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Abstract. We begin to study classical dimension theory from the computable analy-
sis (TTE) point of view. For computable metric spaces, several effectivisations of zero-
dimensionality are shown to be equivalent. The part of this characterisation that concerns
covering dimension extends to higher dimensions and to closed shrinkings of finite open
covers. To deal with zero-dimensional subspaces uniformly, four operations (relative to
the space and a class of subspaces) are defined; these correspond to definitions of induc-
tive and covering dimensions and a countable basis condition. Finally, an effective retract
characterisation of zero-dimensionality is proven under an effective compactness condition.
In one direction this uses a version of the construction of bilocated sets.

1. Introduction

Various spaces of symbolic dynamics [12], such as X = AN for a finite alphabet A or the sofic
subshifts, are useful examples of zero-dimensional topological spaces, interesting both for
dynamics and in connection with computation. Some similar remarks apply to the spaces
of cellular automata AZn

and to a lesser extent to general subshifts. To deal effectively with
sets which are zero-dimensional in non-symbolic mathematical contexts, however (such as
in Rn or the minimal sets of an expansive compact dynamical system [1, Thm 2.2.44]), it
is desirable to examine possible effective versions of this property. In the present work,
we begin a basic investigation to consider effective zero-dimensionality both of computable
metric spaces and of their closed subsets, in the framework of computable analysis via
representations (see [18], [8]).

To this end, for a topological space X, recall that a subset B ⊆ X is clopen if B is open
and closed, equivalently if the boundary ∂B is empty. For a separable metrizable space X,
the following conditions are equivalent:

(1) (∀p ∈ X)(∀A ∈ Π0
1(X)) (p 6∈ A =⇒ ∅ is a partition between p and A),

(2) (∀A,B ∈ Π0
1(X)) (A ∩B = ∅ =⇒ ∅ is a partition between A and B),

(3) (∀U)(∃V) (U is an open cover of X =⇒ V is a partition into open sets refining U) ,
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(4) (∀U)(∃V)
(

U is a finite open cover of X =⇒ V is a finite partition into open sets

refining U
)

,

(5) there exists a countable basis B for the topology of X consisting of clopen sets,
(6) (∀U)(∃V)

(

U is a finite open cover =⇒ V is an open shrinking of U by pairwise

disjoint sets
)

,

(7) (∀A ∈ Π0
1(X))(∃f ∈ C (X,X)) (A 6= ∅ =⇒ im f = A ∧ f |A = idA) .

Here, in (1) and (2), P is a partition between disjoint A,B ⊆ X if there exist disjoint open
U, V ⊆ X such that A ⊆ U , B ⊆ V and X \ P = U ∪ V . In (3) and (4) a partition (of
X) is a pairwise disjoint family of sets (with union equal to X). In (6) a shrinking of a
cover (Ai)i∈I of X is a cover (Bi)i∈I satisfying Bi ⊆ Ai for all i ∈ I. A nonempty space X
satisfying (1) (or any of the equivalent conditions) is zero-dimensional ; a subset Y ⊆ X is
zero-dimensional if Y is zero-dimensional in the relative topology TX |Y .

Next, recall that any zero-dimensional separable metrizable X is homeomorphic to a
subspace of the Cantor space C := {0, 1}N [10, Thm 7.8, p 38]. For strictly topological
questions on zero-dimensional spaces it is thus possible to consider only subspaces of C.
In this paper we will address our questions from the slightly more intrinsic point of view
mentioned above, treating zero-dimensionality on a computable metric space X and its
subsets. More specifically, we consider computable versions of the existence statements (1)-
(7); these are certain multi-valued operations which, stopping short of studying Weihrauch
degrees, we require to be computable. In the case of a subset Y ⊆ X, zero-dimensionality
of Y can be stated in several ways using closed or open subsets of X, and these statements
also can be viewed as multi-valued operations. While a systematic treatment is not given,
we present various definitions of operations (corresponding to equivalent forms of zero-
dimensionality) and some of their interrelations.

Thus, in Section 4 three implications are proven between four operations relevant for a
general class Y ⊆ P(X) of zero-dimensional or empty subsets of cardinality |Y| ≤ 2ℵ0 ; these
correspond to (1), (2), (5) and, loosely, to a condition like (3) or (6). Further results on
the four operations for Y = {Y ∈ Π0

1(X) | dimY ≤ 0} under effective local compactness or
similar assumptions will be discussed elsewhere. In Section 5 the results of Section 4 are spe-
cialised to the case Y = X, and a robust notion of effectively zero-dimensional computable
metric space is found to exist. Some more evidence for the suitability of that definition
is provided by Section 6, which deals with covering dimension (essentially extending the
conditions (3), (4) and (6)), though in an ad hoc way.

We also present, in Section 7, an effective version of the decomposition of totally
bounded open subsets of zero-dimensional spaces found in [11, Cor 26.II.1]. This is used
(with an effective compactness assumption) to prove Theorem 7.6, an effectivization of (7)
above. Finally, in Section 8 a converse Proposition 8.5 is proven. This relies on the exis-
tence of so-called bilocated sets from the constructive analysis literature; some computable
analysis versions of these proofs are given in the same section. Sections 2 and 3 respectively
discuss notation and supporting results on general covering properties of metric spaces
(namely, effective versions of the Lindelöf property, and swelling and shrinking of finite
covers).
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2. Notation

By 〈·〉 : N∗ → N and 〈·, ·〉 : N2 → N we denote standard tupling functions, with corre-
sponding coordinate projections π1, π2 : N → N in the binary case. A standard numbering
νN∗ of N∗ is also introduced by νN∗〈w〉 := w (w ∈ N∗). Similarly, with B := NN we define
〈·, ·〉 : B2 → B and 〈·, . . . 〉 : BN → B by

〈p(0), p(1)〉(2i + z) = p
(z)
i and 〈p(0), p(1), . . . 〉(〈i, j〉) = p

(i)
j

(here p = p0p1 · · · ∈ B, i.e. pi := p(i) for every p ∈ B, i ∈ N). Again we write π1, π2 :
B → B for the coordinate projections in the binary case. We will also occasionally consider
projections π1 : X × Y → X and π2 : X × Y → Y for any cartesian product X × Y ; it will
be clear from the context which of the above notions is meant. Further, in a metric space
X, we write

Nǫ(A) :=
⋃

x∈A

B(x; ǫ) and N̄ǫ(A) :=
⋃

x∈A

B̄(x; ǫ)

for any A ⊆ X and ǫ > 0.
In general, we assume familiarity with the framework of computable analysis via rep-

resentations [18], [8]. We will also use some notation for specific representations from [5].
If (Xi, δi) (1 ≤ i ≤ n) and (Y, δ′) are represented spaces, similarly to [18], a (δ1, . . . , δn; δ

′)-
realiser of an operation f :⊆ X1 × · · · ×Xn ⇒ Y is a map F :⊆ Bn → B such that

F (p(1), . . . , p(n)) ∈ (δ′)−1f(δ1(p
(1)), . . . , δn(p

(n))) whenever

(p(1), . . . , p(n)) ∈
n
∏

i=1

dom δi and (δ1(p
(1)), . . . , δn(p

(n))) ∈ dom f.

However, unless otherwise mentioned, when representations δ1, δ2, δ
′ are understood a

‘realiser’ of f :⊆ X1 × X2 ⇒ Y will be a map F :⊆ B → B, namely a ([δ1, δ2]; δ
′)-realiser.

This convention has some minor advantages where brevity is concerned.
For a computable metric space (X, d, ν), in this paper the Cauchy representation δX :⊆

B → X is defined by

p ∈ δ−1
X {x} : ⇐⇒ lim

i→∞
ν(pi) = x ∧ (∀i, j ∈ N) d(ν(pi), ν(pj)) < 2−min{i,j}.

A representation ρ of R will be used less often; for definiteness, let it be the Cauchy repre-
sentation of (R, d, νQ), where d(x, y) = |x− y|.

Let (X,T ) be a second countable topological space and let α, β : N → T be numberings
of possibly different countable bases.

Definition 2.1. (⊏) ⊆ N2 is a formal inclusion of α with respect to β if

(∀a, b ∈ N)(a ⊏ b =⇒ α(a) ⊆ β(b)).

Consider the following axioms, in order of increasing strength.

(1) (∀b)(∀x ∈ X)(∃a)(x ∈ β(b) =⇒ x ∈ α(a) ∧ a ⊏ b)
(2) (∀b)(∀x ∈ X)(∀U ∈ T )(∃a) (x ∈ β(b) ∩ U =⇒ x ∈ α(a) ⊆ U ∧ a ⊏ b)
(3) (∀a, b)(∀x ∈ X)(∃c)(x ∈ β(a) ∩ β(b) =⇒ x ∈ α(c) ∧ c ⊏ a ∧ c ⊏ b)
(4) (∀b)(∀x ∈ X)(∃U ∈ Σ0

1(X))(∀a)(x ∈ α(a) ⊆ β(b) ∩ U =⇒ a ⊏ b)
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In particular, in a computable metric space (X, d, ν), consider numberings of ideal open
and closed balls

α : N → B := imα ⊆ T , 〈a, r〉 7→ Bd(ν(a); νQ+(r)),

α̂ : N → im α̂ ⊆ Π0
1(X), 〈a, r〉 7→ B̄d(ν(a); νQ+(r)).

Here νQ+ is a standard total numbering of the positive rationals Q+ with a (νQ+ , idN)-
computable right-inverse · : Q+ → N.

The relation ⊏ defined by

〈a, r〉 ⊏ 〈b, q〉 : ⇐⇒ d(ν(a), ν(b)) + νQ+(r) < νQ+(q)

is a formal inclusion of α with respect to itself; moreover it satisfies c ⊏ d =⇒ α̂(c) ⊆ α(d)
and (4). For the purposes of this paper, we will often call a formal inclusion satisfying
property (1) a refined inclusion.

From any basis numbering α (of a topological space X) we can define a representation

δ : B → Σ0
1(X), p 7→

⋃

{α(pi − 1) | i ∈ N, pi ≥ 1}

of the hyperspace of open sets in X. For a computable metric space with α as above, this
representation is denoted δΣ0

1(X), or δΣ0
1
if X is clear from the context. Correspondingly, we

write
δΠ0

1
: B → Π0

1(X), p 7→ X \ δΣ0
1
(p)

for a representation of the hyperspace of closed sets in X, and

δ∆0
1
:⊆ B → ∆0

1(X), 〈p, q〉 7→ δΣ0
1
(p) = δΠ0

1
(q)

(with natural domain) for a representation of the clopen sets in X. When writing Σ0
1(X),

Π0
1(X), ∆0

1(X) we always assume these classes are equipped with the corresponding repre-
sentations.

For the purposes of this paper we need two more representations of the class A(X) of
closed sets in X (cf. [5]). Define δrange, δ

>
dist :⊆ B → A(X) by

〈p(0), . . . 〉 ∈ δ−1
range{A} : ⇐⇒

(

A = ∅∧(∀i)p(i) = 0ω
)

∨
(

A 6= ∅∧{p(i) | i ∈ N} ⊆ P−1δ−1
X A∧

(∀x ∈ A)(∀U ∈ TX)(∃i)(x ∈ U =⇒ (δX ◦ P )(p(i)) ∈ U)
)

,

where P :⊆ B → B is defined by P (p)i := pi − 1 (domP = {p ∈ B | (∀i)pi ≥ 1}),

p ∈ (δ>dist)
−1{A} : ⇐⇒ ηp (δX , ρ<)-realises dA : X → R̄,

where
p ∈ ρ<

−1{t} : ⇐⇒ {n ∈ N | νQ(n) < t} = {pi − 1 | i ∈ N ∧ pi ≥ 1}.

Here ηp = η(p) for a certain ‘canonical’ representation η of the set F = {F :⊆ B → B |
F continuous with Gδ domain}. In particular, η satisfies certain versions of the smn and
utm theorems; see [18, §2.3] for precise (and rather general) statements. δrange and δ

>
dist will

be used in Sections 7 and 8.
Next, for any represented set (X, δ), consider the set X∗ of finite-length words over the

alphabet X. A representation of X∗ is defined by

δ∗ :⊆ B → X∗, n.〈p(0), p(1), . . . 〉 7→

{

λ, if n = 0

δ(p(0)) . . . δ(p(n−1)), if n ≥ 1
(n ∈ N),
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where λ is the empty word. In Sections 3, 5, 6 and 8 we will use δ∗ for various representations
δ of hyperspaces of a fixed computable metric space X. If (I, ν) is a numbered set, a
representation δν :⊆ B → I is defined by

dom δν = {p ∈ B | p0 ∈ dom ν} and δν(p) = ν(p0).

Consider now the set E(X) of finite subsets of X. For a numbered set (I, ν) one can define
a standard numbering FS(ν) of E(I) following [16, Defns 2.2.2, 2.2.14(5)]: first, define a
total numbering e of E(N) by e = ψ−1 for the bijection ψ : E(N) → N, A 7→

∑

i∈A 2i. Then
define

FS(ν) :⊆ N → E(I), k 7→ {ν(i) | i ∈ e(k)} where domFS(ν) = {k | e(k) ⊆ dom ν}.

The next lemma verifies equivalence of two representations arising from these definitions.

Lemma 2.2. For any numbered set (I, ν), δFS(ν) ≡ δE(I), where

p ∈ δ−1
E(I){S} : ⇐⇒ (∃k)(∀i) ((i < k =⇒ pi ∈ 1 + dom ν) ∧ (i ≥ k =⇒ pi = 0))

∧{ν(pi − 1) | i < k} = S.

Proof. δFS(ν) ≤ δE(I): we use F :⊆ B → B, a.0ω 7→ w.0ω where |w| = #e(a) (the number

of nonzero bits in the binary representation of a) and wi := j + 1 if j is the ith smallest
member of e(a).
δE(I) ≤ δFS(ν): we use F :⊆ B → B, p 7→ a.0ω where k := µi (pi = 0) and a :=

∑

{2j | j ∈
N ∧ (∃i < k)pi = j + 1}.

3. Covering properties

For any represented spaces (X, δ), (Y, δ′), denote the set of (δ, δ′)-continuous total maps
f : X → Y by Cs(δ, δ

′).

Lemma 3.1. For computable metric spaces (X, d, ν), (Z, d′, ν ′) and Cauchy representation
δZ of Z, the computable dense sequence zi := ν ′(i) (i ∈ N) satisfies

⋃

i∈N u(zi) =
⋃

z∈Z u(z)

for any u ∈ Cs(δZ , δΣ0
1(X)). In particular,

L′ : Cs(δZ , δΣ0
1(X)) → Σ0

1(X)N, u 7→ (u(zi))i∈N,

∪ : Cs(δZ , δΣ0
1(X)) → Σ0

1(X), u 7→
⋃

z∈Z u(z)

are resp. ([δZ → δΣ0
1(X)], δ

ω
Σ0

1(X)
)- and ([δZ → δΣ0

1(X)], δΣ0
1(X))-computable.

Lemma 3.1 plays a similar role to the Lindelöf property of separable metric spaces, albeit
only for representation-continuous indexed covers. The operation of continuous intersection
for closed subsets, dual to ∪, has been considered in [6].

Proof. Take

A := {w ∈ N∗ | w.B∩ dom δZ 6= ∅} = {w ∈ N∗ | (∀i, j < |w|)d′(ν ′(wi), ν
′(wj)) < 2−min{i,j}}.
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We let zi := ν ′(i) = ν ′(w|w|−1) for λ 6= w ⊏ iω. Now consider u ∈ Cs(δZ , δΣ0
1(X)) and a

continuous realiser F :⊆ B → B of u. For any x ∈ X and z ∈ Z such that u(z) ∋ x and
q ∈ δ−1

Z {z}, it holds that

u(z) = (δΣ0
1(X) ◦ F )(q) =

⋃

{α(F (q)n − 1) | n ∈ N, F (q)n ≥ 1};

we suppose x ∈ α(a) where a+ 1 = F (q)n. Since F is continuous, there exists w ⊏ q such
that any r ∈ w.B ∩ dom δZ satisfies F (r)n = a+ 1 and hence (u ◦ δZ)(r) ∋ x. In particular
this applies to r = w.wω

|w|−1 ∈ δ−1
Z {ν ′(w|w|−1)} = δ−1

Z {zi} for i = w|w|−1.

We continue this section with some results around shrinkings and swellings of covers;
as in the classical case these are useful to give equivalent definitions of bounds on covering
dimension. Following [9], these constructions depend on Urysohn’s lemma; we specifically
are interested in the effective form from [17].

Theorem 3.2. (Weihrauch [17, Thm 15]) In a computable metric space X, define

U :⊆ Π0
1(X)2 ⇒ C (X,R), (A,B) 7→ {f | im f ⊆ [0, 1] ∧ f−1{0} = A ∧ f−1{1} = B}

(domU = {(A,B) | A ∩B = ∅}). Then U is ([δΠ0
1
, δΠ0

1
], [δX → ρ])-computable.

Definition 3.3. For any family A = (Ai)i∈I ⊆ P(X), a swelling of A is a family (Bi)i∈I
satisfying (∀i)(Ai ⊆ Bi) and

⋂

j<m

Bwj
= ∅ ⇐⇒

⋂

j<m

Awj
= ∅ (3.1)

for any m ≥ 1, w ∈ Im.

Classically, any finite collection of closed subsets has an open swelling and this construc-
tion can be effectivized given suitable data on the emptiness or nonemptiness of intersections
in (3.1). Dually, this result allows (δ∗

Σ0
1
- and) subcover information for a finite open cover to

be used to produce closed or open shrinkings computably. For the present paper, working
with such information (coding it appropriately in representations for covers) is unnecessarily
complicated; we instead consider two partial effectivisations of the proof of [9, Thm 7.1.4].
For any indexed family (Ai)i∈I ⊆ P(X), the order of the family, ord(Ai)i∈I , is here defined
as the least n such that

⋂

j≤nAij is empty whenever i0, . . . , in are distinct elements of I

(this definition varies slightly from that in [9]).

Lemma 3.4. Let X be a computable metric space. For any N ∈ N, the operation S+,N :⊆
Π0

1(X)∗ ⇒ Σ0
1(X)∗ defined by domS+,N = {(Fi)i<k | (Fi)i of order ≤ N + 1} and

S+,N ((Fi)i<k) = {(Ui)i<k | (∀i)(Fi ⊆ Ui) and (Ui)i<k of order ≤ N + 1}

is (δ∗
Π0

1
, δ∗

Σ0
1
)-computable.

Proof. Assuming (Fi)i<k ∈ domS+,N , we first deal with the case k ≥ N + 2. Inductively

in n < k, assume fi ∈ C (X, [0, 1]) has Fi ⊆ f−1
i {0} and Ki := f−1

i [0, 2−1] for each i < n.

We also assume (F
(n)
i )i<k is of order at most N + 1 and Fi ⊆ F

(n)
i for all i < k where

F
(n)
i := (Ki, if i < n; Fi, if n ≤ i < k) (i < k). Then

Sn :=
⋃

{
⋂

j≤N

F (n)
wj

| w ∈ [0, k)N+2 injective with wN+1 = n}
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is closed and disjoint from F
(n)
n = Fn. By Urysohn’s lemma there exists continuous fn :

X → [0, 1] such that Fn ⊆ f−1
n {0} and Sn ⊆ f−1

n {1}. Defining Kn and (F
(n+1)
i )i<k as above,

we have F
(n)
i ⊆ F

(n+1)
i for each i < k, and for w ∈ [0, k)∗ injective with |w| ≥ N + 2 we

have

⋂

j<|w|

F (n+1)
wj

=

{

⋂

j<|w|F
(n)
wj = ∅, if (∀j < |w|)(wj 6= n)

Kn ∩
⋂

j 6=j′<|w| F
(n)
wj′
, if wj = n

⊆ Kn ∩ Sn = ∅.

In step n = k−1 of the above induction we get F
(n+1)
i = Ki for all i < k and any injective

w ∈ [0, k)∗ with |w| ≥ N + 2 satisfies
⋂

j<|w|Kwj
= ∅. But then for Ui := f−1

i [0, 2−1) ⊆ Ki

(i < k) it is clear (Ui)i<k ∈ S+,N((Fi)i<k). Furthermore it is clear how to obtain δ∗
Σ0

1
-

information on (Ui)i<k. Namely, let F and G be fixed computable realisers of the operations

T (N) :⊆ Π0
1(X)∗ × C (X,R)∗ → Π0

1(X), ((Fi)i<k, (fi)i<n) 7→ Sn

(dom T (N) = {((Fi)i<k, (fi)i<n) | n ≤ k}) and U :⊆ Π0
1(X)2 ⇒ C (X,R) (from Theorem

3.2), and p = k.〈p(0), . . . , p(k−1), 0ω, 0ω, . . . 〉 ∈ (δ∗
Σ0

1
)−1{(Fi)i<k}. Then

q(n) := G〈p(n), F 〈p, n.〈q(0), . . . , q(n−1), 0ω, 0ω , . . . 〉〉〉 (0 ≤ n < k)

are [δX → ρ]-names of respective fn, uniformly computable from the inputs; computability
here is a matter of appropriate dovetailing. Note for the case k ≤ N +1 the same argument
works (with Si = ∅ for all i < k); in any case, checking (Ui)i<k have order at most N + 1
becomes trivial. This completes the proof.

Proposition 3.5. For any computable metric space X, the operations

S− : ⊆ Σ0
1(X)∗ ⇒ Π0

1(X)∗, (Ui)i<k 7→ {(Fi)i<k | (∀i)(Fi ⊆ Ui) ∧
⋃

i Fi = X}

T : ⊆ Π0
1(X)∗ ⇒ Σ0

1(X)∗, (Bi)i<k 7→ {(Ui)i<k |
⋂

i Ui = ∅ ∧ (∀i)Bi ⊆ Ui}

(domS− = {(Ui)i<k |
⋃

i Ui = X}, domT = {(Bi)i<k |
⋂

iBi = ∅}) are resp. (δ∗
Σ0

1
, δ∗

Π0
1
)- and

(δ∗
Π0

1
, δ∗

Σ0
1
)-computable.

Proof. Inductively in n ≤ k, suppose (B
(n)
i )i<k, fi ∈ C (X, [0, 1]) and Ki := f−1

i [0, 2−1]

(i < n) are such that B
(n)
i = (Ki, if i < n; Bi, if n ≤ i < k). We additionally suppose that

fi satisfy Bi ⊆ f−1
i {0} for all i < n, and that

⋂

i<k B
(n)
i = ∅.

Then Sn :=
⋂

j∈[0,k)\{n}B
(n)
j is closed and disjoint from Bn (= B

(n)
n ). By Urysohn’s

lemma, there exists continuous fn : X → [0, 1] such that Bn ⊆ f−1
n {0} and Sn ⊆ f−1

n {1}.

Defining Kn, (B
(n+1)
i )i<k as above in the case n + 1 ≤ k, we have B

(n)
i ⊆ B

(n+1)
i for all

i < k with
⋂

i<k B
(n+1)
i =

⋂

i≤nKi ∩
⋂

n<i<kBi =
⋂

n 6=i<k B
(n)
i ∩Kn = Sn ∩Kn = ∅.

By step k of this induction, there exist fi such that Bi ⊆ f−1
i {0} and Ki := f−1

i [0, 2−1]

(i < k) satisfy Bi ⊆ Ki for all i and
⋂

iKi = ∅. Writing Ui := f−1
i [0, 2−1) (i < k) we now

have Bi ⊆ Ui ⊆ Ki for all i < k and
⋂

i Ui = ∅. This establishes the computability of T .
Then domS− = {(X \ Bi)i | (Bi)i ∈ domT}, and also (Fi)i ∈ S−((Ui)i) iff (X \ Fi)i ∈
T ((X \ Ui)i).



8 R. KENNY

4. Zero dimensional subsets

For a computable metric space X and a class Y ⊆ P(X) of zero-dimensional or empty sub-
sets with |Y| ≤ 2ℵ0 , what information should be included (or more abstract requirements
made) when specifying a representation δY of Y? Loosely speaking, we would like effective
versions of certain theorems concerning zero-dimensionality to hold, without requiring ‘un-
realistically’ strong information on inputs. While we are here far from an exposition that
would satisfactorily answer this open-ended problem, it seems a reasonable place to start is
from the definition of zero-dimensionality as presented in Section 1. Specifically, as effectivi-
sations of (5), (6), (1), (2) which also depend on the subspace Y in place of X we (for given
X, Y, δY) consider computability of respective operations B, S, M , N , defined as below.
For brevity, in case of the binary disjoint union of two sets, we often write “E = C∪̇D” in
place of “C ∩D = ∅ and E = C ∪D”.

B : Y ⇒ (Σ0
1(X)2)N × (N2)N, S :⊆ Σ0

1(X)N × Y ⇒ Σ0
1(X)N,

M :⊆ X × Σ0
1(X)× Y ⇒ Σ0

1(X)2, N :⊆ Π0
1(X)2 × Y ⇒ Σ0

1(X)2

with domS = {((Ui)i, Y ) |
⋃

i Ui ⊇ Y }, domM = {(x,U, Y ) | x ∈ U}, domN =
{(A,B, Y ) | A ∩B = ∅}, and

B(Y ) :=
{

((Ui, Vi)i, (ai, bi)i) | (Ui)i a basis for TX , (∀i)Y ⊆ Ui∪̇Vi and

{(ak, bk) | k ∈ N} refined inclusion of (Ui)i w.r.t. α
}

,

S((Vi)i, Y ) := {(Wi)i | (∀i)Wi ⊆ Vi ∧
⋃

iWi ⊇ Y and (Wi)i pairwise disjoint},

M(x,U, Y ) := {(V,W ) | x ∈ V ⊆ U ∧ Y ⊆ V ∪̇W},

N(A,B, Y ) := {(U, V ) | A ⊆ U ∧B ⊆ V ∧ Y ⊆ U ∪̇V }

Proposition 4.1. Let X be a computable metric space and Y ⊆ P(X) a class of zero-
dimensional or empty subsets with representation δY . Then ((i)) =⇒ ((ii)) =⇒ ((iii))
=⇒ ((iv)).

(i) N :⊆ Π0
1(X)2 × Y ⇒ Σ0

1(X)2 is computable.
(ii) M :⊆ X ×Σ0

1(X)× Y ⇒ Σ0
1(X)2 is computable.

(iii) B : Y ⇒ (Σ0
1(X)2)N × (N2)N is computable.

(iv) S :⊆ Σ0
1(X)N × Y ⇒ Σ0

1(X)N is computable.

Proof.
((i)) =⇒ ((ii)): If (x,U, Y ) ∈ domM then ({x},X \ U, Y ) ∈ domN and for any (V,W ) ∈
N({x},X \ U, Y ) it holds that x ∈ V ⊆ X \ W ⊆ U and Y ⊆ V ∪ W (equivalently,
(V,W ) ∈M(x,U, Y ) and X \ U ⊆W ).

((ii)) =⇒ ((iii)): Consider M◦ : X ×N× Y ⇒ Σ0
1(X)2 defined by

M◦(x, i, Y ) =M(x,B(x; 2−i), Y ) = {(V,W ) | x ∈ V ⊆ B(x; 2−i) ∧ Y ⊆ V ∪̇W}.

If δ = δX is Cauchy representation of X, let G :⊆ B3 → B be a computable (δ, δN, δY ; δ
2
Σ0

1
)-

realiser of M◦, Z := dom δ and

u(j)q := (δΣ0
1
◦ π1 ◦G)(·, j.0

ω , q) : Z → Σ0
1(X) (j ∈ N, q ∈ dom δY).

We now can apply Lemma 3.1 to u
(j)
q (with (p(i))i a standard enumeration of {w.wω

|w|−1 |

w ∈ A} ⊆ Z for A as in proof of the lemma), obtaining
⋃

i∈N u
(j)
q (p(i)) = X for every j ∈ N,
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q ∈ dom δY . If we denote

B1 : N× B → Σ0
1(X)2, (〈i, j〉, q) 7→ (δ2Σ0

1
◦G)(p(i), j.0ω , q)

and b′ := π1 ◦B1 : N× B → Σ0
1(X) then one can check each b′(·, q) is a basis numbering.

Next, define

〈i, j〉 ⊏′ 〈n, r〉 : ⇐⇒ d(δ(p(i)), ν(n)) + 2−j < νQ+(r).

We show

Property 1. (⊏′) ⊆ N2 is a c.e. refined inclusion of b′(·, q) w.r.t. α.

Proof of Property 1:

b′(〈i, j〉, q) = u(j)q (p(i)) = (π1 ◦ δ
2
Σ0

1
◦G)(p(i), j.0ω , q) ∈ (π1 ◦M

◦)(δ(p(i)), j, δY (q))

implies δ(p(i)) ∈ b′(〈i, j〉, q) ⊆ B(δ(p(i)); 2−j), where the latter set is included in α〈n, r〉 if
〈i, j〉 ⊏′ 〈n, r〉.

Secondly, for p ∈ B and N ∈ N let pN denote the prefix p0 . . . pN−1 of p. We let s ∈ N,
y := ν(π1s), r := νQ+(π2s), x ∈ α(s), p ∈ δ−1{x} and define

H(j)
q :⊆ B → B, p 7→ (π1 ◦G)(p, j.0

ω , q).

H
(j)
q is a continuous (idB |

Z , δΣ0
1
)-realiser of u

(j)
q (q ∈ dom δY). Fix j with d(x, y) + 2−j < r,

l ∈ N with H
(j)
q (p)l ≥ 1 and x ∈ α

(

H
(j)
q (p)l − 1

)

and N ∈ N with H
(j)
q (dom δ ∩ pN .B) ⊆

H
(j)
q (p)l+1.B. Any p′ ∈ dom δ ∩ pN .B satisfies

u(j)q (p′) = (δΣ0
1
◦H(j)

q )(p′) ⊇
⋃

{α
(

H(j)
q (p)l′ − 1

)

| l′ ≤ l ∧H(j)
q (p)l′ ≥ 1}

where the last set contains the point x. By density of (p(i))i ⊆ dom δ, pick i with p(i) ∈
dom δ ∩ pN .B and d(δ(p(i)), y) + 2−j < r. Then

x ∈ u(j)q (p(i)) = b′(〈i, j〉, q) (⊆ B(δ(p(i)); 2−j))

and 〈i, j〉 ⊏′ s. This completes the proof of Property 1.

Finally we show B : Y ⇒ (Σ0
1(X)2)N × (N2)N is computable. Fix h ∈ R(1) such that

imh = {〈a, b〉 | a ⊏
′ b} and consider as a realiser the map I :⊆ B → B defined by

I(q) := 〈〈r(0), r(1), . . . 〉, 〈s(0), s(1), . . . 〉〉

where r(〈i,j〉) = G(p(i), j.0ω , q) and s(k) = 〈π1h(k).0
ω , π2h(k).0

ω〉 (i, j, k ∈ N). That is, take
(Ui, Vi) := (δ2

Σ0
1
◦G)(p(π1i), π2i.0

ω, q) = B1(i, q) and 〈ai, bi〉 := h(i) for each i, so (Ui)i gives

the basis numbering b′(·, q) and (ai, bi)i gives the relation ⊏
′ independent of q.

For a fixed q ∈ dom δY , observe (Ui, Vi) ∈ M◦(δ(p(π1i)), π2i, δY(q)) implies δ(p(π1i)) ∈
Ui ⊆ B(δ(p(π1i)); 2−π2i) and δY(q) ⊆ Ui∪̇Vi. Then ((Ui, Vi)i, (ai, bi)i) ∈ (B ◦ δY)(q) trivially.

((iii)) =⇒ ((iv)): This proof derives from [11, §26.II, Thm 1]. Assume we are given

((Vi)i, Y ) ∈ domS, ((Ti, Ui)i∈N, (ak, bk)k) ∈ B(Y ) and 〈p(0), p(1), . . . 〉 ∈ (δω
Σ0

1(X)
)−1{(Vi)i∈N}.

For each i enumerate (0 for each j s.t. p
(i)
j = 0; ak + 1 for any j, k s.t. p

(i)
j = bk + 1). By

definition of B, ⊏′ defined in (ak, bk)k is a refined inclusion of (Ti)i with respect to α, so
for any b ∈ N and x ∈ X there exists k ∈ N such that x ∈ α(b) implies x ∈ Tak and bk = b.
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Since ∅ 6= imα 6∋ ∅, this implies {bk | k ∈ N} = domα = N, so output is infinite for each i
— say this output is q(i) ∈ B.

Now, let (Ti,j , Ui,j) :=

{

(∅, ∅), if q
(i)
j = 0

(Ta, Ua), if q
(i)
j = a+ 1

(j ∈ N). We have (∀i)Vi =
⋃

j Ti,j.

Also

W ∗
i,j := Ti,j ∩

⋂

〈k,l〉<〈i,j〉

Uk,l ⊆ Ti,j ∩
⋂

〈k,l〉<〈i,j〉

(X \ Tk,l) = Ti,j \
⋃

〈k,l〉<〈i,j〉

Tk,l (i, j ∈ N)

are pairwise disjoint with δΣ0
1
-information available uniformly in i, j and the inputs. Then

Wi :=
⋃

jW
∗
i,j (⊆ Vi, i ∈ N) are pairwise disjoint with a δω

Σ0
1
-name of (Wi)i available.

Finally, any x ∈ (
⋃

i Vi) \ (
⋃

i′ Wi′) = (
⋃

i,j Ti,j) \ (
⋃

i,j W
∗
i,j) has x 6∈ Y by an argument we

now elaborate. First, denote Zk := Tπ1k,π2k and Z∗
k := W ∗

π1k,π2k
(k ∈ N). Then one can

check
Y ∩

⋃

k<l Zk ⊆
⋃

k<l Z
∗
k (4.1)

inductively. Namely, assume (4.1) for some l ∈ N (this is trivially true for l = 0). Then
Z∗
k = Zk ∩

⋂

k′<k Uπ1k′,π2k′ ⊆ Zk \
⋃

k′<k Zk′ and (∀k′)Y ⊆ Tk′ ∪ Uk′ imply

Y ∩ Zk ⊆ (Y ∩ Z∗
k) ∪

⋃

k′<k(Y \ Uπ1k′,π2k′) ⊆ Z∗
k ∪

⋃

k′<k(Y ∩ Zk′)

for all k ∈ N, in particular

Y ∩
⋃

k≤l Zk ⊆
⋃

k≤l

(

Z∗
k ∪

⋃

k′<k(Y ∩ Zk′)
)

=
⋃

k≤l Z
∗
k ∪

⋃

k<l(Y ∩ Zk) ⊆
⋃

k≤l Z
∗
k

by inductive assumption. So, we established Y = Y ∩
⋃

i Vi = Y ∩
⋃

i,j Ti,j = Y ∩
⋃

k Zk ⊆
⋃

k Z
∗
k =

⋃

i,jW
∗
i,j =

⋃

iWi ⊆
⋃

i Vi, and in particular (Wi)i is a cover of Y . This proves
computability of S.

At least two implications in Proposition 4.1 could be improved to results concern-
ing Weihrauch reducibility ([7]) between the mentioned operations. If e.g. each operation
M(·, ·, Y ) (Y ∈ Y) is guaranteed to possess realisers of a given represented class, then a
corresponding enriched representation δY ,M can also be defined. For the purposes of the
present paper, we do not study these notions further; in particular, we have not separated
the conditions of computability for N , M , B, S. We mainly consider a situation where
Proposition 4.1 is applied to Y = X (in Section 5 and thereafter in Sections 7 and 8).

5. Zero-dimensional spaces

Less broadly than in Section 4, one can ask what constitutes a useful nonuniform definition
of effectively zero-dimensional computable metric space; more generally, this might be ad-
dressed for closed effectively separable subspaces. In this paper we consider the problem
for Y = X only1. We consider computability of the following operations, again based on
(1)-(6) in Section 1:

S̃ = S̃X : Σ0
1(X)N ⇒ Σ0

1(X)N, R = RX :⊆ Σ0
1(X)N → ∆0

1(X)N,

M :⊆ X × Σ0
1(X) ⇒ ∆0

1(X), N :⊆ Π0
1(X)2 ⇒ ∆0

1(X)

1The subspace case could subsequently be treated following Section 6 to an effectivisation of the theorem
on closed subspaces [9, Thm 7.1.8], but we will not do that here.
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with domRX = {(Vi)i | (Vi)i pairwise disjoint with
⋃

i Vi = X}, domM = {(x,U) | x ∈
U}, domN = {(A,B) | A ∩B = ∅}, RX((Vi)i) = (Vi)i and

S̃X((Ui)i) = {(Wi)i | (Wi)i pairwise disjoint with Wi ⊆ Ui and
⋃

iWi =
⋃

i Ui},

M(x,U) = {W ∈ ∆0
1(X) | x ∈W ⊆ U},

N(A,B) = {W | A ⊆W ∧B ⊆ X \W}.

Except for RX these operations are related to those defined in Section 4. For instance, label
temporarily the new operation as N ′ and suppose X is zero-dimensional, with Y ∋ X and
some computable p ∈ dom δY such that δY(p) = X. Then

N computable =⇒ N(·, ·,X) computable ⇐⇒ N ′ computable.

If also Y = {X}, we can derive full equivalence (using definition of product representa-
tions). The situation is similar for the operations M , B and S (here compared to a suitable

restriction of S̃X), e.g. for B this leads to the condition (1) in the following

Proposition 5.1. Let X be a computable metric space. Then the following conditions are
equivalent:

(1) There exist computable b : N → ∆0
1(X) and c.e. refined inclusion of b with respect to α

such that B := im b is a basis for TX .
(2) The operation N is computable.
(3) The operation M :⊆ X × Π0

1(X) ⇒ ∆0
1(X), (x,A) 7→ N({x}, A) is computable, where

domM = {(x,A) | x 6∈ A}.
(4) The operation M is computable.

(5) The operation Ċω :⊆ Σ0
1(X)N ⇒ Σ0

1(X)N × B is computable, where

Ċω((Ui)i) = {((Wi)i, r) | (Wi)i pairwise disjoint,
⋃

iWi = X, (∀i)Wi ⊆ Uri}

and dom Ċω = {(Ui)i |
⋃

i Ui = X}.

(6) The operation Cω := S̃|dom Ċω is computable.

(7) The operation RX ◦Cω ◦ L′ is computable for every computable metric space (Z, d′, ν ′).
(8) The operation C∗ :⊆ Σ0

1(X)∗ ⇒ Σ0
1(X)∗ is computable where

C∗((Ui)i<k) = {(Vj)j<k | (∀i < k)(Vi ⊆ Ui),
⋃

j Vj = X, (∀i, j < k) (i 6= j =⇒ Vi ∩ Vj = ∅)}

and domC∗ = {(Ui)i<n | n ∈ N ∧
⋃

i Ui = X}.

Note the conditions (2), (3) and (8) correspond to definitions of large and small inductive
dimension, and (loosely speaking) of covering dimension, respectively.

Proof.
(1) =⇒ (6): Follows from Proposition 4.1((iii)) =⇒ ((iv)).

Remark 5.2. A simpler effectivization of [11, §26.II, Thm 1] shows that S̃ is (δω
Σ0

1
, δω

Σ0
1
)-

computable under the same assumption.

(6) =⇒ (8): Trivial. See Lemma 6.2((1) =⇒ (3)) for an extension.
(8) =⇒ (2): Consider arbitrary disjoint closed A,B ⊆ X. Then (Ui)i<2 = (X \ A,X \ B)
has

⋃

i Ui = X and any (Wi)i<2 ∈ C∗((Ui)i) satisfies W1 = X \W0 ⊇ A and X \W1 ⊇ B,
hence W1 ∈ N(A,B). Also N is computable using δ∆0

1
-information on W1 (more formally,

use the second projection from R(W0,W1, ∅, ∅, . . . )).
(2) =⇒ (4): Follows from Proposition 4.1((i)) =⇒ ((ii)).
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(3) ⇐⇒ (4): (x,U) ∈ domM ⇐⇒ (x,X \ U) ∈ domM with M(x,X \ U) = M(x,U) for
any such x, U .
(4) =⇒ (1): Follows from Proposition 4.1((ii)) =⇒ ((iii)).
(6) =⇒ (7): Use Lemma 3.1, the closure scheme of composition (for partial functions) and
computability of RX :⊆ Σ0

1(X)N → ∆0
1(X)N. Namely, the latter has a computable realiser

F :⊆ B → B defined by

F (p)〈i, 2〈k, j〉 + z〉 =











p〈i,〈k,j〉〉, if z = 0

p〈k,j〉, if z = 1 ∧ k 6= i

p〈i+1,j〉, if z = 1 ∧ k = i

.

Then F 〈p(0), p(1), . . . 〉 = 〈〈p(0), q(0)〉, 〈p(1), q(1)〉, . . . 〉 where {q
(i)
j − 1 | j ∈ N, q

(i)
j ≥ 1} =

{p
(k)
j − 1 | j, k ∈ N, k 6= i, p

(k)
j ≥ 1} for each i.

(7) =⇒ (6): Take Z = N, ν ′ = idN; then L
′ from Lemma 3.1 is the identity on Σ0

1(X)N, and
RX has a computable left-inverse.
(6) ⇐⇒ (5): Essentially trivial. See Lemma 6.2((1) ⇐⇒ (2)) for an extension.

6. Covering dimension

For a normal topological space X and n ∈ {−1}∪̇N, write dimX ≤ n if any finite open
cover of X has a finite open refinement of order at most n+1; write dimX = n if dimX ≤ k

fails exactly when k < n, or dimX = ∞ if dimX ≤ k fails for all k ≥ −1. dimX is the
(Lebesgue-Čech) covering dimension. We first recall several classically equivalent forms of
the definition.

Theorem 6.1. ([15, Thm 4.3.5]) For a nonempty separable metric space X and n ∈ N, the
following conditions are equivalent:

(1) dimX ≤ n ( ⇐⇒ dimX < n+ 1),
(2) every open cover U of X has a locally finite closed refinement V with order ≤ n+ 1,
(3) every open cover U of X has an open refinement V with order ≤ n+ 1,
(4) every open cover U of X has a closed shrinking V with order ≤ n+ 1,
(5) every open cover U of X has an open shrinking V with order ≤ n+ 1,
(6) every finite open cover U of X has a closed shrinking V with order ≤ n+ 1,
(7) every finite open cover U of X has an open shrinking V with order ≤ n+ 1.

Leaving N ∈ N fixed we next consider some effective versions of several such con-
ditions, including (1), (3), (5), (6) and (7) above. Define Cσ :⊆ Σ0

1(X)σ ⇒ Σ0
1(X)σ ,

Ċσ :⊆ Σ0
1(X)σ ⇒ Σ0

1(X)σ × Nσ (σ = ∗, ω), C :⊆ Σ0
1(X)∗ ⇒ Π0

1(X)∗ and Ċ :⊆ Σ0
1(X)∗ ⇒

Π0
1(X)∗ × N∗ by

Cσ((Ui)i) = {(Wi)i | (Wi)i shrinking of (Ui)i of order ≤ N + 1}

Ċ∗((Ui)i<k) = {((Wj)j<l, r) | |r| = l, (∀j < l)Wj ⊆ Urj , (Wj)j cover of order ≤ N + 1}

Ċω((Ui)i∈N) = {((Wi)i, r) | (∀j)Wj ⊆ Urj , (Wj)j cover of order ≤ N + 1}

C((Ui)i<k) = {(Fi)i<k | (Fi)i shrinking of (Ui)i of order ≤ N + 1}

Ċ((Ui)i<k) = {((Fj)j<l, r) | |r| = l, (∀j < l)Fj ⊆ Urj , (Fj)j cover of order ≤ N + 1}
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Here domCσ = dom Ċσ = {(Ui)i ∈ Σ0
1(X)σ |

⋃

i Ui = X} and domC = dom Ċ = domC∗.
The following lemma includes an effective version of [9, Thm 7.1.7] and extends parts of
Proposition 5.1.

Lemma 6.2. For a computable metric space X and N ∈ N, consider the following condi-
tions.

(1) Cω is (δω
Σ0

1
, δω

Σ0
1
)-computable.

(2) Ċω is (δω
Σ0

1
, [δω

Σ0
1
, idB])-computable.

(3) C∗ is (δ∗
Σ0

1
, δ∗

Σ0
1
)-computable.

(4) Ċ∗ is (δ∗
Σ0

1
, [δ∗

Σ0
1
, δN∗ ])-computable.

(5) C is (δ∗
Σ0

1
, δ∗

Π0
1
)-computable.

(6) Ċ is (δ∗
Σ0

1
, [δ∗

Π0
1
, δN∗ ])-computable.

Then (3), (4), (5) and (6) are equivalent. Also (1) ⇐⇒ (2) =⇒ (3).

Proof.
(1) =⇒ (2): trivial (take r = idN); (3) =⇒ (4): take l = k, r = 01 . . . (k − 1) ∈ N∗;

(4) =⇒ (3): let ((Vj)j<l, r) ∈ Ċ∗((Ui)i<k) and Wi :=
⋃

{Vj | j < l, rj = i} (i < k). Then

⋂

j≤N+1

Wij =
⋃

{
N+1
⋂

m=0

Vjm | ~j ∈ [0, l)N+2 ∧ (∀m ≤ N + 1)rjm = im} = ∅

for any distinct indices i0, . . . , iN+1 < k (for, any such ~j is injective and (Vi)i<l has order
at most N + 1).

(2) =⇒ (1): Let ((Vj)j∈N, r) ∈ Ċω((Ui)i∈N) and Wi :=
⋃

{Vj | j ∈ N, rj = i} (i ∈ N).
(1) =⇒ (3): (Wi)i∈N ∈ Cω(U0, . . . , Uk−1, ∅, ∅, . . . ) implies Wi = ∅ for all i ≥ k.
(5) ⇐⇒ (6): same as (3) ⇐⇒ (4). (3) =⇒ (5): if (Vi)i<k ∈ C∗((Ui)i<k), applying
Proposition 3.5 gives in particular (Fi)i<k ∈ S−((Vi)i<k) which is a closed cover with
(∀i)Fi ⊆ Vi ⊆ Ui. Any string of indices w ∈ [0, k)∗ has

⋂

j<|w|Fwj
⊆

⋂

j<|w| Vwj
, so

(Fi)i<k is of order at most N + 1 also.
(5) =⇒ (3): Given a finite open cover (Vi)i<k and (Fi)i<k ∈ C((Vi)i<k), apply Lemma 3.4
to obtain (Ui)i<k ∈ S+,N((Fi)i<k). By definition, (Fi)i<k, (Ui)i<k both have order at most

N + 1, and (Ui)i<k is a cover since (Fi)i<k is. By computability of C and S+,N we obtain
δ∗
Σ0

1
-information on (Ui)i<k.

In view of the results of Lemma 6.2 (and the classical definition of covering dimension)
it seems reasonable to make the following

Definition 6.3. Let (X, d, ν) be a computable metric space. If Condition (4) of Lemma
6.2) holds (equivalently, (3)), say X is effectively of covering dimension at most N .

Further equivalent conditions for dimX ≤ n can also be investigated. Here we will
restrict ourselves to considering a couple of operations of fixed arity N + 2. If X is a
computable metric space and N ∈ N, define C :⊆ Σ0

1(X)N+2
⇒ Σ0

1(X)N+2 by

C((Ui)i≤N+1) = {(Wi)i≤N+1 | (∀i)(Wi ⊆ Ui) ∧
⋃

iWi = X ∧
⋂

iWi = ∅};

here domC = {(Ui)i≤N+1 |
⋃

i Ui = X}. Then we have the following (cf. the classical results
[9, Lemma 7.2.13, Cor 7.2.14])
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Theorem 6.4. Let X be a computable metric space and N ∈ N. Then the following are
equivalent:

(1) C∗ is computable.

(2) C is (δN+2
Σ0

1(X)
, δN+2

Σ0
1(X)

)-computable.

(3) D is computable, where D :⊆ Π0
1(X)N+2

⇒ Π0
1(X)N+2 with domD := {(Bi)i≤N+1 |

⋂

iBi = ∅} and

D((Bi)i≤N+1) ∋ (Fi)i≤N+1 : ⇐⇒ (∀i)(Bi ⊆ Fi) ∧
⋃

i Fi = X ∧
⋂

i Fi = ∅.

Proof.
(1) =⇒ (2): Any realiser of C∗, given a δ∗

Σ0
1(X)

-name of (Ui)i≤N+1, computes a name of some

shrinking (Wi)i≤N+1 with order at most N+1, i.e.
⋂

i≤N+1Wi = ∅. Since δ∗
Σ0

1(X)
|Σ

0
1(X)N+2

≡

δN+2
Σ0

1(X)
the result follows.

(2) =⇒ (1): Given (Ui)i<m ∈ domC∗, note it is trivially a shrinking of itself of order at

most N + 1 if m < N + 2 (then no ~i ∈ [0,m)N+2 is injective). If m = N + 2, clearly
it is enough to apply C. If m > N + 2 we can apply C several times, as follows. First,
given (Ui)i<m ∈ domC∗, compute some (Al)l<L ⊆ E(N) enumerating all A ⊆ [0,m) with
|A| = N+1; this can be done computably in m, N . Define H :⊆ Σ0

1(X)∗×E(N) ⇒ Σ0
1(X)∗

by domH = {((Ui)i<m, A) |
⋃

i Ui = X, A ⊆ [0,m), |A| = N + 1} and

H(U0 . . . Um−1, A) = {(Vi)i<m | (∃W ∈ Σ0
1(X))(Vi0 . . . ViN ;W ) ∈ C(Ui0 . . . UiN ;

⋃

A 6∋i<m Ui),

(∀j < N)(ij < ij+1), A = {ij | j ≤ N} and (∀i < m)(i 6∈ A =⇒ Vi =W ∩ Ui)}.

One checks H is computable, since C, binary union and intersection for open sets and
relevant operations with finite sets are computable. In particular, the (inner to outer)
composition of H(·, Ak) (k < L) is computable.

We write V
(0)
i := Ui (i < m) and (V

(k+1)
i )i<m ∈ H((V

(k)
i )i<m, Ak) for k < L. Then it

is sufficient to prove the following property holds inductively:

Property 2. (V
(k)
i )i<m is a shrinking of (V

(0)
i )i<m with V

(k)
i ∩

⋂

j∈Al
V

(k)
j = ∅ if l < k,

m > i 6∈ Al.

Trivially Property 2 holds for k = 0. For the inductive case, any i < m has either

i 6∈ Ak (so V
(k+1)
i =W ∩ V

(k)
i ⊆ V

(k)
i , where W depends on k) or i ∈ Ak, say i = ij (where

i0 < · · · < iN are all the elements of Ak). In the latter case, V
(k+1)
i = V

(k+1)
ij

⊆ V
(k)
ij

= V
(k)
i .

Also,
⋃

i<m V
(k+1)
i =

⋃

i∈Ak
V

(k+1)
i ∪ (

⋃

m>i 6∈Ak
W ∩ V

(k)
i ) =

⋃

i∈Ak
V

(k+1)
i ∪W = X,

so (V
(k+1)
i )i<m is a shrinking of (V

(k)
i )i<m. Now consider Al where l < k; for m > i 6∈ Al

we have
⋂

j∈Al
V

(k+1)
j ∩ V

(k+1)
i ⊆

⋂

j∈Al
V

(k)
j ∩ V

(k)
i = ∅.

If instead l = k and i 6∈ Ak then
⋂

j∈Ak
V

(k+1)
j ∩ V

(k+1)
i ⊆

⋂

j≤N V
(k+1)
ij

∩W = ∅.

Using the above induction, after L steps we have dealt with each Ak (k < L). But then

Property 2 means (V
(L)
i )i<m is a shrinking of (Ui)i<m of order at most N + 1.
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(2) ⇐⇒ (3): domD = {(Bi)i≤N+1 | (X\Bi)i≤N+1 ∈ domC}, with (Fi)i≤N+1 ∈ D((Bi)i≤N+1)
iff (X \ Fi)i≤N+1 ∈ C((X \Bi)i≤N+1).

7. Compact subsets and an application

In this section our intention is to present some consequences of assuming that X effectively
has covering dimension at most 0. In fact, as we will be dealing with total boundedness
it is convenient to make a stronger assumption than in Sections 5 and 6, incorporating
effective compactness. For working with computability of compact subsets we will assume
familiarity with [5], though our notation will be slightly different. Any w ∈ N∗ codes an ideal
cover, namely the finite collection of open sets α(wi) (i < |w|). Informally, a δcover-name of
K ∈ K(X) is an unpadded list consisting of 〈w〉 for every ideal cover w which covers K.

Definition 7.1. Ideal covers u, v ∈ N∗ are formally disjoint if

(∀i < |u|)(∀j < |v|)d(ν(π1ui), ν(π1vj)) > νQ+(π2ui) + νQ+(π2vj).

For any ideal cover u ∈ N∗ the formal diameter of u is

D〈u〉 := max
i,j<|u|

d(ν(π1ui), ν(π1uj)) + νQ+(π2ui) + νQ+(π2uj).

Informally, we refer to both w ∈ N∗ and U〈w〉 :=
⋃

i<|w| α(wi) as the ideal cover w.

Definition 7.2. Define Zc(X) := {Y ∈ K(X) | dimY ≤ 0} and δ′disj-cover :⊆ B → Zc(X)
by

p ∈ (δ′disj-cover)
−1{K} : ⇐⇒

{

〈〈w(0)〉, . . . , 〈w(l−1)〉〉 | l ∈ N, (w(i))i<l ⊆ N∗,
⋃

i<l U〈w(i)〉 ⊇ K, (w(i))i<l pairwise formally disjoint
}

= {a ∈ N | (∃i)pi = a+ 1}.

Informally, p ∈ (δ′disj-cover)
−1{K} iff p is a padded list of all formally disjoint tuples

of ideal covers which together cover K. Representation δ′disj-cover will not be used exten-
sively in this paper, but may be of independent interest. When considering effective zero-
dimensionality of X (as in Section 5), it is also useful to define a representation of the class
KO of compact open subsets:

δKO := δ∆0
1(X)|

KO ⊓ δcover|
KO.

Finally, define D̂ :⊆ Σ0
1(X)×K>(X) ⇒ ∆0

1(X)N × (Z+)N × {0, 1}N by declaring

((Wi)i, r, s) ∈ D̂(U,K) iff (Wi)i pairwise disjoint,
⋃

iWi = U ⊆ K,

(∀i) (Wi = ∅ ⇐⇒ si = 0) and (∀n)(∀j < rn)
(

diamW∑
i<n ri+j < (n+ 1)−1

)

.

Here K>(X) denotes class K(X) equipped with the representation δcover. The operation D̂
roughly corresponds to the statement of [11, §26.II, Cor 1].

Proposition 7.3. Consider the following conditions on computable metric space X:

(1) X is δ′disj-cover-computable.

(2) There exist a basis B for TX and computable b : N → KO with im b = B ⊆ KO.

(3) operation D̂ is computable and there exists computable γ : N → Σ0
1(X) × K>(X) such

that B := im(π1 ◦ γ) is a basis for TX and (∀a ∈ N)(π1γ(a) ⊆ π2γ(a)).
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(4) There exist computable b : N → ∆0
1(X) and c.e. refined inclusion of b w.r.t. α such that

B := im b is a basis for TX .

Then (1) =⇒ (2) ⇐⇒ (3) =⇒ (4).

Proof.
(1) =⇒ (2): If p is a computable δ′disj-cover-name for X, for each n′ ∈ N we can compute the

(n′)th tuple 〈n, k〉 that satisfies pn ≥ 1 and k < |νN∗(pn − 1)|. Note n′ can be arbitrarily

large since δ′disj-cover has complete names and any tuple 〈w(0)〉 . . . 〈w(l−1)〉 of formally disjoint
ideal covers covering X can be padded by adding copies of the empty cover. Writing
〈w(n,k)〉 := νN∗(pn − 1)k for any such n, k, note

b′(n′) = b〈n, k〉 = K :=
⋃

i<|w(n,k)|

α(w
(n,k)
i ) =

⋃

i<|w(n,k)|

α̂(w
(n,k)
i )

using formal disjointness. In particular, finite unions preserve openness and closedness
properties, while K is compact as a closed subset of X.

We can further compute some q ∈ δ−1
Σ0

1
{K} and r ∈ δ−1

Π0
1
{K}. Clearly 〈q, r〉 is a δ∆0

1
-

name for K, and the definition of δ′disj-cover ensures b
′(n′) runs over a basis for topology of

X by the following argument. Given η > 0, by compactness and zero-dimensionality there
exist finitely many points (xk)k<l0 ⊆ X and a finite partition (Ui)i<l ⊆ Σ0

1(X) such that
U0 = (B(xk;

η
2 ))k<l0 is a cover of X and (Ui)i<l is a refinement of U0. Each Ui = X \

⋃

i′ 6=i Ui′

is compact with diamUi < η and we claim we can pick ideal covers w(i) ∈ N∗ of each Ui

(i < l) which are pairwise formally disjoint and each have formal diameter < η (this ensures

the basis condition is met for ‘components’ U〈w(i)〉). Namely, let

r := min
i
d(Ui,X \ Ui) = min

i,i′:i 6=i′
d(Ui, Ui′) (> 0 by compactness)

and D := maxi diamUi (< η). Clearly any respective irredundant ideal covers w(i), w(i′) of
Ui, Ui′ (i 6= i′) with each radius < 1

2 min{r, η −D} satisfy

ν(π1w
(i)
j ) ∈ Ui∧ν(π1w

(i′)
j′ ) ∈ Ui′ =⇒ d(ν(π1w

(i)
j ), ν(π1w

(i′)
j′ ))≥r > νQ+(π2w

(i)
j )+νQ+(π2w

(i′)
j′ )

(for any j < |w(i)|, j′ < |w(i′)|) and also

d(ν(π1w
(i)
j ), ν(π1w

(i)
j′ )) + νQ+(π2w

(i)
j ) + νQ+(π2w

(i)
j′ ) < D + (η −D) = η

(for any j, j′ < |w(i)|). This completes proof of the claim above.
Finally we observe b, b′ :⊆ N → KO are computable (since p computable). We have

written b′(n′) = b〈n, k〉 for convenience, however the domain of b depends on p, whereas b′

is total.
(2) =⇒ (4): Let F :⊆ B → B be a computable (δN, δcover)-realiser of b and define ⊏

′ by

c ⊏′ d : ⇐⇒ (F (c.0ω) enumerates an ideal cover u with (∀i < |u|)(ui ⊏ d)) .

Then (⊏′) ⊆ N2 is c.e. and is a formal inclusion of b with respect to α satisfying property
(4) from Definition 2.1. In fact, ⊏′ coincides with set inclusion (c ⊏

′ d iff b(c) ⊆ α(d)),
as we now show. First, assume ∅ 6= b(c) ⊆ α(d). By compactness, τ := νQ+(π2d) −
maxz∈b(c) d(z, ν(π1d)) > 0. Pick an irredundant ideal cover u of b(c) such that ui ⊏ d for
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each i < |u|. For instance, consider all a ∈ N such that db(c)(ν(π1a)) < νQ+(π2a) <
τ
2 (then

take a finite subcover): for appropriate z ∈ b(c) we have

d(ν(π1a), ν(π1d)) + νQ+(π2a) ≤ d(ν(π1a), z) + d(z, ν(π1d)) + νQ+(π2a)

< 2νQ+(π2a) + (νQ+(π2d)− τ) ≤ νQ+(π2d),

so a ⊏ d. Then ui ⊏ d for all i < |u| and u is enumerated in any δcover-name of b(c), hence
c ⊏′ d. As u = λ is enumerated in any δcover-name of b(c) = ∅, the same conclusion holds
without assuming b(c) 6= ∅.

(3) =⇒ (2): Let F and G be computable realisers of D̂ and γ respectively, and write
(F ◦ G)(k.0ω) = 〈〈〈t(0), . . . 〉, r〉, s〉. Then H :⊆ B → B, 〈j, k〉.p 7→ t(j) is computable and
we claim b : N → ∆0

1(X), 〈j, k〉 7→ (δ∆0
1
◦H)(〈j, k〉.0ω) is a basis numbering. For, if x ∈ X,

U ∈ TX with x ∈ U then there exists k ∈ N such that x ∈ (π1 ◦ γ)(k) = (π1 ◦G)(k.0
ω) ⊆ U .

Since (D̂ ◦ γ)(k) is equal to

(D̂ ◦ [δΣ0
1
, δcover] ◦G)(k.0

ω) ∋ ([[δω∆0
1
, idB], idB |

{0,1}N ] ◦ F ◦G)(k.0ω) = ((δ∆0
1
(t(i)))i∈N, r, s)

we in particular have (π1 ◦ γ)(k) =
⋃

i δ∆0
1
(t(i)), so x ∈ δ∆0

1
(t(j)) = (δ∆0

1
◦H)(〈j, k〉.0ω) for

some j ∈ N.
Finally we observe in fact im b ⊆ KO with b : N → KO computable. More formally,

b〈j, k〉 = (ι ◦ b)〈j, k〉 ∩ (π2 ◦ γ)(k) for all j, k ∈ N where ι : ∆0
1(X) → Π0

1(X) and ∩ :
Π0

1(X)×K>(X) → K>(X) are computable.
(2) =⇒ (3) (Proof sketch): Given p ∈ B = dom δΣ0

1(X), a computable realiser F :⊆ B → B

of b and c.e. formal inclusion ⊏
′ as in (4), dovetail checking if m ⊏

′ pi − 1 (over m, i ∈ N

such that pi ≥ 1). If so, the computation using index m ends, we increment n and dovetail

output of (F (m.0ω)2k)k∈N as p(n) in 〈p(0), p(1), . . . 〉.
This describes (without direct use of compactness information from δKO) a computable

map G : B → B realising

V : Σ0
1(X) ⇒ ∆0

1(X)N, U 7→ {(Wi)i |
⋃

iWi = U, (∀N)(∃i ≥ N)(diamWi < (N + 1)−1}.

If (U,K) ∈ dom D̂ (i.e. U ⊆ K) and (W̃i)i ∈ V (U), W ∗
i := W̃i \

⋃

j<i W̃j , we can also

write W ′
i := ι′(W ∗

i ) ∩K where ∩ : Π0
1(X)×K>(X) → K>(X) and ι′ : ∆0

1(X) → Π0
1(X) are

computable. Using compactness, for each i an ideal cover w(i) ∈ N∗ of W ′
i can be found, by

ideal balls of formal diameter < (i+ 1)−1 and formally included in W ∗
i .

Considering relatively open sets in W ∗
i , apply the reduction principle to the cover

α(w
(i)
j ) ∩W ∗

i (j < |w(i)|): let

(Wi,j)j ∈ S̃
W ∗

i (α(w
(i)
0 ) ∩W ∗

i , . . . , α(w
(i)

|w(i)|−1
) ∩W ∗

i , ∅, ∅, . . . ) ⊆ ∆0
1(W

∗
i ) ⊆ ∆0

1(X).

In fact a (δω
Σ0

1(X)
, δω

Σ0
1(X)

)-realiser for S̃X will also (δω, δω)-realise S̃Y for any Y ⊆ X if δ is

the representation of Σ0
1(Y ) defined from the effective topological space (Y,TX |Y , αY ). A

similar statement is true for RY , so each RW ∗
i ◦S̃W ∗

i :⊆ Σ0
1(W

∗
i )

N
⇒ ∆0

1(W
∗
i )

N is computable,
uniformly in i, as are the inclusions ∆0

1(W
∗
i ) → ∆0

1(X) (use δ∆0
1(X)-names of W ∗

i and

computability of binary intersection on Σ0
1(X),Π0

1(X) respectively).

Letting ri := |w(i)|, W∑
i<k ri+j :=Wk,j (j < |w(k)|, k ∈ N), we have sequences r, (Wi)i

almost as in definition of D̂. To prove D̂ computable it remains to ensure ri ≥ 1 for all
i and detect nonemptiness of the Wi. From a δ∆0

1(X)-name of Wi,j and δcover-name of K
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(⊇ U ⊇ Wi,j), a δKO-name of Wi,j is computable. Also, z|KO is (δKO, δN|
{0,1}) computable

where

z : ∆0
1(X) → {0, 1},W 7→

{

0, if W = ∅

1, if W 6= ∅

Fixing some a0 ∈ domα = N we modify the above argument to pick w(i) as a one-element
cover a0 ∈ N ⊆ N∗ if W ∗

i = ∅, and choose w(i) irredundant otherwise (nonemptiness of

α(w
(i)
j ) = α(w

(i)
j ) ∩W ∗

i is clearly decidable without using z). Then ri ≥ 1 for all i.
This completes the proof.

As an application of Proposition 7.3 (using the operation D̂), we present an effectivisa-
tion Theorem 7.6 of (7), the retract characterisation of zero-dimensionality from Section 1.
In Section 8 a converse to this result will be proven. Before stating the theorem, we give two
lemmas relevant for dealing with compactness in situations involving the representations
δ>dist, δrange. For any closed A,B ⊆ X, denote d(A,B) := inf{d(x, y) | x ∈ A, y ∈ B} with
the convention inf ∅ = ∞.

Lemma 7.4. For any computable metric space X, d̂ :⊆ A(X) × K(X) → R, (A,K) 7→

d(A,K) (dom d̂ = {(A,K) | A 6= ∅}) is ([δ>dist, δcover], ρ<)-computable.

Proof. Suppose p ∈ (δ>dist)
−1{A}, q ∈ δ−1

cover{K}, r ∈ Q. Then we claim

d(A,K) > r ⇐⇒ (∃n)(∃w ∈ N∗)
(

qn = 〈w〉 ∧ (∀i < |w|)
(

dA(ν(π1wi))− νQ+(π2wi) > r
))

⇐⇒ (∃n)(∃w ∈ N∗)
(

qn = 〈w〉∧

(∀i < |w|)(∃j, k)
(

(ηp ◦ F )(π1wi.0
ω)j = k + 1 ∧ νQ(k) > r + νQ+(π2wi)

))

where F :⊆ B → B is a computable (δN, δX)-realiser of ν : N → X.
For the first equivalence, if d(A,K) > r then every x ∈ K has dA(x) > r and by

density of ν and continuity of dA there exists a ∈ N such that x ∈ α(a) and (dA ◦ ν)(π1a) >
r + νQ+(π2a). Compactness gives an ideal cover w as required. Conversely, given such w,
any x ∈ K has some i < |w| such that x ∈ α(wi), so dA(x) > (dA ◦ ν)(π1wi) − νQ+(π2wi).

Now d(A,K) = infx∈K dA(x) ≥ mini<|w|

(

(dA ◦ ν)(π1wi)− νQ+(π2wi)
)

> r. One checks this

argument works for K = ∅ also. The second equivalence follows from p ∈ (δ>dist)
−1{A}.

Lemma 7.5. Let X be a computable metric space. If K ⊆ X is compact and K ⊆ Nǫ(S)
then there exist (si)i<n ⊆ S and an ideal cover v ∈ N∗ of K such that v ‘formally refines’
(B(si; ǫ))i<n, i.e. for every i < |v| there exists j < n such that d(ν(π1vi), sj)+νQ+(π2vi) < ǫ.

Proof. Whenever x ∈ B(s; ǫ) we can pick q ∈ Q+ with d(x, s)+q < ǫ, then a ∈ ν−1(B(x; q)∩
B(s; ǫ− q)) (so b = 〈a, q〉 satisfies x ∈ α(b) and d(ν(π1b), s) + νQ+(π2b) < ǫ). But applying
compactness once gives K ⊆

⋃

i<nB(si; ǫ) for some (si)i<n ⊆ S, and again gives an ideal
cover as desired.

Theorem 7.6. (cf. [11, Cor 26.II.2]) Suppose X is δ′disj-cover-computable. Then E :⊆

A(X) ⇒ C(X,X), A 7→ {f | im f = A ∧ f |A = idA} (domE = A(X) \ {∅}) is well-defined
and computable (where A(X) is represented by δrange ⊓ δ

>
dist).

Proof Sketch. First (by Proposition 7.3) recall D̂ :⊆ Σ0
1(X)×K>(X) ⇒ ∆0

1(X)N × (Z+)N×
{0, 1}N is computable, say let G be a computable realiser. For a fixed name of A ∈

A(X) \ {∅} as input, consider corresponding ((Wi)i, ξ, s) ∈ D̂(X \ A,X) and pick (xi ∈
Wi, if si 6= 0; xi ∈ im ν, if si = 0) and also yi ∈ A computably such that d(xi, yi) <
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d(A,Wi) + (i + 1)−1 (i ∈ N). This is possible since d(A,Wi) is computable from below
uniformly in the input and i (use Lemma 7.4), and since δrange-names of A, Wi are avail-
able.

Next define

f : X → X,x 7→

{

x, if x ∈ A

yi, if (∃i)Wi ∋ x.

That f is continuous is shown by Kuratowski; we will check f is computable in the inputs
directly by showing f−1V is computable uniformly in the inputs and a δΣ0

1
-name of V ∈

Σ0
1(X). Roughly speaking, we consider (instead of disjoint cases as in the definition of f)

a disjunction (∃i)x ∈ Wi ∨ (∃N)(x ∈
⋂

i<N (X \Wi)) where in the second case N has to
be suitably large. This will be used to define computable F :⊆ B → B, 〈〈p, q〉, r〉 7→ t

so that each induced function u = δΣ0
1
◦ F 〈〈·, q〉, r〉 : dom δX → Σ0

1(X) satisfies (δX(p) ∈

u(p) ⊆ f−1δΣ0
1
(r), if p ∈ δ−1

X f−1δΣ0
1
(r); u(p) = ∅, if p ∈ dom δX \ δ−1

X f−1δΣ0
1
(r)). Then

Lemma 3.1 can be applied to computably obtain a name for f−1δΣ0
1
(r) (f being dependent

on q = 〈〈q(0), . . . 〉, ξ, s, 〈t(0), . . . 〉〉 where q(i) ∈ δ−1
∆0

1
{Wi}, t

(i) ∈ δ−1
X {yi} for all i ∈ N).

To define t, we dovetail repeated output of ‘0’ with searching for large M,N and an

ideal ball a = 〈pj , 2−j+1〉 small enough to satisfy

R0(p, q, r, j) :≡ (∃i, k, l,m)
(

q
(i)
2k ≥ 1 ∧ a ⊏ q

(i)
2k − 1 ∧ rl ≥ 1 ∧ 〈t(i)m , 2−m+1〉 ⊏ rl − 1

)

or

R1(p, q, r, j,M,N) :≡ (∀i < N)(∃k)
(

q
(i)
2k+1 ≥ 1 ∧ a ⊏ q

(i)
2k+1 − 1

)

∧N ≥
∑

i<M

ξi∧

2−j+2 ≤ (M + 1)−1 ∧ (∃v ∈ N∗)
(

v appears in a δcover-name for
⋂

i<N (X \Wi),

v ‘formally refines’ a finite cover by (M + 1)−1-balls about points of the δrange-name of A
)

∧ (∃k)

(

rk ≥ 1 ∧

〈

pj, 2−j+1 +
3

M + 1

〉

⊏ rk − 1

)

If found we should output ‘a+ 1’ followed by 0ω. Any x ∈ f−1V either has Wi ∋ x for
some i or else x ∈ A. In the former case, yi ∈ V and property (1) from Definition 2.1 applied
twice gives R0(p, q, r, j), so assume x ∈ A. From V ∋ fx = x and r ∈ δ−1

Σ0
1
{V } we can pick

k,M such that rk ≥ 1 and d(x, ν(π1(rk−1)))+ 4
M+1 < νQ+(π2(rk−1)), thenN ≥

∑

i<M ξi (≥

M) such that
⋂

i<N (X \Wi) ⊆ N(M+1)−1(A), then finally j ∈ N, v ∈ N∗ and a = 〈pj, 2−j+1〉
as follows: such that v appears in a δcover-name for

⋂

i<N (X \ Wi), v ‘formally refines’

(B(zi; (M + 1)−1))i<n for some z0, . . . , zn−1 ∈ A given by the input δrange-name of A, a is

‘formally included’ in
⋂

i<N (X \Wi), 2
−j+2 ≤ (M+1)−1 and 〈pj , 2−j+1 + 3

M+1〉 ⊏ rk−1. To

see such j exists use ν(pj) → x, 2−j+1 → 0 and continuity of d in inequalities corresponding
to the last three requirements; to see suitable v exists use Lemma 7.5. In this case one
checks R1(p, q, r, j,M,N) holds.

Conversely, we will show U := δΣ0
1
(t) must be contained in f−1V , indeed that any

j,M,N with R0(p, q, r, j) ∨ R1(p, q, r, j,M,N) must correspondingly satisfy α(a) ⊆ f−1V

(where a = 〈pj , 2−j+1〉). For, in the first clause necessarily fα(a) ⊆ f(Wi) = {yi} ⊆ V , so
we suppose the second clause holds. Now any z ∈ α(a) has either z ∈ A or Wi ∋ z for
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some i. In the first case, fz = z ∈ α(a) ⊆ B(ν(pj); 2
−j+1 + 3

M+1) ⊆ V . In the second case,

z ∈ α(a) implies i ≥ N and dA(z) < (M + 1)−1, so

d(fz, ν(pj)) = d(yi, ν(pj)) ≤ dWi
(yi) + diamWi + d(z, ν(pj))

< (d(A,Wi) + (i+ 1)−1) + diamWi + 2−j+1 <
3

M + 1
+ 2−j+1.

This completes the proof.

8. Bilocated subsets

In this final section, we present a converse to Theorem 7.6 (in other words, an effectivisation
of the reverse direction of [10, Thm 7.3]), namely Proposition 8.5. This relies on a version
of the construction of so-called bilocated sets from the constructive analysis literature —
see Proposition 8.4. Such a construction for us involves an application of the effective Baire
category theorem and a decomposition of compact sets formally different to that in Section
7 (see Theorem 8.2). The proofs of both Theorem 8.2 and Proposition 8.4 are adapted
to computable analysis in an ad hoc way (not following an established interpretation of
constructive proofs in this context). It is also worth noting a constructive development of
dimension theory exists [13], [2] which, though based on information weaker than we shall
consider, does also use bilocated subsets fundamentally [2, Thm 0.1].

We begin with several representations from [5], namely with δmin-cover (similar to δcover
except that each ball of each ideal cover is required to intersect K), δ′range and δHausdorff.

Here 〈q, p(0), p(1), . . . 〉 ∈ (δ′range)
−1{K} iff {p(i) | i ∈ N} ⊆ dom δX , K = cl{δX(p(i)) | i ∈ N},

q is unbounded and dH(Ki,Kj) < 2−min{i,j} for all i, j ∈ N, where Ki := {δX (p(k)) | k ≤ qi}
(i ∈ N).

To define δHausdorff, we first consider K(X) \ {∅} metrized by the Hausdorff metric dH
and denote Q := {A ⊆ im ν | A finite, A 6= ∅} = E(im ν)\{∅} ⊆ K(X)\{∅} with numbering
νQ defined by νQ〈w〉 := {ν(wi) | i < |w|} for any w ∈ N∗ \ {λ}. Then p ∈ δ−1

Hausdorff{K}

iff im p ⊆ dom νQ, dH(νQ(pi), νQ(pj)) < 2−min{i,j} for all i, j ∈ N and K = limi→∞ νQ(pi)
with respect to dH. Most relevant below will be the following result from [5, Thm 4.12]:

Lemma 8.1. δHausdorff ≡ δ′range ≡ δmin-cover|
K(X)\{∅}.

On the decomposition of arbitrary compact sets, we then have the following result (a
version of [4, Thm (4.8)]).

Theorem 8.2. Let X be a computable metric space. Then S : K(X)×N ⇒ K(X)∗ defined
by

S(K, l) := {K0 . . . Kn−1 | K =
⋃

i<n

Ki, max
i<n

diamKi < 2−l}

is ([δmin-cover, δN], δ
∗
min-cover)-computable.

Proof sketch. Assume F :⊆ B → B is a computable witness of δmin-cover|
K(X)\{∅} ≤ δ′range.

Given p ∈ δ−1
min-cover{K} and l, compute n ∈ N and singletons X0

j ⊆ K (j < n) such

that (∀x ∈ K)(minj<n dX0
j
(x) < 3−22−l); for instance, use appropriately the (l + 4)th finite

approximation to K from the δ′range-name F (p). Similarly, for each i ∈ N, we define Xi+1
j

(j < n) in terms of corresponding Xi
j as follows: find a strict 3−i−32−l-approximation
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{xj | j < N} ⊆ K to K (using F (p) appropriately); compute some partition S∪̇T =
[0, N) × [0, n) ⊆ N2 where

(m, j) ∈ S =⇒ dXi
j
(xm) < 3−i−12−l and (m, j) ∈ T =⇒ dXi

j
(xm) > 3−i−12−l−1;

for j < n let Xi+1
j := Xi

j ∪ {xm | m < N, (m, j) ∈ S}. The finite sets Xi
j (j < n, i ∈ N)

thus defined easily satisfy the first two properties of

(1) Xi
j ⊆ Xi+1

j ,

(2) (∀x ∈ K)(∀j < n)
(

x ∈ Xi+1
j =⇒ dXi

j
(x) < 3−i−12−l

)

,

(3) (∀x ∈ K)(∀j < n)
(

dXi
j
(x) < 3−i−22−l =⇒ d

Xi+1
j

(x) < 3−i−32−l
)

.

For the third, let x ∈ K with dXi
j
(x) < 3−i−22−l and choose m < N such that d(x, xm) <

3−i−32−l. We have

dXi
j
(xm) ≤ d(xm, x) + dXi

j
(x) < (3−i−3 + 3−i−2)2−l < 3−i−12−l−1

=⇒ (m, j) 6∈ T =⇒ (m, j) ∈ S =⇒ xm ∈ Xi+1
j .

It follows that d
Xi+1

j
(x) ≤ d(x, xm) < 3−i−32−l.

We now check Yj :=
⋃

i∈NX
i
j , or rather Xj := Yj (j < n) satisfy total boundedness and

the diameter condition. First, consider m ∈ N and y ∈ Yj . For i with y ∈ Xi
j , either i ≤ m

(so dXm
j
(y) = 0) or i > m. In the latter case, (2)|k∈[m,i) allows to construct (yk)

i
k=m with

yi = y ∧ (∀k)(m ≤ k < i =⇒ yk ∈ Xk
j ∧ d(yk, yk+1) < 3−k−12−l)

(that is, if yk+1 ∈ Xk+1
j , pick yk ∈ Xk

j such that d(yk+1, yk) < 3−k−12−l, inductively for

k = i− 1, . . . ,m).

Then dXm
j
(y) ≤ d(yi, ym) ≤

∑

m≤k<i d(yk, yk+1) <
∑

k≥m 3−k−12−l = 3−m−12−l

1−3−1 =

2−l−13−m. As Xm
j is a finite 3−m2−l−1-approximation to Yj, it is also a finite 3−m2−l-

approximation to Xj. Since m was arbitrary, Xj is totally bounded. Next consider i ∈ N

and x, x′ ∈ Xi+1
j ; we have

d(x, x′) ≤ dXi
j
(x) + diamXi

j + dXi
j
(x′) < 3−i−12−l+1 +

i
∑

k=1

3−k2−l+1 =
i+1
∑

k=1

3−k2−l+1

provided diamXi
j ≤

∑i
k=1 3

−k2−l+1. Plainly the latter condition holds for i = 0, so an

inductive argument applies. In particular, diamXj ≤
∑∞

k=1 3
−k2−l+1 = 3−12−l+1

1−3−1 = 2−l.

Finally, if x ∈ K, pick j < n such that dX0
j
(x) < 3−22−l. By induction on i ∈ N using (3)

we have dXi
j
(x) < 3−i−22−l for all i (case i = 0 by choice of j). Thus Yj =

⋃

iX
i
j contains

points arbitrarily close to x, i.e. x ∈ Yj = Xj .

Using the above construction, observe (1), (2) imply dH(X
i
j ,X

i+1
j ) ≤ 3−i−12−l, so if

i′ ≥ i then

dH(X
i
j ,X

i′

j ) ≤
∑

i≤k<i′

dH(X
k
j ,X

k+1
j ) ≤

∑

i≤k<i′

3−k−12−l <
3−i−12−l

1− 3−1
= 3−i2−l−1 ≤ 2−i.
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Clearly then dH(X
i
j ,X

i′

j ) < 2−min{i,i′} for all i, i′. Defining q in the obvious way, we obtain

a δ′range-name for each Xj (j < n), and each can be translated into a δmin-cover-name q(j).
Now, consider the possibility that K = ∅. Observe for p ∈ dom δmin-cover that

(p contains ideal cover λ) iff (p contains only ideal cover λ) iff p ∈ δ−1
min-cover{∅}.

Using this condition it is possible to decide from p ∈ δ−1
min-cover{K} whether K = ∅. If so, we

output n.〈p, p, . . . 〉 for some fixed n ≥ 1, otherwise we output n.〈q(0), . . . , q(n−1), 0ω , 0ω, . . . 〉
defined as above.

Next we must recall the effective Baire category theorem (see [8, Thm 7.20] and the
references there).

Theorem 8.3. Suppose X is a complete computable metric space. Then

B :⊆ Π0
1(X)N ⇒ XN, (Ai)i∈N 7→ {(xi)i∈N | (xi)i dense in X \

⋃

i

Ai}

(domB = {(Ai)i | each Ai nowhere dense}) is computable.

Proposition 8.4. (cf. [3, Ch 4,Thm 8], [14, Ch 7,Prop 4.14]) Let X be a computable metric
space. Define p+, p− : R × C (X,R) → Σ0

1(X) and P+, P− : K(X) × R × C (X,R) → K(X)
by

p+(α, f) := f−1(α,∞), p−(α, f) := f−1(−∞, α),

P+(K,α, f) := K ∩ f−1[α,∞), P−(K,α, f) := K ∩ f−1(−∞, α].

p+, p− are computable and P+, P− are (δcover, ρ, [δX → ρ]; δcover)-computable.
Moreover A is (δmin-cover, δ

2
Q, δ; [ρ, δ

2
min-cover])-computable where δ := [δX → ρ] and A :⊆

K(X) ×Q2 × C (X,R) ⇒ R×K(X)2 is defined by

A(K,a, b, f) := {(α,P−(K,α, f), P+(K,α, f)) | a < α < b ∧K ∩ p−(α, f) = P−(K,α, f)∧

K ∩ p+(α, f) = P+(K,α, f)},

with domA = {(K,a, b, f) | K 6= ∅ ∧ a < b}.

Proof. First, p+, p−, P+, P− are computable: by computability of preimages of f (Σ0
1(R)×

C (X,R) → Σ0
1(X), Π0

1(R)× C (X,R) → Π0
1(X)) and the operation ∩ : Π0

1(X) × K>(X) →
K>(X).

Now, given a δmin-cover-name of K, for each k ∈ N consider a decomposition K =
⋃

j<Nk
Xk

j as in Theorem 8.2 with maxj diamXk
j < 2−k−1. We can compute maxima

and minima of f on each Xk
j , effectively in k, j (and uniformly in names of K, f),

and will call these c±k,j. As they form a sequence computable from K, f (for instance

c−0,0, c
+
0,0; . . . ; c

−
0,N0−1, c

+
0,N0−1; c

−
1,0, c

+
1,0; . . . ) one can compute α ∈ (a, b) which avoids all c±k,j

(formally, use Theorem 8.3).
Using positive information onXk

j , if c
−
k,j < α we compute some x−k,j ∈ X

k
j with f(x−k,j) <

α, similarly if α < c+k,j we compute some x+k,j ∈ Xk
j with α < f(x+k,j). We will write

M−
k := {j < Nk | c−k,j < α}, M+

k := {j < Nk | c+k,j > α} and set Y −
k := {xσk,j | j ∈ Mσ

k }

(σ = +,−). Note that Y σ
k is a finite 2−k−1-approximation to Xσ

α := K ∩ pσ(α, f) (for,

Y −
k ⊆ X−

α while any x ∈ X−
α has some j < Nk such that Xk

j ∋ x, with necessarily

c−k,j ≤ f(x) < α and d(x, x−k,j) ≤ diamXk
j < 2−k−1. The proof for σ = + is similar). As a
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consequence, we have the equivalence Xσ
α = ∅ iff Y σ

k = ∅ for all k iff Y σ
k = ∅ for some k, and

also for each k the equivalence Y σ
k = ∅ iffMσ

k = ∅. Moreover, we can (ifMσ
k+1 6= ∅) compute

finite sets of ideal points approximating Y σ
k+1: writing Mσ

k+1 = {j1, . . . , jP } in strictly

ascending order and p(k,i) ∈ δ−1
X {xσk+1,ji

} for the Cauchy name calculated by our algorithm,

define uσk = 〈p
(k,1)
k+1 , . . . , p

(k,P )
k+1 〉; then νQ(u

σ
k ) ⊆ N̄2−k−1(Y σ

k+1) and Y
σ
k+1 ⊆ N̄2−k−1(νQ(u

σ
k )).

Overall we get

νQ(u
σ
k ) ⊆ N̄2−k−1(Xσ

α) ∧X
σ
α ⊆ N2−k−2+2−k−1(νQ(u

σ
k )) (8.1)

and in particular any k, l ∈ N satisfy νQ(u
σ
k ) ⊆ N2−k−1+2−l−2+2−l−1(νQ(u

σ
l )). For k > l thus

dH(νQ(u
σ
k), νQ(u

σ
l )) < max{2−k−1 + 2−l−2 + 2−l−1, 2−l−1 + 2−k−2 + 2−k−1}

= 2−k−1 + 2−l−2 + 2−l−1 = 2−l(2−(k−l)−1 + 2−2 + 2−1) ≤ 2−l.

On the other hand, for any ǫ > 0 there exists k with 2−k−2 + 2−k−1 < ǫ and in this case
(8.1) implies dH(Xσ

α , νQ(u
σ
k)) < ǫ. For Xσ

α 6= ∅ we have thus shown uσ0u
σ
1 · · · ∈ B is a

δHausdorff-name for Xσ
α , computable from the inputs.

We now verify X−
α = K ∩ f−1(−∞, α]. First, X−

α ⊆ K ∩ f−1(−∞, α] by closedness of

K and continuity of f . On the other hand, suppose there exists x ∈ (K ∩ f−1{α}) \X−
α ,

say V ∈ TX is such that x ∈ V ∩ K ⊆ K ∩ f−1[α,∞). Then for k sufficiently large and
j < Nk such that Xk

j ∋ x, we have Xk
j ⊆ V ∩ K, but by construction c−k,j ≤ f(x) = α

implies c−k,j < α and thus Xk
j ∩ f−1(−∞, α) 6= ∅, a contradiction. X+

α = K ∩ f−1[α,∞) is

verified in a similar way.
Finally, we describe the output of the algorithm. If Xσ

α = ∅ (equivalently, Mσ
0 = ∅) for

some σ ∈ {±} we should output some fixed computable δmin-cover-name of ∅ as the name
of Xσ

α for the corresponding σ. Otherwise, we should compute a δHausdorff-name of Xσ
α (as

above) and translate this into a δmin-cover-name. Since Mσ
0 ∈ E(N) is computable from the

inputs, the choice between these two cases is decidable. This completes the description of
the algorithm.

Finally, we give our converse to Theorem 7.6.

Proposition 8.5. Suppose X is δcover-computable and E :⊆ A(X) ⇒ C(X,X), A 7→ {f |
im f = A ∧ f |A = idA} (domE = A(X) \ {∅}) is well-defined and computable, where
A(X) is represented by δrange ⊓ δ

>
dist. Then X is zero-dimensional and M from Section 5 is

computable.

Proof. First, (nonuniformly) note any δcover-name of X is also a δmin-cover-name of X. For
given x ∈ X and k ∈ N we will compute a δ∆0

1
-name of a neighbourhood W ∋ x with

diamW ≤ 2−k. Namely, if p ∈ δ−1
X {x} we will apply Proposition 8.4 twice to d(x, ·) (in

place of f) to get some 0 < α0 < α1 < 2−k−1 with

B(x;αi) = B̄(x;αi) ∧X \ B̄(x;αi) = X \B(x;αi)

for each i. Then, in particular, A := B̄(x;α1) \ B(x;α0) is the closure of V := B(x;α1) \
B̄(x;α0).
Proof of claim: Clearly

y ∈ V ⇐⇒ α0 < d(x, y) < α1 =⇒ α0 ≤ d(x, y) ≤ α1 ⇐⇒ y ∈ A,
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so also V ⊆ A. Conversely, if y ∈ A, either τ := d(x, y) ∈ (α0, α1) or τ = α0 or τ = α1.

If τ = α0, use X \ B̄(x;α0) = X \ B(x;α0) to get some sequence (yj)j∈N ⊆ X \ B̄(x;α0)

convergent to y. For large j we get yj ∈ V , so y ∈ V . Case τ = α1 is similar using

B(x;α1) = B̄(x;α1). This completes proof of the claim.
Note Cauchy names of α0, α1 allow us to compute a δΣ0

1
-name of V = d(x, ·)−1(α0, α1)

from p, hence (using properties of formal inclusion) a δrange-name of V = A. On the
other hand, a δΠ0

1
-name of A = d(x, ·)−1[α0, α1] can be used to compute a δ>dist-name of

A (and similarly for A ∪ {x}), since (in notation of [5]) δcover ≤ δ>K and δ> ≤ δ>dist, and
∩ : Π0

1(X)×K>(X) → K>(X) is computable. Consequently, a name of some f ∈ E(A∪{x})
is available. Now let W := B̄(x;α1) ∩ f

−1{x}. Since f(A) is disjoint from x, also W =
B(x;α0) ∩ f

−1B(x;α0), and the result follows (since 2α0 ≤ 2−k).

More formally, one can extract from Theorem 7.6 and Proposition 8.5 the following
equivalence statement: if computable metric space X is δcover-computable then

dimX = 0 ⇐⇒ E well-defined & computable ⇐⇒ X eff. of covering dimension ≤ 0.

This uses δ′disj-cover ≡ δcover|
Zc(X); we leave details to the reader.

Acknowledgements. The author is very grateful to the anonymous referees, whose com-
ments have helped in improving the presentation of this paper. Many thanks also to Paul
Wright, who proofread the paper at a late stage.

References

[1] N. Aoki and K. Hiraide. Topological theory of dynamical systems. North-Holland Publishing Co., Ams-
terdam, 1994.

[2] Gordon O. Berg, W. Julian, R. Mines, and F. Richman. The constructive equivalence of covering and
inductive dimensions. General Topology and Appl., 7(1):99–108, 1977.

[3] Errett Bishop. Foundations of constructive analysis. McGraw-Hill Book Co., New York, 1967.
[4] Errett Bishop and Douglas Bridges. Constructive analysis, volume 279 of Grundlehren der Mathematis-

chen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1985.
[5] V. Brattka and G. Presser. Computability on subsets of metric spaces. Theoret. Comput. Sci., 305(1-

3):43–76, 2003.
[6] Vasco Brattka and Guido Gherardi. Borel complexity of topological operations on computable metric

spaces. J. Logic Comput., 19(1):45–76, 2009.
[7] Vasco Brattka and Guido Gherardi. Effective choice and boundedness principles in computable analysis.

Bull. Symbolic Logic, 17(1):73–117, 2011.
[8] Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial on computable analysis. In New com-

putational paradigms, pages 425–491. Springer, New York, 2008.
[9] R. Engelking. General topology. Heldermann Verlag, Berlin, second edition, 1989.

[10] A. S. Kechris. Classical descriptive set theory, volume 156 of Grad. Texts in Math. Springer-Verlag, New
York, 1995.

[11] K. Kuratowski. Topology. Vol. I. Academic Press, New York, 1966.
[12] Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and coding. Cambridge Univer-

sity Press, Cambridge, 1995.
[13] F. Richman, Gordon O. Berg, H. Cheng, and R. Mines. Constructive dimension theory. Compositio

Math., 33(2):161–177, 1976.
[14] A. S. Troelstra and D. van Dalen. Constructivism in mathematics. Vol. I, volume 121 of Studies in

Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1988. An intro-
duction.



EFFECTIVE ZERO-DIMENSIONALITY 25

[15] J. van Mill. Infinite-dimensional topology, volume 43 of North-Holland Mathematical Library. North-
Holland Publishing Co., Amsterdam, 1989. Prerequisites and introduction.

[16] K. Weihrauch. Computability. Springer-Verlag, Berlin, 1987.
[17] K. Weihrauch. On computable metric spaces Tietze-Urysohn extension is computable. In Computability

and complexity in analysis (Swansea, 2000), volume 2064 of Lecture Notes in Comput. Sci., pages
357–368, Berlin, 2001. Springer.

[18] Klaus Weihrauch. Computable analysis. Springer-Verlag, Berlin, 2000.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany


	1. Introduction
	2. Notation
	3. Covering properties
	4. Zero dimensional subsets
	5. Zero-dimensional spaces
	6. Covering dimension
	7. Compact subsets and an application
	8. Bilocated subsets
	References

