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Abstract. We introduce the operators modified limit and accumulation on a Banach
space, and we use this to define what we mean by being internally computable over the
space. We prove that any externally computable function from a computable metric space
to a computable Banach space is internally computable.

We motivate the need for internal concepts of computability by observing that the
complexity of the set of finite sets of closed balls with a nonempty intersection is not uni-
formly hyperarithmetical, and thus that approximating an externally computable function
is highly complex.

1. Introduction

This note may be viewed as a sequel to what we once called “the trilogy” Normann [7, 8, 9].
There we were interested in typed structures of continuous functions over complete separable
metric spaces. We used the, for our purpose equivalent, cartesian closed categories of QCB0

([2]) and Kuratowski Limit Spaces ([5]).
In computational analysis it is customary to work with TTE-representations, see, e.g.,

Weihrauch [14], or alternatively with domain representations. The main observation in
[7] was that if we restrict ourselves to the limit space representation and ignore TTE-
representations or domain representations, we obtain more informative results with simpler
proofs. In [8] we discussed the distinction between internal and external approaches to
computability over a structured set. The internally computable functions are defined from
elements, relations and functions present in the structure, using acceptable operators that
form new functions. The problem will be to decide what the acceptable operators are. The
external concepts will be based on an already established definition of computability on
a set of representatives. In our view, internal approaches are worthwhile pursuing. The
advantage with an internal approach is on the one hand that one does not have to translate
everything to the set of representatives, and on the other hand that an internally defined
object will always be well defined. When there is a natural concept of external computability
around, every internally computable function should also be externally computable, this is
a soundness criterion. We refer to [8] for a further discussion and for references.

In Section 2 we will prove that for computable Banach spaces in general it is very hard
to decide when three closed balls have a nonempty intersection. Our precise statement is
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that the problem of when three closed balls have a nonempty intersection is not uniformly
hyperarithmetical. We will use a computable version of a theorem due to R. Kaufman [3],
combined with a trick due to Alfsen and Effros [1], in order to establish this. The conclusion
we draw is that when X is a computable metric space and M is a computable Banach space,
it is not hyperarithmetically decidable in general when a given finite approximation to a
function F : NN → NN also approximates a representation of a computable function from
X to M . We see this as a support for introducing internal concepts of computability in
analysis.

Remark 1.1. The hyperarithmetical hierarchy, introduced by Kleene, is a transfinite ex-
tension of the arithmetical hierarchy, see Rogers [12] or Sacks [13] for an introduction. The
hyperarithmetical subsets of NN will be exactly the ∆1

1-sets, and they may be considered to
be the Borel sets where the construction can be coded by a computable, well founded tree.

When a separable Banach space M is a closed subset of a metric space X, then M

is actually a retract of X. In Section 3 we will prove this, consider the proof as a case
study and discuss on the basis of the proof why we might consider the retract as internally
computable from the data at hand. The internal principle we will use can be seen as a
combination of primitive recursion and forming effective limits.

Retracts at base types induce retracts at higher types. We use this to observe the
effective version of the embedding theorem from [9]: Let U be the universal separable metric

space introduced by Urysohn in [10, 11]. If σ( ~X) is a type in base type variables ~X, and
~M is a corresponding sequence of computable Banach spaces, then there is a computable

topological embedding of σ( ~M) into σ(~U ). We will give a brief introduction to U in Section
3.

At the end of Section 3 we will discuss another scheme for internal algorithms, inspired
by the µ-operator, and we will show that every externally computable function from a
computable metric space to a computable Banach space will be internally computable in
this extended sense.

2. When do three closed balls in a Banach space have a nonempty

intersection?

2.1. Discussion. In this section we will consider Banach spaces that are completions of
countable normed vector spaces over Q, and the motivating problem is:

Given three closed balls with known radiuses and centers, how hard is it to decide if they
have a point in common?

We will make the question precise, and show that the problem is of analytic, but not of
Borel, complexity. An effective version will be that it is Σ1

1, but not hyperarithmetical. In
the proof we have used an elaborated version of a construction due to Alfsen and Effros [1],
see Lemma 2.1.

A computable metric space is given as the completion of a computable metric d on an
enumerated set {xn | n ∈ N}. An object in a computable metric space is represented by
functions γ : N → N such that

d(xγ(n), xγ(n+1)) ≤ 2−n
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for all n ∈ N. We say that the sequence represented by γ is fast converging. We will
use γ, ξ etc. for representing functions. A function f from one computable metric space
X to another space Y is externally computable if there is a computable partial functional
F : NN → NN that will be total on the set of functions representing elements in X, and
will map a function representing x ∈ X to a function representing f(x) ∈ Y . A computable
Banach space is primarily given as a computable metric space with computable + and
multiplication with scalars, respecting that the metric is given by a norm.

These definitions are standard in the TTE-approach to computational analysis, and the
concepts are extensional ones.

Kaufman [3] showed that whenever M is a nonreflexive, separable Banach space, then
there is an equivalent norm on M such that the set of bounded linear functionals attaining
this norm is complete Σ1

1 in the weak star topology. As stated, this is stronger than our
Theorem 2.6, and it can be used to prove that the collection of triples of closed balls having
a nonempty intersection is complete analytical. We give an alternative proof for two reasons

− We need an effective version of the theorem for our applications and we find it simpler
to give a direct proof for the special case we need than to analyze the computational
content of Kaufman’s proof, even for the special cases given in his paper.

− Our argument is quite different in flavor than that of Kaufman, and we think that the
method of proof is of interest in itself. In a sense, our argument is more elementary, but
then it leads to a definitely weaker result.

In this paper, all Banach spaces are real, and all linear functionals are real. Following the
tradition in set theory and theoretical computer science, we let the natural numbers N start
with 0.

2.2. Closed Balls. The problem under investigation is the following: Given a real Banach
space M via a norm on a dense, countable subspace N , where N is a vector space over Q,
and given n closed balls B1, . . . , Bn with centers in N and radiuses in Q, how hard is it to
tell if the intersection

B1 ∩ · · · ∩Bn

is empty or not. If n = 1 or n = 2, this is trivial. We will show that we obtain the full
complexity for n = 3. Clearly the statement is analytic, or Σ1

1, since it is a simple statement
of the existence of a point satisfying an arithmetical requirement. We will show that it is
not Borel, by showing that every Borel subset of NN can be continuously reduced to this
statement.

In [1], Alfsen and Effros gave an example of a Banach space M with a subspace M0

and three closed balls B1, B2 and B3 with radius 1 and centers in M0 such that these balls
do not intersect in M0 but in M . Our first lemma is based on that example.

Lemma 2.1. Let M be a Banach space with norm || · ||M and let F : M → R be a linear
functional with norm 1. We let MF be R2 ×M with the following norm:

||(x, y, z)|| = max{|x|, |y|, ||z||M , |x+ y + F (z)|}.

Let B1, B2 and B3 be the balls in MF with radius 1 and centers in (2, 0, 0M ), (0, 2, 0M ) and
(2, 2, 0M ) respectively. Then the following are equivalent:

(1) B1 ∩B2 ∩B3 6= ∅.
(2) For some z in the unit sphere of M we have that |F (z)| = 1.
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Proof. First, let (x, y, z) ∈ B1 ∩B2 ∩B3. Then x = y = 1 and ||z||M ≤ 1. Considering

||(2, 2, 0M )− (1, 1, z)|| = ||(1, 1,−z)|| ≤ 1

we see that we also must have that |2 − F (z)| ≤ 1, and the only possibility then is that
||z||M = 1 and F (z) = 1. This proves 1. ⇒ 2. Conversely, we see by direct calculation that
if x = y = ||z||M = F (z) = 1, then (1, 1, z) is in the intersection.

2.3. Linear functionals. In the previous section, we did relate the intersection property
to a property of linear functionals.

Definition 2.2. Let M be a Banach space and let F : M → R be a linear functional with
norm 1. We say that F attains its norm if for some z on the unit sphere of M , F (z) = 1.

2.3.1. Coding quantifiers and truth values. Now, let Mn be a Banach space for each n, and
let Fn be a linear functional on Mn with norm 1. Let || · ||n be the norm on Mn. We will
construct two spaces M∃ and M∀ with corresponding norms and linear functionals F∃ and
F∀, and the point is that

− F∃ will attain its norm if and only if Fn attains its norm for some n,
− F∀ will attain its norm if and only if Fn attains its norm for all n.

The existential quantifier. We let M∃ consist of all functions

f ∈
∏

n∈N

Mn

such that
∑

n∈N

||f(n)||n < ∞.

We let
||f ||∃ =

∑

n∈N

||f(n)||n

and we let
F∃(f) =

∑

n∈N

Fn(f(n)).

If x is in the unit sphere of Mn such that Fn(x) = 1, we let f(n) = x and f(m) = 0Mm for
m 6= n. Then f is in the unit sphere of M and F∃(f) = 1. Thus if Fn attains its norm for
at least one n, then F∃ will do so.

Conversely, if f is in the unit sphere of M∃, and F∃(f) = 1, then we must have that
f(n) is nonzero for at least one n and that Fn(f(n)) = ||f(n)||n for all n, since otherwise
we will have a proper inequality F∃(f) < ||f ||∃. It is easy to see that the norm of F∃ must
be 1.
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The universal quantifier. We let M∀ consist of all functions

f ∈
∏

n∈N

Mn

such that
∑

n∈N

2−n||f(n)||n < ∞.

Let
||f ||∀ =

∑

n∈N

2−(n+1) max{||f(n)||n, ||f(n + 1)||n+1}

and we let
F∀(f) =

∑

n∈N

2−(n+2)(Fn(f(n)) + Fn+1(f(n+ 1)).

It is easy to see that the norm is well defined, that F∀ is well defined and that it has norm
1.

Now, assume that xn is in the unit sphere of Mn and is such that Fn(xn) = 1 for each
n ∈ N. Let f(n) = xn. Then ||f ||∀ = 1 and F∀(f) = 1, so f will witness that F∀ will attain
its norm.

For the converse, assume that for some f in the unit sphere of M∀ we have F∀(f) = 1.
Then we in particular must have for all n ∈ N that

max{||f(n)||n, ||f(n+ 1)||n+1} =
1

2
(Fn(f(n)) + Fn+1(f(n+ 1))),

since if this is not the case, we will have the proper inequality

|F∀(f)| < ||f ||∀.

This implies that

||f(n)||n = ||f(n+ 1)||n+1 = Fn(f(n)) = Fn+1(f(n+ 1))

for all n, and since ||f ||∀ = 1, 1 must be the common value. It follows that Fn attains its
norm for all n ∈ N.

We will also need two base Banach spaces, one for each of the truth values ⊤ and ⊥:

The positive base. Let M⊤ be the set of functions f : N → R such that
∑

n∈N
|f(n)| < ∞,

let ||f ||⊤ =
∑

n∈N
|f(n)| and let F⊤(f) =

∑

n∈N
f(n). Then F⊤ has norm 1 and attains its

norm.

The negative base. Let M⊥ be the set of functions f : N → R such that limn→∞ f(n) = 0.

Let ||f ||⊥ = max{|f(n)| | n ∈ N} and let F⊥(f) =
∑

n∈N
2−(n+1)f(n). Then F⊥ has norm

1, but will not attain its norm.
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2.3.2. The Polish space of norms and functionals. Throughout the rest of this section we
will let N be the vector-space over Q consisting of all functions from N to Q with finite
support. We identify N with the countable set of finite sequences

(q0, . . . , qn−1)

from Q such that either n = 0 (the given sequence is empty) or qn−1 6= 0. We let Θ be the
zero-element of N , and depending on how we view N , Θ is either the constant zero function
0ω or the empty sequence.

We will restrict ourselves to norms || · || on N with values in Q, and to linear functionals
F onN with values in Q. We may also identify N with the set of rational linear combinations
of free base vectors v0, v1, v2, · · · . Then Θ will be the empty linear combination.

Then the set X of pairs x = (|| · ||x, Fx), where || · ||x is a norm on N and Fx is a
linear functional with norm bounded by 1, is a closed subset of (N → Q)2 with the product
topology, and is thus a Polish space. When we want more flexibility, we may consider all
real valued norms on N , and the set of norms is still a Polish space. In the proof of Corollary
2.10 we use a norm where the values on N are algebraic numbers.

Given a norm ||·|| on N , the Banach spaceM under consideration will be the completion
of N with respect to this norm, and the problem is then if (the canonical extension of) F
takes the value 1 somewhere on the unit sphere. Actually we will be dealing only with
functionals with norm 1, and then the problem is if F attains its norm. We let Y be the
set of (|| · ||, F ) ∈ X where F has norm 1 and attains its norm. It is the complexity of the
set Y that is under investigation in this section.

We will now relate this way of representing separable Banach spaces and linear func-
tionals to the constructions of the previous subsection.

Observation 2.3. The norms || · ||⊤ and || · ||⊥, restricted to N , will take values in Q. M⊤

and M⊥ will, up to isomorphism of Banach spaces, be the completions of N under these
norms.

The constructions of M∃ and M∀ can be viewed as operators that for all infinite se-
quences {(Mn, Fn)}n∈N produce the pairs (M∃, F∃) and (M∀, F∀).

We may then restrict these operators to pairs from X, and further only consider func-
tions with finite support in the construction of the new vector spaces. Then the results
will be the vector space over Q of functions from N2 to Q with finite support and with the
restrictions to this space of the norms and linear functionals. Since N2 can be put in a
1-1-correspondence with N we may consider these operators as operators from XN to X.
In order to make our constructions uniform, we will use a fixed computable bijection 〈·, ·〉
between N2 and N.

Observation 2.4. Seen as operators from XN to X, the operators

{(Mn, Fn)}n∈N 7→ (M∃, F∃)

and
{(Mn, Fn)}n∈N 7→ (M∀, F∀)

are continuous, and the operators commute with completions in the sense that if each Mn

is the completion of (N, || · ||n) then M∃ is the completion of (N, || · ||∃) and M∀ is the
completion of (N, || · ||∀).
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2.3.3. The complexity of attaining the norm. Let X be as in the previous section. Let X
denote the class of all subsets C of NN such that for some continuous function φ : NN → X

we have that

x ∈ C ⇔ Fφ(x) attains its || · ||φ(x)-norm

or, in short,
x ∈ C ⇔ φ(x) ∈ Y.

We will show that all Borel sets in NN are in X . This is an immediate consequence of the
following:

Lemma 2.5.

a) All subsets C of NN that are both closed and open are in X .
b) The class X is closed under countable unions and intersections.

Proof.

a) We let φ(x) = (|| · ||⊤, F⊤) if x ∈ C and φ(x) = (|| · ||⊥, F⊥) otherwise.
b) For each n ∈ N, let Cn ∈ X, and let φn define Cn as in the definition of X . We let φ∪

be the composition of {φn}n∈N with the restriction of the M∃-operator discussed above,
and φ∩ be the corresponding composition with the restriction of the M∀-operator. Then

x ∈
⋃

n∈N

Cn ⇔ φ∪(x) ∈ Y

and
x ∈

⋂

n∈N

Cn ⇔ φ∩(x) ∈ Y.

Theorem 2.6. Let Y be as above. Then Y is not Borel.

Proof. There is no Borel set B such that all other Borel sets C are the continuous preimages
of B. This is a standard result in descriptive set theory, see Kechris [4] for an introduction.

Remark 2.7. As mentioned above, this theorem is a consequence of a theorem due to R.
Kaufman [3]. In order to employ Kaufman’s result, note that the unit ball of the dual of
a separable Banach space is compact and metrizable in the weak star topology, and that
the Borel structure for the unit ball will be the same for the weak star topology and the
topology we consider.

2.3.4. Closed balls. Now, let us turn the attention to the original problem. Let Z be the
set of norms on N , considered as a closed subset of N → Q.

Corollary 2.8. The set of norms || · || ∈ Z such that the balls around

(2, 0,Θ), (0, 2,Θ) and (2, 2,Θ)

with radius 1 have a nonempty intersection in the completion, will be analytic, but not Borel.

This is a direct consequence of Lemma 2.1, Theorem 2.6 and the fact that the construc-
tion in Lemma 2.1 can be seen as a continuous map from X to Z.
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2.4. Effective versions. All constructions underlying our proof of Theorem 2.6 are com-
putable. This leads us to the following consequence of the proof:

Corollary 2.9. Let C ⊆ N be hyperarithmetical. Then there is a computable map

n 7→ || · ||n

from N to the set of norms on N such that the three unit closed balls around (2, 0,Θ),
(0, 2,Θ) and (2, 2,Θ) have nonempty intersection in the || · ||n completion of N if and only
if n ∈ C.

Proof. When C is hyperarithmetical, there is a computable, well founded labelled tree T

on N such that

i) leaf nodes are labelled with an index for a primitive recursive set.
ii) branching nodes are labelled with ∩ or with ∪

and such that Croot = C. (For each node σ in T , Cσ is defined by recursion on σ according
to the labeling.) Then we use the recursion theorem together with the codings of ⊤,⊥, ∃
and ∀ as operators on elements in X. For each node σ ∈ T this leaves us in a computable
way with a norm || · ||σ,n and a linear functional Fσ,n such that Fσ,n attains its norm if and
only if n ∈ Cσ. Finally, we use Lemma 2.1, and the corollary is proved.

We also obtain the following corollary of our proof:

Corollary 2.10. For each hyperarithmetical set C there is a computable norm on N such
that C is m-reducible to the set of triples of vectors in N such that the three corresponding
closed balls with radius 1 have a nonempty intersection in the completion.

Proof. For each n, let Mn be the Banach space realizing Corollary 2.9 for C and n, and let
B1, B2 and B3 be the three closed balls used. We consider the Euclidian product of the
Mn’s based on the norm

||f || = (
∑

n∈N

||f(n)||2n)
1
2 .

We obtain one computable Banach space with a computable list of triples of closed balls

{(Bn,1, Bn,2, Bn,3) | n ∈ N}

such that for all n, n ∈ C if and only if

Bn,1 ∩Bn,2 ∩Bn,3 6= ∅.

We obtain this by placing one copy of the centers of B1, B2 and B3 in each coordinate,
and observe that if three balls with centers in one coordinate intersect anywhere, then they
intersect in that coordinate.

Remark 2.11. The results of Kaufman [3] suggest that there is a computable Banach space
where the set of triples of closed balls with radius 1 and centers in the given dense set is
complete Σ1

1, but our proof method does not give us that.
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3. Internal algorithms on Banach spaces

3.1. Discussion. If X is a computable metric space, the internal structure will consist
of the given enumeration of a dense subset together with the metric. In order to form
a language in which we can express what we may call internal algorithms we need some
prime total or partial operators that make sense for all separable metric spaces, that are
computable and that can be combined with computable functions on N, constructions by
recursion and a selected set of computable functions and operators on R, in order to define
other functions. One possible candidate could be the function lim that to any fast converg-
ing sequence gives the limit, and that is undefined when the argument is not fast convergent.
One problem with this will be that a metric space in general is not an algebraic structure
in any sense, so it is difficult internally to construct sequences that we might apply lim to
in order to make use of it.

A separable Banach space has a much richer internal structure. In this section, we
will suggest two computable operators, one total and one partial, and we will discuss the
internal computational power of these two operators. Using the first operator, which is a
total extension of the partial function giving the limit of a fast converging sequence, we
will show that if a Banach space M is computably closed as a subspace of a metric space
X, then it is a computable retract of that space, see Subsection 3.3. We will use this in
Subsection 3.4 in order to prove an effective version of the embedding theorem from [9]. In
Subsection 3.5 we will define the accumulation operator ᾱ, and show that ᾱ can be used
to “write programs” for every computable function from a computable metric space to a
computable Banach space.

We will employ definition by cases, also adjusted to R, and definitions by recursion. We
consider R as a given Banach space, and we consider “norm”, “vector sum” and “multipli-
cation with a scalar” for the given Banach spaces as basic computable functions.

3.2. Partial functions and definitions by cases. We have defined what we mean by a
computable function f : X → Y , when X and Y are computable metric spaces. There are
several natural ways to extend this to partial functions. We will choose the one that is most
useful for the purpose of this paper.

Definition 3.1. Let X and Y be computable metric spaces, Z ⊆ X open. Let f : Z → Y .
We say that f is partial (externally) computable if there is a partial computable F : NN → NN

such that F (γ) is defined and represents f(x) whenever γ represents x ∈ Z.

Let Seq be the set of finite sequences from N ordered by the initial segment ordering
≺. We identify Seq with the set of sequence numbers.

If F : NN → NN is partial computable in the Turing-Kleene sense, there will be a
computable function F̂ : Seq → Seq that is ≺-increasing and such that

F (γ) = lim
n→∞

F̂ ((γ(0), . . . , γ(n− 1))).

Thus every partial externally computable function from X to Y is represented by a com-
putable F̂ .

Definition 3.2. Let f and g be partial functions from R to any set X.



10 D. NORMANN

We define the function Case(f, g, y) by

Case(f, g, y)(x) =



















f(x) when x < y;

g(x) when y < x;

z if f(y) = g(y) = z;

undefined if f(y) 6= g(y).

The following is a trivial observation:

Lemma 3.3. If X is a computable metric space, and f and g are partial externally com-
putable functions from R to X, then

h(y, x) = Case(f, g, y)(x)

is externally computable.

The Case operator will eventually be one of the operators generating the internally
computable functions, see Definition 3.15. Using Case we can define the functions min and
max on R2, so they will be internally computable.

3.3. Modified limits. In this subsection we will let M be a fixed separable Banach space
with norm || · ||, and we use standard vector space notation for M .

Definition 3.4. Let {wn}n∈N be a sequence from M .

a) We let the modified sequence {wm
n }n∈N be defined by

− wm
0 = w0

− wm
k+1 = wm

k + λk(wk+1 − wm
k ) where λk = 1 if ||wk+1 − wm

k || ≤ 2−k and

λk =
2−k

||wk+1 − wm
k ||

if ||wk+1 − wm
k || ≥ 2−k.

b) The modified limit of {wk}k∈N is

ml({wk}k∈N) = lim
k→∞

wm
k .

Lemma 3.5.

a) The maps
{wk}k∈N 7→ {wm

k }k∈N and {wk}k∈N 7→ ml({wk}k∈N)

are total and computable.
b) If we for all k have that ||wk − wk+1|| ≤ 2−k, then wm

k = wk for all k.

This is trivial and can safely be left for the reader.
When we add the modified limit to our toolbox of internally computable functions,

it is simply in order to replace the partial computable function giving the limit of a fast
convergent sequence with a total one. All applications we have in mind involve constructing
a fast converging sequence and then consider taking the limit as an internal process. The
map

{wk}k∈N 7→ {wm
k }k∈N

is a retraction of the set of all sequences to the set of fast converging sequences.
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Remark 3.6. If f : (0, 1) → (0, 1) is continuous and strictly monotone increasing, and y is
in the range of f , we can use the Case operator and modified limits over R to compute x

from f and y such that f(x) = y.
Since every open interval with computable endpoints, the possibilities of ±∞ included,

can be put in a computable, strictly monotone correspondence with (0, 1), we use this to
claim that the inverse of a strictly monotone continuous function f defined on an interval
is computable in f .

Definition 3.7. Let X be a computable metric space, Y ⊆ X be a closed subset. We say
that Y is computably closed in X if

− Y is the closure of a computably enumerable subset of X and
− the function giving the distance from x ∈ X to Y is computable.

Theorem 3.8. Let X be a separable metric space, M ⊂ X a closed subspace such that M
is also a Banach space with the induced metric. There is a continuous function g : X → M

such that g is the identity on M and such that g is internally computable in the enumeration
of a dense subset in M , the metric on X and the distance function d(x,M).

Proof. We will first define g. Then we will use elementary means to define a sequence
{gn}n∈N such that composition with modified limits gives us g as the limit.

We use the machinery of probabilistic projections from [9], but our treatment is self
contained.

For nonnegative reals x and y we let

x ·−y = max{x− y, 0}.

Let {an}n∈N be an enumeration of a dense subset of M and let Mn = {a0, . . . , an}. For
each n ∈ N and each x ∈ X we define the probability distribution µn,x on Mn by

µn,x(a) =
(d(x,Mn) + 2−n) ·−d(x, a)

∑

b∈Mn
((d(x,Mn) + 2−n) ·−d(x, b))

and we let
fn(x) =

∑

a∈Mn

µn,x(a) · a.

If y = n+ λ where λ ∈ [0, 1), we let

d(x,My) = (1− λ)d(x,Mn) + λd(x,Mn+1)

and we let
fy(x) = (1− λ)fn(x) + λfn+1(x).

(We have not defined My, only interpreted the expression d(x,My).) We let

g(x) =

{

x if x ∈ M

fy(x) where d(x,M) = 2−y if x 6∈ M .

We will show that g is the limit of the fast converging (and thereby uniformly converging)
sequence {gn}n∈N, that in addition will be internally computable. Thus g itself will be
internally computable.

We have designed the probability distributions µn,x in such a way that if a is an element
in Mn with minimal distance to x, and b is further away from x than 2−n + d(a, x), then
µn,x(b) = 0. If, in addition d(a, x) ≤ 2−n, we know from the triangle inequality that if
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µn,x(b) > 0 and µn,x(c) > 0, then ||b − c|| ≤ 22−n. We will use this observation when
verifying that {gn}n∈N is fast converging. Let

hx(y) = d(x,My) + 2−(y+4).

Then hx is strictly decreasing, and

d(x,M) = lim
y→∞

hx(y).

Let n and x be fixed. Let y = yn,x be minimal such that d(x,M) = 2−y or such that

(hx(y − 1) ≤ 2−(n+3)) ∧ (y ≥ n+ 3).

If d(x,M) > 0 there will be some y satisfying the first option while if d(x,M) = 0 there is
a y that will satisfy the second option. For each option, y is unique.

Claim.
yn,x is internally computable from x and n.

Proof of Claim.
We use the computability of inverse functions (see Remark 3.6) and a nested application of

the Case operator. We split between the cases d(x,M) ≥ 2−(n+5) and d(x,M) ≤ 2−(n+5).

If d(x,M) ≥ 2−(n+5), we find y ≤ n + 5 such that d(x,M) = 2−y and then check, formally
using the Case operator, between the two subcases

(1) (hx(y − 1) ≤ 2−(n+3)) ∧ (y ≥ n+ 3)

(2) (hx(y − 1) ≥ 2−(n+3)) ∨ (y ≤ n+ 3)

In subcase (2) we have that yn,x = y while in subcase (1) we use that hx is strictly monotone
in order to compute yn,x.

If d(x,M) ≤ 2−(n+5) we know that there is a y such that hx(y − 1) ≤ 2−(n+3), and we
can computably find that y. This information can be used to isolate the exact value of yn,x
in analogy with the first case. This ends the proof of the claim.

Let
gn(x) = fyn,x(x).

gn is clearly internally computable uniformly in n. We will prove that the sequence
{gn(x)}n∈N is fast converging.

Let n ∈ N and x ∈ X be fixed. Let y = yn,x. If d(x,M) = 2−y then y = ym,x when
n ≤ m, and gn(x) = gm(x) for m ≥ n. If d(x,M) < 2−y we have that

m ≥ n ⇒ ym,x ≥ yn,x.

Let y = k + λ where λ ∈ [0, 1). Since

hx(y − 1) ≤ 2−(n+3)

we in particular have that
d(x,My−1) ≤ 2−(n+3)

and we have that

d(x,Mk+1) ≤ d(x,Mk) ≤ d(x,My−1) ≤ 2−(n+3).

Since y ≥ n+3, we have that k > n+2. Then, if µk,x(b) > 0 we have that d(x, b) < 2−(n+1),

and thus fy(x) can be seen as a convex combination of vectors that have distances ≤ 2−(n+1)

to x.
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The same argument is valid for fym,x(x) when n ≤ m. Thus, any two vectors in the two
sums with positive coefficients will have distance ≤ 2−n. It follows that

||gn(x)− gm(x)|| ≤ 2−n

when m ≥ n.

3.4. An effective embedding theorem. The Urysohn space U was introduced by P.
Urysohn [10, 11]. U is, by construction, a computable metric space. U is characterized up
to isometry by being complete, separable and satisfying the following homogeneity property:

− If A ⊆ B are two finite metric spaces and f : A → U is an isometric embedding, then f

can be extended to an isometric embedding g : B → U .

A model theorist might use the expression ω-saturated for this property. The classical
construction of U is carried out in two steps:

− We construct a computable metric d0 on N with values in Q such that this space satisfies
the homogeneity property with respect to Q-valued metric spaces. Let U0 be this space.
We say that U0 is Q-homogenous.

− We let (U, d) be the completion of U0 and prove the homogeneity property in full gener-
ality.

Lešnik [6] gave an analysis of the Urysohn space from the point of view of constructive
analysis, and he proved that embeddability of separable metric spaces into the Urysohn
space holds constructivly. Our next lemma is a related result for computational analysis,
making it a point that the image of the embedding is computationally closed.

Lemma 3.9. Let X be a computable metric space. Then X is computably isometric to a
computably closed subset of U .

Proof. Without loss of generality, we assume that X is the completion of N with a com-
putable pseudometric d on N, meaning that d satisfies symmetry and the triangle inequality,
but not necessarily that n 6= m implies that d(n,m) > 0. In order to avoid confusing ter-
minology, we let U be the completion of the Q-homogeneous and computable metric on
{uk | k ∈ N}.

Claim 1
Let k1, . . . , kn ∈ N and r1, . . . , rn ∈ Q≥0. Then

{uk |
n
∧

i=1

dU (uk, uki) ≥ ri}

is also Q-homogeneous, and computably isometric to U0.
The first part is implicit in Urysohn’s original paper, and the second part follows by

a straightforward back-and-forth construction. Of course, ri = 0 represents no restriction,
and we include this case only for expositional reasons.

Claim 2
Let A ⊆ B be finite, computable metric spaces and let f : A → U be a computable
embedding. Then, uniformly in A, B and f there is a computable embedding g : B → U

that extends A.
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In order to prove this claim, it is sufficient to do so for one-step extensions. Then the
original proof of Urysohn is sufficiently constructive to give us this.

We construct an isometric map f : (N, d0) → U by recursion on n, and simultaneously
we identify for each n a radius ri,n ∈ Q for i = 0, . . . , n protecting a neighborhood of ui
from being hit by the completion of f , as follows:

− Assume that f(i) is defined as the limit of the fast converging sequence {vi,m}m∈N from
U0 for i = 0, . . . , n − 1. For j = 0, . . . , n we let rj,n = k · 2−n where k is maximal such
that

d(uj , vi,n) ≥ (k + 2) · 2−n

for all i = 0, . . . , n− 1, if there is such k ∈ N. If there is no such k, we let rj,n = 0. Then
we also know that d(uj , vi,m) ≥ rj,n when j ≤ n− 1 for m > n.

− We use the algorithm from Claim 2 combined with Claim 1 to find f(n) in U as the
limit of the fast converging sequence {vn,m}m∈N such that dU (vn,m, uj) ≥ rj,n for all
j = 0, . . . , n and m ∈ N.

Using the recursion theorem, these constructions can be unified into one computable con-
struction.

Now, f extends to an isometric map g : X → U . In this construction, at a step m ≥ n

we approximate the distance from un to the image of g with a precision of 2−(m−2). Thus
the image of g will be computably closed.

We may draw a simple consequence out of Theorem 3.8 and Lemma 3.9:

Corollary 3.10. Let σ( ~X) be a finite type in the type variables ~X and let ~M be a sequence

of computable Banach spaces. Let U be the Urysohn space. Then σ( ~M ) is a retract of σ(~U ),
where the embedding and inverse both are internally computable.

Proof. If σ is one of the base types, this is a consequence of Lemma 3.9 and Theorem 3.8,
while if σ = δ → τ this follows immediately from the assumption that the corollary holds
for δ and τ .

Remark 3.11. A similar result was proved in [9]. There we replace ~M with a sequence
~A of complete, separable metric spaces, but we then only obtain topological embeddings

for each type, and even if ~A are computable, these embeddings will not be computable in
general.

3.5. The accumulation operator. In this subsection, we will introduce one computable
operator ᾱ on Banach spaces. We call it the accumulation operator, and we think of it as
a generalization of the µ-operator. Like the µ-operator, ᾱ will be partial. We will prove
that every externally computable function from a computable metric space to a computable
Banach space will be internally computable relative to ᾱ.

Definition 3.12. Let M be a Banach space, let f : N → R≥0 and g : N → M . We define
ᾱ(f, g) = v if for some n and λ we have that

n−1
∑

i=0

f(i) ≤ 1,

n
∑

i=0

f(i) > 1, λ = 1−
n−1
∑

i=0

f(i)
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and

v =
n−1
∑

i=0

f(i)g(i) + λg(n).

We let ᾱ(f, g) = g(0) if f(0) > 1. We let ᾱ(f, g) be undefined if
∑∞

i=0 f(i) ≤ 1. We call ᾱ
the accumulation operator.

We will let ᾱ(f, g)↓ mean that ᾱ(f, g) = v for some v ∈ M , and ᾱ(f, g)↑ mean that it
is undefined.

Lemma 3.13. If f = limk→∞ fk, g = limk→∞ gk, ᾱ(f, g)↓ and ᾱ(fk, gk)↓ for each k ∈ N,
we have that

ᾱ(f, g) = lim
k→∞

ᾱ(fk, gk).

Proof. Let n, nk, λ and λk be as in the definition of ᾱ. Then
n
∑

i=0

f(i) > 1

so for some k0 we have that
∑n

i=0 fk(i) > 0 whenever k ≥ k0. Then nk ≤ n for all k ≥ k0,
and we may, without loss of generality, assume that nk takes a fixed value m ≤ n for all k.
The proof now splits into two cases:

Case 1
m = n. Then λ = limk→∞ λk and clearly ᾱ(f, g) = limk→∞ ᾱ(fk, gk).

Case 2
m < n. Then

∑m
i=0 fk(i) > 1 for all k, and

∑m
i=0 f(i) ≤ 1, so

∑m
i=0 f(i) = 1. It follows that

f(m+ 1) = · · · = f(n− 1) = 0

and that λ = 0. Then

ᾱ(f, g) =
m
∑

i=0

f(i) · g(i) = lim
k→∞

m
∑

i=0

fk(i) · gk(i).

Since we also must have that f(m) = limk→∞ λk and that f(m) = limk→∞ fk(m), we have
that

lim
k→∞

ᾱ(fk, gk) = lim
k→∞

(
m−1
∑

i=0

fk(i) · gk(i) + λkgk(m))

= lim
k→∞

(
m−1
∑

i=0

fk(i) · gk(i) + fk(m) · gk(m)) = ᾱ(f, g).

Lemma 3.14. ᾱ is externally computable.

Proof. Let k ∈ N and let f̂ and ĝ be external representatives for f and g resp. We will
describe an algorithm that use f̂ and ĝ as oracles and that decides the value of ᾱ(f, g) with
a precision of 2−k.

First we use f̂ and find n̂ ∈ N such that

n̂
∑

i=0

f(i) > 1.
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Let n and λ be as in the definition of ᾱ(f, g). Then we know that n ≤ n̂, but we cannot

in general compute n from f̂ . In order to compute ᾱ(f, g) we will run two algorithms in
parallel, both giving a valid answer when terminating, and choose the algorithm terminating
first. In all cases, at least one of the two will terminate.

Algorithm 1
This algorithm will work when n = 0 as well as when

∑n−1
i=0 f(i) < 1 and

∑n
i=0 f(i) > 1.

We search for an n ≤ n̂ and verifications of
∑n−1

i=0 f(i) < 1 and
∑n

i=0 f(i) > 1 and then
compute

n−1
∑

i=0

f(i) · g(i) + (1−
n−1
∑

i=0

f(i)) · g(n)

with the desired precision. This can be done using f̂ and ĝ.

Algorithm 2
This will work when n > 0 and

∑n−1
i=0 f(i) = 1.

First we use ĝ to find an integer N that will be an upper bound for

{||g(0)||, . . . , ||g(n̂)||}.

We then find m1 and n1 such that m1 < n1 ≤ n̂ and such that

i) m1 = 0 or
∑m1−1

i=0 f(i) < 1

ii)
∑m1

i=0 f(i) ∈ (1− 2−(k+3)

N
, 1 + 2−(k+3)

N
)

iii)
∑n1−1

i=m1
f(i) < 2−(k+3)

N

iv)
∑n1

i=0 f(i) > 1.

Then we know that
m1 < n < n1.

The point is that if we make the educated guess that n = m1, then the error we make is
bounded by 2−(k+1). Then, when we compute

m1−1
∑

i=0

f(i) · g(i) + (1−
m1−1
∑

i=0

f(i)) · g(m1)

with a precision of 2−(k+1) we have computed ᾱ(f, g) with a precision of 2−k.

This ends our description of the algorithm and the proof of the lemma.

Given computable metric spacesX1, . . . ,Xn and computable Banach spacesM1, . . . ,Mm

we may now give a precise definition of what we mean by being internally computable. In
order to avoid too much notation, we restrict the definition to partial functions between
cartesian products of four spaces, N, R, X and M where X is an arbitrary computable
metric space and M is an arbitrary computable Banach space.

Definition 3.15. Let (X, dX ) be a metric space given as the completion of the metric on
{xn | n ∈ N} and let (M, || · ||M ,+M , ·M ) be a separable Banach space that considered as a
metric space is the completion of the metric on {ym | m ∈ N}.

The set of internally computable functions from any product of the sets N, R, X and M

to any of these sets is the smallest class of partial functions containing the basic functions
and constants

− successor and constants on N
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− the constant 1 on R

− addition, subtraction, multiplication and the absolute value function on R

− n 7→ xn and dX : X2 → R

− m 7→ ym, +M : M2 → M , ·M : R×M → M and || · ||M : M → R

and is closed under

− composition
− primitive recursion
− µ-recursion (µ-recursion only makes sense over N but primitive recursion can be used to

define infinite sequences in any of these sets)
− the Case operator
− the modified limit operator for R and M

− the accumulation operator for R and M

where we allow for dummy arguments of all kinds in the basic functions.

Theorem 3.16. Let X be a computable metric space and let M be a computable Banach
space. Let f : X → M be total and externally computable. Then f is internally computable.

Proof. We will denote the distance, norm and the algebraic functions onM , R and N without
indices, since which we use will always be clear from the context.

Recall that (Sec,≺) is the set of (sequence numbers of) finite sequences of integers with
the standard initial segment ordering.

Let F̂ : Sec → Sec be computable and monotone and let F be the partial (in the Turing
sense) computable function from NN → NN defined by

F (γ) = lim
n→∞

F̂ ((γ(0), . . . , γ(n − 1)))

such that whenever γ : N → N is total and {xγ(n)}n∈N is a fast converging sequence with
limit x ∈ X, then ξ = F (γ) is total and {yξ(m)}m∈N is a fast converging sequence with limit
f(x) ∈ M .

Uniformly in k we will construct fk as an internally computable function in such a
way that f(x) = limk→∞ fk(x) and the sequence is fast converging. We then compose this
sequence with the modified limit operator.

Let k ≥ 0 be fixed, and let

∆k = {σ ∈ Seq | lh(F̂ (σ)) ≥ k}.

For each σ = (s0, . . . , sn−1) ∈ ∆k, i < n and x ∈ X we let

φσ,i(x) =











1 if d(x, si) ≤ 2−(i+3),

0 if d(x, si) ≥ 2−(i+2), and

λ if 0 ≤ λ ≤ 1 and d(x, si) = 2−(i+3)(1 + λ).

and we let
Φσ(x) =

∏

i<lh(σ)

φσ,i.

Claim 1
If Φσ(x) > 0 and lh(σ) = n, then there is a continuation of the sequence

xσ(0), . . . , xσ(n−1)

to a fast converging sequence with x as the limit.
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The proof is trivial, and is left for the reader.

Claim 2
For every x ∈ X there is a σ ∈ ∆k with Φσ(x) = 1.

Proof of Claim 2
Choose γ : N → N such that

d(x, γ(i)) ≤ 2−(i+3)

for every i ∈ N. Then F (γ) is total, so for some n, F̂ ((γ(0), . . . , γ(n− 1))) will have length
≥ k and σ = (γ(0), . . . , γ(n − 1)) ∈ ∆k. By the construction of γ we have that Φσ(x) = 1.

Remark: From the argument, we see that there will be more than one such σ.
Now we enumerate ∆k in a computable way as

∆k = {σn | n ∈ N}.

Let

− hx(n) = Φσn(x);

− F̂ (σn) = τn = (tn,0, . . . , tn,mn−1) and let g(n) = ytn,mn−1 ;
− fk(x) = ᾱ(hx, g).

From the remark in the proof of Claim 2 we see that ᾱ(hx, g) will take a value.
By definition, ᾱ(hx, g) will be a sum

λ0 · yg(0) + · · ·+ λm · yg(m)

for some m where
m
∑

i=0

λi = 1

and λi ≤ hx(i) for all i (We have equality for all but at most one i, namely i = m.) If
λi > 0, we have that hx(i) > 0, i.e. Φσi

(x) > 0.

By Claim 1 and the properties of F̂ , F̂ (σi) = τi can be extended to a fast converging
sequence with f(x) as a limit. It follows that the distance from f(x) to g(i) = yti,mi−1 is

bounded by 2−k (since the length of τi is at least k).
But then, by a direct application of the triangle inequality in M we have that

||f(x)− fk(x)|| ≤ 2−k.

4. Epilogue

In the previous section we showed that an externally computable function from a com-
putable metric space X to a computable Banach space M in a reasonable sense is internally
computable. Let us consider externally computable functions from X to another com-
putable metric space Y instead. We will analyze to what extent the proof of Theorem 3.16
can be adjusted to this more general case and isolate externally computable operators that
will generate any externally computable f .

Definition 4.1. Let Y be a computable metric space, and let {yn | n ∈ N} be the dense
subset with a computable metric defining Y as a computable space.
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a) A probability distribution on N is a map µ : N → R≥0 such that
∑

n∈N

µ(n) = 1.

b) A sequence {µk}k∈N of probability distributions on N is fast converging in Y if, whenever
γ : N → N is such that

∀k ∈ N(µk(γ(k)) > 0)

then {yγ(k)}k∈N is fast converging in Y .

Observation 4.2. If {µk}k∈N is fast converging in Y , the limit of the sequence {yγ(k)}k∈N

is independent of γ as long as µk(γ(k)) > 0 for all k. Moreover, this limit is externally
computable from the sequence {µk}k∈N.

There does not seem to be an analogue of the modified limit operator in this general
setting, so we will have to content ourselves with the operator that gives the limit of any
sequence of probability distributions that is fast converging in Y .
We will now consider an analogue α∗ of the accumulation operator ᾱ:

Definition 4.3. Let f : N → R≥0 and let g : N → N.
We let α∗(f, g) be defined if there is a minimal n such that

∑

i≤n

f(i) > 1

and then α∗(f, g) is the following probability distribution on N:

α∗(f, g)(m) =
∑

{f(i) | i < n ∧ g(i) = m}+ λm

where λm = 1−
∑

i<n f(i) if g(n) = m and λm = 0 if g(m) 6= m.

Observation 4.4. α∗ is externally computable.

The argument is similar to the proof of the same result for ᾱ.
We may now follow the proof of Theorem 3.16 and replace the use of ᾱ with a use of
α∗. We then obtain, uniformly in k ∈ N and x ∈ X, a fast converging sequence µk,x of
probability distributions with f(y) as the limit. Thus, adding α∗ and the limit operator
for fast converging probability distributions to our toolbox of computable functions and
operators, is sufficient to define any computable function between computable metric spaces.

Remark 4.5. We consider α∗ to be too ad hoc to be of any independent interest. It would
be interesting to see if there are alternative operators on metric spaces that are more natural
from the point of view of analysis, and that still generate all externally computable total
functions.
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