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Abstract. We present Classical BI (CBI), a new addition to the family of bunched logics
which originates in O’Hearn and Pym’s logic of bunched implications BI. CBI differs from
existing bunched logics in that its multiplicative connectives behave classically rather than
intuitionistically (including in particular a multiplicative version of classical negation). At
the semantic level, CBI-formulas have the normal bunched logic reading as declarative
statements about resources, but its resource models necessarily feature more structure
than those for other bunched logics; principally, they satisfy the requirement that every
resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI
is provided by a display calculus à la Belnap, which can be seen as a generalisation of the
bunched sequent calculus for BI. In this paper we formulate the aforementioned model
theory and proof theory for CBI, and prove some fundamental results about the logic,
most notably completeness of the proof theory with respect to the semantics.

1. Introduction

Substructural logics, whose best-known varieties include linear logic, relevant logic and
the Lambek calculus, are characterised by their restriction of the use of the so-called struc-
tural proof principles of classical logic [44]. These may be roughly characterised as those
principles that are insensitive to the syntactic form of formulas, chiefly weakening (which
permits the introduction of redundant premises into an argument) and contraction (which
allows premises to be arbitrarily duplicated). For example, in linear logic, only formulas
prefixed with a special “exponential” modality are subject to weakening and contraction,
while in relevant logic it is usual for contraction but not weakening to be permitted.

Bunched logic is a relatively new area of substructural logic, but one that has been re-
ceiving increasing attention amongst the logical and computer science research communities
in recent years. In bunched logic, the restriction on the use of structural proof principles
is achieved by allowing the connectives of a standard “additive” propositional logic, which
admits weakening and contraction, to be freely combined with those of a second “multi-
plicative” propositional logic, which does not. In contrast to linear logic, whose restricted

1998 ACM Subject Classification: F.4.1.
Key words and phrases: Classical BI, bunched logic, resource models, display logic, completeness.

a Research supported by an EPSRC Postdoctoral Fellowship.
b Research supported by an EPSRC Advanced Fellowship.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (3:3) 2010

c© J. Brotherston and C. Calcagno
CC© Creative Commons

http://creativecommons.org/about/licenses


2 J. BROTHERSTON AND C. CALCAGNO

treatment of additive connectives yields a natural constructive reading of proofs as compu-
tations [1], the inclusion of unrestricted additives in bunched logics gives rise to a simple
Kripke-style truth interpretation according to which formulas can be understood as declar-
ative statements about resource [40]. This resource reading of bunched logic has found
substantial application in computer science, most notably in the shape of separation logic,
which is a Hoare logic for program verification based upon various bunched logic models
of heap memory [45]. The proof theory of bunched logic also differs markedly from the
proof theory of linear logic, which is typically formulated in terms of sequent calculi whose
sequents have the usual flat context structure based on lists or (multi)sets. However, since
bunched logics contain both an (unrestricted) additive logic and a multiplicative one, proof
systems for bunched logic employ both additive and multiplicative structural connectives
for forming contexts (akin to the comma in standard sequent calculus). This gives rise to
proof judgements whose contexts are trees — originally termed “bunches” — built from
structural connectives and formulas.

Although the main ideas necessary to develop bunched logic can retrospectively be seen
to have been present in earlier work on relevant logics, it first emerged fairly recently with
the introduction of BI, O’Hearn and Pym’s logic of bunched implications [36]. Semantically,
BI can be seen to arise by considering the structure of cartesian doubly closed categories
— i.e. categories with one cartesian closed structure and one symmetric monoidal closed
structure [39]. Concretely, such categories correspond to a combination of standard intu-
itionistic logic with multiplicative intuitionistic linear logic1 (MILL), and thus one has the
following propositional connectives2 for BI:

Additive: ⊤ ⊥ ¬ ∧ ∨ →
Multiplicative: ⊤∗ ∗ —∗

(where ¬ is the intuitionistic negation defined by ¬F = F → ⊥). As well as the semantics
based on the aforementioned categories, BI can be given an algebraic semantics: one simply
requires that the algebraic structure for BI has both the Heyting algebra structure required
to interpret intuitionistic logic, and the residuated commutative monoid structure required
to interpret MILL. By requiring a Boolean algebra instead of the Heyting algebra, one
obtains the variant logic Boolean BI (BBI), which can be seen as a combination of classical
logic and MILL [40, 39]. Most of the computer science applications of bunched logic are in
fact based on BBI rather than BI; for example, the heap model used in separation logic is
a model of BBI [26].

A natural question from a logician’s standpoint is whether bunched logics exist in which
the multiplicative connectives behave classically, rather than intuitionistically (and do not
simply collapse into their additive equivalents). A computer scientist might also enquire
whether such a logic could, like its siblings, be understood semantically in terms of resource.
In this paper, we address these questions by presenting a new addition to the bunched
logic family, which we call Classical BI (CBI), and whose additives and multiplicatives
both behave classically. In particular, CBI features multiplicative analogues of the additive
falsity, negation, and disjunction, which are absent in the other bunched logics. Thus CBI
can be seen as a combination of classical logic and multiplicative classical linear logic (MLL).

1We refer here to linear logic without the exponentials.
2⊤∗, which is the unit of ∗, is often elsewhere written I .
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We examine CBI both from the model-theoretic and the proof-theoretic perspective, each
of which we describe below.

Model-theoretic perspective: From the point of view of computer science, the main interest of
bunched logic stems from its Kripke-style frame semantics based on relational commutative
monoids, which can be understood as an abstract representation of resource [21, 22]. In
such models, formulas of bunched logic have a natural declarative reading as statements
about resources (i.e. monoid elements). Thus the multiplicative unit ⊤∗ denotes the empty
resource (i.e. the monoid identity element) and a multiplicative conjunction F ∗G of two for-
mulas denotes those resources which divide, via the monoid operation, into two component
resources satisfying respectively F and G. The multiplicative implication —∗ then comes
along naturally as the right-adjoint of the multiplicative conjunction ∗, so that F —∗ G
denotes those resources with the property that, when they are extended with a resource
satisfying F , this extension satisfies G.

The difference between intuitionistic and classical logics can be seen as a matter of
the differing strengths of their respective negations [38]. From this viewpoint the main
obstacle to formulating a bunched logic like CBI is in giving a convincing account of classical
multiplicative negation; multiplicative falsity can then be obtained as the negation of ⊤∗

and multiplicative disjunction as the de Morgan dual of ∗. We show that multiplicative
negation can be given a declarative resource reading just as for the usual bunched logic
connectives, provided that we enrich the relational commutative monoid structure of BBI-
models with an involutive operator (which interacts with the binary monoid operation in a
suitable fashion). Thus every resource in a CBI-model is required to have a unique dual.
In particular, every Abelian group can be seen as a CBI-model by taking the dual of an
element to be its group inverse. Our interpretation of multiplicative negation ∼ is then in
the tradition of Routley’s interpretation of negation in relevant logic [46, 19]: a resource
satisfies ∼F iff its dual fails to satisfy F . This interpretation, which at first sight may seem
unusual, is justified by the desired semantic equivalences between formulas. For example,
under our interpretation F —∗ G is semantically equivalent to ∼F ∗∨ G, where ∗∨ denotes
the multiplicative disjunction.

In Section 2 we state the additional conditions on BBI-models qualifying them as CBI-
models and examine some fundamental properties of these models. We then give the forcing
semantics for CBI-formulas with respect to our models, and compare the resulting notion
of validity with that for BBI. Our most notable result about validity is that CBI is a non-
conservative extension of BBI, which indicates that CBI is intrinsically different in character
to its bunched logic siblings, and justifies independent consideration.

Proof-theoretic perspective: The proof theory of BI (cf. [39, 36]) can be motivated by the
observation that the presence of two implications → and —∗ should give rise to two context-
forming operations, which correspond to the conjunctions ∧ and ∗ at the meta-level. This
situation is illustrated by the following (intuitionistic) sequent calculus right-introduction
rules for the implications:

Γ;F1 ⊢ F2
(→R)

Γ ⊢ F1 → F2

Γ, F1 ⊢ F2
(—∗R)

Γ ⊢ F1 —∗ F2

For similar reasons, there should also be two different “empty contexts” or structural units,
which are the structural equivalents of ⊤ and ⊤∗ respectively. Accordingly, the contexts
Γ on the left-hand side of the sequents in the rules above are not sets or sequences, as in
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standard sequent calculi, but rather bunches: trees whose leaves are formulas or structural
units and whose internal nodes are either semicolons or commas. The crucial difference
between the latter two operations is that weakening and contraction are possible for the
additive semicolon but not for the multiplicative comma. Since BI is intuitionistic in both its
additive and multiplicative components, bunches arise only on the left-hand side of sequents,
with a single formula on the right. In order to take into account the bunched contexts in
BI sequents, the left-introduction rules for logical connectives are then formulated so as to
apply at arbitrary positions within a bunch3. E.g., the left-introduction rules for the two
implications can be formulated as:

∆ ⊢ F1 Γ(F2) ⊢ F
(→L)

Γ(∆;F1 → F2) ⊢ F

∆ ⊢ F1 Γ(F2) ⊢ F
(—∗L)

Γ(∆, F1 —∗ F2) ⊢ F

where Γ(∆) denotes a bunch Γ with a distinguished sub-bunch occurrence ∆. In contrast,
the right-introduction rules need take into account only the top level of bunches, as in the
right-introduction rules above for the implications.

For a classical bunched logic like CBI, it would appear natural from a proof-theoretic
perspective to consider a full two-sided sequent calculus, in which semicolon and comma in
bunches on the right of sequents correspond to the additive and multiplicative disjunctions.
Unfortunately, it is far from clear whether there exists such a sequent calculus admitting
cut-elimination, or a similar natural deduction system satisfying normalisation (see [5, 39]
for some discussion of the difficulties).

In Section 3, we address this rather unsatisfactory situation by formulating a display
calculus proof system for CBI that satisfies cut-elimination, with an attendant subformula
property for cut-free proofs. Display calculi were first introduced in the setting of Belnap’s
display logic [2], which is a generalised framework that can be instantiated to give con-
secution calculi à la Gentzen for a wide class of logics. Display calculi are characterised
by the fact that any proof judgement may always be rearranged so that a chosen struc-
ture occurrence appears alone on one side of the proof turnstile. Remarkably, Belnap also
showed that cut-elimination is guaranteed for any display calculus whose proof rules satisfy
8 simple syntactic conditions. It is a straightforward matter to instantiate Belnap’s display
logic so as to obtain a display calculus for CBI, and to show that it meets the conditions
for cut-elimination. Moreover, our display calculus is sound and complete with respect to
validity in our class of CBI-models. Soundness follows by showing directly that each of
the proof rules preserves CBI-validity. The proof of completeness, which is presented in
Section 4, is by reduction to a completeness result for modal logic due to Sahlqvist.

Applications: Bunched logic (especially BBI) and its resource semantics has found appli-
cation in several areas of computer science, including polymorphic abstraction [15], type
systems for reference update and disposal [3], context logic for tree update [10] and, most
ubiquitously, separation logic [45] which forms the basis of many contemporary approaches
to reasoning about pointer programs (recent examples include [37, 14, 13]).

Unfortunately, the fact that CBI is a non-conservative extension of BBI appears to rule
out the naive use of CBI for reasoning directly about some BBI-models such as the sepa-
ration logic heap model, which is not a CBI-model. On the other hand, non-conservativity

3In this respect, the BI sequent calculus resembles calculi for deep inference [8]. However, deep inference
calculi differ substantially from sequent calculi in that they abandon the distinction between logical and
structural connectives, and thus technically they are more akin to term rewriting systems.
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indicates that CBI can reasonably be expected to have different applications to those of
BI and BBI. In Section 5 we consider a range of example CBI-models drawn from quite
disparate areas of mathematics and computer science, including bit arithmetic, regular lan-
guages, money, generalised heaps and fractional permissions. In Section 6 we suggest some
directions for future applications of CBI, and discuss some related work.

This paper is a revised and expanded version of [6], including several new results. We
have endeavoured to include detailed proofs where space permits.

2. Frame semantics and validity for CBI

In this section we define CBI, a fully classical bunched logic featuring additive and
multiplicative versions of all the usual propositional connectives (cf. [39]), via a class of
Kripke-style frame models. We also compare the resulting notion of CBI-validity with
validity in BBI.

Our CBI-models are based on the relational commutative monoids used to model
BBI [22, 10]. In fact, they are special cases of these monoids, containing extra structure: an
involution operation ‘−’ on elements and a distinguished element ∞ that characterises the
result of combining an element with its involutive dual. We point the reader to Section 5
for a range of examples of such models.

In the following, we first recall the usual frame models of BBI, and then give the
additional conditions required for such models to be CBI-models. Note that we write P(X)
for the powerset of a set X.

Definition 2.1 (BBI-model). A BBI-model is a relational commutative monoid, i.e. a tuple
〈R, ◦, e〉, where e ∈ R and ◦ : R×R → P(R) are such that ◦ is commutative and associative,
with r ◦ e = {r} for all r ∈ R. Associativity of ◦ is understood with respect to its pointwise
extension to P(R)× P(R) → P(R), given by X ◦ Y =def

⋃

x∈X,y∈Y x ◦ y.

Note that we could equally well represent the operation ◦ in a BBI-model 〈R, ◦, e〉 as
a ternary relation, i.e. ◦ ⊆ R × R × R, as is typical for the frame models used for modal
logic [4] and relevant logic [44]. We view ◦ as a binary function with type R × R → P(R)
because BBI-models are typically understood as abstract models of resource, in which ◦ is
understood as a (possibly non-deterministic) way of combining resources from the set R.

Definition 2.2 (CBI-model). A CBI-model is given by a tuple 〈R, ◦, e,−,∞〉, where
〈R, ◦, e〉 is a BBI-model and − : R → R and ∞ ∈ R are such that, for each x ∈ R, −x is
the unique element of R satisfying ∞ ∈ x ◦ −x. We extend ‘−’ pointwise to P(R) → P(R)
by −X =def {−x | x ∈ X}.

We remark that, in our original definition of CBI-models [6], both ∞ and −x for x ∈ R
were defined as subsets of R, rather than elements of R. However, under such circumstances
both −x and ∞ are forced to be singleton sets by the other conditions on CBI-models4.
Thus there is no loss of generality in requiring −x and ∞ to be elements of R.

4In fact, ∞ is forced to be a singleton set because our models employ a single unit e and we have ∞ = −e

(see Prop 2.3). It is, however, possible to generalise our BBI-models to multi-unit models employing a set of
units E ⊆ R such that x◦E = {x} (cf. [17, 7]). Then, in the corresponding definition of CBI-model, we have
∞ ⊆ R is not a singleton in general and −x is required to be the unique element in R with ∞∩ (x◦−x) 6= ∅.
However, as we shall show in Section 4, CBI is already complete with respect to the class of single-unit
models provided by our Definition 2.2.
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Proposition 2.3 (Properties of CBI-models). If 〈R, ◦, e,−,∞〉 is a CBI-model then:

(1) ∀x ∈ R. −−x = x;
(2) −e = ∞;
(3) ∀x, y, z ∈ R. z ∈ x ◦ y iff −x ∈ y ◦ −z iff −y ∈ x ◦ −z.

Proof.

(1) By definition of CBI-models, and using commutativity of ◦, we have ∞ ∈ −x ◦ x.
However, again by definition, −−x is the unique y ∈ R such that ∞ ∈ −x ◦ y. Thus
we must have −−x = x.

(2) We have that −e is the unique y ∈ R such that ∞ ∈ e ◦ y. Since ∞ ∈ {∞} = e ◦∞
by definition, we have −e = ∞.

(3) We prove that the two bi-implications hold by showing three implications. Suppose
first that z ∈ x ◦ y. Using associativity of ◦, we have:

∞ ∈ z ◦ −z ⊆ (x ◦ y) ◦ −z = x ◦ (y ◦ −z)

Since −x is the unique w ∈ R such that ∞ ∈ x ◦ w, we must have −x ∈ y ◦ −z.
For the second implication, suppose that −x ∈ y ◦ −z. By the first implication

and part 1 above and commutativity of ◦, we then have as required:

−y ∈ −z ◦ −−x = −−x ◦ −z = x ◦ −z

Finally, for the third implication, suppose that −y ∈ x ◦ −z. Using the first and
second implications together we obtain −−z ∈ y ◦ −−x, i.e. z ∈ x ◦ y as required.
This completes the proof.

We note that for any CBI-model 〈R, ◦, e,−,∞〉 based on a fixed underlying BBI-model
〈R, ◦, e〉, part 2 of Proposition 2.3 implies that the element ∞ is determined by the choice of
‘−’, while the CBI-model axiom in Definition 2.2 ensures that, conversely, ‘−’ is determined
by the choice of ∞. We include both ‘−’ and∞ in our model definition only for convenience.

We now define the syntax of formulas of CBI, and their interpretation inside our CBI-
models. We assume a fixed, countably infinite set V of propositional variables.

Definition 2.4 (CBI-formula). Formulas of CBI are given by the following grammar:

F ::= P | ⊤ | ⊥ | ¬F | F ∧ F | F ∨ F | F → F |
⊤∗ | ⊥∗ | ∼F | F ∗ F | F ∗∨ F | F —∗ F

where P ranges over V. We treat the negations ¬ and ∼ as having greater precedence than
the other connectives, and use parentheses to disambiguate where necessary. As usual, we
write F ↔ G as an abbreviation for (F → G) ∧ (G → F ).

We remark that the connectives of CBI-formulas are the standard connectives of BBI-
formulas, plus a multiplicative falsity ⊥∗, negation ∼ and disjunction ∗∨. In order to define
the interpretation of our formulas in a given model, we need as usual environments which
interpret the propositional variables, and a satisfaction or “forcing” relation which interprets
formulas as true or false relative to model elements in a given environment.

Definition 2.5 (Environment). An environment for either a CBI-model 〈R, ◦, e,−,∞〉 or
a BBI-model 〈R, ◦, e〉 is a function ρ : V → P(R) interpreting propositional variables as
subsets of R. An environment for a model M will sometimes be called an M -environment.
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Definition 2.6 (CBI satisfaction relation). Let M = 〈R, ◦, e,−,∞〉 be a CBI-model. Sat-
isfaction of a CBI-formula F by an M -environment ρ and an element r ∈ R is denoted
r |=ρ F and defined by structural induction on F as follows:

r |=ρ P ⇔ r ∈ ρ(P )
r |=ρ ⊤ ⇔ always
r |=ρ ⊥ ⇔ never

r |=ρ ¬F ⇔ r 6|=ρ F
r |=ρ F1 ∧ F2 ⇔ r |=ρ F1 and r |=ρ F2

r |=ρ F1 ∨ F2 ⇔ r |=ρ F1 or r |=ρ F2

r |=ρ F1 → F2 ⇔ r |=ρ F1 implies r |=ρ F2

r |=ρ ⊤∗ ⇔ r = e
r |=ρ ⊥∗ ⇔ r 6= ∞
r |=ρ ∼F ⇔ −r 6|=ρ F

r |=ρ F1 ∗ F2 ⇔ ∃r1, r2 ∈ R. r ∈ r1 ◦ r2 and r1 |=ρ F1 and r2 |=ρ F2

r |=ρ F1
∗∨ F2 ⇔ ∀r1, r2 ∈ R. −r ∈ r1 ◦ r2 implies −r1 |=ρ F1 or −r2 |=ρ F2

r |=ρ F1 —∗ F2 ⇔ ∀r′, r′′ ∈ R. r′′ ∈ r ◦ r′ and r′ |=ρ F1 implies r′′ |=ρ F2

We remark that the above satisfaction relation for CBI is just an extension of the stan-
dard satisfaction relation for BBI with the clauses for ⊥∗, ∼ and ∗∨. The interpretations of
⊥∗ and ∗∨, however, may be regarded as being determined by the interpretation of the mul-
tiplicative negation ∼ since, as we expect the classical relationships between multiplicative
connectives to hold, we may simply define ⊥∗ to be ∼⊤∗ and F ∗∨ G to be ∼(∼F ∗ ∼G).
The interpretation of ∼ itself will not surprise readers familiar with relevant logics, since
negation there is usually semantically defined by the clause:

x |= ∼A ⇔ x∗ 6|= A

where x and x∗ are points in a model related by the somewhat notorious “Routley star”, the
philosophical interpretation of which has been the source of some angst for relevant logicians
(see e.g. [43] for a discussion). In the setting of CBI, the involution operation ‘−’ in a CBI-
model plays the role of the Routley star. A more prosaic reason for our interpretation of
∼ is that it yields the expected semantic equivalences between formulas. Other definitions
such as, e.g., the superficially appealing r |=ρ ∼F ⇔ −r |=ρ F do not work, because the
model operation ‘−’ does not itself behave like a negation (it is not antitonic with respect
to entailment, for instance). For example, in analogy to ordinary classical logic, we would
expect that r |=ρ F —∗ G iff r |=ρ ∼(F ∗∼G). However, satisfaction of —∗ involves universal
quantification while satisfaction of ∗ involves existential quantification, strongly suggesting
that the incorporation of a Boolean negation into ∼ is necessary to ensure such an outcome.
One can also observe that the following is true in any CBI-model:

−r |=ρ F ⇔ ∞ ∈ r ◦ −r and −r |=ρ F
⇔ ∃r′, r′′. r′′ ∈ r ◦ r′ and r′ |=ρ F and r′′ = ∞

i.e. −r 6|=ρ F ⇔ ∀r′, r′′. r′′ ∈ r ◦ r′ and r′ |=ρ F implies r′′ 6= ∞

By interpreting ⊥∗ and ∼ as we do in Definition 2.6, we immediately obtain r |=ρ ∼F iff
r |=ρ F —∗ ⊥∗, another desired equivalence.

Definition 2.7 (Formula validity). We say that a CBI-formula F is true in a CBI-model
M = 〈R, ◦, e,−,∞〉 iff r |=ρ F for any M -environment ρ and r ∈ R. F is said to be
(CBI)-valid if it is true in all CBI-models.
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Truth of BBI-formulas in BBI-models, and BBI-validity of formulas, is defined similarly.

Lemma 2.8 (CBI equivalences). The following formulas are all CBI-valid:

∼⊤ ↔ ⊥ F ∗∨ G ↔ ∼(∼F ∗ ∼G)
∼⊤∗ ↔ ⊥∗ (F —∗ G) ↔ ∼F ∗∨ G
∼∼F ↔ F (F —∗ G) ↔ (∼G —∗ ∼F )
¬∼F ↔ ∼¬F (F —∗ G) ↔ ∼(F ∗ ∼G)
∼F ↔ (F —∗ ⊥) F ∗∨ ⊥∗ ↔ F

Proof. We fix an arbitrary CBI-model M and M -environment ρ. For each of the equiv-
alences F ↔ G we require to show r |=ρ F ⇔ r |=ρ G. These follow directly from the
definition of satisfaction, plus the properties of CBI-models given by Proposition 2.3. We
show three of the cases in detail.

Case (F —∗ G) ↔ ∼F ∗∨ G:

r |=ρ ∼F ∗∨ G ⇔ ∀r1, r2 ∈ R. −r ∈ r1 ◦ r2 implies −r1 |=ρ ∼F or −r2 |=ρ G
(by Prop 2.3, pt. 1) ⇔ ∀r1, r2 ∈ R. −r ∈ r1 ◦ r2 implies r1 6|=ρ F or −r2 |=ρ G

⇔ ∀r1, r2 ∈ R. −r ∈ r1 ◦ r2 and r1 |=ρ F implies −r2 |=ρ G
(by Prop 2.3, pt. 1) ⇔ ∀r1, r2 ∈ R. −r ∈ r1 ◦ −r2 and r1 |=ρ F implies r2 |=ρ G
(by Prop 2.3, pt. 3) ⇔ ∀r1, r2 ∈ R. r2 ∈ r ◦ r1 and r1 |=ρ F implies r2 |=ρ G

⇔ r |=ρ F —∗ G

Case (F —∗ G) ↔ (∼G —∗ ∼F ):

r |=ρ ∼G —∗ ∼F ⇔ ∀r′, r′′ ∈ R. r′′ ∈ r ◦ r′ and r′ |=ρ ∼G implies r′′ |=ρ ∼F
⇔ ∀r′, r′′ ∈ R. r′′ ∈ r ◦ r′ and −r′ 6|=ρ G implies −r′′ 6|=ρ F

(by Prop 2.3, pt. 1) ⇔ ∀r′, r′′ ∈ R. −r′′ ∈ r ◦ −r′ and r′ 6|=ρ G implies r′′ 6|=ρ F
⇔ ∀r′, r′′ ∈ R. −r′′ ∈ r ◦ −r′ and r′′ |=ρ F implies r′ |=ρ G

(by Prop 2.3, pt. 3) ⇔ ∀r′, r′′ ∈ R. r′ ∈ r ◦ r′′ and r′′ |=ρ F implies r′ |=ρ G
⇔ r |=ρ F —∗ G

Case F ∗∨ ⊥∗ ↔ F :

r |=ρ F ∗∨ ⊥∗ ⇔ ∀r1, r2 ∈ R. −r ∈ r1 ◦ r2 implies −r1 |=ρ F or −r2 |=ρ ⊥∗

⇔ ∀r1, r2 ∈ R. −r ∈ r1 ◦ r2 implies −r1 |=ρ F or −r2 6= ∞
(by Prop 2.3, pt. 2) ⇔ ∀r1, r2 ∈ R. −r ∈ r1 ◦ r2 implies −r1 |=ρ F or r2 6= e

⇔ ∀r1 ∈ R. −r ∈ r1 ◦ e implies −r1 |=ρ F
⇔ ∀r1 ∈ R. −r = r1 implies −r1 |=ρ F
⇔ r |=ρ F

We remark that there is nevertheless at least one important classical equivalence whose
multiplicative analogue does not hold in CBI in the strong sense of Lemma 2.8: the law
of excluded middle, ⊤∗ ↔ F ∗∨ ∼F , which (using the lemma) is equivalent to the law of
contradiction, ⊥∗ ↔ F ∗ ∼F . This equivalence certainly holds in one direction, since if
r |=ρ F ∗ ∼F then r ∈ r1 ◦ r2, r1 |=ρ F and −r2 6|=ρ F , so r1 6= −r2 and thus r 6= ∞
by the CBI-model axiom, i.e. r |=ρ ⊥∗. The converse implication does not hold as, given
r |=ρ ⊥∗ and some formula F , it clearly is not the case in general that r |=ρ F ∗ ∼F (e.g.,
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take F = ⊥). However, the law does hold in the weak sense that ⊥∗ is true in a model M
iff F ∗ ∼F is true in M . One direction of the implication follows by the argument above,
and the other from the fact that ⊥∗ is never true in M (because ∞ 6|=ρ ⊥

∗ for any ρ).
One might be tempted to think that, since CBI-models are BBI-models and the defi-

nition of satisfaction for CBI coincides with that of BBI when restricted to BBI-formulas,
CBI and BBI might well be indistinguishable under such a restriction. Our next result
establishes that this is by no means the case.

Proposition 2.9 (Non-conservative extensionality). CBI is a non-conservative extension
of BBI. That is, every BBI-valid formula is also CBI-valid, but there is a BBI-formula that
is CBI-valid but not BBI-valid.

Proof. To see that BBI-valid formulas are also CBI-valid, let M = 〈R, ◦, e,−,∞〉 be a CBI-
model, whence M ′ = 〈R, ◦, e〉 is a BBI-model. For any BBI-valid formula F we have that
F is true in M ′, and thus F is also true in M (because the definition of satisfaction of F
coincides in CBI and BBI for BBI-formulas). SinceM was arbitrarily chosen, F is CBI-valid
as required.

Now let P be a propositional variable and let I and J be abbreviations for BBI-formulas
defined as follows:

I =def ¬⊤∗ —∗ ⊥
J =def ⊤ ∗ (⊤∗ ∧ ¬(P —∗ ¬I))

In a BBI-model 〈R, ◦, e〉, the formula I denotes “nonextensible” elements of R, i.e. those
elements r ∈ R such that r ◦ r′ = ∅ for all r′ 6= e:

r |=ρ I ⇔ ∀r′, r′′ ∈ R. r′′ ∈ r ◦ r′ and r′ |=ρ ¬⊤∗ implies r′′ |=ρ ⊥
⇔ ∀r′, r′′ ∈ R. r′′ ∈ r ◦ r′ implies r′ 6|=ρ ¬⊤

∗

⇔ ∀r′, r′′ ∈ R. r′′ ∈ r ◦ r′ implies r′ = e
⇔ ∀r′ ∈ R. r′ 6= e implies r ◦ r′ = ∅

The formula J is satisfied by an arbitrary element of R iff there exists some element of
R that satisfies the proposition P and is nonextensible:

r |=ρ J ⇔ ∃r1, r2 ∈ R. r ∈ r1 ◦ r2 and r1 |=ρ ⊤ and r2 |=ρ ⊤
∗ ∧ ¬(P —∗ ¬I)

⇔ ∃r1, r2 ∈ R. r ∈ r1 ◦ r2 and r2 |=ρ ⊤
∗ and r2 6|=ρ P —∗ ¬I

⇔ e 6|=ρ P —∗ ¬I
⇔ ∃r′, r′′ ∈ R. r′′ ∈ e ◦ r′ and r′ |=ρ P but r′′ 6|=ρ ¬I
⇔ ∃r′ ∈ R. r′ ∈ ρ(P ) and r′ |=ρ I

Note that in any CBI-model 〈R, ◦, e,−,∞〉, for any r ∈ R we have r ◦ −r 6= ∅ since
∞ ∈ r ◦ −r by definition. Since ∞ is the unique element x ∈ R such that −x = e by
Proposition 2.3, it follows that if r |=ρ I then r = ∞. Thus, in CBI-models, if r |=ρ I and
r |=ρ J then r = ∞ ∈ ρ(P ), so the BBI-formula I ∧ J → P is CBI-valid.

To see that I∧J → P is not BBI-valid, consider the three-element model 〈{e, a, b}, ◦, e〉,
where ◦ is defined by: e ◦ x = x ◦ e = {x} for all x ∈ {e, a, b}, and x ◦ y = ∅ for all other
x, y ∈ {e, a, b}. It is easy to verify that ◦ is both commutative and associative and that e
is a unit for ◦, so 〈{e, a, b}, ◦, e〉 is indeed a BBI-model. Now define an environment ρ for
this model by ρ(P ) = {a}. We have both a |=ρ I and b |=ρ I because a and b are both
nonextensible in the model, and b |=ρ J because a |=ρ I and a ∈ ρ(P ). Then we have
b |=ρ I ∧ J but b 6|=ρ P , so I ∧ J → P is false in this model and hence not BBI-valid.
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If 〈R, ◦, e,−,∞〉 is a CBI-model and the cardinality of x ◦ y is ≤ 1 for all x, y ∈ R,
then we understand ◦ as a partial function R × R ⇀ R in the obvious way. The following
proposition shows that, if we were to restrict our class of CBI-models to those in which the
binary operation is a partial function rather than a relation, we would obtain a different
notion of validity. In other words, CBI is sufficiently expressive to distinguish between
partial functional and relational CBI-models.

Proposition 2.10 (Distinction of partial functional and relational CBI-models). CBI-
validity does not coincide with validity in the class of partial functional CBI-models. That
is, there is a CBI-formula that is not generally valid, but is true in every CBI-model
〈R, ◦, e,−,∞〉 in which ◦ is a partial function.

Proof. Let K and L be abbreviations for CBI-formulas defined as follows:

K =def ¬(¬⊥∗ —∗ ¬⊤∗)
L =def ¬⊥∗ —∗ ⊤∗

In a CBI-model 〈R, ◦, e,−,∞〉, the formula K is satisfied by those model elements that can
be extended by ∞ to obtain e:

r |=ρ K ⇔ ∃r′, r′′ ∈ R. r′′ ∈ r ◦ r′ and r′ |=ρ ¬⊥∗ but r′′ 6|=ρ ¬⊤
∗

⇔ ∃r′, r′′ ∈ R. r′′ ∈ r ◦ r′ and r′ = ∞ and r′′ = e
⇔ e ∈ r ◦ ∞

Similarly, the formula L is satisfied by those elements that, whenever they are extended by
∞, always yield e:

r |=ρ L ⇔ ∀r′, r′′ ∈ R. r′′ ∈ r ◦ r′ and r′ |=ρ ¬⊥
∗ implies r′′ |=ρ ⊤∗

⇔ ∀r′, r′′ ∈ R. r′′ ∈ r ◦ r′ and r′ = ∞ implies r′′ = e
⇔ r ◦ ∞ ⊆ {e}

Let M = 〈R, ◦, e,−,∞〉 be a CBI-model in which ◦ is a partial function, let ρ be an M -
environment and let r ∈ R. Suppose that r |=ρ K, so that e ∈ r ◦ ∞ by the above. Since
◦ is a partial function, the cardinality of r ◦ ∞ is at most 1, so we must have r ◦ ∞ = {e},
i.e., r |=ρ L. Thus the formula K → L is true in M , and so valid with respect to partial
functional CBI-models.

To see that K → L is not generally valid, we must provide a CBI-model in which it
is false. Consider the three-element model 〈{e, a,∞}, ◦, e,−,∞〉, where − is defined by
−e = ∞,−a = a,−∞ = e and ◦ is defined as follows:

e ◦ x = x ◦ e = {x} for all x ∈ {e, a,∞}
a ◦ a = {e,∞}
a ◦∞ = ∞◦ a = ∞◦∞ = {e, a}

In this model e is a unit for ◦ and ◦ is commutative by construction. It can also easily be
verified that ◦ is associative (e.g., a ◦ (a ◦∞) = {e, a,∞} = (a ◦ a) ◦∞) and that −x is the
unique element such that ∞ ∈ x ◦ −x for all x ∈ {e, a,∞}. Thus 〈{e, a,∞}, ◦, e,−,∞〉 is
indeed a CBI-model (and we note that ◦ is not a partial function). Now for any environment
ρ we have a |=ρ K since e ∈ a ◦ ∞, but a 6|=ρ L since a ∈ a ◦ ∞. Thus K → L is false in
this model, and hence invalid.
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Our proof of Proposition 2.10 does not transfer straightforwardly to BBI because it
crucially relies upon the fact that, in CBI, we can write down a formula (¬⊥∗) that is
satisfied by exactly one model element (∞), which is not the unit e in general. Subsequent
to submission of this paper, however, it has been shown by Larchey-Wendling and Galmiche
that BBI is indeed incomplete with respect to partial functional models [30].

3. DLCBI: a display calculus proof system for CBI

In this section, we present DLCBI, a display calculus for CBI based on Belnap’s general
display logic [2], which provides a generic framework for obtaining formal Gentzen-style
consecution calculi for a large class of logics. Display calculi are akin to sequent calculi
in that logical connectives are specified by a pair of introduction rules introducing the
connective on the left and right of proof judgements respectively. However, the proof
judgements of display calculi have a richer structure than an ordinary sequent, and thus we
require a corresponding set of meta-level rules (called display postulates) for manipulating
this structure. This ensures the characteristic, and very useful display property of display
calculi: any proof judgement may be rearranged so that any given part of the judgement
appears alone on one side of the turnstile (without loss of information). In addition to
its conceptual elegance, this property ensures that cut-elimination holds for any display
calculus whose structural rules obey a few easily verified conditions (cf. [2]). Our display
calculus DLCBI indeed satisfies these cut-elimination conditions. Furthermore, it is sound
and complete with respect to our CBI-models.

Belnap’s original formulation of display logic treats an arbitrary number of “families”
of propositional connectives. The necessary structural connectives, display postulates and
logical introduction rules are then ascribed automatically to each family, with only the
structural rules governing the family chosen freely. For CBI, it is obvious that there are
two complete families of propositional connectives, one additive and one multiplicative.
Thus the formulation of DLCBI can be viewed as arising more or less directly from Belnap’s
general schema.

The proof judgements of DLCBI, called consecutions, are built from structures which
generalise the bunches used in existing proof systems for BI (cf. [39]).

Definition 3.1 (Structure / consecution). A DLCBI-structure X is constructed according
to the following grammar:

X ::= F | ∅ | ♯X | X;X | ∅ | ♭X | X,X

where F ranges over CBI-formulas. If X and Y are structures then X ⊢ Y is said to be a
consecution.

Figure 1 gives a summary of the structural connectives of our display calculus and
their semantic reading as antecedents (or premises) and consequents (or conclusions) in a
consecution. However, the presence of the meta-level negations ♯ and ♭ in our structures
leads to a subtler notion of antecedent and consequent parts of consecutions than the simple
left-right division of sequent calculus. Informally, moving inside a meta-level negation flips
the interpretation of its immediate substructure. For example, if ♯X or ♭X is an antecedent
part then the substructure X should be interpreted as a consequent part, and vice versa.
This notion is made formal by the following definition.
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Connective Arity Antecedent meaning Consequent meaning
∅ 0 ⊤ ⊥
∅ 0 ⊤∗ ⊥∗

♯ 1 ¬ ¬
♭ 1 ∼ ∼
; 2 ∧ ∨
, 2 ∗ ∗∨

Figure 1: The structural connectives of DLCBI.

Definition 3.2 (Antecedent part / consequent part). A structure occurrence W is said to
be a part of another structure Z if W occurs as a substructure of Z (in the obvious sense).
W is said to be a positive part of Z if W occurs inside an even number of occurrences of ♯
and ♭ in Z, and a negative part of Z otherwise.

A structure occurrence W is said to be an antecedent part of a consecution X ⊢ Y if it
is a positive part of X or a negative part of Y . W is said to be a consequent part of X ⊢ Y
if it is a negative part of X or a positive part of Y .

To give the formal interpretation of our consecutions in the following definition, we
employ a pair of mutually recursive functions to capture the dependency between antecedent
and consequent interpretations.

Definition 3.3 (Consecution validity). For any structure X we mutually define two for-
mulas ΨX and ΥX by induction on the structure of X as follows:

ΨF = F ΥF = F
Ψ∅ = ⊤ Υ∅ = ⊥

Ψ♯X = ¬ΥX Υ♯X = ¬ΨX

ΨX1;X2
= ΨX1

∧ΨX2
ΥX1;X2

= ΥX1
∨ΥX2

Ψ∅ = ⊤∗ Υ∅ = ⊥∗

Ψ♭X = ∼ΥX Υ♭X = ∼ΨX

ΨX1,X2
= ΨX1

∗ΨX2
ΥX1,X2

= ΥX1

∗∨ ΥX2

A consecution X ⊢ Y is then valid if ΨX → ΥY is a valid formula (cf. Defn. 2.7).

We write a proof rule with a double line between premise and conclusion to indicate that
it is bidirectional, i.e., that the roles of premise and conclusion may be reversed. A figure
with three consecutions separated by two double lines is used to abbreviate two bidirectional
rules in the obvious way.

Definition 3.4 (Display-equivalence). Two consecutions X ⊢ Y and X ′ ⊢ Y ′ are said to
be display-equivalent, written X ⊢ Y ≡D X ′ ⊢ Y ′, if there is a derivation of one from the
other using only the display postulates given in Figure 2.

The display postulates for DLCBI are essentially Belnap’s original display postulates,
instantiated (twice) to the additive and multiplicative connective families of CBI. The only
difference is that our postulates build commutativity of the comma and semicolon into the
notion of display-equivalence, since in CBI both the conjunctions and both the disjunctions
are commutative.

The fundamental characteristic of display calculi is their ability to “display” structures
occurring in a consecution by rearranging it using the display postulates.
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X ;Y ⊢ Z
======== (AD1a)
X ⊢ ♯Y ;Z
======== (AD1b)
Y ;X ⊢ Z

X ⊢ Y ;Z
======== (AD2a)
X ; ♯Y ⊢ Z
======== (AD2b)
X ⊢ Z;Y

X ⊢ Y
====== (AD3a)
♯Y ⊢ ♯X
====== (AD3b)
♯♯X ⊢ Y

X, Y ⊢ Z
======== (MD1a)
X ⊢ ♭Y, Z
======== (MD1b)
Y,X ⊢ Z

X ⊢ Y, Z
======== (MD2a)
X, ♭Y ⊢ Z
======== (MD2b)
X ⊢ Z, Y

X ⊢ Y
====== (MD3a)
♭Y ⊢ ♭X
====== (MD3b)
♭♭X ⊢ Y

Figure 2: The display postulates for DLCBI.

Theorem 3.5 (Display theorem (Belnap [2])). For any antecedent part W of a consecution
X ⊢ Y there exists a structure Z such that W ⊢ Z ≡D X ⊢ Y . Similarly, for any consequent
part W of X ⊢ Y there exists a structure Z such that Z ⊢ W ≡D X ⊢ Y .

Proof. Essentially, one uses the display postulates to move any structure surrounding W to
the opposite side of the consecution, or to eliminate any preceding occurrences of ♯ and ♭
(note that for each possible position of W in X ⊢ Y there are display postulates allowing
the topmost level of structure above W to be moved away or eliminated). Moreover, each
of the display postulates preserves antecedent and consequent parts of consecutions, so that
W must end up on the correct side of the consecution at the end of this process. The details
are straightforward.

Example 3.6. The antecedent part Y of the consecution ♭(X, ♯Y ) ⊢ Z; ♭W can be displayed
as follows:

♭(X, ♯Y ) ⊢ Z; ♭W
(MD3a)

♭(Z; ♭W ) ⊢ ♭♭(X, ♯Y )
(MD3a,b)

♭♭♭(Z; ♭W ) ⊢ ♭♭(X, ♯Y )
(MD3a)

♭(X, ♯Y ) ⊢ ♭♭(Z; ♭W )
(MD3a)

♭(Z; ♭W ) ⊢ X, ♯Y
(MD2b)

♭(Z; ♭W ), ♭X ⊢ ♯Y
(AD3a)

♯♯Y ⊢ ♯(♭(Z; ♭W ), ♭X)
(AD3a,b)

Y ⊢ ♯(♭(Z; ♭W ), ♭X)

The proof rules of DLCBI are given in Figure 3. The identity rules consist of the usual
identity axiom for propositional variables, a cut rule and a rule for display equivalence.
The logical rules follow the division between left and right introduction rules familiar from
sequent calculus. Note that, since we can appeal to Theorem 3.5, the formula introduced
by a logical rule is always displayed in its conclusion. Both the identity rules and the logical
rules are the standard ones for display logic, instantiated to CBI. The structural rules of
DLCBI implement suitable associativity and unitary laws on both sides of consecutions, plus
weakening and contraction for the (additive) semicolon.
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Identity rules:

(Id)
P ⊢ P

X ⊢ F F ⊢ Y
(Cut)

X ⊢ Y

X ′ ⊢ Y ′

X ⊢ Y ≡D X ′ ⊢ Y ′ (≡D)
X ⊢ Y

Logical rules:

∅ ⊢ X
(⊤L)

⊤ ⊢ X
(⊤R)

∅ ⊢ ⊤

∅ ⊢ X
(⊤∗L)

⊤∗ ⊢ X
(⊤∗R)

∅ ⊢ ⊤∗

(⊥L)
⊥ ⊢ ∅

X ⊢ ∅
(⊥R)

X ⊢ ⊥
(⊥∗L)

⊥∗ ⊢ ∅

X ⊢ ∅

(⊥∗R)
X ⊢ ⊥∗

♯F ⊢ X
(¬L)

¬F ⊢ X

X ⊢ ♯F
(¬R)

X ⊢ ¬F

♭F ⊢ X
(∼L)

∼F ⊢ X

X ⊢ ♭F
(∼R)

X ⊢ ∼F

F ;G ⊢ X
(∧L)

F ∧G ⊢ X

X ⊢ F Y ⊢ G
(∧R)

X ;Y ⊢ F ∧G

F,G ⊢ X
(∗L)

F ∗G ⊢ X

X ⊢ F Y ⊢ G
(∗R)

X,Y ⊢ F ∗G

F ⊢ X G ⊢ Y
(∨L)

F ∨G ⊢ X ;Y

X ⊢ F ;G
(∨R)

X ⊢ F ∨G

F ⊢ X G ⊢ Y
( ∗∨L)

F ∗∨ G ⊢ X,Y

X ⊢ F,G
(∗∨R)

X ⊢ F ∗∨ G

X ⊢ F G ⊢ Y
(→L)

F → G ⊢ ♯X ;Y

X ;F ⊢ G
(→R)

X ⊢ F → G

X ⊢ F G ⊢ Y
(—∗L)

F —∗ G ⊢ ♭X, Y

X, F ⊢ G
(—∗R)

X ⊢ F —∗ G

Structural rules:

W ; (X ;Y ) ⊢ Z
=========== (AAL)
(W ;X);Y ⊢ Z

W ⊢ (X ;Y );Z
=========== (AAR)
W ⊢ X ; (Y ;Z)

W, (X,Y ) ⊢ Z
=========== (MAL)
(W,X), Y ⊢ Z

W ⊢ (X,Y ), Z
=========== (MAR)
W ⊢ X, (Y, Z)

∅;X ⊢ Y
======= (∅L)
X ⊢ Y

X ⊢ Y ; ∅
======= (∅R)
X ⊢ Y

∅, X ⊢ Y
======= (∅L)
X ⊢ Y

X ⊢ Y,∅
======= (∅R)
X ⊢ Y

X ⊢ Z
(WkL)

X ;Y ⊢ Z

X ⊢ Z
(WkR)

X ⊢ Y ;Z

X ;X ⊢ Z
(CtrL)

X ⊢ Z

X ⊢ Z;Z
(CtrR)

X ⊢ Z

Figure 3: The proof rules of DLCBI. W,X, Y,Z range over structures, F,G range over CBI-
formulas and P ranges over V.

The identity axiom of DLCBI is postulated only for propositional variables5, but can be
recovered for arbitrary formulas. We say a consecution is cut-free provable if it has a DLCBI

proof containing no instances of (Cut).

5This is standard in display logic, and slightly simplifies the proof of cut-elimination.
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Proposition 3.7. F ⊢ F is cut-free provable in DLCBI for any formula F .

Proof. By structural induction on F .

Theorem 3.8 (Cut-elimination). If a consecution X ⊢ Y is provable in DLCBI then it is
also cut-free provable.

Proof. The DLCBI proof rules satisfy the conditions shown by Belnap in [2] to be sufficient
for cut-elimination to hold. We state these conditions and indicate how they are verified in
Appendix A.

The following corollary of Theorem 3.8 uses the notion of a subformula of a CBI-formula,
defined in the usual way.

Corollary 3.9 (Subformula property). If X ⊢ Y is DLCBI-provable then there is a DLCBI

proof of X ⊢ Y in which every formula occurrence is a subformula of a formula occurring
in X ⊢ Y .

Proof. If X ⊢ Y is provable then it has a cut-free proof by Theorem 3.8. By inspection of
the DLCBI rules, no rule instance in this proof can have in its premises any formula that is
not a subformula of a formula occurring in its conclusion. Thus a cut-free proof of X ⊢ Y
cannot contain any formulas which are not subformulas of formulas in X ⊢ Y .

Corollary 3.10 (Consistency). Neither ∅ ⊢ ∅ nor ∅ ⊢ ∅ is provable in DLCBI.

Proof. If ∅ ⊢ ∅ were DLCBI-provable then, by the subformula property (Corollary 3.9)
there is a proof of ∅ ⊢ ∅ containing no formula occurrences anywhere. But every axiom of
DLCBI contains a formula occurrence, so this is impossible. Then ∅ ⊢ ∅ cannot be provable
either, otherwise ∅;∅ ⊢ ∅; ∅ is provable by applying (WkL) and (WkR), whence ∅ ⊢ ∅ is
provable by applying (∅L) and (∅R), which is a contradiction.

Our main technical results concerning DLCBI are the following.

Proposition 3.11 (Soundness). If X ⊢ Y is DLCBI-provable then it is valid.

Proof. It suffices to show that each proof rule of DLCBI is locally sound in that validity of
the conclusion follows from the validity of the premises. In the particular case of the display
rule (≡D), local soundness follows by establishing that each display postulate (see Figure 2)
is locally sound. We show how to deal with some sample rule cases.

Case (—∗L). Let M = 〈R, ◦, e,−,∞〉 be a CBI-model, let r ∈ R and suppose r |=ρ F —∗ G,

whence we require to show r |=ρ ∼ΨX
∗∨ ΥY . Using Lemma 2.8, it suffices to show that

r |=ρ ΨX —∗ ΥY . So, let r′, r′′ ∈ R be such that r′′ ∈ r ◦ r′ and r′ |=ρ ΨX , whence we
require to show r′′ |=ρ ΥY . Since the premise X ⊢ F is valid and r′ |=ρ ΨX by assumption,
we have r′ |=ρ F . Then, since r |=ρ F —∗ G and r′′ ∈ r ◦ r′, we have r′′ |=ρ G. Finally, since
the premise G ⊢ Y is valid by assumption, we have r′′ |=ρ ΥY as required.

Case ( ∗∨L). Let M = 〈R, ◦, e,−,∞〉 be a CBI-model, let r ∈ R and suppose r |=ρ F ∗∨ G,

whence we require to show r |=ρ ΥX
∗∨ ΥY . So, let r1, r2 ∈ R be such that −r ∈ r1 ◦ r2,

whence we require to show either −r1 |=ρ ΥX or −r2 |=ρ ΥY . Since −r ∈ r1 ◦ r2 and

r |=ρ F ∗∨ G, we have either r1 |=ρ F or r2 |=ρ G. Then, since the premises F ⊢ X and
G ⊢ Y are assumed valid, we have the required conclusion in either case.
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(Proposition 3.7)
·
·
·

F ⊢ F
(≡D)

♯F ⊢ ♯F
(¬R)

♯F ⊢ ¬F
(≡D)

♭¬F ⊢ ♭♯F
(∼L)

∼¬F ⊢ ♭♯F
(WkL)

∼¬F ;∼F ⊢ ♭♯F
(≡D)

♭F ⊢ ♭♯♭(∼¬F ;∼F )
(∼L)

∼F ⊢ ♭♯♭(∼¬F ;∼F )
(WkL)

∼¬F ;∼F ⊢ ♭♯♭(∼¬F ;∼F )
(≡D)

♯♭(∼¬F ;∼F ) ⊢ ♭(∼¬F ;∼F )
(WkL)

♭∅; ♯♭(∼¬F ;∼F ) ⊢ ♭(∼¬F ;∼F )
(≡D)

♭∅ ⊢ ♭(∼¬F ;∼F ); ♭(∼¬F ;∼F )
(CtrR)

♭∅ ⊢ ♭(∼¬F ;∼F )
(≡D)

∼¬F ⊢ ♯∼F ; ∅
(∅R)

∼¬F ⊢ ♯∼F
(¬R)

∼¬F ⊢ ¬∼F

Figure 4: A cut-free DLCBI proof of ∼¬F ⊢ ¬∼F .

Case (MAR). Both directions of the rule follow by establishing that for any CBI-model
M = 〈R, ◦, e,−,∞〉 and r ∈ R we have r |=ρ ΥX

∗∨ (ΥY
∗∨ ΥZ) iff r |=ρ (ΥX

∗∨ ΥY )
∗∨ ΥZ .

Using the equivalences F ∗∨ G ↔ ∼(∼F ∗ ∼G) and ∼∼F ↔ F given by Lemma 2.8, it
suffices to show that r |=ρ ∼(∼ΥX ∗ (∼ΥY ∗∼ΥZ)) iff r |=ρ ∼((∼ΥX ∗∼ΥY ) ∗∼ΥZ). This
follows straightforwardly from the definition of satisfaction and the associativity of ◦.

Case (MD1a). We show how to treat one direction of this display postulate; the reverse
direction is symmetric. Let M = 〈R, ◦, e,−,∞〉 be a CBI-model, let r ∈ R and suppose
that r |=ρ ΨX , whence we require to show r |=ρ ∼ΨY

∗∨ ΥZ . By Lemma 2.8, it suffices to
show r |=ρ ΨY —∗ ΥZ . So let r′, r′′ ∈ R be such that r′′ ∈ r ◦ r′ and r′ |=ρ ΨY , whence
we require to show r′′ |=ρ ΥZ . Since r |=ρ ΨX we have r′′ |=ρ ΨX ∗ ΨY , whence we have
r′′ |=ρ ΥZ as required because the premise X,Y ⊢ Z is assumed valid.

Theorem 3.12 (Completeness of DLCBI). If X ⊢ Y is valid then it is provable in DLCBI.

We give the proof of Theorem 3.12 in Section 4.
We remark that, although cut-free proofs in DLCBI enjoy the subformula property, they

do not enjoy the analogous “substructure property”, and cut-free proof search in our system
is still highly non-deterministic due to the presence of the display postulates and structural
rules, the usage of which cannot be straightforwardly constrained in general. In Figure 4 we
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give a sample cut-free proof of the consecution ∼¬F ⊢ ¬∼F , which illustrates the problems.
The applications of display-equivalence are required in order to apply the logical rules, as
one would expect, but our derivation also makes essential use of contraction, weakening and
a unitary law. It is plausible that the explicit use of at least some of these structural rules
can be eliminated by suitable reformulations of the logical rules. However, the inherent
nondeterminism in proof search cannot be removed by refining DLCBI without loss of power
since, by soundness and completeness, provability in DLCBI is equivalent to validity in CBI,
which has been recently shown undecidable by the first author and Kanovich [7]. This is not
fundamentally surprising, since at least some displayable logics are known to be undecidable;
indeed, one of Belnap’s original applications of display logic was in giving a display calculus
for the full relevant logic R, which was famously proven undecidable by Urquhart [48].
(Unfortunately, we cannot distinguish decidable display calculi from undecidable ones in
general; the decidability of an arbitrary displayable logic was itself shown undecidable by
Kracht [29].)

Nonetheless, we argue that there are good reasons to prefer our DLCBI over arbitrary
complete proof systems (e.g. Hilbert systems) without cut-elimination. Display calculi in-
herit the main virtues of traditional Gentzen systems: they distinguish structural princi-
ples from logical ones, and make explicit the considerable proof burden that exists at the
meta-level, but nevertheless retain a theoretically very elegant and symmetric presentation.
Furthermore, as a result of the subformula property one has in display calculi what might
be called a property of “finite choice” for proof search: for any consecution there are only
finitely many ways of applying any rule to it in a backwards fashion6.

4. Completeness of DLCBI

In this section we prove completeness of our display calculus DLCBI with respect to
validity in CBI-models. As in the case of the analogous result for BBI in [10], our result
hinges on a general completeness theorem for modal logic due to Sahlqvist. However, we
also require an extra layer of translation between Hilbert-style proofs and proofs in DLCBI.

Our proof is divided into three main parts. First, in subsection 4.1, we reinvent CBI
as a modal logic by defining a class of standard modal frames, with associated modalities
corresponding to the standard CBI-model operations, that satisfy a certain set of modal logic
axioms. By appealing to Sahlqvist’s completeness theorem, we obtain a complete Hilbert-
style proof theory for this class of frames. It then remains to connect the modal presentation
of CBI to our standard presentation. In subsection 4.2, we show that the aforementioned
class of modal frames is exactly the class of CBI-models given by Definition 2.2. Then, in
subsection 4.3, we show how to translate any modal logic proof into a DLCBI proof. Thus
we obtain the DLCBI-provability of any valid consecution.

4.1. CBI as a modal logic. In this subsection we define the semantics of a modal logic
corresponding to CBI, and obtain a complete proof theory with respect to this semantics,
all using standard modal techniques (see e.g. [4]).

We first define MLCBI frames, which are standard modal frames with associated modal-
ities corresponding to the CBI-model operations in Definition 2.2.

6In fact, this is not quite true as it stands because for any consecution there are infinitely many consecu-
tions that are display-equivalent to it, obtained by “stacking” occurrences of ♯ and ♭. However, by identifying
structures such as ♯♯X and X, one obtains only finitely many display-equivalent consecutions. See e.g. [43].
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Definition 4.1.1 (Modal logic frames). An MLCBI frame is a tuple 〈R, ◦,−•, e,−,∞〉,
where ◦ : R×R → P(R), −• : P(R) × P(R) → P(R), e ⊆ R, − : R → P(R), and ∞ ⊆ R.
We extend ◦ to P(R) × P(R) → P(R), and − to P(R) → P(R), in the same pointwise
manner as in Definition 2.2. If e is a singleton set then the frame is said to be unitary.

Definition 4.1.2 (Modal logic formulas). Modal logic formulas A are defined by:

A ::= P | ⊤ | ⊥ | ¬A | A ∧A | A ∨A | A → A | e | ∞ | −A | A ◦ A | A−•A

where P ranges over V. We remark that we read e,∞,−, ◦,−• as modalities (with the
obvious arities). We regard → as having weaker precedence than these modalities, and use
parentheses to disambiguate where necessary.

The satisfaction relation for modal logic formulas in MLCBI frames is defined exactly
as in Definition 2.6 for the additive connectives, and the modalities are given a “diamond”
possibility interpretation:

r |=ρ e ⇔ r ∈ e
r |=ρ ∞ ⇔ r ∈ ∞

r |=ρ −A ⇔ ∃r′ ∈ R. r ∈ −(r′) and r′ |=ρ A
r |=ρ A1 ◦A2 ⇔ ∃r1, r2 ∈ R. r ∈ r1 ◦ r2 and r1 |=ρ A1 and r2 |=ρ A2

r |=ρ A1 −•A2 ⇔ ∃r1, r2 ∈ R. r ∈ r1 −• r2 and r1 |=ρ A1 and r2 |=ρ A2

We remark that the −• modality — which does not correspond directly to a CBI-model
operation but should be read informally as ¬(A1 —∗ ¬A2) — will be helpful later in giving
a modal axiomatisation of CBI-models; see Defn. 4.1.6. We could alternatively employ a
modality corresponding directly to —∗, but it is much more technically convenient to work
exclusively with “diamond” modalities.

Given any set A of modal logic axioms, we define A-models to be those MLCBI frames
in which every axiom in A holds. The standard modal logic proof theory corresponding to
the class of A-models is given by the following definition (cf. [4]).

Definition 4.1.3 (Modal logic proof theory). The modal logic proof theory generated by
a set A of modal logic axioms, denoted by LA, consists of some fixed finite axiomatisation
of propositional classical logic, extended with the following axioms and proof rules:

(A) : A for each A ∈ A
(−⊥) : −⊥ → ⊥
(◦⊥) : P ◦ ⊥ → ⊥
(−•⊥) : (⊥ −• P ) ∨ (P −• ⊥) → ⊥
(−∨) : −(P ∨Q) ↔ −P ∨ −Q
(◦∨) : (P ∨Q) ◦R ↔ (P ◦R) ∨ (Q ◦R)
(−•∨L) : (P ∨Q)−•R ↔ (P −•R) ∨ (Q−•R)
(−•∨R) : P −• (Q ∨R) ↔ (P −•Q) ∨ (P −•R)

A → B A
(MP)

B

A
(Subst)

A[B/P ]

A → B
(⋄−)

(−A) → (−B)

A → B
(⋄◦)

(A ◦ C) → (B ◦ C)

A → B
(⋄−•L)

(C −• A) → (C −•B)

A → B
(⋄−•L)

(A−• C) → (B −• C)
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where A,B,C range over modal logic formulas, P,Q,R are propositional variables, and
A ↔ B is as usual an abbreviation for (A → B) ∧ (B → A).

Note that the axioms and rules for the modalities which are added to A by Defini-
tion 4.1.3 are just the axioms and rules of the standard modal logic K, instantiated to each
of our “diamond”-type modalities e, ∞, −, ◦ and −•. We emphasise that, by definition, the
latter are diamond modalities rather than logical connectives. In particular, the modality
‘−’ is not a negation (−A should be understood informally as the CBI-formula ∼¬A), and is
monotonic rather than antitonic with respect to entailment, as embodied by the rule (⋄−).
Similarly, the −• modality is monotonic in its left-hand argument because it is a diamond
modality and not an implication.

We now state a sufficient condition, due to Sahlqvist, for completeness of LA to hold
with respect to the class of A-models.

Definition 4.1.4 (Very simple Sahlqvist formulas). A very simple Sahlqvist antecedent S
is a formula given by the grammar:

S ::= ⊤ | ⊥ | P | S ∧ S | e | ∞ | −S | S ◦ S | S −• S

where P ranges over V. A very simple Sahlqvist formula is a modal logic formula of the form
S → A+, where S is a very simple Sahlqvist antecedent and A+ is a modal logic formula
which is positive in that no propositional variable P in A+ may occur inside the scope of
an odd number of occurrences of ¬.

Theorem 4.1.5 (Sahlqvist [4]). Let A be a set of modal logic axioms consisting only of
very simple Sahlqvist formulas. Then the modal logic proof theory LA is complete with
respect to the class of A-models. That is, if a modal logic formula F is valid with respect
to A-models then it is provable in LA.

Definition 4.1.6 (Modal logic axioms for CBI). The axiom set AXCBI consists of the
following modal logic formulas, where P,Q,R are propositional variables:

(1) e ◦ P → P
(2) P → e ◦ P
(3) P ◦Q → Q ◦ P
(4) (P ◦Q) ◦R → P ◦ (Q ◦R)
(5) P ◦ (Q ◦R) → (P ◦Q) ◦R
(6) Q ∧ (R ◦ P ) → (R ∧ (P −•Q)) ◦ ⊤

(7) R∧(P−•Q) → (⊤−•(Q∧(R◦P )))
(8) −−P → P
(9) P → −−P
(10) −P → (P −•∞)
(11) (P −•∞) → −P

By inspection we can observe that the AXCBI axioms (cf. Definition 4.1.6) are all very
simple Sahlqvist formulas, whence we obtain from Theorem 4.1.5:

Corollary 4.1.7. If a modal logic formula F is valid with respect to AXCBI-models then
it is provable in LAXCBI.

We show that the completeness result transfers to unitary AXCBI-models.

Lemma 4.1.8. Let M = 〈R, ◦,−•, e,−,∞〉 be an AXCBI model. Then there exist unitary
AXCBI-models Mx for each x ∈ e such that the following hold:

(1) M is the disjoint union of the models Mx for x ∈ e.
(2) A formula A is true in M iff it is true in Mx for all x ∈ e.
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Proof. For each x ∈ e, the model Mx is defined by restricting M to Rx =def {r ∈ R |
{r} ◦ {x} 6= ∅}. Disjointness of models follows directly from the fact that 〈R, ◦, e〉 obeys
the first five axioms of AXCBI, which characterize relational commutative monoids. Finally,
(1) ⇒ (2) is a general result which holds in modal logic [4].

Corollary 4.1.9. If a modal logic formula F is valid with respect to unitary AXCBI-models
then it is provable in LAXCBI.

4.2. CBI-models as modal logic models.

Lemma 4.2.1. If 〈R, ◦, e,−,∞〉 is a CBI-model then, for all X,Y,Z ∈ P(R), we have:

(1) X ◦ Y = Y ◦X and X ◦ (Y ◦ Z) = (X ◦ Y ) ◦ Z and {e} ◦X = X
(2) −X = X −•∞
(3) −−X = X

where X −• Y =def {z ∈ R | ∃x ∈ X, y ∈ Y. y ∈ x ◦ z}.

Proof. The required properties follow straightforwardly from the properties of CBI-models
given by Definition 2.2 and Proposition 2.3.

Lemma 4.2.2. Let 〈R, ◦,−•, e,−,∞〉 be an unitary AXCBI-model (so that e is a single-
ton set). Then ∞ is a singleton set, and −x is a singleton set for any x ∈ R. Moreover,
〈R, ◦, e,−,∞〉 is a CBI-model with the modalities e,−,∞ regarded as having the appropri-
ate types.

Proof. We first show that −x is a singleton by contradiction, using the fact that −−x =
{x} must hold for any set x, as a consequence of axioms (8) and (9). If −x = ∅ then
−−x =

⋃

y∈−x−y = ∅, which contradicts −−x = {x}. If x1, x2 ∈ −x with x1 6= x2, then

−x1 ∪ −x2 ⊆ −−x. Also, −x1 6= −x2, otherwise we would have {x1} = −−x1 = −−x2 =
{x2} and thus x1 = x2. Since −x1 and −x2 have cardinality > 0 (see above), −−x must
have cardinality > 1, which contradicts −−x = {x}.

We prove that ∞ is a singleton by deriving ∞ = −e. Using the axioms in Defini-
tion 4.1.6, we will show that e−•X = X must hold for any set X. This fact, together with
axioms (10) and (11) instantiated with P = e gives the desired consequence ∞ = −e.

It remains to show e−•X = X. Axioms (6) and (7) give the two directions of:

q ∈ r ◦ p iff r ∈ p−• q

for any p, q, r ∈ R, and axioms (1), (2) and (3) give, for any x ∈ R:

x ◦ e = {x}

Therefore we have that, for any x ∈ R:

x ∈ e−•X iff (∃x′ ∈ X.x ∈ e−• x′) iff (∃x′ ∈ X.x′ ∈ x ◦ e) iff x ◦ e ⊆ X iff x ∈ X.
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Definition 4.2.3 (Embedding of CBI-models in AXCBI-models). Let M = 〈R, ◦, e,−,∞〉
be a CBI-model. The tuple pMq = 〈R, ◦,−•, e,−,∞〉 is obtained by regarding e,−,∞ as
having the same types as in Definition 4.1.1 in the obvious way, and by defining the modality
−• : P(R)× P(R) → P(R) by X −• Y =def {z ∈ R | ∃x ∈ X, y ∈ Y. y ∈ x ◦ z}.

Lemma 4.2.4. If M is a CBI-model then pMq is a unitary AXCBI-model. Moreover, the
function p−q is a bijection between CBI-models and unitary AXCBI-models.

Proof. First observe that in any MLCBI frame 〈R, ◦,−•, e,−,∞〉, the AXCBI axioms (6)
and (7) hold iff we have, for all X,Y in P(R):

X −• Y = {z ∈ R | ∃x ∈ X, y ∈ Y. y ∈ x ◦ z}

LetM be a CBI-model. Then axioms (6) and (7) hold in pMq by the above observation. The
remaining AXCBI axioms hold in pMq as a direct consequence of Lemma 4.2.1. Therefore
pMq is a unitary AXCBI-model.

It remains to show that p−q is a bijection. Injectivity is immediate by definition. For
surjectivity, letM ′ = 〈R, ◦,−•, e,−,∞〉 be a unitary AXCBI model. By Lemma 4.2.2 we have
that 〈R, ◦, e,−,∞〉 is a CBI-model. Since the interpretation of −• is determined by ◦ because
of the above observation about axioms (6) and (7), it follows that p〈R, ◦, e,−,∞〉q = M ′,
hence p−q is surjective.

Definition 4.2.5 (Translation of CBI-formulas to modal logic formulas). We define a func-
tion p−q from CBI-formulas to modal logic formulas by induction on the structure of CBI-
formulas, as follows:

pFq = F where F ∈ {P,⊤,⊥}
p⊤∗

q = e
pF1 ?F2q = pF1q ? pF2q where ? ∈ {∧,∨,→}
pF1 ∗ F2q = pF1q ◦ pF2q

pF1 —∗ F2q = ¬(pF1q −• ¬pF2q)
p¬Fq = ¬pFq

p⊥∗
q = ¬∞

p∼Fq = ¬−pFq

pF1
∗∨ F2q = ¬−(¬−pF1q ◦ ¬−pF2q)

where P in the first clause ranges over V. We extend the domain of p−q to DLCBI conse-
cutions by:

pX ⊢ Y q = pΨXq → pΥY q

where Ψ− and Υ− are the functions given in Definition 3.3.

In the following, we write F [G/P ] to denote the result of substituting the formula G
for all occurrences of the propositional variable P in the formula F . This notation applies
both to CBI-formulas and to modal logic formulas.

Lemma 4.2.6. Let F be a CBI-formula, and M = 〈R, ◦, e,−,∞〉 a CBI-model. Then F is
true in M if and only if pFq is true in pMq.

Proof. Let F be a CBI-formula and A a modal logic formula. We define F ≃ A to hold iff
for all environments ρ, and all r ∈ R, the following holds:

r |=ρ F wrt. M ⇔ r |=ρ A wrt. pMq

The proof is divided into two parts. The first part establishes the following properties:
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(1) F ≃ A and G ≃ B implies F [G/P ] ≃ A[B/P ]
(2) ⊤∗ ≃ e
(3) P1 ∗ P2 ≃ P1 ◦ P2

(4) P1 —∗ P2 ≃ ¬(P1 −• ¬P2)
(5) ⊥∗ ≃ ¬∞
(6) ∼P ≃ ¬−P
(7) P1

∗∨ P2 ≃ ¬−(¬−P1 ◦ ¬−P2)

We show one interesting case (7). By Lemma 2.8 we have that P1
∗∨ P2 is equivalent to

∼(∼P1 ∗ ∼P2), therefore it is sufficient to prove ∼(∼P1 ∗ ∼P2) ≃ ¬−(¬−P1 ◦ ¬−P2). By
(6) we have ∼Pi ≃ ¬−Pi for i ∈ {1, 2}, hence by (1) and (3) we obtain (∼P1 ∗ ∼P2) ≃
(¬−P1 ◦ ¬−P2). Thus by (1) and (6) we conclude ∼(∼P1 ∗ ∼P2) ≃ ¬−(¬−P1 ◦ ¬−P2), as
required.

The second part establishes F ≃ pFq by induction on the structure of F , using the
results from the first part.

Proposition 4.2.7. A consecution X ⊢ Y is valid (wrt. CBI-models) iff pΨX → ΥY q is
valid wrt. unitary AXCBI-models.

Proof. By definition, X ⊢ Y is valid iff ΨX → ΥY is true in every CBI-model M . By
Lemma 4.2.6, this is equivalent to:

pΨX → ΥY q is true in pMq for every CBI-model M

Since p−q is a bijection onto unitary AXCBI-models by Lemma 4.2.4, this is equivalent to:

pΨX → ΥY q is true in all unitary AXCBI-models

i.e. pΨX → ΥY q is valid wrt. unitary AXCBI-models.

By combining Proposition 4.2.7 and Corollary 4.1.9 we obtain the following key inter-
mediate result towards completeness for DLCBI:

Corollary 4.2.8. If X ⊢ Y is a valid consecution then pΨX → ΥY q is provable in LAXCBI.

4.3. From modal logic proofs to DLCBI proofs.

Definition 4.3.1 (Translation from modal logic formulas to CBI-formulas). We define a
function x−y from modal logic formulas to CBI-formulas by induction on the structure of
CBI-formulas, as follows:

xAy = A where A ∈ {P,⊤,⊥}

x¬Ay = ¬xAy
xA1 ? A2y = xA1y ? xA2y where ? ∈ {∧,∨,→}

xA1 ◦ A2y = xA1y ∗ xA2y

xA1 −• A2y = ¬(xA1y —∗ ¬xA2y)
xey = ⊤∗

x−Ay = ¬∼xAy
x∞y = ¬⊥∗

Proposition 4.3.2. The axioms and proof rules of LAXCBI (cf. Defn. 4.1.3) are admissible
in DLCBI under the embedding A 7→ (∅ ⊢ xAy) from modal logic formulas to consecutions.
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(Prop. 3.7)
·
·
·

R ⊢ R

(Prop. 3.7)
·
·
·

P ⊢ P

(Prop. 3.7)
·
·
·

Q ⊢ Q
(≡D)

♯Q ⊢ ♯Q
(¬L)

¬Q ⊢ ♯Q
(WkR)

¬Q ⊢ ♯Q; (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤
(—∗L)

P —∗ ¬Q ⊢ ♭P, (♯Q; (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤)
(≡D)

♯(♭P, (♯Q; (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤)) ⊢ ♯P —∗ ¬Q
(¬R)

♯(♭P, (♯Q; (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤)) ⊢ ¬(P —∗ ¬Q)
(∧R)

R; ♯(♭P, (♯Q; (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤)) ⊢ R ∧ ¬(P —∗ ¬Q)

(⊤R)
∅ ⊢ ⊤

(WkR)
∅;P ⊢ ⊤

(∅R)
P ⊢ ⊤

(∗R)
(R; ♯(♭P, (♯Q; (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤))), P ⊢ (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤

(WkR)
(R; ♯(♭P, (♯Q; (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤))), P ⊢ ♯Q; (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤

(≡D)
R ⊢ (♭P, (♯Q; (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤)); (♭P, (♯Q; (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤))

(CtrR)
R ⊢ ♭P, (♯Q; (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤)

(≡D)
R,P ⊢ ♯Q; (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤

(∗L)
R ∗ P ⊢ ♯Q; (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤

(≡D)
Q;R ∗ P ⊢ (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤

(∧L)
Q ∧ (R ∗ P ) ⊢ (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤

(∅L)
∅;Q ∧ (R ∗ P ) ⊢ (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤

(→R)
∅ ⊢ Q ∧ (R ∗ P ) → (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤

Figure 5: A DLCBI derivation of the LAXCBI axiom (6) under the embedding A 7→ (∅ ⊢ xAy),
needed for the proof of Proposition 4.3.2.

Proof. First, we note that all of the proof rules of LAXCBI, except (Subst), are easily
derivable in DLCBI under the embedding. The rule (Subst) is admissible in DLCBI (under
the embedding) because each of its proof rules is closed under the substitution of arbitrary
formulas for propositional variables; in the case of the axiom rule (Id) this requires an appeal
to Proposition 3.7.

It remains to show that ∅ ⊢ xAy is DLCBI-derivable for every axiom A of LAXCBI. The
AXCBI axioms are mainly straightforward, with the chief exceptions being axioms (6) and
(7). (We remark that axioms (8) and (9) are straightforward once one has DLCBI proofs
that ¬ and ∼ commute; see Figure 4 for a proof of ∼¬F ⊢ ¬∼F .) In the case of AXCBI

axiom (6), we need to show the consecution ∅ ⊢ Q ∧ (R ∗ P ) → (R ∧ ¬(P —∗ ¬Q)) ∗ ⊤ is
provable in DLCBI. We give a suitable derivation in Figure 5. The treatment of AXCBI

axiom (7) is broadly similar. It remains to treat the generic modal logic axioms of LAXCBI,
which again are mainly straightforward and involve showing distribution of the modalities
over ∨. E.g., in the case of the axiom (−•∨L) we require to show that ∅ ⊢ ¬((P ∨ Q) —∗
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(Id)
P ⊢ P

(Id)
R ⊢ R

(≡D)
♯R ⊢ ♯R

(¬L)
¬R ⊢ ♯R

(—∗L)
P —∗ ¬R ⊢ ♭P, ♯R

(WkL)
P —∗ ¬R;Q —∗ ¬R ⊢ ♭P, ♯R

(≡D)
P ⊢ ♯R, ♭(P —∗ ¬R;Q —∗ ¬R)

(Id)
Q ⊢ Q

(Id)
R ⊢ R

(≡D)
♯R ⊢ ♯R

(¬L)
¬R ⊢ ♯R

(—∗L)
Q —∗ ¬R ⊢ ♭Q, ♯R

(WkL)
P —∗ ¬R;Q —∗ ¬R ⊢ ♭Q, ♯R

(≡D)
Q ⊢ ♯R, ♭(P —∗ ¬R;Q —∗ ¬R)

(∨L)
P ∨Q ⊢ (♯R, ♭(P —∗ ¬R;Q —∗ ¬R)); (♯R, ♭(P —∗ ¬R;Q —∗ ¬R))

(CtrR)
P ∨Q ⊢ ♯R, ♭(P —∗ ¬R;Q —∗ ¬R)

(≡D)
(P —∗ ¬R;Q —∗ ¬R), P ∨Q ⊢ ♯R

(¬R)
(P —∗ ¬R;Q —∗ ¬R), P ∨Q ⊢ ¬R

(—∗R)
P —∗ ¬R;Q —∗ ¬R ⊢ (P ∨Q) —∗ ¬R

(≡D)
♯(P ∨Q) —∗ ¬R;Q —∗ ¬R ⊢ ♯P —∗ ¬R

(¬R)
♯(P ∨Q) —∗ ¬R;Q —∗ ¬R ⊢ ¬(P —∗ ¬R)

(≡D)
♯(P ∨Q) —∗ ¬R; ♯¬(P —∗ ¬R) ⊢ ♯Q —∗ ¬R

(¬R)
♯(P ∨Q) —∗ ¬R; ♯¬(P —∗ ¬R) ⊢ ¬(Q —∗ ¬R)

(≡D)
♯(P ∨Q) —∗ ¬R ⊢ ¬(P —∗ ¬R);¬(Q —∗ ¬R)

(¬L)
¬((P ∨Q) —∗ ¬R) ⊢ ¬(P —∗ ¬R);¬(Q —∗ ¬R)

(∨R)
¬((P ∨Q) —∗ ¬R) ⊢ ¬(P —∗ ¬R) ∨ ¬(Q —∗ ¬R)

(∅L)
∅;¬((P ∨Q) —∗ ¬R) ⊢ ¬(P —∗ ¬R) ∨ ¬(Q —∗ ¬R)

(→R)
∅ ⊢ ¬((P ∨Q) —∗ ¬R) → ¬(P —∗ ¬R) ∨ ¬(Q —∗ ¬R)

Figure 6: A DLCBI derivation of (one direction of) the LAXCBI axiom (−•∨L) under the
embedding A 7→ (∅ ⊢ xAy), needed for the proof of Proposition 4.3.2.

¬R) ↔ ¬(P —∗ ¬R)∨¬(Q —∗ ¬R) is DLCBI-derivable. We give a derivation of one direction
of this bi-implication in Figure 6. The other direction of the bi-implication, and the other
axioms, are derived in a similar fashion.

The following corollary of Proposition 4.3.2 is immediate by induction over the structure
of LAXCBI proofs.

Corollary 4.3.3. If A is provable in LAXCBI then ∅ ⊢ xAy is provable in DLCBI.

We write F ⊣⊢ G, where F and G are CBI-formulas, to mean that both F ⊢ G and
G ⊢ F are provable (in DLCBI), and call F ⊣⊢ G a derivable equivalence (of DLCBI). We
observe that derivable equivalence in DLCBI is indeed an equivalence relation: it is reflexive
by Proposition 3.7, symmetric by definition and transitive by the DLCBI rule (Cut).

Lemma 4.3.4. F ⊣⊢ xpFqy is a derivable equivalence of DLCBI for any CBI-formula F .
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(I.H.)
·
·
·

F1 ⊢ xpF1qy
(≡D)

♭xpF1qy ⊢ ♭F1

(∼L)
∼xpF1qy ⊢ ♭F1

(≡D)
♯♭F1 ⊢ ♯∼xpF1qy

(¬R)
♯♭F1 ⊢ ¬∼xpF1qy

(≡D)
♯¬∼xpF1qy ⊢ ♭F1

(¬L)
¬¬∼xpF1qy ⊢ ♭F1

(≡D)
F1 ⊢ ♭¬¬∼xpF1qy

(I.H.)
·
·
·

F2 ⊢ xpF2qy
(≡D)

♭xpF2qy ⊢ ♭F2

(∼L)
∼xpF2qy ⊢ ♭F2

(≡D)
♯♭F2 ⊢ ♯∼xpF2qy

(¬R)
♯♭F2 ⊢ ¬∼xpF2qy

(≡D)
♯¬∼xpF2qy ⊢ ♭F2

(¬L)
¬¬∼xpF2qy ⊢ ♭F2

(≡D)
F2 ⊢ ♭¬¬∼xpF2qy

( ∗∨L)
F1

∗∨ F2 ⊢ ♭¬¬∼xpF1qy, ♭¬¬∼xpF2qy
(≡D)

¬¬∼xpF1qy,¬¬∼xpF2qy ⊢ ♭F1
∗∨ F2

(∗L)
¬¬∼xpF1qy ∗ ¬¬∼xpF2qy ⊢ ♭F1

∗∨ F2

(≡D)
F1

∗∨ F2 ⊢ ♭¬¬∼xpF1qy ∗ ¬¬∼xpF2qy
(∼R)

F1
∗∨ F2 ⊢ ∼(¬¬∼xpF1qy ∗ ¬¬∼xpF2qy)

(≡D)
♯∼(¬¬∼xpF1qy ∗ ¬¬∼xpF2qy) ⊢ ♯F1

∗∨ F2

(¬L)
¬∼(¬¬∼xpF1qy ∗ ¬¬∼xpF2qy) ⊢ ♯F1

∗∨ F2

(≡D)
F1

∗∨ F2 ⊢ ♯¬∼(¬¬∼xpF1qy ∗ ¬¬∼xpF2qy)
(¬R)

F1
∗∨ F2 ⊢ ¬¬∼(¬¬∼xpF1qy ∗ ¬¬∼xpF2qy)

Figure 7: A DLCBI proof for the non-trivial case of Lemma 4.3.4.

Proof. By combining the definitions of p−q and x−y (cf. Defns. 4.2.5 and 4.3.1) we obtain
the following definition of xp−qy, given by structural induction on CBI-formulas:

xpFqy = F where F ∈ {P,⊤,⊥,⊤∗}

xp¬Fqy = ¬xpFqy

xpF1 ? F2qy = xpF1qy ? xpF2qy where ? ∈ {∧,∨,→, ∗}

xp⊥
∗
qy = ¬¬⊥∗

xp∼Fqy = ¬¬∼xpFqy

xpF1 —∗ F2qy = ¬¬(xpF1qy —∗ ¬¬xpF2qy)

x
pF1

∗∨ F2qy
= ¬¬∼(¬¬∼xpF1qy ∗ ¬¬∼xpF2qy)

With this in mind, we now proceed by structural induction on F . The base cases, in
which xpFqy = F , are immediate since F ⊣⊢ F is a derivable equivalence of DLCBI by
Proposition 3.7. Most of the other cases are straightforward using the induction hypothesis
and the fact that ¬¬F ⊣⊢ F is easily seen to be a derivable equivalence of DLCBI. We show
one direction of the only non-trivial case, F = F1

∗∨ F2, in Figure 7. The reverse direction
is similar.
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The following two lemmas, which show how to construct proofs of arbitrary valid con-
secutions given proofs of arbitrary valid formulas, are standard in showing completeness of
display calculi relative to Hilbert-style proof systems, and were first employed by Goré [24].

Lemma 4.3.5. For any structure X the consecutions X ⊢ ΨX and ΥX ⊢ X are both
DLCBI-provable.

Proof. By structural induction on X. The case where X is a formula F follows directly from
Proposition 3.7. The other cases all follow straightforwardly from the induction hypothesis
and the logical rules of DLCBI. E.g., when X = ♭Y we have ΨX = ∼ΥY and ΥX = ∼ΨY ,
and proceed as follows:

(I.H.)
·
·
·

ΥY ⊢ Y
(≡D)

♭Y ⊢ ♭ΥY

(∼R)
♭Y ⊢ ∼ΥY

(I.H.)
·
·
·

Y ⊢ ΨY

(≡D)
♭ΨY ⊢ ♭Y

(∼L)
∼ΨY ⊢ ♭Y

The remaining cases are similar.

Lemma 4.3.6. If ∅ ⊢ xpΨX → ΥY qy is DLCBI-provable then so is X ⊢ Y .

Proof. We first note that xpΨX → ΥY qy = xpΨXqy → xpΥY qy, and then build a DLCBI proof
of X ⊢ Y as follows:

(assumption)
·
·
·

∅ ⊢ xpΨXqy → xpΥY qy

(Lemma 4.3.5)
·
·
·

X ⊢ ΨX

(Lemma 4.3.4)
·
·
·

ΨX ⊢ xpΨXqy
(Cut)

X ⊢ xpΨXqy

(Lemma 4.3.4)
·
·
·

xpΥY qy ⊢ ΥY

(Lemma 4.3.5)
·
·
·

ΥY ⊢ Y
(Cut)

xpΥY qy ⊢ Y
(→L)

xpΨXqy → xpΥY qy ⊢ ♯X ;Y
(Cut)

∅ ⊢ ♯X ;Y
(≡D)

∅;X ⊢ Y
(∅L)

X ⊢ Y

We can now prove the completeness of DLCBI with respect to CBI-validity.

Proof of Theorem 3.12. Let X ⊢ Y be a valid consecution. Then pΨX → ΥY q is LAXCBI-
provable by Corollary 4.2.8. By Corollary 4.3.3, ∅ ⊢ xpΨX → ΥY qy is then provable in DLCBI

and thus, by Lemma 4.3.6, X ⊢ Y is DLCBI-provable as required.

5. Examples of CBI-models

In this section we give some concrete examples of CBI-models, and some general con-
structions for forming new models. In most of our examples the relational monoid operation
◦ is actually a partial function, and in these cases we treat it as such (e.g., by writing x◦y = z
rather than x ◦ y = {z}).
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Proposition 5.1 (Abelian groups as CBI-models). Any Abelian group 〈R, ◦, e,−〉 can be
understood as a CBI-model 〈R, ◦, e,−, e〉. Conversely, if 〈R, ◦, e,−,∞〉 is a CBI-model
with ◦ a partial function, then imposing the condition ∞ = e forces ◦ to be total, whence
〈R, ◦, e,−〉 is an Abelian group.

Proof. (⇒) Let 〈R, ◦, e,−〉 be an Abelian group. To see that 〈R, ◦, e〉 is a BBI-model, we
just note that ◦ is associative and commutative and that e is the unit of ◦ by the group
axioms. By the uniqueness of group inverses, we then have that −x is the unique y such
that e ∈ x ◦ y. Thus 〈R, ◦, e,−, e〉 is a CBI-model, as required.

(⇐) Let 〈R, ◦, e,−,∞〉 be a CBI-model with ∞ = e and ◦ a partial function. First note
that, by the latter two facts, we have −x ◦ x = ∞ = e for all x ∈ R. Now for any x, y ∈ R
we observe that −x ◦ (x ◦ y) = (−x ◦ x) ◦ y = e ◦ y = y. Thus −x ◦ (x ◦ y) is defined, which
can only be the case if x ◦ y is defined. Thus ◦ is in fact a total function.

To see that 〈R, ◦, e,−〉 is an Abelian group, we first observe that, since ◦ is a total
function by the above, 〈R, ◦, e〉 is a total commutative monoid by the conditions imposed
on BBI-models. The uniqueness of group inverses then follows immediately from the CBI-
model conditions and the fact that ∞ = e.

The following example, which looks at some typical resource interpretations of CBI-
formulas inside an Abelian group model, builds on the “vending machine” model for BI
given by Pym, O’Hearn and Yang [40], which itself was inspired by Girard’s well-known
“Marlboro and Camel” illustration of linear logic [23].

Example 5.2 (Personal finance). Let 〈Z,+, 0,−〉 be the Abelian group of integers under
addition with identity 0, where − is the usual unary minus. This group can be understood
as a CBI-model 〈Z,+, 0,−, 0〉 by Proposition 5.1. We view the elements of this model as
financial resources, i.e money (which we shall measure in pounds sterling, £), with positive
and negative integers representing respectively credit and debt. We read the CBI-satisfaction
relation £m |=ρ F informally as “£m is enough to make F true”, and show how to read
some example CBI-formulas according to this interpretation.

Let C and W be atomic formulas denoting respectively the ability to buy cigarettes
costing £5 and whisky costing £20, so that we have £m |=ρ C ⇔ m ≥ 5 and £m |=ρ W ⇔
m ≥ 20. Then the formula C ∧W denotes the ability to buy cigarettes and the ability to
buy whisky (but not necessarily to buy both together):

£m |=ρ C ∧W ⇔ £m |=ρ C and £m |=ρ W
⇔ m ≥ 5 and m ≥ 20
⇔ m ≥ 20

In contrast, the formula C ∗ W denotes the ability to buy both cigarettes and whisky
together:

£m |=ρ C ∗W ⇔ ∃m1,m2 ∈ Z. £m = £m1 +£m2 and £m1 |=ρ C and £m2 |=ρ W
⇔ ∃m1,m2 ∈ Z. m = m1 +m2 and m1 ≥ 5 and m2 ≥ 20
⇔ m ≥ 25
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The multiplicative implication C —∗ W denotes the fact that if one acquires enough money
to buy cigarettes then the resulting balance of funds is sufficient to buy whisky:

£m |=ρ C —∗ W ⇔ ∀m′ ∈ Z. £m′ |=ρ C implies £m+£m′ |=ρ W
⇔ ∀m′ ∈ Z. m′ ≥ 5 implies m+m′ ≥ 20
⇔ m ≥ 15

We remark that all of the above formulas are BBI-formulas, and so would be interpreted in
exactly the same way in the BBI-model 〈Z,+, 0〉. Let us examine the multiplicative connec-
tives that are particular to CBI. We have £m |=ρ ⊥∗ ⇔ m 6= 0, so that ⊥∗ simply denotes
the fact that one has either some credit or some debt. (This is exactly the interpretation
of the formula ¬⊤∗, a collapse induced by the fact that e and ∞ coincide in the Abelian
group model.) Now consider the formula ∼C. We have:

£m |=ρ ∼C ⇔ −£m 6|=ρ C ⇔ −m < 5 ⇔ m > −5

So ∼C denotes the fact that one’s debt, if any, is strictly less than the price of a pack of
cigarettes. As for the multiplicative disjunction, C ∗∨ W , we have:

£m |=ρ C ∗∨ W
⇔ ∀m1,m2 ∈ Z. −£m = £m1 +£m2 implies −£m1 |=ρ C or −£m2 |=ρ W
⇔ ∀m1,m2 ∈ Z. −m = m1 +m2 implies −m1 ≥ 5 or −m2 ≥ 20
⇔ ∀m1,m2 ∈ Z. m+m1 +m2 = 0 implies m1 ≤ −5 or m2 ≤ −20
⇔ ∀m1,m2 ∈ Z. (m+m1 +m2 = 0 and m1 > −5) implies m2 ≤ −20
⇔ m ≥ 24

It is not immediately obvious how to read this formula informally. However, observing that
C ∗∨ W is semantically equivalent to ∼C —∗ W and to ∼W —∗ C, the meaning becomes
perfectly clear: if one spends strictly less than the price of a pack of cigarettes, then one
will still have enough money to buy whisky, and vice versa.

We remark that, in fact, there is a logic in the relevantist mould, called Abelian logic,
whose models are exactly the lattice-ordered Abelian groups [33].

Proposition 5.3 (Effect algebras as CBI-models). Effect algebras, which arise in the
mathematical foundations of quantum-mechanical systems [20], are exactly CBI-models
〈R, ◦, e,−,∞〉 such that ◦ is a partial function and ∞ is nonextensible (i.e. x ◦ ∞ is unde-
fined for all x 6= e).

The CBI-models constructed in the next examples are all effect algebras.

Example 5.4 (Languages). Let Σ be an alphabet and let L(Σ) be any set of languages
over Σ that is closed under union and complement and contains the empty language ǫ (e.g.,
the set of regular languages over Σ). Write Σ∗ for the set of all words over Σ, and note
that Σ∗ ∈ L(Σ). Let L1 + L2 be the union of disjoint languages L1 and L2, with L1 + L2

undefined if L1 and L2 are not disjoint. Clearly 〈L(Σ),+, ǫ〉 is a partial commutative
monoid. Furthermore, for any language L, its complement L = Σ∗ \ L is the unique
language such that L + L = Σ∗. Thus 〈L(Σ),+, ǫ, · ,Σ∗〉 is a CBI-model. To see that it
is also an effect algebra, just notice that + is a partial function and Σ∗ is nonextensible
because Σ∗ + L is undefined for any L 6= ǫ.

Example 5.5 (Action communication). Let A be any set of objects (to be understood as
CCS-style “actions” [34]), define the set A = {a | a ∈ A} to be disjoint from A, and let
elements 0, τ 6∈ A ∪ A, whence we write B =def A ∪ A ∪ {0, τ}. We extend the operation
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· to B → B by 0 =def τ and a =def a, and define a partial binary operation · | · with type
B ×B ⇀ B as follows:

b | c =def







b if c = 0
τ if c = b
undefined otherwise

The operation · | · models a very simplistic version of communication between actions:
communication with the empty action 0 has no effect, communication between a pair of
dual actions b and b (which may be read, e.g., as “send b” and “receive b”) results in the
“successful communication” action τ , and all other communications are disallowed. It is
easy to check that 〈B, ·|·, 0〉 is a partial commutative monoid. Furthermore, for any b ∈ B,
we clearly have b the unique element with b | b = τ . Thus 〈B, · | · , 0, · , τ〉 is a CBI-
model. Furthermore, it is clearly an effect algebra, because · | · is a partial function and τ
is nonextensible.

Example 5.6 (Generalised heaps). A natural question is whether the heap models of BBI
employed in separation logic (see e.g. [11]) are also CBI-models. Consider the basic heap
model given by the partial commutative monoid 〈H, ◦, e〉, where H =def N ⇀fin Z is the set
of heaps (i.e. partial functions mapping finitely many natural numbers to integers), h1 ◦ h2
is the union of partial functions h1 and h2 when their domains are disjoint (and undefined
otherwise), and e is the function with empty domain. Unfortunately, no choice of ∞ for
〈H, ◦, e〉 gives rise to a CBI-model.

However, it is possible to embed the set of heaps H above into a more general structure
〈H ′, ◦′, e′〉, where H ′ =def N → P(Z) is the set of (total) functions from natural numbers to
sets of integers (we may additionally require that h(n) 6= ∅ for finitely or cofinitely many
n ∈ N). Then ◦′ : H ′ × H ′ ⇀ H ′ is defined by: if h1(n) and h2(n) are disjoint for all n,
then (h1 ◦

′ h2)(n) = h1(n) ∪ h2(n), otherwise h1 ◦
′ h2 is undefined. The unit e′ is defined

by e′(n) = ∅ for all n ∈ N. A CBI-model 〈H ′, ◦′, e′,−,∞〉 is then obtained by defining
∞(n) = Z and (−h)(n) = Z \ h(n) for all n ∈ N.

We note that this model behaves quite differently than 〈H, ◦, e〉: generalised heaps with
overlapping domains can be composed providing that their contents do not overlap for any
point in the domain. We consider the interpretation of some “separation logic-like” formulas
inside this model. Let X ⊆ Z be some fixed set of integers and define the atomic formula
4 7→ X by the following:

h |=ρ 4 7→ X ⇔ h(4) = X

i.e., the formula 4 7→ X denotes those generalised heaps with contents exactly X at location
4. This can be seen as the set-based analogue of the 7→ predicate in standard separation
logic [45] (with fixed arguments for simplicity, as we are working in a propositional setting).
Then we have, for example:

h |=ρ (4 7→ X) ∗ ⊤ ⇔ h = h1 ◦
′ h2 and h1 |=ρ 4 7→ X and h2 |=ρ ⊤

⇔ (∀n ∈ N. h(n) = h1(n) ∪ h2(n)) and h1(4) = X
⇔ X ⊆ h(4)

so that the formula (4 7→ X) ∗ ⊤ denotes the general heaps which contain every element of
X at location 4. If we then take the multiplicative negation of this formula, we have, using
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the above:
h |=ρ ∼((4 7→ X) ∗ ⊤) ⇔ −h 6|=ρ (4 7→ X) ∗ ⊤

⇔ X 6⊆ (−h)(4)
⇔ X 6⊆ (Z \ h(4))
⇔ ∃x ∈ X. x ∈ h(4)

i.e., this formula denotes the general heaps containing some element from X at location 4.
So, in this case, the multiplicative negation has the effect of changing a universal quantifier
to an existential one. The meaning of multiplicative disjunctions, however, is typically very
complicated. For example, picking a second set Y ⊆ Z and defining the atomic formula
4 7→ Y in the same way as 4 7→ X, we have, using previous derivations:

h |=ρ ((4 7→ X) ∗ ⊤) ∗∨ ((4 7→ Y ) ∗ ⊤)
⇔ h |=ρ ∼((4 7→ X) ∗ ⊤) —∗ ((4 7→ Y ) ∗ ⊤) (by Lemma 2.8)
⇔ ∀h′. (h ◦′ h′ defined and h′ |=ρ ∼((4 7→ X) ∗ ⊤)) implies h ◦ h′ |=ρ (4 7→ Y ) ∗ ⊤
⇔ ∀h′. (h ◦′ h′ defined and ∃x ∈ X. x ∈ h′(4)) implies Y ⊆ h(4) ∪ h′(4)
⇔ X ⊆ h(4) or Y ⊆ h(4) or ∃z ∈ Z. (X \ h(4)) = (Y \ h(4)) = {z}

so that this disjunction denotes those general heaps that either contain one of X and Y , or
are missing a single common element from X and Y , at location 4. We give a short proof
of the last equivalence above, since it is not especially obvious.

(⇐). If X ⊆ h(4) then the required implication holds vacuously because x ∈ X ∩ h′(4)
implies h◦′ h′ is undefined. If Y ⊆ h(4) then the implication also holds trivially because the
consequent is immediately true. Lastly, suppose X \ h(4) = Y \ h(4) = {z}. Let h′ be any
heap with h ◦′ h′ defined and x ∈ h′(4) for some x ∈ X. We must then have x = z because
h(4) and h′(4) must be disjoint and X \ h(4) = {z}. Then, since also Y \ h(4) = {z},we
have Y ⊆ h(4) ∪ {z} ⊆ h(4) ∪ h′(4) as required.

(⇒). If X ⊆ h(4) or Y ⊆ h(4) we are trivially done. Now suppose that X 6⊆ h(4) and
Y 6⊆ h(4), so that there are x ∈ X \ h(4) and y ∈ Y \ h(4). Let h′ be given by h′(4) = {x}
and h′(n) = ∅ for all other n, and note that h ◦′ h′ is defined. By assumption, we have
Y ⊆ h(4) ∪ h′(4) = h(4) ∪ {x}, and thus Y \ h(4) = {x} because Y \ h(4) is nonempty by
assumption. It follows that Y \h(4) = {x} for any x ∈ X \h(4), and so also X \h(4) = {x},
as required.

We note that a number of general categorical constructions for effect algebras have
recently appeared in [27].

Our next examples differ both from Abelian groups in that e and ∞ are non-identical,
and from effect algebras in that ∞ is extensible. Indeed, as shown by our Example 5.8
below, fixing the monoidal structure of a CBI-model does not in general determine the
choice of ∞.

Example 5.7 (Bit arithmetic). Let n ∈ N and observe that an n-bit binary number can
be represented as an element of the set {0, 1}n. Let XOR and NOT be the usual logical
operations on binary numbers. Then the following is a CBI-model:

〈{0, 1}n,XOR, {0}n,NOT, {1}n〉

In this model, the resources e and∞ are the n-bit representations of 0 and 2n−1 respectively.
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Example 5.8 (Integer modulo arithmetic). Consider the monoid 〈Zn,+n, 0〉, where Zn is
the set of integers modulo n, and +n is addition modulo n. We can form a CBI-model from
this monoid by choosing, for any m ∈ Zn, ∞ =def m and −k =def m −n k (where −n is
subtraction modulo n).

Example 5.9 (Syntactic models). Given an arbitrary monoid 〈R, ◦, e〉, we give a syntactic
construction to generate a CBI-model 〈R′, ◦′, e′,−′,∞′〉. Consider the set T of terms given
by the grammar:

t ∈ T ::= r ∈ R | ∞ | t · t | −t

and let ≈ be the least congruence such that:

r1 ◦ r2 = r implies r1 · r2 ≈ r;
t1 · t2 ≈ t2 · t1;
t1 · (t2 · t3) ≈ (t1 · t2) · t3;
−−t ≈ t;
t · (−t) ≈ ∞;
t1 ◦ t2 ≈ ∞ implies t1 ≈ −t2.

We write T/≈ for the quotient of T by the relation ≈, and [t] for the equivalence class
of t. The required CBI-model 〈R′, ◦′, e′,−′,∞′〉 is obtained by defining R′ =def T/≈,
◦′([t1], [t2]) =def [t1 ◦ t2], e

′ =def [e], −
′(t) =def [−t], and ∞′ =def [∞].

We now consider some general ways of composing CBI-models.

Lemma 5.10 (Disjoint union of CBI-models). Let 〈R1, ◦1, e1,−1,∞1〉 and 〈R2, ◦2, e2,
−2,∞2〉 be CBI-models such that R1 and R2 are disjoint and either ∞1 = e1 and ∞2 = e2
both hold or ∞1,∞2 are both nonextensible, i.e. ∞1 ◦1 x = ∅ for all x 6= e1 and ∞2 ◦2 x = ∅
for all x 6= e2.

Now let R be the set obtained by identifying e1 with e2 and ∞1 with ∞2 in R1 ∪ R2,
and write e = e1 = e2 and ∞ = ∞1 = ∞2 for the elements obtained by this identification.
Define − = −1 ∪ −2 and ◦ = ◦1 ∪ ◦2. Then 〈R, ◦, e,−,∞〉 is a CBI-model.

Proof. We start by observing that − is indeed a function from R to R because R1 and R2

are assumed disjoint and, using Proposition 2.3, −1e1 = ∞1 = ∞2 = −2e2, and similarly
−1∞1 = −2∞2. Thus −e and −∞ are well-defined.

We need to check that 〈R, ◦, e〉 is a BBI-model. The commutativity of ◦ is immediate
by the commutativity of ◦1 and ◦2. Similarly, x ◦ e = {x} for all x ∈ R because e = e1 is
a unit of ◦1 and e = e2 is a unit of ◦2. To see that ◦ is associative, we let x, y, z ∈ R and
show that x ◦ (y ◦ z) = (x ◦ y) ◦ z by case analysis.

Case: at least one of x, y, z is e. We are immediately done by the fact that e is a unit for ◦.

Case: at least one of x, y, z is ∞. We may assume that none of x, y, z is e, since these
possibilities are covered by the previous case, and so it follows by assumption that ∞1 and
∞2 are nonextensible. Consequently ∞◦ x = ∅ for all x 6= e, so x ◦ (y ◦ z) = ∅ = (x ◦ y) ◦ z.

Case: all of x, y, z ∈ R1. We may assume by the previous cases that none of x, y, z is either
e or ∞, so we have x ◦ (y ◦ z) = x ◦1 (y ◦1 z) and (x ◦ y) ◦ z = (x ◦1 y) ◦1 z, whence we are
done by the associativity of ◦1.

Case: all of x, y, z ∈ R2. Similar to the case above.
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Case: none of the above. We have x ◦ (y ◦ z) = ∅ = (x ◦ y) ◦ z since x ◦ y = ∅ whenever
x ∈ R1, y ∈ R2 and neither x nor y is e or ∞. This covers all the cases, so ◦ is indeed
associative.

Now to see that 〈R, ◦, e,−,∞〉 is a CBI-model, given x ∈ R we need to show that −x
is the unique y ∈ R such that ∞ ∈ x ◦ y. It is easily verified that ∞ ∈ x ◦ −x for all
x ∈ R. Now suppose that ∞ ∈ x ◦ y = x ◦1 y ∪ x ◦2 y for some y ∈ R. If ∞ ∈ x ◦1 y then
y = −1x = −x as required. Similarly, if ∞ ∈ x ◦2 y then y = −2x = −x.

We remark that the restrictions on ∞1 and ∞2 in Lemma 5.10 are needed in order
to ensure the associativity of ◦. For example, if x ∈ R1 and y ∈ R2 and x, y 6= e then
(x ◦ y) ◦ −y = ∅ ◦ −y = ∅ while x ◦ (y ◦ −y) ⊇ x ◦ ∞ = x ◦1 ∞1, which is not empty in
general.

Lemma 5.11 (Generalised Cartesian product of CBI-models). Let A be an ordered set
and write ⊗a∈A xa for an ordered tuple indexed by the elements of A. Suppose that Ma =
〈Ra, ◦a, ea,−a,∞a〉 is a CBI-model for each a ∈ A. Then 〈R, ◦,⊗a∈A ea,−,⊗a∈A ∞a〉 is
a CBI-model, where R denotes the A-ordered Cartesian product of the sets Ra, and the
operations ◦ : R×R → P(R) and − : R → R are defined as follows:

−(⊗a∈A xa) = ⊗a∈A (−axa)
⊗a∈A xa ◦ ⊗a∈A ya =

⋃

a∈A,wa∈xa◦aya
{⊗a∈A wa}

Proof. In the following, all uses of
⋃

notation should be understood as ranging over all a ∈ A
(we suppress the explicit subscript for legibility). First, we need to check that 〈R, ◦,⊗a∈A ea〉
is a BBI-model. The commutativity of ◦ follows immediately from its definition and the
commutativity of each ◦a. To see that ⊗a∈A ea is a unit for ◦ we observe:

⊗a∈A xa ◦ ⊗a∈A ea =
⋃

wa∈xa◦aea
{⊗a∈A wa} =

⋃

wa∈{xa}
{⊗a∈A wa} = {⊗a∈A xa}

Next we need to check that ◦ is associative. Using the the standard extension of ◦ to
P(R)× P(R) → P(R) we have:

(⊗a∈A xa ◦ ⊗a∈A ya) ◦ ⊗a∈A za = (
⋃

wa∈xa◦aya
{⊗a∈A wa}) ◦ ⊗a∈A za

=
⋃

wa∈xa◦aya
(⊗a∈A wa ◦ ⊗a∈A za)

=
⋃

wa∈xa◦aya
(
⋃

va∈wa◦aza
{⊗a∈A va})

=
⋃

va∈(xa◦aya)◦aza
{⊗a∈A va}

Similarly, we have:

⊗a∈A xa ◦ (⊗a∈A ya ◦ ⊗a∈A za) =
⋃

va∈xa◦a(ya◦aza)
{⊗a∈A va}

whence (⊗a∈A xa ◦ ⊗a∈A ya) ◦ ⊗a∈A za = ⊗a∈A xa ◦ (⊗a∈A ya ◦ ⊗a∈A za) as required by the
associativity of each ◦a.

Now, to see that 〈R, ◦,⊗a∈A ea,−,⊗a∈A ∞a〉 is a CBI-model, it just remains to check
that the required conditions on − and ⊗a∈A∞a hold. We have by definition:

⊗a∈A xa ◦ −(⊗a∈A xa) = ⊗a∈A xa ◦ ⊗a∈A (−axa)
=

⋃

wa∈xa◦a(−axa)
{⊗a∈A wa}

Then, since ∞a ∈ xa ◦a (−axa) for all a ∈ A we have ⊗a∈A ∞a ∈ ⊗a∈A xa ◦ −(⊗a∈A xa)
as required. To see that −(⊗a∈A xa) is the unique element of R satisfying this condition,
suppose ⊗a∈A∞a ∈ ⊗a∈A xa ◦ ⊗a∈A ya. Then for each a ∈ A we would have ∞a ∈ xa ◦a ya,
which implies ya = −axa for each a ∈ A and thus ⊗a∈A ya = ⊗a∈A ∞a as required. This
completes the verification.
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We remark that, as well as standard Cartesian product constructions, Lemma 5.11
gives a canonical way of extending CBI-models to heap-like structures mapping elements
of an ordered set A into model values by taking Ma to be the same CBI-model for each
a ∈ A. For example, our “money” model of Example 5.2 extends via Lemma 5.11 to a
model of maps from a set of identifiers to the integers, which can be understood as financial
“asset portfolios” mapping identifiers (commodities) to integers (assets or liabilities). Such
a model might potentially form the basis of a Hoare logic for financial transactions in the
same way that the heap model of BBI underpins separation logic. The following example
shows another application.

Example 5.12 (Deny-guarantee model). The deny-guarantee permissions employed by
Dodds et al. [18] are elements of PermDG = Actions → FractionDG, where Actions is a set
of “actions” and:

FractionDG = {(deny, π) | π ∈ (0, 1)} ∪ {(guar, π) | π ∈ (0, 1)} ∪ {0, 1}

A partial binary function ⊕ is defined on FractionDG by:

0⊕ x = x⊕ 0 = x

(deny, π1)⊕ (deny, π2) =







(deny, π1 + π2) if π1 + π2 < 1
1 if π1 + π2 = 1
undefined otherwise

(guar, π1)⊕ (guar, π2) =







(guar, π1 + π2) if π1 + π2 < 1
1 if π1 + π2 = 1
undefined otherwise

1⊕ x = x⊕ 1 = undefined for x 6= 0

The operation ⊕ is lifted to PermDG by (p1 ⊕ p2)(a) = p1(a) ⊕ p2(a). Next, define the
involution − on FractionDG by:

−0 = 1 −(deny, π) = (deny, 1− π) −(guar, π) = (guar, 1 − π) −1 = 0

and lift − to PermDG by (−p)(a) = −p(a). Finally, we lift 0 and 1 to PermDG by 0(a) = 0
and 1(a) = 1.

Then 〈PermDG,⊕, 0,−, 1〉 is a CBI-model. One can check this directly, but we can also
reconstruct the model using our general constructions. First, one verifies easily that both
the “deny fragment” and the “guarantee fragment” of FractionDG given by the tuples:

〈{(deny, π) | π ∈ (0, 1)} ∪ {0, 1},⊕, 0,−, 1〉
〈{(guar, π) | π ∈ (0, 1)} ∪ {0, 1},⊕, 0,−, 1〉

are CBI-models. Noting that 1 is nonextensible in both models, we can apply Lemma 5.10
to obtain the disjoint union of these models, which is exactly 〈FractionDG,⊕, 0,−, 1〉. By
applying Lemma 5.11 (taking A to be Actions and Ma to be 〈FractionDG,⊕, 0,−, 1〉 for all
a ∈ Actions) we then obtain the CBI-model 〈PermDG,⊕, 0,−, 1〉.

We end this section by addressing the general question of whether there are embeddings
of arbitrary BBI-models into CBI-models. This is not trivial for the following reason.
Consider a BBI-model 〈R, ◦, e〉 with ◦ a function and z = x1 ◦ y = x2 ◦ y with x1 6= x2. In
any simple extension of this model into a CBI-model 〈R′, ◦′, e′,−,∞〉 with R ⊆ R′ and
◦ ⊆ ◦′, we are forced to have both −x1 ∈ y ◦′ −z and −x2 ∈ y ◦′ −z by the CBI-model
conditions (see Proposition 2.3, part 3), while −x1 6= −x2. Thus any such extension of the
functional BBI-model 〈R, ◦, e〉 into a CBI-model is forced to be relational. Our construction
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below shows how a general embedding from BBI-models to CBI-models may be obtained,
which can be viewed as being weakly canonical in the sense that it is an injection.

Proposition 5.13 (CBI-extension of BBI-models). Let 〈R, ◦, e〉 be a BBI-model and define
a second, disjoint copy R of R by R =def {r | r ∈ R}. Define −x = x for all x ∈ R and
−x = x for all x ∈ R. Finally, define the binary relation ⊕ over R ∪R by the following:

(⊕1) z ∈ x ◦ y ⇒ z ∈ x⊕ y
(⊕2) z ∈ x ◦ y ⇒ y ∈ (x⊕ z) ∩ (z ⊕ x)

Then 〈R ∪ R,⊕, e,−, e〉 is a CBI-model. Moreover, the construction of 〈R ∪ R,⊕, e,−, e〉
from 〈R, ◦, e〉 is injective.

Proof. We start by stating the following elimination principle for ⊕ which follows directly
from its introduction rules (⊕1) and (⊕2).

Elimination principle. If z ∈ x⊕ y then the following hold:

(1) z ∈ R iff x, y ∈ R, and if x, y, z ∈ R then z ∈ x ◦ y.
(2) z ∈ R iff either x ∈ R and y ∈ R, or x ∈ R and y ∈ R. Furthermore:

• if x ∈ R and y, z ∈ R then y′ ∈ x ◦ z′, where y′ = y and z′ = z;
• if y ∈ R and x, z ∈ R then x′ ∈ z′ ◦ y, where x′ = x and z′ = z.

With this principle in place we carry out the main proof. First, we need to check
that 〈R∪R,⊕, e〉 is a BBI-model, i.e., that ⊕ is commutative and associative, and satisfies
x ◦ e = {x} for all x ∈ R ∪R.

We tackle the last of these requirements first. Since 〈R, ◦, e〉 is a BBI-model we have
x ∈ x ◦ e = e ◦ x = {x} for all x ∈ R. Thus, for all x ∈ R, we have x ∈ x⊕ e by (⊕1) and
x ∈ x ⊕ e by (⊕2). That is, x ∈ x ⊕ e for all x ∈ R ∪ R. Now suppose y ∈ x ⊕ e. Since
e ∈ R, there are two cases to consider by the elimination principle. If both x, y ∈ R then
we have y ∈ x ◦ e = {x}, thus y = x. Otherwise, both x, y ∈ R and x′ ∈ y′ ◦ e = {y′}, where
x′ = x and y′ = y. Thus x′ = y′ and, since · is injective, x = y. So x ⊕ e = {x} for all
x ∈ R ∪R as required.

To see that ⊕ is commutative, let z ∈ x ⊕ y, and consider the cases given by the
elimination principle. First, suppose that all of x, y, z ∈ R and z ∈ x ◦ y. Since 〈R, ◦, e〉
is a BBI-model, ◦ is commutative, so z ∈ y ◦ x. Thus by (⊕1) we have z ∈ y ⊕ x. Next,
suppose that x ∈ R, y, z ∈ R and y′ ∈ x ◦ z′, where y′ = y and z′ = z. By (⊕2) we then
have z ∈ y ⊕ x. The case where y ∈ R and x, z ∈ R is symmetric. Thus z ∈ x⊕ y implies
z ∈ y ⊕ x, so x⊕ y = y ⊕ x for any x, y ∈ R ∪R, i.e. ⊕ is commutative.

It remains to show that ⊕ is associative, i.e. that (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) for any
x, y, z ∈ R ∪R. We divide into cases as follows:

Case: at least two of x, y, z are in R. The elimination principle implies that x ⊕ y = ∅
whenever both x, y ∈ R and, furthermore, z ∈ R whenever z ∈ x ⊕ y and either x ∈ R or
y ∈ R. Combined with the pointwise extension of ⊕ to sets of elements, this implies that
(x⊕ y)⊕ z = x⊕ (y ⊕ z) = ∅.

Case: none of x, y, z are in R. The elimination principle implies that (x⊕y)⊕z = (x◦y)◦z
and x⊕ (y ⊕ z) = x ◦ (y ◦ z). We are then done since ◦ is associative by assumption.
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Case: exactly one of x, y, z is in R. We show how to treat the case where x ∈ R; the other
cases are similar. We write x = x′. Let w ∈ (x′ ⊕ y) ⊕ z =

⋃

v∈x′⊕y v ⊕ z. Thus w ∈ v ⊕ z

for some v ∈ x′ ⊕ y. By part 2 of the elimination principle, v ∈ R and x′ ∈ v′ ◦ y, where
v = v′. Applying the same elimination principle to w ∈ v′ ⊕ z, we obtain that w ∈ R and
v′ ∈ w′ ◦ z, where w = w′. Thus x′ ∈

⋃

v′∈w′◦z v
′ ◦ y = (w′ ◦ z) ◦ y. Since ◦ is associative and

commutative, x′ ∈ w′ ◦ (y ◦ z). By (⊕1), it is certainly the case that y ◦ z ⊆ y ⊕ z, whence
we obtain x′ ∈ w′ ◦ (y ⊕ z) = (y ⊕ z) ◦ w′. Thus, by (⊕2), we obtain w ∈ x⊕ (y ⊕ z).

As we have shown w ∈ (x⊕ y)⊕ z) implies w ∈ x⊕ (y ⊕ z), we conclude (x⊕ y)⊕ z =
x⊕ (y ⊕ z), i.e. ⊕ is associative as required. Thus 〈R ∪R,⊕, e〉 is indeed a BBI-model.

To see that 〈R ∪ R,⊕, e,−,∞〉 is a CBI-model, we just need to check that for any
x ∈ R ∪ R, x is the unique element such that ∞ = e ∈ x ⊕ x. Suppose first that x ∈ R.
Since x◦e = {x}, we have e ∈ x⊕x by (⊕2). To see that x is unique, suppose that e ∈ x⊕y.
By part 2 of the elimination principle, we must have y = y′ and y′ ∈ x ◦ e = {x}. Thus
y′ = x so y = x as required. When x ∈ R, we have x = y for some y ∈ R and the reasoning
is exactly dual to the case above, since ◦ is commutative. This completes the proof.

Another interesting possibility for obtaining CBI-models from arbitrary BBI-models
would be to extend the well-known Grothendieck completion — which constructs the canon-
ical Abelian group corresponding to a total commutative monoid — to the relational setting.
From a category-theoretic perspective, it would be interesting to see whether the obvious
forgetful functor from CBI-models to BBI-models has a left-adjoint, which would give the
truly canonical CBI-model corresponding to any BBI-model.

6. Related and future work

We consider related work, and directions for future work, from several perspectives.

Bunched logics: In his monograph on BI [39], Pym observed that it made sense to think not
of one bunched logic but rather a family of bunched logics, characterised by the strengths of
their additive and multiplicative components. We reprise his diagram of the bunched logic
family, suitably updated, in Figure 8. CBI is the strongest member of this family, boasting
two classical negations and being characterised by an underlying Boolean algebra in its
additive component and a de Morgan algebra in the multiplicative component. Indeed, Pym
anticipated the formulation of CBI as presented here in at least two important respects: he
observed that a relevantist approach to multiplicative negation (which we take by using the
involution operation ‘−’ in our models in place of the Routley star) is classically compatible
with the other multiplicative connectives; and he noted the problems with cut-elimination
seemingly inherent in a two-sided sequent calculus for bunched logic. In this paper, we
provide two key missing links. First, our display calculus DLCBI and its cut-elimination
theorem, obtained by following Belnap’s original methodology for display logic [2], provides
a well-behaved proof theory for CBI. (Subsequently, the first author has given in [5] a unified
display calculus proof theory for all four bunched logics in Figure 8.) Second, and perhaps
more importantly, we also provide the connection to Kripke-style resource models with
precisely the structure necessary to interpret CBI. Our soundness and completeness results
establishing the correspondence between validity and provability, plus cut-elimination for
DLCBI, can be taken as strong evidence that the formulation of CBI we present here may
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BI
(Heyting, Lambek)

decidable [21]

BBI
(Boolean, Lambek)
undecidable [7, 30]

CBI
(Boolean, de Morgan)

undecidable [7]

dMBI
(Heyting, de Morgan)

¬∼

∼¬

Figure 8: The bunched logic family. The (additive, multiplicative) subtitles denote the
strength of the underlying additive and multiplicative algebras. The arrows de-
note the addition of either additive (¬) or multiplicative (∼) classical negation.

be considered canonical. We also establish nonconservativity of CBI over BBI, and its
incompleteness with respect to partial functional models.

We remark that the bunched logic dMBI (standing for “de Morgan BI”) in the dia-
gram, which combines intuitionistic additives with classical multiplicatives, has not been
investigated in any great detail, to our knowledge, but it is closely related to the relevant
logic RW. See the section on relevant logics below for a comparison.

Relevant logics: CBI, like its bunched logic predecessors, owes a historical debt to the exten-
sive work on relevant logics and takes many of its mathematical cues from the development
of these logics, as described in the case of BI by O’Hearn and Pym [36]. Indeed, as they point
out, if one understands by “relevant logics” nothing but logics whose logical connectives are
understood primarily in terms of the structural rules which they must respect (cf. [41]),
then bunched logics are relevant logics. However, in bunched logics, the philosophical ideal
of relevance has been entirely sacrificed in favour of full-strength additives as equal part-
ners alongside the multiplicatives. The justification for doing so is semantic; in the Kripke
models of bunched logics, one has a simple truth reading of formulas in terms of resources,
in which the additives have their standard meanings. In other words, while relevant logic
seeks to exclude the paradoxes of material implication, in the setting of bunched logic we
regard these paradoxes as being perfectly justifiable in terms of our resource models.

Retrospectively, CBI can be obtained in terms of relevant logics by a series of surgeries
on the axiomatisation of the full system R and its corresponding class of Kripke models (see
e.g. [44]) in the following way. First, drop the axiom of multiplicative contraction from R
(so that the corresponding condition Rxxx on the ternary relation R in the Kripke models
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of R does not necessarily hold) to obtain the well-known relevant logic RW (a.k.a. C).
Then one can add both the additive intuitionistic implication → and falsum ⊥, which are
barred from relevant logics in order to exclude various logical principles which contravene
the philosophical notion of relevance (e.g. the classical tautology A∧B → A). This addition
is conservative over the language of RW because → and ⊥ can already be interpreted in its
Kripke models using the ordering ≤ on points in the model in the usual intuitionistic way
(a fact exploited by Restall in order to formulate display calculi for RW and other relevant
logics [42]). At this point we have obtained a characterisation of the bunched logic dMBI,
whence to obtain CBI we strengthen the implication → into the (additive) classical implica-
tion, which corresponds to taking ≤ in the corresponding Kripke models to be the identity
ordering. The situation is also similar to that for the classical relevant logics introduced
by Meyer and Routley [31, 32], which feature traditional Boolean negation alongside the
relevantist negation employing the Routley star — though, again, multiplicative contraction
must be removed and the additives given their full classical strength.

Similarly, it would not surprise a relevantist that CBI can be given a display calculus
presentation, as display logic historically served as one of the main proof-theoretic tools
in formulating sensible proof systems for relevant and other substructural logics. Indeed,
one might deduce that this was the main intention behind Belnap’s original formulation of
display logic [2], in which the choice of structural rules for a particular logic are identified
as the principal factor affecting cut-elimination. We note that Goré has shown how to
automatically generate display calculi for a general class of substructural logics based on
Dunn’s gaggle theory [25], and it seems more than likely that his techniques could equally
well be used to obtain DLCBI. Similarly, the correct formulation of DLCBI could have been
deduced from Restall’s display calculi for the relevant logic DW and its various extensions
including RW [42]. In both the aforementioned cases, however, the modelling power is in
considerable excess of what is needed to obtain our display calculus for CBI, which falls
directly under Belnap’s original description of displayable logics in [2] because it features
classical negation in both its additive and multiplicative connective families.

Linear logic: Readers may wonder about the relationship between CBI and classical linear
logic (CLL), which also features a full set of propositional multiplicative connectives, and is
a nonconservative extension of intuitionistic linear logic (ILL) [47]. The differences between
the two are intuitively obvious when comparing our money model of CBI (Example 5.2)
alongside Girard’s corresponding Marlboro / Camel example [23]. In particular, formulas
in our model are read as declarative statements about resources (i.e. money), whereas linear
logic formulas in Girard’s model are typically read as procedural statements about actions.
Compared to CLL, CBI has the advantage of a simple, declarative notion of truth relative
to resource, but this advantage appears to come at the expense of CLL’s constructive
interpretation of proofs.

Of course, the typical reading of BI departs from that of ILL in a similar way (see [36]
for a discussion), and indeed it seems that the main differences between CBI and CLL
are inherited from the wider differences between bunched logic and linear logic in general.
These differences are not merely conceptual, but are also manifested at the technical level
of logical consequence. For example, P −◦Q ⊢ P → Q is a theorem of linear logic for any
propositions P and Q, via the encoding of additive implication P → Q as !P −◦ Q, but
P —∗ Q ⊢ P → Q is not a theorem of bunched logic. Similarly, distributivity of additive
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conjunction ∧ over additive disjunction ∨ holds in bunched logics, but fails in linear logics.
Further differences are highlighted in [7].

Interestingly, however, there is an intersection between CBI-models and the CLL-models
obtained from the phase semantics of classical linear logic [23]. A CBI-model 〈R, ◦, e,−,∞〉
in which the monoid operation ◦ is a total function, rather than a relation, is a special
instance of a phase space, used to provide a phase model of CLL. This can be seen by
taking the linear logic “perp” ⊥ to be the set R \ {∞}, whence the linear negation X⊥

on sets X ⊆ R becomes −X. In the linear logic terminology, every subset X of R is then
a “fact” in the sense that (X⊥)⊥ = −−X = X. It seems somewhat curious that there is
a subclass of models where CBI and CLL agree, since known interesting phase models of
linear logic are relatively few whereas there appear to be many interesting CBI-models (cf.
Section 5). However, one can argue that this subclass is faithful to the spirit of neither
logic. On the one hand, the restriction to a total monoid operation in CBI-models rules out
many natural examples where resource combination is partial (or indeed relational). On
the other hand, it seems certain that the induced subclass of CLL phase models will be at
odds with the coherence semantics of CLL proofs.

Applications: The main application of BBI so far has been the use of separation logic in
program analysis. There are now several program analysis tools [12, 13, 16, 49, 35] which
use logical and semantic properties of the heap model of BBI at their core. These tools
typically define a suitable fragment of separation logic with convenient algebraic properties,
and use it in custom lightweight theorem provers and abstract domains. We suggest that
our work on CBI could be relevant in this area as a foundation for richer resource models.
In this paper we have already given several new models and model constructions which,
though relatively simple in their present form, are suggestive of the applicability of CBI to
more complex domains (cf. Section 5). In particular, we have observed that several models
introduced recently for reasoning about concurrent access to resources are CBI models, e.g.
fractional permissions as used in deny-guarantee reasoning (cf. Example 5.12).

More speculatively, our display calculus DLCBI might form a basis for the design of
new theorem provers, which could easily employ the powerful (and historically difficult to
use) implication —∗ since, in CBI, it can be reexpressed using more primitive connectives.
Moreover, the notion of dual or negative resource might be employed in extended theorem
proving questions, such as the frame inference problem F ⊢ G ∗ X where the frame X
is computed essentially by subtracting G from F . A similar problem is the bi-abduction
question, which forms the basis of the compositional shape analysis in [9] and has the form
F ∗X ⊢ G ∗ Y , interpreted as an obligation to find formulae to instantiate X and Y such
that the implication holds. This question arises at program procedure call sites, where F
is the procedure’s precondition, G is the current precondition at the call point, X is the
resource missing, and Y is the leftover resource. We speculate that such inferences could
be explained in terms of an ordinary proof theory, providing that multiplicative negation is
supported, as in CBI.

Finally, CBI could be applied to the study of other logics. For example, Kleene’s
3-valued logic [28] can be modelled using a subset of CBI’s connectives. Consider the two-
element CBI model given by 〈{e,∞}, ◦, e,−,∞〉, where ∞◦∞ = ∅ (note that ◦ and − are
then determined by the CBI-model axioms). There are CBI-formulas denoting each of the
subsets of {e,∞}: ⊤, ⊥, ⊤∗, ∞ (where ∞ is used as an abbreviation for ¬⊥∗). To model
3-valued logic we focus on ⊤, ⊥, ∞, with ∞ playing the role of the third logical value,
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“unknown”. A direct calculation shows that the connectives ∧, ∨, and ∼ indeed generate
the truth tables required by 3-valued logic. For example, we have ∞∨∼∞ = ∞∨∞ = ∞.
We speculate that CBI could be applied to other situations in logic where a non-standard
notion of negation is used.

We believe that, aside from its intrinsic technical interest, our development of CBI
contributes to the picture of bunched logic and its connections to computer science as a
whole, as well as to the broader area of substructural logics in general. Although our
suggestions regarding specific applications of CBI are necessarily still somewhat speculative
at this early stage in its existence, we hope that the foundations established in this paper
will provide a solid platform upon which such applications can, in time, be constructed.
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Appendix A. Cut-elimination for DLCBI (Theorem 3.8)

The following definition is taken from Belnap [2]. By a constituent of a structure or
consecution we mean an occurrence of one of its substructures.

Definition A.1 (Parameters / congruence). Let I be an instance of a rule R of DLCBI.
Note that I is obtained by assigning structures to the structure variables occurring in R
and formulas to the formula variables occurring in R.

Any constituent of the consecutions in I occurring as part of structures assigned to
structure variables in I are defined to be parameters of I. All other constituents are defined
to be non-parametric in I, including those assigned to formula variables.

Constituents occupying similar positions in occurrences of structures assigned to the
same structure variable are defined to be congruent in I.

We remark that congruence as defined above is an equivalence relation.
Belnap’s analysis guarantees cut-elimination for DLCBI (Theorem 3.8) provided its proof

rules (cf. Figure 3) satisfy the following conditions, which are stated with reference to an
instance I of a DLCBI rule R. (Here, following Kracht [29], we state a stronger, combined
version of Belnap’s original conditions C6 and C7, since our rules satisfy this stronger
condition.) In each case, we indicate how to verify that the condition holds for our rules.

C1: Preservation of formulas. Each formula which is a constituent of some premise
of I is a subformula of some formula in the conclusion of I.

Verification. One observes that, in each rule, no formula variable or structure
variable is lost when passing from the premises to the conclusions.

C2: Shape-alikeness of parameters. Congruent parameters are occurrences of the same
structure.

Verification. Immediate from the definition of congruence.

C3: Non-proliferation of parameters. No two constituents in the conclusion of I are
congruent to each other.

Verification. One just observes that, for each rule, each structure variable occurs
exactly once in the conclusion.

C4: Position-alikeness of parameters. Congruent parameters are either all antecedent
or all consequent parts of their respective consecutions.

Verification. One observes that, in each rule, no structure variable occurs both
as an antecedent part and a consequent part.

C5: Display of principal constituents. If a formula is nonparametric in the conclusion
of I, it is either the entire antecedent or the entire consequent of that conclusion.
Such a formula is said to be principal in I.

Verification. It is easy to verify that the only non-parametric formulas in the con-
clusions of our rules are the two occurrences of P in (Id) and those occurring in the
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introduction rules for the logical connectives, which obviously satisfy the condition.

C6/7: Closure under substitution for parameters. Each rule is closed under simultane-
ous substitution of arbitrary structures for congruent formulas which are parameters.

Verification. This condition is satisfied because no restrictions are placed on the
structural variables used in our rules.

C8: Eliminability of matching principal formulas. If there are inferences I1 and I2
with respective conclusions X ⊢ F and F ⊢ Y and with F principal in both in-
ferences, then either X ⊢ Y is equal to one of X ⊢ F and F ⊢ Y , or there is a
derivation of X ⊢ Y from the premises of I1 and I2 in which every instance of cut
has a cut-formula which is a proper subformula of F .

Verification. There are only two cases to consider. If F is atomic then X ⊢ F and
F ⊢ Y are both instances of (Id). Thus we must have X ⊢ F = F ⊢ Y = X ⊢ Y ,
and are done. Otherwise F is non-atomic and introduced in I1 and I2 respectively
by the right and left introduction rule for the main connective of F . In this case, a
derivation of the desired form can be obtained using only the display rule (≡D) and
cuts on subformulas of F . For example, if the considered cut is of the form:

·
·
·

X ⊢ F,G
( ∗∨R)

X ⊢ F ∗∨ G

·
·
·

F ⊢ Y

·
·
·

G ⊢ Z
( ∗∨L)

F ∗∨ G ⊢ Y,Z
(Cut)

X ⊢ Y,Z

then we can reduce this cut to cuts on F and G in the following manner:

·
·
·

X ⊢ F,G
(≡D)

X, ♭G ⊢ F

·
·
·

F ⊢ Y
(Cut)

X, ♭G ⊢ Y
(≡D)

X, ♭Y ⊢ G

·
·
·

G ⊢ Z
(Cut)

X, ♭Y ⊢ Z
(≡D)

X ⊢ Y,Z

The cases for the other connectives are similarly straightforward. This completes
the verification of the conditions, and thus the proof.
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