
Logical Methods in Computer Science
Volume 18, Issue 3, 2022, pp. 35:1–35:23
https://lmcs.episciences.org/

Submitted Sep. 24, 2018
Published Sep. 21, 2022

ON SETS OF TERMS HAVING A GIVEN INTERSECTION TYPE

ANDREW POLONSKY a AND RICHARD STATMAN b

aAppalachian State University, Boone, NC, United States
e-mail address: polonskya@appstate.edu

bCarnegie Mellon University, Pittsburgh, PA, United States
e-mail address: rs31@math.cmu.edu

Abstract. Working in a variant of the intersection type assignment system of Coppo,
Dezani-Ciancaglini and Venneri (CDV) [CDV81], we prove several facts about sets of terms
having a given intersection type. Our main result is that every strongly normalizing term
M admits a uniqueness typing, which is a pair (Γ,A) such that
● Γ ⊢M ∶ A
● Γ ⊢ N ∶ A Ô⇒ M =βη N
We also discuss several presentations of intersection type algebras, and the corresponding
choices of type assignment rules.

Moreover, we show that the set of closed terms with a given type is uniformly separable,
and, if infinite, forms an adequate numeral system. The proof of this fact uses an internal
version of the Böhm-out technique, adapted to terms of a given intersection type.

1. Introduction

Since their introduction, intersection types have played a role of increasing prominence
in programming languages research. From completeness of type assignment [BCD83], to
characterization of strongly normalizing (and weakly normalizing) terms [DG03], to syntactic
presentations of domain models [AC98], including graph models and filter models [Roc18], to
classifications of certain classes of easy terms [CS12], to using types to count resources [KV17],
and many others — the theory of intersection types is now a well-established research field
of type theory.

Although enormously more expressive than simple types, intersection types enjoy most of
the fundamental properties expected from type systems, including stability under substitution
and reduction (Subject Reduction Theorem), decidability of type-checking, and some version
of principal type theorem.

In the present paper, we prove that, among many intersection types a term may have,
there will always be one for which the term is the only inhabitant, up to beta-eta equality.

The paper is organized as follows. First, we review the syntactic theory of intersection
types. Next, we discuss the concept of intersection type algebras from several perspectives,
with the goal of obtaining a unique representation of every intersection type. This leads us to
the alternative formulation of intersection type assignment based on “essential intersection

Key words and phrases: Intersection types, Uniqueness typing, Lambda Calculus.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(3:35)2022
© Andrew Polonsky and Richard Statman
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

35:2 Andrew Polonsky and Richard Statman Vol. 18:3

types” introduced by van Bakel [vB95]. Here we also establish a technical lemma to be
used in the proof of the main result. We then prove the uniqueness typing theorem in a
sequence of progressively more general forms. In Section 6, we review notions of separability
and adequate numeral systems. In the final section we prove that every intersection type is
separable.

2. Intersection type assignment system

We work in the system CDV of intersection types without the top element ω. CDV was
originally introduced by [CDV81] to obtain a type-theoretic characterization of solvable
terms. This system has several variants in the literature.

The modern presentation [BDS13] treats intersection ∩ as a binary type constructor on
par with the arrow type →. The set of types generated by these constructors is then imbued
with a preorder relation that is used in the subsumption rule. This formulation is convenient
for the construction of filter models.

In the original paper [CDV81], intersections and types belonged to different grammar
sorts, which were defined by mutual recursion. This formulation is convenient when types
are used for syntactic analysis of terms.

Yet another presentation, due to van Bakel [vB95], was introduced in his paper essential
intersection types. Here the type assignment rules are restricted as far as possible to remove
all redundancies. This system is most convenient for a proof-theoretic analysis of typability,
and is the one we will make use of in the proof of our main result.

The equivalence of these systems is shown in [vB95]. Rather than reproduce the proof
here, we will give a brief review of these systems, which should make the relationship between
them clear to the reader. A particular aspect to note is how the choice of type assignment
rules relates to the presentation of the underlying intersection type theory.

2.1. Intersection as a type constructor. We begin with the formulation in [BDS13].
Let A be a countable set whose elements are called type atoms. The set of intersection

types over A is given by the following grammar:

A ∈ T ∶∶= A ∣ T→ T ∣ T ∩T

Definition 2.1. The types are considered together with a preorder generated by the following
axioms and rules. This preorder relation will be used in the rules of type assignment.

A ≤ A A ∩B ≤ A A ∩B ≤ B (A→ B) ∩ (A→ C) ≤ A→ (B ∩C)

A ≤ B B ≤ C
A ≤ C

C ≤ A C ≤ B
C ≤ A ∩B

A′ ≤ A B ≤ B′
A→ B ≤ A′ → B′

Let V be a countable set whose elements are called term variables. The set of lambda
terms is generated by the grammar

M ∈ Λ ∶∶= V ∣ ΛΛ ∣ λV.Λ

A context is a finite function Γ ∶ V⇀ T. Contexts are denoted as Γ = {x1∶A1, . . . , xk∶Ak}.
We write Ctx for the set of all contexts.

Vol. 18:3 ON SETS OF TERMS HAVING A GIVEN INTERSECTION TYPE 35:3

We define the ternary typing relation (− ⊢ − ∶ −) ⊆ Ctx ×Λ × T by the following set of
inference rules. These include the rules of the simply typed lambda calculus:

Γ(x) = A
Γ ⊢ x ∶ A

Γ ⊢M ∶ A→ B Γ ⊢ N ∶ A
Γ ⊢MN ∶ B

Γ, x ∶ A ⊢M ∶ B
Γ ⊢ λx.M ∶ A→ B

together with two more rules treating intersection and subsumption:

Γ ⊢M ∶ A Γ ⊢M ∶ B
Γ ⊢M ∶ A ∩B

Γ ⊢M ∶ A A ≤ B
Γ ⊢M ∶ B

Note that the typability relation on terms is dependent on the type preorder ≤. Below,
we will analyze several ways of generating this preorder.

2.2. Intersection type algebras. The following concept is called an “extended abstract
type structure” in [AC98].

Definition 2.2. An intersection type algebra (ita) is a structure A = (T,≤,∩,⇒), where
(T,≤,∩) is a meet semilattice and ⇒ ∶ (T,≥) × (T,≤) → (T,≤) is a binary operation on T
that is antimonotonic in its first argument, monotonic in the second, and furthermore, for
each x ∈ T , the map (x⇒ −) ∶ (T,≤,∩)→ (T,≤,∩) preserves meets.

Definition 2.3. An intersection type preorder (itp) is a structure A = (P,≤,∩,⇒), where
(P,≤) is a preorder, x∩y is a maximal lower bound of x and y, ⇒ is as above, and a⇒ x∩y
is a maximal lower bound of a⇒ x and a⇒ y for all x and y.

If (P,≤,∩,⇒) is an intersection type preorder, then the equivalence relation

x ∼ y ∶= x ≤ y and y ≤ x
is a congruence with respect to ∩ and ⇒. The quotient P /∼ then has the structure of an
intersection type algebra.

At the same time, all of the standard examples, including those below, will indeed be
partial orders, with ≤ antisymmetric. For our purposes, it will therefore suffice to restrict
attention to intersection type algebras.

Examples 2.4. (1) Let D be a λ-model, combinatory algebra, or a general applicative
structure (magma). The powerset ℘(D) carries the structure of an ita, where

X ≤ Y ⇐⇒ X ⊆ Y
X ∧ Y = X ∩ Y
X ⇒ Y = {d ∈D ∣ ∀x ∈X.dx ∈ Y }

(2) Every Heyting Algebra is an ita, since Heyting implication is antimonotonic in its first
argument, and monotonic and ∧-preserving in the second.

(3) Every lattice-ordered group (AKA `-group) G = (G,≤,∧,∨, ⋅, e, (−)−1) is an ita, by taking
the semilattice to be inherited from the order, and defining

a→ b ∶= a−1b

The distributive law follows since

a→ (b ∧ c) = a−1(b ∧ c) = a−1b ∧ a−1c = (a→ b) ∧ (a→ c)
Similarly, a ≤ a′ implies

a→ b = a−1b ≥ (a′)−1b = a′ → b

35:4 Andrew Polonsky and Richard Statman Vol. 18:3

(4) The tropical semiring Z = (Z ∪ {∞},min,+), with + the semiring product, is an ita.
So is the `-group Z[x⃗] of semiring polynomials with variables in x⃗ and coefficients in Z.

(5) The set of types T can be turned into an ita by taking the quotient of the itp (T,≤,∩,→)
modulo the relation

A ∼ B ⇐⇒ A ≤ B & B ≤ A (2.1)

The algebra of types T = T/∼ is the free ita on the set A. Thus, every “type environment”
ρ ∶ A→ A , where A is an ita, extends uniquely to an ita homomorphism from T into A .

Moreover, this holds for any set of atoms A. For example, if A = {o}, then every type
A ∈ T[o] gives rise to a (min,+)-polynomial pA(x) ∈ Z[x], sending o to x.

3. Some presentations of free intersection type algebras

We will now review several ways that the free ita on a set of generators can be defined. This
will enable us to eventually obtain a much more manageable set of representatives for the
equivalence class of a type modulo the relation (2.1).

3.1. Inequational. The most obvious way to get the free ita on a given set A is to do what
was just discussed at the end of last section: The carrier of the ita is T/∼, where ≤ is given
by the rules of Definition 2.1, and ∼ is (2.1).

This tautologically results in a free ita on the set A.

3.2. Equational. Alternatively, we can make use of the fact that the concept of ita is
completely algebraic. Using the equivalence

x ≤ y ⇐⇒ x ∧ y = x (3.1)

the meet semilattice part of the definition can be captured by the rules of an idempotent
commutative semigroup (ICS):

x ∧ x = x (I)

x ∧ y = y ∧ x (C)

x ∧ (y ∧ z) = (x ∧ y) ∧ z (S)

The laws concerning → can also be expressed equationally:

(x→ y) ∧ (x→ z) = x→ (y ∧ z) (3.2)

(x→ y) ∧ (x ∧ z → y) = (x→ y) (3.3)

where the second law expresses anti-monotonicity of ≤ in the first argument, per (3.1).
Thus, the free ita can be seen as the set of all terms built from A using the binary

operations → and ∩, quotiented by the congruence generated by the equations above.

Vol. 18:3 ON SETS OF TERMS HAVING A GIVEN INTERSECTION TYPE 35:5

3.3. Rewriting-theoretic. Next, we could orient the above equations in an effort to obtain
a convergent presentation. While some of the rules, especially commutativity, prevent this
goal from being fully realized, rewriting theory can offer useful insights into the structure of
free itas — including intersection types, see [Sta14].

Of particular interest is the operation of taking the normal form of a type A ∈ T with
respect to the distributivity rule:

A→ (B ∩C) Ð→ (A→ B) ∩ (A→ C) (dist)

Taking the dist-normal form (DNF) of A ∈ T results in a type expression that can be
generated according to the two-phase grammar

A ∈ T→ ∶∶= X1 → ⋯→Xm → α (3.4)

X ∈ T∩ ∶∶= A1 ∩⋯ ∩An (3.5)

3.4. Proof-theoretic. Assuming only the ICS axioms, T obtains the structure of a semilat-
tice. This covers five of the seven rules in Definition 2.1. The subtyping order that results
from adding the two remaining rules can be also characterized by the following conditions.

A subtype occurrence inside a type expression is called positive if it occurs to the left of
an arrow an even number of times, and negative otherwise. It is strictly positive if it never
occurs to the left of an arrow.

Now, A ≤ B in the free ita iff A ≤ B can be derived via the following axioms and rule:

(1) A ≤ B if A = B according to the ICS rules.
(2) A[D[B ∩C]] ≤ A[D[B] ∩D[C]] if D[−] is strictly positive
(3) A[B ∩C] ≤ A[B] if A[−] is positive
(4) A[B] ≤ A[B ∩C] if A[−] is negative
(5) A ≤ B & B ≤ C Ô⇒ A ≤ C
By straightforward induction on derivations, we can show that the the free ita validates all
of the above rules and that, conversely, postulating these rules to all type expressions built
from → and ∩ results in an ita.

3.5. Set-theoretic. Finally, it is possible to “bake in” the laws of ICS/semilattice by using
finite sets directly in our representation language.

Recall that the free semilattice on the set A is described by the finite powerset of A,
where the union of two finite subsets defines the meet in the free semilattice.

Similarly, to construct a meet semilattice with a left-antitone, right-distributive binary
operation ⇒, it suffices to interleave taking finite subsets with introducing new elements
built with ⇒. Right-distributivity implies that, for any sets X and Y , we should have

X ⇒ Y = {X ⇒ y ∣ y ∈ Y }

The elements of the free ita on the set A can therefore be represented by finitely branching
trees, defined inductively by the following rule (the base case being obtained at k = 0):

X1 ⊆f A(A) ⋯ Xk ⊆f A(A) α ∈ A
X1 ⇒ ⋯⇒Xk ⇒ α ∈ A(A)

35:6 Andrew Polonsky and Richard Statman Vol. 18:3

As we see, this definition naturally makes a distinction between finite subsets of A(A)
— representing intersection types — and the elements themselves, representing arrow and
atomic types. This distinction of course reflects the same situation that we encountered
with distributivity normal forms in (3.4) and (3.5).

The partial order relation on A(A) can likewise be defined inductively, following the
generation of the elements of A(A) themselves:

X,Y ⊆f A(A) ∀y ∈ Y ∃x ∈X.x ≤ y
X ≤ Y

X1 ≤ Y1 ⋯ Xk ≤ Yk α ∈ A
Y1 ⇒ ⋯⇒ Yk ⇒ α ≤X1 ⇒ ⋯⇒Xk ⇒ α

(3.6)

Remark 3.1. The inductive rules generating elements of A(A) above do not yet give unique
representatives with respect to the relation (∼) = (≤ ∩ ≥), because some elements x of a set
X ⊆f A(A) can be redundant, in the sense that x ≥ ⋂{y ∈X ∣ y ≠ x}. In this case, we will
have X ∼X ′, where X ′ =X − {x}. This will also produce elements X→α ∼X ′→α.

The expressions could be made completely canonical by removing redundant elements
hereditarily from X and from all of its subexpressions. This can be done recursively, which
therefore yields an effective procedure for computing the canonical representative of [A]∼
for every intersection type A. However, we will not need this.

4. The essential intersection type assignment system

4.1. The original CDV type system. The two-layer grammar of types encountered in the
previous section is in fact much closer in spirit to the grammar used in the original [CDV81]
paper. Accordingly, the rules of type assignment in that system made a distinction between
types and sets/intersections. The latter were called sequences, and were considered modulo
permutations, which is an early version of the congruence (∼).

The original formulation made it possible to characterize solvable terms using intersection
types. This system however is not the optimal choice for our purposes, and an even more
minimal formulation has been proposed by van Bakel.

4.2. van Bakel’s Essential Intersection Types. The following type assignment system
closely follows the system of [vB95], with minimal adjustments for consistency.

The system follows a two-layer grammar:

A ∈ T ∶∶= A ∣ T∩ → T
X ∈ T∩ ∶∶= T ∩⋯ ∩T

When X = A1 ∩⋯ ∩Ak, we often write ⋂Ai for X. We may also write A ∈X to imply
that A = Ai for some i.

Every A ∈ T can be written as A =X1 → ⋯→Xk → α, for some Xi ∈ T∩ and α ∈ A. This
α is called the principal atom of A.

The preorder relation on T and T∩ is defined inductively as in (3.6). This coincides with
the usual preorder on intersection types; see [Sta14, (19)]. Since every type A ∈ T can be
seen as a singleton intersection ⋂{A} ∈ T∩, we freely mix both when using the ≤-symbol.
This is consistent; for example, A ≤ B ⇐⇒ {A} ≤ {B}.

In particular, if Γ ∶ V⇀ T∩ is a context, and A ∈ T, then we write Γ(x) ≤ A if Γ(x) ≤ {A}.
By the inductive rules (3.6), this means that B ≤ A for some B ∈ Γ(x).

Vol. 18:3 ON SETS OF TERMS HAVING A GIVEN INTERSECTION TYPE 35:7

The essential type assignment system is defined by the following rules.

Γ(x) ≤ A
Γ ⊢ x ∶ A

Γ, x ∶X ⊢M ∶ B
Γ ⊢ λx.M ∶X → B

Γ ⊢M ∶X → B {Γ ⊢ N ∶ A}A∈X
Γ ⊢MN ∶ B

Among the most attractive features of this systems are:

● All types are in distributive normal form.
● The subsumption rule is restricted to variables.

While these are serious restrictions, they do not change the set of typable terms:

Theorem 4.1. Γ ⊢CDV M ∶ A iff Γ ⊢M ∶ A′ in the essential system, where A′ ∼ A.

Proof. See Theorems 4.3–4.5 in [vB95] and the remark that follows.

Corollary 4.2. The full subsumption rule is admissible:

Γ ⊢M ∶ A A ≤ B
Γ ⊢M ∶ B

The following theorem is probably the most important fact about CDV. We will often
make use of it tacitly throughout the rest of the paper. For a proof, see [BDS13, 17.2.15(iii)].

Theorem 4.3. Γ ⊢M ∶ A for some Γ, A if and only if M is strongly normalizing.

Since the system is completely syntax-directed, the following lemma is also immediate.
(For an exact proof, see [BDS13, 14.1.9].)

Lemma 4.4 (Inversion Lemma).

(1) Γ ⊢ x ∶ A ⇐⇒ Γ(x) ≤ A
(2) Γ ⊢MN ∶ A ⇐⇒ ∃X = ⋂Bi. Γ ⊢M ∶ (X → A) & ∀i.Γ ⊢ N ∶ Bi
(3) Γ ⊢ λx.M ∶ A ⇐⇒ ∃B.A = (X → B) & Γ, x ∶X ⊢M ∶ B

Definition 4.5. Given Γ and ∆, put (Γ ⊎∆)(x) = {A ∣ A ∈ Γ(x)} ∪ {A ∣ A ∈ ∆(x)}.

Lemma 4.6 (Thinning). Let Γ be a context, A,B ∈ T. Let M be a beta normal form.
Suppose that the principal atom of B occurs neither in Γ nor in A. Then

Γ ⊎ y ∶ B ⊢M ∶ A Ô⇒ Γ ⊢M ∶ A

Proof. Recall that the set of beta normal forms can be generated by the following grammar
(which is obtained by excluding the redex pattern (λx.)◻ from the language of λ-terms):

Nβ ∶∶= xNβ⋯Nβ ∣ λx.Nβ (4.1)

We proceed by induction on the generation of M according to this grammar.

M = xM1⋯Mk: By applying the Inversion Lemma k times, we find {Xi}1≤i≤k so that

Xi = Bi,1 ∩⋯ ∩Bi,k(i)
Γ, y ∶ B ⊢ x ∶X1 → ⋯→Xk → A

(∀i∀j) Γ, y ∶ B ⊢Mi ∶ Bi,j
By inversion, (Γ, y ∶ B)(x) ≤X1 → ⋯→Xk → A.
But since the principal atom of B does not occur in A, case analysis on the inductive

rule for ≤ implies that we must actually have Γ(x) ≤X1 → ⋯→Xk → A.
In particular,

Γ ⊢ x ∶X1 → ⋯→Xk → A

35:8 Andrew Polonsky and Richard Statman Vol. 18:3

Moreover, we see that Xi occurs in Γ and hence Bi,j occurs in Γ, for all i and j. By
induction hypothesis, we thus also have

(∀i∀j) Γ ⊢Mi ∶ Bi,j
By the application rule, Γ ⊢ xM⃗ ∶ A.

M = λx.M ′: By inversion, we must have A =X → C, where

Γ, y ∶ B,x ∶X ⊢M ′ ∶ C
Since X and C are both subexpressions of A, the principal atom of B does not

occur in them either.
So the induction hypothesis applies directly, and we get

Γ, x ∶X ⊢M ′ ∶ C
By the abstraction rule, Γ ⊢ λx.M ′ ∶X → C.
That is, Γ ⊢M ∶ A.

Corollary 4.7. Let Γ and ∆ be contexts and suppose that Γ ⊎∆ ⊢M ∶ A.
If the principal type atoms of ∆ occur neither in Γ nor in A, then Γ ⊢M ∶ A.

Proof. By induction on ∆, using the previous lemma.

5. Uniqueness Typing

Definition 5.1. Let M ∈ Λ. A uniqueness typing for M is a pair (Γ,A) such that

(1) Γ ⊢M ∶ A
(2) Γ ⊢ N ∶ A Ô⇒ M =βη N

In this section, we will show that every strongly normalizing term admits a uniqueness
typing in CDV.

Notation 5.2.

(1) For M ∈ Λ, NFβ(η)(M) is the β(η)-normal form of M , if it exists.
(2) Nβ is the set of all β-normal forms.
(3) Nβη is the set of all βη-normal forms.
(4) SN is the set of all strongly normalizing terms.

We will now establish the following progression of claims.

Proposition 5.3. For every M ∈ Nβ there exists a context Γ and an intersection type A
such that

(1) Γ ⊢M ∶ A
(2) ∀N ∈ Nβ. Γ ⊢ N ∶ A Ô⇒ M ↠η N

Corollary 5.4. For every M ∈ Nβ there exists a context Γ and an intersection type A such
that

(1) Γ ⊢M ∶ A
(2) ∀N ∈ Λ. Γ ⊢ N ∶ A Ô⇒ NFβη(M) ≡ NFβη(N)
Theorem 5.5. For every M ∈ SN there exists a context Γ and an intersection type A such
that

(1) Γ ⊢M ∶ A

Vol. 18:3 ON SETS OF TERMS HAVING A GIVEN INTERSECTION TYPE 35:9

(2) ∀N ∈ Λ. Γ ⊢ N ∶ A Ô⇒ M =βη N

Proof of Proposition 5.3. Let M be given.
For every subterm N of M , let αN be a fresh type atom.
We shall again make use of the following grammar for beta normal forms:

Nβ ∶∶= xNβ⋯Nβ ∣ λx.Nβ (5.1)

We proceed by induction on the generation of M according to this grammar.

Case 1. M = xM1⋯Mk, k ≥ 0: (This includes the base case M = x.)
By induction hypothesis, there exist Γ1, . . . ,Γk,A1, . . . ,Ak such that

(1) Γi ⊢Mi ∶ Ai
(2) ∀N ∈ Nβ. Γi ⊢ N ∶ Ai Ô⇒ Mi↠η N
Let α be the unique type atom associated to the current subterm. Put

Γ = Γ1 ⊎⋯ ⊎ Γk ⊎ {x ∶ A1 → ⋅ ⋅ ⋅→ Ak → α}
A = α

Since Γ extends each Γi, by weakening we have Γ ⊢Mi ∶ Ai
By k uses of the application rule, we obtain Γ ⊢ xM⃗ ∶ α. That is, Γ ⊢M ∶ A.
Now let N ∈ Nβ and suppose Γ ⊢ N ∶ A.
We consider the possible shapes of N according to (5.1).
If N = λy.N ′, then applying the inversion lemma to Γ ⊢ N ∶ A yields that A must

be a function type X → A′, contradicting that A = α is an atom.
Thus N is an application: N = yN1⋯Nl.
Applying inversion to Γ ⊢ N ∶ A a sufficient number of times now yields that

Γ ⊢ y ∶ Y1 → ⋯→ Yl → A (5.2)

Γ ⊢ Ni ∶ B (1 ≤ i ≤ l,B ∈ Yi) (5.3)

By inversion on (5.2), we have Γ(y) ≤ Y1 → ⋯→ Yl → A.
However, the only element in the context Γ which contains the atom A = α is

A1 → ⋯→ Ak → α ∈ Γ(x)

So we must have y = x, l = k, N = xN1 . . .Nk, and Yi ≤ Ai for all i.
Since Ai is a singleton, this means that Bi ≤ Ai for some Bi ∈ Yi.
By (5.3), we have Γ ⊢ Ni ∶ Bi. By Corollary 4.2, it follows that

Γ ⊢ Ni ∶ Ai

By applying Lemma 4.6 to this judgment with y ∶ B being x ∶ A1 → ⋅ ⋅ ⋅ → Ak → α,
followed by Corollary 4.7 with ∆ being ⊎j≠i Γj , we find Γi ⊢ Ni ∶ Ai.

By induction hypothesis, we have Mi↠η Ni.
Now M = xM1⋯Mk ↠η xN1⋯Nk = N , completing the proof of this case.

Case 2. M = λx.M ′: By induction hypothesis, there exist Γ′,A′ such that
(1) Γ′ ⊢M ′ ∶ A′
(2) ∀N ′ ∈ Nβ. Γ′ ⊢ N ′ ∶ A′ Ô⇒ M ′↠η N

′
If x occurs in M ′, then by the free variable lemma, Γ′(x) is defined.

35:10 Andrew Polonsky and Richard Statman Vol. 18:3

Otherwise, in the definition below, let k = 1 and B1 = β, a fresh type atom.

X = Γ′(x) = B1 ∩⋯ ∩Bk
A =X → A′

Γ = Γ′ − {x ∶X}
By the typing rule for abstraction, we get Γ ⊢M ∶ A.

Now let N ∈ Nβ satisfy Γ ⊢ N ∶ A. We have two cases.
Case 2.1. N = λy.N ′: Then Γ ⊢ λy.N ′ ∶X → A′.

By inversion, we get Γ, y ∶X ⊢ N ′ ∶ A′.
In other words, Γ, x ∶X ⊢ N ′[y ∶= x] ∶ A′.
That is, Γ′ ⊢ N ′[y ∶= x] ∶ A′.
Now part 2 of IH yields that M ′↠η N

′[y ∶= x], hence

M = λx.M ′↠η λx.N
′[y ∶= x] =α λy.N ′ = N

Case 2.2. N = yN1⋯Nl: Then Γ′ − {x ∶X} ⊢ yN1 . . .Nl ∶X → A′.
By the free variable lemma, x ∉ FV(N).
By weakening, we also have Γ′ ⊢ N ∶X → A′.
Since Γ′ ⊢ x ∶X, application yields Γ′ ⊢ Nx ∶ A′.
By part 2 of IH, we get M ′↠η Nx.
Hence M = λx.M ′↠η λx.Nx→η N , where the last step uses x ∉ FV(N).

This concludes the proof of the statement.

Proof of Corollary 5.4. Let M ∈ Nβ be given.
By Proposition 5.3, let (Γ,A) be such that

∀N ∈ Nβ. Γ ⊢ N ∶ A Ô⇒ M ↠η N (5.4)

Let N ∈ Λ, and suppose Γ ⊢ N ∶ A. By Theorem 4.3, N is strongly normalizing.
Thus N ↠β NFβ(N).
By Subject Reduction for beta [BDS13, 14.2.3], Γ ⊢ NFβ(N) ∶ A.
Since η-reduction is SN, we also have NFβ(N)↠η NFβη(N).
By Subject Reduction for eta [BDS13, 14.2.8(i)], Γ ⊢ NFβη(N) ∶ A.
By (5.4), M ↠η NFβη(N). Hence NFβη(M) ≡ NFβη(N).

Proof of Theorem 5.5. Let M ∈ SN .
We proceed by induction on the longest reduction M ↠β NFβ(M).

Case 1. M ≡ NFβ(M): Immediate by Corollary 5.4.
Case 2.1. M ≡ C[(λx.P)Q]→ C[P [x ∶= Q]]↠ NFβ(M), x ∈ FV(P):

Let M ′ = C[P [x ∶= Q]].
By induction hypothesis, let (Γ,A) be such that

(1) Γ ⊢M ′ ∶ A
(2) ∀N ∈ Λ.Γ ⊢ N ∶ A Ô⇒ M ′ =βη N
Since x ∈ FV(P), (λx.P)Q is a λI-redex, and therefore validates the subject expansion
property [BDS, 14.2.5(i)].

Thus Γ ⊢M ∶ A as well, which completes this case since M =β M ′.
Case 2.2. M ≡ C[(λx.P)Q]→ C[P [x ∶= Q]]↠ NFβ(M), x ∉ FV(P):

Let M ′ = C[P [x ∶= Q]] = C[P].
By induction hypothesis, let (Γ,A) be such that

(1) Γ ⊢M ′ ∶ A

Vol. 18:3 ON SETS OF TERMS HAVING A GIVEN INTERSECTION TYPE 35:11

(2) ∀N ∈ Λ.Γ ⊢ N ∶ A Ô⇒ M ′ =βη N
Note that Q ∈ Nβ, for otherwise the redex (λx.P)Q would not be contracted in

the longest reduction M ↠β NFβ(M): a longer reduction could be obtained by first
contracting redexes still present in Q.

By Proposition 5.3, let (∆,B) be such that
(1) ∆ ⊢ Q ∶ B
(2) ∀V ∈ Nβ. ∆ ⊢ V ∶ B Ô⇒ Q↠η V

Without loss of generality, we may assume that the type atoms of ∆ and B are
disjoint from those of Γ and A.

By weakening, we have Γ ⊎∆ ⊢M ′ ∶ A.
Hence, we can also get Γ ⊎ ∆ ⊢ M ∶ A, by replacing the subderivation δ for the

subterm P as follows:
δ

P ∶ ψ
λx.P ∶ B → ψ Q ∶ B

(λx.P)Q ∶ ψ
Let N be given, and suppose Γ ⊎∆ ⊢ N ∶ A.
By subject reduction, Γ ⊎∆ ⊢ NFβη(N) ∶ A.
By the thinning lemma, Γ ⊢ NFβη(N) ∶ A.
By hypothesis 2 on (Γ,A) we obtain M →M ′ =βη N .

6. Separability and numeral systems

In the following section, we will prove that the closed inhabitants of an arbitrary intersection
type are uniformly separable. As a corollary, it will follow that whenever the set of terms
having this type is infinite, it forms an adequate numeral system. This section will review
these concepts and establish the necessary relationships between them.

6.1. Notations and basic notions.
We begin by establishing some notation and terminology about sets of lambda terms.

Notation 6.1.

● Let cn = λfz.fn(z) be the nth Church numeral.
● Let K = λxy.x, F = λxy.y be the standard encoding of booleans.
● Let Num = {cn ∣ n ∈ N} and Bool = {K,F}.

Notation 6.2. Let X,Y,Z ∈ Λ.

● X ○ Y = λz.X(Y z), where z#{X,Y }
● If X Then Y Else Z =XY Z
● Notx = If x Then F Else K
● M & N = If M Then N Else F

Let R ⊆ Λ ×Λ be a notion of reduction. For example, R could be β, η, βη, etc.

Notation 6.3. In the following, M ∈ Λ and S ⊆ Λ are arbitrary.

● M↓R = {N ∣M ↠R N}, S↓R = ⋃{M↓R ∣M ∈ S},
● M↑R = {N ∣ N ↠R M}, S↑R = ⋃{M↑R ∣M ∈ S},
● [M]R = {N ∣M =R N}, [S]R = ⋃{[M]R ∣M ∈ S},

35:12 Andrew Polonsky and Richard Statman Vol. 18:3

● S/=R is the set of equivalence classes {[M]R ∣M ∈ S}.

Remark 6.4.

● If S ⊆ Λ is a set of R-normal forms, then S↓R = S.
● If R is confluent (i.e., has the Church–Rosser property), then [S]R = (S↓R)↑R.

From now on, when the subscript R is omitted, all of the notions above will be taken
with respect to the notion of reduction R = βη.

For example, S↓ = {N ∣ ∃M ∈ S.M ↠βη N} is the closure of S under βη-reduction.

Definition 6.5. For a fixed, finite set of variables X, let

∶ Λ(X) ≃Ð→ N

be an effective, bijective Gödel coding of lambda terms with variables in X.

Notation 6.6.

● For M ∈ Λ(X), ⌜M⌝ = c#M ∈ Λ0 denotes the internal quote of M in the lambda calculus.

● For S ⊆ Λ(X), ⌜S⌝ = {⌜M⌝ ∣M ∈ S} ⊆ Λ0.
● For S ⊆ Λ(X), S# = {#M ∣M ∈ S} ⊆ N.

Notation 6.7. For any adequate coding, one can define combinators implementing the
following behavior, see [Pol11].

E⌜M⌝ =M
Q⌜M⌝ = ⌜⌜M⌝⌝

App⌜M⌝⌜N⌝ = ⌜MN⌝

Definition 6.8. Let S ⊆ Λ(X).
(1) S is closed under reduction if S↓ = S.
(2) S is closed under conversion if [S] = S.
(3) S is enumerable if the set of natural numbers S# is recursively enumerable.

Remark 6.9. If S is enumerable, there exists a total recursive function e(x) with range S#.
By Church’s Thesis, let E ∈ Λ0 λ-define e. Then S = {M0,M1, . . .}, where Eck = ⌜Mk⌝.

The following is the only property of the background theory λβη needed in this section.

Lemma 6.10. Suppose S is enumerable. Then so are S↓ and [S].

Proof. The claim follows from the fact that both sets are Σ1, which is immediate by definition:

S↓# = {#N ∣ ∃M ∈ S. M ↠ N}
[S]# = {#N ∣ ∃M ∈ S. M = N}

In more detail, for each M ∈ S, the sets M↓ = {N ∣M ↠ N} and [M] = {N ∣M = N} are
recursively enumerable, since one can effectively enumerate all finite reductions/conversions
starting from M . These enumerations are moreover effective in #M .

The sets S↓ and [S] are thus countable unions of r.e. sets, whose indices are themselves
recursively enumerable. It follows that these unions are r.e. as well.

Vol. 18:3 ON SETS OF TERMS HAVING A GIVEN INTERSECTION TYPE 35:13

6.2. Notions of separability.

Definition 6.11. Let S be a set of terms.

(1) A global separator for S (Kronecker delta) is a term δ such that

∀X,Y ∈ S. δXY =
⎧⎪⎪⎨⎪⎪⎩

K X = Y
F X ≠ Y

(2) A local separator for X ∈ S (Dirac delta) is a term δX such that

∀Y ∈ S. δXY =
⎧⎪⎪⎨⎪⎪⎩

K X = Y
F X ≠ Y

(3) A uniform separator for S is a family of terms {δX ∣X ∈ S} such that δX is a local
separator for each X ∈ S and the mapping #X ↦#δX is λ-definable.

Proposition 6.12. S admits a uniform separator iff there exists a term ∆ such that

∀X,Y ∈ S. ∆⌜X⌝Y =
⎧⎪⎪⎨⎪⎪⎩

K X = Y
F X ≠ Y

(6.1)

Proof.

(⇒): Suppose δX is a uniform separator, with D ∈ Λ0 satisfying Dc#X = c#δX for all X ∈ S.
Put ∆ = E ○D, where E is Kleene enumerator from Notation 6.7.
For each X,Y ∈ S, we get

∆⌜X⌝Y = E(D⌜X⌝)Y = E(Dc#X)Y = E(c#δX)Y = E⌜δX⌝Y = δXY =
⎧⎪⎪⎨⎪⎪⎩

K X = Y
F X ≠ Y

(⇐): Suppose ∆ satisfies (6.1).
For X ∈ S, δX ∶= ∆⌜X⌝ is clearly a local separator for X in S.
Moreover, the code #δX can be computed effectively from #X as follows.
Put D = λx.App⌜∆⌝(Qx); we claim this term λ-defines the map #X ↦ #δX . Indeed,

Dc#X =D⌜X⌝ = App⌜∆⌝(Q⌜X⌝) = App⌜∆⌝⌜⌜X⌝⌝ = ⌜∆⌜X⌝⌝ = ⌜δX⌝ = c#δX .

If S admits a global separator, we will call it separable.

Theorem 6.13. Suppose S is enumerable. Then S admits a global separator if and only if
S admits a uniform separator.

Proof. Let S = {Mn ∣ n ∈ N}, where #Mn = e(n) and e ∶ N → N is a recursive function,
λ-defined by E ∈ Λ0.

(⇒) Suppose δ is a global separator.
Then ∆ ∶= δ ○ E = λxy.δ(Ex)y satisfies (6.1).

(⇐) Suppose S admits a uniform separator; let ∆ ∈ Λ satisfy (6.1).
Using a fixed point combinator, define the term

Findnx = If ∆(En)x Then n Else Find (Succn)x
where Succ = λnfz.f(nfz) is the successor operator on the Church numerals.

Now put δ = ∆ ○E ○ (Findc0). We claim that δ is a global separator.
Let X,Y ∈ S. Since S = {Mn ∣ n ∈ N}, there exists n with X ≡α Mn.

35:14 Andrew Polonsky and Richard Statman Vol. 18:3

Let m be the least n ≥ 0 with the property that X =βη Mn. Then

Findc0X = cm
Finally, we have

δXY = ∆(E(Findc0X))Y = ∆(Ecm)Y = ∆(c#Mm)Y = ∆⌜Mm⌝Y =
⎧⎪⎪⎨⎪⎪⎩

K Mm = Y
F Mm ≠ Y

Since Mm =X, this completes the proof.

The following observation illustrates why studying separable sets S ⊆ Λ(X) is often
restricted to closed terms, with X = ∅.

Proposition 6.14. Let S ⊆ Λ. If some term M ∈ S has a head variable that is free, then
either S is not separable, or [S] = [M].

Proof. Suppose x ∈ FV(M) is the head variable of M . Then M[x ∶= Ω] is unsolvable.
If there was a separator δ for S, then we would have δMM = K, hence

δMM[x ∶= Ω] = K[x ∶= Ω] = K

By Genericity Lemma [Bar85, Prop. 14.3.24], δxy = K. Hence M =X for all X ∈ S.

6.3. Numeral Systems.
An adequate numeral system is an encoding of natural numbers inside the lambda

calculus which allows all partial recursive functions to be represented.
The following definition combines [Bar85, Def.6.4.1] and [Bar85, Prop.6.4.3]. See

also [SB05, Def.1.9].

Definition 6.15. An adequate numeral system (a.n.s.) is a sequence of terms {Nk ∣ k ∈ N}
such that there exist terms S,P,Z ∈ Λ satisfying, for all k ≥ 0,

SNk = Nk+1 (6.2)

PNk+1 = Nk (6.3)

ZNk =
⎧⎪⎪⎨⎪⎪⎩

K k = 0

F k ≠ 0
(6.4)

Classically, numeral systems are considered up to beta equality. Here we are interested in
analyzing sets of the form Λ(Γ,A) = {M ∈ Λ ∣ Γ ⊢M ∶ A}, which are closed under reduction,
but not necessarily conversion. This motivates the following notion.

Definition 6.16. A set S ⊆ Λ admits a.n.s. structure if there exists an a.n.s. N = {Nk ∣ k ≥ 0}
such that [S] = [N].

Example 6.17. The sequence of Church numerals {c0,c1, . . .} is an adequate numeral
system. We call it the standard numeral system. We denote by Succ, Pred, and Z the
standard terms satisfying (6.2), (6.3), and (6.4), respectively.

Consequently, the sets Num and [Num] admit a.n.s. structure.

Vol. 18:3 ON SETS OF TERMS HAVING A GIVEN INTERSECTION TYPE 35:15

Definition 6.18. Let S0, S1 ⊆ Λ. A definable isomorphism between S0 and S1 is a pair of
terms U+, U− ∈ Λ such that, for all M ∈ S0,N ∈ S1:

U+M ∈ [S1], U−(U+M) =M (6.5)

U−N ∈ [S0], U+(U−N) = N (6.6)

The characterization of numeral systems below is related to [SB05, Thm.1.12].

Theorem 6.19. Let S ⊆ Λ(X). The following are equivalent.

(1) S admits a.n.s. structure.
(2) There exists a definable isomorphism between S and the standard numeral system Num.
(3) [S] is enumerable, separable, and S/=βη is infinite.

Proof.

(1) ⇒ (2): Suppose [S] = [{Nk ∣ k ∈ N}], and let S, P , and Z be terms satisfying (6.2),
(6.3), and (6.4), respectively.

Using the operations Succ,Pred,Z available for the standard numerals, together
with a fixed point combinator, define

U+m = If Zm Then c0 Else Succ(U+(Pm))
U−n = If Zn Then N0 Else S(U−(Predn))

Conditions (6.5) and (6.6) follow for all M = Nk and N = ck by simultaneous
induction on k. Since [S] = [{Nk ∣ k ∈ N}], this covers all possibilities for M and N .

(2) ⇒ (3): Let (U+, U−) be a definable isomorphism between S and Num .
Let S′ = {U−ck ∣ k ∈ N}. Clearly, S′ is enumerable.
Moreover, [S] = [S′]. Each X ∈ S is convertible to U−(U+X) ∈ [S′]. Similarly, each

X ′ ∈ S′ is of the form U−ck for some k, and this is in [S] by (6.6).
By Lemma 6.10, [S] is enumerable.
[S]/= is infinite, since U−ck = U−cl ⇒ U+(U−ck) = U+(U−cl)⇒ ck = cl ⇒ k = l.
Finally, a global separator for S can be obtained by transporting the global separator

for Num over the isomorphism.
More precisely, let D λ-define the (primitive) recursive negated equality predicate:

Dckcl =
⎧⎪⎪⎨⎪⎪⎩

c0 k = l
c1 k ≠ l

Now put δxy = Z(D(U+x)(U+y)), where Z is the zero tester on Num .
Then δXY ∈ [Bool] for all X,Y ∈ S and δXY = K iff X = Y .

(3) ⇒ (1): Let S ⊆ Λ(X) with S# = {e(n) ∣ n ∈ N} be infinite modulo βη, with separator δ.
Giving S the structure of an a.n.s. amounts to using δ to remove duplicates from

the enumeration {Mn ∣ n ∈ N}, where e(n) = #Mn.
We let N0 be the first term in the enumeration: N0 =M0.
The zero test Z is then given by Z = δN0; this clearly satisfies (6.4).
To define the successor and predecessor operations we will require auxiliary functions.
First, let E λ-define e. Let E∗ = E ○E. Note that

E∗ck = E(Eck) = Ec#Mk
= E⌜Mk⌝ =Mk

35:16 Andrew Polonsky and Richard Statman Vol. 18:3

Now, define combinators satisfying

Occursxn = If δx(E∗n) Then K Else (If Zx Then F Else Occursx (Predn))
Findpn = If p(E∗n) Then n Else Findp (Succn)

Sx = let (k = Find(δx)c0) in E∗(Find (λy.Not(Occurs y k))k)
Px = If δxN0 Then x Else E∗(Find (λy.δ(Sy)x)c0)

Given N , the term SN first finds the least k such that N =Mk; it then outputs
N ′ = Ml where l > k is the least index such that N ′ ≠ Mi for all i < k. This makes
{Nk ∣ k ∈ N}, where Nk = SkN0, into an adequate numeral system.

Finally, one verifies (6.3) by induction on k.

Remark 6.20. The above theorem cannot be strengthened to conclude that S itself is
enumerable, because one can choose representatives of conversion classes non-computably.
For example, there are uncountably many S with [S] = [Num]. Most of these sets are not
enumerable.

7. Intersection types are separable

In this section, we show that for any intersection type A, the set of closed terms of type A
is separable. Since typability is recursively enumerable, Theorem 6.19 implies that, when
this set is infinite modulo =βη, it can be given the structure of an adequate numeral system.

Let Λ(Γ,A) = {M ∈ Λ ∣ Γ ⊢M ∶ A}.
It is a consequence of Proposition 6.14 that if Λ(Γ,A) contains two terms that only

differ by a free variable, then they cannot be separated, hence our restriction to Γ = ∅. Open
terms M ∈ Λ(Γ,A) will however need to be considered in constructing the separator, as they
will appear as subterms of M below abstractions.

It remains to construct this separator. By Theorem 6.13, noting again that Λ(∅,A) is
enumerable, it suffices to construct a uniform local separator. Indeed, the definition below
will furnish a term ∆ such that

∀M,N ∈ Λ(∅,A). ∆⌜M⌝N =
⎧⎪⎪⎨⎪⎪⎩

K M = N
F M ≠ N

(7.1)

We first sketch the construction informally, to give the reader an intuitive picture of
how such an algorithm might work. Afterwards, we internalize it inside the lambda calculus,
providing witnessing terms for every step using elementary functional combinators.

7.1. Informal description. Suppose we are given Γ,A,M , where

● Γ = {x1 ∶ Ξ1, . . . , xk ∶ Ξk} with Ξi ⊆f T(A);
● A = A1 → ⋯→ Aa(A) → α(A);
● M = λxk+1 . . . xl.vM1⋯Mm, with Mi ∈ Λ(X), X = {x1, . . . , xl}, and v ∈X.

To determine whether a given term N ∈ Λ(Γ,A) is convertible with M , we will execute
the following algorithm, which is a variation of the classical “Böhm-out” procedure:

(1) Check whether the head variable of N is v;
(2) Writing N = λxk+1 . . . xl′ .vN1⋯Nm′ , check whether m′ − l′ =m − l;
(3) Eta-expand M or N until their number of children match, so that m =m′;

Vol. 18:3 ON SETS OF TERMS HAVING A GIVEN INTERSECTION TYPE 35:17

(4) Recursively check whether Mi is convertible with Ni.

Notice, however, that the term N is not presented to us with a code; rather, the steps
above must be applied to a pure variable ν ∈ V, such that, in the event that ν gets replaced
with an actual N ∈ Λ(Γ,A), we will have ∆⌜M⌝ν[ν ∶= N] equal K if M = N , and F otherwise.

Let us now elaborate the above steps.
By Theorem 4.3, there is no loss of generality in assuming that M,N ∈ Nβ.

(1) To check whether the head variable of N is v, we apply ν to a sequence of terms X⃗.
Each Xi, once substituted for a variable at a particular position, will capture all possible
arguments of xk+i, and will produce a tuple from which the index ⌜k + i⌝ = ck+i of xk+i
can be easily extracted.

Those xi with i ≤ k will have already been substituted by such terms; their occurrence
in N will therefore allow ⌜i⌝ to be extracted effectively as well.

(2) Once v is confirmed as the head variable, we will need to compare the Böhm rank of M
and N , namely, whether the difference in their lambda prefix matches the difference in
the number of terms applied to the head variable.

Since both terms were assumed to be typable, there are finitely many possibilities for
the arity of N , and a separator can be effectively constructed to separate M from N
based on whether their arity is different.

(3) If the previous two steps are successful, the algorithm will implicitly η-expand M to
match the arity of A exactly.

Specifically, by Inversion Lemma, from Γ ⊢M ∶ A we conclude that the length of the
lambda prefix of M is bounded by the arity of A, so that l ≤ a(A).

This allows us to replace M with its eta-expansion without affecting typability:

M =η M ′ = λxk+1 . . . xk+a(A).vM1⋯Mmxl+1⋯xk+a(A)
(Note that this eta expansion of M does yet result in M and N having the same

lambda prefix. The issue is that, the head variable v of N is to be replaced by a tupler
that is designed to capture the maximum number of arguments that v could possibly
have, a(v), while M might be using a declaration for v with a lower arity.)

(4) Nevertheless, the terms Xi that are (were) substituted for xi in N allow easy access to
the children N1, . . . ,Nm′ — or rather, to their substitution instances Nσ

j , where

Nσ
j = Nj[X⃗/x⃗].

We will therefore be able to extract these instances and recursively invoke the algorithm
on Mj and Nσ

j .

Notice that the above procedure is effective in Γ, A, and M . It remains to argue why
this procedure is guaranteed to terminate.

Notation 7.1. Let M ∈ Nβ, A ∈ T. The heights of M and A are defined recursively by

∣x∣ = 0 ∣α∣ = 0

∣λx⃗.yM⃗ ∣ = 1 +max
i

{∣Mi∣} ∣⋂Ai → B∣ = max(∣B∣,1 +max
i

{∣Ai∣})

The construction is proved correct by induction on the pair (∣M ∣, ∣A∣), ordered lexico-
graphically. Notice that every recursive call decrements the height of M , until a variable is
reached. After that, every recursive call decrements the height of the type A until an atom
is reached. At that point, the recursion stops.

35:18 Andrew Polonsky and Richard Statman Vol. 18:3

More precisely, once the algorithm reaches a variable in M , there are only a finite
number of levels that need to be checked to determine whether N is an eta-expansion of M .
This is due to the following observation.

Lemma 7.2. Let X ↠η x be an eta expansion of x that is in beta normal form.
Suppose Γ ⊢X ∶ A. Then ∣X ∣ ≤ ∣A∣ ≤ ∣Γ(x)∣.

Proof. That ∣X ∣ ≤ ∣A∣ is a straightforward induction on X.

Base case: Let X = x. Then ∣X ∣ = 0 ≤ ∣A∣.
Induction: Let X = λy1 . . . yk.xY1⋯Yk, with Yi↠η yi.

By applying the Inversion Lemma k times, we find that A = A1 → ⋯ → Ak → B,
where B ∈ T, Ai ⊆ T, and

Γ, y1 ∶ A1, . . . , yk ∶ Ak ⊢ xY1⋯Yk ∶ B (7.2)

Applying inversion k times more, we find B1 → ⋯→ Bk → B ∈ Γ(x) with

(∀T ∈ Bi) Γ, y1 ∶ A1, . . . , yk ∶ Ak ⊢ Yi ∶ T
By induction hypothesis, for each i, ∣Yi∣ ≤ ∣Ai∣. Thus,

∣X ∣ = 1 +max{∣Y1∣, . . . , ∣Yk∣} ≤ 1 +max{∣A1∣, . . . , ∣Ak∣}
≤ max{1 + ∣A1∣, . . . ,1 + ∣Ak∣, ∣B∣} = ∣A∣

To see that ∣A∣ ≤ ∣Γ(x)∣, apply subject reduction for eta [BDS13, 14.2.8(i)] to obtain that
Γ ⊢ x ∶ A. By inversion, A ∈ Γ(x). Hence, ∣A∣ ≤ maxT ∈Γ(x) ∣T ∣ = ∣Γ(x)∣.

Finally, before spelling out the above procedure explicitly, let us immediately point out
what is at once a simplification and a generalization of it.

Instead of assuming that N ∈ Λ(Γ,A), the only hypothesis we actually need about N is
that N ∈ Λ(Γ,B) for some B, and the arities of all subterms of N are uniformly bounded
by a constant. This observation means that the local separator for M actually works on a
bigger domain than Λ(Γ,A). (However, it is uniform only on that domain.)

With this insight, we can modify the Böhm-out proof above to always use tuples of the
same length.

7.2. Construction of ∆.
The term ∆ will be defined in terms of a number of auxiliary functions, the most

important of which recurses through the syntactic tree of ⌜M⌝ carrying along the context Γ
to keep track of the free variables as they are substituted into the second term N .

Notation 7.3.

● ⟨X1, . . . ,Xk⟩ = λz.zX1⋯Xk, where z ∉ FV(Xi).
● Unk = λx0 . . . xn.xk, with 0 ≤ k ≤ n.
● Vk = λz0 . . . zk.⟨z0, . . . , zk⟩.
● Xk(Y) =X(X(⋯(XY))), with k Xs.
● XY ∼k =XY⋯Y , with k Y s.
● (let x =M in N) = (λx.N)M

Some of the following combinators are defined by the specification they must satisfy. In
all cases, the specifications are met by simple functional programs, easily implemented in a
language like Haskell. By Church’s Thesis, these terms are all λ-definable.

Vol. 18:3 ON SETS OF TERMS HAVING A GIVEN INTERSECTION TYPE 35:19

For example, the first two terms are actually ternary functions, whose implicit first
argument takes as input a Church numeral cn = ⌜n⌝. They can be defined by Iter = I,
Apps = λnfx.n⟨x⟩f ; then Itern = Iter⌜n⌝ and Appsn = Apps⌜n⌝.

IternFX = Fn(X)
AppsnFX = FX∼n

mapnF ⟨X1, . . . ,Xn⟩ = ⟨FX1, . . . , FXn⟩
reversen⟨X1, . . . ,Xn⟩ = ⟨Xn, . . . ,X1⟩

n
?=m =

⎧⎪⎪⎨⎪⎪⎩

K n =m
F n ≠m

[m,n] = ⟨⌜m⌝, ⌜m + 1⌝, . . . , ⌜n − 1⌝, ⌜n⌝⟩ (m ≤ n ∈ N)
∀x ∈ ⟨X1, . . . ,Xk⟩.P [x] = P [X1] & ⋯ & P [Xk]

For the next part of the definition, we will fix a bound b ∈ N representing the maximum
arity of any type subexpression in A, and therefore also the maximum length of an abstraction
sequence or application sequence inside an inhabitant of A.

So let b ∈ N be fixed.
The following combinators will help us compute the Böhm rank of a term N without

looking at its code. The Böhm rank is the quantity n − l, where N = λx1 . . . xl.yN1⋯Nn.
The term Xi will be the tupler substituted for the context variable xi in N ; it will

contain ⌜i⌝ as the first element of the tuple, so that we can easily extract the index of the
variable that created it, allowing us to compare head variables of M and N .

Definition 7.4. Define the following terms:

(1) For any Z ∈ Λ, let QZ = K2b+1(Z).
(2) For any Z ∈ Λ, let Zc⃗ = reverse2b+1[0,2b]Z = Zc2bc2b−1⋯c1c0.
(3) Xi = Vb⌜i⌝ = λz1 . . . zb.⟨⌜i⌝, z1, . . . , zb⟩
(4) σi is the substitution [x1 ∶=X1, . . . , xk ∶=Xk].

Lemma 7.5.

(1) Let N = λx1 . . . xl.xiN1⋯Nn with 1 ≤ i ≤ l ≤ b and 0 ≤ n ≤ b.Then NQ∼b+1
Z c⃗ = Zcb+n−l⋯c0.

(2) Let N = λx1 . . . xl.XiN1⋯Nn with 0 ≤ l ≤ b and 0 ≤ n ≤ b. Then NQ∼b+1
Z c⃗ = Zcb+n−l⋯c0.

Proof. (1) We compute

NQ∼b+1
Z c⃗ = QZN⃗ ′Q∼b+1−l

Z c⃗, N ′
j = Nj[Q⃗Z/x⃗]

= K2b+1(Z)N⃗ ′Q∼b+1−l
Z c⃗

= K2b+1−n(Z)Q∼b+1−l
Z c2b⋯c0

= K2b+1−n−(b+1−l)(Z)c2b⋯c0

= Kb−n+l(Z)c2b⋯c0

= Zc2b−(b−n+l)⋯c0

= Zcb+n−l⋯c0

35:20 Andrew Polonsky and Richard Statman Vol. 18:3

(2) We compute

NQ∼b+1
Z c⃗ =XiN⃗

′Q∼b+1−l
Z c⃗, N ′

j = Nj[Q⃗Z/x⃗]
= ⟨⌜i⌝,N ′

1, . . . ,N
′
n,QZ , . . . ,QZ⟩Q∼b+1−l−(b−n)c⃗

= QZ⌜i⌝N⃗ ′Q∼(b−n)
Z Q

∼b−l−(b−n)
Z c⃗

= K2b+1(Z)⌜i⌝N⃗ ′Q∼b−l
Z c⃗

= K2b−n−(b−l)(Z)c⃗
= Kb−n+l(Z)c2b⋯c0

= Zc2b−(b−n+l)⋯c0

= Zcb+n−l⋯c0

Definition 7.6.

(1) Bohm− = λν.νQ∼b+1
λx.IterxKxc⃗

(2) Bohm+ = λν.c−⌜2b⌝(Bohm−ν), where c− λ-defines truncated subtraction.

Lemma 7.7. Let N ∈ Λ(Γ,B), so that the maximum sequence of lambdas and applications
in N is bound by b = ∣Γ∣. Assume furthermore that Γ = {x1 ∶ Ξ1, . . . , xk ∶ Ξk}.

Let Nσk = N[σk] = N[X⃗/x⃗].
Suppose further that N = λxk+1 . . . xk+l.xiN1⋯Nm, with 1 ≤ i ≤ k + l.

(1) Bohm−Nσ = ⌜b + n − l⌝
(2) Bohm+Nσ = ⌜b + l − n⌝

Proof.

Bohm−Nσk = NσkQ∼b+1
λx.IterxKxc⃗

= (λx.IterxKx)cb+n−l⋯c0 Lemma 7.5

= Itercb+n−l Kcb+n−l cb+n−l−1⋯c0

= Kb+n−l(cb+n−l)cb+n−l+1⋯c0

= cb+n−l
= ⌜b + n − l⌝

Bohm+Nσ = c−⌜2b⌝(Bohm−Nσ)
= ⌜2b − (b + n − l)⌝
= ⌜b − n + l⌝

Definition 7.8. (1) feed k = λν.b+ = Bohm+ν ∈ νXk+1⋯Xk+b+
(2) hvar k = ⟨Ub0⟩ ○ feed k
(3) child k,j = ⟨Ubj⟩ ○ feed k

Lemma 7.9. Let N ∈ Λ({x1, . . . , xk}). Write N = λxk+1 . . . xk+l.xiN1⋯Nn.
Suppose the arities in N are hereditarily bound by b. Then

(1) feed kN
σk = ⟨⌜i⌝,Nσk+l

1 , . . . ,Nσk+l
n ,Xk+l+1, . . . ,Xk+b+l−n⟩

(2) hvar kN
σk = ⌜i⌝

(3) child k,jN
σk = Nσk+b

j , with 1 ≤ j ≤ b + l − n.

Vol. 18:3 ON SETS OF TERMS HAVING A GIVEN INTERSECTION TYPE 35:21

Proof.

feed kN
σk = b+ = Bohm+Nσk ∈ NσkXk+1⋯Xk+b+

= b+ = ⌜b + l − n⌝ ∈ NσkXk+1⋯Xk+b+
= NσkXk+1⋯Xk+b+l−n
= (λxk+1 . . . xk+l.xiNσk

1 ⋯Nσk
n)Xk+1⋯Xk+l+b−n

=XiN
σk
1 ⋯Nσk

n [Xk+j/xk+j]1≤j≤lXk+l+1⋯Xk+l+b−n
=XiN

σk+l
1 ⋯Nσk+l

n Xk+l+1⋯Xk+l+b−n
= (λz1⋯zb.⟨⌜i⌝, z1, . . . , zb⟩)Nσk+l

1 ⋯Nσk+l
n Xk+l+1⋯Xk+l+b−n

= ⟨⌜i⌝,Nσk+l
1 , . . . ,Nσk+l

n ,Xk+l+1, . . . ,Xk+l+b−n⟩

hvar kN
σk = (⟨Ub0⟩ ○ feed k)Nσk

= (λz.zUb0)(feed kNσk)
= feed kN

σkUb0

= ⟨⌜i⌝,Nσk+l
1 , . . . ,Nσk+l

n ,Xk+l+1, . . . ,Xk+l+b−n⟩Ub0
= ⌜i⌝

child k,jN
σk = ⟨Ubj⟩(feed kNσk)

= feed kN
σkUbj

= ⟨⌜i⌝,Nσk+l
1 , . . . ,Nσk+l

n ,Xk+l+1, . . . ,Xk+l+b−n⟩Ubj

=
⎧⎪⎪⎨⎪⎪⎩

Nσk+l
j 1 ≤ j ≤ n

Xj−l+n j > n

We are finally ready to define the separator. Given a term ⌜M⌝, it begins by checking
whether M is a variable. If so, it invokes an auxiliary function that checks whether a given
argument N (given directly, without the code) is a finite-depth eta expansion of M . By
Lemma 7.2, this depth can be bounded uniformly from the context Γ. Thus, the auxiliary
function simply runs the same separator procedure with a termination counter. Since the
term M is finite, this procedure is guaranteed to terminate.

∆⌜M⌝N = Ψ0⌜M⌝N (M,N ∈ Λ(∅,A))

Ψk⌜λxk+1 . . . xl.xiM1⋯Mn⌝ν = i
?= hvar ν & b + l − n ?= Bohm−ν

& ∀j ∈ ⟨⌜1⌝, . . . ,Bohm+ν⟩.Ψk+b⌜Mj⌝(child jν)
Ψk⌜xi⌝ = Φk,∣A∣+1⌜i⌝

Φk,d⌜i⌝ν = i
?= hvar ν & 0

?= Bohm−ν
& ∀j ∈ [1, b].Φk+b,d−1⌜i + j⌝(child jν)

Φk,0⌜i⌝ν = K

Lemma 7.10. Suppose M,N ∈ Λ(∅,A). Then ∆⌜M⌝N = K if M = N and F otherwise.

35:22 Andrew Polonsky and Richard Statman Vol. 18:3

Proof. The proof is a straightforward induction on the quantity ∣M ∣+∣A∣, using the definitions
above.

Theorem 7.11. Let A ∈ T. The set of closed terms of type A is separable. If this type is
infinite modulo β, it admits the structure of an adequate numeral system.

Example 7.12. Let A = α ∩ (α → α)→ α → α.
The normal forms of type A have the form λxy.X, where

X ∈ {xk(x) ∣ k ≥ 0} ∪ {xk(y) ∣ k ≥ 0}
This set is clearly enumerable and infinite modulo beta. By Theorem 7.11 it is separable,

hence, by Theorem 6.19, there is a definable isomorphism between this set and Num .

8. Conclusion

We have shown that intersection types admit typings that are dual in spirit to principal
typings. Whereas principal typings are the most conservative, assuming the minimum needed
to type a given term, uniqueness typings assume as much as is needed to ensure that the
given term is, up to beta-eta equality, the only term of that type. By the universal property
of the principal typing, there is a sequence of substitutions and expansions that present
the uniqueness typing as an instance of the principal one. We leave it as an open problem
whether there exist terms which are the only inhabitants of their principal types.

We also proved that the set of closed terms of a given intersection type is globally
separable, and, if this set is infinite up to beta, forms an adequate numeral system. A
natural question to pursue is whether this property is enjoyed by other typing disciplines,
such as polymorphic types or dependent types.

The authors would like to thank anonymous referees for their careful reading and
thoughtful comments on our paper.

References

[AC98] Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda-Calculi. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1998. doi:10.1017/CBO9780511983504.

[Bar85] Hendrik Pieter Barendregt. The Lambda Calculus, its Syntax and Semantics, volume 103 of Studies
in Logic and the Foundations of Mathematics. North-Holland, 1985.

[BCD83] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model and
the completeness of type assignment. J. Symb. Log., 48(4):931–940, 1983. doi:10.2307/2273659.

[BDS13] H. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with Types. Perspectives in Logic.
Cambridge University Press, 2013. URL: https://books.google.com/books?id=qR_NAQAAQBAJ.

[CDV81] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms. Mathe-
matical Logic Quarterly, 27(2-6):45–58, 1981. doi:10.1002/malq.19810270205.

[CS12] Carraro, Alberto and Salibra, Antonino. Easy lambda-terms are not always simple. RAIRO-Theor.
Inf. Appl., 46(2):291–314, 2012. doi:10.1051/ita/2012005.

[DG03] M. Dezani-Ciancaglini and S. Ghilezan. Lambda models characterizing computational behaviours
of terms. Schedae Informaticae, 12:35–49, June 2003.

[KV17] Delia Kesner and Pierre Vial. Types as resources for classical natural deduction. In Dale Miller, editor,
2nd International Conference on Formal Structures for Computation and Deduction, FSCD 2017,
September 3-9, 2017, Oxford, UK, volume 84 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 24:1–24:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/
LIPIcs.FSCD.2017.24.

https://doi.org/10.1017/CBO9780511983504
https://doi.org/10.2307/2273659
https://books.google.com/books?id=qR_NAQAAQBAJ
https://doi.org/10.1002/malq.19810270205
https://doi.org/10.1051/ita/2012005
https://doi.org/10.4230/LIPIcs.FSCD.2017.24
https://doi.org/10.4230/LIPIcs.FSCD.2017.24

Vol. 18:3 ON SETS OF TERMS HAVING A GIVEN INTERSECTION TYPE 35:23

[Pol11] Andrew Polonsky. Axiomatizing the Quote. In Marc Bezem, editor, Computer Science Logic
(CSL’11) - 25th International Workshop/20th Annual Conference of the EACSL, volume 12 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 458–469. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2011. URL: http://drops.dagstuhl.de/opus/volltexte/2011/
3249, doi:10.4230/LIPIcs.CSL.2011.458.

[Roc18] Simona Ronchi Della Rocca. Intersection Types and Denotational Semantics: An Extended Ab-
stract (Invited Paper). In Silvia Ghilezan, Herman Geuvers, and Jelena Ivetić, editors, 22nd
International Conference on Types for Proofs and Programs (TYPES 2016), volume 97 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 2:1–2:7. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018. URL: http://drops.dagstuhl.de/opus/volltexte/2018/9861,
doi:10.4230/LIPIcs.TYPES.2016.2.

[SB05] Richard Statman and Henk Barendregt. Böhm’s theorem, Church’s delta, numeral systems, and
Ershov morphisms. In Aart Middeldorp, Vincent van Oostrom, Femke van Raamsdonk, and Roel C.
de Vrijer, editors, Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to
Jan Willem Klop, on the Occasion of His 60th Birthday, volume 3838 of Lecture Notes in Computer
Science, pages 40–54. Springer, 2005. doi:10.1007/11601548_5.

[Sta14] Rick Statman. A finite model property for intersection types. In Jakob Rehof, editor, Proceedings
Seventh Workshop on Intersection Types and Related Systems, ITRS 2014, Vienna, Austria, 18
July 2014, volume 177 of EPTCS, pages 1–9, 2014. doi:10.4204/EPTCS.177.1.

[vB95] Steffen van Bakel. Intersection type assignment systems. Theoretical Computer Science, 151(2):385–
435, 1995. 13th Conference on Foundations of Software Technology and Theoretical Computer
Science. URL: https://www.sciencedirect.com/science/article/pii/0304397595000736, doi:
https://doi.org/10.1016/0304-3975(95)00073-6.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

http://drops.dagstuhl.de/opus/volltexte/2011/3249
http://drops.dagstuhl.de/opus/volltexte/2011/3249
https://doi.org/10.4230/LIPIcs.CSL.2011.458
http://drops.dagstuhl.de/opus/volltexte/2018/9861
https://doi.org/10.4230/LIPIcs.TYPES.2016.2
https://doi.org/10.1007/11601548_5
https://doi.org/10.4204/EPTCS.177.1
https://www.sciencedirect.com/science/article/pii/0304397595000736
https://doi.org/https://doi.org/10.1016/0304-3975(95)00073-6
https://doi.org/https://doi.org/10.1016/0304-3975(95)00073-6

	1. Introduction
	2. Intersection type assignment system
	2.1. Intersection as a type constructor
	2.2. Intersection type algebras

	3. Some presentations of free intersection type algebras
	3.1. Inequational
	3.2. Equational
	3.3. Rewriting-theoretic
	3.4. Proof-theoretic
	3.5. Set-theoretic

	4. The essential intersection type assignment system
	4.1. The original CDV type system
	4.2. van Bakel's Essential Intersection Types

	5. Uniqueness Typing
	6. Separability and numeral systems
	6.1. Notations and basic notions.
	6.2. Notions of separability
	6.3. Numeral Systems

	7. Intersection types are separable
	7.1. Informal description
	7.2. Construction of Delta

	8. Conclusion
	References

