run on it. The language recognised by
A, denoted L(A) is the set of words accepted by A. An automaton is deterministic if its
relation of transition is a total function Q× Σ → Q. Note that a deterministic automaton
has a unique run (accepting or not) on every word. We call a language deterministic if it is
recognised by a deterministic automaton.

A nondeterministic automaton on trees is a tuple A = 〈Σ, Q, δ, q0, rank〉, the only dif-

ference being that δ ⊆ Q × Σ × Q × Q. Like before, q
σ

−→ q1, q2 means (q, σ, q1, q2) ∈ δ.

We write q
σ,0
−→ q1 if there exists a state q2 such that q

σ
−→ q1, q2. Similarly for q

σ,1
−→ q2.

A run of A on a tree t ∈ TΣ is a tree ρt ∈ TQ such that ρt(ε) = q0 and if ρt(v) = q,

ρt(v0) = q1, ρt(v1) = q2 and t(v) = σ, then q
σ

−→ q1, q2. A path π of the run ρt is accepting



THE WADGE HIERARCHY OF DETERMINISTIC TREE LANGUAGES ∗ 3

(1, 1) (1, 2) (1, 3) (1, 4) · · ·
�� �� ��
�� �� ��

(0, 0) (0, 1) (0, 2) (0, 3) · · ·

Figure 1: The Mostowski–Rabin index hierarchy.

if the highest rank repeating infinitely often in π is even; otherwise π is rejecting. A run is
called accepting if all its paths are accepting. If at least one of them is rejecting, so is the
whole run. An automaton is called deterministic if its transition relation is a total function
Q× Σ → Q×Q.

By Aq we denote the automaton A with the initial state set to q. A state q is all-
accepting if Aq accepts all trees, and all-rejecting if Aq rejects all trees. A state (a transition)
is called productive if it is used in some accepting run. Observe that being productive is
more than just not being all-rejecting. A state q is productive if and only if it is not all-

rejecting and there is a path q0
σ0,d0
−→ q1

σ1,d1
−→ . . .

σn,dn
−→ q such that qi

σi,d̄i−→ q′i, d̄i 6= di, and q′i
is not all-rejecting for i = 0, 1, . . . , n.

Without loss of generality we may assume that all states in A are productive save
for one all-rejecting state ⊥ and that all transitions are either productive or are of the

form q
σ

−→ ⊥,⊥. The reader should keep in mind that this assumption has influence on
the complexity of our algorithms. Transforming a given automaton into such a form of
course needs calculating the productive states, which is equivalent to deciding a language’s
emptiness. The latter problem is known to be in NP ∩ co-NP and has no polynomial time
solutions yet. Therefore, we can only claim that our algorithms are polynomial for the
automata that underwent the above preprocessing. We will try to mention it whenever it
is particularly important.

The Mostowski–Rabin index of an automaton A is a pair

(min rankQ,max rankQ) .

An automaton with index (ι, κ) is often called a (ι, κ)-automaton. Scaling down the rank
function if necessary, one may assume that min rankQ is either 0 or 1. Thus, the indices
are elements of {0, 1} × ω \ {(1, 0)}. For an index (ι, κ) we shall denote by (ι, κ) the dual

index, i. e., (0, κ) = (1, κ + 1), (1, κ) = (0, κ − 1). Let us define an ordering of indices with
the following formula

(ι, κ) < (ι′, κ′) if and only if κ− ι < κ′ − ι′ .

In other words, one index is smaller than another if and only if it uses less ranks. This
means that dual indices are not comparable. The Mostowski–Rabin index hierarchy for
a certain class of automata consists of ascending sets (levels) of languages recognised by
(ι, κ)-automata (see Fig. 1).

The fundamental question about the hierarchy is the strictness, i. e., the existence of
languages recognised by a (ι, κ)-automaton, but not by a (ι, κ)-automaton. The strictness of
the hierarchy for deterministic automata follows easily from the strictness of the hierarchy
for deterministic word automata [15]: if a word language L needs at least the index (ι, κ),
so does the language of trees that have a word from L on the leftmost branch. The index
hierarchy for nondeterministic automata is also strict [6]. In fact, the languages showing
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Figure 2: A (0, 2)-flower.

the strictness may be chosen deterministic: one example is the family of the languages of
trees over the alphabet {ι, ι + 1, . . . , κ} satisfying the parity condition on each path.

The second important question one may ask about the index hierarchy is how to deter-
mine the exact position of a given language. This is known as the index problem.

Given a deterministic language, one may ask about its deterministic index, i. e., the
exact position in the index hierarchy of deterministic automata (deterministic index hier-
archy). This question can be answered effectively. Here we follow the method introduced
by Niwiński and Walukiewicz [7].

A path in an automaton is a sequence of states and transitions:

p0
σ1,d1
−→ p1

σ2,d2
−→ . . .

σn−1,dn−1
−→ pn .

A loop is a path starting and ending in the same state, p0−→p1−→ . . .−→p0. A loop is
called accepting if maxi rank (pi) is even. Otherwise it is rejecting. A j-loop is a loop with
the highest rank on it equal to j. A sequence of loops λι, λι+1, . . . , λκ in an automaton is
called an alternating chain if the highest rank appearing on λi has the same parity as i
and it is higher then the highest rank on λi−1 for i = ι, ι + 1, . . . , κ. A (ι, κ)-flower is an
alternating chain λι, λι+1, . . . , λκ such that all loops have a common state q (see Fig. 2). 1

Niwiński and Walukiewicz use flowers in their solution of the index problem for deter-
ministic word automata.

Theorem 2.1 (Niwiński, Walukiewicz [7]). A deterministic automaton on words is equiv-

alent to a deterministic (ι, κ)-automaton iff it does not contain a (ι, κ)-flower.

For a tree language L over Σ, let Paths(L) ⊆ (Σ×{0, 1})ω denote the language of generalised
paths of L,

Paths(L) = {〈(σ1, d1), (σ2, d2), . . .〉 : ∃t∈L ∀i t(d1d2 . . . di−1) = σi} .

A deterministic tree automaton A, can be treated as a deterministic word automaton recog-
nising Paths(L(A)). Simply for A = 〈Q,Σ, q0, δ, rank〉, take 〈Q,Σ×{0, 1}, q0, δ

′, rank〉, where

1This is a slight modification of the original definition from [7].
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Figure 3: A weak (1, 3)-flower.

(p, (σ, d), q) ∈ δ′ ⇐⇒ (p, σ, d, q) ∈ δ. Conversely, given a deterministic word automaton
recognising Paths(L(A)), one may interpret it as a tree automaton, obtaining thus a deter-
ministic automaton recognising L(A). Hence, applying Theorem 2.1 one gets the following
result.

Proposition 2.2. For a deterministic tree automaton A the language L(A) is recognised

by a deterministic (ι, κ)-automaton iff A does not contain a (ι, κ)-flower.

In [5] it is shown how to compute the weak deterministic index of a given deterministic
language. An automaton is called weak if the ranks may only decrease during the run,
i. e., if p −→ q, then rank(p) ≥ rank(q). The weak deterministic index problem is to
compute a weak deterministic automaton with minimal index recognising a given language.
The procedure in [5] is again based on the method of difficult patterns used in Theorem
2.1 and Proposition 2.2. We need the simplest pattern exceeding the capability of weak
deterministic (ι, κ)-automata. Just like in the case of the deterministic index, it seems

natural to look for a generic pattern capturing all the power of (ι, κ). Intuitively, we need

to enforce the alternation of ranks provided by (ι, κ). Let a weak (ι, κ)-flower be a sequence
of loops λι, λι+1 . . . , λκ such that λj+1 is reachable from λj , and λj is accepting iff j is even
(see Fig. 3).

Proposition 2.3 ([5]). A deterministic automaton A is equivalent to a weak deterministic

(ι, κ)-automaton iff it does not contain a weak (ι, κ)-flower.

For a deterministic language one may also want to calculate its nondeterministic index,
i. e., the position in the hierarchy of nondeterministic automata. This may be lower than
the deterministic index, due to greater expressive power of nondeterministic automata.
Consider for example the language LM consisting of trees whose leftmost paths are in
a regular word language M . It can be recognised by a nondeterministic (1, 2)-automaton,
but its deterministic index is equal to the deterministic index of M , which can be arbitrarily
high.

The problem transpired to be rather difficult and has only just been solved in [9].
Decidability of the general index problem for nondeterministic automata is one of the most
important open questions in the field.
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3. Topology

We start with a short recollection of elementary notions of descriptive set theory. For
further information see [3].

Let 2ω be the set of infinite binary sequences with a metric given by the formula

d(u, v) =

{

2−min{i∈ω : ui 6=vi} iff u 6= v
0 iff u = v

and TΣ be the set of infinite binary trees over Σ with a metric

d(s, t) =

{

2−min{|x| : x∈{0,1}∗, s(x)6=t(x)} iff s 6= t
0 iff s = t

.

Both 2ω and TΣ, with the topologies induced by the above metrics, are Polish spaces (com-
plete metric spaces with countable dense subsets). In fact, both of them are homeomorphic
to the Cantor discontinuum.

The class of Borel sets of a topological space X is the closure of the class of open sets
of X by complementation and countable sums. Within this class one builds so called Borel
hierarchy. The initial (finite) levels of the Borel hierarchy are defined as follows:

• Σ0
1(X) – open subsets of X,

• Π0
k(X) – complements of sets from Σ0

k(X),
• Σ0

k+1(X) – countable unions of sets from Π0
k(X).

For example, Π0
1(X) are closed sets, Σ0

2(X) are Fσ sets, and Π0
2(X) are Gδ sets. By con-

vention, Π0
0(X) = {X} and Σ0

0(X) = {∅}.
Even more general classes of sets from the projective hierarchy. We will not go beyond

its lowest level:

• Σ1
1(X) – analytical subsets of X, i. e., projections of Borel subsets of X2 with product

topology,
• Π1

1(X) – complements of sets from Σ1
1(X).

Whenever the space X is determined by the context, we omit it in the notation above
and write simply Σ0

1, Π
0
1, and so on.

Let ϕ : X → Y be a continuous map of topological spaces. One says that ϕ is a reduction
of A ⊆ X to B ⊆ Y , if ∀x∈X x ∈ A ↔ ϕ(x) ∈ B. Note that if B is in a certain class of
the above hierarchies, so is A. For any class C a set B is C-hard, if for any set A ∈ C there
exists a reduction of A to B. The topological hierarchy is strict for Polish spaces, so if a set
is C-hard, it cannot be in any lower class. If a C-hard set B is also an element of C, then it
is C-complete.

In 2002 Niwiński and Walukiewicz discovered a surprising dichotomy in the topological
complexity of deterministic tree languages: a deterministic tree language has either a very
low Borel rank or it is not Borel at all (see Fig. 4). We say that an automaton A admits

a split if there are two loops p
σ,0
−→ p0 −→ . . . −→ p and p

σ,1
−→ p1 −→ . . . −→ p such that

the highest ranks occurring on them are of different parity and the higher one is odd.

Theorem 3.1 (Niwiński, Walukiewicz [8]). For a deterministic automaton A, L(A) is on
the level Π0

3 of the Borel hierarchy iff A does not admit split; otherwise L(A) is Π1
1-complete

(hence non-Borel).



THE WADGE HIERARCHY OF DETERMINISTIC TREE LANGUAGES ∗ 7

Σ0
0 Σ0

1 Σ0
2

� � � � �
∆0

1 ∆0
2 ∆0

3 = Σ0
3

� � � � � �
Π0

0 Π0
1 Π0

2 Π0
3 Π1
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Figure 4: The Borel hierarchy for deterministic tree languages.

An important tool used in the proof of the Gap Theorem is the technique of difficult
patterns. In the topological setting the general recipe goes like this: for a given class identify
a pattern that can be “unravelled” to a language complete for this class; if an automaton
does not contain the pattern, then L(A) should be in the dual class. In the proof of the Gap
Theorem, the split pattern is “unravelled” into the language of trees having only finitely
many 1’s on each path. This language is Π1

1-complete (via a reduction of the set of well-
founded trees).

In [5] a similar characterisation was obtained for the remaining classes from the above
hierarchy. Before we formulate these result, let us introduce one of the most important

technical notions of this study. A state p is replicated by a loop q1
σ,d0
−→ q2 −→ . . . −→ q1 if

there exist a path q1
σ,d1
−→ q′2 −→ . . . −→ p such that d0 6= d1. We will say that a flower is

replicated by a loop λ if it contains a state replicated by λ. The phenomenon of replication
is the main difference between trees and words. We will use it constantly to construct hard
languages that have no counterparts among word languages. Some of them occur in the
proposition below.

Theorem 3.2 (Murlak [5]). Let A be a deterministic automaton.

(1) L(A) ∈ Σ0
1 iff A does not contain a weak (0, 1)-flower.

(2) L(A) ∈ Π0
1 iff A does not contain a weak (1, 2)-flower.

(3) L(A) ∈ Σ0
2 iff A does not contain a (1, 2)-flower nor a weak (1, 2)-flower replicated by

an accepting loop.
(4) L(A) ∈ Π0

2 iff A does not contain a (0, 1)-flower.
(5) L(A) ∈ Σ0

3 iff A does not contain a (0, 1)-flower replicated by an accepting loop.

4. The Main Result

The notion of continuous reduction defined in Sect. 3 yields a preordering on sets. Let
X and Y be topological spaces, and let A ⊆ X, B ⊆ Y . We write A ≤W B (to be read “A is
Wadge reducible to B”), if there exists a continuous reduction of A to B, i. e., a continuous
function ϕ : X → Y such that A = ϕ−1(B). We say that A is Wadge equivalent to B, in
symbols A ≡W B, if A ≤W B and A ≤W B. Similarly we write A <W B if A ≤W B and
B 6≤W A. The Wadge ordering is the ordering induced by ≤W on the ≡W -classes of subsets
of Polish spaces. The Wadge ordering restricted to Borel sets is called the Wadge hierarchy.

In this study we only work with the spaces TΣ and Σω. Since we only consider finite Σ,
these spaces are homeomorphic with the Cantor discontinuum {0, 1}ω as long as |Σ| ≥ 2. In
particular, all the languages we consider are Wadge equivalent to subsets of {0, 1}ω . Note
however that the homeomorphism need not preserve recognisability. In fact, no homeomor-
phism from TΣ to {0, 1}ω does: the Borel hierarchy for regular tree languages is infinite, but
for words it collapses on ∆0

3. In other words, there are regular tree languages (even weak, or
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deterministic), which are not Wadge equivalent to regular word languages. Conversely, each
regular word language L is Wadge equivalent to a deterministic tree language L′ consisting
of trees which have a word from L on the leftmost branch. As a consequence, the height
of the Wadge ordering of regular word languages gives us a lower bound for the case of
deterministic tree languages, and this is essentially everything we can conclude from the
word case.

The starting point of this study is the Wadge reducibility problem.

Problem: Wadge reducibility
Input: Deterministic tree automata A and B

Question: L(A) ≤W L(B)?

An analogous problem for word automata can be solved fairly easy by constructing a tree
automaton recognising Duplicator’s winning strategies (to be defined in the next section).
This method however does not carry over to trees. One might still try to solve the Wadge
reducibility problem directly by comparing carefully the structure of two given automata,
but we have chosen a different approach. We will provide a family of canonical deterministic
tree automata A = {Ai : i ∈ I} such that

(1) given i, j ∈ I, it is decidable if L(Ai) ≤W L(Aj),
(2) for each deterministic tree automaton there exists exactly one i ∈ I such that L(A) ≡W

L(Ai), and this i can be computed effectively for a given A.

The decidability of the Wadge reducibility problem follows easily from the existence of
such a family: given two deterministic automata A and B, we compute i and j such that
L(A) ≡W L(Ai) and L(B) ≡W L(Aj), and check if L(Ai) ≤W L(Aj).

More precisely, we prove the following theorem.

Theorem 4.1. There exists a family of deterministic tree automata

C′ = {Cα : α ∈ I} ∪ {Dα, Eα : α ∈ J}

with I = {α : 0 < α ≤ ωω·3 + 2}, J = {n : 0 < n < ω} ∪ {ωω·2α2 + ωωα1 + n : α2 < ωω, 0 <
α1 < ωω, n < ω} such that

(1) for 0 < α < β ≤ ωω·3 + 2, whenever the respective automata are defined, we have

L(Cα) L(Cβ)
ց ր ց

L(Eα) L(Eβ)
ր ց ր

L(Dα) L(Dβ)

where → means <W , and L(Cα) and L(Dα) are incomparable,
(2) for each deterministic tree automaton A there exists exactly one automaton A′ ∈ C′ such

that L(A′) ≡W L(A) and it is computable, i.e., there exists an algorithm computing for
a given A a pair (Ξ, α) ∈ {C} × I ∪ {D,E} × J such that L(A) ≡W L(Ξα).

The family C′ satisfies the conditions postulated for the family of canonical automata A:
for ordinals presented as arithmetical expressions over ω in Cantor normal form the ordinal
order is decidable, so we can take {C} × I ∪ {D,E} × J as the indexing set of A.

Observe that the pair (Ξ, α) computed for a given A can be seen as a name of the
≡W -class of L(A). Hence, the set {C} × I ∪ {D,E} × J together with the order defined in
the statement of theorem provides a complete effective description of the Wadge hierarchy
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restricted to deterministic tree languages. One thing that follows is that the height of the
hierarchy is ωω·3 + 3.

The remaining part of the paper is in fact a single long proof. We start by reformulating
the classical criterion of reducibility via Wadge games in terms of automata (Sect. 5).
This will be the main tool of the whole argument. Then we define four ways of composing
automata: sequential composition ⊕, replication →, parallel composition ∧, and alternative
∨ (Sect. 6). Using the first three operations we construct the canonical automata, all but
top three ones (Sect. 7). Next, to rehearse our proof method, we reformulate and prove
Wagner’s results in terms of canonical automata (Sect. 8). Finally, after some preparatory
remarks (Sect. 9), we prove the first part of Theorem 4.1, modulo three missing canonical
automata.

Next, we need to show that our family our family contains all deterministic tree au-
tomata up to Wadge equivalence of the recognised languages. Once again we turn to the
methodology of patterns used in Sect. 2 and Sect. 3. We introduce a fundamental notion
of admittance, which formalises what it means to contain an automaton as a pattern (Sect.

11). Then we generalise → to (ι, κ)-replication
(ι,κ)
−→ in order to define the remaining three

canonical automata, and rephrase the results on the Borel hierarchy and the Wagner hier-
archy in terms of admittance of canonical automata (Sect. 12). Basing on these results, we
show that the family of canonical automata is closed by the composition operations (Sect.
13), and prove the Completeness Theorem asserting that (up to Wadge equivalence) each
deterministic automaton may be obtained as an iterated composition of C1 and D1 (Sect.
14). As a consequence, each deterministic automaton is equivalent to a canonical one. From
the proof of the Completeness Theorem we extract an algorithm calculating the equivalent
canonical automata, which concludes the proof of Theorem 4.1.

5. Games and Automata

A classical criterion for reducibility is based on the notion of Wadge games. Let us
introduce a tree version of Wadge games (see [10] for word version). By the nth level of a
tree we understand the set of nodes {0, 1}n−1. The 1st level consists of the root, the 2nd level
consists of all the children of the root, etc. For any pair of tree languages L ⊆ TΣ1 ,M ⊆ TΣ2

the game GW (L,M) is played by Spoiler and Duplicator. Each player builds a tree, tS ∈ TΣ1

and tD ∈ TΣ2 respectively. In every round, first Spoiler adds some levels to tS and then
Duplicator can either add some levels to tD or skip a round (not forever). The result of the
play is a pair of full binary trees. Duplicator wins the play if tS ∈ L ⇐⇒ tD ∈ M . We say
that Spoiler is in charge of L, and Duplicator is in charge of M .

Just like for the classical Wadge games, a winning strategy for Duplicator can be easily
transformed into a continuous reduction, and vice versa.

Lemma 5.1. Duplicator has a winning strategy in GW (L,M) iff L ≤W M .

Proof. A strategy for Duplicator defines a reduction in an obvious way. Conversely, suppose
there exist a reduction t 7→ ϕ(t). It follows that there exist a sequence nk (without loss
of generality, strictly increasing) such that the level k of ϕ(t) depends only on the levels
1, 2, . . . , nk of t. Then the strategy for Duplicator is the following: if the number of the
round is nk, play the kth level of tD according to ϕ; otherwise skip.
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We would like to point out that Wadge games are much less interactive than classical
games. The move made by one player has no influence on the possible moves of the other. Of
course, if one wants to win, one has to react to the opponent’s actions, but the responses need
not be immediate. As long as the player keeps putting some new letters, he may postpone
the real reaction until he knows more about the opponent’s plans. Because of that, we will
often speak about strategies for some language without considering the opponent and even
without saying if the player in charge of the language is Spoiler or Duplicator.

Since we only want to work with deterministically recognisable languages, let us redefine
the games in terms of automata. Let A, B be deterministic tree automata. The automata
game G(A,B) starts with one token put in the initial state of each automaton. In every
round players perform a finite number of the actions described below.

Fire a transition: for a token placed in a state q choose a transition q
σ

−→ q1, q2, take the
old token away from q and put new tokens in q1 and q2.

Remove: remove a token placed in a state different from ⊥.

Spoiler plays on A and must perform one of these actions at least for all the tokens produced
in the previous round. Duplicator plays on B and is allowed to postpone performing an
action for a token, but not forever. Let us first consider plays in which the players never
remove tokens. The paths visited by the tokens of each player define a run of the respective
automaton. We say that Duplicator wins a play if both runs are accepting or both are
rejecting. Now, removing a token from a state p is interpreted as plugging in an accepting
subrun in the corresponding node of the constructed run. So, Duplicator wins if the runs
obtained by plugging in an accepting subrun for every removed token are both accepting
or both rejecting.

Observe that removing tokens in fact does not give any extra power to the players:
instead of actually removing a token, a player may easily pick an accepting subrun, and in
future keep realising it level by level in the constructed run. The only reason for adding
this feature in the game is that it simplifies the strategies. In a typical strategy, while some
tokens have a significant role to play, most are just moved along a trivially accepting path.
It is convenient to remove them right off and keep concentrated on the real actors of the
play.

We will write A ≤ B if Duplicator has a winning strategy inG(A,B). Like for languages,
define A ≡ B iff A ≤ B and A ≥ B. Finally, let A < B iff A ≤ B and A 6≥ B.

Lemma 5.2. For all deterministic tree automata A and B,

A ≤ B ⇐⇒ L(A) ≤W L(B) .

Proof. First consider a modified Wadge game G′
W (L,M), where players are allowed to build

their trees in an arbitrary way provided that the nodes played always form one connected
tree, and in every round Spoiler must provide both children for all the nodes that were
leaves in the previous round. It is very easy to see that Duplicator has a winning strategy
in G′

W (L,M) iff he has a winning strategy in GW (L,M).
Suppose that Duplicator has a winning strategy in G(A,B). We will show that Duplica-

tor has a winning strategy in G′
W (L(A), L(B)), and hence L(A) ≤W L(B). What Duplicator

should do is to simulate a play of G(A,B) in which an imaginary Spoiler keeps constructing
the run of A on the tree tS constructed by the real Spoiler in G′

W (L(A), L(B)), and Duplica-
tor replies according to his winning strategy that exists by hypothesis. In G′

W (L(A), L(B))
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Duplicator should simply construct a tree such that B’s run on it is exactly Duplicator’s
tree from G(A,B).

Let us move to the converse implication. Now, Duplicator should simulate a play in
the game G′

W (L(A), L(B)) in which Spoiler keeps constructing a tree such that A’s run
on it is exactly the tree constructed by the real Spoiler in G(A,B), and Duplicator replies
according to his winning strategy. In G(A,B) Duplicator should keep constructing the run
of B on tD constructed in the simulated play.

As a corollary we have that all automata recognising a given language have the same
“game power”.

Corollary 5.3. For deterministic tree automata A and B, if L(A) = L(B), then A ≡ B.

Classically, in automata theory we are interested in the language recognised by an
automaton. One language may be recognised by many automata and we usually pick the
automaton that fits best our purposes. Here, the approach is entirely different. We are not
interested in the language itself, but in its Wadge equivalence class. This, as it turns out, is
reflected in the general structure of the automaton. Hence, our main point of interest will
be that structure.

We will frequently modify an automaton in a way that does change the recognised
language, but not its ≡W -class. One typical thing we need to do with an automaton, is to
treat it as an automaton over an extended alphabet in such a way, that the new recognised
language is Wadge equivalent to the original one. This has to be done with some care, since
the automaton is required to have transitions by each letter from every state. Suppose
we want to extend the input alphabet by a fresh letter τ . Let us construct an automaton

Aτ . First, if A has the all-rejecting state ⊥, add a transition ⊥
τ

−→ ⊥,⊥. Then add an

all-accepting state ⊤ with transitions ⊤
σ

−→ ⊤,⊤ for each σ ∈ Σ ∪ {τ} (if A already has

the state ⊤, just add a transition ⊤
τ

−→ ⊤,⊤). Then for each p /∈ {⊥,⊤}, add a transition

p
τ

−→ ⊤,⊤.

Lemma 5.4. For every deterministic tree automaton A over Σ and a letter τ 6∈ Σ, A ≡ Aτ .

Proof. It is obvious that A ≤ Aτ : since Aτ contains all transitions of A, a trivial winning
strategy for Duplicator in G(A,Aτ ) is to copy Spoiler’s actions. Let us see that new tran-
sitions do not give any real power. Consider G(Aτ , A). While Spoiler uses old transitions,
Duplicator may again copy his actions. The only difficulty lies in responding to a move that
uses a new transition. Suppose Spoiler does use a new transition. If Spoiler fires a transition

p
τ

−→ ⊤,⊤ for a token x in a state p 6= ⊥, Duplicator simply removes the corresponding
token in p, and ignores the further behaviour of x and all his descendants. The only other

possibility is that Spoiler fires ⊥
τ

−→ ⊥,⊥. Then for the corresponding token Duplicator

should fire ⊥
σ

−→ ⊥,⊥ for some σ ∈ Σ. The described strategy is clearly winning for Du-
plicator.

An automaton for us is not as much a recognising device, as a device to carry out
strategies. Therefore even two automata with substantially different structure may be
equivalent, as long as they enable us to use the same set of strategies. A typical thing we
will be doing, is to replace a part of an automaton with a different part that gives the same
strategical possibilities. Recall that by Aq we denote the automaton A with the initial state
changed to q. For q ∈ QA let Aq:=B denote the automaton obtained from a copy of A and
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Figure 5: The alternative A∨B, the parallel composition A∧B, and the replication A → B
(transitions to ⊥ and ⊤ are omitted).

a copy of B by replacing each A’s transition of the form p
σ,d
−→ q with p

σ,d
−→ qB0 . Note that

Aq:=Aq is equivalent to A.

Lemma 5.5 (Substitution Lemma). Let A, B, C be deterministic automata with pairwise
disjoint sets of states, and let p be a state of C. If A ≤ B, then Cp:=A ≤ Cp:=B.

Proof. Consider the game G(Cp:=A, Cp:=B) and the following strategy for Duplicator. In C
Duplicator copies Spoiler’s actions. If some Spoiler’s token x enters the automaton A, Du-
plicator should put its counterpart y in the initial state of B, and then y and its descendants
should use Duplicator’s winning strategy from G(A,B) against x and its descendants.

Let us see that this strategy is winning. Suppose first that Spoiler’s run is rejecting.
Then there is a rejecting path, say π. If on π the computation stays in C, in Duplicator’s
run π is also rejecting. Suppose π enters A. Let v be the first node of π in which the
computation is in A. The subrun of Spoiler’s run rooted in v is a rejecting run of A. Since
Duplicator was applying a winning strategy form G(A,B), the subrun of Duplicator’s run
rooted in v is also rejecting. In either case, Duplicator’s run is rejecting.

Now assume that Spoiler’s run is accepting, and let us see that so is Duplicator’s. All
paths staying in C are accepting, because they are identical to the paths in Spoiler’s run.
For every v in which the computation enters B, the subrun rooted in v is accepting thanks
to the winning strategy form G(A,B) used to construct it.

6. Operations

It this section we introduce four operations that will be used to construct canonical
automata representing Wadge degrees of deterministic tree languages.

The first operation yields an automaton that lets a player choose between A and B.
For two deterministic tree automata A and B over Σ, the alternative A ∨ B (see Fig. 5)
is an automaton with the input alphabet Σ ∪ {a, b} consisting of disjoint copies of A and
B over the extended alphabet Σ ∪ {a, b}, Aa,b and Ba,b, and a fresh initial state q0 with
transitions

q0
a

−→ q
Aa,b

0 ,⊤ , q0
b

−→ q
Ba,b

0 ,⊤ , and q0
σ

−→ ⊤,⊤ for σ /∈ {a, b}

(only if L(A) = L(B) = ∅ put q0
σ

−→ ⊥,⊥). By Lemma 5.5, ≡ is a congruence with respect
to ∨. Furthermore, ∨ is associative and commutative up to ≡. Multiple alternatives are
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Figure 6: The sequential composition A⊕B.

performed from left to right:

A1 ∨A2 ∨A3 ∨A4 = ((A1 ∨A2) ∨A3) ∨A4 .

The parallel composition A∧B is defined analogously, only now we extend the alphabet
only by a and add transitions

q0
a

−→ qA0 , q
B
0 , and q0

σ
−→ ⊤,⊤ for σ 6= a

(only if L(A) = ∅ or L(B) = ∅, put q0
σ

−→ ⊥,⊥). Note that, while in A∨B the computation
must choose between A and B, here it continues in both. Again, ≡ is a congruence with
respect to ∧. The language L(A∧B) is Wadge equivalent to L(A)×L(B) and ∧ is associative
and commutative up to ≡. Multiple parallel compositions are performed from left to right,
and for n > 0 the symbol (A)n denotes A ∧ . . . ∧A

︸ ︷︷ ︸

n

.

To obtain the replication A → B, extend the alphabet again by {a, b}, set rank(q0) = 1,
and add and transitions

q0
a

−→ qA0 ,⊤ , q0
b

−→ q0, q
B
0 , and q0

σ
−→ ⊥,⊥ for σ /∈ {a, b} .

Like for two previous operations, ≡ is a congruence with respect to →.
The last operation we define produces out of A and B an automaton that behaves

as A, but in at most one point (on the leftmost path) may switch to B. A state p is
leftmost if no path connecting the initial state with p uses a right transition. In other
words, leftmost states are those which can only occur in the leftmost path of a run. Note
that an automaton may have no leftmost states. Furthermore, a leftmost state cannot be
reachable from a non-leftmost state. In particular, if an automaton has any leftmost states
at all, the initial state has to be leftmost. For deterministic tree automata A and B over
Σ, the sequential composition A⊕B (see Fig. 6) is an automaton with the input alphabet
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Figure 7: The canonical (1, 4)-flower F(1,4).

Σ ∪ {b}, where b is a fresh letter. It is constructed by taking copies of A and B over the

extended alphabet Σ ∪ {b} and replacing the transition p
b,0
−→ r with p

b,0
−→ qBb

0 for each
leftmost state p and r ∈ {⊥,⊤}. Like for ∧ and ∨, we perform the multiple sequential
compositions from left to right. For n > 0 we often use an abbreviation nA = A⊕ . . . ⊕A

︸ ︷︷ ︸

n

.

Observe that if A has a leftmost state, then a state in A⊕B is leftmost iff it is a leftmost
state of A or a leftmost state of B. It follows that the ≡-class of a multiple sequential
composition does not depend on the way we put parentheses. An analog of ⊕ for word
automata defines an operation on ≡-classes, but for tree automata this is no longer true.
We will also see later that ⊕ is not commutative even up to ≡.

The priority of the operations is ⊕,∧,∨,→. For instance A1 → A2 ⊕ A3 ∧ A4 ∨ A5 =
A1 → (((A2 ⊕ A3) ∧ A4) ∨ A5). Nevertheless, we usually use parentheses to make the
expressions easier to read.

Finally, let us define the basic building blocks, to which we will apply the operations
defined above. The canonical (ι, κ)-flower F(ι,κ) (see Fig. 7) is an automaton with the
input alphabet {aι, aι+1 . . . , aκ}, the states qι, qι+1, . . . , qκ where the initial state is qι and
rank(qi) = i, and transitions

qι
aι−→ qι,⊤ , qι

aj
−→ qj,⊤ , qj

aj
−→ q0,⊤ , and qj

ak−→ ⊤,⊤

for j = ι+ 1, ι + 2, . . . , κ and k 6= j. A flower F(ι,κ) is nontrivial if ι < κ.
In the definitions above we often use an all-accepting state ⊤. This is in fact a way of

saying that a transition is of no importance when it comes to possible strategies: a token
moved to ⊤ has no use later in the play. Therefore, we may assume that players remove
their tokens instead of putting them to ⊤. In particular, when a transition is of the form

p
σ

−→ q,⊤, it is convenient to treat it as a “left only” transition in which no new token is
created, only the old token is moved from p to q. Consequently, when analysing games on
automata, we will ignore the transitions to ⊤.
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7. Canonical Automata

For convenience, in this section we put together the definitions of all canonical automata
(save for three which will be defined much later) together with some very simple properties.
More explanations and intuitions come along with the proofs in the next three sections.

For each α < ωω·3 we define the canonical automaton Cα. The automata Dα and Eα

will only be defined for 0 < α < ω and α = ωω·2α2 +ωωα1 +n with 0 < α1 < ωω, α2 < ωω,
n < ω. All the defined automata have at least one leftmost state, so the operation ⊕ is
always non-trivial.

Let C1 = F(0,0), D1 = F(1,1), and E1 = F(0,0) ∨ F(1,1). For 1 < α < ω define

Cα = C1 ⊕ (α− 1)E1 ,

Dα = D1 ⊕ (α− 1)E1 ,

Eα = αE1 .

For ω ≤ α < ωω we only define Cα. Let Cω = C1 → C3 and Cωk+1 = C1 → (C1 ⊕ Cωk)
for 1 ≤ k < ω. For every α from the considered range we have a unique presentation
α = ωlknk + ωlk−1nk−1 + . . .+ ωl0n0, with ω > lk > 0, lk > lk−1 > . . . > l0 and 0 < ni < ω.
For l0 = 0 define

Cα = Cn0 ⊕ n1Cωl1 ⊕ . . .⊕ nkCωlk for odd n0 ,

Cα = Dn0 ⊕ n1Cωl1 ⊕ . . . ⊕ nkCωlk for even n0 ,

and for l0 > 0 set

Cα = n0Cωl0 ⊕ n1Cωl1 ⊕ . . .⊕ nkCωlk .

Now consider ωω ≤ α < ωω·2. For k < ω let Cωω+k = F(0,k+1), Dωω+k = F(1,k+2)

and Eωω+k = F(0,k+1) ∨ F(1,k+2). For every α from the considered range we have a unique

presentation α = ωωα1 + α0 with α0, α1 < ωω and α1 > 0. Let α1 = ωlknk + ωlk−1nk−1 +
. . .+ ωl0n0, with ω > lk > lk−1 > . . . > l0 and 0 < ni < ω. For α0 = 0 and l0 = 1 let

Cα = Cωω+l0 ⊕ n1Eωω+l1 ⊕ . . .⊕ nkEωω+lk ,

Dα = Dωω+l0 ⊕ n1Eωω+l1 ⊕ . . .⊕ nkEωω+lk ,

Eα = Eωω+l0 ⊕ n1Eωω+l1 ⊕ . . .⊕ nkEωω+lk ,

for α0 = 0 and l0 > 1 let

Cα = Cωω+l0 ⊕ (n0 − 1)Eωω+l0 ⊕ n1Eωω+l1 ⊕ . . .⊕ nkEωω+lk ,

Dα = Dωω+l0 ⊕ (n0 − 1)Eωω+l0 ⊕ n1Eωω+l1 ⊕ . . .⊕ nkEωω+lk ,

Eα = n0Eωω+l0 ⊕ n1Eωω+l1 ⊕ . . .⊕ nkEωω+lk ,

for ω > α0 > 0 let

Cα = Cα0 ⊕ Eωωα1 ,

Dα = Dα0 ⊕ Eωωα1 ,

Eα = Eα0 ⊕ Eωωα1 ,

and for α0 > ω let

Cα = Cα0 ⊕ Eωωα1 .

Finally consider ωω·2 ≤ α < ωω·3. Let Cωω·2 = C1 → F(0,2), and for k < ω let

Cωω·2+k+1 = C1 → (C1 ⊕ Cωω·2+k). We have a unique presentation α = ωω·2α2 + ωωα1 + α0
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with α0, α1, α2 < ωω and α2 > 0. Let α2 = ωlknk + ωlk−1nk−1 + . . .+ ωl0n0, with ω > lk >
lk−1 > . . . > l0 and 0 < ni < ω. For α0 = α1 = 0 let

Cα = n0Cωω·2+l0 ⊕ n1Cωω·2+l1 ⊕ . . .⊕ nkCωω·2+lk ,

for α0 = 0 and α1 > 0 let

Cα = Cωωα1 ⊕ Cωω·2α2
,

Dα = Dωωα1 ⊕ Cωω·2α2
,

Eα = Eωωα1 ⊕ Cωω·2α2
,

for ω > α0 > 0 and α1 = 0 let

Cα = Cα0 ⊕ Cωω·2α2
for odd α0 ,

Cα = Dα0 ⊕Cωω·2α2
for even α0 ,

and in the remaining case (α0 > ω or α1 > 0) let

Cα = Cωωα1+α0 ⊕ Cωω·2α2
.

Let C denote the family of the canonical automata, i. e.,

C = {Cα : α < ωω·3} ∪ {Dn, En : n < ω} ∪

∪ {Dωω·2α2+ωωα1+n, Eωω·2α2+ωωα1+n : 0 < α1 < ωω , α2 < ωω , n < ω} .

In the next three sections we will investigate the order induced on C by the Wadge ordering
of the recognised languages.

Now, let us discuss briefly the anatomy and taxonomy of the canonical automata.
Simple automata are those canonical automata that cannot be decomposed with respect
to ⊕, i. e., the automata on the levels ωk, ωω+k, and ωω·2+k for k < ω. Complex automata
are those obtained from simple ones by means of ⊕. If for some automata A1, A2, . . . , An

we have A = A1 ⊕ A2 ⊕ . . . ⊕ An, we call Ai components of A. If Ai are simple, they are
called simple components of A, A1 is the head component, and An is the tail component.
Non-branching canonical automata are those constructed from flowers without the use of
→, i. e., Cωωα+n,Dωωα+n, Eωωα+n for α < ωω and n < ω. The remaining automata are
called branching. The term head loop refers to any minimal-length loop around the initial
state. If the head component of a canonical automaton is branching, then the automaton
has only one head loop. Similarly, if the head component is C1 or D1.

According to the definition of the automata game, in a branching transition a token
is split in two. However in branching canonical automata, the role to be played by two
new tokens is very different. Therefore, we prefer to see the process of splitting a token
as producing a new token that moves along the right branch of the transition, while the
original one moves left. Thus each token moves along the leftmost path from the node it
was born in, bubbling out new tokens to the right. Let us prove the following simple yet
useful property of those paths.

Proposition 7.1. If a run constructed by a player in charge of a canonical automaton is
rejecting, one of the tokens has visited a rejecting path.

Proof. Observe that in a canonical automaton the only loop using right transitions is the
loop around ⊤. In other words, each path of the constructed computation that does not
reach ⊤ goes right only a bounded number of times (depending on the automaton). Now,
consider a rejecting run constructed during a play. It must contain a rejecting path π. The
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token created during the last right transition on π visits a suffix of π, which of course is
a rejecting path.

Recall that we have defined the operation ⊕ in such a way, that the second automaton
can only be reached via a leftmost path. This means that the only token that can actually
move from one simple automaton to another is the initial token. Since passing between the
simple automata forming a canonical automaton is usually the key strategic decision, we
call the initial token critical, and the path it moves along, the critical path.

Since we can remove the tokens from ⊤ with no impact on the outcome of the game,

we can assume that in transitions of the form p
σ

−→ q,⊤ or p
σ

−→ ⊤, q no new tokens are
produced, only the old token moves from p to q. The following fact relies on this convention.

Proposition 7.2. If a player in charge of a canonical automaton produces infinitely may
tokens, the resulting run is rejecting.

Proof. We will proceed by structural induction. The claim holds trivially for non-branching
automata. Suppose now that A = C1 → A′. If the constructed run is to be accepting, the
player can only loop a finite number of times in the head loop of A, thus producing only
a finite number of new tokens. By the induction hypothesis for A′, those tokens can only
have finitely many descendants. Hence, in the whole play there can be only finitely many
tokens.

Now, take A = A′ ⊕A′′. Suppose there were infinitely many tokens in some play on A.
Observe that all the tokens in A′′ are descendants of A′′’s critical token. Hence, if there were
infinitely many tokens in A′′, by the induction hypothesis for A′′ the whole run is rejecting.
Suppose there were infinitely many tokens in A′. Consider a play in which the critical token
instead of moving to A′′ stays in the last accepting loop of A′ (it exists by the definition of
canonical automata). In such a play a run of A′ is build. Since there are infinitely many
tokens used, the run is rejecting by the induction hypothesis for A′. Consequently, the run
of A constructed in the original play must have been rejecting as well.

8. Without Branching

In this section we briefly reformulate Wagner’s results on regular word languages [15] in
terms of canonical automata. For the sake of completeness, we reprove them in our present
framework.

The scenario is just like for tree languages: define a collection of canonical automata,
prove that they form a strict hierarchy with respect to the Wadge reducibility, check some
closure properties, and provide an algorithm calculating the equivalent canonical automaton
for a given deterministic automaton, thus proving that the hierarchy is complete for regular
languages.

Since the non-branching canonical automata have only left transitions, they only check
a regular word property on the leftmost path. It is easy to see that for each word language
K, the language of trees whose leftmost branch is in K is Wadge equivalent to K. Based
on this observation, we will treat the non-branching canonical automata as automata on
words.

Let L(ι,κ) denote the language of infinite words over {ι, ι + 1, . . . , κ} that satisfy the
parity condition, i. e., the highest number occurring infinitely often is even.
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Lemma 8.1. For every index (ι, κ) and every deterministic tree automaton A of index at
most (ι, κ),

(1) L(A) ≤ L(ι,κ),
(2) L(F(ι,κ)) ≡W L(ι,κ),
(3) L(ι,κ) ≤ L(ι,κ′) iff (ι, κ) ≤ (ι′, κ′).

Proof. A reduction showing (1) is given by w 7→ rank(q0)rank(q1)rank(q2) . . ., where q0q1q2 . . .
is the run of A on the word w.

For (2) the remaining reduction is obtained by assigning to a sequence n1n2n3 . . . the
tree with the word an1an1an2an2an3an3 . . . on the leftmost branch, and a aι elsewhere.

Since L(ι,κ) can be recognised by a (ι, κ) automaton, one implication in (3) follows from
(1). To prove the remaining one, it is enough to show that L(ι,κ) 6≤ L(ι,κ). Let us fix ι

and proceed by induction on κ. For ι = κ the claim holds trivially: ∅ ⊆ T{1} and T{1}

are not reducible to each other. Take ι < κ and let (ι′, κ′) = (ι, κ). Consider the game
Gκ = GW (L(ι,κ), L(ι′,κ′)). As long as Duplicator does not play κ′, Spoiler can follow the

strategy from Gκ−1 = GW (L(ι,κ−1), L(ι,κ−1)). If Duplicator never plays κ′, he loses. When

Duplicator plays κ′, Spoiler should play κ, and then again follow the strategy from Gκ−1,
and so on. Each time, Duplicator has to play κ′ finally, otherwise he loses. But then he
must play κ′ infinitely many times, and he loses to, since κ′ and κ have different parity.

For the sake of convenience let us renumber the non-branching automata. For η < ωω

let
Ĉωη+n = Cωωη+n , D̂ωη+n = Dωωη+n , Êωη+n = Eωωη+n .

Let Ĉ = {Ĉα, D̂α, Êα : 1 < α < ωω}.

Proposition 8.2. For 0 < α < β < ωω we have

Ĉα Ĉβ

ց ր ց

Êα Êβ

ր ց ր

D̂α D̂β

where → means <. Furthermore, Ĉα 6≤ D̂α and D̂α 6≤ Ĉα.

Proof. First, observe that Ĉα ≤ Êα: a winning strategy for Duplicator in G(Ĉα, Êα) is
to move the initial token to F(0,κ), and then simply copy Spoiler’s actions. Analogously,

D̂α ≤ Êα.
Let us now suppose that β = ωk for some k < ω. Then α = ωk−1nk−1 + . . . + n0. By

definition, Êα, has index at most (0, k). Hence, by Lemma 8.1, Êα ≤ F(0,k) = Ĉβ . If we

increase the ranks in each F(0,l) in Êα by 2, we obtain an automaton with index at most

(1, k + 1) recognising the same language. Hence, we also have Êα ≤ F(1,k+1) = D̂α.

Now, consider the general case. We have a unique pair of presentations α = ωkmk +
. . . + m0 and β = ωknk + . . . + n0 with nk > 0. Let i be the largest number satisfying
mi 6= ni. Since α < β, mi0 < ni0 . Thus we have Êα ≡ Êα0 ⊕ Êγ , Ĉβ ≡ Êβ0 ⊕ Ĉγ , where

γ = ωkmk+ . . .+ωimi, α0 = ωi−1mi−1+ . . .+m0, β0 = ωi(ni−mi)+ωi−1mi−1+ . . .+m0.

Consider the game G(Êα0 ⊕ Êγ , Êβ0 ⊕ Ĉγ). The strategy for Duplicator is as follows. First
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move the token to the last F(0,i) in Ĉβ0 . Then follow the strategy given by the inequality

Êα0 ≤ F(0,i), as long as Spoiler stays in Êα0 . If he stays there forever, Duplicator wins. If

Spoiler moves to Êγ , Duplicator should do the same and keep copying Spoiler’s move from

that moment on. This also guarantees winning. The proof for D̂β is entirely analogous.

In order to prove that the inequalities are strict it is enough to show that Ĉα 6≤ D̂α and
D̂α 6≤ Ĉα. We only prove that Ĉα 6≤ D̂α; the proof for D̂α 6≤ Ĉα is entirely analogous. Let
us proceed by induction. The assertion holds for α = 1: the whole space is not reducible to
the empty set. Let us take α > 1. By the definition, Ĉα = F(0,k) ⊕ Êγ , D̂α = F(1,k+1) ⊕ Êγ ,

where α = ωk + γ. Consider the game G(F(0,k) ⊕ Êγ , F(1,k+1) ⊕ Êγ). We have to find
a winning strategy for Spoiler. If Duplicator never leaves F(1,k+1) Spoiler can stay in F(0,k)

and win using the strategy given by the Lemma 8.1 (3). Otherwise, after Duplicator enters

Êγ , he must make choice between Ĉγ and D̂γ . Spoiler should loop in any loop of F(0,k)

waiting for Duplicator’s choice. When Duplicator chooses one of Ĉγ , D̂γ , Spoiler should
choose the other one and use the strategy given by the induction hypothesis.

The third step is proving closure by natural operations. For word automata only the
operations ⊕ and ∨ make sense. The operation ∨ is defined just like for trees. To define
⊕, simply assume that all states are leftmost. It is easy to see that ≡ is a congruence with
respect to ⊕ and ∧. Both operations are associative up to ≡.

Proposition 8.3. For each A1, A2 ∈ Ĉ, one can find in polynomial time automata A∨, A⊕ ∈
Ĉ such that A1 ∨A2 ≡ A∨ and A1 ⊕A2 ≡ A⊕.

Proof. Closure by ∨ is easy. For A1 ≥ A2 it holds that A1∨A2 ≡ A1. Indeed, A1∨A2 ≥ A1,
as A1 ∨A2 contains a copy of A1. For the converse inequality consider G(A1 ∨A2, A1). In
the first move, Spoiler moves his initial token either to A1 or to A2. If Spoiler chooses
A1, Duplicator may simply mimic Spoiler’s actions in his copy of A1. If Spoiler chooses
A2, Duplicator wins by applying the strategy from G(A2, A1), guaranteed by the inequality
A1 ≥ A2.

In the remaining case A1 and A2 are incomparable. But then A1 = Ĉα, A2 = D̂α for
some α < ωω (or symmetrically). It is very easy to see that Ĉα ∨ D̂α ≡ Êα.

Let us now consider A1 ⊕A2. Since ⊕ is associative up to ≡ and only depends on the
≡-classes of the input automata, it is enough to prove the claim for simple A1; in order to

obtain a canonical automaton for (A
(1)
1 ⊕. . .⊕A

(n)
1 )⊕A2, take A

(1)
1 ⊕(A

(2)
1 ⊕. . . (A

(n)
1 ⊕A2) . . .).

Let us first consider A1 = Ĉωk . Observe that if Ĉωk ≥ B, Ĉωk ⊕ B ≡ Ĉωk . It is enough to

give a strategy for Duplicator in G(Ĉωk ⊕B, Ĉωk), since the other inequality is obvious. To

win, Duplicator should first copy Spoiler’s actions, as long as Spoiler stays in Ĉωk . When

Spoiler moves to B, Duplicator should simply switch to the strategy from G(B, Ĉωk).
Using the property above, we easily reduce the general situation to one of the following

cases: Ĉωk ⊕Ĉηωk+1 , Ĉωk ⊕D̂ηωk , or Ĉωk ⊕Êηωk . In the third case, the automaton is already
canonical. Let us calculate the result in the first two cases.

In the first case we have Ĉωk ⊕ Ĉηωk+1 ≡ Ĉηωk+1 . Consider the game G(Ĉωk ⊕

Ĉηωk+1 , Ĉηωk+1). Let Ĉωl be the head component of Ĉηωk+1 . It holds that l > k. In

order to win the game, while Spoiler stays inside Ĉωk , Duplicator should stay in Ĉωl and

use the strategy from G(Ĉωk , Ĉωl). When Spoiler enters Ĉηωk+1 , Duplicator may simply
copy his actions. The converse inequality is trivial.
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Ĉ1 Ĉ2 Ĉω Ĉω+1 Ĉω·2 Ĉω·2+1
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Ê1 Ê2 · · · Êω Êω+1 · · · Êω·2 Êω·2+1 · · ·

� � � � � � � � �
D̂1 D̂2 D̂ω D̂ω+1 D̂ω·2 D̂ω·2+1

Figure 8: An initial segment of the Wagner hierarchy

In the second case there are two possibilities. If the head component of D̂ηωk is D̂ωl

with l > k, proceeding as before one proves Ĉωk ⊕ D̂ηωk+1 ≡ D̂ηωk+1 . But if l = k, we have

Ĉωk ⊕ D̂ηωk ≡ Ĉηωk+ωk . Consider the game G(Ĉηωk+ωk , Ĉωk ⊕ D̂ηωk ). While Spoiler stays

in Ĉωk , Duplicator should copy his actions. When Spoiler leaves Ĉωk , he has to choose

between D̂ωk and the next copy of Ĉωk . If he chooses D̂ωk , Duplicator also moves to his

copy of D̂ωk , and mimics Spoiler actions. Suppose Spoiler chooses Ĉωk . Then Duplicator

stays in his head component, and mimics Spoiler’s actions, as long as he stays in Ĉωk . When

Spoiler leaves Ĉωk , he enters the initial state of Êη′ωk , where η′ + 1 = η. Duplicator should

exit Ĉωk , go past D̂ωk , and enter his copy of Êη′ωk . From now on, he can copy Spoiler’s
actions.

For A1 = D̂ωk , simply dualise the claims and the proofs. For A1 = Êωk , note that

Êωk ⊕A2 ≡ Ĉωk ⊕A2 ∨ D̂ωk ⊕A2, and the equivalent canonical automaton can be obtained
by previous cases.

Let us now see that the hierarchy is complete for word languages.

Theorem 8.4. For each word automaton A one can find in polynomial time a canonical
non-branching automaton B such that L(A) ≡W L(B).

Proof. We will proceed by induction on the height of the DAG of strongly connected com-
ponents of A. Without loss of generality we may assume that all states of A are reachable
from the initial state. In such case, the DAG of SCCs is connected and has exactly one root
component, the one containing the initial state of the automaton.

Suppose that the automaton is just one strongly connected component. Let (ι, κ) be the
highest index for which A contains a (ι, κ)-flower. It is well defined, because if A contains
a (0, k)-flower and a (1, k + 1)-flower, it must also contain a (0, k + 1)-flower. By Theorem
2.2, A is equivalent to a (ι, κ)-automaton and so, by Lemma 8.1, A ≤ F(ι,κ). On the other
hand it is easy to see, that in G(F(ι,κ), A), Duplicator may easily use the (ι, κ)-flower in A
to mimic Spoiler’s actions in F(ι,κ). Hence, A ≡ F(ι,κ).

Now, suppose that the DAG of SCCs of A has at least two nodes. Let X be the root
SCC. Like before, let (ι, κ) be the maximal index such that X contains a (ι, κ)-flower. Let
q1, . . . , qm be all the states reached by the transitions exiting X (the “initial” states of the
SCCs that are children of X). Recall that Aq is the automaton A with the initial state set
to q. Let Bi be the canonical non-branching automaton equivalent to Aqi . It is easy to see
that A ≡ F(ι,κ) ⊕ (B1 ∨B2 ∨ . . . ∨Bm).

9. The Use of Replication

Branching automata are defined by iterating →. The significance of → lies in the fact
that closing the family of non-branching automata by this operation gives, up to Wadge
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Figure 9: An initial part of the play in G((A → B) ∧ (B)3, A → B).

equivalence, almost all deterministic tree languages (only Cωω·3 , Cωω·3+1, and Cωω·3+2 will
be defined by means of a stronger replication). In particular, we will show that the operation
∧ is not needed. In other words, → is everything that deterministic tree automata have,
which word automata have not. Let us see then what the use of the operation → is.

There are two kinds of simple branching automata. The first one is obtained by iterating
→ on C3, and generalises Cn. Intuitively, Cn = C1⊕ (n− 1)E1 lets a player in an automata
game change his mind n− 1 times in the following sense. First, the player moves his (only)
token along the head loop. The head loop is accepting, so if he keeps looping there forever,
the resulting run will be accepting. But after some time he may decide that producing an
accepting run is not a good idea. In such a case he can move to the rejecting loop in the
first copy of E1. Later he may want to change his mind again, and again, until he reaches
the last copy of E1. Now, when the player is in charge of Cω = C1 → C3 he can choose
a number n < ω, and looping in the head loop of Cω produce n tokens in the head loop of
his copy of C3. We will see that with those tokens it is possible to simulate any strategy
designed for Cn+2. In other words, Cω offers the choice between Cn for arbitrarily high
n ≥ 3. The automaton Cω2 = C1 → (C1 ⊕ (C1 → C3)) lets you choose the number of times
you will be allowed to choose some Cn, and so on.

The second kind of simple branching automata, obtained by iterating → on Cωω+1 ,
does the same with Cωω+n instead of Cn. For instance, Cωω·2 = C1 → Cωω+1 lets the player

choose any Cωω+n = Ĉωn (see page 18), and in consequence L(Cωω·2) is hard for the class
of regular languages of words.

Let us now see the proofs. The first lemma justifies the name replication.

Lemma 9.1. For all automata A,B and all 0 < k < ω,

(1) A → B ≥ (A → B) ∧ (B)k,
(2) C1 → B ≥ (B)k.

Proof. To see that (1) holds, consider G((A → B) ∧ (B)k, A → B). Spoiler’s initial moves
produce a token x in the head loop of A → B, and tokens x1, . . . , xk, each in a different
copy of B. Duplicator should loop his starting token y around the head loop of A → B
exactly k times producing for each xi a doppelgänger yi and move them all to the initial
state of B (see Fig. 9). From now on y mimics x, and yi mimics xi for i = 1, . . . , k.
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For the proof of (2) it is enough to check that (C1 → B) ∧ (B)k ≥ (B)k. Clearly
C1 → B ≥ C1. By Lemma 5.5, (C1 → B) ∧ (B)k ≥ C1 ∧ (B)k, and the claim follows.

Next we need to calculate the value of (C3)
n and (Cωω+1)n. Apart from canonical (ι, κ)-

flowers F(ι,κ), we consider the following automata containing weak (ι, κ)-flowers (see page
5):

WF(0,n) = C1 ⊕D1 ⊕ C1 ⊕D1 ⊕ . . .
︸ ︷︷ ︸

n+1

, WF(1,n+1) = D1 ⊕ C1 ⊕D1 ⊕ C1 ⊕ . . .
︸ ︷︷ ︸

n+1

.

We will refer to these automata as weak (ι, κ)-flowers too. In fact, WF(0,n) ≡ Cn+1,
WF(1,n+1) ≡ Dn+1, but we find the notation convenient.

A pair (i1, i2) ∈ ω × ω is called even if both i1 and i2 are even. Otherwise (i1, i2) is
odd. Let [ι, κ] denote the set {ι, ι + 1, . . . , κ} ⊆ ω with the natural order. Consider the
set [ι, κ] × [ι′, κ′] with the product order: (x1, y1) ≤ (x2, y2) if x1 ≤ x2 and y1 ≤ y2. For
m = 0, 1 and n ≥ m define an alternating chain of type (m,n), or (m,n)-chain, as a sequence
(xm, ym) < (xm+1, ym+1) < . . . < (xn, yn), such that (xi, yi) is even iff i is even. Suppose
we have a (m,n)-chain of maximal length in [ι, κ] × [ι′, κ′]. The parity of n is equal to the
parity of (κ, κ′), as defined above, for otherwise we could extend the alternating chain with
(κ, κ′) and get a (m,n+ 1)-chain. Consequently, the following operation is well-defined:

(ι, κ) ∧ (ι′, κ′) = the type of the longest alternating chain in [ι, κ] × [ι′, κ′] .

Lemma 9.2. For all indices (ι1, κ1) and (ι2, κ2) it holds that

F(ι1,κ1) ∧ F(ι2,κ2) ≡ F(ι1,κ1)∧(ι2,κ2) ,

WF(ι1,κ1) ∧WF(ι2,κ2) ≡ WF(ι1,κ1)∧(ι2,κ2) .

In particular, (F(0,2))
k ≡ F(0,2k) and (WF(0,2))

k ≡ WF(0,2k). Equivalently, (Cωω+1)k ≡

Cωω+1+2k and (C3)
k = C2k+1.

Proof. By Lemma 8.1, L(F(i,j)) ≡W L(i,j), so L(F(ι1,κ1) ∧ F(ι2,κ2)) ≡W L(ι1,κ1) × L(ι2,κ2),
where L × M = {(x1, y1)(x2, y2) . . . : x1x2 . . . ∈ L, y1y2 . . . ∈ M}. We will show that
L(ι1,κ1) × L(ι2,κ2) ≡W L(ι,κ), where (ι, κ) = (ι1, κ1) ∧ (ι2, κ2).

Consider the following automaton A. The state space is the set

[ι1, κ1]× [ι2, κ2] → {0, 1, 2}

and the initial state is the function constantly equal 0. The transition relation δ is defined
as (f, σ, g) ∈ δ iff for all i and j, (f(i, j), σ, g(i, j)) ∈ δ(i,j), where δ(i,j) is defined as

0
(i,∗)
−→ 1 , 0

(k,∗)
−→ 0 for all k 6= i ,

1
(∗,j)
−→ 2 , 1

(∗,k)
−→ 1 for all k 6= j ,

2
(∗,∗)
−→ 1 ,

with ∗ denoting any letter.
Let us now define the rank function. For i ∈ [ι1, κ1] and j ∈ [ι2, κ2], let (ι′, κ′) =

(ι1, i) ∧ (ι2, j) and rank(i, j) = κ′. Observe that ι′ = ι, so ι ≤ κ′ ≤ κ. Set the rank
of the states that never take the value 2 to ι. For the remaining states set the rank to
rank(maxk ik,maxk jk), where (i1, j1), (i2, j2), . . . , (ir, jr) are the arguments for which the
value 2 is taken.
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Figure 10: The weak flower WF(0,6) formed by the leftmost states of C1 ⊕ Cωm+1·3.

Let us check that the automaton recognises L(ι1,κ1) × L(ι2,κ2). Take a word w =
(x1, y1)(x2, y2) . . . . Let x = maxk xk and y = maxk yk. In the run of A on w, the states
f satisfying f(x, y) = 2 will occur infinitely often. Furthermore, from some moment on
there only appear states f satisfying ∀(x′,y′) f(x′, y′) = 2 =⇒ (x′, y′) ≤ (x, y). Since
(x, y) ≤ (x′, y′) =⇒ rank(x, y) ≤ rank(x′, y′), the highest rank used infinitely often in the
run on w is rank(x, y). Finally, rank(x, y) is even iff x and y are even, so the run on w is
accepting iff w ∈ L(ι1,κ1) × L(ι2,κ2).

Since A has the index (ι, κ), the automaton itself provides a reduction of L(ι1,κ1)×L(ι2,κ2)

to L(ι,κ).
By definition of (ι, κ), there exists a sequence of pairs

(xι, yι) < (xι+1, yι+1) < . . . < (xκ, yκ)

such that for all i it holds that ι1 ≤ xi ≤ κ1, ι2 ≤ yi ≤ κ2, and xi and yi are even iff i is
even. The reduction is given by the function

ϕ(i1i2i3 . . .) = (xi1 , yi1)(xi2 , yi2)(xi3 , yi3) . . . .

The proof for weak flowers is entirely analogous.

Lemma 9.3. For all 0 < k, l < ω and all m < ω

C1 ⊕ Cωmk ∧ C1 ⊕ Cωml ≡ C1 ⊕ Cωm(k+l) ,

C1 ⊕ Cωω·2+mk ∧ C1 ⊕ Cωω·2+ml ≡ C1 ⊕ Cωω·2+m(k+l) .

In particular, (C1 ⊕ Cωm)k ≡ C1 ⊕ Cωmk and (C1 ⊕ Cωω·2+m)k ≡ C1 ⊕ Cωω·2+mk.

Proof. Consider G(C1 ⊕Cωmk ∧C1 ⊕Cωml, C1 ⊕Cωmk ⊕Cωml). Observe that Duplicator’s
critical token will move along a copy of WF(0,2k+2l) formed by the leftmost states of con-
secutive copies of Cωm (see Fig. 10). Spoiler’s initial token splits in the first move in two
tokens which continue moving along WF(0,2k) and WF(0,2l). For the purpose of this proof,
call them both critical.

The strategy for Duplicator is based on the fact that WF(0,2k)∧WF(0,2l) ≡ WF(0,2k+2l)

(Lemma 9.2). Duplicator can loop his critical token inside an accepting loop as long as
both Spoiler’s critical tokens loop inside accepting loops. When Spoiler changes his mind
and moves one of them to a rejecting loop, Duplicator should move to a rejecting loop too,
and keep looping there until both Spoiler’s tokens are again in accepting loops. This can
only repeat k + l times, so Duplicator is able to realise this strategy.

This way, whenever Spoiler produces a new token x using one of the critical tokens,
Duplicator can produce its doppelgänger y. The role of the doppelgänger is to mimic the
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original. The mimicking is in fact passed from generation to generation: if the original
token bubbles a new token x′, y should bubble a new doppelgänger y′ which is to mimic x′,
and so on.

In order to see that the strategy is winning it is enough to observe two facts: Duplicator’s
critical token stays in a rejecting loop forever iff one of Spoiler’s critical tokens does, and
the sequence of ranks seen by any of Spoiler’s non-critical tokens is equal to the one seen
by its doppelgänger. Hence, C1 ⊕ Cωmk ∧ C1 ⊕ Cωml ≤ C1 ⊕ Cωm(k+l).

The converse inequality is proved in a similar way and for the second equivalence the
same proof works.

Corollary 9.4. For all l, ι, κ < ω and all 0 < n < ω

(1) Cω > WF(ι,κ), Cωl+1 ≥ Cωln,
(2) Cωω·2 > F(ι,κ), Cωω·2+l+1 ≥ Cωω·2+ln.

Proof. Since Cω = C1 → C3 ≡ C1 → WF(0,2), by Lemma 9.1 and Lemma 9.2 we get
Cω ≥ (WF(0,2))

m ≡ WF(0,2m) and by the strictness of the hierarchy for word languages
Cω > WF(ι,κ). Similarly, using Lemma 9.1 and Lemma 9.3 we get Cωl+1 ≥ (C1 ⊕ Cωl)n ≡
C1 ⊕ Cωln ≥ Cωln. The remaining two inequalities are analogous.

10. Automata in Order

Let us start examining the order on canonical automata with the following simple
observation.

Lemma 10.1. For all 0 < α < ωω

Cα ≤ Cωω , Cα ≤ Dωω .

Proof. We give a proof for the first inequality; the second one is proved analogously. Con-
sider the following strategy for Duplicator in G(Cα, Cωω ). In every move, if any of Spoiler’s
tokens is inside a rejecting loop, Duplicator should move his critical token around a 1-loop,
otherwise he should loop around the 0-loop. Let us see that the strategy is winning.

By Proposition 7.2 if Spoiler’s run is to be accepting, he must produce only finitely
many tokens. All of those tokens must finally get to some 0-loop, and stay there forever.
This means that after some number of moves, all Spoiler’s tokens are in 0-loops which they
will never leave later. But from this moment on Duplicator’s critical token will keep looping
around the 0-loop, so Duplicator’s run will also be accepting.

By Proposition 7.1, if Spoiler’s run is to be rejecting, there must be a token that from
some moment on stays forever in a 1-loop. Then Duplicator’s token will also get trapped
in the rejecting loop in Cωω , and Duplicator’s run will be rejecting too.

Let us now see that we can restrict the way the players use non-critical tokens. For
a simple automaton A and a canonical automaton B = B1 ⊕ . . . ⊕ Bn with Bi simple, we
say that B dominates A if one of the following conditions holds

• A is non-branching
• A = C1 → Cα, B1 = C1 → Cβ, and β ≥ α,
• A = Cωm and B1 = F(ι,κ) or B1 = F(ι,κ) ∨ F(ι,κ) for ι < κ.
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Lemma 10.2. Let A1, A2, . . . , An be simple and let B be a canonical automaton dominating
all Ai. For every deterministic automaton C, if Spoiler has a winning strategy in G(A1 ⊕
. . . ⊕ An ⊕ B,C), then he also has a strategy in which he removes all non-critical tokens
before entering B. Similarly for Duplicator in G(C,A1 ⊕ . . .⊕An ⊕B).

Proof. Let B = B1 ⊕ . . . ⊕Bn with Bi simple. Suppose that at some moment the strategy
tells Spoiler to enter B (if this never happens, the claim is obvious). If there are no non-
critical tokens left in A1, A2, . . . , An, then we are done. However if there are, we have to
take extra care of them. Suppose Spoiler has produced non-critical tokens x1, . . . , xr, and xi
is in Ami

. Since xi is not on a critical path of Ami
, by the definitions of canonical automata,

it will stay within a copy of Cαi
over the alphabet extended to the alphabet of B.

Suppose B1 = C1 → Cβ. Since B dominates Ai, β ≥ αi for all i. Spoiler should replace
the token xi with x′i and let x′i take over the duties of xi. To produce x′i, Spoiler should
loop once in the head loop of B1. If B1 = Cωk , or Ai = Cωω·2+k′ , Spoiler may simply move
x′i to a copy of Cαi

and let it perform exactly the actions xi would take. If β = Cωω·2+k ,
αi = Cωk′ , Spoiler should move x′i to the copy of F(0,2) contained in Cβ, and let it apply the
strategy guaranteed by Lemma 10.1. To see that the strategy is applicable, it is enough to
note that it does not require any waiting, and that F(0,2) contains a copy of F(0,1).

Suppose now that B1 is non-branching. Then, αi < ωω for all i. In this case Spoiler
cannot produce a token to take over xi’s duties. Instead, he has to modify the actions of the
critical token. He should move the critical token according to his original strategy moving
from flower to flower, only when one of his non-critical tokens would be in a rejecting loop,
he should choose a 1-loop in his current flower (instead of the loop suggested by the old
strategy). Just like in the proof of Lemma 10.1, if in a play according to the original strategy
one of the non-critical tokens stays forever in a rejecting loop, then in the game according
to the new strategy the critical token finally also gets trapped in a 1-loop. Otherwise, there
are only finitely many non-critical tokens, and all of them finally stabilise in an accepting
loop. From that moment on, the critical token will see exactly the same ranks as it would
see if Spoiler was playing with the original strategy. Hence, the modified strategy is also
winning.

If the original strategy brings Spoiler to a branching automaton, he should produce
counterparts of his non-critical tokens just like above.

Corollary 10.3. For every canonical automaton of the form A⊕B and every deterministic
tree automaton C, if a Spoiler has a winning strategy in G(A ⊕ B,C), than he has also
a winning strategy which removes all non-critical tokens before entering B. Similarly for
Duplicator in G(C,A ⊕B).

Proof. Let A = A1⊕A2⊕. . .⊕An with Ai simple. From the structure of canonical automata
it follows that if A⊕B is canonical, B dominates Ai for i = 1, 2, . . . , n.

Now we are ready to get back to the order on C.

Lemma 10.4. If 0 < α ≤ β < ωω·3 then Cα ≤ Cβ and whenever Dα and Eβ are defined,
Dα ≤ Eβ, Cα ≤ Eβ. If β < α, then Eβ ≤ Dα, Eβ ≤ Cα.

Proof. As an auxiliary claim let us see that if A⊕B is canonical and A′ ≥ A, A⊕B ≤ A′⊕B.
Indeed, the following is a winning strategy for Duplicator in G(A⊕B,A′⊕B). While Spoiler
keeps inside A, apply the strategy from G(A,A′). If Spoiler enters B, by Corollary 10.3 we
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may assume he removes all non-critical tokens. Hence, Duplicator may remove non-critical
tokens, move the critical token to B and copy Spoiler’s actions.

Let us now see that Cα ≤ Cβ for α < β < ωω·3; the other inequalities may be proved
in an analogous way. We will proceed by induction on (α, β) with lexicographic order. If
β < ω, the result follows by the word languages case. Suppose that ω ≤ β < ωω. Let
α = ωkmk + . . . + m0 and β = ωknk + . . . + n0, nk > 0. First, assume that mk = 0.
Obviously Cωk ≤ Cβ, simply because Cβ contains a copy of Cωk . If k = 1 the claim follows
directly from Corollary 9.4. For k > 1, using the induction hypothesis and Corollary 9.4, we
get Cα ≤ Cωk−1(mk−1+1) ≤ Cωk . Now, assume that mk > 0. Then α = ωk +α′, β = ωk + β′

for some ordinals α′ < β′. By definition Cα = Cα′ ⊕Cωk , Cβ = Cβ′ ⊕Cωk , and by induction
hypothesis, Cα′ ≤ Cβ′ . Hence, by the auxiliary claim above, Cα ≤ Cβ.

Now, suppose that ωω ≤ β < ωω·2. Let α = ωωα1+α0, β = ωωβ1+β0 for α0, α1, β0, β1 <
ωω. If α1 = β1, then by induction hypothesis Cα0 ≤ Cβ0 , and Cα ≤ Cβ follows by the
auxiliary claim above. Assume that α1 < β1. By Lemma 10.1, Cα0 ≤ Cωω . Replacing
G(Cα0 , Cβ0) with G(Cα0 , Cωω ) in the above strategy, we get Cα = Cα0 ⊕ Eωωα1 ≤ Cωω ⊕
Eωωα1 = Cωω(α1+1). By Proposition 8.2, Cωω(α1+1) ≤ Cωωβ1 and since Cωωβ1 is contained
in Cωωβ1+β0 , we get Cωωα1+α0 ≤ Cωωβ1+β0 . Observe that the argument works also for α0 or
β0 equal to 0.

The case ωω·2 ≤ β < ωω·3 is analogous to ω ≤ β < ωω.

For a complete description of the ordering on the canonical automata (see Fig. 11) we
need the strictness of the inequalities from the previous lemma.

Theorem 10.5. Let 0 < α ≤ β < ωω·3. Whenever the respective automata are defined,
it holds that Dα � Cα, Dα � Cα, Dα < Eβ, Cα < Eβ, and for α < β, Cα < Cβ,
Eα < Dβ, Eα < Cβ.

Proof. By Lemma 10.4 it is enough to prove Cα < Cα+1, Dα < Eα, Cα < Eα, Dα � Cα,
Dα � Cα. We will only give a proof of the first inequality; the others can be argued similarly.
We will proceed by induction on α. If α < ω, the claim follows by the word languages case.

Suppose ω ≤ α < ωω. Then α = ωk + α′ with k ≥ 1, α′ < ωk+1. Let α′ ≥ 1
(the remaining case is similar). We shall describe a winning strategy for Spoiler in G =
G(Cωk+α′+1, Cωk+α′). Spoiler should first follow the winning strategy for G(Cα′+1, Cα′),
which exists by the induction hypothesis. Suppose that Duplicator enters the head loop of
Cωk . We may assume that he removes all his non-critical tokens (Corollary 10.3). Spoiler
should remove all his non-critical tokens, move his critical token to any accepting loop in
Cα′+1. Let us check that such a loop is always reachable for the critical token.

Let Cα′+1 = A⊕B with B simple. If B = C1 → B′, Spoiler can move his critical token
to C1. If B is not of this form, then by definition of canonical automata, Cα′+1 = C2n+1

or Cα′+1 = D2n. Recall that C2n+1 ≡ WF(0,2n) ≡ WF(0,2n−1) ⊕ C1 and D2n ≡ WF(1,2n) ≡
WF(1,2n−1) ⊕ C1 (see page 22). It follows that in any play on C2n+1 or D2n, if one has a
winning strategy, one also has a winning strategy never entering the rejecting loop of the
tail component. Hence, the accepting loop in the tail component is always reachable (or
has been reached already).

Thus, Spoiler can move his critical token to an accepting loop in the tail component
of Cα′+1 and loop there until Duplicator leaves the head loop. If Duplicator stays forever
in the head loop of Cωk , he loses. Suppose that Duplicator leaves the head loop of Cωk

after producing r tokens. The rest of the game is equivalent to G′ = G(C1 ⊕ Cωk , A) for
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C1 C2 Cω − Cω+1 . . . Cωω Cωω+1 Cωω+ω − Cωω+ω+1 · · ·
� � � � � �

E1 E2 · · · Eωω Eωω+1 · · · · · ·
� � � � � �

D1 D2 Dωω Dωω+1

Figure 11: The Wadge ordering of the canonical automata.

A = A1 ∧ . . . ∧ Ar, where Aj is the part of Cωk accessible for the Duplicator’s jth token.
If k = 1, then Aj ≤ WF(0,2) for each j. Hence A ≤ WF(0,2r) and by Corollary 9.4 Spoiler

has a winning strategy in G′. Let us suppose k > 1. Then Aj ≤ C1 ⊕Cωk−1 for j = 1, . . . , r
and so, by Lemma 5.5, A ≤ (C1 ⊕ Cωk−1)r. Hence, by Lemma 9.3, A ≤ Cωk−1r+1. Since

ωk−1r+1 < ωk−1r+2 ≤ ωk, we may use the induction hypothesis to get a winning strategy
for Spoiler in G′. In either case Spoiler has a winning strategy in G as well.

Now, assume ωω ≤ α < ωω·2. Let α = ωωα1 + α0 with α0 < ωω, 1 ≤ α1 < ωω. Again,
we describe a strategy for Spoiler in G = G(Cωωα1+α0+1, Cωωα1+α0) only for α0 ≥ 1, leaving
the remaining case to the reader. First follow the winning strategy from G(Cα0+1, Cα0). If
Duplicator does not leave the Cα0 component, he will lose. After leaving Cα0 , Duplicator
has to choose Dωωα1 or Cωωα1 . Suppose he chooses Dωωα1 . Again, by Corollary 10.3 we may
assume that he removes all non-critical tokens. Now, Spoiler has to remove all non-critical
tokens and move the critical token to the initial state of Eωωα1 and use the winning strategy
from G(Eωωα1 ,Dωωα1).

For α = ωω·2+k + α′ argue like for α = ωk + α′.

11. Patterns in Automata

Compare the notion of (ι, κ)-flower defined in Sect. 2 and the canonical flower F(ι,κ). It
is fairly clear that if A contains a (ι, κ)-flower, Duplicator can win in G(F(ι,κ), A) by copying
Spoiler’s actions. In that case it seems plausible to look at A as if it “contained” a copy of
F(ι,κ). In this section we provide a notion which captures this intuition.

Two paths p
σ′
1,d

′
1−→ p′1

σ′
2,d

′
2−→ . . .

σ′
m,d′m−→ p′m and p

σ′′
1 ,d

′′
1−→ p′′1

σ′′
2 ,d

′′
2−→ . . .

σ′′
n,d

′′
n−→ p′′n in a deterministic

automaton A are branching iff there exists i < min(m,n) such that for all j < i it holds
that (σ′

j , d
′
j) = (σ′′

j , d
′′
j ), σ

′
i = σ′′

i , and d′i 6= d′′i . Note that the condition implies that p′j = p′′j
for j ≤ i.

An automaton B can be embedded into an automaton A, if there exists a function
eQ : QB → QA and a function eδ : QB × ΣB × {0, 1} → ΠA, where ΠA is the set of paths
in A, satisfying the following conditions:

(1) if p
σ,d
−→ q and eδ(p, σ, d) = r0

σ1,d1
−→ r1

σ2,d2
−→ . . .

σn,dn
−→ rn then r0 = eQ(p), rn = eQ(q),

(2) for all p, σ the paths eδ(p, σ, 0) and eδ(p, σ, 1) are branching,
(3) for every loop λ in B, the corresponding loop in A (obtained by concatenating the paths

assigned to the edges of λ) is accepting iff λ is accepting.

For each tree automaton A, let A′ be the automaton obtained from A by unravelling
the DAG of strongly connected components into a tree (for the purpose of this definition, we
allow multiple copies of ⊥). An automaton A admits an automaton B, in symbols B ⊑ A,
if the automaton B′ can be embedded into A. Note that if B can be embedded into A, then
A ⊑ B.
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Lemma 11.1. For all deterministic tree automata A and B

A ⊑ B =⇒ A ≤ B .

Proof. Since L(B′) = L(B), without loss of generality we may assume that B = B′. We
have to provide a winning strategy for Duplicator in G(B,A). Without loss of generality,
we may assume that Spoiler never removes his tokens. Let eQ and eδ be the embedding
functions. We will show that Duplicator can keep a collection of doppelgängers, one for each
Spoiler’s token, such that if some Spoiler’s token x is in the state p, its doppelgänger y is in
the state eQ(p).

Let us first assume that eQ(q
B
0 ) = qA0 . Then the invariant above holds when the play

starts. As long as Spoiler does not enter ⊥, the invariant can be maintained by means of

the function eδ as follows. Suppose that Spoiler fires a transition q
σ

−→ q′, q′′ for some token
x obtaining new tokens x′ and x′′. Let

eδ(q, σ, 0) = p0
σ1,d1
−→ . . .

σl−1,dl−1
−→ pl−1

σl,d
′
l−→ p′l

σ′
l+1,d

′
l+1

−→ . . .
σ′
m,d′m−→ p′m ,

eδ(q, σ, 1) = p0
σ1,d1
−→ . . .

σl−1,dl−1
−→ pl−1

σl,d
′′
l−→ p′′l

σ′′
l+1,d

′′
l+1

−→ . . .
σ′′
n,d

′′
n−→ p′′n ,

with d′l = 1− d′′l .

Let ri, r
′
j , r

′′
k be such that pi−1

σi,di−→ ri, p
′
j−1

σ′
j ,d

′
j

−→ r′j , and p′′k−1

σ′′
k
,d′′

k−→ r′′k for 1 ≤ i < l,

l + 1 ≤ j ≤ m, l + 1 ≤ k ≤ n, where d = 1− d.
Recall that we assume that for every transition, either both target states are ⊥ or none.

Since q′ 6= ⊥ and q′′ 6= ⊥ then, by the condition (3) of the definition of admittance, p′m 6= ⊥
and p′′n 6= ⊥ and consequently all the states pi, ri, p

′
j, r

′
j, p

′′
k, r

′′
k are not equal to ⊥. Hence,

Duplicator can proceed as follows. Starting with the token y (the doppelgänger of x), fire
the transitions forming the common prefix of both paths, each time removing the token sent
to ri. Thus he reaches the state pl−1 with a descendant of the token y. Then he should fire
the next transition producing two tokens y′ and y′′, and for each of them fire the remaining
sequence of transitions (again removing the tokens in the states r′j and r′′k). Thus he ends

up with two tokens in the states p′m = eQ(q
′) and p′′n = eQ(q

′′). Hence, the token in eQ(q
′)

may be the doppelgänger of x′, and the token in eQ(q
′′) may be the doppelgänger of x′′.

Let us see that if Spoiler never enters ⊥, Duplicator wins. Observe that the function
eδ induces a function e from the set of infinite paths in B to the set of infinite paths in
A. Owing to the condition (3), e(π) is accepting iff π is accepting. The strategy used by
Duplicator guarantees that for each path π in Spoiler’s run, Duplicator’s run contains the
path e(π). The paths in Duplicator’s run that are not images of paths from Spoiler’s run
were all declared accepting by removing the corresponding tokens. Hence, Duplicator’s run
is accepting iff Spoiler’s run is accepting.

Now, if Spoiler enters ⊥, Duplicator proceeds as before, only if some ri, r
′
j , or r′′k is

equal to ⊥, instead of removing the token from there (he is not allowed to do that), he lets
the token and all its descendants loop there forever. In the end, again each path in Spoiler’s
run has a counterpart in Duplicator’s run. The images of the rejecting paths (which exist
in Spoiler’s run), will be rejecting too. Hence, Duplicator also wins in this case.

Finally we have to consider the situation when eQ(q
B
0 ) 6= qA0 . In this case, Duplicator

should first move his initial token to the state eQ(q
B
0 ), removing the other tokens produced

on the way whenever possible, and then proceed as before.
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Another property that makes admittance similar to containment is transitivity.

Lemma 11.2. For all deterministic tree automata A, B, and C,

A ⊑ B ⊑ C =⇒ A ⊑ C .

Proof. Again, we may assume that A′ = A. Furthermore, since the states from one SCC
have to be mapped to states from one SCC, then A can be embedded directly into B′. Hence,

we may also assume that B = B′. Let eX,Y
Q , eX,Y

δ be functions embedding the automaton
X into Y . The embedding of A into C is simply a composition of two given embeddings:

eA,C
Q = eB,C

Q ◦ eA,C
Q , eA,C

δ = eB,C
Π ◦ eA,B

δ , where eB,C
Π : ΠB → ΠC is the function induced by

eB,C
δ in the natural way. It is easy to see that eA,C

Q and eA,C
δ satisfy the conditions from the

definition of admittance.

Embedding for automata on words is defined analogously, only the function eδ is defined
on Q×Σ instead of Q×Σ×{0, 1}, and the condition (2) is dropped. Admittance is defined
identically. The two lemmas above carry over with analogous proofs.

12. Hard Automata

In previous sections we have described an extended hierarchy of canonical automata.
As we have already mentioned there are still three canonical automata left to define. In
their definition we will make the first use of a stronger variant of the operation →.

In the operation
(ι,κ)
−→, instead of one (rejecting) loop replicating an automaton, we

have a whole flower whose each loop replicates a different automaton. Recall that F(ι,κ)

is an automaton whose input alphabet is {aι, aι+1 . . . , aκ}, the states are qι, qι+1, . . . , qκ,
rank(qi) = i, the initial state is qι, and transitions

qι
aι−→ qι,⊤ , qι

aj
−→ qj,⊤ , qj

aj
−→ q0,⊤ , and qj

ak−→ ⊤,⊤

for j = ι+ 1, ι+ 2, . . . , κ and k 6= j. Let A,Aι, . . . , Aκ be deterministic tree automata over

Σ. The (ι, κ)-replication A
(ι,κ)
−→ Aι, . . . , Aκ (see Fig. 12) is obtained as follows. Take a copy

of F(ι,κ) over the extended alphabet {aι, aι+1 . . . , aκ}∪Σ∪{b}, where b is a fresh letter. Add
single disjoint copies of Aι, . . . , Aκ and A over the extended alphabet Σ∪{aι, aι+1 . . . , aκ}∪

{b}. Finally, in F(ι,κ) over the extended alphabet, replace the transition qι
b,0
−→ r (where

r ∈ {⊥,⊤}) with qι
b,0
−→ qA0 , and qι

ai,1−→ ⊤ with qι
ai,1−→ qAi

0 for i = ι, . . . , κ.
Using Lemma 5.5 it is easy to see that the ≡-class of the defined automaton depends

only on (ι, κ) and the ≡-classes of A,Aι, . . . , Aκ. Hence, ≡ is a congruence with respect to
(ι,κ)
−→ for every (ι, κ).

Note also that A → B and A
(1,1)
−→ B are equal up to the names of letters and states. In

particular L(A → B) ≡W L(A
(1,1)
−→ B).

Let us now define the three missing automata. Let Cωω·3 = C1
(0,1)
−→ C1, C(0,2) and

Cωω·3+1 = C1
(0,0)
−→ F(0,1). The last automaton, Cωω·3+2 consists of the states q0, q1, ⊤ with

rank(qi) = i and transitions

q0
a

−→ q0, q1 , q0
b

−→ ⊤,⊤ ,
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Figure 12: The (1, 4)-replication A
(1,4)
−→ A1, A2, A3, A4.

q1
a

−→ q0,⊤ , q1
b

−→ ⊤,⊤ .

Using canonical automata we can formulate results from Sect. 3 in a uniform way. In the
proof we will need the following technical lemma.

Lemma 12.1. Let A be a deterministic tree automaton. For every productive state p in A
there exists a state q, a path πp from p to q, and pair of branching paths π0

q , π
1
q from q to q

forming accepting loops.

Proof. Take an accepting run starting in p. For each node v of the run let Sv be the set of
states of the automaton that appear below v. Note, that if v′ is a descendant of v, Sv′ ⊆ Sv.
Since all Sv’s are non-empty, there exists a node u such that for all descendants u′ of u,
Su′ = Su. Pick a state q ∈ Su. There exists a node w under u, labeled with q. Both w0
and w1 are labeled with Su, so there exist a nodes w0 under w0 and w1 under w1 that are
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also labeled with q. To conclude, let πp be the path in A induced by the path from ε to w,
and let πi

q be the path induced by the path between w and wi for i = 0, 1. 1

Theorem 12.2. Let A be a deterministic automaton.

(1) L(C1 ⊕D1) is Π0
1-complete; L(A) ∈ Σ0

1 iff A does not admit C1 ⊕D1.
(2) L(D1 ⊕ C1) is Σ0

1-complete; L(A) ∈ Π0
1 iff A does not admit D1 ⊕ C1.

(3) L(F(1,2)) and L(C1
(0,0)
−→ (D1 ⊕ C1)) are Π0

2-complete;

L(A) ∈ Σ0
2 iff A does not admit F(1,2) nor C1

(0,0)
−→ (D1 ⊕ C1).

(4) L(F(0,1)) is Σ0
2-complete; L(A) ∈ Π0

2 iff A does not admit F(0,1).

(5) L(Cωω·3+1) is Π0
3-complete; L(A) ∈ Σ0

3 iff A does not admit Cωω·3+1.
(6) L(A) ∈ Π0

3 iff A does not admit Cωω·3+2.
(7) L(Cωω·3+2) is Π1

1-complete; L(A) is Π1
1-complete iff A admits Cωω·3+2.

Proof. It is enough to check that for an automaton it is the same to contain the patterns
from Theorem 3.2 (page 7) and to admit the respective automata. It is straightforward to
check that it indeed is so. The only difficulty is embedding the transitions to all-accepting
states, but this is solved by Lemma 12.1. Let us just see the case of Cωω·3+2. If A admits
Cωω·3+2, then the image of the two loops in Cωω·3+2 that contain the initial state is a split.

Suppose that A contains a split consisting of an i-loop p
σ,0
−→ p1

σ1,d1
−→ . . .

σm,dm
−→ pm+1 = p

and a j-loop p
σ,1
−→ p′1

σ′
1,d

′
1−→ . . .

σ′
n,d

′
n−→ p′n+1 = p, such that i is even, j is odd, and i < j.

Without loss of generality we may assume that m,n ≥ 1. Let p′1
σ′
1,d

′
1−→ q′, and let tp, tp′1 , tq′

be the states guaranteed by Lemma 12.1 for p, p′1, and q′ respectively.
Let B be the automaton obtained from Cωω·3+2 by unravelling the DAG of SCCs. The

only way it differs from Cωω·3+2 is that instead of one state ⊤ it contains 5 all-accepting
states ⊤1, . . . ,⊤5, one for each transition from the root SCC:

q0
a

−→ q0, q1 , q0
b

−→ ⊤1,⊤2 ,

q1
a

−→ q0,⊤3 , q1
b

−→ ⊤4,⊤5 .

Define eQ(q0) = p, eQ(q1) = p′1, eQ(⊤1) = eQ(⊤2) = tp, eQ(⊤3) = tq′ , eQ(⊤4) = eQ(⊤4) =
tp′1 . The function eδ is defined as follows:

eδ(q0, a, 0) = p
σ,0
−→ p1

σ1,d1
−→ . . .

σm,dm
−→ p , eδ(q1, a, 0) = p′1

σ′
1,d

′
1−→ . . .

σ′
n,d

′
n−→ p ,

eδ(q0, a, 1) = p
σ,1
−→ p′1 , eδ(q1, a, 1) = (p′1

σ′
1,d

′
1−→ q′)πq′ ,

eδ(q0, b, 0) = πpπ
0
tp
, eδ(q1, b, 0) = πp′1π

0
tp′1

eδ(q0, b, 1) = πpπ
1
tp , eδ(q1, b, 1) = πp′1π

1
tp′

1

,

eδ(⊤i, ∗, 0) = π0
eQ(⊤i)

,

eδ(⊤i, ∗, 1) = π1
eQ(⊤i)

,

where ∗ denotes any letter and by π1π2 we mean the concatenation of two paths. Checking
that this is an embedding is straightforward.

1This elegant proof was suggested by one of the referees in place of a clumsier inductive argument.
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For the proof of the next theorem, settling the position of the last canonical automaton,
Cωω·3 , we will need the following property of replication.

Lemma 12.3 (Replication Lemma). A state occurs in infinitely many incomparable nodes
of an accepting run iff it is productive and is replicated by an accepting loop.

Proof. If a state p is replicated by an accepting loop, then by productivity one may easily
construct an accepting run with infinitely many incomparable occurrences of p. Let us
concentrate on the converse implication.

Let p occur in an infinite number of incomparable nodes v0, v1, . . . of an accepting
run ρ. Let πi be a path of ρ going through the node vi. Since 2ω is compact, we may
assume, passing to a subsequence, that the sequence πi converges to a path π. Since vi
are incomparable, vi is not on π. Let the word αi be the sequence of states labelling the
path from the last common node of π and πi to vi. Cutting the loops off if needed, we may
assume that |αi| ≤ |Q| for all i ∈ ω. Consequently, there exist a word α repeating infinitely
often in the sequence α0, α1, . . .. Moreover, the path π is accepting, so the starting state of
α must lay on an accepting productive loop. This loop replicates p.

Theorem 12.4. L(Cωω·3) is Wadge complete for deterministic ∆0
3 tree languages. In par-

ticular, A ≤ Cωω·3 for each A ∈ C.

Proof. Since Cωω·3 admits neither Cωω·3+2 nor Cωω·3+1, L(Cωω·3) is a deterministic ∆0
3 lan-

guage (Theorem 12.2). Let us see that it is hard in that class.
Take a deterministic automaton A recognising a ∆0

3-language. By Theorem 12.2 (5), A

does not admit Cωω·3+1 = C1
(0,0)
−→ F(0,1). Let us divide the states of A into two categories:

a state is blue if it is replicated (see page 7) by an accepting loop, otherwise it is red. Note
that every state reachable from a blue state is blue.

Let A′ be the automaton A with the ranks of red states set to 0, and let A′′ be A
with the ranks of the blue states set to 0. Let us see that A ≤ A′ ∧ A′′. The strategy for
Duplicator in G(A,A′ ∧ A′′) is to copy Spoiler’s actions in A, both in A′ and A′′. To show
that this strategy is winning it is enough to show that for each t a run of A on t is accepting
iff the runs of A′ and A′′ on t are accepting. Take a path π of the run of A. Let π′ and π′′

be the corresponding paths of the computations of A′ and A′′. If π only visits red states,
then the ranks on π and π′′ are identical, and π′ contains only 0’s. Otherwise, π enters
a blue state at some point, and then stays in blue states forever. In such case, the blue
suffixes of π and π′ have the same ranks, and the blue suffix of π′′ contains only 0’s. Thus,
π is accepting iff π′ and π′′ are accepting and the claim follows.

Since A does not admit C1
(0,0)
−→ F(0,1), it follows that all (0, 1)-flowers in A are red.

Consequently, A′ does not admit F(0,1), and so L(A′) is Π0
2. Since L(F(1,2)) is Π0

2-hard
(Theorem 12.2 (3)), A′ ≤ F(1,2).

Now consider A′′. Once you enter a blue state, you can never move to a red state.
Consequently, since in A′′ all blue states have rank 0, we may actually replace them all
with one all-accepting state ⊤ without changing the recognised language. Recall that, by
convention, instead of putting tokens into ⊤ we simply remove them. Hence, when for some

token in p a transition of the form p
σ

−→ ⊤, q or p
σ

−→ q,⊤ is fired, we imagine that the
token is moved to q without producing any new tokens. By the Replication Lemma (Lemma
12.3) the occurrences of red states in an accepting run may be covered by a finite number
of infinite paths. Hence, by our convention, only finitely many tokens may be produced in
a play if the constructed run is to be accepting.
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Let us now show that Duplicator has a winning strategy in G(A′′, (C1
(0,1)
−→ C1, F(ι,κ))),

where (ι, κ) is the index of A. Whenever Spoiler produces a new token (including the starting
token), Duplicator should loop once around the head 1-loop producing a doppelgänger in
F(ι,κ), and keep looping around the head 0-loop. The new token is to visit states with
exactly the same ranks as the token produced by Spoiler. Let us see that this strategy
works. Suppose Spoiler’s run was accepting. Then, there were only finitely many red tokens
produced, and hence the head 1-loop was visited only finitely often. Furthermore, each
Spoiler’s token visited an accepting path. But then, so did its doppelgänger, and Duplicator’s
run was also accepting. Now suppose Spoiler’s run was rejecting. If infinitely many red
tokens were produced, the head 1-loop was visited infinitely often, and Duplicator’s run was
also rejecting. If there were finitely many tokens produced, then one of the tokens must
have gone along a rejecting path, but so did its doppelgänger and Duplicator’s run was also

rejecting. Hence A′′ ≤ (C1
(0,1)
−→ C1, F(ι,κ)).

By Lemma 5.5, A′ ∧ A′′ ≤ (C1
(0,1)
−→ C1, F(ι,κ)) ∧ F(1,2), so it is enough to check that

(C1
(0,1)
−→ C1, F(ι,κ)) ∧ F(1,2) ≤ Cωω·3 . Consider the following strategy for Duplicator in the

game G((C1
(0,1)
−→ C1, F(ι,κ)) ∧ F(1,2), Cωω·3). First, loop once around the 1-loop and produce

a new token in F(0,2) and use it to mimic Spoiler’s actions in F(1,2). Then, for each new
token x Spoiler produces in his 1-loop and sends to F(ι,κ), Duplicator should produce tokens

y1, . . . , y⌊κ+1
2

⌋ in F(0,2). By Lemma 9.2, (F(0,2))
⌊κ+1

2
⌋ ≡ F(0,2⌊κ+1

2
⌋) ≤ F(ι,κ), so Duplicator

has a winning strategy in G(F(ι,κ), (F(0,2))
⌊κ+1

2
⌋). Adapting this strategy, Duplicator can

simulate the actions of Spoiler’s token x in F(ι,κ) with the tokens y1, . . . , y⌊κ+1
2

⌋ in F(0,2).

If Spoiler loops the 1-loop without producing a new token, or loops around the 0-loop,
Duplicator should copy his actions. Clearly, this strategy is winning for Duplicator.

Finally, let us see that A ≤ Cωω·3 for each A ∈ C. Take n < ω. Observe that in Cωω·2+n

no state is replicated by an accepting loop. Hence, Cωω·2+n may not admit Cωω·3+1 nor
Cωω·3+2. By Theorem 12.2, L(Cωω·2+n) is in ∆0

3. By Lemma 10.4, for each A ∈ C there
exists m < ω such that A ≤ Cωω·2+m. Hence, for all A ∈ C, L(A) ∈ ∆0

3, and A ≤ Cωω·3 .

From Theorems 12.2 and 12.4 we obtain the following picture of the top of the hierarchy:

C < Cωω·3 < Cωω·3+1 < Cωω·3+2 .

Let C′ = C ∪ {Cωω·3 , Cωω·3+1, Cωω·3+2}. Note that it already follows that the height of the
Wadge hierarchy of deterministic tree languages is at least (ωω)3 + 3. In the remaining of
the paper we will show that each deterministic automaton is Wadge equivalent to one of
the canonical automata from C′, thus providing a matching upper bound.

13. Closure Properties

Our aim is to show that each deterministic tree language is Wadge equivalent to the
language recognised by one of the canonical automata. If this is to be true, the family of
canonical automata should be closed (up to Wadge equivalence) by the operations intro-
duced in Sect. 6. In this section we will see that it is so indeed. The closure properties
carry substantial part of the technical difficulty of the main theorem, whose proof is thus
made rather concise.
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Proposition 13.1. For A,B ∈ C one can find in polynomial time an automaton in C
equivalent to A ∨B.

Proof. Proceed just like for nonbranching automata (Proposition 8.3, page 19). Take A,B ∈
C. If A ≤ B, then A∨B ≡ B and if B ≤ A, then A∨B ≡ A. If A and B are incomparable,
by Lemma 10.4 we get that they must be equal to Dα and Cα. It follows easily from the
definitions of the canonical automata that Dα ∨ Cα ≡ Eα.

Proposition 13.2. For A,B ∈ C one can find in polynomial time an automaton in C
equivalent to A⊕B.

Proof. Recall that simple automata are those that cannot be written as A1 ⊕ A2 for some
canonical automata A1, A2. Let us first assume that A is a simple branching automaton.
First let us prove that for B < A, A⊕B ≡ A. Let us consider the game G(A⊕B,A). The
following is a winning strategy for Duplicator. While Spoiler keeps inside the head loop of
A, mimic his actions. When he exits the head loop, let all the non-critical tokens produced
so far copy the actions of their counterparts belonging to Spoiler, and for the critical token
(and all new tokens to be produced) proceed as follows. If C1⊕B is a canonical automaton,
then, by the shape of the hierarchy, C1 ⊕ B < A and Duplicator may use the winning
strategy from G(C1 ⊕ B,A). If C1 ⊕ B is not canonical, then B = F(ι,κ) ⊕ B′ for some
(ι, κ) 6= (1, 1). It is very easy to see that C1⊕F(ι,κ)⊕B′ ≡ F(ι,κ)⊕B′, and again Duplicator
can use the winning strategy from G(C1 ⊕B,A).

Let us assume now that B = B1 ⊕ B2 ⊕ . . . ⊕ Bn where Bi are simple and B1 ≥ A.
Suppose B = Cωωη for some η < ωω·3. Then A ⊕ B ≡ B. Indeed, consider the game
G(A ⊕ B,B). While Spoiler keeps inside A, Duplicator should keep in B1 and apply the
strategy from G(A,B1). Suppose Duplicator enters B. Since B1 ≥ A, it holds that B
dominates A and we may assume that Spoiler has removed his non-critical tokens before
entering B. From now on Duplicator may simply mimic Spoiler’s behaviour.

An analogous argument shows that for B1 = Dωωη, we get A⊕B ≡ B. For B1 = Eωωη,
A⊕B is a canonical automaton (up to a permutation of the input alphabet).

Now, consider B = B1 ⊕ . . . ⊕ Bn ≥ A, Bi simple and B1 < A. By the definition of
canonical automata, B1 ≤ B2 ≤ . . . ≤ Bn, and since B ≥ A, Bn ≥ A. Let k be the least
number for which Bk ≥ A. Let B′ = B1 ⊕ . . . ⊕ Bk−1 and B′′ = Bk ⊕ . . . ⊕ Bn. In order
to reduce this case to the previous one it is enough to check that A ⊕ B ≤ A ⊕ B′′ (the
converse inequality is obvious). Consider G(A⊕B,A⊕B′′). While Spoiler’s critical token
stays inside A⊕B′, Duplicator follows the strategy from G(A⊕B′, A). If Spoiler does not
leave A ⊕ B′, he loses. Suppose that Spoiler finally enters B′′. Note that B′′ dominates
A and B1, . . . , Bk−1. Hence, by Lemma 10.2, we may assume that Spoiler removes all his
non-critical tokens on entering B′′. Duplicator should simply move his critical token to the
initial state of B′′ and mimic Spoiler’s actions.

Suppose now that A = F(ι,κ) or A = F(ι,κ) ∨ F
(ι,κ)

. Let B = B1 ⊕ . . . ⊕ Bn with Bi

simple. For ι < κ proceeding like in Proposition 8.3 (page 19) one proves that

(1) B < A =⇒ A⊕B ≡ A,
(2) B1 = F(ι,κ) =⇒ A⊕B ≡ F(ι,κ) ⊕ (F(ι,κ) ∨ F(ι,κ))⊕B2 ⊕ . . .⊕Bn ∈ C,

(3) A ≤ B1 = (F(ι′,κ′) ∨ F
(ι′,κ′)

) =⇒ A⊕B ∈ C,

(4) A ≤ B1 = F(ι′,κ′) =⇒ A⊕B ≡ B,
(5) A ≤ B1 = (C1 → B′

1) =⇒ A⊕B ≡ B.

In the remaining case, B1 < A ≤ B, argue like for branching A.
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For ι = κ, the implications (2), (3), and (4) also hold, and give a canonical form if B1

is non-branching. If B1 is branching, A⊕B ≡ B for A = F(1,1), and A⊕B ≡ F(0,0)⊕B ∈ C
for A ∈ {F(0,0), F(0,0) ∨ F(1,1)}.

Finally let A = A1 ⊕ A2 ⊕ . . . ⊕ Ar, where Ai are simple. Using the fact that ⊕
is associative up to ≡, and Lemma 5.5 (page 12), we get (A1 ⊕ A2 ⊕ . . . ⊕ Ar) ⊕ B ≡
(A1 ⊕A2 ⊕ . . .⊕Ar−1)⊕ (Ar ⊕B) ≡ (A1 ⊕A2 ⊕ . . . ⊕Ar−1)⊕B′ where B′ is a canonical
automaton equivalent to (Ar ⊕B). Repeating this r − 1 times more we obtain a canonical
automaton equivalent to A⊕B.

In the following proofs we will need the following property. For simple branching
automata B = (C1 → Cα), let B

− = D1 → Cα.

Lemma 13.3. For every A ∈ C and every simple branching B one can find in polynomial
time a canonical automaton equivalent to B− ⊕A.

Proof. B is simple branching, so B = Cα where α = ωk or α = ωω·2+k. Let A = S ⊕ A′,
where A′ ∈ C and S is a simple automaton. Suppose first that S is a branching automaton.
Then S ≡ C−

β ⊕ C1 and A ≡ C−
β ⊕ C1 ⊕ A′ with β = ωj or β = ωω·2+j. Let us check that

C−
α ⊕C−

β ⊕C1⊕A′ ≡ C−
max(α,β)⊕C1⊕A′. Consider the following strategy for Duplicator in

G(C−
α ⊕C−

β ⊕C1 ⊕A′, C−
max(α,β) ⊕C1 ⊕A′). While Spoiler’s critical token x can reach the

head loop of C−
α or C−

β , Duplicator may keep his critical token y looping in the head loop

of his automaton C−
max(α,β). For every new token produced by Spoiler in the head loop of

C−
α or C−

β , Duplicator produces a doppelgänger in the head loop of C−
max(α,β). When Spoiler

moves his critical token x to C1 ⊕A′, Duplicator does the same with y and lets it copy x’s
actions. As the converse inequality is obvious, C−

max(α,β) ⊕ C1 ⊕ A′ ≡ Cmax(α,β) ⊕ A′ gives

the canonical form for C−
α ⊕A.

Now, let S be non-branching. Suppose first that S is one of the automata Dωω+k ,
Cωω+k , Eωω+k for k ≥ 0. If α = ωk, C−

α ⊕ S ⊕ A′ ≤ Cα ⊕ S ⊕ A′ ≡ S ⊕ A′ by the
proof of the closure by ⊕. The converse inequality is obvious. Similarly, if α = ωω·2+k,
C−
α ⊕ S ⊕A′ ≤ Cα ⊕ S ⊕A′ ≡ Cα ⊕A′. The converse inequality is obvious again.

The remaining possible values for S are C1, D1 and E1. If S = C1, C
−
α ⊕C1⊕A ≡ Cα⊕A,

and the canonical automaton is obtained via closure by ⊕. For S = E1, observe that
C−
α ⊕ E1 ⊕ A′ ≤ C−

ωk ⊕ C2 ⊕A′ = Cωk ⊕D1 ⊕ A. By the proof of the closure by ⊕ we get

Cωk ⊕ D1 ⊕ A ≡ Cωk ⊕ A. Hence C−
ωk ⊕ E1 ⊕ A ≤ Cωk ⊕ A. The converse inequality is

obvious. Finally, if S = D1, we get C
−
α ⊕D1 ⊕A′ ≡ C−

α ⊕A′. By the structure of canonical
automata, A′ must start with E1 or Cωω+k . In both cases we can use one of the previous
cases to get an equivalent canonical automaton.

If A = S the whole argument is analogous, only in the last case, for S = D1, we have
C−
α ⊕D1 ≡ D1.

Proposition 13.4. For A,B ∈ C one can find in polynomial time an automaton in C
equivalent to A ∧B.

Proof. We will proceed by induction on (A,B) with the product order induced by ≤. Let
A = A1⊕A2⊕ . . .⊕Am, B = B1⊕B2⊕ . . .⊕Bn with Ai, Bj simple. Let A′ = A2⊕ . . .⊕Am

for m > 1 and B′ = B2 ⊕ . . .⊕Bn for n > 1.
First, assume that B1 = C1 → Cβ, and either A1 = Fι,κ for some (ι, κ), or A1 = C1 →

Cα for α ≤ β. Let m,n > 1. Let us see that A ∧ B ≡ B−
1 ⊕ (A′ ∧ B ∨ A ∧ C1 ⊕ B′). In
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the first move Spoiler produces token xA in A and xB in B. While xA stays in A1 and xB

stays in the head loop of B1, Duplicator should keep his critical token in the head loop of
B−

1 and for each x, a child of xB or xA, produce a token y whose task is to play against x.
The token x after being produced is put in the head loop of Cβ or, if A1 = C1 → Cα, in the
head loop of Cα. The token y is put in the head loop of Cβ. Since α ≤ β, y can adapt the
strategy from G(Cα, Cβ) if x is in Cα, or simply copy x’s actions if x is in Cβ. Now, two

things may happen. If xA enters A′ while xB stays in the head loop of B1, Duplicator should
move his critical token to A′ ∧ B and split it into yA sent to A′ and yB sent to B. Then
yA should mimic xA, and yB should mimic xB . If xB exits the head loop of B1, Duplicator
should move to A∧C1⊕B′, produce two tokens, and mimic Spoiler’s actions. The converse
inequality is even simpler. In a similar way we prove A ∧ B ≡ B−

1 ⊕ (A ∧ C1 ⊕ B′) for
n > m = 1, A∧B ≡ B−

1 ⊕ (A′ ∧B ∨A∧C1) for m > n = 1, and A∧B ≡ B−
1 ⊕ (A∧C1) for

m = n = 1. In all four cases using the induction hypothesis, the closure by ∨, ⊕, and the
Substitution Lemma (Lemma 5.5, page 12) we obtain an automaton of the form B−

1 ⊕ C,
where C is canonical. Lemma 13.3 gives an equivalent canonical automaton.

Next, suppose that A1 = F(ι,κ), B1 = F(ι′,κ′). Assume m,n > 1. Using Lemma 9.2 one
proves easily that A∧B ≡ F(ι,κ)∧(ι′,κ′) ⊕ ((A∧B′)∨ (A′ ∧B)). Similarly, for m > 1, n = 1,
we have A ∧B ≡ F(ι,κ)∧(ι′,κ′) ⊕ (A′ ∧B) and the canonical form follows from the induction
hypothesis. For m = 1, n > 1 proceed symmetrically. For m = n = 1, A∧B ≡ F(ι,κ)∧(ι′,κ′).
Again, using the induction hypothesis, the closure by ∨, ⊕, and the Substitution Lemma,
we get an equivalent canonical automaton.

The general case may be reduced to one of the special cases above, because Eα ∧ A ≡
(Cα ∧A) ∨ (Dα ∧A).

Since (ι, κ)-replication requires a rather involved analysis, let us first consider →.

Proposition 13.5. For A,B ∈ C one can find in polynomial time an automaton in C
equivalent to A → B.

Proof. First, let us deal with two special cases for which the general method does not work.
For B � C3 simple calculations give the following equivalences: A → B ≡ (D1⊕A)∧B for
B ∈ {C1, E1, C2,D2,D3}, A → D1 ≡ A ∨D1, A → E2 ≡ A → D3. By the Substitution
Lemma, the equivalent canonical forms follow from the closure by ⊕, ∨, and ∧.

The second special case is when B contains non-trivial flowers but B � F(0,2). First, let
us see that A → F(0,1) ≡ (D1 ⊕A)∧F(0,1). The inequality A → F(0,1) ≥ (D1 ⊕A)∧F(0,1)

follows easily from Lemma 9.1. For the converse it remains to observe that the following
strategy is winning for Duplicator in G(A → F(0,1), (D1 ⊕ A) ∧ F(0,1)): in D1 ⊕ A mimic
Spoiler and in F(0,1) apply the strategy from G(C1 → F(0,1), F(0,1)) given by Theorem 12.2
(3 and 4). An analogous argument shows that A → F(1,2) ≡ (D1 ⊕ A) ∧ F(1,2). For the
remaining possible values of B we will show A → B ≡ (D1 ⊕ A) ∧ F(0,1) ∧ F(1,2). Again,
A → B ≥ (D1 ⊕ A) ∧ B ∧ B ≥ (D1 ⊕ A) ∧ F(0,1) ∧ F(1,2) is easy. For the converse,
observe that B only uses ranks 1, 2, 3. Consider the following strategy for Duplicator in
G(A → B, (D1⊕A)∧F(0,1) ∧F(1,2)). In the component D1⊕A simply mimic the behaviour

of Spoiler’s critical token. In F(0,1) use the strategy from G(C1 → B′, F(0,1)), where B′

denotes B with ranks 1 and 2 replaced by 0 and rank 3 replaced by 1. In F(1,2) use the

strategy from G(C1 → B′′, F(1,2)), where B′′ denotes B with all 3’s replaced by 1’s. The
combination of these three strategies is winning for Duplicator.
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For the remaining automata, we will show that what really matters is the maximal
simple branching automaton contained in C1 → B. There are two main cases: either
Cωk−1 < B ≤ Cωk (C3 ≤ B ≤ Cω for k = 1), or Cωω·2+(k−1) < B ≤ Cωω·2+k (F(0,2) ≤ B ≤

Cωω·2 for k = 1). In the first case A → B ≡ C−
ωk⊕A, in the second case A → B ≡ C−

ωω·2+k⊕A.
Since the proofs are entirely analogous, we will only consider the first case. We only need
to argue that A → B ≤ C−

ωk ⊕A, since the converse inequality is obvious.
Let us start with B = Cωk . Denote the head loop of Cωk by λ0. It is enough to show

a winning strategy in G(A → B,C−
ωk ⊕ A). Since no path from the head loop of A → B

to λ0 goes through an accepting loop, Duplicator may keep his critical token in the head
loop of C−

ωk as long as at least one of Spoiler’s tokens can reach λ0. Hence, for every token
produced by Spoiler in λ0, Duplicator can produce a doppelgänger. When none of Spoiler’s
tokens can reach λ0 any more, Duplicator moves his critical token to A and mimics Spoiler.

Let us now suppose that Cωk−1 < B < Cωk , k ≥ 2 (for k = 1 the proof is very similar).
The strategy for Duplicator in G(A → B,C−

ωk ⊕ A) is as follows. Let m be such that B ≤
Cωk−1m. For every token xi produced by Spoiler using the head loop of A → B, Duplicator
produces m tokens y1i , . . . , y

m
i using the head loop of C−

ωk . Then the tokens y1i , . . . , y
m
i

play against xi simulating Duplicator’s winning strategy from G(B, (C1 ⊕Cωk−1)m). When
Spoiler moves his critical token to A, Duplicator does the same and keeps mimicking Spoiler
in A.

Thus we managed to simplify A → B to C−
α ⊕ A where α = ωk or α = ωω·2+k. An

equivalent canonical automaton is provided by Lemma 13.3.

Now we are ready to deal with (ι, κ)-replication. Since Cωω·3 = C1
(0,1)
−→ Cωω+1 , the class

C is not closed by
(ι,κ)
−→. However, adding the three top canonical automata is enough to get

the closure property.

Proposition 13.6. For A,Aι, . . . , Aκ ∈ C, ι, κ < ω, one can find in polynomial time an

automaton in C′ equivalent to A
(ι,κ)
−→ Aι, . . . , Aκ.

Proof. Let B = A
(ι,κ)
−→ Aι, . . . , Aκ. If B admits any of the automata Cωω·3 , Cωω·3+1, Cωω·3+2,

then it is equivalent to the maximal one it admits (see Theorems 12.2 and 12.4). Let us
assume B admits none of the three automata above. Let us also assume that ι < κ.

1. If some Ai contains a (0, 1)-flower and some Aj contains a (1, 2)-flower, then B ≡
(F(ι,κ) ⊕ A) ∧ F(1,2) ∧ F(0,1). It is easy to show that (F(ι,κ) ⊕ A) ∧ F(1,2) ∧ F(0,1) ≤ B (c. f.
Lemma 9.1). We shall concentrate on the converse inequality. From the hypothesis that
B does not admit Cωω·3+1, it follows easily that κ must be odd and Aι, . . . , Aκ−1 must be
(1, 2) automata. Furthermore, since B does not admit Cωω·3 , Ak uses only ranks 1, 2, 3.
The strategy for Duplicator in G(B, (F(ι,κ) ⊕ A) ∧ F(1,2) ∧ F(0,1)) is analogous to the one
used in the proof of the previous proposition. In the component F(ι,κ) ⊕ A simply mimic
the behaviour of Spoiler’s critical token. In F(0,1), loop around the 1-loop whenever Spoiler
loops around the 1-loop of a (0, 1)-flower in Aκ (again, if the run is to be accepting, this may
happen only finitely many times), otherwise loop around 0-loop. For the strategy in F(1,2),
treat all the ranks appearing in Spoiler’s F(ι,κ) or A as 2’s, and the 3’s in Aκ as 1’s. Seen
this way, B is a (1, 2)-automaton, and by Theorem 12.2 Spoiler’s actions can be simulated
in F(1,2).
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2. If Ai contain only (1, 2)-flowers, then B ≡ (F(ι,κ) ⊕ A) ∧ F(1,2). This is proved just like
the first case.

3. If Ai contain only (0, 1)-flowers, then B ≡ (A
(ι,κ)
−→ Aι, . . . , Aκ−1, C1)∧F(0,1) (use case 4 or

5 to get a canonical form). Like in the first case, κmust be odd, Aι, . . . , Aκ−1 must be (1, 2)-
automata. Consequently, it must be Aκ that contains a (0, 1)-flower. Since Aκ contain no

F(0,2) (by the hypothesis no Ai does), Aκ = F(0,1). Again B ≥ ((A
(ι,κ)
−→ Aι, . . . , Aκ−1, C1) ∧

F(0,1)) is easy. The strategy for Duplicator in G(B, (A
(ι,κ)
−→ Aι, . . . , Aκ−1, C1) ∧ F(0,1)) is to

copy Spoiler’s actions in A
(ι,κ)
−→ Aι, . . . , Aκ−1, C1 and in F(0,1) keep record of all 1’s appearing

in Aκ (if the run is to be accepting, there may be only finitely many altogether).

4. If Ai contain no non-trivial flowers, ι = 0, and Aι contains a D2, then B ≡ (F(ι,κ)⊕A)∧
F(1,2). The inequality B ≤ (F(ι,κ) ⊕ A) ∧ F(1,2) is proved just like in the first case. Let us
see that the converse holds. Consider the game G((F(ι,κ) ⊕A)∧F(1,2), B) and the following
strategy for Duplicator. Copy Spoiler’s actions in F(ι,κ) ⊕ A, but whenever Spoiler enters
the 1-loop in (1, 2), loop once around 0-loop, move the extra token to the head loop of D2,
and keep looping around until Spoiler leaves his 1-loop. Then remove your extra token, and
so on. It is easy to see that the strategy is winning for Duplicator.

5. If Ai contain no non-trivial flowers and either ι 6= 0 or Aι contains no D2, then B ≡
F(ι,κ) ⊕A. To prove it, we have to describe the strategy for Duplicator in G(B,F(ι,κ) ⊕A).
During the whole play keep numbering the new tokens produced by Spoiler according to
their birth time. (As usual, the left token is considered a parent, the right token is born,
transitions of the form p −→ ⊤, q or p −→ q,⊤ do not produce new tokens.) The strategy
is as follows. While there are no new tokens in rejecting loops in Aι, . . . , Aκ, keep copying
Spoiler’s moves in his F(ι,κ). When the first new token, say xi1 , enters a 1-loop, start looping
around the 1-loop of your F(ι,κ) (the loop exists since ι < κ), and keep doing it until xi1
leaves the 1-loop. If it does not happen, Spoiler will lose. When it does happen, stop
looping around 1-loop. Investigate all the ranks used by Spoiler in (ι, κ)-flower while you
were simulating xi1 , choose the highest one, say k, and loop once a k-loop. Afterwords, if
there are no tokens in rejecting loops in Ai, copy Spoiler’s moves. Otherwise, choose the
token with the smallest number, say xi2 , start looping around the loop with the highest
rank 1 in your (ι, κ)-flower, and so on.

Let us see that if Spoiler does not enter A, he loses the game. If the run constructed
by Spoiler is to be rejecting, either the highest rank used infinitely often in F(ι,κ) is odd, or
some token stays forever in a rejecting loop in one of Aι, . . . , Aκ. In any case Duplicator’s
strategy guarantees a rejecting run for him as well. Let us suppose that Spoiler’s run is
accepting. If only finitely many new tokens entered rejecting loops in Aι, . . . , Aκ, then there
was a round such that from this round on Duplicator was simply mimicking Spoiler’s actions
in F(ι,κ) and so Duplicator’s run is also accepting. Suppose that infinitely many new tokens
visited rejecting loops in Aι, . . . , Aκ. We have assumed that either ι 6= 0 or Aι contains no
D2. In either case the ranks greater then 0 must have been used infinitely many times in
F(ι,κ). Consequently, the highest rank used in F(ι,κ) is greater then 1, and Duplicator’s run
is accepting despite infinitely many 1’s used in F(ι,κ).

Suppose now that Spoiler leaves F(ι,κ). Following the argument used in the proof of the
closure by ⊕, we may suppose that the simple automaton containing the head loop of A is at
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least a (ι, κ). When Spoiler enters A, he may produce no more tokens in Aι, . . . , Aκ. From
now on Duplicator should mimic Spoiler’s behaviour in his copy of A, handling rejecting
loops in Aι, . . . , Aκ in the usual way.

What is left is the case ι = κ. If κ is odd, B = A → A1. If κ is even, A0 must be a (1, 2)-
automaton. In the cases 2 and 4 proceed just like before. In the case 5, the automaton
A0 cannot contain D2. If A0 ∈ {C1,D1, C2}, then B ≡ (C1 ⊕ A) ∧ A0. If A0 = E1, then
B ≡ C1 ⊕ (A ∨ C1).

The following corollary sums up the closure results.

Corollary 13.7. The class of canonical automata C′ is closed by ∨, ⊕, ∧,
(ι,κ)
−→, and the

equivalent automaton can be found in polynomial time.

Proof. The claim is an almost immediate consequence of the preceding propositions. Only
the automata Cωω·3 , Cωω·3+1, Cωω·3+2 need special care: if the result of the operation
in question admits any of these automata, it is equivalent to the hardest one it admits
(Theorems 12.2 and 12.4).

14. Completeness

In this section we show that the canonical automata represent the ≡W -classes of all
deterministically recognisable tree languages. We will implicitly use Corollary 13.7 and the
Substitution Lemma (Lemma 5.5, page 12) on several occasions.

We will say that a transition is positive if one of its branches lies on an accepting loop,
and negative if one of its branches lies on a rejecting loop. Note that a transition may be
positive and negative at the same time. Recall the notion of replication (see page 7). We
say that a state is j-replicated if it is replicated by a j-loop. An automaton is j-replicated
if its initial state is j-replicated.

Finally, let us recall the lifting operation invented by Niwiński and Walukiewicz and
used to prove the decidability of the deterministic index hierarchy (Theorem 2.1, page 4).

Lemma 14.1 (Niwiński and Walukiewicz [7]). For each deterministic automaton A one can
compute (in polynomial time if the productive states are given) an automaton A ↑0↑1 . . . ↑n

such that L(A) = L(A ↑0↑1 . . . ↑n) and if a state q has the rank j ≤ n than q lies on a j-loop
of a (j, n)-flower.

Theorem 14.2. For every deterministic tree automaton there exists an equivalent canonical
automaton.

Proof. Let A be a deterministic tree automaton. From Theorem 12.2 (7) it follows that if
A admits Cωω·3+2, A ≡ Cωω·3+2. If A does not admit Cωω·3+2, then by Theorem 12.2 (5 and
6) if A admits Cωω·3+1, A ≡ Cωω·3+1. Otherwise L(A) ∈ ∆3 and if A admits Cωω·3 , then
A ≡ Cωω·3 (Theorem 12.4). In the remaining of the proof we will assume that A admits
none of these three automata. We will proceed by induction on the height of the DAG of
SCCs of A. Let X denote the root SCC of A. We will say that X contains a transition
p −→ p′, p′′, if X contains all three states, p, p′, and p′′. We consider four separate cases.
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1. X contains a positive transition. Observe that each state of A is replicated by an accept-

ing loop. Therefore, if A admits F(0,1), it must also admit C1
(0,0)
−→ F(0,1) = Cωω·3+1, which is

excluded by our initial assumption. Consequently, A is a (1, 2)-automaton (Theorem 2.2).
Without loss of generality we may assume that A uses only ranks 1 and 2.

By Theorem 12.2 (3 and 4), L(F(1,2)) is Π0
2-complete and L(A) ∈ Π0

2, which implies

that A ≤ F(1,2). If A admits D1 ⊕ C1, then it also admits C1
(0,0)
−→ D1 ⊕ C1, and so

A ≥ C1
(0,0)
−→ D1 ⊕ C1. From Theorem 12.2 (3) it follows that C1

(0,0)
−→ D1 ⊕ C1 ≡ F(1,2).

Consequently, A ≡ F(1,2).
Suppose that A does not admit D1 ⊕C1, but X contains a rejecting loop λ1. Let p1 be

a state on that loop. Since X contains a positive transition, it must contain an accepting
loop and, in particular, a state with rank 2, say p2. Since X is strongly connected, we may
find a loop λ2 going from p1 to p1 via p2. Since X only uses ranks 1 and 2, and rank(p2) = 2,
λ2 is accepting. Hence, λ1 and λ2 form a (1, 2)-flower. In consequence, A ≥ F(1,2). Hence,
A ≡ F(1,2).

Finally, suppose that X contains no rejecting loops and A does not admit D1⊕C1. By
Theorem 12.2 (2), L(A) ∈ Π0

1 and since L(C1 ⊕ D1) is Π0
1-complete, A ≤ C1 ⊕ D1. If A

admits D1 it also admits C1 ⊕D1, and so A ≡ C2. If A does not admit D1 it means that
it contains no rejecting loop. Hence, A accepts every tree and A ≡ C1.

2. X contains an accepting loop and a negative transition, but no positive transitions. Let
λ+ be an accepting loop in X and λX be a loop visiting all X’s nodes and containing
a branch of the (negative) transition contained in X. Since X does not contain positive
transitions, λX is rejecting. The loops λ+ and λX form a (0, 1)-flower. Hence, A admits
F(0,1). Furthermore, should A contain a (0, 2)-flower, it would obviously be replicated by
λX and A would admit C1 → F(0,2) = Cωω·3 , which contradicts our general hypothesis.
Hence, A does not admit F(0,2), which means A is a (1, 3)-automaton (Theorem 2.2, page
5). Without loss of generality we may assume that it uses only ranks 1, 2, 3.

By Theorem 12.2 (3 and 4), if A admits neither F(1,2) nor C1
(0,0)
−→ D1 ⊕ C1, then

A ≡ F(0,1). Suppose that A admits one of these two automata. Consider the game G(F(0,1)∧

F(1,2), A). Let x1 and x2 be Spoiler’s tokens in F(0,1) and F(1,2), respectively. Since X

contains a (negative) transition, Duplicator can split his critical token into y1 and y2 within
X, and move y1 to the (0, 1)-flower in X, and y2 to the (1, 2)-flower, or to the accepting loop

replicating a weak (1, 2)-flower (if A admits C1
(0,0)
−→ D1⊕C1). Then y1 should mimic x1, and

y2 should mimic x2 — either directly, or adapting the strategy from G(F(1,2), C1
(0,0)
−→ D1 ⊕

C1). Hence, Duplicator has a strategy to win the game. It follows that F(0,1) ∧ F(1,2) ≤ A.
For the converse inequality, let us call the states with rank 3 contained in a (0, 1)-flower

red, and the remaining blue. Since A does not admit C1
(0,0)
−→ F(0,1), no red state is replicated

by an accepting loop. Consider the game G(A,F(0,1) ∧ F(1,2)). For a strategy in F(1,2)

Duplicator should treat all the red states as if they had rank 1; the automaton A modified
this way does not admit F(0,1), so Duplicator may use the strategy given by Theorem 12.2
(3 and 4). In F(0,1) Duplicator should loop a 1-loop whenever some Spoiler’s token is in
a red state. Otherwise, Duplicator should loop a 0-loop. Let us see that this strategy is
winning.
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Suppose that Spoiler’s run is accepting. After changing the ranks of red states from 3
to 1 it is still accepting, so Duplicator’s token in F(1,2) visited an accepting path. By the
Replication Lemma (Lemma 9.1, page 21), the occurrences of red states in Spoiler’s run
may be covered by a finite number of paths. Furthermore, each of these paths is accepting,
so it may only contain a finite number of red states. Hence, there may be only finitely
many red states in Spoiler’s run and the path visited by Duplicator’s token in F(0,1) is also
accepting.

Suppose now, that Spoiler’s run is rejecting. If red states occurred only finitely often,
Spoiler’s run is still rejecting after changing their ranks to 1, so Duplicator’s token in F(1,2)

visited a rejecting path. If there were infinitely many red states in Spoiler’s run, Duplicator’s
token in F(0,1) visited a rejecting path.

Hence, A ≡ F(0,1) ∧ F(1,2) and by Lemma 9.2, A ≡ F(1,3).

3. X contains some transitions but no accepting loops. Let qi
σi−→ q′i, q

′′
i , i = 1, . . . , n be

all the transitions such that qi ∈ X and q′i, q
′′
i /∈ X. Let pj

σi,d−→ p′j j = 1, . . . ,m be all the

remaining transitions such that pj ∈ X and p′j /∈ X. We will call the automata (A)q′i , (A)q′′i
and (A)p′j the child automata of X. By the induction hypothesis we may assume that they

are in canonical forms. Let B = ((A)q′1 ∧ (A)q′′1 )∨ . . .∨ ((A)q′n ∧ (A)q′′n)∨ (A)p′1 ∨ . . .∨ (A)p′m .
It is not difficult to see that A is equivalent to C1 → B.

4. X contains no transitions. Recall that this means exactly that at most one branch of
every transition stays in X. First replace subtrees rooted in the target states of transitions
whose all branches leave X with one canonical automaton B just like above. Let (ι, κ) denote
the highest index of a flower contained in X. It is well defined, because a strongly connected
component admitting F(0,j) and F(1,j+1) must also admit F(0,j+1). We may assume that X
uses only ranks ι, . . . , κ, and that each j-loop is indeed a j-loop in a (j, κ)-flower (Lemma
14.1). For each j = ι, . . . , κ, let Bj be the alternative of all the child automata replicated
by a j-loop in X. By induction hypothesis, we may assume that Bι, . . . , Bκ and B are

canonical automata. Let A′ = B
(ι,κ)
−→ Bι, . . . , Bκ. We will show that A ≡ A′.

If ι = κ, the assertion is clear. Suppose that ι < κ. Obviously, A′ ≥ A. Let us see that
A′ ≤ A. Let A′′ denote the result of the following simplifications performed on A′.

• If some Bi contains a (0, 1)-flower and some Bj contains a (1, 2)-flower, replace Bκ with
a (1, 3)-flower.

• If some Bi contains a (0, 1)-flower and no Bj contains a (1, 2)-flower, replace Bκ with
a (0, 1)-flower.

• If some Bi contains a (1, 2)-flower and no Bj contains a (0, 1)-flower, replace Bκ with
a (1, 2)-flower.

• If Bι, . . . , Bκ admit no F(ι,κ) with ι < κ, remove Bκ.
• If ι = 0 and Bι admits D2, replace Bι with D2. Otherwise, remove Bι.
• Remove all Bι+1, . . . , Bκ−1.

Examination of the five cases considered in the proof of Proposition 13.6 reveals that A′

and A′′ have identical canonical forms. Consequently, A′ ≡ A′′, and it is enough to show
that A′′ ≤ A. Consider all (ι, κ)-flowers in X. Choose any one whose ι-loop replicates D2,
if there is one, or take any (ι, κ)-flower otherwise. Then, extend the κ-loop to a loop using
all the transitions in X. Denote this flower, together with the subtrees replicated by ι-loop
or κ-loop, by F . One can prove easily that A′′ ≤ F ⊕B, and obviously F ⊕B ≤ A.
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Algorithm 1 The canonical form of deterministic tree automata

1: if A admits Cωω·3+2 then

2: return Cωω·3+2

3: else if A admits Cωω·3+1 then

4: return Cωω·3+1

5: else if A admits Cωω·3 then

6: return Cωω·3

7: else

8: X := the root SCC of A
9: if X contains a positive transition then

10: if A admits F(1,2) or A admits ∅
(0,0)
−→ D2 then

11: return F(1,2)

12: else if A admits D1 then

13: return C2

14: else

15: return C1

16: end if

17: else if X contains a negative transition then

18: if X admits C1 then

19: if A admits F(1,2) or A admits ∅
(0,0)
−→ D2 then

20: return F(1,3)

21: else

22: return F(0,1)

23: end if

24: else

25: B := the alternative of the canonical forms of X’s children
26: return C1 → B
27: end if

28: else {X contains no transitions}
29: B := the alternative of the canonical forms of X’s non-replicated children
30: lift ranks in X
31: (ι, κ) := the index of the maximal flower
32: for j := ι to κ do

33: Bj := the alternative of the canonical forms of X’s j-replicated children
34: end for

35: return B
(ι,κ)
−→ Bι, . . . , Bκ

36: end if

37: end if

From the proof of the Completeness Theorem one easily extracts an algorithm to cal-
culate the canonical form of a given deterministic automaton (Algorithm 1).

Corollary 14.3. For a deterministic tree automaton, a Wadge equivalent canonical au-
tomaton can be calculated within the time of finding the productive states of the automaton.

Proof. It is easy to see that the size of the canonical forms returned by the recursive calls of
each depth is bounded by the size of A (up to a uniform constant factor). To prove the time
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complexity of the algorithm assume that the productive states of A are given. Checking if
A admits any of the automata mentioned in the algorithm can be easily done in polynomial
time. The operations on the automata returned by the recursive calls of the procedure
(lines 25, 26, 29, 33, and 35) are polynomial in the size of those automata, and by the
initial remark also in the size of the automaton. By Lemma 14.1 the lifting operation is also
polynomial. Therefore, when implemented dynamically, this procedure takes polynomial
time for each SCC. Processing the entire automaton increases this polynomial by a linear
factor.

Instead of a canonical automaton, the algorithm above can return its “name”, i. e.,
a letter C, D, or E, and an ordinal α ≤ ωω·3 + 2 presented as a polynomial in ωω, with
the coefficients presented as polynomials in ω. Since for such presentation it is decidable in
linear time if α ≤ β, as an immediate consequence of Corollary 14.3 and Theorem 10.5 we
get an algorithm for Wadge reducibility.

Corollary 14.4. For deterministic tree automata A, B it is decidable if L(A) ≤W L(B)
(within the time of finding the productive states of the automata).
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