
Logical Methods in Computer Science

Vol. 7 (4:07) 2011, pp. 1–13

www.lmcs-online.org

Submitted Mar. 25, 2011

Published Dec. 13, 2011

A NOTE ON THE EXPRESSIVE POWER OF LINEAR ORDERS

NICOLE SCHWEIKARDT a AND THOMAS SCHWENTICK b

a Institut für Informatik, Goethe-Universität Frankfurt am Main, Germany
e-mail address: schweika@informatik.uni-frankfurt.de

b Lehrstuhl Informatik I, Technische Universität Dortmund, Germany
e-mail address: thomas.schwentick@tu-dortmund.de

Abstract. This article shows that there exist two particular linear orders such that first-
order logic with these two linear orders has the same expressive power as first-order logic
with the Bit-predicate FO(Bit). As a corollary we obtain that there also exists a built-
in permutation such that first-order logic with a linear order and this permutation is as
expressive as FO(Bit).

1. Introduction

There are various ways in which arithmetic (i.e., addition and multiplication) on finite
structures can be encoded by other numerical predicates. The following theorem summarises
the results from [2, 4, 7, 5, 3]; see [9] for a survey. Precise definitions are given in Section 2.

Theorem 1.1. The following logics have the same expressive power (on the class of all
finite structures):

FO(Bit), FO(<,Bit), FO(+,×), FO(+,Squares), FO(<,×),
FO(<,+,×,Exp,Bit,Squares)

and each of them can describe exactly those string-languages that belong to DLOGTIME-
uniform AC0.

From Theorem 1.1 one might get the impression that relations with an involved arith-
metical structure are necessary to encode arithmetic in a first-order fashion. Contradicting
this intuition, we show in this article that arithmetic can also be encoded by two particular
linear orders. More precisely, our main result exposes two linear orders <,≺ such that
FO(<,≺) has the same expressive power as FO(Bit). A weaker version of this result (with
three further built-in orders) had been announced in [1, 8] (cf., Corollary 5.5(d) in [1] and
Theorem 4.5(d) in [8]), both referring to an “unpublished manuscript on MonadicNP with
built-in grid structures” by Schweikardt and Schwentick. This paper finally presents this
result along with a detailed proof. As an easy corollary we also obtain a particular built-in
permutation π such that FO(<,π) has the same expressive power as FO(Bit).

1998 ACM Subject Classification: F.4.1.
Key words and phrases: first-order logic, expressiveness, Bit predicate, linear orders, Crane Beach

property.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (4:07) 2011

c© N. Schweikardt and T. Schwentick
CC© Creative Commons

http://creativecommons.org/about/licenses

2 N. SCHWEIKARDT AND T. SCHWENTICK

Organisation. The remainder of this paper is structured as follows: In Section 2 our
terminology is fixed. In Section 3 we introduce two linear orders <,≺0 and two unary
predicates C,Q and show that FO(<,≺0, C,Q) is as expressive as FO(Bit). In Section 4 we
show that FO(<,≺0) is strictly less expressive than FO(Bit); the proof utilises the so-called
Crane Beach property that might be interesting in its own right. In Section 5 we show how
≺0 and the unary predicates C, Q can be replaced by a single linear order ≺, and we show
how to represent ≺ by a permutation π. Section 6 concludes the paper.

2. Preliminaries

We write N to denote the set {0, 1, 2, . . .} of all natural numbers. For each n ∈ N we write
[n] for the set {0, . . , n} of all natural numbers of size up to n. We assume that the reader
is familiar with first-order logic (FO, for short), cf., e.g., the textbook [6].

A k-ary numerical predicate is a relation P ⊆ Nk. Particular numerical predicates that
were mentioned in the introduction are

< := { (a, b) ∈ N2 : a < b },

+ := { (a, b, c) ∈ N3 : a+ b = c },

× := { (a, b, c) ∈ N3 : a · b = c },

Squares := { a ∈ N : there exists a b ∈ N such that a = b2 },

Exp := { (a, b, c) ∈ N3 : ab = c },

Bit := { (a, i) ∈ N2 : the i-th Bit in the binary representation of a is 1, i.e. 2 ∤
ö

a
2i

ù

}.

A k-ary built-in predicate is a sequence (Rn)n∈N of relations, where, for each n ∈ N, Rn ⊆
[n]k. Clearly, every k-ary numerical predicate P naturally induces a k-ary built-in predicate
via Pn := P ∩ [n]k. Note that if P is a strict linear order on N (i.e., P ⊆ N2 is transitive,
and for all a, b ∈ N we have either a=b or (a, b) ∈ P or (b, a) ∈ P), then Pn is a strict linear
order on [n], for every n ∈ N.

3. Capturing FO(Bit) with Two Linear Orders and Two Unary Predicates

This section’s aim is to present numerical predicates ≺0, C, Q such that FO(<,≺0, C,Q)
captures FO(Bit). Here, C and Q will be unary, and ≺0 will be a linear order on N.

The underlying idea is illustrated in Figure 1. We consider the elements of N to be
distributed into a lower right triangular matrix with infinitely many columns and rows,
where for every i ∈ N, the i-th column consists of i+1 consecutive numbers, and the i-th
row contains infinitely many numbers: The 0-th column consists of the number 0, the 1-st
column consists of the numbers 1 and 2, the 2-nd column consists of the numbers 3, 4,
and 5, and the i-th column consists all numbers z with qi ≤ z ≤ qi + i, where qi denotes
the smallest element in this column. I.e., q0 = 0 and qi = qi−1 + i, for all i > 0. Thus,

qi =
i(i+1)

2 , for all i ∈ N.
We number the rows from bottom up and the columns from left to right, starting with

0. For each x ∈ N, we write c(x) and r(x) to denote the column number and the row number
of x in Figure 1, and we let q(x) denote the bottom-most element in the same column as x.
Thus,

c(x) = max{i ∈ N : qi ≤ x}, q(x) = qc(x), r(x) = x− q(x). (3.1)

A NOTE ON THE EXPRESSIVE POWER OF LINEAR ORDERS 3

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

· · ·

. .
.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 1: Illustration of columns and rows for the definition of ≺0. Row numbers and
column numbers are framed.

As an example, c(13) = 4, q(13) = 10, and r(13) = 3. Note that, by definition, we have

x = q(x) + r(x) and 0 ≤ r(x) ≤ c(x), (3.2)

for every x ∈ N. Clearly, all numbers x of the same column agree on q(x). We thus
sometimes call q(x) the q-value of the column of a number x.

Of course, the standard order < on N is just the bottom-to-top, left-to-right, column
major order of this matrix. That is, for all x, y ∈ N we have

x < y ⇐⇒ c(x) < c(y) or
Ä

c(x) = c(y) and r(x) < r(y)
ä

. (3.3)

We define ≺0 as the left-to-right, bottom-to-top, row major order. I.e., for all x, y ∈ N we
let

x ≺0 y ⇐⇒ r(x) < r(y) or
Ä

r(x) = r(y) and c(x) < c(y)
ä

. (3.4)

Thus, we have

0 ≺0 1 ≺0 3 ≺0 6 ≺0 10 ≺0 · · · ≺0 2 ≺0 4 ≺0 7 ≺0 · · · ≺0 5 ≺0 8 ≺0 · · · ≺0 9 ≺0 · · · .

We use the relations C and Q to induce binary strings on the columns of the matrix. The
number encoded by the string induced by C on the i-th column (with the bottom-most
element of this column representing the least significant bit) shall1 be i+1, and the number
induced by Q on the i-th column shall be qi+1. That is,

C := {x ∈ N : bit r(x) of the binary representation of c(x)+1 is 1, i.e., 2 ∤
⌊

c(x)+1
2r(x)

⌋

},

Q := {x ∈ N : bit r(x) of the binary representation of qc(x)+1 is 1, i.e., 2 ∤
ö qc(x)+1

2r(x)

ù

}.

See Figure 2 for an illustration of C and Q. As an example, the restriction of C to
column 3 is the set {8} (representing the bit string 100), and the restriction of Q to column
3 is the set {7, 9} (representing the bit string 1010).

1Why we represent i+ 1, respectively qi+1, instead of i and qi will be explained in Footnote 2.

4 N. SCHWEIKARDT AND T. SCHWENTICK

0 1 2 i−1 i

. . .

. columns:

B
in

 (
1
)

B
in

 (
2
)

B
in

 (
3
)

B
in

 (
i)

B
in

 (
i+

1
)

B
in

 (

)

B
in

 (

)

B
in

 (

)

B
in

 (

)

B
in

 (

)

q
2

q
3

q
i

q
i+

1

q
1

0 1 2 i−1 i

. . .

. columns:

Figure 2: Illustration of the unary predicates C (left) and Q (right) assigning to each column
i the binary representations Bin(i+1) and Bin(qi+1) of the numbers i+1 and qi+1,
respectively. The least significant bit of binary representations is in the bottom-
most row.

Note that, for every i, the i-th column contains sufficiently many elements to encode

qi+1 = (i+1)(i+2)
2 , since the i-th column has length i+1 and can thus encode binary repre-

sentations of numbers of size up to 2i+1−1 ≥ qi+1.
The remainder of this section is devoted to the proof of the following theorem.

Theorem 3.1. FO(<,≺0, C,Q) has the same expressive power as FO(Bit).

Proof. That FO(Bit) is at least as expressive as FO(<,≺0, C,Q) is an immediate conse-
quence of the following lemma.

Lemma 3.2. There are FO(Bit)-formulas ϕ<(x, y), ϕ≺0
(x, y), ϕC(x), ϕQ(x) such that,

when evaluated in ([n],Bitn) for some n ∈ N, ϕ<(x, y) expresses that x < y, ϕ≺0
(x, y)

expresses that x ≺0 y, ϕC(x) expresses that x ∈ C, and ϕQ(x) expresses that x ∈ Q.

Proof. The existence of the formula ϕ<(x, y) follows from Theorem 1.1. Using Theorem 1.1,
it is straightforward to find FO(Bit)-formulas ϕc(x, y), ϕr(x, y), and ϕq(x, y) which, when
interpreted in ([n],Bitn), express that c(x) = y, r(x) = y, and q(x) = y, respectively.
Using these formulas (and Theorem 1.1), it is an easy exercise to find formulas ϕ≺0

(x, y),
ϕC(x), ϕQ(x), expressing the statement of equation (3.4) and the definitions of the predi-
cates C and Q.

To prove the opposite direction, we will construct an FO(<,≺0, C,Q)-formula that
expresses the Bit-predicate. The construction of this formula will be established by a
sequence of auxiliary formulas and lemmas.

For every P ∈ {<,≺0} there are FO(P)-formulas ϕmax,P (x) and ϕsucc,P (x, y) expressing
that x is the maximum element w.r.t. the linear order P , resp., that y is the successor of x
w.r.t. P :

ϕmax,P (x) := ¬∃z xPz and ϕsucc,P (x, y) :=
Ä

xPy ∧ ¬∃z(xPz ∧ zPy)
ä

.

For every c ∈ N there is an FO(<)-formula ϕ=c(x) expressing that x is interpreted with the
natural number c:

ϕ=0(x) := ¬∃z z < x and ϕ=c+1(x) := ∃z
Ä

ϕ=c(z) ∧ ϕsucc,<(z, x)
ä

.

To improve readability of formulas, we will henceforth often write

x = c, x = maxP , y = succP (x), y = predP (x)

instead of ϕ=c(x), ϕmax,P (x), ϕsucc,P (x, y), ϕsucc,P (y, x). Furthermore, we will write

A NOTE ON THE EXPRESSIVE POWER OF LINEAR ORDERS 5

x ≤ y and x �0 y

as shorthands for (x < y ∨ x = y) and (x ≺0 y ∨ x = y).

Lemma 3.3. There are formulas ϕsame-col(x, y), ϕsame-row(x, y), ϕq(x, y), and ϕrc(x, y) in
FO(<,≺0) such that, when evaluated in ([n], <n,≺n

0) for some n ∈ N,

− ϕsame-col(x, y) expresses that c(x) = c(y), i.e., x is in the same column as y,
− ϕsame-row(x, y) expresses that r(x) = r(y), i.e., x is in the same row as y,
− ϕq(x, y) expresses that q(x) = y, i.e., y is the bottom-most element in the same column

as x,
− ϕrc(x, y) expresses that r(x) = c(y), i.e., x’s row-number is the same as y’s column-

number.

Proof. Note that the bottom-most row consists of exactly those elements that are smaller
than 2 w.r.t. ≺0. Thus we can choose

ϕbot(x) := ∀z (z = 2 → x ≺0 z)

to express that x is an element in the bottom row.
Two elements x and y are in different columns iff there exists an element in the bottom

row that lies between x and y w.r.t. <. Thus, we can choose

ϕsame-col(x, y) := ¬∃z
Ä

ϕbot(z) ∧ (x < z ≤ y ∨ y < z ≤ x)
ä

.

Obviously, q(x) = y iff y lies in the bottom row and in the same column as x. Thus, we can
choose

ϕq(x, y) := (ϕbot(y) ∧ ϕsame-col(x, y)).

For n ∈ N we say that the last column of [n] is full iff there is an i ∈ N such that n = qi+ i.
Note that the last column of [n] is full iff n=0 or the <-predecessor of n is also the ≺0-
predecessor of n and is different from 0. This can be expressed by the sentence

ϕlast-col-full := ∃z
Ä

z = max< ∧
Ä

z = 0 ∨ ∃y (y = pred<(z) ∧ y = pred
≺0

(z) ∧ ¬ y=0)
ää

.

An element x lies on the diagonal (i.e., r(x) = c(x)) iff either its <-successor lies in the
bottom row, or x is the maximum element w.r.t. < and the last column is full. Thus, we
can choose

ϕdiag(x) :=
Ä

∃y (y = succ<(x) ∧ ϕbot(y)) ∨ (x = max< ∧ ϕlast-col-full)
ä

to express that x lies on the diagonal.
Two elements x and y lie in different rows iff there exists an element on the diagonal

that lies between x and y w.r.t. ≺0. Thus, we can choose

ϕsame-row(x, y) := ¬∃z
Ä

ϕdiag(z) ∧ (x ≺0 z �0 y ∨ y ≺0 z �0 x)
ä

.

Finally, for two elements x and y we have r(x) = c(y) iff the diagonal element z that is in
the same row as x, is in the same column as y. Thus we can choose

ϕrc(x, y) := ∃z (ϕdiag(z) ∧ ϕsame-row(x, z) ∧ ϕsame-col(z, y)).

This completes the proof of Lemma 3.3.

6 N. SCHWEIKARDT AND T. SCHWENTICK

Lemma 3.4. There are FO(<,≺0, C,Q)-formulas ϕq,Bit,r(x, u) and ϕr,Bit,r(x, u) which,
when evaluated in ([n], <n,≺n

0) for some n ∈ N, express that the r(u)-th bit of the binary
representation of q(x), respectively, of r(x), is 1.

Proof. Note that if x=0, then q(x)=0, and thus the r(u)-th bit of the binary representation
of q(x) is 0. If x > 0, then the binary representation of the number q(x) is given by relation
Q on the elements of the column left to x’s column.2 Thus, the r(u)-th bit of q(x) is 1 iff
an element z with r(z) = r(u) and c(z) = c(x) − 1 exists and belongs to Q. Therefore, we
can choose ϕq,Bit,r(x, u) :=

∃y ∃z
Ä

ϕsame-col(x, y) ∧ z=pred
≺0

(y) ∧ ϕsame-row(z, y) ∧ ϕsame-row(z, u) ∧Q(z)
ä

.

The definition of ϕq,Bit,r(x, u) is illustrated in Figure 3(a).

(a)

b
x

b
y

b
z

b
u

(b)

b
x

b
y

b
z

b
u

Figure 3: Illustration of the meaning of the variables used in (a) ϕq,Bit,r(x, u) and (b)
ϕr,Bit,r(x, u).

Similarly, if x=0, then r(x)=0, and thus the r(u)-th bit of the binary representation of
r(x) is 0. If x > 0, then the binary representation of the number r(x) is given by relation
C on the elements of the column of number r(x)− 1. Thus, the r(u)-th bit of r(x) is 1 iff
an element z with r(z) = r(u) and c(z) = r(x)− 1 exists and belongs to C. Therefore, we
can choose ϕr,Bit,r(x, u) :=

∃y ∃z
Ä

ϕrc(x, y) ∧ z=pred
≺0

(y) ∧ ϕsame-row(z, y) ∧ ϕsame-row(z, u) ∧C(z)
ä

.

The definition of ϕr,Bit,r(x, u) is illustrated in Figure 3(b).

Lemma 3.5. There is an FO(<,≺0, C,Q)-formula ϕBit,r(x, z) which, when evaluated in
([n], <n,≺n

0) for some n ∈ N, expresses that the r(z)-th bit of the binary representation of
x is 1.

Proof. Recall from equation (3.2) that x = q(x)+r(x). We construct the formula ϕBit,r(x, z)
in such a way that it expresses that the r(z)-th bit in the binary representation of q(x)+r(x)
is 1.

For this, we use an auxiliary formula ϕq+r,carry,r(x, z) which expresses that the addition
of the binary representations of the numbers q(x) and r(x) produces a carry-bit to be added
at the r(z)-th position. Note that when adding two binary numbers aℓ · · · a1a0 and bℓ · · · b1b0
(where the least significant bit is at the rightmost position), a carry-bit has to be added at

2Here, it is helpful that the q(x) is represented in column c(x) − 1, as this column is guaranteed to be
full.

A NOTE ON THE EXPRESSIVE POWER OF LINEAR ORDERS 7

position j iff there is a position i < j such that ai = bi = 1 and for all positions k with
i < k < j at least one of the values ak, bk is 1. Thus, we can choose

ϕq+r,carry,r(x, z) := ∃u
Ä

ϕsame-col(u, z) ∧ u < z ∧ ϕq,Bit,r(x, u) ∧ ϕr,Bit,r(x, u)

∧ ∀v (u < v < z → (ϕq,Bit,r(x, v) ∨ ϕr,Bit,r(x, v)))
ä

.

Note that the r(z)-th bit of the binary representation of q(x) + r(x) is 1 if, and only if,
either no carry-bit has to be added at position r(z) and the r(z)-th bits of q(x) and r(x)
are different, or a carry-bit has to be added at position r(z) and the r(z)-th bits of q(x)
and r(x) are the same. Thus, we can choose

ϕBit,r(x, z) :=
Ä Ä

¬ϕq+r,carry,r(x, z) ∧ (ϕq,Bit,r(x, z) ↔ ¬ϕr,Bit,r(x, z))
ä

∨
Ä

ϕq+r,carry,r(x, z) ∧ (ϕq,Bit,r(x, z) ↔ ϕr,Bit,r(x, z))
ä ä

.

Lemma 3.6. There is an FO(<,≺0, C,Q)-formula ϕr(x, y) which, when evaluated in ([n], <n

,≺n
0 , C

n, Qn) for some n ∈ N, expresses that r(x) = y.

Proof. Note that r(x) = y iff the following is true: for every u, the r(u)-th bit of r(x) is 1
iff the r(u)-th bit of y is 1. We can thus use the formulas ϕr,Bit,r(x, z) and ϕBit,r(y, z) from
the Lemmas 3.4 and 3.5 to define

ϕr(x, y) := ∀u (ϕr,Bit,r(x, u) ↔ ϕBit,r(y, u)).

Now, the Bit-predicate can be expressed by the FO(<,≺0, C,Q)-formula stating that
there is a number u such that r(u) = y and the r(u)-th bit of x is 1. I.e., we can choose

ϕBit(x, y) := ∃u (ϕr(u, y) ∧ ϕBit,r(x, u)).

This finally completes the proof of Theorem 3.1.

4. FO(<,≺0) Does Not Capture FO(Bit)

In this section we show that the linear orders < and ≺0 alone are not sufficient to capture
FO(Bit).

Theorem 4.1. FO(<,≺0) is strictly less expressive than FO(Bit).

Proof. Lemma 3.2 tells us that FO(<,≺0) is at most as expressive as FO(Bit). To show
that FO(<,≺0) does not have the same expressive power as FO(Bit), we make use of the
so-called Crane Beach property [1], which is defined as follows:

• Let ℓ be a list of built-in predicates. The logic FO(ℓ) is said to have the Crane Beach
property if the following is true: Every string-language L that is definable in FO(ℓ) and
that has a neutral letter, is also definable in FO(<). Here, a letter e is called neutral for
L, if for all strings w1, w2 we have w1w2 ∈ L ⇐⇒ w1ew2 ∈ L.

Clearly, FO(<) has the Crane Beach property by definition. From [1] we know that FO(Bit)
does not have the Crane Beach property. In the remainder of this proof, we show that
FO(<,≺0) has the Crane Beach property. This, in particular, will tell us that FO(<,≺0)
does not have the same expressive power as FO(Bit).

8 N. SCHWEIKARDT AND T. SCHWENTICK

The basic idea of the proof that FO(<,≺0) has the Crane Beach property is that the
order ≺0 is useless on structures in which all columns but the rightmost column contain only
neutral letters. For the proof we follow the methodology of [1] and use Ehrenfeucht-Fräıssé
games (EF-game, for short), cf., e.g., [6]. Let L be a language that is definable in FO(<,≺0)
and that has a neutral letter. Let Σ be the alphabet of L (i.e., L ⊆ Σ∗), let e ∈ Σ denote the
neutral letter of L, and let k be the quantifier rank of the FO(<,≺0)-formula that defines
L. Our aim is to show that L is also definable in FO(<).

Towards a contradiction, let us assume that L is not definable in FO(<). Then, in
particular, there are (non-empty) strings u and v such that u ∈ L, v 6∈ L, and the duplicator
has a winning strategy in the 2k-round EF-game on the structures

A :=
Ä

[nu], nu, <nu

, (Qu
σ)σ∈Σ

ä

and B :=
Ä

[nv], nv, <nv

, (Qv
σ)σ∈Σ

ä

where, for any string w, we let nw := |w|−1. For each letter σ of Σ we let Qw
σ := {i ∈ [nw] :

wi = σ}, where w = w0w1 · · ·wnw with wi ∈ Σ for all i ∈ [nw]. Henceforth, the 2k-round
EF-game on A and B will be called the small game.

Since L has neutral letter e, we can assume without loss of generality that u and v have
the same length. (If not, we can proceed as in [1]: Append u with 22k + |v| neutral letters
e, append v with 22k + |u| neutral letters e, and note that the duplicator has a winning
strategy in the 2k-round EF-game on the padded versions of A and B.)

We use n to denote nu = nv, and we let u = u0u1 · · · un and v = v0v1 · · · vn with
ui, vi ∈ Σ. Now let N := qn + n, and let U and V be strings of length N+1 of the form
e∗ u and e∗ v, respectively. In particular, we know that U ∈ L and V 6∈ L. Note that
U = U0U1 · · ·UN is the string which, for all i with 0 ≤ i ≤ n carries letter ui on position
qn + i, and which carries the neutral letter on all other positions; and analogously V is
obtained from v. An illustration of how U and V are embedded in ([N], <N ,≺N

0) is given
in Figure 4.

e e

e

e

e

e

e

e

e

e

...

...

...

...

...

e

e

e

e

...

e

u0

u1

u2

u3

...

un

0

1

2

3

4

. .
.

n

0 1 2 3 4 · · · n

e e

e

e

e

e

e

e

e

e

...

...

...

...

...

e

e

e

e

...

e

v0

v1

v2

v3

...

vn

0

1

2

3

4

. .
.

n

0 1 2 3 4 · · · n

Figure 4: Illustration of the strings U (left) and V (right), embedded in ([N], <N ,≺N
0).

Row and column numbers are framed.

We will now translate the duplicator’s winning strategy in the small game into a winning
strategy for the k-round EF-game on the structures

A :=
Ä

[N], <N ,≺N
0 , (Q

U
σ)σ∈Σ

ä

and B :=
Ä

[N], <N ,≺N
0 , (Q

V
σ)σ∈Σ

ä

.

Henceforth, the EF-game on A and B will be called the big game. Note that N , U , and V
were chosen in such a way that with respect to the triangular matrix illustrated in Figure 1

A NOTE ON THE EXPRESSIVE POWER OF LINEAR ORDERS 9

and restricted to the numbers in [N], the strings u and v are in the rightmost column of A
and B.

To find a winning strategy for the big game, the duplicator in parallel plays (according
to her given winning strategy) the small game and translates moves for the small game into
moves for the big game. To be precise, for every round i ∈ {1, . . . , k} of the big game, the
duplicator plays two rounds (namely, rounds 2i−1 and 2i) in the small game and proceeds
as follows: If the spoiler chooses an element ai ∈ [N] in A, the duplicator lets a virtual
spoiler choose a2i−1 := c(ai) and a2i := r(ai) in the small game (thus, ai = qa2i−1 + a2i),
considers the duplicator’s answer b2i−1 and b2i following her winning strategy, and chooses
bi := qb2i−1

+ b2i as her answer in the big game (thus, b2i−1 = c(bi) and b2i = r(bi)). If the
spoiler chooses an element bi in B, the duplicator’s choice of ai in A is determined in the
analogous way.

After the k-th round of the big game, we know that the duplicator has won the small
game, since she played according to her winning strategy. Thus, we have

(1) uai = vbi , for all i with 1 ≤ i ≤ 2k,
(2) ai < aj ⇐⇒ bi < bj , for all i, j with 1 ≤ i, j ≤ 2k.

Our aim is to show that the duplicator has won the big game, i.e., that

(1’) Uai = Vbi , for all i with 1 ≤ i ≤ k,
(2’) ai < aj ⇐⇒ bi < bj , for all i, j with 1 ≤ i, j ≤ k,
(3’) ai ≺0 aj ⇐⇒ bi ≺0 bj, for all i, j with 1 ≤ i, j ≤ k.

Concerning (1’), note that if a2i−1 = n then b2i−1 = n and ai = qn + a2i, bi = qn + b2i,
Uai = ua2i , and Vbi = vb2i . Thus, due to (1) we have Uai = Vbi . Furthermore, if a2i−1 < n

then b2i−1 < n and ai = qa2i−1 + a2i < qn and bi = qb2i−1
+ b2i < qn. Thus, Uai = Vbi is the

neutral letter.
To obtain (3’), note that we have

ai ≺0 aj ⇐⇒ r(ai) < r(aj) or (r(ai) = r(aj) and c(ai) < c(aj)) (by equation (3.4))
⇐⇒ a2i < a2j or (a2i = a2j and a2i−1 < a2j−1) (by def. of a2i−1, a2i)
⇐⇒ b2i < b2j or (b2i = b2j and b2i−1 < b2j−1) (by (2))
⇐⇒ r(bi) < r(bj) or (r(bi) = r(bj) and c(bi) < c(bj)) (by def. of bi)
⇐⇒ bi ≺0 bj (by equation (3.4)).

Note that (2’) can be obtained in the same way, using equation (3.3).
In summary, the duplicator has won the big game. We hence obtain that the structures A
and B satisfy the same first-order sentences of quantifier rank k. However, since U ∈ L

and V 6∈ L, this contradicts our assumption that L is definable by an FO(<,≺0)-sentence
of quantifier rank k. Thus, the proof of Theorem 4.1 is complete.

5. Capturing FO(Bit) with Two Linear Orders

In this section, we show that in Theorem 3.1 the numerical predicates ≺0, C,Q can be
replaced by one particular linear order. The proof will immediately follow by combining
Theorem 3.1 with the following Lemma 5.1.

If R,R1, . . . , Rk are numerical predicates, we say that R is definable in FO(R1, . . . , Rk)
in every finite prefix if there is an FO-formula that defines Rn on ([n], Rn

1 , . . . , R
n
k), for every

n ∈ N.

10 N. SCHWEIKARDT AND T. SCHWENTICK

Lemma 5.1. For all k ≥ 1 and all unary relations U1, . . . , Uk on N, there is a linear order
≺ on N, such that FO(<,≺) is at least as expressive as FO(<,≺0, U1, . . . , Uk) on the class
of finite structures. Furthermore, if U1, . . . , Uk are FO(Bit)-definable in every finite prefix
then ≺ can be chosen FO(Bit)-definable in every finite prefix as well.

Proof. Within this proof, we will use the row numbers, column numbers, and q-numbers
defined in equation (3.1). Our goal is to encode ≺0 and the unary predicates into a single
linear order ≺. To this end, the crucial observations are the following:

(1) For every number ℓ, the order ≺0 can be recovered in a first-order fashion from < and
a sub-relation of ≺0 that orders only every ℓ-th row (i.e., the rows 0, ℓ, 2ℓ, . . .).

(2) If ℓ is chosen large enough with respect to some number m, the remaining rows allow
to encode m bits of information per element.

For the given number k, we will choose a sufficiently large number ℓ. All rows whose
number is a multiple of ℓ will be called backbone rows, and the elements in these rows will
be called backbone elements. In ≺, the backbone elements are ordered just as in ≺0, and
every backbone element is smaller w.r.t. ≺ than every non-backbone element. The number
2 is the smallest non-backbone element w.r.t. ≺. Thus, backbone elements can be identified
by the FO(<,≺)-formula

ϕbackbone(x) := ∀y (y = 2 → x ≺ y).

Figure 5 gives an illustration of the overall shape of ≺.

· · ·

. .
.

b b b b b b b b b b b b≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺· · ·

b b b b b b b≺ ≺ ≺ ≺ ≺ ≺ ≺· · ·

b b≺ ≺· · ·

≺
≺

≺

≺
≺

≺

≺
≺

≺

Figure 5: Illustration of the definition of ≺ with ℓ = 5. For the lower left interval, the
corresponding permutation π is given by π(1) = 1, π(2) = 2, π(3) = 4, π(4) = 3,
resulting in u+ 1 ≺ u+ 2 ≺ u+ 4 ≺ u+ 3.

We call a set {u+1, . . . , u+ℓ−1} ⊆ N a complete interval if u and u+ℓ but none of
the elements u+1, . . . , u+ℓ−1 are backbone elements. In this case, we call u complete. We
say that u is complete within [n] if u is complete and u+ℓ ∈ [n]. Note that there is an
FO(<,≺)-formula which, when evaluated in ([n], <n,≺n) for some n ∈ N, expresses that u
is complete within [n]. This formula simply states that u is a backbone element, u+ℓ exists,
and none of the elements u+1, . . . , u+ℓ−1 is a backbone element.

The elements of complete intervals will be ordered in such a way that the order ≺ on
every complete interval {u+1, . . . , u+ℓ−1} encodes the unary predicates on the elements
u, u+1, . . . , u+3ℓ−1. Note that the encoding is sufficiently redundant to make sure that,

A NOTE ON THE EXPRESSIVE POWER OF LINEAR ORDERS 11

even though there are elements in intervals that are not complete within [n] (i.e., elements
close to the diagonal or close to n), the information whether x is an element of a set Ui is
encoded in some complete interval, for every x > qℓ+1.

To describe the order ≺ on each complete interval, we use the following notation. For
every number x ∈ N, let B(x) be the bit-string of length k, where the i-th bit is 1 if and

only if x ∈ Ui. For every complete element u we let ~B(u) be the bit-string of length 3kℓ
with

~B(u) := B(u) B(u+ 1) · · ·B(u+ 3ℓ− 1).

We view each bit-string of length 3kℓ as the binary representation of a number from
the set {0, 1, . . . , 23kℓ−1}, and we write b(u) to denote the according number associated

with u by the bit-string ~B(u). We choose ℓ large enough such that (ℓ−1)! ≥ 23kℓ. Such

an ℓ exists, since n! = 2Θ(n logn) (cf., Stirling’s formula) and thus (ℓ−1)! = 2Θ(ℓ log ℓ), and
hence (ℓ−1)! ≥ 23kℓ for all sufficiently large ℓ. Note that by our choice of ℓ we have
0 ≤ b(u) ≤ (ℓ−1)!− 1, for every complete element u.

Let π0, . . . , π(ℓ−1)!−1 be an enumeration of all permutations of the set {1, . . . , ℓ−1}.
Now, the elements of every complete interval {u+1, . . . , u+ℓ−1} are ordered in ≺ according
to πb(u) via

u+ πb(u)(1) ≺ u+ πb(u)(2) ≺ · · · ≺ u+ πb(u)(ℓ−1).

Note that it is straightforward to construct, for every permutation π of {1, . . . , ℓ − 1}, an
FO(<,≺)-formula ϕπ(u) which, when evaluated in ([n], <n,≺n) for some n ∈ N, expresses
that u is complete within [n] and the interval {u+1, . . . , u+ℓ−1} is ordered w.r.t. ≺ accord-
ing to π.

How elements that do not belong to complete intervals, and how elements of different
intervals, relate in ≺ does not matter for our proof. For concreteness, to fully fix ≺, we
choose to let

x ≺ y ⇐⇒ x < y

for all natural numbers x, y for which the relationship has not yet been defined (neither
directly nor transitively).

It remains to verify that

(a) the predicates ≺0, U1, . . . , Uk are FO(<,≺)-definable in every finite prefix, and
(b) ≺ is FO(Bit)-definable in every finite prefix, provided that the unary relations U1, . . . , Uk

are FO(Bit)-definable in every finite prefix.

Towards (a), we can use the formulas ϕπ(u) to construct, for every Ui ∈ {U1, . . . , Uk},
an FO(<,≺)-formula ϕUi

(x) that, when evaluated in ([n], <n,≺n) for some n ∈ N, expresses
that Ui(x) holds. Note that either x < qℓ+1 or x = u + j where u is an element complete
within [n] and 0 ≤ j < 3ℓ. In the former case, the information whether Ui(x) holds can
be “hard-coded” into an FO(<,≺)-formula, as qℓ+1 is a constant. In the latter case, the
information whether Ui(x) holds, can be inferred from the particular permutation π for
which ϕπ(u) holds.

To express the predicate ≺0 by an FO(<,≺)-formula, we use that, for all x, y ∈ N, we
have x ≺0 y if, and only if, x = u+ i and y = v + j where u, v are backbone elements and
0 ≤ i, j < ℓ, such that the following is true:

(i) r(u) < r(v), or
(ii) r(u) = r(v) and either i < j or (i = j and u ≺ v).

12 N. SCHWEIKARDT AND T. SCHWENTICK

We note that, for backbone elements u and v, we have r(u) < r(v) iff there is a backbone
element w that is the rightmost element in its row, and u � w ≺ v. Furthermore, a
backbone element w is rightmost in its row if either it is the maximal backbone element
w.r.t. to ≺ or its ≺-successor w′ is a backbone element on the diagonal. The latter can be
recognized by the fact that w′ and w′+1 are backbone elements. We can use this to obtain
a formula ϕ≺0

(x, y) expressing that x ≺0 y. This concludes (a).
For proving (b) it suffices (due to Theorems 1.1 and 3.1) to show that ≺ is FO(Bit,≺0

, U1, . . . , Uk)-definable in every finite prefix. First of all, it is easy to identify the backbone
rows. Furthermore, it is straightforward (though tedious) to infer b(u) for a complete
element u provided that u + 3ℓ − 1 ≤ n. To infer b(u) for (the at most two) complete
elements u with u+ 3ℓ − 1 > n, we use the fact that, for every FO(Bit)-formula ψ(x) and
every i ∈ N one can construct an FO(Bit)-sentence ψi such that ([n],Bitn) |= ψi if and only
if ([n + i],Bitn+i) |= ψ(n + i).

From Theorem 3.1, Lemma 5.1 and the fact that the predicates C and Q are FO(Bit)-
definable in every finite prefix, we immediately obtain the main result of this article.

Theorem 5.2. There is a linear order ≺ on N such that FO(<,≺) has the same expressive
power as FO(Bit) on the class of all finite structures.

Using Theorem 5.2, one also obtains the analogous result, where the linear order ≺
is replaced by a built-in permutation π = (πn)n∈N, that associates, with every n ∈ N, a
permutation πn on the set [n].

Corollary 5.3. There is a built-in permutation π such that FO(<,π) is as expressive as
FO(Bit).

Proof. Let ≺ be the linear order from Theorem 5.2. For every n ∈ N we define πn as follows:
For every i ∈ [n] let πn(i) be the index of i w.r.t. ≺, i.e., πn(i) := |{j ∈ [n] : j ≺ i}|. Then,
for all i, j ∈ [n] the following is true:

i ≺n j ⇐⇒ πn(i) <n πn(j).

Hence, ≺ is definable by the FO(<,π)-formula ϕ≺(x, y) := π(x)<π(y). Therefore, due to
Theorem 5.2, FO(<,π) is at least as expressive as FO(Bit).

For the opposite direction, we need to find an FO(Bit)-formula ϕindex(x, y) which ex-
presses that y is the index of x w.r.t. ≺, i.e., y = πn(x). Using our particular choice of the
linear order ≺ fixed in the proof of Lemma 5.1, is not difficult to construct FO(Bit)-formulas
which express that

• z is the total number of backbone elements,
• y is the number of backbone elements that are smaller w.r.t. ≺ than some backbone
element x, and

• y′ is the number of non-backbone elements that are smaller w.r.t. < than some backbone
element x′.

With the help of these formulas the formula ϕindex(x, y) can be constructed. To work out the
details on the precise definition of this formula is a tedious, but easy exercise on FO(Bit)-
definability.

A NOTE ON THE EXPRESSIVE POWER OF LINEAR ORDERS 13

Let us note that [10] already exposed a built-in unary function f such that FO(<, f) has
the same expressive power as FO(Bit) (see the proof of Theorem 3 in [10] — the additional
predicate for multiples of 8 can easily be encoded into f). The function f obtained there,
however, is not a permutation.

6. Final Remarks

We have exposed two linear orders <,≺ and a built-in permutation π such that both,
FO(<,≺) and FO(<,π) have the same expressive power as FO(Bit) (Theorem 5.2 and
Corollary 5.3).

Of course, it can be debated whether linear orders are really “simpler” than addition
and multiplication or the Bit predicate. Actually, this article precisely shows that, with
respect to expressive power of first-order logic, they are not. However, in an intuitive sense,
linear orders appear to be simpler, as they are just the transitive closure of a linear number
of edges, and thus the structure of one linear order is more homogenous than, say, the
structure of Bit. The characterisation given in Corollary 5.3 even shows that FO(Bit) can
be captured by using < and the linear number of edges provided by the built-in permutation
π.

We note that there is no set M of unary built-in predicates such that FO(<,M) has
at least the expressive power of FO(Bit). This is due to the fact that, according to [1],
FO(<,M) has the Crane Beach property while FO(Bit) does not have this property.

Acknowledgement

We would like to thank Lauri Hella for an inspiring discussion on the Crane Beach property
that led to the proof of Theorem 4.1. Furthermore, we thank the anonymous referees for
their valuable comments.

References

[1] David A. Mix Barrington, Neil Immerman, Clemens Lautemann, Nicole Schweikardt, and Denis Thérien.
First-order expressibility of languages with neutral letters or: The Crane Beach conjecture. J. Comput.
Syst. Sci., 70(2):101–127, 2005.

[2] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within NC1. J.
Comput. Syst. Sci., 41(3):274–306, 1990.

[3] J. H. Bennett. On spectra. PhD thesis, Princeton University, Princeton, NJ, 1962.
[4] Anuj Dawar, Kees Doets, Steven Lindell, and Scott Weinstein. Elementary properties of the finite ranks.

Math. Log. Q., 44:349–353, 1998.
[5] Troy Lee. Arithmetical definability over finite structures. Math. Log. Q., 49(4):385–392, 2003.
[6] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
[7] James F. Lynch. Complexity classes and theories of finite models. Math. Syst. Theory, 15(2):127–144,

1982.
[8] Nicole Schweikardt. On the Expressive Power of First-Order Logic with Built-In Predicates. PhD the-

sis, Institute for Computer Science, Johannes Gutenberg-Universität Mainz, 2001. Published at Logos
Verlag Berlin, 2002.

[9] Nicole Schweikardt. Arithmetic, first-order logic, and counting quantifiers. ACM Trans. Comput. Log.,
6(3):634–671, 2005.

[10] Thomas Schwentick. Padding and the expressive power of existential second-order logics. In Proc. of
11th International Workshop on Computer Science Logic (CSL’97), Selected Papers, volume 1414 of
Lecture Notes in Computer Science, pages 461–477. Springer, 1997.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Capturing FO(Bit) with Two Linear Orders and Two Unary Predicates
	4. FO(<,) Does Not Capture FO(Bit)
	5. Capturing FO(Bit) with Two Linear Orders
	6. Final Remarks
	Acknowledgement
	References

