2017

Programming distributed applications free from communication deadlocks and race conditions is complex. Preserving these properties when applications are updated at runtime is even harder. We present a choreographic approach for programming updatable, distributed applications. We define a […]

The notion of Schnorr randomness refers to computable reals or computable functions. We propose a version of Schnorr randomness for subcomputable classes and characterize it in different ways: by Martin L\"of tests, martingales or measure computable machines.

We study Hopf monoids in entropic semi-additive varieties with an emphasis on adjunctions related to the enveloping monoid functor and the primitive element functor. These investigations are based on the concept of the abelian core of a semi-additive variety variety and its monoidal structure in […]

Section:
Coalgebraic methods

The rule labeling heuristic aims to establish confluence of (left-)linear term rewrite systems via decreasing diagrams. We present a formalization of a confluence criterion based on the interplay of relative termination and the rule labeling in the theorem prover Isabelle. Moreover, we report on […]

We prove that all valid Herbrand equalities can be inter-procedurally inferred for programs where all assignments whose right-hand sides depend on at most one variable are taken into account. The analysis is based on procedure summaries representing the weakest pre-conditions for finitely many […]

In the semantics of programming languages one can view programs as state transformers, or as predicate transformers. Recently the author has introduced state-and-effect triangles which capture this situation categorically, involving an adjunction between state- and predicate-transformers. The […]

In sharp contrast to classical proof complexity we are currently short of lower bound techniques for QBF proof systems. In this paper we establish the feasible interpolation technique for all resolution-based QBF systems, whether modelling CDCL or expansion-based solving. This both provides the […]

Many privacy-type properties of security protocols can be modelled using trace equivalence properties in suitable process algebras. It has been shown that such properties can be decided for interesting classes of finite processes (i.e., without replication) by means of symbolic execution and […]

We define a novel calculus that combines a call-by-name functional core with session-based communication primitives. We develop a typing discipline that guarantees both normalisation of expressions and progress of processes and that uncovers an unexpected interplay between evaluation and […]

Disjoint union is a partial binary operation returning the union of two sets if they are disjoint and undefined otherwise. A disjoint-union partial algebra of sets is a collection of sets closed under disjoint unions, whenever they are defined. We provide a recursive first-order axiomatisation of […]

We present several new model-theoretic applications of the fact that, under the assumption that there exists a proper class of almost strongly compact cardinals, the powerful image of any accessible functor is accessible. In particular, we generalize to the context of accessible categories the […]

Subtyping in concurrency has been extensively studied since early 1990s as one of the most interesting issues in type theory. The correctness of subtyping relations has been usually provided as the soundness for type safety. The converse direction, the completeness, has been largely ignored in spite […]

We propose a distance between continuous-time Markov chains (CTMCs) and study the problem of computing it by comparing three different algorithmic methodologies: iterative, linear program, and on-the-fly. In a work presented at FoSSaCS'12, Chen et al. characterized the bisimilarity distance […]

Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. We then consider invariance under behavioral equivalence of MSO-formulas. More specifically, we investigate whether the […]

We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives. There exist two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize […]

The probability density function of a probability distribution is a fundamental concept in probability theory and a key ingredient in various widely used machine learning methods. However, the necessary framework for compiling probabilistic functional programs to density functions has only recently […]