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Abstract. The existential k-pebble game characterizes the expressive power of the ex-
istential-positive k-variable fragment of first-order logic on finite structures. The winner
of the existential k-pebble game on two given finite structures can be determined in time
O(n2k) by dynamic programming on the graph of game configurations. We show that

there is no O(n(k−3)/12)-time algorithm that decides which player can win the existential
k-pebble game on two given structures. This lower bound is unconditional and does not
rely on any complexity-theoretic assumptions.

Establishing strong k-consistency is a well-known heuristic for solving the constraint sat-
isfaction problem (CSP). By the game characterization of Kolaitis and Vardi [14] our result

implies that there is no O(n(k−3)/12)-time algorithm that decides if strong k-consistency
can be established for a given CSP-instance.

1. Introduction

For two finite relational structures A and B the homomorphism problem asks if there is a
mapping from the domain A of A to the domain B of B that preserves all relations. As
pointed out by Feder and Vardi [7] this problem is equivalent to the constraint satisfaction
problem (CSP) where the variables correspond to the domain of A, the values correspond to
the domain of B and the constraints are encoded in the relations of A and B. Thus, every
homomorphism fromA to B corresponds to a solution of the CSP. Since the homomorphism
problem and the CSP are NP-complete in general, there is need to look for heuristics. One
well-known method introduced in the context of constraint satisfaction is the procedure of
establishing strong k-consistency, which can be implemented by an O(n2k)-time algorithm
(see e.g. [4, 14, 2]). We will explain this concept below in the setting of the homomorphism
problem.

From a logical point of view, there is a homomorphism between two finite structures A
and B if and only if every existential-positive first-order sentence that is true on A is also
true on B. Instead of considering the full existential-positive fragment of first-order logic
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one can relax that question and ask whether every k-variable existential-positive first-order
sentence true on A is also true on B. Such questions can be analyzed using combinatorial
games. For the k-variable existential-positive fragment of first-order logic the corresponding
game is the existential k-pebble game [12], which is defined in Section 2.

Kolaitis and Vardi [14] showed that this logical relaxation of the homomorphism prob-
lem is equivalent to the k-consistency heuristic. That is, strong k-consistency can be estab-
lished if and only if Duplicator wins the existential k-pebble game on A and B. To sum up,
the following three statements are equivalent on finite relational structures A and B:

• Strong k-consistency can be established.
• For every existential-positive k-variable first-order sentence ϕ: A |= ϕ =⇒ B |= ϕ.
• Duplicator has a winning strategy in the existential k-pebble game.

Now we state our main result that provides a lower bound on the computational complexity
of the statements above.

Theorem 1. For every fixed k ≥ 15 and any ε > 0, the winner of the existential k-pebble
game on two given finite relational structures A and B cannot be determined in time

O((‖A‖+ ‖B‖)
k−2
12

−ε) on deterministic multi-tape Turing machines.

From this theorem we directly get an Ω(n
k−2
12

−ε) lower bound for deciding if strong k-
consistency can be established, where n is the size of the CSP-instance. As an upper bound,
the query “Does Spoiler win the existential k-pebble game on A and B?” is LFP2k-definable
for two given structures A and B [13] and is decidable by an O(|A|k|B|k)-time algorithm.
We prove Theorem 1 by a reduction from the k-pebble game of Kasai, Adachi and Iwata
[10], called KAI-game, to the existential (k+1)-pebble game. Our result then follows from

an nΩ(k) lower bound for this game [1], which in turn follows from the deterministic time
hierarchy theorem.

1.1. Related Work. Kolaitis and Panttaja [11] proved that for every fixed k ≥ 2 the
problem of determining the winner of the existential k-pebble game is complete for PTIME
under LOGSPACE reductions. Furthermore, they established that the problem is complete
for EXPTIME when k is part of the input. It follows that there is no algorithm for this
problem whose running time is polynomial in the size of the structures as well as in the
number of pebbles. Parameterized by the number of pebbles k, the problem is known to
be W[1]-hard. This follows directly from the fact that a graph G contains a k-clique if and
only if Duplicator has a winning strategy for the existential k-pebble game on the complete
graph on k vertices and G. Thus, the existence of an algorithm of running time f(k)nc

for some computable function f and constant c would imply W[1] = FPT, an unlikely
event in parameterized complexity theory. However, since we do not know whether W[1] =
FPT it is consistent with our previous knowledge that there exists an O(2kn2) algorithm
determining the winner of the existential k-pebble game on two relational structures. Thus,
for every fixed k, it was possible that there exists a quadratic time algorithm deciding if
strong k-consistency can be established.

To prove the EXPTIME-completeness Kolaitis and Panttaja reduced the KAI-game to
the existential pebble game. In this reduction the number of pebbles used in the existential
pebble game depends on the size of the KAI-game instance and is not bounded by any
function of the number of pebbles used in the KAI-game. Thus, their reduction fails to
prove a lower bound for fixed k and it was left as an open question if such a lower bound
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can be proven. In this paper we reduce the k-pebble KAI-game to the existential (k + 1)-
pebble game, and thus keep the parameter small. Some constructions are quite similar
to those used by Kolaitis and Panttaja. However, the proof differs significantly at crucial
points. Furthermore, to devise the winning strategy for Duplicator we use a different proof
technique.

Finally, the parameterized complexity of k-consistency has also been investigated by
Gaspers and Szeider [8]. We discuss their work after the introduction to k-consistency in
Section 1.3.

1.2. Further Applications in Finite Model Theory. We can improve Theorem 1 in two
ways. First, all partial homomorphisms in Duplicator’s winning strategy (defined below) are
in fact partial isomorphisms. Thus, Duplicator has a winning strategy in the k-pebble game
that corresponds to the existential k-variable fragment of first-order logic, where negation

is allowed in front of atomic formulas. This implies that it requires Ω((‖A‖ + ‖B‖)
k−2
12

−ε)
time to decide if every existential k-variable first-order sentence true on A is also true on
B. Second, the structures constructed in our reduction are directed graphs. Therefore,
Theorem 1 holds even when we restrict ourselves to σ-structures, where σ is a relational
signature containing at least one binary relation.

1.3. Establishing Strong k-Consistency. To fix the terminology, we briefly introduce
the concept of establishing strong k-consistency as it is defined in [14]. Let A and B be
two finite relational structures with universes A and B. A k-partial homomorphism is a
partial homomorphism with domain size k. A and B are k-consistent if for every (k − 1)-
partial homomorphism h from A to B and every a ∈ A there is a partial homomorphism
that extends h and is defined on a. Two structures are strongly k-consistent if they are
i-consistent for every i ≤ k.

Strong k-consistency can be established for A and B if there are two strongly k-
consistent structures A’ and B’ over the same universes A and B such that the following
two statements hold.

• Every k-partial homomorphism from A’ to B’ is a k-partial homomorphism from A to
B.

• Every function from A to B is a homomorphism from A’ to B’ if and only if it is a
homomorphism from A to B.

Loosely speaking, strong k-consistency can be established for two structures if they can
be made strongly k-consistent by adding new relations and without changing the solution
space with respect to the homomorphism problem. It is easy to see that if there is a
homomorphism from A to B, then strong k-consistency can be established. Although the
converse is not true in general, it holds for some classes of structures [2, 5].

All known k-consistency algorithms, as e.g. [4], iteratively propagate new constraints
(relations in our notion) until the instance becomes k-consistent. Gasper and Szeider [8]
argued that the task of checking whether the instance is already k-consistent is inherent in
this procedure and thus lower bounds its complexity. This motivates them to analyze the
following parameterized problem: “Given two finite relational structures and a parameter
k, are the structures strongly k-consistent?” They showed that this problem is complete
for the parameterized complexity class co-W[2]. Hence, assuming FPT 6= co-W[2], the
problem is not solvable in time O(f(k)nc) for some computable function f and constant
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c. We analyze the complexity of a stronger statement: “Given two finite relational struc-
tures and a parameter k, can strong k-consistency be established?” The outcome of this
decision problem matches the outcome of a k-consistency algorithm and thus characterizes
the complexity of the k-consistency test precisely. The proof of Theorem 1 implies that
establishing strong k-consistency is complete for the parameterized complexity class XP.
Thus, assuming co-W[2] 6= XP, trying to make the instance k-consistent is a harder task
than checking whether it is already k-consistent.

2. Pebble Games and Proof of Theorem 1

u v w
c d

=⇒ u v w
cd

Figure 1: KAI-game: Moving pebble c according to rule (u, v, w, c, d).

In this section we first introduce the KAI-game and the existential pebble game. Then
we state the reduction from the KAI-game to the existential pebble game in our main lemma
(Lemma 5) and use it to prove Theorem 1.

Kasai, Adachi and Iwata [10] introduced a simple combinatorial pebble game that nicely
simulates Turing machines. The authors showed in [10] and [1] that playing various variants
of this game is complete for different complexity classes. Here we stick to the k-pebble
variant, that is restricted to a fixed set [k] := {1, . . . , k} of pebbles. An instance of the k-
pebble KAI-game is a tuple (X,R, s, γ), where X is the set of nodes, R = R′×{(c, d) ∈ [k]2 |
c 6= d} with R′ ⊆ [X]3 the set of rules, s : [k] → X the start position and γ ∈ X the goal.
A rule is of the form (u, v, w, c, d), with distinct pebbles c, d, pairwise distinct nodes u, v, w
and the intended meaning that if pebble c is on u and pebble d is on v and there is no pebble
on w then one player can move pebble c from u to w (see Figure 1). This is a slightly more
wasteful notion than the original one used in [10], where the relation R′ ⊆ X3 (instead of
R′ ×{(c, d) ∈ [k]2 | c 6= d}) is given as input. However, this technical modification does not
affect the purpose of the game and increases the size of an instance only by a constant factor
if k is fixed, and by a polynomial factor if k is part of the input. A position of the KAI-game
is an injective mapping p : [k] → X. A rule r = (u, v, w, c, d) ∈ R is applicable to a position
p if p(c) = u, p(d) = v and p(z) 6= w for all z ∈ [k]. Furthermore, if r is applicable to p then
r(p) denotes the position defined as r(p)(c) = w and r(p)(z) = p(z), for all z ∈ [k] \ {c}.
The set of all rules in R applicable to a position p is denoted by appl(p), and Tr(p) ⊆ [k]
is the set of KAI-pebbles i such that p(i) contradicts the applicability condition of rule r:
T(u,v,w,c,d)(p) := {i ∈ [k] | (i = c and p(i) 6= u) or (i = d and p(i) 6= v) or p(i) = w}. Thus,
r ∈ appl(p) iff Tr(p) = ∅.

The k-pebble KAI-game is played by two players and proceeds in rounds. In the first
round Player 1 starts with position s and chooses a rule r ∈ appl(s). The new position is
p = r(s). In the next round Player 2 chooses a rule r ∈ appl(p) and applies it to p. Then it is
Player 1’s turn and so on. Player 1 wins the game if he reaches a position p, where p(z) = γ
for one z ∈ [k] or where Player 2 is unable to move. Player 2 wins if she has a strategy
ensuring that Player 1 cannot reach such a position. The next definition formalizes winning
strategies for Player 2. They contain sets of positions Ki, i ∈ {1, 2} where it is Player i’s
turn and a mapping κ that tells Player 2 for every position which rule to choose next.
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Definition 2. A winning strategy for Player 2 in the KAI-game on (X, {r1, . . . , rm}, s, γ)
is a triple K = (K1,K2, κ) where K1 ⊆ {p | p : [k] → X} and K2 ⊆ {p | p : [k] → X \ {γ}}
are sets of positions and κ : K2 → [m] is a mapping such that the following holds:

• s ∈ K1.
• For every p ∈ K1 and every ri ∈ appl(p): ri(p) ∈ K2.
• For every p ∈ K2: rκ(p) ∈ appl(p) and rκ(p)(p) ∈ K1.

Kasai, Adachi and Iwata [10] showed that the problem of determining the winner of
the k-pebble KAI-game is PTIME-complete (for every fixed k ≥ 3) under LOGSPACE-
reductions and complete for EXPTIME when k is part of the input. Furthermore, they
proved the following unconditional lower bound.

Theorem 3 ([1]). For every fixed k ≥ 6 and any ε > 0, the winner of the k-pebble KAI-

game on a given instance I cannot be determined in time O(‖I‖
k−1
4

−ε) on deterministic
multi-tape Turing machines, where ‖I‖ is the size of the input I.

The proof of this theorem essentially relies on the deterministic time hierarchy theorem,
which states that multi-tape Turing machines of running time nk cannot be simulated within
time nk−ε. On the other hand, Turing machines of running time nk can be simulated within
the (4k+1)-pebble KAI-game and hence the lower bound follows. In terms of parametrized
complexity, their argument also leads to XP-completeness of the k-pebble KAI-game with
parameter k as pointed out in [6].

The existential (k+1)-pebble game [12] is played by two players Spoiler and Duplicator
on two relational structures A and B with domains A and B, respectively. First, Spoiler
puts pebbles a1, . . . , ak+1 on elements of A and Duplicator answers by putting pebbles
b1, . . . , bk+1 on elements of B. In each further round Spoiler picks up a pebble ai from A
and places it on another element in A and Duplicator moves the corresponding pebble bi in
B. Spoiler wins the game if he can reach a position where the mapping defined by ai 7→ bi is
not a partial homomorphism from A to B. Duplicator wins the game if she has a winning
strategy that tells her for every move of Spoiler how to place her pebbles such that the
positions of the pebbles define a partial homomorphism. A winning strategy for Duplicator
can be stated formally as a set of partial homomorphisms:

Definition 4 ([12]). A winning strategy for Duplicator in the existential (k + 1)-pebble
game on structures A and B is a nonempty family H of partial homomorphisms from A to
B satisfying the following properties:

closure: If h ∈ H and g ⊂ h then g ∈ H.
extension: For every g ∈ H, |Dom(g)| ≤ k, and every z ∈ A there is an h ∈ H with g ⊆ h

and z ∈ Dom(h).

For a set H of partial homomorphisms from A to B we let cl(H) := {g | g ⊆ h, h ∈ H}
be the closure of H under taking subsets and write cl(h) instead of cl({h}). It is easy to
see that if h is a total homomorphism from A to B, then cl(h) is a winning strategy in
the existential (k + 1)-pebble game on A and B. Now we state our main lemma and prove
Theorem 1. The proof of the main lemma is deferred to Section 3.5.

Lemma 5 (Main Lemma). There is a reduction from the k-pebble KAI-game to the exis-
tential (k + 1)-pebble game that computes for every instance I = (X,R, s, γ) two directed
graphs GS and GD such that the following constraints hold:
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• Player 1 has a winning strategy in the k-pebble KAI-game on I if and only if Spoiler has
a winning strategy in the existential (k + 1)-pebble game on GS and GD.

• |V (GS)|+ |V (GD)| = O(|X| · |R| · k2).
• |E(GS)|+ |E(GD)| = O(k4(|X|2|R|+ |X| · |R|2)).
• The reduction is computable in DTIME(O(‖I‖3)) and in LOGSPACE.

Proof of Theorem 1. Let k≥15 be a fixed integer and ε > 0. Assume that A is an algorithm
that determines the winner of the existential k-pebble game on structures A and B in

time O((‖A‖+‖B‖)
k−2
12

−ε). Let B be the algorithm that first applies the reduction from
Lemma 5 to a given instance I of the (k− 1)-pebble KAI-game and then executes A. Since

‖GS‖+‖GD‖ = O(‖I‖3), B has running time O(‖I‖3+‖I‖3(
k−2
12

−ε)), and thus solves the

k′-pebble KAI-game in time O(‖I‖
k′−1

4
−ε′) for k′ = k − 1 and ε′ = ε/3. This contradicts

Theorem 3.

In addition, Lemma 5 also implies EXPTIME-completeness when k is part of the input
and PTIME-completeness for every fixed k ≥ 4, hence subsumes the result of Kolaitis and
Panttaja [11]. Since the reduction is also an fpt-reduction, it follows that determining the
winner in the existential k-pebble game is complete for the parameterized complexity class
XP.

In our reduction we first construct two colored graphs out of smaller graphs, called
gadgets. In order to prove the existence of a winning strategy for one player, we combine
strategies for the gadgets to a strategy for the whole graph. The easier part is to do that
for Spoiler. As in [9] and [11], we say that Spoiler can reach position pj from position pi
if he has a strategy in the game such that starting from position pi he wins the game, or
position pj occurs in the game after some finite number of rounds. Since this relation is
transitive, we can combine such strategies to show that Spoiler can reach some position p
from ∅; if p does not define a partial homomorphism, this gives us a winning strategy for
Spoiler.

For Duplicator this is more difficult. A critical strategy in the existential (k+1)-pebble
game is a nonempty family H of partial homomorphisms satisfying the closure property
(Definition 4) together with a set of critical positions crit(H) ⊂ H such that h ∈ crit(H) =⇒
|Dom(h)| = k and all g ∈ H \ crit(H) satisfy the extension property. A critical strategy
is nearly a winning strategy in the sense that Duplicator wins unless the game reaches a
critical position. Note that a critical strategy with crit(H) = ∅ is a winning strategy and
every critical strategy in the (k + 1)-pebble game is a winning strategy in the k-pebble

game. Let Ĥ := H \ crit(H). As for winning strategies, the union of critical strategies is
also a critical strategy. The following lemma enables us to construct a winning strategy out
of critical strategies.

Lemma 6. If H1, . . . ,Hl are critical strategies on the same structures and for all i ∈ [l] and

all p ∈ crit(Hi) there exists a j ∈ [l] such that p ∈ Ĥj, then
⋃

i∈[l]Hi is a winning strategy

on these structures.

Every gadget Q that we construct consists of two graphs QS and QD for Spoiler’s and
Duplicator’s side, respectively. The graphs contain boundary vertices bd(QS) ⊆ V (QS) and
bd(QD) ⊆ V (QD), which are the vertices shared with other gadgets. That is, vertices in
V (QS) \ bd(QS) (V (QD) \ bd(QD)) are only adjacent to vertices in V (QS) (V (QD)). A
boundary function of a strategy H on a gadget Q is a mapping β : bd(QS) → bd(QD) such
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that β(z) = h(z) for all h ∈ H and all z ∈ bd(QS) ∩Dom(h). We say that two strategies G
and H on gadgets Q and Q′ are connectable, if they have boundary functions βG and βH and
it holds that βG(z) = βH(z) for all z ∈ bd(QS) ∩ bd(Q′

S). If G and H are two connectable
strategies, we define the composition

G ⊎H = {g ∪ h | g ∈ G, h ∈ H}.

Lemma 7. Let G and H be two connectable critical strategies on gadgets Q = (QS , QD)
and Q′ = (Q′

S , Q
′
D), respectively. The composition G ⊎ H is a critical strategy on QS ∪Q′

S

and QD ∪Q′
D with crit(G ⊎H) = crit(G) ∪ crit(H).

Playing according to the strategy G⊎H onQ and Q′ means that Duplicator uses strategy
G on Q and strategy H on Q′. The requirements on the boundary ensure that strategy G
equals strategy H on the intersection of Q and Q′. We use the operator ⊎ to construct
global critical strategies for the whole graph out of critical strategies on the gadgets. Then
we show that the union of those global critical strategies is by Lemma 6 a winning strategy
for Duplicator.

3. The Reduction

Let ([n], R, s, γ) be an instance of the k-pebble KAI-game and m := |R|. As in [11], the
main idea is to simulate every play of the KAI-game within the existential pebble game such
that Spoiler imitates the moves of Player 1 and Duplicator imitates the moves of Player 2.
First, we construct two colored simple graphs, GS and GD, and then show how to omit the
colors while switching to directed graphs. We use |V (GS)| colors to color every vertex of
Spoiler’s graph GS differently and partition the vertices of Duplicator’s graph with these
colors. Thus, whenever Spoiler pebbles a vertex in GS there is a corresponding set of vertices
in GD Duplicator can pebble.

To encode a position of the KAI-game in the existential (k+1)-pebble game we introduce
the vertices {x1, . . . , xk} in Spoiler’s graph and {xil | i ∈ [k], 0 ≤ l ≤ n} in Duplicator’s graph.
For each i, all the vertices {xi}∪{xi0, . . . , x

i
n} are colored with the same unique color, denoted

by cxi . The vertices x
i
0 play a special role in the construction, so we draw for vertices with

subindex 0 in the figures and for all other vertices. Furthermore, we introduce vertices
yi,yil in the same way.

If p : [k] → [n] is a position of the k pebbles in the KAI-game and it is Player 1’s turn,
then {(xi, xi

p(i)) | i ∈ [k]} is the corresponding position in the existential pebble game. If

it is Player 2’s turn, then {(yi, yi
p(i)) | i ∈ [k]} is the corresponding position. During the

course of the game Spoiler pebbles some vertex xi asking, “Where does KAI-pebble i lie?”
Due to the coloring Duplicator has to answer with some vertex xil meaning “KAI-pebble i
lies on node l.” The vertices are used to handle the case when Spoiler does not play in
the intended way, that is, Spoiler has a winning strategy if and only if he has a winning
strategy on the vertices. In order to name positions that include vertices, we define for
positions p and sets T ⊆ [k] the mapping (p, T ) as

(p, T )(i) =

{

0, i ∈ T,

p(i), else,

and write p for (p, ∅) and 0 for (p, [k]). Now we have to introduce gadgets to ensure that
Spoiler can simulate a play of the KAI-game. That is, if Player 1 can reach a position p
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Figure 2: The graph GD. The dotted edges are only for visual purposes and need to be
contracted. The gadgets MS(ri) and MD(ri) are distinct copies of the switch
Mk,n. The special vertices xij and yij are also depicted in Figure 3.
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Figure 3: Vertex blocks to encode positions in the KAI-game.

in the KAI-game, then Spoiler can reach the encoded position on the x- or y-vertices. The
following list of properties ensures this.

• For the start position s, Spoiler can reach {(xi, xi
s(i)) | i ∈ [k]} from ∅.

• For a position p and every rule r ∈ appl(p), Spoiler can reach {(yi, yi
r(p)(i)) | i ∈ [k]} from

{(xi, xi
p(i)) | i ∈ [k]}.

• Spoiler can reach {(xi, xi
r(p)(i)) | i ∈ [k]} from {(yi, yi

p(i)) | i ∈ [k]} for a rule r ∈ appl(p) of

Duplicator’s choice.
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• {(yi, yi
p(i)) | i ∈ [k]} is not a partial homomorphism if p(i) = γ for some i ∈ [k].

It follows from these properties that if Player 1 has a winning strategy in the KAI-game,
then Spoiler wins the existential pebble game by simulating Player 1’s winning strategy.
The difficult task is to prove that this is the only way for Spoiler to win. We give a brief
description of the construction and argue how Spoiler is intended to play on it. Duplicator’s
graph is illustrated in Figure 2. The gadgets are glued together at their boundary vertices
and the vertex blocks that are glued together inherit their colors. In order to make sure
that the colors partition the graphs we define a new color for every combination of colors
occurring at one vertex in the graph. In Spoiler’s graph we proceed the same way with
Spoiler’s side of the gadgets.

To implement the last condition, we simply delete the color cyi from yiγ for all i ∈ [k].

Since yi and all yil , l ∈ [n] \ {γ}, are still colored cyi , it follows that the mapping yi 7→ yil
that encodes “KAI-pebble i lies on node l” is a partial homomorphism if and only if l is
not the goal node γ. It follows that Spoiler wins the game if he can reach the position
{(yi, yi

p(i)) | i ∈ [k]} where p is a winning position for Player 1 in the KAI-game.

To make sure that Spoiler can reach the start position, we introduce the initialization
gadget INITs, whose boundary x1, . . . , xk in Spoiler’s graph and x10, . . . , x

k
n in Duplicator’s

graph is identified with vertices x1, . . . , xk in Spoiler’s graph and x10, . . . , x
k
n in Duplicator’s

graph. The boundary vertices of the other gadgets have a similar form and can be divided
into input vertices x (with certain indices) and output vertices y that are colored in the
same way as the x- and y-vertices. As above, a position p in the KAI-game is encoded as
{(xi, xip) | i ∈ [k]} on these vertex blocks and we call it p on x. The direction of the gadgets
is indicated in Figure 2 by arrows. Thus, the players are intended to move clockwise in the
graph.

For each rule r we define different rule gadgets RS(r) and RD(r) in which Spoiler can
reach the position r(p) on the output y from p on the input x if r is applicable to p. Hence,
from a position p on x Spoiler can choose an applicable rule r and reach r(p) on the output
y of some rule gadget RS(r). The choice gadget Cm enables Duplicator to choose one of
the m rules she wants to apply. That is, Duplicator can choose a rule r such that from p

on y Spoiler can reach p on the input of RD(r) and then r(p) on the output of RD(r). The
most complex gadget is the multiple input one-way switch Mk,n, which is a generalization
of the multiple input one-way switch defined in [11]. In our construction we put one copy
of Mk,n at the output vertices of every rule gadget. Spoiler’s strategy on this gadget is
nevertheless simple: he can pebble a position through the switch, that is, he can reach p on
the output from p on the input. This concludes the description of how the gadgets can be
used by Spoiler to ensure the four properties above.

Duplicator’s strategy is to force Spoiler to play exactly this way. Especially, if the
KAI-game does not stop, then Duplicator can play the existential pebble game forever by
forcing Spoiler to simulate this infinite play. The main tool for Duplicator is to answer
with vertices whenever Spoiler plays incorrectly: if Spoiler pebbles a vertex xi he is not
supposed to pebble now, then Duplicator answers with xi0. The strategies on the gadgets
ensure that such positions extend to partial homomorphisms and thus Spoiler does not
benefit from them.

3.1. Rule Gadgets. The rule gadgets RS(r) and RD(r) consist of input vertices x1, . . . , xk

in Spoiler’s graph and x10, . . . , x
k
n in Duplicator’s graph, and output vertices y1, . . . , yk and
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Figure 4: Rule gadget RS(u, v, w, c, d). The range of i is [k] \ {c, d}.
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Figure 5: Rule gadget RD(u, v, w, c, d). The range of i is [k] \ {c, d}.

y10, . . . , y
n
k . For each rule r = (u, v, w, c, d) we connect the vertices in the gadgets RS(r) and

RD(r) as shown in Figure 4 and 5.
If r is applicable to p, then Spoiler can reach the position {(yi, yi

r(p)(i)) | i ∈ [k]} from

{(xi, xi
p(i)) | i ∈ [k]} in both gadgets. To do so, he picks up the remaining pebble and puts

it on y1. Then he picks up the pebble from x1 and puts it on y2 and so on. This fact
is stated in Lemma 8(i) and 9(i). Assume that r is not applicable to p (then Tr(p) 6= ∅)
and the current position is {(xi, xi

p(i)) | i ∈ [k]}. On RS(r) Duplicator can pebble some

vertex yi0 when Spoiler asks for yi (i ∈ Tr(p)), and thus can avoid valid positions on the
y-vertices. Therefore, Spoiler is penalized when he chooses a rule r not applicable to p and
plays on RS(r). This strategy is stated in Lemma 8(ii) for T = ∅. If Duplicator chooses a
rule r not applicable to p and plays on RD(r), then she will be penalized, because Spoiler
wins immediately from position {(xi, xi

p(i)) | i ∈ [k]} (Lemma 9(iii)) by pebbling on yi for

some i ∈ Tr(p). Furthermore, Lemma 8(ii) and 9(ii) state that for invalid positions on the
x-vertices (i.e. T 6= ∅), Duplicator can avoid valid positions on the y-vertices.

Lemma 8. For every rule r = (u, v, w, c, d) and position p : [k] → [n] the following holds in
the existential (k + 1)-pebble game on RS(r):

(i) If r ∈ appl(p), then Spoiler can reach {(yi, yi
r(p)(i)) | i ∈ [k]} from {(xi, xi

p(i)) | i ∈ [k]}.

(ii) Duplicator has a winning strategy R(p,T ) with boundary function {(xi, xi(p,T )(i)) | i ∈

[k]} ∪ {(yi, yi(r(p),T∪Tr(p))(i)
) | i ∈ [k]}, for all T ⊆ [k].

Proof. For i = 1, . . . , k Spoiler takes the remaining pebble and puts it on yi. Since there
is an edge {xi, yi}, Duplicator has to answer with yi

r(p)(i) because this is the only vertex

adjacent to xi
p(i). In the next step Spoiler picks up the pebble pair from xi, xip and proceeds

with i+ 1.
The boundary function defined in (ii) preserves the vertex colors and maps edges {xi, yi}

to edges {xi(p,T )(i), y
i
(r(p),T∪Tr(p))(i)

}, hence defines a total homomorphism on RS(r). It fol-

lows that R(p,T ) := {h | h ⊆ β} is a winning strategy.
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Lemma 9. For every rule r = (u, v, w, c, d) and position p : [k] → [n] the following holds in
the existential (k + 1)-pebble game on RD(r):

(i) If r ∈ appl(p), then Spoiler can reach {(yi, yi
r(p)(i)) | i ∈ [k]} from {(xi, xi

p(i)) | i ∈ [k]}.

(ii) If r ∈ appl(p), then Duplicator has a winning strategy R(p,T ) with boundary function

{(xi, xi(p,T )(i)) | i ∈ [k]} ∪ {(yi, yi(r(p),T )(i)) | i ∈ [k]}, for all T ⊆ [k].

(iii) If r /∈ appl(p), then Spoiler wins from {(xi, xi
p(i)) | i ∈ [k]}.

Proof. Statement (i) is analog to Lemma 8(i). The boundary function β stated in (ii) defines
a total homomorphism on RD(r). Thus, R(p,T ) := {h | h ⊆ β} is a winning strategy.

In order to win from {(xi, xi
p(i)) | i ∈ [k]} for a rule r not applicable to p (Statement

(iii)), Spoiler chooses some KAI-pebble i ∈ Tr(p) (whose position p(i) witnesses that r is not
applicable to p) and puts the remaining pebble on yi. Since Duplicator has to answer with a
vertex yij of the same color and none of them is adjacent to xi

p(i), she looses immediately.

3.2. The Multiple Input One-Way Switch. As for the rule gadgets, the multiple input
one-way switch has input vertices x1, . . . , xk in Spoiler’s graph and x10, . . . , x

k
n in Duplicator’s

graph, and output vertices y1, . . . , yk and y10 , . . . , y
k
n, respectively. We say that a position

(p, T ) is on the input (output) to denote the positions {(xi, xi(p,T )(i)) | i ∈ [k]} ({(yi, yi(p,T )(i)) |

i ∈ [k]}).
For Spoiler the switch ensures that he can reach p on the output from p on the input

(Lemma 10(i)). For Duplicator there are several strategies. She has a winning strategy
called output strategy, where any position is on the output and 0 is on the input (Lemma
10(ii)). This ensures that Spoiler cannot move backwards and reach p on the input from p

on the output. Next, for every nonempty T ⊆ [k] Duplicator has a winning strategy where
(p, T ) is on the input and 0 is on the output (Lemma 10(iii)). Thus, she has a strategy such
that Spoiler can reach only the 0 position on the output from invalid positions on the input.
These strategies are called restart strategies. We will see later that Spoiler has to restart the
game, that is, he has to pick up all pebbles and start playing on the initialization gadget,
if he reaches a position that is contained in a restart strategy. To ensure that Spoiler picks
up all pebbles when reaching p on the output from p on the input, Duplicator has a critical
input strategy with p on the input and 0 on the output, whose critical positions are either
contained in an output strategy (where p is on the output) or in a restart strategy (Lemma
10(iv)). If Duplicator plays according to this input strategy, the only way for Spoiler to
bring p from the input to the output is to pebble a critical position inside the switch (using
all the pebbles) and force Duplicator to switch to the corresponding output strategy.

In order to define the multiple input one-way switch Mk,n we construct the two graphs

Mk,n
S for Spoiler’s side and Mk,n

D for Duplicator’s side. Let

V (Mk,n
S ) = {xi, ai, bi, yi | i ∈ [k]},

E(Mk,n
S ) =

{

{xi, ai}, {bi, yi} | i ∈ [k]
}

∪
{

{ai, aj}, {bi, bj} | i, j ∈ [k]; i 6= j
}

∪
{

{ai, bj} | i, j ∈ [k]
}

.

That is, Mk,n
S simply consists of k input vertices xi and k output-vertices yi, which are each

connected to one vertex of a 2k-clique. For Duplicator’s side of the graph, we define for
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Figure 6: Subgraph of the multiple input one-way switch Mk,n. For the first block in
Duplicator’s side, all inner-block edges are drawn. Note that there is no edge
between ais,l and bi0,l.

i ∈ [k]:

Xi = {xis | 0 ≤ s ≤ n}, Y i = {yis | 0 ≤ s ≤ n}

Ai
+ = {ais,l | s ∈ [n], l ∈ [k]}, Ai = Ai

+ ∪ {ai0}

Bi
+ = {bis | s ∈ [n]}, Bi = Bi

+ ∪ {bi0,l | l ∈ [k]}.

The set of vertices of Mk,n
D is

V (Mk,n
D ) =

⋃

i∈[k]

(

Xi ∪Ai ∪Bi ∪ Y i
)

.

The graph consists of k blocks, where the i-th block contains the vertices Xi∪Ai∪Bi∪Y i.
For every i ∈ [k] we color {xi} ∪ Xi as well as {ai} ∪ Ai, {bi} ∪ Bi and {yi} ∪ Y i with a
unique color. We first define the inner-block edges Ei, which are also shown in Figure 6,
and then the inter-block edges Ei,j (for notational convenience we always assume l, p ∈ [k]
and s, q ∈ [n]):

Ei =
(

{xi0} ×Ai
)

∪
{

{xis, a
i
s,l}

}

∪
(

{ai0} ×Bi
)

∪ (E1)-(E3)
{

{ais,l, b
i
s}
}

∪
{

{ais,l, b
i
0,p} | l 6= p

}

∪
{

{bis, y
i
s}
}

∪ (E4)-(E6)
(

{bi0,l | l ∈ [k]} × Y i
)

, (E7)

Ei,j =
{

{ais,l, a
j
q,p} | l 6= p

}

∪
{

{ai0, a
j
s,l}

}

∪
{

{bi0,l, b
j
0,p}

}

∪ (E8)-(E10)
{

{bis, b
j
q}
}

∪
{

{ai0, b
j
0,l}

}

∪
{

{ai0, b
j
s}
}

∪ (E11)-(E13)
{

{ais,l, b
j
q}
}

∪
{

{ais,l, b
j
0,p} | l 6= p

}

. (E14)-(E15)

Finally, E(Mk,n
D ) =

⋃

i∈[k]E
i ∪

⋃

i,j∈[k];i 6=j E
i,j. Our switch is a further development of the

switch used by Kolaitis and Panttaja [11]. In fact, their multiple input one-way switch
Mk+1 is isomorphic to Mk,2. The next lemma states the main properties of the switch.
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Lemma 10. For every position p : [k] → [n], the following statements hold in the existential
(k + 1)-pebble game on Mk,n:

(i) Spoiler can reach {(y1, y1
p(1)), . . . , (y

k, yk
p(k))} from {(x1, x1

p(1)), . . . , (x
k, xk

p(k))}.

(ii) Duplicator has a winning strategy Hout
(p,T ) with boundary function {(xi, xi0) | i ∈ [k]}

and {(yi, yi(p,T )(i)) | i ∈ [k]} for all T ⊆ [k].

(iii) Duplicator has a winning strategy Hrestart
(p,T ) with boundary function {(xi, xi(p,T )(i)) | i ∈

[k]} and {(yi, yi0) | i ∈ [k]} for all nonempty T ⊆ [k].
(iv) Duplicator has a critical strategy Hin

p with boundary function {(xi, xi
p(i)) | i ∈ [k]} ∪

{(yi, yi0) | i ∈ [k]} and sets of critical positions Crestart-crit
p,t (for t ∈ [k]) and Cout-crit

p such
that:
(alph*) crit(Hin

p ) =
⋃

t∈[k] C
restart-crit
p,t ∪ Cout-crit

p ,

(alph*) Crestart-crit
p,t ⊆ Hrestart

(p,{t}) and

(alph*) Cout-crit
p ⊆ Hout

p .

Proof. Let p : [k] → [n] be an arbitrary position. We first construct the strategy for Spoiler
to prove (i). Starting from position {(x1, x1

p(1)), . . . , (x
k, xk

p(k))}, Spoiler places the (k +

1)st pebble on a1. Duplicator has to answer with a1
p(1),l1

for some l1 ∈ [k], mapping the

edge {x1, a1} to some edge in (E2). Next, Spoiler picks up the pebble from x1 and puts
it on a2. Again, Duplicator has to answer with a2

p(2),l2
for some l2 ∈ [k] \ {l1}. The

index l2 has to be different from l1 because there is an edge between a1 and a2, but none
between a1

p(1),l1
and a2

p(2),l1
in (E8). Following that scheme, Spoiler can reach the position

{(a1, a1
p(1),l1

), . . . , (ak, ak
p(k),lk

)} for pairwise distinct l1, l2, · · · , lk. Now, Spoiler pebbles b1

with the free pebble and Duplicator has to answer with a vertex in B1 (due to the vertex-
colors) that is adjacent to all a1

p(1),l1
, . . . , ak

p(k),lk
. This is only the case for b1

p(1) (due to

(E4) and (E14)), since every vertex of the form b10,li is not adjacent to the vertex ai
p(i),li

according to (E5) and (E15). In the next step Spoiler picks up the pebble from a1
p(1),l1

and puts it on b2. Duplicator has to answer with b2
p(2), mapping the edge {b1, b2} to (E11).

Because every vertex of the form b20,l is not connected to b1
p(1), this is the only choice for

Duplicator. Thus, Spoiler can reach {(b1, b1
p(1)), . . . , (b

k, bk
p(k))} and from there he reaches

{(y1, y1
p(1)), . . . , (y

k, yk
p(k))} with the same technique.

In order to derive the winning strategies for Duplicator in (ii) and (iii) we consider
several total homomorphisms from Spoiler’s to Duplicator’s side. Consider the edges (E1),
(E3) and (E7) connecting vertices with vertices in one block of Duplicator’s side. They
can be used by Duplicator to pebble a vertex when Spoiler moves upwards. This is the
crucial ingredient for Duplicator’s output strategies (ii). To formalizes this let Hout

p denote

the set of total homomorphisms houtp,σ = {(xi, xi0), (a
i, ai

p(i),σ(i)), (b
i, bi

p(i)), (y
i, yi

p(i)) | i∈ [k]},

where σ ∈ Sk is some permutation on [k]. Furthermore, let hout(p,T ) = {(xi, xi0), (a
i, ai0),

(bi, bi0,i), (y
i, yi(p,T )(i)) | i ∈ [k]}. Recall that cl(h) := {g | g ⊆ h}. Since hout(p,T ) and all

houtp,σ ∈ Hout
p are total,

Hout
(p,T ) :=

{

cl(hout(p,T )), T 6= ∅,

cl({hout(p,∅)} ∪Hout
p ), else,
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is a winning strategy for Duplicator satisfying (ii).
If a homomorphism maps all the ai vertices to Ai

+, then it has to map all bi vertices

to Bi
+. This is due to the missing edges in (E5), (E15) and has also been used in Spoiler’s

strategy above. On the other hand, if at least one ai is mapped to ai0, then every bi can be

mapped to bi0,l, where l is chosen such that aj
p(j),l

is not in the image of the homomorphism

for every j. Duplicator benefits from this, because she can now map the yi vertices arbi-
trarily using the edges (E7). This behavior is used in the following restart strategies. Note
that a homomorphism mapping some ai to ai0 also maps xi to xi0, hence restart strategies
require invalid input positions. For all nonempty T ⊆ [k], let Hrestart

(p,T ) := cl(Hrestart
(p,T ) ), where

Hrestart
(p,T ) is the set of total homomorphisms h satisfying the constraints h(xi) = xi(p,T )(i) and

h(yi) = yi0. This set clearly satisfies (iii). As an example let g ∈ Hrestart
(p,{t}) be the following

homomorphism:

g(xi) = xi(p,{t})(i), g(bi) = bi0,t,

g(at) = at0, g(yi) = yi0,

g(ai) = ai
p(i),i, i 6= t.

It remains to consider the critical input strategies (iv). They formalize the following behav-
ior of Duplicator at the time when Spoiler wants to pebble a position p through the switch
as in (i). If Spoiler pebbles ai or bi, Duplicator answers within Ai

+ or Bi \Bi
+, respectively.

This allows her to answer on the boundary according to the boundary function defined in
(iv). However, she may run into trouble when Spoiler places k pebbles on ai and bi vertices,
because they extend to a (k + 1)-clique on Spoiler’s side, but not on Duplicator’s side (on
the blocks Ai

+ and Bi \ Bi
+). These positions form the critical positions where Duplicator

switches to an output or restart strategy. If all k pebbles are on a1, . . . , ak, as in Spoiler’s
strategy (i), then Duplicator switches to the output strategy Hout

p . In all other cases she
switches to a restart strategy. For all l ∈ [k] and permutations σ on [k] we define partial
homomorphisms:

hinp,σ(x
i) = xi

p(i) hinp,σ,l(x
i) = xi

p(i)

hinp,σ(a
i) = ai

p(i),σ(i) hinp,σ,l(a
i) = ai

p(i),σ(i), i 6= σ−1(l)

hinp,σ(b
i) = undefined hinp,σ,l(b

i) = bi0,l

hinp,σ(y
i) = yi0 hinp,σ,l(y

i) = yi0

It is easy to check, that hinp,σ defines a homomorphism from Mk,n
S \ B to Mk,n

D , and hin
p,σ,l

defines a homomorphism from Mk,n
S \ {aσ

−1(l)} to Mk,n
D . For all σ ∈ Sk

hout-critp,σ := {(ai, ai
p(i),σ(i)) | i ∈ [k]}

and for all σ ∈ Sk and j, t ∈ [k]

hrestart-critp,σ,j,t := {(ai, ai
p(i),σ(i)) | i ∈ [k] \ {t}} ∪ {(bj , bj0,σ(t))}.

Now we can define the sets used in (iv):

Hin
p = cl({hinp,σ | σ ∈ Sk} ∪ {hinp,σ,l | σ ∈ Sk, l ∈ [k]}),

Cout-crit
p = {hout-critp,σ | σ ∈ Sk},
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Crestart-crit
p,t = {hrestart-critp,σ,j,t | σ ∈ Sk, j ∈ [k]},

crit(Hin
p ) =

⋃

t∈[k]

Crestart-crit
p,t ∪ Cout-crit

p .

First note that hout-critp,σ ⊂ hinp,σ and hrestart-crit
p,σ,j,t ⊂ hin

p,σ,σ(t). Thus, crit(Hin
p ) ⊆ Hin

p . It easily

follows from the definitions, that hout-critp,σ ⊂ houtp,σ . Furthermore, every hrestart-crit
p,σ,l,t can be

extended to a homomorphism in Hrestart
(p,{t}) by defining the boundary as required and mapping

at to at0 and bj to bj0,σ(t) for all j ∈ [k]. This proves statement b) and c) from (iv). It

remains to show that Hin
p is a critical strategy with critical positions crit(Hin

p ).

Claim 11. For all g ∈ Hin
p with |Dom(g)| ≤ k, either g ∈ crit(Hin

p ) or for all z ∈ V (Mk,n
S )

there exist an h ∈ Hin
p , such that g ⊆ h and z ∈ Dom(h).

Proof. As g is a partial homomorphism from Hin
p , we can fix some σ ∈ Sk and l ∈ [k] such

that g ⊂ {(xi, xi
p(i)), (a

i, ai
p(i),σ(i)), (b

i, bi0,l), (y
i, yi0) | i ∈ [k]}.

Case 1: |Dom(g) ∩A| = k. In this case, g = hout-critp,σ and hence, g ∈ crit(Hin
p ).

Case 2: |Dom(g) ∩A| = k − 1. If Dom(g) ∩B 6= ∅, then g = hrestart-crit
p,σ,j,σ−1(l) for some j ∈ [k].

Thus, we can assume that Dom(g)∩B = ∅ and show for all z that g satisfies the extension
property. If z is the unique element in A \Dom(g), then hinp,σ extends g. If z ∈ X ∪B ∪ Y ,

then hin
p,σ,l extends g.

Case 3: |Dom(g) ∩ A| ≤ k − 2. Let j1 and j2 be two distinct indices such that aj1 ,
aj2 /∈ Dom(g). Furthermore, we can assume that σ(j1) = l. For z 6= aj1 the homomorphism
hin
p,σ,l extends g. If z = aj1 , then hin

p,σ′,l extends g, where σ
′ := {(i, σ(i)) | i ∈ [k] \ {j1, j2}} ∪

{(j1, σ(j2)), (j2, σ(j1))}.

Duplicator’s side

y1 y2

a10 a1n akn

M1
D

c10 c1n ckn

b10 b1n bkn

M2
D

d10 d1n dkn

x1
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n xk
n
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y
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M1
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b1 bk
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d1 dk

Figure 7: The initialization gadget INITs (for k = 3, n = 4, s(1) = 2, s(2) = 4, s(3) = 3.)
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3.3. The Initialization Gadget. The initialization gadget INITs is built out of two mul-
tiple input one-way switches M1 and M2, vertices y in Spoiler’s graph and y1, y2 in Du-
plicator’s graph (that are colored cy), and the boundary vertices x1, . . . , xk and x10, . . . , x

k
n

(where all xi and xil are colored cxi). The x- and y-vertices are connected to M1 and M2

as shown in Figure 7. Lemma 12 (i)–(iii) provides the strategies on INITs. The main prop-
erty is that Spoiler can reach the start position at the boundary (i) and Duplicator has a
corresponding counter strategy (ii) in this situation. Furthermore, if an arbitrary position
occurs at the boundary during the game, Duplicator has a strategy to survive (iii).

Lemma 12. For every start position s : [k] → [n] the following holds in the existential
(k + 1)-pebble game on INITs:

(i) Spoiler can reach {(xi, xi
s(i)) | i ∈ [k]} from ∅.

(ii) There is a winning strategy I init for Duplicator with boundary function {(xi, xi
s(i)) |

i ∈ [k]}.
(iii) For every p : [k] → [n] and every T ⊆ [k] there is a critical strategy I init

(p,T ) with boundary

function {(xi, xi(p,T )(i)) | i ∈ [k]} and crit(I init
(p,T )) ⊆ I init.

Spoiler’s strategy is quite simple. First he pebbles y. Duplicator has to answer with either
y1 or y2. Then Spoiler can reach {(xi, xi

s(i)) | i ∈ [k]} by pebbling through either M1 or M2.

To construct the strategies for Duplicator, we can combine the strategies of the switches
M1 and M2 such that she plays an input strategy on one switch and a restart or output
strategy on the other switch. Assume that Spoiler reaches a critical position on the switch
where Duplicator plays the input strategy, say M1. Duplicator can now flip the strategies
such that she plays a restart or output strategy on M1, depending on which kind of critical
position Spoiler has reached, and an input strategy on M2.

Proof of Lemma 12. We first develop the strategy for Spoiler (i). Spoiler first pebbles y.
Duplicator has to response with either y1 or y2. Depending on Duplicator’s choice, Spoiler
can reach either {(ai, ai

s(i)) | i ∈ [k]} or {(bi, bi
s(i)) | i ∈ [k]}. By Lemma 10.(i) Spoiler

reaches {(ci, ci
s(i)) | i ∈ [k]} ({(di, di

s(i)) | i ∈ [k]}) and from there he can reach the position

{(xi, xi
s(i)) | i ∈ [k]}. For Duplicator’s strategies we start with a discussion of possible

moves on the boundary of the switches and the x- and y-vertices. At the top of the gadget
Duplicator can map y to y1 and is then forced to answer with s at the input of M1 and for
some R ⊆ [k] with (s, R) at the input of M2. This strategy is called G1

R, the dual strategy
where y is mapped to y2 is called G2

R.

G1
R := cl({(y, y1)} ∪ {(ai, ai

s(i)), (b
i, bi(s,R)(i)) | i ∈ [k]})

G2
R := cl({(y, y2)} ∪ {(bi, bi

s(i)), (a
i, ai(s,R)(i)) | i ∈ [k]})

At the bottom of the switch K(p,T ) denotes the strategy where 0 is at the output of both

switches and some arbitrary (p, T ) is at the x-block. In the strategy Kout-i the start position
s occurs at the output of the switch M i and on the x-block, whereas 0 is at the output of
the other switch.

K(p,T ) := cl({(ci, ci0), (d
i, di0), (x

i, xi(p,T )(i)) | i ∈ [k]})

Kout-1 := cl({(ci, ci
s(i)), (d

i, di0), (x
i, xi

s(i)) | i ∈ [k]})

Kout-2 := cl({(ci, ci0), (d
i, di

s(i)), (x
i, xi

s(i)) | i ∈ [k]})
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Now we can combine these partial strategies with the strategies on the switches described
in Lemma 10. In strategy I in-i

R,(p,T ) Duplicator plays an input strategy on switch i, a restart

strategy on the other switch and an arbitrary position (p, T ) occurs at the x-block. These
strategies were combined to the critical strategy I init

(p,T ) described in (ii).

I in-1
R,(p,T ) := G1

R ⊎Hin
s 〈M

1〉 ⊎ Hrestart
(s,R) 〈M2〉 ⊎ K(p,T )

I in-2
R,(p,T ) := G2

R ⊎Hrestart
(s,R) 〈M1〉 ⊎ Hin

s 〈M
2〉 ⊎ K(p,T )

I init
(p,T ) :=

⋃

t∈[k]

(I in-1
{t},(p,T ) ∪ I in-2

{t},(p,T ))

All critical positions of I in-i
R,(p,T ) are restart or output critical positions on the switch M i.

By Lemma 10.(iv).(b) every restart critical positions of I in-1
R,(p,T ) is contained in one of the

strategies I in-2
{t},(p,T ) as non-critical position. Hence, the only critical positions crit(I init

(p,T )) of

the combined strategy are output critical positions on the switches. These output critical
positions will be contained in the strategies I init-i where Duplicator plays an output strategy
on switch i. Together with I init

s they form the winning strategy I init from (ii).

I init-1 := G2
[k] ⊎Hout

s 〈M1〉 ⊎ Hin
s 〈M

2〉 ⊎ Kout-1

I init-2 := G1
[k] ⊎Hin

s 〈M
1〉 ⊎ Hout

s 〈M2〉 ⊎ Kout-2

I init := I init-1 ∪ I init-2 ∪ I init
s

I init is a union of critical strategies with s at the boundary. To prove that I init is indeed
a winning strategy on the gadget, we apply Lemma 6 and show that every critical position
of one strategy is contained as non-critical position in another strategy. Critical positions
are inside the input strategy Hin

s on one of the switches. By Lemma 10.(iv) they are either
contained in an output or restart strategy on the corresponding switch. Hence, all restart
critical positions on M1 and M2 are contained in I init

s and all output critical positions on

M1 (M2) are contained in I init-1 (I init-2). Recall that Ŝ := S \ crit(S), by Lemma 10.(iv)
we get:

crit(I in-2
R,(p,T )) = crit(I init-1) = crit(Hin

s 〈M
2〉) ⊆ Hout

s 〈M2〉 ∪
⋃

t∈[k]

Hrestart
(s,{t})〈M

2〉

⊆ Î init-2 ∪
⋃

t∈[k]

Î in-1
{t},s,

crit(I in-1
R,(p,T )) = crit(I init-2) = crit(Hin

s 〈M
1〉) ⊆ Hout

s 〈M1〉 ∪
⋃

t∈[k]

Hrestart
(s,{t})〈M

1〉

⊆ Î init-1 ∪
⋃

t∈[k]

Î in-2
{t},s.

Hence, crit(I init
(p,T )) ⊆ I init and I init is a winning strategy by Lemma 6.
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3.4. The Choice Gadget. The boundary of the choice gadget consists of input vertices
x1, . . . , xk in Spoiler’s graph and x10, . . . , x

k
n in Duplicator’s graph. These vertices are iden-

tified with y-vertices in the final graph. The output vertices are of the form (yq)
1, . . . , (yq)

k

and (yq)
1
0, . . . , (yq)

k
n for all q ∈ [m] and are connected to the rule gadgets RD(rq). This

gadget enables Spoiler to reach positions ((yq)
i, (yq)

i
p(i)) from (xi, xi

p(i)) but Duplicator can

choose the desired q ∈ [m]. This choice will later coincide with the rule rq ∈ R Player 2
chooses in the KAI-game when position p is pebbled. The choice gadget Cm is defined as
follows:

V (Cm
S ) = {xi, ai | i ∈ [k]} ∪ {(yq)

i | i ∈ [k], q ∈ [m]},

E(Cm
S ) =

{

{xi, ai} | i ∈ [k]
}

∪
{

{ai, (yq)
i} | i ∈ [k], q ∈ [m]

}

∪
{

{ai, aj} | i, j ∈ [k]; i 6= j
}

,

V (Cm
D ) = {xil | i ∈ [k], 0 ≤ l ≤ n} ∪ {ai0 | i ∈ [k]}

{ail,q | i ∈ [k], l ∈ [n], q ∈ [m]}

∪ {(yq)
i
l | i ∈ [k], q ∈ [m], 0 ≤ l ≤ n},

E(Cm
D ) =

{

{xi0, a
i
0} | i ∈ [k]

}

∪
{

{xil , a
i
l,q} | i ∈ [k], l ∈ [n], q ∈ [m]

}

∪
{

{ai0, (yq)
i
0} | i ∈ [k], q ∈ [m]

}

∪
{

{ail,q, (yq)
i
l} | i ∈ [k]; l ∈ [n]; q ∈ [m]

}

∪
{

{ail,q, (yq′)
i
0} | i ∈ [k]; l ∈ [n]; q, q′ ∈ [m]; q 6= q′

}

∪
{

{ail,q, a
j
l′,q} | i, j ∈ [k]; i 6= j; l, l′ ∈ [n]; q ∈ [m]

}

.

Furthermore, for all i ∈ [k], all vertices ai and ail,q are colored with the unique color cai ,

and for all i ∈ [k], q ∈ [m] the vertices (yq)
i and (yq)

i
l are colored with the unique color

c(yq)i . One partition of Cm is shown in Figure 8. Recall that Spoiler can reach a position

Duplicator’s sideSpoiler’s side

xi xi
0
xi
1

xi
n

(y1)
i (ym)i (y1)

i
0

(y1)
i
n (ym)i

0
(ym)in

ai

ai
0

ai
1,1

ai
1,m ai

n,m

Figure 8: The i-th partition of the gadget Cm.

if he has a strategy such that either this position occurs after some finite number of rounds
or he wins the game. We extend this notion to sets of positions by saying that Spoiler can
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reach one of the positions p1, . . . , pm from p0 if starting from position p0 either Spoiler wins
the game or one of the positions p1, . . . , pm occurs after a finite number of rounds.

Lemma 13. In the existential (k + 1)-pebble game on Cm,

(i) for every p : [k] → [n] Spoiler can reach one of the positions {((yl)
i, (yl)

i
p(i)) | i ∈ [k]}

for l ∈ [m] from {(xi, xi
p(i)) | i ∈ [k]}, and

(ii) for every l ∈ [m], p : [k] → [n], T ⊆ [k], Duplicator has a winning strategy Cl
(p,T ) with

boundary function {(xi, xi(p,T )(i)) | i ∈ [k]} ∪ {((yq)
i, (yq)

i
0) | i ∈ [k], q ∈ [m] \ {l}} ∪

{((yl)
i, (yl)

i
(p,T )(i)) | i ∈ [k]}.

Proof. We first present Spoiler’s strategy (i). Starting from position {(xi, xi
p(i)) | i ∈ [k]}

Spoiler puts the (k + 1)st pebble on a1 and Duplicator has to response with a1
p(1),l for

one l ∈ [m] she can choose. Then Spoiler picks up the pebble from x1 and puts it on a2.
Duplicator has to response with a2

p(2),l, since this vertex is the only one adjacent to x2
p(2) and

a1
p(1),l. Next, Spoiler picks up the pebble from x2 and puts it on a3 and so on. Thus, Spoiler

reaches {(ai, ai
p(i),l) | i ∈ [k]}. In the next step he places the (k + 1)st pebble on (yl)

1, and

Duplicator has to answer with (yl)
1
p(1), since this vertex is the only one colored in the same

color as (yl)
1 and adjacent to a1

p(1),l. Now Spoiler picks up the pebble from a1 and puts it

on (yl)
2, Duplicator has to answer with (yl)

2
p(2). Following that strategy Spoiler can reach

{((yl)
i, (yl)

i
p(i)) | i ∈ [k]}. Duplicator’s strategy (ii) is simply defined as Cl

(p,T ) = cl(hl(p,T )),

where hl(p,T ) is the following total homomorphism on Cm:

hl(p,T )(z) :=































xi(p,T )(i), if z = xi,

ai
p(i),l, if z = ai, i /∈ T,

ai0, if z = ai, i ∈ T,

(yl)
i
(p,T )(i), if z = (yl)

i,

(yq)
i
0, if z = (yq)

i, q ∈ [m] \ {l}.

Hence, if some (not necessarily valid) position (p, T ) is on the input Duplicator can force
Spoiler to bring this position to the output block (yl) using the strategy Cl

(p,T ).

The strategies C1
0
= · · · = Cm

0
have the 0 position at every vertex block and will be

denoted by C0.

3.5. Proof of the Main Lemma.

Proof of Lemma 5. It remains to construct winning strategies for Spoiler and Duplicator on
the colored graphs GS and GD. First, we develop the winning strategy for Spoiler. Hence
assume that Player 1 has a winning strategy in the k-pebble KAI-game. By Lemma 12,
Spoiler can reach position {(xi, xi

s(i)) | i ∈ [k]}. Let r be the first rule Player 1 chooses in

the KAI-game. By Lemma 8 Spoiler can reach {(yi, yi
r(s)(i)) | i ∈ [k]}, where the y vertices

are the output-boundary of the rule gadget RS(r). By Lemma 10 he can pebble through
the switch and reach {(yi, yi

r(s)(i)) | i ∈ [k]}. Let p := r(s). If p maps some pebble to γ, then

Spoiler wins the game since yi is colored cyi whereas y
i
γ is not. Otherwise (by Lemma 13)
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Spoiler can reach position {((yq)
i, (yq)

i
p(i)) | i ∈ [k]} for one q ∈ [m] of Duplicator’s choice

at the output of the choice gadget and the input of RD(rq). If rq /∈ appl(p), then Spoiler
wins immediately by Lemma 9 (especially Spoiler wins if appl(p) = ∅ and Player 2 cannot
move). If rq ∈ appl(p), then Spoiler can reach {(xi, xi

rq(p)(i)
) | i ∈ [k]}. Spoiler chooses the

next rule according to Player 1’s winning strategy and so on. Since Player 1 eventually puts
a pebble c on node γ, Spoiler can reach position (yc, ycγ) and thus he wins the game.

Assume that K = (K1,K2, κ) is a winning strategy for Player 2 in the k-pebble KAI-
game. Recall that Player 2 can play in such a way that every position occurring in the
KAI-game is either contained in K1 or K2 where Ki is the set of position when it is Player i’s
turn. We define a global critical strategy Sp (Dp) for every position p in K1 (K2). Duplicator
can now simulate Player 2’s winning strategy in the KAI-game by playing according to the
critical strategy Sp (Dp) if the position p is the current position in the KAI-game and it is
Player 1’s (Player 2’s) turn. If Spoiler pebbles output critical positions in these strategies,
Duplicator switches the strategies in the same way as the positions in the KAI-game change.
If Spoiler plays incorrectly in the sense that he pebbles a restart critical position at the
switches, then Duplicator moves to a corresponding restart strategy.

Now we construct these critical strategies for the whole graph out of smaller critical
strategies F defined on gadgets Q (denoted F〈Q〉) using the ⊎-operator and Lemma 7. The
global strategy S init means “the KAI-game has just started, position s is on the board and
it is Player 1’s turn.” The strategy Sp (Dp) denotes “position p is on the board and it is
Player 1’s (Player 2’s) turn.”

S init = I init ⊎ C0 ⊎
⊎

l∈appl(s)

(

Rs〈RS(rl)〉 ⊎ Hin
rl(s)

〈MS(rl)〉
)

⊎

⊎

l∈[m]\appl(s)

(

Rs〈RS(rl)〉 ⊎ Hrestart
(rl(s),Trl

)〈MS(rl)〉
)

⊎

⊎

l∈[m]

(

R0〈RD(rl)〉 ⊎ Hout
s 〈MD(rl)〉

)

.

We define the global critical strategies Sp and Srestart
(p,T ) for all p ∈ K1 and T 6= ∅. In the

strategy Sp the position p is at the x-vertices encoding that p is the current position in
the KAI-game and it is Player 1’s turn. The strategies Srestart

(p,T ) contain the restart critical

positions of Sp.

Sp = I init
p ⊎ C0 ⊎

⊎

l∈appl(p)

(

Rp〈RS(rl)〉 ⊎ Hin
rl(p)

〈MS(rl)〉
)

⊎

⊎

l∈[m]\appl(p)

(

Rp〈RS(rl)〉 ⊎ Hrestart
(rl(p),Trl

)〈MS(rl)〉
)

⊎

⊎

l∈[m]

(

R0〈RD(rl)〉 ⊎ Hout
p 〈MD(rl)〉

)

,

Srestart
(p,T ) = I init

(p,T ) ⊎ C0⊎
⊎

l∈[m]

(

R(p,T )〈RS(rl)〉 ⊎ Hrestart
(rl(p),T∪Trl

)〈MS(rl)〉⊎

R0〈RD(rl)〉 ⊎ Hout
(p,T )〈MD(rl)〉

)

.
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Furthermore, for all p ∈ K2 and T 6= ∅ let Dp and Drestart
(p,T ) be the following global critical

strategies. Similar as in the strategies above, Dp puts the position p at the y-vertices
encoding that p is the current position in the KAI-game and it is Player 2’s turn. Again,
the strategies Drestart

(p,T ) contain the restart critical positions of Dp.

Dp = I init
0 ⊎ C

κ(p)
p ⊎

⊎

l∈[m]

(

R0〈RS(rl)〉 ⊎ Hout
p 〈MS(rl)〉

)

⊎

⊎

l∈[m]\{κ(p)}

(

R0〈RD(rl)〉 ⊎ Hrestart
0 〈MD(rl)〉

)

⊎

Rp〈RD(rκ(p))〉 ⊎ Hin
rκ(p)(p)

〈MD(rκ(p))〉,

Drestart
(p,T ) = I init

0 ⊎ C
κ(p)
(p,T ) ⊎

⊎

l∈[m]

(

R0〈RS(rl)〉 ⊎ Hout
(p,T )〈MS(rl)〉

)

⊎

⊎

l∈[m]\{κ(p)}

(

R0〈RD(rl)〉 ⊎ Hrestart
0

〈MD(rl)〉
)

⊎

R(p,T )〈RD(rκ(p))〉 ⊎ Hrestart
(rκ(p)(p),T )〈MD(rκ(p))〉.

Before we formally state Duplicator’s winning strategy, we briefly describe these critical
strategies. First, the only critical positions of Srestart

(p,T ) and Drestart
(p,T ) are inside the initialization

gadget and contained in S init. Thus, this is a good situation for Duplicator, since Spoiler has
to restart the game by playing on the initialization gadget. At the beginning of the game
Duplicator plays according to the strategy S init, where position s is on the x-vertices. The
only critical positions of that strategy are inside the MS(r)-gadgets for rules r applicable
to s. If Spoiler pebbles some restart-critical positions there, then Duplicator can switch to
Srestart
(s,T ) . If Spoiler pebbles an output-critical position on MS(r), then Duplicator can switch

to strategy Dr(s) where position p = r(s) is on the y-vertices. The only critical positions now
are inside the switch MD(rκ(p)) and inside the initialization gadget. If Spoiler pebbles a

restart-critical position on MD(rκ(p)), then Duplicator sticks to Drestart
(p,T ) . If Spoiler pebbles

an output-critical position, then Duplicator chooses strategy Sp′ , where p′ = rκ(p)(p). The
critical positions from Sp′ are within the initialization gadget and the switches MS(r) for
rules r applicable to p′. Thus, combining all these critical strategies allows Duplicator to
play forever. Now we define the winning strategy for Duplicator:

H = S init ∪
⋃

p∈K1,T⊆[k],T 6=∅

(

Sp ∪ Srestart
(p,T )

)

∪
⋃

p∈K2,T⊆[k],T 6=∅

(

Dp ∪ Drestart
(p,T )

)

.

Since H is a union of critical strategies, it suffices by Lemma 6 to show that for each critical
strategy G and each partial homomorphism h ∈ crit(G) there is a critical strategy F such

that h ∈ F̂ . From the definition of the global critical strategies and the properties of the
partial critical strategies they contain, it follows that

crit(Srestart
(p,T ) ) ⊆ Ŝ init,

crit(Drestart
(p,T ) ) ⊆ Ŝ init,
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crit(Sp) ⊆ Ŝ init ∪
⋃

T 6=∅

Ŝrestart
(p,T ) ∪

⋃

l∈appl(p)

D̂rl(p),

crit(Dp) ⊆ Ŝ init ∪ Ŝrκ(p)(p) ∪
⋃

T 6=∅

D̂restart
(p,T ) ,

crit(S init) ⊆
⋃

l∈appl(s)

D̂rl(s).

From the definition of H and the properties of the KAI-game winning strategy K, it follows,
that if a global critical strategy mentioned in the left hand side of the above inclusions is a
strategy in H, then so are all strategies on the right hand side. This concludes the proof of
Lemma 5 for colored simple graphs GS and GD.

3.6. Getting Rid of the Colors. As in [11] our construction involves |V (GS)| unary pred-
icates. To settle the complexity of deciding whether Spoiler has a winning strategy in the
existential k-pebble game on σ-structures for fixed finite signatures σ, we use the following
construction to switch from colored simple graphs to directed graphs. Let P1, . . . , Pw be
the colors used in the graphs GS and GD, and P an additional color. We introduce w + 1
vertices d0, . . . , dw that are colored P in both graphs GS and GD. For every 1 ≤ i < w
and each vertex x colored Pi, there are directed edges (di, x) and (x, di+1). Furthermore,
there are directed edges from vertices colored Pw to dw and one from d1 to d0. Now we can
delete the colors P1, . . . , Pw without giving Duplicator more freedom. That is, we replace
the requirement “x ∈ Pi” by the statement “there exists an alternating directed path (where
every second element is colored P ) of length 2i − 1 to a vertex colored P and having an
out-neighbor colored P”. This can easily be checked by Spoiler using two pebbles. To get
rid of the remaining color P we add a loop E(x, x) for every vertex x ∈ P .

d0

d1

dw

P

P1

P2

Pw

GS

d0

d1

dw

P

P1

P2

Pw

GD

Figure 9: Colors P1, . . . , Pw can now be deleted.
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4. Conclusion

We proved an Ω(n
(k−2)
12

−ε) lower bound for deciding which player can win the existential

k-pebble game on two given finite relational structures and got an Ω(n
(k−2)

12
−ε) lower bound

for the k-consistency test as a consequence. Furthermore, the lower bound also applies
to the k-pebble game that characterizes the expressive power of the existential k-variable
fragment (where negation is allowed in front of atomic formulas).

The parameterized complexity of the whole k-variable first-order logic Lk and the count-
ing logic Ck is wide open. It is not even known if it is W[1]-hard to decide if two given finite
relational structures can be distinguished by an Lk (Ck) sentence. Regarding the classical
complexity, Lk-equivalence as well as Ck-equivalence is complete for polynomial time [9],
but it is an open problem whether the problems are complete for EXPTIME when k is part
of the input.
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