EFFECTIVE ZERO-DIMENSIONALITY FOR COMPUTABLE METRIC SPACES*

ROBERT KENNY

School of Mathematics \& Statistics, The University of Western Australia, Perth, Australia e-mail address: robert.kenny@uwa.edu.au

Abstract

We begin to study classical dimension theory from the computable analysis (TTE) point of view. For computable metric spaces, several effectivisations of zerodimensionality are shown to be equivalent. The part of this characterisation that concerns covering dimension extends to higher dimensions and to closed shrinkings of finite open covers. To deal with zero-dimensional subspaces uniformly, four operations (relative to the space and a class of subspaces) are defined; these correspond to definitions of inductive and covering dimensions and a countable basis condition. Finally, an effective retract characterisation of zero-dimensionality is proven under an effective compactness condition. In one direction this uses a version of the construction of bilocated sets.

1. Introduction

Various spaces of symbolic dynamics [12], such as $X=A^{\mathbb{N}}$ for a finite alphabet A or the sofic subshifts, are useful examples of zero-dimensional topological spaces, interesting both for dynamics and in connection with computation. Some similar remarks apply to the spaces of cellular automata $A^{\mathbb{Z}^{n}}$ and to a lesser extent to general subshifts. To deal effectively with sets which are zero-dimensional in non-symbolic mathematical contexts, however (such as in \mathbb{R}^{n} or the minimal sets of an expansive compact dynamical system [1, Thm 2.2.44]), it is desirable to examine possible effective versions of this property. In the present work, we begin a basic investigation to consider effective zero-dimensionality both of computable metric spaces and of their closed subsets, in the framework of computable analysis via representations (see [18], [8).

To this end, for a topological space X, recall that a subset $B \subseteq X$ is clopen if B is open and closed, equivalently if the boundary ∂B is empty. For a separable metrizable space X, the following conditions are equivalent:
(1) $(\forall p \in X)\left(\forall A \in \Pi_{1}^{0}(X)\right)(p \notin A \Longrightarrow \emptyset$ is a partition between p and $A)$,
(2) $\left(\forall A, B \in \Pi_{1}^{0}(X)\right)(A \cap B=\emptyset \Longrightarrow \emptyset$ is a partition between A and $B)$,
(3) $(\forall \mathcal{U})(\exists \mathcal{V})(\mathcal{U}$ is an open cover of $X \Longrightarrow \mathcal{V}$ is a partition into open sets refining $\mathcal{U})$,

[^0](4) $(\forall \mathcal{U})(\exists \mathcal{V})(\mathcal{U}$ is a finite open cover of $X \Longrightarrow \mathcal{V}$ is a finite partition into open sets refining $\mathcal{U})$,
(5) there exists a countable basis \mathcal{B} for the topology of X consisting of clopen sets,
(6) $(\forall \mathcal{U})(\exists \mathcal{V})(\mathcal{U}$ is a finite open cover $\Longrightarrow \mathcal{V}$ is an open shrinking of \mathcal{U} by pairwise disjoint sets),
(7) $\left(\forall A \in \Pi_{1}^{0}(X)\right)(\exists f \in C(X, X))\left(A \neq \emptyset \Longrightarrow \operatorname{im} f=\left.A \wedge f\right|_{A}=\operatorname{id}_{A}\right)$.

Here, in (11) and (2), P is a partition between disjoint $A, B \subseteq X$ if there exist disjoint open $U, V \subseteq X$ such that $A \subseteq U, B \subseteq V$ and $X \backslash P=U \cup V$. In (3) and (4) a partition (of X) is a pairwise disjoint family of sets (with union equal to X). In (6) a shrinking of a cover $\left(A_{i}\right)_{i \in I}$ of X is a cover $\left(B_{i}\right)_{i \in I}$ satisfying $B_{i} \subseteq A_{i}$ for all $i \in I$. A nonempty space X satisfying (1) (or any of the equivalent conditions) is zero-dimensional; a subset $Y \subseteq X$ is zero-dimensional if Y is zero-dimensional in the relative topology $\left.\mathcal{T}_{X}\right|^{Y}$.

Next, recall that any zero-dimensional separable metrizable X is homeomorphic to a subspace of the Cantor space $C:=\{0,1\}^{\mathbb{N}}[10$, Thm 7.8, p 38]. For strictly topological questions on zero-dimensional spaces it is thus possible to consider only subspaces of C. In this paper we will address our questions from the slightly more intrinsic point of view mentioned above, treating zero-dimensionality on a computable metric space X and its subsets. More specifically, we consider computable versions of the existence statements (11)(77); these are certain multi-valued operations which, stopping short of studying Weihrauch degrees, we require to be computable. In the case of a subset $Y \subseteq X$, zero-dimensionality of Y can be stated in several ways using closed or open subsets of X, and these statements also can be viewed as multi-valued operations. While a systematic treatment is not given, we present various definitions of operations (corresponding to equivalent forms of zerodimensionality) and some of their interrelations.

Thus, in Section 4 three implications are proven between four operations relevant for a general class $\mathcal{Y} \subseteq \mathcal{P}(X)$ of zero-dimensional or empty subsets of cardinality $|\mathcal{Y}| \leq 2^{\aleph_{0}}$; these correspond to (1), (2), (5) and, loosely, to a condition like (3) or (6). Further results on the four operations for $\mathcal{Y}=\left\{Y \in \Pi_{1}^{0}(X) \mid \operatorname{dim} Y \leq 0\right\}$ under effective local compactness or similar assumptions will be discussed elsewhere. In Section 5 the results of Section 4 are specialised to the case $Y=X$, and a robust notion of effectively zero-dimensional computable metric space is found to exist. Some more evidence for the suitability of that definition is provided by Section 6 which deals with covering dimension (essentially extending the conditions (3), (4) and (6)), though in an ad hoc way.

We also present, in Section 7, an effective version of the decomposition of totally bounded open subsets of zero-dimensional spaces found in [11, Cor 26.II.1]. This is used (with an effective compactness assumption) to prove Theorem 7.6, an effectivization of (7) above. Finally, in Section 8 a converse Proposition 8.5 is proven. This relies on the existence of so-called bilocated sets from the constructive analysis literature; some computable analysis versions of these proofs are given in the same section. Sections 2and 3 respectively discuss notation and supporting results on general covering properties of metric spaces (namely, effective versions of the Lindelöf property, and swelling and shrinking of finite covers).

2. Notation

By $\langle\cdot\rangle: \mathbb{N}^{*} \rightarrow \mathbb{N}$ and $\langle\cdot, \cdot\rangle: \mathbb{N}^{2} \rightarrow \mathbb{N}$ we denote standard tupling functions, with corresponding coordinate projections $\pi_{1}, \pi_{2}: \mathbb{N} \rightarrow \mathbb{N}$ in the binary case. A standard numbering $\nu_{\mathbb{N}^{*}}$ of \mathbb{N}^{*} is also introduced by $\nu_{\mathbb{N}^{*}}\langle w\rangle:=w\left(w \in \mathbb{N}^{*}\right)$. Similarly, with $\mathbb{B}:=\mathbb{N}^{\mathbb{N}}$ we define $\langle\cdot, \cdot\rangle: \mathbb{B}^{2} \rightarrow \mathbb{B}$ and $\langle\cdot, \ldots\rangle: \mathbb{B}^{\mathbb{N}} \rightarrow \mathbb{B}$ by

$$
\left\langle p^{(0)}, p^{(1)}\right\rangle(2 i+z)=p_{i}^{(z)} \text { and }\left\langle p^{(0)}, p^{(1)}, \ldots\right\rangle(\langle i, j\rangle)=p_{j}^{(i)}
$$

(here $p=p_{0} p_{1} \cdots \in \mathbb{B}$, i.e. $p_{i}:=p(i)$ for every $p \in \mathbb{B}, i \in \mathbb{N}$). Again we write π_{1}, π_{2} : $\mathbb{B} \rightarrow \mathbb{B}$ for the coordinate projections in the binary case. We will also occasionally consider projections $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$ for any cartesian product $X \times Y$; it will be clear from the context which of the above notions is meant. Further, in a metric space X, we write

$$
N_{\epsilon}(A):=\bigcup_{x \in A} B(x ; \epsilon) \text { and } \bar{N}_{\epsilon}(A):=\bigcup_{x \in A} \bar{B}(x ; \epsilon)
$$

for any $A \subseteq X$ and $\epsilon>0$.
In general, we assume familiarity with the framework of computable analysis via representations [18], [8]. We will also use some notation for specific representations from [5]. If $\left(X_{i}, \delta_{i}\right)(1 \leq i \leq n)$ and $\left(Y, \delta^{\prime}\right)$ are represented spaces, similarly to [18], a ($\left.\delta_{1}, \ldots, \delta_{n} ; \delta^{\prime}\right)$ realiser of an operation $f: \subseteq X_{1} \times \cdots \times X_{n} \rightrightarrows Y$ is a map $F: \subseteq \mathbb{B}^{n} \rightarrow \mathbb{B}$ such that

$$
\begin{aligned}
& F\left(p^{(1)}, \ldots, p^{(n)}\right) \in\left(\delta^{\prime}\right)^{-1} f\left(\delta_{1}\left(p^{(1)}\right), \ldots, \delta_{n}\left(p^{(n)}\right)\right) \text { whenever } \\
& \left(p^{(1)}, \ldots, p^{(n)}\right) \in \prod_{i=1}^{n} \operatorname{dom} \delta_{i} \text { and }\left(\delta_{1}\left(p^{(1)}\right), \ldots, \delta_{n}\left(p^{(n)}\right)\right) \in \operatorname{dom} f .
\end{aligned}
$$

However, unless otherwise mentioned, when representations $\delta_{1}, \delta_{2}, \delta^{\prime}$ are understood a 'realiser' of $f: \subseteq X_{1} \times X_{2} \rightrightarrows Y$ will be a map $F: \subseteq \mathbb{B} \rightarrow \mathbb{B}$, namely a ($\left.\left[\delta_{1}, \delta_{2}\right] ; \delta^{\prime}\right)$-realiser. This convention has some minor advantages where brevity is concerned.

For a computable metric space (X, d, ν), in this paper the Cauchy representation $\delta_{X}: \subseteq$ $\mathbb{B} \rightarrow X$ is defined by

$$
p \in \delta_{X}^{-1}\{x\}: \Longleftrightarrow \lim _{i \rightarrow \infty} \nu\left(p_{i}\right)=x \wedge(\forall i, j \in \mathbb{N}) d\left(\nu\left(p_{i}\right), \nu\left(p_{j}\right)\right)<2^{-\min \{i, j\}} .
$$

A representation ρ of \mathbb{R} will be used less often; for definiteness, let it be the Cauchy representation of $\left(\mathbb{R}, d, \nu_{\mathbb{Q}}\right)$, where $d(x, y)=|x-y|$.

Let (X, \mathcal{T}) be a second countable topological space and let $\alpha, \beta: \mathbb{N} \rightarrow \mathcal{T}$ be numberings of possibly different countable bases.
Definition 2.1. ($\sqsubset) \subseteq \mathbb{N}^{2}$ is a formal inclusion of α with respect to β if

$$
(\forall a, b \in \mathbb{N})(a \sqsubset b \Longrightarrow \alpha(a) \subseteq \beta(b)) .
$$

Consider the following axioms, in order of increasing strength.
(1) $(\forall b)(\forall x \in X)(\exists a)(x \in \beta(b) \Longrightarrow x \in \alpha(a) \wedge a \sqsubset b)$
(2) $(\forall b)(\forall x \in X)(\forall U \in \mathcal{T})(\exists a)(x \in \beta(b) \cap U \Longrightarrow x \in \alpha(a) \subseteq U \wedge a \sqsubset b)$
(3) $(\forall a, b)(\forall x \in X)(\exists c)(x \in \beta(a) \cap \beta(b) \Longrightarrow x \in \alpha(c) \wedge c \sqsubset a \wedge c \sqsubset b)$
(4) $(\forall b)(\forall x \in X)\left(\exists U \in \Sigma_{1}^{0}(X)\right)(\forall a)(x \in \alpha(a) \subseteq \beta(b) \cap U \Longrightarrow a \sqsubset b)$

In particular, in a computable metric space (X, d, ν), consider numberings of ideal open and closed balls

$$
\begin{aligned}
& \alpha: \mathbb{N} \rightarrow \mathcal{B}:=\operatorname{im} \alpha \subseteq \mathcal{T},\langle a, r\rangle \mapsto B_{d}\left(\nu(a) ; \nu_{\mathbb{Q}^{+}}(r)\right), \\
& \hat{\alpha}: \mathbb{N} \rightarrow \operatorname{im} \hat{\alpha} \subseteq \Pi_{1}^{0}(X),\langle a, r\rangle \mapsto \bar{B}_{d}\left(\nu(a) ; \nu_{\mathbb{Q}^{+}}(r)\right) .
\end{aligned}
$$

Here $\nu_{\mathbb{Q}^{+}}$is a standard total numbering of the positive rationals \mathbb{Q}^{+}with a $\left(\nu_{\mathbb{Q}^{+}}, i d_{\mathbb{N}}\right)^{-}$ computable right-inverse ${ }^{-}: \mathbb{Q}^{+} \rightarrow \mathbb{N}$.

The relation \sqsubset defined by

$$
\langle a, r\rangle \sqsubset\langle b, q\rangle: \Longleftrightarrow d(\nu(a), \nu(b))+\nu_{\mathbb{Q}^{+}}(r)<\nu_{\mathbb{Q}^{+}}(q)
$$

is a formal inclusion of α with respect to itself; moreover it satisfies $c \sqsubset d \Longrightarrow \hat{\alpha}(c) \subseteq \alpha(d)$ and (4). For the purposes of this paper, we will often call a formal inclusion satisfying property (1) a refined inclusion.

From any basis numbering α (of a topological space X) we can define a representation

$$
\delta: \mathbb{B} \rightarrow \Sigma_{1}^{0}(X), p \mapsto \bigcup\left\{\alpha\left(p_{i}-1\right) \mid i \in \mathbb{N}, p_{i} \geq 1\right\}
$$

of the hyperspace of open sets in X. For a computable metric space with α as above, this representation is denoted $\delta_{\Sigma_{1}^{0}(X)}$, or $\delta_{\Sigma_{1}^{0}}$ if X is clear from the context. Correspondingly, we write

$$
\delta_{\Pi_{1}^{0}}: \mathbb{B} \rightarrow \Pi_{1}^{0}(X), p \mapsto X \backslash \delta_{\Sigma_{1}^{0}}(p)
$$

for a representation of the hyperspace of closed sets in X, and

$$
\delta_{\Delta_{1}^{0}}: \subseteq \mathbb{B} \rightarrow \Delta_{1}^{0}(X),\langle p, q\rangle \mapsto \delta_{\Sigma_{1}^{0}}(p)=\delta_{\Pi_{1}^{0}}(q)
$$

(with natural domain) for a representation of the clopen sets in X. When writing $\Sigma_{1}^{0}(X)$, $\Pi_{1}^{0}(X), \Delta_{1}^{0}(X)$ we always assume these classes are equipped with the corresponding representations.

For the purposes of this paper we need two more representations of the class $\mathcal{A}(X)$ of closed sets in X (cf. [5]). Define $\delta_{\text {range }}, \delta_{\text {dist }}^{>}: \subseteq \mathbb{B} \rightarrow \mathcal{A}(X)$ by

$$
\begin{aligned}
\left\langle p^{(0)}, \ldots\right\rangle \in \delta_{\text {range }}^{-1}\{A\}: \Longleftrightarrow & \left(A=\emptyset \wedge(\forall i) p^{(i)}=0^{\omega}\right) \vee\left(A \neq \emptyset \wedge\left\{p^{(i)} \mid i \in \mathbb{N}\right\} \subseteq P^{-1} \delta_{X}^{-1} A \wedge\right. \\
& \left.(\forall x \in A)\left(\forall U \in \mathcal{T}_{X}\right)(\exists i)\left(x \in U \Longrightarrow\left(\delta_{X} \circ P\right)\left(p^{(i)}\right) \in U\right)\right),
\end{aligned}
$$

where $P: \subseteq \mathbb{B} \rightarrow \mathbb{B}$ is defined by $P(p)_{i}:=p_{i}-1\left(\operatorname{dom} P=\left\{p \in \mathbb{B} \mid(\forall i) p_{i} \geq 1\right\}\right)$,

$$
p \in\left(\delta_{\text {dist }}^{>}\right)^{-1}\{A\}: \Longleftrightarrow \eta_{p}\left(\delta_{X}, \overline{\rho_{<}}\right) \text {-realises } d_{A}: X \rightarrow \overline{\mathbb{R}}
$$

where

$$
p \in{\overline{\rho_{<}}}^{-1}\{t\}: \Longleftrightarrow\left\{n \in \mathbb{N} \mid \nu_{\mathbb{Q}}(n)<t\right\}=\left\{p_{i}-1 \mid i \in \mathbb{N} \wedge p_{i} \geq 1\right\}
$$

Here $\eta_{p}=\eta(p)$ for a certain 'canonical' representation η of the set $\mathbf{F}=\{F: \subseteq \mathbb{B} \rightarrow \mathbb{B} \mid$ F continuous with \mathcal{G}_{δ} domain $\}$. In particular, η satisfies certain versions of the smn and utm theorems; see [18, §2.3] for precise (and rather general) statements. $\delta_{\text {range }}$ and $\delta_{\text {dist }}^{>}$will be used in Sections 7 and 8 .

Next, for any represented set (X, δ), consider the set X^{*} of finite-length words over the alphabet X. A representation of X^{*} is defined by

$$
\delta^{*}: \subseteq \mathbb{B} \rightarrow X^{*}, n \cdot\left\langle p^{(0)}, p^{(1)}, \ldots\right\rangle \mapsto\left\{\begin{array}{ll}
\lambda, & \text { if } n=0 \\
\delta\left(p^{(0)}\right) \ldots \delta\left(p^{(n-1)}\right), & \text { if } n \geq 1
\end{array} \quad(n \in \mathbb{N}),\right.
$$

where λ is the empty word. In Sections 3 国 , 6 and 8 we will use δ^{*} for various representations δ of hyperspaces of a fixed computable metric space X. If (I, ν) is a numbered set, a representation $\delta_{\nu}: \subseteq \mathbb{B} \rightarrow I$ is defined by

$$
\operatorname{dom} \delta_{\nu}=\left\{p \in \mathbb{B} \mid p_{0} \in \operatorname{dom} \nu\right\} \quad \text { and } \quad \delta_{\nu}(p)=\nu\left(p_{0}\right) .
$$

Consider now the set $E(X)$ of finite subsets of X. For a numbered set (I, ν) one can define a standard numbering $\operatorname{FS}(\nu)$ of $E(I)$ following [16, Defns 2.2.2, 2.2.14(5)]: first, define a total numbering e of $E(\mathbb{N})$ by $e=\psi^{-1}$ for the bijection $\psi: E(\mathbb{N}) \rightarrow \mathbb{N}, A \mapsto \sum_{i \in A} 2^{i}$. Then define
$\mathrm{FS}(\nu): \subseteq \mathbb{N} \rightarrow E(I), k \mapsto\{\nu(i) \mid i \in e(k)\} \quad$ where $\quad \operatorname{domFS}(\nu)=\{k \mid e(k) \subseteq \operatorname{dom} \nu\}$.
The next lemma verifies equivalence of two representations arising from these definitions.
Lemma 2.2. For any numbered set $(I, \nu), \delta_{F S(\nu)} \equiv \delta_{E(I)}$, where

$$
\begin{array}{r}
p \in \delta_{E(I)}^{-1}\{S\}: \Longleftrightarrow(\exists k)(\forall i)\left(\left(i<k \Longrightarrow p_{i} \in 1+\operatorname{dom} \nu\right) \wedge\left(i \geq k \Longrightarrow p_{i}=0\right)\right) \\
\wedge\left\{\nu\left(p_{i}-1\right) \mid i<k\right\}=S
\end{array}
$$

Proof. $\delta_{\mathbf{F S}(\nu)} \leq \delta_{E(I)}$: we use $F: \subseteq \mathbb{B} \rightarrow \mathbb{B}, a .0^{\omega} \mapsto w .0^{\omega}$ where $|w|=\# e(a)$ (the number of nonzero bits in the binary representation of a) and $w_{i}:=j+1$ if j is the $i^{\text {th }}$ smallest member of $e(a)$.
$\delta_{E(I)} \leq \delta_{\mathbf{F S}(\nu)}$: we use $F: \subseteq \mathbb{B} \rightarrow \mathbb{B}, p \mapsto a .0^{\omega}$ where $k:=\mu i\left(p_{i}=0\right)$ and $a:=\sum\left\{2^{j} \mid j \in\right.$ $\left.\mathbb{N} \wedge(\exists i<k) p_{i}=j+1\right\}$.

3. Covering properties

For any represented spaces $(X, \delta),\left(Y, \delta^{\prime}\right)$, denote the set of $\left(\delta, \delta^{\prime}\right)$-continuous total maps $f: X \rightarrow Y$ by $C_{\mathrm{s}}\left(\delta, \delta^{\prime}\right)$.
Lemma 3.1. For computable metric spaces $(X, d, \nu),\left(Z, d^{\prime}, \nu^{\prime}\right)$ and Cauchy representation δ_{Z} of Z, the computable dense sequence $z_{i}:=\nu^{\prime}(i)(i \in \mathbb{N})$ satisfies

$$
\bigcup_{i \in \mathbb{N}} u\left(z_{i}\right)=\bigcup_{z \in Z} u(z)
$$

for any $u \in C_{s}\left(\delta_{Z}, \delta_{\Sigma_{1}^{0}(X)}\right)$. In particular,

$$
\begin{aligned}
& L^{\prime}: C_{s}\left(\delta_{Z}, \delta_{\Sigma_{1}^{0}(X)}\right) \rightarrow \Sigma_{1}^{0}(X)^{\mathbb{N}}, u \mapsto\left(u\left(z_{i}\right)\right)_{i \in \mathbb{N}}, \\
& \cup: C_{s}\left(\delta_{Z}, \delta_{\Sigma_{1}^{0}(X)}\right) \rightarrow \Sigma_{1}^{0}(X), u \mapsto \bigcup_{z \in Z} u(z)
\end{aligned}
$$

are resp. $\left(\left[\delta_{Z} \rightarrow \delta_{\Sigma_{1}^{0}(X)}\right], \delta_{\Sigma_{1}^{0}(X)}^{\omega}\right)$ - and $\left(\left[\delta_{Z} \rightarrow \delta_{\Sigma_{1}^{0}(X)}\right], \delta_{\Sigma_{1}^{0}(X)}\right)$-computable.
Lemma 3.1 plays a similar role to the Lindelöf property of separable metric spaces, albeit only for representation-continuous indexed covers. The operation of continuous intersection for closed subsets, dual to \cup, has been considered in [6].
Proof. Take
$A:=\left\{w \in \mathbb{N}^{*} \mid w \cdot \mathbb{B} \cap \operatorname{dom} \delta_{Z} \neq \emptyset\right\}=\left\{w \in \mathbb{N}^{*} \mid(\forall i, j<|w|) d^{\prime}\left(\nu^{\prime}\left(w_{i}\right), \nu^{\prime}\left(w_{j}\right)\right)<2^{-\min \{i, j\}}\right\}$.

We let $z_{i}:=\nu^{\prime}(i)=\nu^{\prime}\left(w_{|w|-1}\right)$ for $\lambda \neq w \sqsubset i^{\omega}$. Now consider $u \in C_{\mathrm{s}}\left(\delta_{Z}, \delta_{\Sigma_{1}^{0}(X)}\right)$ and a continuous realiser $F: \subseteq \mathbb{B} \rightarrow \mathbb{B}$ of u. For any $x \in X$ and $z \in Z$ such that $u(z) \ni x$ and $q \in \delta_{Z}^{-1}\{z\}$, it holds that

$$
u(z)=\left(\delta_{\Sigma_{1}^{0}(X)} \circ F\right)(q)=\bigcup\left\{\alpha\left(F(q)_{n}-1\right) \mid n \in \mathbb{N}, F(q)_{n} \geq 1\right\}
$$

we suppose $x \in \alpha(a)$ where $a+1=F(q)_{n}$. Since F is continuous, there exists $w \sqsubset q$ such that any $r \in w \cdot \mathbb{B} \cap \operatorname{dom} \delta_{Z}$ satisfies $F(r)_{n}=a+1$ and hence $\left(u \circ \delta_{Z}\right)(r) \ni x$. In particular this applies to $r=w \cdot w_{|w|-1}^{\omega} \in \delta_{Z}^{-1}\left\{\nu^{\prime}\left(w_{|w|-1}\right)\right\}=\delta_{Z}^{-1}\left\{z_{i}\right\}$ for $i=w_{|w|-1}$.

We continue this section with some results around shrinkings and swellings of covers; as in the classical case these are useful to give equivalent definitions of bounds on covering dimension. Following [9], these constructions depend on Urysohn's lemma; we specifically are interested in the effective form from [17].
Theorem 3.2. (Weihrauch [17, Thm 15]) In a computable metric space X, define

$$
U: \subseteq \Pi_{1}^{0}(X)^{2} \rightrightarrows C(X, \mathbb{R}),(A, B) \mapsto\left\{f \mid \operatorname{im} f \subseteq[0,1] \wedge f^{-1}\{0\}=A \wedge f^{-1}\{1\}=B\right\}
$$

(dom $U=\{(A, B) \mid A \cap B=\emptyset\}$). Then U is $\left(\left[\delta_{\Pi_{1}^{0}}, \delta_{\Pi_{1}^{0}}\right],\left[\delta_{X} \rightarrow \rho\right]\right)$-computable.
Definition 3.3. For any family $\mathcal{A}=\left(A_{i}\right)_{i \in I} \subseteq \mathcal{P}(X)$, a swelling of \mathcal{A} is a family $\left(B_{i}\right)_{i \in I}$ satisfying $(\forall i)\left(A_{i} \subseteq B_{i}\right)$ and

$$
\begin{equation*}
\bigcap_{j<m} B_{w_{j}}=\emptyset \Longleftrightarrow \bigcap_{j<m} A_{w_{j}}=\emptyset \tag{3.1}
\end{equation*}
$$

for any $m \geq 1, w \in I^{m}$.
Classically, any finite collection of closed subsets has an open swelling and this construction can be effectivized given suitable data on the emptiness or nonemptiness of intersections in (3.1). Dually, this result allows ($\delta_{\Sigma_{1}^{0^{-}}}^{*}$ and) subcover information for a finite open cover to be used to produce closed or open shrinkings computably. For the present paper, working with such information (coding it appropriately in representations for covers) is unnecessarily complicated; we instead consider two partial effectivisations of the proof of [9, Thm 7.1.4]. For any indexed family $\left(A_{i}\right)_{i \in I} \subseteq \mathcal{P}(X)$, the order of the family, $\operatorname{ord}\left(A_{i}\right)_{i \in I}$, is here defined as the least n such that $\bigcap_{j \leq n} A_{i_{j}}$ is empty whenever i_{0}, \ldots, i_{n} are distinct elements of I (this definition varies slightly from that in [9]).
Lemma 3.4. Let X be a computable metric space. For any $N \in \mathbb{N}$, the operation $S_{+, N}: \subseteq$ $\Pi_{1}^{0}(X)^{*} \rightrightarrows \Sigma_{1}^{0}(X)^{*}$ defined by $\operatorname{dom} S_{+, N}=\left\{\left(F_{i}\right)_{i<k} \mid\left(F_{i}\right)_{i}\right.$ of order $\left.\leq N+1\right\}$ and

$$
S_{+, N}\left(\left(F_{i}\right)_{i<k}\right)=\left\{\left(U_{i}\right)_{i<k} \mid(\forall i)\left(F_{i} \subseteq U_{i}\right) \text { and }\left(U_{i}\right)_{i<k} \text { of order } \leq N+1\right\}
$$

is $\left(\delta_{\Pi_{1}^{0}}^{*}, \delta_{\Sigma_{1}^{0}}^{*}\right)$-computable.
Proof. Assuming $\left(F_{i}\right)_{i<k} \in \operatorname{dom} S_{+, N}$, we first deal with the case $k \geq N+2$. Inductively in $n<k$, assume $f_{i} \in C(X,[0,1])$ has $F_{i} \subseteq f_{i}^{-1}\{0\}$ and $K_{i}:=f_{i}^{-1}\left[0,2^{-1}\right]$ for each $i<n$. We also assume $\left(F_{i}^{(n)}\right)_{i<k}$ is of order at most $N+1$ and $F_{i} \subseteq F_{i}^{(n)}$ for all $i<k$ where $F_{i}^{(n)}:=\left(K_{i}\right.$, if $i<n ; F_{i}$, if $\left.n \leq i<k\right)(i<k)$. Then

$$
S_{n}:=\bigcup\left\{\bigcap_{j \leq N} F_{w_{j}}^{(n)} \mid w \in[0, k)^{N+2} \text { injective with } w_{N+1}=n\right\}
$$

is closed and disjoint from $F_{n}^{(n)}=F_{n}$. By Urysohn's lemma there exists continuous f_{n} : $X \rightarrow[0,1]$ such that $F_{n} \subseteq f_{n}^{-1}\{0\}$ and $S_{n} \subseteq f_{n}^{-1}\{1\}$. Defining K_{n} and $\left(F_{i}^{(n+1)}\right)_{i<k}$ as above, we have $F_{i}^{(n)} \subseteq F_{i}^{(n+1)}$ for each $i<k$, and for $w \in[0, k)^{*}$ injective with $|w| \geq N+2$ we have

$$
\bigcap_{j<|w|} F_{w_{j}}^{(n+1)}= \begin{cases}\bigcap_{j<|w|} F_{w_{j}}^{(n)}=\emptyset, & \text { if }(\forall j<|w|)\left(w_{j} \neq n\right) \\ K_{n} \cap \bigcap_{j \neq j^{\prime}<|w|} F_{w_{j^{\prime}}}^{(n)}, & \text { if } w_{j}=n\end{cases}
$$

In step $n=k-1$ of the above induction we get $F_{i}^{(n+1)}=K_{i}$ for all $i<k$ and any injective $w \in[0, k)^{*}$ with $|w| \geq N+2$ satisfies $\bigcap_{j<|w|} K_{w_{j}}=\emptyset$. But then for $U_{i}:=f_{i}^{-1}\left[0,2^{-1}\right) \subseteq K_{i}$ $(i<k)$ it is clear $\left(U_{i}\right)_{i<k} \in S_{+, N}\left(\left(F_{i}\right)_{i<k}\right)$. Furthermore it is clear how to obtain $\delta_{\Sigma_{1}^{0}}^{*}$ information on $\left(U_{i}\right)_{i<k}$. Namely, let F and G be fixed computable realisers of the operations

$$
T^{(N)}: \subseteq \Pi_{1}^{0}(X)^{*} \times C(X, \mathbb{R})^{*} \rightarrow \Pi_{1}^{0}(X),\left(\left(F_{i}\right)_{i<k},\left(f_{i}\right)_{i<n}\right) \mapsto S_{n}
$$

$\left(\operatorname{dom} T^{(N)}=\left\{\left(\left(F_{i}\right)_{i<k},\left(f_{i}\right)_{i<n}\right) \mid n \leq k\right\}\right)$ and $U: \subseteq \Pi_{1}^{0}(X)^{2} \rightrightarrows C(X, \mathbb{R})$ (from Theorem (3.2), and $p=k .\left\langle p^{(0)}, \ldots, p^{(k-1)}, 0^{\omega}, 0^{\omega}, \ldots\right\rangle \in\left(\delta_{\Sigma_{1}^{0}}^{*}\right)^{-1}\left\{\left(F_{i}\right)_{i<k}\right\}$. Then

$$
q^{(n)}:=G\left\langle p^{(n)}, F\left\langle p, n \cdot\left\langle q^{(0)}, \ldots, q^{(n-1)}, 0^{\omega}, 0^{\omega}, \ldots\right\rangle\right\rangle\right\rangle \quad(0 \leq n<k)
$$

are $\left[\delta_{X} \rightarrow \rho\right]$-names of respective f_{n}, uniformly computable from the inputs; computability here is a matter of appropriate dovetailing. Note for the case $k \leq N+1$ the same argument works (with $S_{i}=\emptyset$ for all $i<k$); in any case, checking $\left(U_{i}\right)_{i<k}$ have order at most $N+1$ becomes trivial. This completes the proof.
Proposition 3.5. For any computable metric space X, the operations

$$
\begin{aligned}
S_{-} & : \subseteq \Sigma_{1}^{0}(X)^{*} \rightrightarrows \Pi_{1}^{0}(X)^{*},\left(U_{i}\right)_{i<k} \mapsto\left\{\left(F_{i}\right)_{i<k} \mid(\forall i)\left(F_{i} \subseteq U_{i}\right) \wedge \bigcup_{i} F_{i}=X\right\} \\
T & : \subseteq \Pi_{1}^{0}(X)^{*} \rightrightarrows \Sigma_{1}^{0}(X)^{*},\left(B_{i}\right)_{i<k} \mapsto\left\{\left(U_{i}\right)_{i<k} \mid \bigcap_{i} U_{i}=\emptyset \wedge(\forall i) B_{i} \subseteq U_{i}\right\}
\end{aligned}
$$

(dom $S_{-}=\left\{\left(U_{i}\right)_{i<k} \mid \bigcup_{i} U_{i}=X\right\}, \operatorname{dom} T=\left\{\left(B_{i}\right)_{i<k} \mid \bigcap_{i} B_{i}=\emptyset\right\}$) are resp. $\left(\delta_{\Sigma_{1}^{0}}^{*}, \delta_{\Pi_{1}^{0}}^{*}\right)$ - and $\left(\delta_{\Pi_{1}^{0}}^{*}, \delta_{\Sigma_{1}^{0}}^{*}\right)$-computable.

Proof. Inductively in $n \leq k$, suppose $\left(B_{i}^{(n)}\right)_{i<k}, f_{i} \in C(X,[0,1])$ and $K_{i}:=f_{i}^{-1}\left[0,2^{-1}\right]$ $(i<n)$ are such that $B_{i}^{(n)}=\left(K_{i}\right.$, if $i<n ; B_{i}$, if $\left.n \leq i<k\right)$. We additionally suppose that f_{i} satisfy $B_{i} \subseteq f_{i}^{-1}\{0\}$ for all $i<n$, and that $\bigcap_{i<k} B_{i}^{(n)}=\emptyset$.

Then $S_{n}:=\bigcap_{j \in[0, k) \backslash\{n\}} B_{j}^{(n)}$ is closed and disjoint from $B_{n}\left(=B_{n}^{(n)}\right)$. By Urysohn's lemma, there exists continuous $f_{n}: X \rightarrow[0,1]$ such that $B_{n} \subseteq f_{n}^{-1}\{0\}$ and $S_{n} \subseteq f_{n}^{-1}\{1\}$. Defining $K_{n},\left(B_{i}^{(n+1)}\right)_{i<k}$ as above in the case $n+1 \leq k$, we have $B_{i}^{(n)} \subseteq B_{i}^{(n+1)}$ for all $i<k$ with

$$
\bigcap_{i<k} B_{i}^{(n+1)}=\bigcap_{i \leq n} K_{i} \cap \bigcap_{n<i<k} B_{i}=\bigcap_{n \neq i<k} B_{i}^{(n)} \cap K_{n}=S_{n} \cap K_{n}=\emptyset
$$

By step k of this induction, there exist f_{i} such that $B_{i} \subseteq f_{i}^{-1}\{0\}$ and $K_{i}:=f_{i}^{-1}\left[0,2^{-1}\right]$ $(i<k)$ satisfy $B_{i} \subseteq K_{i}$ for all i and $\bigcap_{i} K_{i}=\emptyset$. Writing $U_{i}:=f_{i}^{-1}\left[0,2^{-1}\right)(i<k)$ we now have $B_{i} \subseteq U_{i} \subseteq K_{i}$ for all $i<k$ and $\bigcap_{i} U_{i}=\emptyset$. This establishes the computability of T. Then dom $S_{-}=\left\{\left(X \backslash B_{i}\right)_{i} \mid\left(B_{i}\right)_{i} \in \operatorname{dom} T\right\}$, and also $\left(F_{i}\right)_{i} \in S_{-}\left(\left(U_{i}\right)_{i}\right)$ iff $\left(X \backslash F_{i}\right)_{i} \in$ $T\left(\left(X \backslash U_{i}\right)_{i}\right)$.

4. Zero dimensional subsets

For a computable metric space X and a class $\mathcal{Y} \subseteq \mathcal{P}(X)$ of zero-dimensional or empty subsets with $|\mathcal{Y}| \leq 2^{\aleph_{0}}$, what information should be included (or more abstract requirements made) when specifying a representation $\delta \mathcal{y}$ of \mathcal{Y} ? Loosely speaking, we would like effective versions of certain theorems concerning zero-dimensionality to hold, without requiring 'unrealistically' strong information on inputs. While we are here far from an exposition that would satisfactorily answer this open-ended problem, it seems a reasonable place to start is from the definition of zero-dimensionality as presented in Section Specifically, as effectivisations of (5), (6), (1), (2) which also depend on the subspace Y in place of X we (for given $\left.X, \mathcal{Y}, \delta_{\mathcal{Y}}\right)$ consider computability of respective operations B, S, M, N, defined as below. For brevity, in case of the binary disjoint union of two sets, we often write " $E=C \dot{\cup} D$ " in place of " $C \cap D=\emptyset$ and $E=C \cup D$ ".

$$
\begin{aligned}
& B: \mathcal{Y} \rightrightarrows\left(\Sigma_{1}^{0}(X)^{2}\right)^{\mathbb{N}} \times\left(\mathbb{N}^{2}\right)^{\mathbb{N}}, \quad S: \subseteq \Sigma_{1}^{0}(X)^{\mathbb{N}} \times \mathcal{Y} \rightrightarrows \Sigma_{1}^{0}(X)^{\mathbb{N}}, \\
& M: \subseteq X \times \Sigma_{1}^{0}(X) \times \mathcal{Y} \rightrightarrows \Sigma_{1}^{0}(X)^{2}, \quad N: \subseteq \Pi_{1}^{0}(X)^{2} \times \mathcal{Y} \rightrightarrows \Sigma_{1}^{0}(X)^{2}
\end{aligned}
$$

with $\operatorname{dom} S=\left\{\left(\left(U_{i}\right)_{i}, Y\right) \mid \bigcup_{i} U_{i} \supseteq Y\right\}, \operatorname{dom} M=\{(x, U, Y) \mid x \in U\}$, $\operatorname{dom} N=$ $\{(A, B, Y) \mid A \cap B=\emptyset\}$, and

$$
\begin{aligned}
& B(Y):=\left\{\left(\left(U_{i}, V_{i}\right)_{i},\left(a_{i}, b_{i}\right)_{i}\right) \mid\left(U_{i}\right)_{i} \text { a basis for } \mathcal{T}_{X},(\forall i) Y \subseteq U_{i} \cup \dot{V} V_{i}\right. \text { and } \\
&\left.\left\{\left(a_{k}, b_{k}\right) \mid k \in \mathbb{N}\right\} \text { refined inclusion of }\left(U_{i}\right)_{i} \text { w.r.t. } \alpha\right\}, \\
& S\left(\left(V_{i}\right)_{i}, Y\right):=\left\{\left(W_{i}\right)_{i} \mid(\forall i) W_{i} \subseteq V_{i} \wedge \bigcup_{i} W_{i} \supseteq Y \text { and }\left(W_{i}\right)_{i} \text { pairwise disjoint }\right\}, \\
& M(x, U, Y):=\{(V, W) \mid x \in V \subseteq U \wedge Y \subseteq V \dot{U} W\}, \\
& N(A, B, Y):=\{(U, V) \mid A \subseteq U \wedge B \subseteq V \wedge Y \subseteq U \dot{U}\}
\end{aligned}
$$

Proposition 4.1. Let X be a computable metric space and $\mathcal{Y} \subseteq \mathcal{P}(X)$ a class of zerodimensional or empty subsets with representation δ. Then $($ (i) $) \Longrightarrow($ (ii) $) \Longrightarrow$ (iii) \Longrightarrow (iv) .
(i) $N: \subseteq \Pi_{1}^{0}(X)^{2} \times \mathcal{Y} \rightrightarrows \Sigma_{1}^{0}(X)^{2}$ is computable.
(ii) $M: \subseteq X \times \Sigma_{1}^{0}(X) \times \mathcal{Y} \rightrightarrows \Sigma_{1}^{0}(X)^{2}$ is computable.
(iii) $B: \mathcal{Y} \rightrightarrows\left(\Sigma_{1}^{0}(X)^{2}\right)^{\mathbb{N}} \times\left(\mathbb{N}^{2}\right)^{\mathbb{N}}$ is computable.
(iv) $S: \subseteq \Sigma_{1}^{0}(X)^{\mathbb{N}} \times \mathcal{Y} \rightrightarrows \Sigma_{1}^{0}(X)^{\mathbb{N}}$ is computable.

Proof.
(i) $\Longrightarrow($ (ii)): If $(x, U, Y) \in \operatorname{dom} M$ then $(\{x\}, X \backslash U, Y) \in \operatorname{dom} N$ and for any $(V, W) \in$ $N(\{x\}, X \backslash U, Y)$ it holds that $x \in V \subseteq X \backslash W \subseteq U$ and $Y \subseteq V \cup W$ (equivalently, $(V, W) \in M(x, U, Y)$ and $X \backslash U \subseteq W)$.
(ii) \Longrightarrow (iii) $:$ Consider $M^{\circ}: X \times \mathbb{N} \times \mathcal{Y} \rightrightarrows \Sigma_{1}^{0}(X)^{2}$ defined by

$$
M^{\circ}(x, i, Y)=M\left(x, B\left(x ; 2^{-i}\right), Y\right)=\left\{(V, W) \mid x \in V \subseteq B\left(x ; 2^{-i}\right) \wedge Y \subseteq V \dot{U} W\right\}
$$

If $\delta=\delta_{X}$ is Cauchy representation of X, let $G: \subseteq \mathbb{B}^{3} \rightarrow \mathbb{B}$ be a computable $\left(\delta, \delta_{\mathbb{N}}, \delta_{\mathcal{Y}} ; \delta_{\Sigma_{1}^{0}}^{2}\right)$ realiser of $M^{\circ}, Z:=\operatorname{dom} \delta$ and

$$
u_{q}^{(j)}:=\left(\delta_{\Sigma_{1}^{0}} \circ \pi_{1} \circ G\right)\left(\cdot, j .0^{\omega}, q\right): Z \rightarrow \Sigma_{1}^{0}(X) \quad\left(j \in \mathbb{N}, q \in \operatorname{dom} \delta_{y}\right) .
$$

We now can apply Lemma 3.1 to $u_{q}^{(j)}$ (with $\left(p^{(i)}\right)_{i}$ a standard enumeration of $\left\{w \cdot w_{|w|-1}^{\omega} \mid\right.$ $w \in A\} \subseteq Z$ for A as in proof of the lemma), obtaining $\bigcup_{i \in \mathbb{N}} u_{q}^{(j)}\left(p^{(i)}\right)=X$ for every $j \in \mathbb{N}$,
$q \in \operatorname{dom} \delta_{\mathcal{y}}$. If we denote

$$
B_{1}: \mathbb{N} \times \mathbb{B} \rightarrow \Sigma_{1}^{0}(X)^{2},(\langle i, j\rangle, q) \mapsto\left(\delta_{\Sigma_{1}^{0}}^{2} \circ G\right)\left(p^{(i)}, j .0^{\omega}, q\right)
$$

and $b^{\prime}:=\pi_{1} \circ B_{1}: \mathbb{N} \times \mathbb{B} \rightarrow \Sigma_{1}^{0}(X)$ then one can check each $b^{\prime}(\cdot, q)$ is a basis numbering.
Next, define

$$
\langle i, j\rangle \sqsubset^{\prime}\langle n, r\rangle: \Longleftrightarrow d\left(\delta\left(p^{(i)}\right), \nu(n)\right)+2^{-j}<\nu_{\mathbb{Q}^{+}}(r) .
$$

We show
Property 1. $\left(\sqsubset^{\prime}\right) \subseteq \mathbb{N}^{2}$ is a c.e. refined inclusion of $b^{\prime}(\cdot, q)$ w.r.t. α.

Proof of Property [1;

$$
b^{\prime}(\langle i, j\rangle, q)=u_{q}^{(j)}\left(p^{(i)}\right)=\left(\pi_{1} \circ \delta_{\Sigma_{1}^{0}}^{2} \circ G\right)\left(p^{(i)}, j .0^{\omega}, q\right) \in\left(\pi_{1} \circ M^{\circ}\right)\left(\delta\left(p^{(i)}\right), j, \delta \mathcal{Y}(q)\right)
$$

implies $\delta\left(p^{(i)}\right) \in b^{\prime}(\langle i, j\rangle, q) \subseteq B\left(\delta\left(p^{(i)}\right) ; 2^{-j}\right)$, where the latter set is included in $\alpha\langle n, r\rangle$ if $\langle i, j\rangle \sqsubset^{\prime}\langle n, r\rangle$.

Secondly, for $p \in \mathbb{B}$ and $N \in \mathbb{N}$ let p^{N} denote the prefix $p_{0} \ldots p_{N-1}$ of p. We let $s \in \mathbb{N}$, $y:=\nu\left(\pi_{1} s\right), r:=\nu_{\mathbb{Q}^{+}}\left(\pi_{2} s\right), x \in \alpha(s), p \in \delta^{-1}\{x\}$ and define

$$
H_{q}^{(j)}: \subseteq \mathbb{B} \rightarrow \mathbb{B}, p \mapsto\left(\pi_{1} \circ G\right)\left(p, j \cdot 0^{\omega}, q\right) .
$$

$H_{q}^{(j)}$ is a continuous $\left(\left.\mathrm{id}_{\mathbb{B}}\right|^{Z}, \delta_{\Sigma_{1}^{0}}\right)$-realiser of $u_{q}^{(j)}\left(q \in \operatorname{dom} \delta_{\mathcal{Y}}\right)$. Fix j with $d(x, y)+2^{-j}<r$, $l \in \mathbb{N}$ with $H_{q}^{(j)}(p)_{l} \geq 1$ and $x \in \alpha\left(H_{q}^{(j)}(p)_{l}-1\right)$ and $N \in \mathbb{N}$ with $H_{q}^{(j)}\left(\operatorname{dom} \delta \cap p^{N} . \mathbb{B}\right) \subseteq$ $H_{q}^{(j)}(p)^{l+1} \cdot \mathbb{B}$. Any $p^{\prime} \in \operatorname{dom} \delta \cap p^{N} . \mathbb{B}$ satisfies

$$
u_{q}^{(j)}\left(p^{\prime}\right)=\left(\delta_{\Sigma_{1}^{0}} \circ H_{q}^{(j)}\right)\left(p^{\prime}\right) \supseteq \bigcup\left\{\alpha\left(H_{q}^{(j)}(p)_{l^{\prime}}-1\right) \mid l^{\prime} \leq l \wedge H_{q}^{(j)}(p)_{l^{\prime}} \geq 1\right\}
$$

where the last set contains the point x. By density of $\left(p^{(i)}\right)_{i} \subseteq \operatorname{dom} \delta$, pick i with $p^{(i)} \in$ $\operatorname{dom} \delta \cap p^{N} \cdot \mathbb{B}$ and $d\left(\delta\left(p^{(i)}\right), y\right)+2^{-j}<r$. Then

$$
x \in u_{q}^{(j)}\left(p^{(i)}\right)=b^{\prime}(\langle i, j\rangle, q)\left(\subseteq B\left(\delta\left(p^{(i)}\right) ; 2^{-j}\right)\right)
$$

and $\langle i, j\rangle \sqsubset^{\prime} s$. This completes the proof of Property $\mathbb{1}$.
Finally we show $B: \mathcal{Y} \rightrightarrows\left(\Sigma_{1}^{0}(X)^{2}\right)^{\mathbb{N}} \times\left(\mathbb{N}^{2}\right)^{\mathbb{N}}$ is computable. Fix $h \in R^{(1)}$ such that $\operatorname{im} h=\left\{\langle a, b\rangle \mid a \sqsubset^{\prime} b\right\}$ and consider as a realiser the map $I: \subseteq \mathbb{B} \rightarrow \mathbb{B}$ defined by

$$
I(q):=\left\langle\left\langle r^{(0)}, r^{(1)}, \ldots\right\rangle,\left\langle s^{(0)}, s^{(1)}, \ldots\right\rangle\right\rangle
$$

where $r^{(\langle i, j\rangle)}=G\left(p^{(i)}, j .0^{\omega}, q\right)$ and $s^{(k)}=\left\langle\pi_{1} h(k) .0^{\omega}, \pi_{2} h(k) .0^{\omega}\right\rangle(i, j, k \in \mathbb{N})$. That is, take $\left(U_{i}, V_{i}\right):=\left(\delta_{\Sigma_{1}^{0}}^{2} \circ G\right)\left(p^{\left(\pi_{1} i\right)}, \pi_{2} i .0^{\omega}, q\right)=B_{1}(i, q)$ and $\left\langle a_{i}, b_{i}\right\rangle:=h(i)$ for each i, so $\left(U_{i}\right)_{i}$ gives the basis numbering $b^{\prime}(\cdot, q)$ and $\left(a_{i}, b_{i}\right)_{i}$ gives the relation \sqsubset^{\prime} independent of q.

For a fixed $q \in \operatorname{dom} \delta \mathcal{y}$, observe $\left(U_{i}, V_{i}\right) \in M^{\circ}\left(\delta\left(p^{\left(\pi_{1} i\right)}\right), \pi_{2} i, \delta_{\mathcal{Y}}(q)\right)$ implies $\delta\left(p^{\left(\pi_{1} i\right)}\right) \in$ $U_{i} \subseteq B\left(\delta\left(p^{\left(\pi_{1} i\right)}\right) ; 2^{-\pi_{2} i}\right)$ and $\delta_{\mathcal{Y}}(q) \subseteq U_{i} \cup V_{i}$. Then $\left(\left(U_{i}, V_{i}\right)_{i},\left(a_{i}, b_{i}\right)_{i}\right) \in\left(B \circ \delta_{\mathcal{Y}}\right)(q)$ trivially.
(iii) \Longrightarrow (iv)): This proof derives from [11, §26.II, Thm 1]. Assume we are given $\left(\left(V_{i}\right)_{i}, Y\right) \in \operatorname{dom} S,\left(\left(T_{i}, U_{i}\right)_{i \in \mathbb{N}},\left(a_{k}, b_{k}\right)_{k}\right) \in B(Y)$ and $\left\langle p^{(0)}, p^{(1)}, \ldots\right\rangle \in\left(\delta_{\Sigma_{1}^{0}(X)}^{\omega}\right)^{-1}\left\{\left(V_{i}\right)_{i \in \mathbb{N}}\right\}$. For each i enumerate (0 for each j s.t. $p_{j}^{(i)}=0 ; a_{k}+1$ for any j, k s.t. $p_{j}^{(i)}=b_{k}+1$). By definition of B, \sqsubset^{\prime} defined in $\left(a_{k}, b_{k}\right)_{k}$ is a refined inclusion of $\left(T_{i}\right)_{i}$ with respect to α, so for any $b \in \mathbb{N}$ and $x \in X$ there exists $k \in \mathbb{N}$ such that $x \in \alpha(b)$ implies $x \in T_{a_{k}}$ and $b_{k}=b$.

Since $\emptyset \neq \operatorname{im} \alpha \not \not \emptyset \emptyset$, this implies $\left\{b_{k} \mid k \in \mathbb{N}\right\}=\operatorname{dom} \alpha=\mathbb{N}$, so output is infinite for each i - say this output is $q^{(i)} \in \mathbb{B}$.

$$
\text { Now, let }\left(T_{i, j}, U_{i, j}\right):=\left\{\begin{array}{ll}
(\emptyset, \emptyset), & \text { if } q_{j}^{(i)}=0 \\
\left(T_{a}, U_{a}\right), & \text { if } q_{j}^{(i)}=a+1
\end{array}(j \in \mathbb{N}) . \text { We have }(\forall i) V_{i}=\bigcup_{j} T_{i, j}\right.
$$

Also

$$
W_{i, j}^{*}:=T_{i, j} \cap \bigcap_{\langle k, l\rangle<\langle i, j\rangle} U_{k, l} \subseteq T_{i, j} \cap \bigcap_{\langle k, l\rangle<\langle i, j\rangle}\left(X \backslash T_{k, l}\right)=T_{i, j} \backslash \bigcup_{\langle k, l\rangle<\langle i, j\rangle} T_{k, l} \quad(i, j \in \mathbb{N})
$$

are pairwise disjoint with $\delta_{\Sigma_{1}^{0}}$-information available uniformly in i, j and the inputs. Then $W_{i}:=\bigcup_{j} W_{i, j}^{*}\left(\subseteq V_{i}, i \in \mathbb{N}\right)$ are pairwise disjoint with a $\delta_{\Sigma_{1}^{0}}^{\omega}$-name of $\left(W_{i}\right)_{i}$ available. Finally, any $x \in\left(\bigcup_{i} V_{i}\right) \backslash\left(\bigcup_{i^{\prime}} W_{i^{\prime}}\right)=\left(\bigcup_{i, j} T_{i, j}\right) \backslash\left(\bigcup_{i, j} W_{i, j}^{*}\right)$ has $x \notin Y$ by an argument we now elaborate. First, denote $Z_{k}:=T_{\pi_{1} k, \pi_{2} k}$ and $Z_{k}^{*}:=W_{\pi_{1} k, \pi_{2} k}^{*}(k \in \mathbb{N})$. Then one can check

$$
\begin{equation*}
Y \cap \bigcup_{k<l} Z_{k} \subseteq \bigcup_{k<l} Z_{k}^{*} \tag{4.1}
\end{equation*}
$$

inductively. Namely, assume (4.1) for some $l \in \mathbb{N}$ (this is trivially true for $l=0$). Then $Z_{k}^{*}=Z_{k} \cap \bigcap_{k^{\prime}<k} U_{\pi_{1} k^{\prime}, \pi_{2} k^{\prime}} \subseteq Z_{k} \backslash \bigcup_{k^{\prime}<k} \overline{Z_{k^{\prime}}}$ and $\left(\forall k^{\prime}\right) Y \subseteq T_{k^{\prime}} \cup U_{k^{\prime}}$ imply

$$
Y \cap Z_{k} \subseteq\left(Y \cap Z_{k}^{*}\right) \cup \bigcup_{k^{\prime}<k}\left(Y \backslash U_{\pi_{1} k^{\prime}, \pi_{2} k^{\prime}}\right) \subseteq Z_{k}^{*} \cup \bigcup_{k^{\prime}<k}\left(Y \cap Z_{k^{\prime}}\right)
$$

for all $k \in \mathbb{N}$, in particular

$$
Y \cap \bigcup_{k \leq l} Z_{k} \subseteq \bigcup_{k \leq l}\left(Z_{k}^{*} \cup \bigcup_{k^{\prime}<k}\left(Y \cap Z_{k^{\prime}}\right)\right)=\bigcup_{k \leq l} Z_{k}^{*} \cup \bigcup_{k<l}\left(Y \cap Z_{k}\right) \subseteq \bigcup_{k \leq l} Z_{k}^{*}
$$

by inductive assumption. So, we established $Y=Y \cap \bigcup_{i} V_{i}=Y \cap \bigcup_{i, j} T_{i, j}=Y \cap \bigcup_{k} Z_{k} \subseteq$ $\bigcup_{k} Z_{k}^{*}=\bigcup_{i, j} W_{i, j}^{*}=\bigcup_{i} W_{i} \subseteq \bigcup_{i} V_{i}$, and in particular $\left(W_{i}\right)_{i}$ is a cover of Y. This proves computability of S.

At least two implications in Proposition 4.1 could be improved to results concerning Weihrauch reducibility ([7) between the mentioned operations. If e.g. each operation $M(\cdot, \cdot, Y)(Y \in \mathcal{Y})$ is guaranteed to possess realisers of a given represented class, then a corresponding enriched representation $\delta_{y, M}$ can also be defined. For the purposes of the present paper, we do not study these notions further; in particular, we have not separated the conditions of computability for N, M, B, S. We mainly consider a situation where Proposition 4.1 is applied to $Y=X$ (in Section 5 and thereafter in Sections 7 and 8).

5. Zero-dimensional spaces

Less broadly than in Section (4, one can ask what constitutes a useful nonuniform definition of effectively zero-dimensional computable metric space; more generally, this might be addressed for closed effectively separable subspaces. In this paper we consider the problem for $Y=X$ only ${ }^{1}$. We consider computability of the following operations, again based on (11)-(6) in Section (1)

$$
\begin{aligned}
& \tilde{S}=\tilde{S}^{X}: \Sigma_{1}^{0}(X)^{\mathbb{N}} \rightrightarrows \Sigma_{1}^{0}(X)^{\mathbb{N}}, \quad R=R^{X}: \subseteq \Sigma_{1}^{0}(X)^{\mathbb{N}} \rightarrow \Delta_{1}^{0}(X)^{\mathbb{N}}, \\
& M: \subseteq X \times \Sigma_{1}^{0}(X) \rightrightarrows \Delta_{1}^{0}(X), \quad N: \subseteq \Pi_{1}^{0}(X)^{2} \rightrightarrows \Delta_{1}^{0}(X)
\end{aligned}
$$

[^1]with $\operatorname{dom} R^{X}=\left\{\left(V_{i}\right)_{i} \mid\left(V_{i}\right)_{i}\right.$ pairwise disjoint with $\left.\bigcup_{i} V_{i}=X\right\}$, $\operatorname{dom} M=\{(x, U) \mid x \in$ $U\}, \operatorname{dom} N=\{(A, B) \mid A \cap B=\emptyset\}, R^{X}\left(\left(V_{i}\right)_{i}\right)=\left(V_{i}\right)_{i}$ and
\[

$$
\begin{aligned}
\tilde{S}^{X}\left(\left(U_{i}\right)_{i}\right) & =\left\{\left(W_{i}\right)_{i} \mid\left(W_{i}\right)_{i} \text { pairwise disjoint with } W_{i} \subseteq U_{i} \text { and } \bigcup_{i} W_{i}=\bigcup_{i} U_{i}\right\}, \\
M(x, U) & =\left\{W \in \Delta_{1}^{0}(X) \mid x \in W \subseteq U\right\} \\
N(A, B) & =\{W \mid A \subseteq W \wedge B \subseteq X \backslash W\}
\end{aligned}
$$
\]

Except for R^{X} these operations are related to those defined in Section 4. For instance, label temporarily the new operation as N^{\prime} and suppose X is zero-dimensional, with $\mathcal{Y} \ni X$ and some computable $p \in \operatorname{dom} \delta \mathcal{y}$ such that $\delta_{\mathcal{Y}}(p)=X$. Then

$$
N \text { computable } \Longrightarrow N(\cdot, \cdot, X) \text { computable } \Longleftrightarrow N^{\prime} \text { computable. }
$$

If also $\mathcal{Y}=\{X\}$, we can derive full equivalence (using definition of product representations). The situation is similar for the operations M, B and S (here compared to a suitable restriction of \tilde{S}^{X}), e.g. for B this leads to the condition (11) in the following
Proposition 5.1. Let X be a computable metric space. Then the following conditions are equivalent:
(1) There exist computable $b: \mathbb{N} \rightarrow \Delta_{1}^{0}(X)$ and c.e. refined inclusion of b with respect to α such that $\mathcal{B}:=\operatorname{im} b$ is a basis for \mathcal{T}_{X}.
(2) The operation N is computable.
(3) The operation $\bar{M}: \subseteq X \times \Pi_{1}^{0}(X) \rightrightarrows \Delta_{1}^{0}(X),(x, A) \mapsto N(\{x\}, A)$ is computable, where $\operatorname{dom} \bar{M}=\{(x, A) \mid x \notin A\}$.
(4) The operation M is computable.
(5) The operation $\dot{C}^{\omega}: \subseteq \Sigma_{1}^{0}(X)^{\mathbb{N}} \rightrightarrows \Sigma_{1}^{0}(X)^{\mathbb{N}} \times \mathbb{B}$ is computable, where

$$
\dot{C}^{\omega}\left(\left(U_{i}\right)_{i}\right)=\left\{\left(\left(W_{i}\right)_{i}, r\right) \mid\left(W_{i}\right)_{i} \text { pairwise disjoint, } \bigcup_{i} W_{i}=X,(\forall i) W_{i} \subseteq U_{r_{i}}\right\}
$$

and $\operatorname{dom} \dot{C}^{\omega}=\left\{\left(U_{i}\right)_{i} \mid \bigcup_{i} U_{i}=X\right\}$.
(6) The operation $C^{\omega}:=\left.\tilde{S}\right|_{\text {dom } \dot{C}^{\omega}}$ is computable.
(7) The operation $R^{X} \circ C^{\omega} \circ L^{\prime}$ is computable for every computable metric space $\left(Z, d^{\prime}, \nu^{\prime}\right)$.
(8) The operation $C^{*}: \subseteq \Sigma_{1}^{0}(X)^{*} \rightrightarrows \Sigma_{1}^{0}(X)^{*}$ is computable where

$$
\begin{aligned}
& C^{*}\left(\left(U_{i}\right)_{i<k}\right)=\left\{\left(V_{j}\right)_{j<k} \mid(\forall i<k)\left(V_{i} \subseteq U_{i}\right), \bigcup_{j} V_{j}=X,(\forall i, j<k)\left(i \neq j \Longrightarrow V_{i} \cap V_{j}=\emptyset\right)\right\} \\
& \quad \text { and dom } C^{*}=\left\{\left(U_{i}\right)_{i<n} \mid n \in \mathbb{N} \wedge \bigcup_{i} U_{i}=X\right\} .
\end{aligned}
$$

Note the conditions (22), (3) and (8) correspond to definitions of large and small inductive dimension, and (loosely speaking) of covering dimension, respectively.
Proof.
(11) \Longrightarrow (6): Follows from Proposition 4.1 (iii)) \Longrightarrow (iv)).

Remark 5.2. A simpler effectivization of [11, $\S 26 . I I, T h m 1]$ shows that \tilde{S} is $\left(\delta_{\Sigma_{1}^{0}}^{\omega}, \delta_{\Sigma_{1}^{0}}^{\omega}\right)$ computable under the same assumption.
(6) \Longrightarrow (8): Trivial. See Lemma 6.2 (11) \Longrightarrow (3)) for an extension.
(8) \Longrightarrow (2): Consider arbitrary disjoint closed $A, B \subseteq X$. Then $\left(U_{i}\right)_{i<2}=(X \backslash A, X \backslash B)$ has $\bigcup_{i} U_{i}=X$ and any $\left(W_{i}\right)_{i<2} \in C^{*}\left(\left(U_{i}\right)_{i}\right)$ satisfies $W_{1}=X \backslash W_{0} \supseteq A$ and $X \backslash W_{1} \supseteq B$, hence $W_{1} \in N(A, B)$. Also N is computable using $\delta_{\Delta_{1}^{0}}$ information on W_{1} (more formally, use the second projection from $\left.R\left(W_{0}, W_{1}, \emptyset, \emptyset, \ldots\right)\right)$.
(21) \Longrightarrow (4): Follows from Proposition 4.1)(i)] ((ii)].
(3) \Longleftrightarrow (4) $:(x, U) \in \operatorname{dom} M \Longleftrightarrow(x, X \backslash U) \in \operatorname{dom} \bar{M}$ with $\bar{M}(x, X \backslash U)=M(x, U)$ for any such x, U.
(4) \Longrightarrow (11): Follows from Proposition 4.1)(ii) \Longrightarrow (iii)).
(6) \Longrightarrow (77): Use Lemma 3.1, the closure scheme of composition (for partial functions) and computability of $R^{X}: \subseteq \Sigma_{1}^{0}(X)^{\mathbb{N}} \rightarrow \Delta_{1}^{0}(X)^{\mathbb{N}}$. Namely, the latter has a computable realiser $F: \subseteq \mathbb{B} \rightarrow \mathbb{B}$ defined by

$$
F(p)\langle i, 2\langle k, j\rangle+z\rangle= \begin{cases}p_{\langle i,\langle k, j\rangle\rangle}, & \text { if } z=0 \\ p_{\langle k, j\rangle}, & \text { if } z=1 \wedge k \neq i \\ p_{\langle i+1, j\rangle}, & \text { if } z=1 \wedge k=i\end{cases}
$$

Then $F\left\langle p^{(0)}, p^{(1)}, \ldots\right\rangle=\left\langle\left\langle p^{(0)}, q^{(0)}\right\rangle,\left\langle p^{(1)}, q^{(1)}\right\rangle, \ldots\right\rangle$ where $\left\{q_{j}^{(i)}-1 \mid j \in \mathbb{N}, q_{j}^{(i)} \geq 1\right\}=$ $\left\{p_{j}^{(k)}-1 \mid j, k \in \mathbb{N}, k \neq i, p_{j}^{(k)} \geq 1\right\}$ for each i.
(77) \Longrightarrow (6): Take $Z=\mathbb{N}, \nu^{\prime}=\operatorname{id}_{\mathbb{N}}$; then L^{\prime} from Lemma 3.1 is the identity on $\Sigma_{1}^{0}(X)^{\mathbb{N}}$, and R^{X} has a computable left-inverse.
(6) \Longleftrightarrow (5): Essentially trivial. See Lemma (6.2) (11) \Longleftrightarrow (22)) for an extension.

6. Covering dimension

For a normal topological space X and $n \in\{-1\} \cup \mathbb{N}$, write $\operatorname{dim} X \leq n$ if any finite open cover of X has a finite open refinement of order at most $n+1$; write $\operatorname{dim} X=n$ if $\operatorname{dim} X \leq k$ fails exactly when $k<n$, or $\operatorname{dim} X=\infty$ if $\operatorname{dim} X \leq k$ fails for all $k \geq-1$. $\operatorname{dim} X$ is the (Lebesgue-Čech) covering dimension. We first recall several classically equivalent forms of the definition.

Theorem 6.1. (15, Thm 4.3.5]) For a nonempty separable metric space X and $n \in \mathbb{N}$, the following conditions are equivalent:
(1) $\operatorname{dim} X \leq n(\Longleftrightarrow \operatorname{dim} X<n+1)$,
(2) every open cover \mathcal{U} of X has a locally finite closed refinement \mathcal{V} with order $\leq n+1$,
(3) every open cover \mathcal{U} of X has an open refinement \mathcal{V} with order $\leq n+1$,
(4) every open cover \mathcal{U} of X has a closed shrinking \mathcal{V} with order $\leq n+1$,
(5) every open cover \mathcal{U} of X has an open shrinking \mathcal{V} with order $\leq n+1$,
(6) every finite open cover \mathcal{U} of X has a closed shrinking \mathcal{V} with order $\leq n+1$,
(7) every finite open cover \mathcal{U} of X has an open shrinking \mathcal{V} with order $\leq n+1$.

Leaving $N \in \mathbb{N}$ fixed we next consider some effective versions of several such conditions, including (11), (3), (5), (6) and (7) above. Define $C^{\sigma}: \subseteq \Sigma_{1}^{0}(X)^{\sigma} \rightrightarrows \Sigma_{1}^{0}(X)^{\sigma}$, $\dot{C}^{\sigma}: \subseteq \Sigma_{1}^{0}(X)^{\sigma} \rightrightarrows \Sigma_{1}^{0}(X)^{\sigma} \times \mathbb{N}^{\sigma}(\sigma=*, \omega), \bar{C}: \subseteq \Sigma_{1}^{0}(X)^{*} \rightrightarrows \Pi_{1}^{0}(X)^{*}$ and $\bar{C}: \subseteq \Sigma_{1}^{0}(X)^{*} \rightrightarrows$ $\Pi_{1}^{0}(X)^{*} \times \mathbb{N}^{*}$ by

$$
\begin{aligned}
& C^{\sigma}\left(\left(U_{i}\right)_{i}\right)=\left\{\left(W_{i}\right)_{i} \mid\left(W_{i}\right)_{i} \text { shrinking of }\left(U_{i}\right)_{i} \text { of order } \leq N+1\right\} \\
& \dot{C}^{*}\left(\left(U_{i}\right)_{i<k}\right)=\left\{\left(\left(W_{j}\right)_{j<l}, r\right)| | r \mid=l,(\forall j<l) W_{j} \subseteq U_{r_{j}},\left(W_{j}\right)_{j} \text { cover of order } \leq N+1\right\} \\
& \dot{C}^{\omega}\left(\left(U_{i}\right)_{i \in \mathbb{N}}\right)=\left\{\left(\left(W_{i}\right)_{i}, r\right) \mid(\forall j) W_{j} \subseteq U_{r_{j}},\left(W_{j}\right)_{j} \text { cover of order } \leq N+1\right\} \\
& \bar{C}\left(\left(U_{i}\right)_{i<k}\right)=\left\{\left(F_{i}\right)_{i<k} \mid\left(F_{i}\right)_{i} \text { shrinking of }\left(U_{i}\right)_{i} \text { of order } \leq N+1\right\} \\
& \dot{\bar{C}}\left(\left(U_{i}\right)_{i<k}\right)=\left\{\left(\left(F_{j}\right)_{j<l}, r\right)| | r \mid=l,(\forall j<l) F_{j} \subseteq U_{r_{j}},\left(F_{j}\right)_{j} \text { cover of order } \leq N+1\right\}
\end{aligned}
$$

Here $\operatorname{dom} C^{\sigma}=\operatorname{dom} \dot{C}^{\sigma}=\left\{\left(U_{i}\right)_{i} \in \Sigma_{1}^{0}(X)^{\sigma} \mid \bigcup_{i} U_{i}=X\right\}$ and $\operatorname{dom} \bar{C}=\operatorname{dom} \dot{\bar{C}}=\operatorname{dom} C^{*}$. The following lemma includes an effective version of [9, Thm 7.1.7] and extends parts of Proposition 5.1.

Lemma 6.2. For a computable metric space X and $N \in \mathbb{N}$, consider the following conditions.
(1) C^{ω} is $\left(\delta_{\Sigma_{1}^{0}}^{\omega}, \delta_{\Sigma_{1}^{0}}^{\omega}\right)$-computable.
(2) \dot{C}^{ω} is $\left(\delta_{\Sigma_{1}^{0}}^{\omega},\left[\delta_{\Sigma_{1}^{0}}^{\omega}, \mathrm{id}_{\mathbb{B}}\right]\right)$-computable.
(3) C^{*} is $\left(\delta_{\Sigma_{1}^{0}}^{*}, \delta_{\Sigma_{1}^{0}}^{*}\right)$-computable.
(4) \dot{C}^{*} is $\left(\delta_{\Sigma_{1}^{0}}^{*},\left[\delta_{\Sigma_{1}^{0}}^{*}, \delta_{\mathbb{N}^{*}}\right]\right)$-computable.
(5) \bar{C} is $\left(\delta_{\Sigma_{1}^{0}}^{*}, \delta_{\Pi_{1}^{0}}^{*}\right)$-computable.
(6) $\dot{\bar{C}}$ is $\left(\delta_{\Sigma_{1}^{0}}^{*},\left[\delta_{\Pi_{1}^{0}}^{*}, \delta_{\mathbb{N}^{*}}\right]\right)$-computable.

Then (3), (41), (5) and (6) are equivalent. Also (1) \Longleftrightarrow (21) \Longrightarrow (3).
Proof.
(11) \Longrightarrow (2): trivial (take $r=\mathrm{id}_{\mathbb{N}}$); (3) \Longrightarrow (4): take $l=k, r=01 \ldots(k-1) \in \mathbb{N}^{*}$;
(44) \Longrightarrow (3): let $\left(\left(V_{j}\right)_{j<l}, r\right) \in \dot{C}^{*}\left(\left(U_{i}\right)_{i<k}\right)$ and $W_{i}:=\bigcup\left\{V_{j} \mid j<l, r_{j}=i\right\}(i<k)$. Then

$$
\bigcap_{j \leq N+1} W_{i_{j}}=\bigcup\left\{\bigcap_{m=0}^{N+1} V_{j_{m}} \mid \vec{j} \in[0, l)^{N+2} \wedge(\forall m \leq N+1) r_{j_{m}}=i_{m}\right\}=\emptyset
$$

for any distinct indices $i_{0}, \ldots, i_{N+1}<k$ (for, any such \vec{j} is injective and $\left(V_{i}\right)_{i<l}$ has order at most $N+1$).
(21) \Longrightarrow (11): Let $\left(\left(V_{j}\right)_{j \in \mathbb{N}}, r\right) \in \dot{C}^{\omega}\left(\left(U_{i}\right)_{i \in \mathbb{N}}\right)$ and $W_{i}:=\bigcup\left\{V_{j} \mid j \in \mathbb{N}, r_{j}=i\right\}(i \in \mathbb{N})$.
(11) \Longrightarrow (3): $\left(W_{i}\right)_{i \in \mathbb{N}} \in C^{\omega}\left(U_{0}, \ldots, U_{k-1}, \emptyset, \emptyset, \ldots\right)$ implies $W_{i}=\emptyset$ for all $i \geq k$.
(5) \Longleftrightarrow (6): same as (3) \Longleftrightarrow (4). (3) \Longrightarrow (5): if $\left(V_{i}\right)_{i<k} \in C^{*}\left(\left(U_{i}\right)_{i<k}\right)$, applying Proposition 3.5 gives in particular $\left(F_{i}\right)_{i<k} \in S_{-}\left(\left(V_{i}\right)_{i<k}\right)$ which is a closed cover with $(\forall i) F_{i} \subseteq V_{i} \subseteq U_{i}$. Any string of indices $w \in[0, k)^{*}$ has $\bigcap_{j<|w|} F_{w_{j}} \subseteq \bigcap_{j<|w|} V_{w_{j}}$, so $\left(F_{i}\right)_{i<k}$ is of order at most $N+1$ also.
(5) \Longrightarrow (3): Given a finite open cover $\left(V_{i}\right)_{i<k}$ and $\left(F_{i}\right)_{i<k} \in \bar{C}\left(\left(V_{i}\right)_{i<k}\right)$, apply Lemma 3.4 to obtain $\left(U_{i}\right)_{i<k} \in S_{+, N}\left(\left(F_{i}\right)_{i<k}\right)$. By definition, $\left(F_{i}\right)_{i<k},\left(U_{i}\right)_{i<k}$ both have order at most $N+1$, and $\left(U_{i}\right)_{i<k}$ is a cover since $\left(F_{i}\right)_{i<k}$ is. By computability of \bar{C} and $S_{+, N}$ we obtain $\delta_{\Sigma_{1}^{0}}^{*}$-information on $\left(U_{i}\right)_{i<k}$.

In view of the results of Lemma 6.2 (and the classical definition of covering dimension) it seems reasonable to make the following

Definition 6.3. Let (X, d, ν) be a computable metric space. If Condition (4) of Lemma 6.2) holds (equivalently, (3)), say X is effectively of covering dimension at most N.

Further equivalent conditions for $\operatorname{dim} X \leq n$ can also be investigated. Here we will restrict ourselves to considering a couple of operations of fixed arity $N+2$. If X is a computable metric space and $N \in \mathbb{N}$, define $C: \subseteq \Sigma_{1}^{0}(X)^{N+2} \rightrightarrows \Sigma_{1}^{0}(X)^{N+2}$ by

$$
C\left(\left(U_{i}\right)_{i \leq N+1}\right)=\left\{\left(W_{i}\right)_{i \leq N+1} \mid(\forall i)\left(W_{i} \subseteq U_{i}\right) \wedge \bigcup_{i} W_{i}=X \wedge \bigcap_{i} W_{i}=\emptyset\right\} ;
$$

here $\operatorname{dom} C=\left\{\left(U_{i}\right)_{i \leq N+1} \mid \bigcup_{i} U_{i}=X\right\}$. Then we have the following (cf. the classical results [9, Lemma 7.2.13, Cor 7.2.14])

Theorem 6.4. Let X be a computable metric space and $N \in \mathbb{N}$. Then the following are equivalent:
(1) C^{*} is computable.
(2) C is $\left(\delta_{\Sigma_{1}^{0}(X)}^{N+2}, \delta_{\Sigma_{1}^{0}(X)}^{N+2}\right)$-computable.
(3) D is computable, where $D: \subseteq \Pi_{1}^{0}(X)^{N+2} \rightrightarrows \Pi_{1}^{0}(X)^{N+2}$ with dom $D:=\left\{\left(B_{i}\right)_{i \leq N+1} \mid\right.$ $\left.\bigcap_{i} B_{i}=\emptyset\right\}$ and

$$
D\left(\left(B_{i}\right)_{i \leq N+1}\right) \ni\left(F_{i}\right)_{i \leq N+1}: \Longleftrightarrow(\forall i)\left(B_{i} \subseteq F_{i}\right) \wedge \bigcup_{i} F_{i}=X \wedge \bigcap_{i} F_{i}=\emptyset .
$$

Proof.
(11) \Longrightarrow (2): Any realiser of C^{*}, given a $\delta_{\Sigma_{1}^{0}(X)}^{*}$-name of $\left(U_{i}\right)_{i \leq N+1}$, computes a name of some shrinking $\left(W_{i}\right)_{i \leq N+1}$ with order at most $N+1$, i.e. $\bigcap_{i \leq N+1} W_{i}=\emptyset$. Since $\left.\delta_{\Sigma_{1}^{0}(X)}^{*}\right|^{\Sigma_{1}^{0}(X)^{N+2}} \equiv$ $\delta_{\Sigma_{1}^{0}(X)}^{N+2}$ the result follows.
(2) \Longrightarrow (1): Given $\left(U_{i}\right)_{i<m} \in \operatorname{dom} C^{*}$, note it is trivially a shrinking of itself of order at most $N+1$ if $m<N+2$ (then no $\vec{i} \in[0, m)^{N+2}$ is injective). If $m=N+2$, clearly it is enough to apply C. If $m>N+2$ we can apply C several times, as follows. First, given $\left(U_{i}\right)_{i<m} \in \operatorname{dom} C^{*}$, compute some $\left(A_{l}\right)_{l<L} \subseteq E(\mathbb{N})$ enumerating all $A \subseteq[0, m)$ with $|A|=N+1$; this can be done computably in m, N. Define $H: \subseteq \Sigma_{1}^{0}(X)^{*} \times E(\mathbb{N}) \rightrightarrows \Sigma_{1}^{0}(X)^{*}$ by dom $H=\left\{\left(\left(U_{i}\right)_{i<m}, A\right)\left|\bigcup_{i} U_{i}=X, A \subseteq[0, m),|A|=N+1\right\}\right.$ and

$$
\begin{array}{r}
H\left(U_{0} \ldots U_{m-1}, A\right)=\left\{\left(V_{i}\right)_{i<m} \mid\left(\exists W \in \Sigma_{1}^{0}(X)\right)\left(V_{i_{0}} \ldots V_{i_{N}} ; W\right) \in C\left(U_{i_{0}} \ldots U_{i_{N}} ; \bigcup_{A \not \supset i<m} U_{i}\right),\right. \\
\left.\quad(\forall j<N)\left(i_{j}<i_{j+1}\right), A=\left\{i_{j} \mid j \leq N\right\} \text { and }(\forall i<m)\left(i \notin A \Longrightarrow V_{i}=W \cap U_{i}\right)\right\} .
\end{array}
$$

One checks H is computable, since C, binary union and intersection for open sets and relevant operations with finite sets are computable. In particular, the (inner to outer) composition of $H\left(\cdot, A_{k}\right)(k<L)$ is computable.

We write $V_{i}^{(0)}:=U_{i}(i<m)$ and $\left(V_{i}^{(k+1)}\right)_{i<m} \in H\left(\left(V_{i}^{(k)}\right)_{i<m}, A_{k}\right)$ for $k<L$. Then it is sufficient to prove the following property holds inductively:
Property 2. $\left(V_{i}^{(k)}\right)_{i<m}$ is a shrinking of $\left(V_{i}^{(0)}\right)_{i<m}$ with $V_{i}^{(k)} \cap \bigcap_{j \in A_{l}} V_{j}^{(k)}=\emptyset$ if $l<k$, $m>i \notin A_{l}$.

Trivially Property 2 holds for $k=0$. For the inductive case, any $i<m$ has either $i \notin A_{k}$ (so $V_{i}^{(k+1)}=W \cap V_{i}^{(k)} \subseteq V_{i}^{(k)}$, where W depends on k) or $i \in A_{k}$, say $i=i_{j}$ (where $i_{0}<\cdots<i_{N}$ are all the elements of A_{k}). In the latter case, $V_{i}^{(k+1)}=V_{i_{j}}^{(k+1)} \subseteq V_{i_{j}}^{(k)}=V_{i}^{(k)}$. Also,

$$
\bigcup_{i<m} V_{i}^{(k+1)}=\bigcup_{i \in A_{k}} V_{i}^{(k+1)} \cup\left(\bigcup_{m>i \notin A_{k}} W \cap V_{i}^{(k)}\right)=\bigcup_{i \in A_{k}} V_{i}^{(k+1)} \cup W=X
$$

so $\left(V_{i}^{(k+1)}\right)_{i<m}$ is a shrinking of $\left(V_{i}^{(k)}\right)_{i<m}$. Now consider A_{l} where $l<k$; for $m>i \notin A_{l}$ we have

$$
\bigcap_{j \in A_{l}} V_{j}^{(k+1)} \cap V_{i}^{(k+1)} \subseteq \bigcap_{j \in A_{l}} V_{j}^{(k)} \cap V_{i}^{(k)}=\emptyset
$$

If instead $l=k$ and $i \notin A_{k}$ then

$$
\bigcap_{j \in A_{k}} V_{j}^{(k+1)} \cap V_{i}^{(k+1)} \subseteq \bigcap_{j \leq N} V_{i_{j}}^{(k+1)} \cap W=\emptyset .
$$

Using the above induction, after L steps we have dealt with each $A_{k}(k<L)$. But then Property 2 means $\left(V_{i}^{(L)}\right)_{i<m}$ is a shrinking of $\left(U_{i}\right)_{i<m}$ of order at most $N+1$.
(2) \Longleftrightarrow (3): $\operatorname{dom} D=\left\{\left(B_{i}\right)_{i \leq N+1} \mid\left(X \backslash B_{i}\right)_{i \leq N+1} \in \operatorname{dom} C\right\}$, with $\left(F_{i}\right)_{i \leq N+1} \in D\left(\left(B_{i}\right)_{i \leq N+1}\right)$ iff $\left(X \backslash F_{i}\right)_{i \leq N+1} \in C\left(\left(X \backslash B_{i}\right)_{i \leq N+1}\right)$.

7. Compact subsets and an application

In this section our intention is to present some consequences of assuming that X effectively has covering dimension at most 0 . In fact, as we will be dealing with total boundedness it is convenient to make a stronger assumption than in Sections 5 and 6 , incorporating effective compactness. For working with computability of compact subsets we will assume familiarity with [5], though our notation will be slightly different. Any $w \in \mathbb{N}^{*}$ codes an ideal cover, namely the finite collection of open sets $\alpha\left(w_{i}\right)(i<|w|)$. Informally, a $\delta_{\text {cover-name of }}$ $K \in \mathcal{K}(X)$ is an unpadded list consisting of $\langle w\rangle$ for every ideal cover w which covers K.
Definition 7.1. Ideal covers $u, v \in \mathbb{N}^{*}$ are formally disjoint if

$$
(\forall i<|u|)(\forall j<|v|) d\left(\nu\left(\pi_{1} u_{i}\right), \nu\left(\pi_{1} v_{j}\right)\right)>\nu_{\mathbb{Q}^{+}}\left(\pi_{2} u_{i}\right)+\nu_{\mathbb{Q}^{+}}\left(\pi_{2} v_{j}\right)
$$

For any ideal cover $u \in \mathbb{N}^{*}$ the formal diameter of u is

$$
D\langle u\rangle:=\max _{i, j<|u|} d\left(\nu\left(\pi_{1} u_{i}\right), \nu\left(\pi_{1} u_{j}\right)\right)+\nu_{\mathbb{Q}^{+}}\left(\pi_{2} u_{i}\right)+\nu_{\mathbb{Q}^{+}}\left(\pi_{2} u_{j}\right)
$$

Informally, we refer to both $w \in \mathbb{N}^{*}$ and $U\langle w\rangle:=\bigcup_{i<|w|} \alpha\left(w_{i}\right)$ as the ideal cover w.
Definition 7.2. Define $\mathcal{Z}_{\mathrm{c}}(X):=\{Y \in \mathcal{K}(X) \mid \operatorname{dim} Y \leq 0\}$ and $\delta_{\text {disj-cover }}^{\prime}: \subseteq \mathbb{B} \rightarrow \mathcal{Z}_{\mathrm{c}}(X)$ by

$$
p \in\left(\delta_{\text {disj-cover }}^{\prime}\right)^{-1}\{K\}: \Longleftrightarrow\left\{\left\langle\left\langle w^{(0)}\right\rangle, \ldots,\left\langle w^{(l-1)}\right\rangle\right\rangle \mid l \in \mathbb{N},\left(w^{(i)}\right)_{i<l} \subseteq \mathbb{N}^{*}\right.
$$

$\bigcup_{i<l} U\left\langle w^{(i)}\right\rangle \supseteq K,\left(w^{(i)}\right)_{i<l}$ pairwise formally disjoint $\}=\left\{a \in \mathbb{N} \mid(\exists i) p_{i}=a+1\right\}$.
Informally, $p \in\left(\delta_{\text {disj-cover }}^{\prime}\right)^{-1}\{K\}$ iff p is a padded list of all formally disjoint tuples of ideal covers which together cover K. Representation $\delta_{\text {disj-cover }}^{\prime}$ will not be used extensively in this paper, but may be of independent interest. When considering effective zerodimensionality of X (as in Section 5), it is also useful to define a representation of the class $\mathcal{K O}$ of compact open subsets:

$$
\delta_{\mathcal{K O}}:=\left.\left.\delta_{\Delta_{1}^{0}(X)}\right|^{\mathcal{K O}} \sqcap \delta_{\text {cover }}\right|^{\mathcal{K O}}
$$

Finally, define $\hat{D}: \subseteq \Sigma_{1}^{0}(X) \times \mathcal{K}_{>}(X) \rightrightarrows \Delta_{1}^{0}(X)^{\mathbb{N}} \times\left(\mathbb{Z}^{+}\right)^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}}$ by declaring

$$
\begin{gathered}
\left(\left(W_{i}\right)_{i}, r, s\right) \in \hat{D}(U, K) \quad \text { iff } \quad\left(W_{i}\right)_{i} \text { pairwise disjoint, } \cup_{i} W_{i}=U \subseteq K \\
(\forall i)\left(W_{i}=\emptyset \Longleftrightarrow s_{i}=0\right) \text { and }(\forall n)\left(\forall j<r_{n}\right)\left(\operatorname{diam} W_{\sum_{i<n} r_{i}+j}<(n+1)^{-1}\right)
\end{gathered}
$$

Here $\mathcal{K}_{>}(X)$ denotes class $\mathcal{K}(X)$ equipped with the representation $\delta_{\text {cover }}$. The operation \hat{D} roughly corresponds to the statement of [11, $\S 26 . I I$, Cor 1].

Proposition 7.3. Consider the following conditions on computable metric space X :
(1) X is $\delta_{\text {disj-cover }}^{\prime}$-computable.
(2) There exist a basis \mathcal{B} for \mathcal{T}_{X} and computable $b: \mathbb{N} \rightarrow \mathcal{K} \mathcal{O}$ with $\operatorname{im} b=\mathcal{B} \subseteq \mathcal{K} \mathcal{O}$.
(3) operation \hat{D} is computable and there exists computable $\gamma: \mathbb{N} \rightarrow \Sigma_{1}^{0}(X) \times \mathcal{K}_{>}(X)$ such that $\mathcal{B}:=\operatorname{im}\left(\pi_{1} \circ \gamma\right)$ is a basis for \mathcal{T}_{X} and $(\forall a \in \mathbb{N})\left(\pi_{1} \gamma(a) \subseteq \pi_{2} \gamma(a)\right)$.
(4) There exist computable $b: \mathbb{N} \rightarrow \Delta_{1}^{0}(X)$ and c.e. refined inclusion of b w.r.t. α such that $\mathcal{B}:=\operatorname{imb}$ is a basis for \mathcal{T}_{X}.
Then (1) \Longrightarrow (21) \Longleftrightarrow (3) \Longrightarrow (4).
Proof.
(11) \Longrightarrow (2): If p is a computable $\delta_{\text {disj-cover }}^{\prime}$-name for X, for each $n^{\prime} \in \mathbb{N}$ we can compute the $\left(n^{\prime}\right)^{\text {th }}$ tuple $\langle n, k\rangle$ that satisfies $p_{n} \geq 1$ and $k<\left|\nu_{\mathbb{N}^{*}}\left(p_{n}-1\right)\right|$. Note n^{\prime} can be arbitrarily large since $\delta_{\text {disj-cover }}^{\prime}$ has complete names and any tuple $\left\langle w^{(0)}\right\rangle \ldots\left\langle w^{(l-1)}\right\rangle$ of formally disjoint ideal covers covering X can be padded by adding copies of the empty cover. Writing $\left\langle w^{(n, k)}\right\rangle:=\nu_{\mathbb{N}^{*}}\left(p_{n}-1\right)_{k}$ for any such n, k, note

$$
b^{\prime}\left(n^{\prime}\right)=b\langle n, k\rangle=K:=\bigcup_{i<\left|w^{(n, k)}\right|} \alpha\left(w_{i}^{(n, k)}\right)=\bigcup_{i<\left|w^{(n, k)}\right|} \hat{\alpha}\left(w_{i}^{(n, k)}\right)
$$

using formal disjointness. In particular, finite unions preserve openness and closedness properties, while K is compact as a closed subset of X.

We can further compute some $q \in \delta_{\Sigma_{1}^{0}}^{-1}\{K\}$ and $r \in \delta_{\Pi_{1}^{0}}^{-1}\{K\}$. Clearly $\langle q, r\rangle$ is a $\delta_{\Delta_{1}^{0}}$ name for K, and the definition of $\delta_{\text {disj-cover }}^{\prime}$ ensures $b^{\prime}\left(n^{\prime}\right)$ runs over a basis for topology of X by the following argument. Given $\eta>0$, by compactness and zero-dimensionality there exist finitely many points $\left(x_{k}\right)_{k<l_{0}} \subseteq X$ and a finite partition $\left(U_{i}\right)_{i<l} \subseteq \Sigma_{1}^{0}(X)$ such that $\mathcal{U}_{0}=\left(B\left(x_{k} ; \frac{\eta}{2}\right)\right)_{k<l_{0}}$ is a cover of X and $\left(U_{i}\right)_{i<l}$ is a refinement of \mathcal{U}_{0}. Each $U_{i}=X \backslash \bigcup_{i^{\prime} \neq i} U_{i^{\prime}}$ is compact with $\operatorname{diam} U_{i}<\eta$ and we claim we can pick ideal covers $w^{(i)} \in \mathbb{N}^{*}$ of each U_{i} ($i<l$) which are pairwise formally disjoint and each have formal diameter $<\eta$ (this ensures the basis condition is met for 'components' $\left.U\left\langle w^{(i)}\right\rangle\right)$. Namely, let

$$
r:=\min _{i} d\left(U_{i}, X \backslash U_{i}\right)=\min _{i, i^{\prime}: i \neq i^{\prime}} d\left(U_{i}, U_{i^{\prime}}\right) \text { (}>0 \text { by compactness) }
$$

and $D:=\max _{i} \operatorname{diam} U_{i}(<\eta)$. Clearly any respective irredundant ideal covers $w^{(i)}, w^{\left(i^{\prime}\right)}$ of $U_{i}, U_{i^{\prime}}\left(i \neq i^{\prime}\right)$ with each radius $<\frac{1}{2} \min \{r, \eta-D\}$ satisfy
$\nu\left(\pi_{1} w_{j}^{(i)}\right) \in U_{i} \wedge \nu\left(\pi_{1} w_{j^{\prime}}^{\left(i^{\prime}\right)}\right) \in U_{i^{\prime}} \Longrightarrow d\left(\nu\left(\pi_{1} w_{j}^{(i)}\right), \nu\left(\pi_{1} w_{j^{\prime}}^{\left(i^{\prime}\right)}\right)\right) \geq r>\nu_{\mathbb{Q}^{+}}\left(\pi_{2} w_{j}^{(i)}\right)+\nu_{\mathbb{Q}^{+}}\left(\pi_{2} w_{j^{\prime}}^{\left(i^{\prime}\right)}\right)$ (for any $j<\left|w^{(i)}\right|, j^{\prime}<\left|w^{\left(i^{\prime}\right)}\right|$) and also

$$
d\left(\nu\left(\pi_{1} w_{j}^{(i)}\right), \nu\left(\pi_{1} w_{j^{\prime}}^{(i)}\right)\right)+\nu_{\mathbb{Q}^{+}}\left(\pi_{2} w_{j}^{(i)}\right)+\nu_{\mathbb{Q}^{+}}\left(\pi_{2} w_{j^{\prime}}^{(i)}\right)<D+(\eta-D)=\eta
$$

(for any $j, j^{\prime}<\left|w^{(i)}\right|$). This completes proof of the claim above.
Finally we observe $b, b^{\prime}: \subseteq \mathbb{N} \rightarrow \mathcal{K O}$ are computable (since p computable). We have written $b^{\prime}\left(n^{\prime}\right)=b\langle n, k\rangle$ for convenience, however the domain of b depends on p, whereas b^{\prime} is total.
(22) \Longrightarrow (4) : Let $F: \subseteq \mathbb{B} \rightarrow \mathbb{B}$ be a computable ($\delta_{\mathbb{N}}, \delta_{\text {cover }}$)-realiser of b and define \sqsubset^{\prime} by

$$
c \sqsubset^{\prime} d: \Longleftrightarrow\left(F\left(c .0^{\omega}\right) \text { enumerates an ideal cover } u \text { with }(\forall i<|u|)\left(u_{i} \sqsubset d\right)\right) .
$$

Then $\left(\square^{\prime}\right) \subseteq \mathbb{N}^{2}$ is c.e. and is a formal inclusion of b with respect to α satisfying property (44) from Definition [2.1. In fact, \sqsubset^{\prime} coincides with set inclusion $\left(c \square^{\prime} d\right.$ iff $\left.b(c) \subseteq \alpha(d)\right)$, as we now show. First, assume $\emptyset \neq b(c) \subseteq \alpha(d)$. By compactness, $\tau:=\nu_{\mathbb{Q}^{+}}\left(\pi_{2} d\right)-$ $\max _{z \in b(c)} d\left(z, \nu\left(\pi_{1} d\right)\right)>0$. Pick an irredundant ideal cover u of $b(c)$ such that $u_{i} \sqsubset d$ for
each $i<|u|$. For instance, consider all $a \in \mathbb{N}$ such that $d_{b(c)}\left(\nu\left(\pi_{1} a\right)\right)<\nu_{\mathbb{Q}^{+}}\left(\pi_{2} a\right)<\frac{\tau}{2}$ (then take a finite subcover): for appropriate $z \in b(c)$ we have

$$
\begin{aligned}
d\left(\nu\left(\pi_{1} a\right), \nu\left(\pi_{1} d\right)\right)+\nu_{\mathbb{Q}^{+}}\left(\pi_{2} a\right) & \leq d\left(\nu\left(\pi_{1} a\right), z\right)+d\left(z, \nu\left(\pi_{1} d\right)\right)+\nu_{\mathbb{Q}^{+}}\left(\pi_{2} a\right) \\
& <2 \nu_{\mathbb{Q}^{+}}\left(\pi_{2} a\right)+\left(\nu_{\mathbb{Q}^{+}}\left(\pi_{2} d\right)-\tau\right) \leq \nu_{\mathbb{Q}^{+}}\left(\pi_{2} d\right),
\end{aligned}
$$

so $a \sqsubset d$. Then $u_{i} \sqsubset d$ for all $i<|u|$ and u is enumerated in any $\delta_{\text {cover }}$-name of $b(c)$, hence $c \square^{\prime} d$. As $u=\lambda$ is enumerated in any $\delta_{\text {cover }}$-name of $b(c)=\emptyset$, the same conclusion holds without assuming $b(c) \neq \emptyset$.
(3) \Longrightarrow (2): Let F and G be computable realisers of \hat{D} and γ respectively, and write $(F \circ G)\left(k .0^{\omega}\right)=\left\langle\left\langle\left\langle t^{(0)}, \ldots\right\rangle, r\right\rangle, s\right\rangle$. Then $H: \subseteq \mathbb{B} \rightarrow \mathbb{B},\langle j, k\rangle . p \mapsto t^{(j)}$ is computable and we claim $b: \mathbb{N} \rightarrow \Delta_{1}^{0}(X),\langle j, k\rangle \mapsto\left(\delta_{\Delta_{1}^{0}} \circ H\right)\left(\langle j, k\rangle .0^{\omega}\right)$ is a basis numbering. For, if $x \in X$, $U \in \mathcal{T}_{X}$ with $x \in U$ then there exists $k \in \mathbb{N}$ such that $x \in\left(\pi_{1} \circ \gamma\right)(k)=\left(\pi_{1} \circ G\right)\left(k .0^{\omega}\right) \subseteq U$. Since $(\hat{D} \circ \gamma)(k)$ is equal to

$$
\left(\hat{D} \circ\left[\delta_{\Sigma_{1}^{0}}, \delta_{\text {cover }}\right] \circ G\right)\left(k .0^{\omega}\right) \ni\left(\left[\left[\delta_{\Delta_{1}^{0}}^{\omega}, \operatorname{id}_{\mathbb{B}}\right],\left.\mathrm{id}_{\mathbb{B}}\right|^{\left.\left.\left.\{0,1\}^{\mathbb{N}}\right] \circ F \circ G\right)\left(k .0^{\omega}\right)=\left(\left(\delta_{\Delta_{1}^{0}}\left(t^{(i)}\right)\right)_{i \in \mathbb{N}}, r, s\right) . s\right) .}\right.\right.
$$

we in particular have $\left(\pi_{1} \circ \gamma\right)(k)=\bigcup_{i} \delta_{\Delta_{1}^{0}}\left(t^{(i)}\right)$, so $x \in \delta_{\Delta_{1}^{0}}\left(t^{(j)}\right)=\left(\delta_{\Delta_{1}^{0}} \circ H\right)\left(\langle j, k\rangle .0^{\omega}\right)$ for some $j \in \mathbb{N}$.

Finally we observe in fact $\operatorname{im} b \subseteq \mathcal{K} \mathcal{O}$ with $b: \mathbb{N} \rightarrow \mathcal{K} \mathcal{O}$ computable. More formally, $b\langle j, k\rangle=(\iota \circ b)\langle j, k\rangle \cap\left(\pi_{2} \circ \gamma\right)(k)$ for all $j, k \in \mathbb{N}$ where $\iota: \Delta_{1}^{0}(X) \rightarrow \Pi_{1}^{0}(X)$ and $\cap:$ $\Pi_{1}^{0}(X) \times \mathcal{K}_{>}(X) \rightarrow \mathcal{K}_{>}(X)$ are computable.
(21) \Longrightarrow (3) (Proof sketch): Given $p \in \mathbb{B}=\operatorname{dom} \delta_{\Sigma_{1}^{0}(X)}$, a computable realiser $F: \subseteq \mathbb{B} \rightarrow \mathbb{B}$ of b and c.e. formal inclusion \sqsubset^{\prime} as in (4), dovetail checking if $m \sqsubset^{\prime} p_{i}-1$ (over $m, i \in \mathbb{N}$ such that $p_{i} \geq 1$). If so, the computation using index m ends, we increment n and dovetail output of $\left(F\left(m .0^{\omega}\right)_{2 k}\right)_{k \in \mathbb{N}}$ as $p^{(n)}$ in $\left\langle p^{(0)}, p^{(1)}, \ldots\right\rangle$.

This describes (without direct use of compactness information from $\delta_{\mathcal{K O}}$) a computable map $G: \mathbb{B} \rightarrow \mathbb{B}$ realising

$$
V: \Sigma_{1}^{0}(X) \rightrightarrows \Delta_{1}^{0}(X)^{\mathbb{N}}, U \mapsto\left\{\left(W_{i}\right)_{i} \mid \bigcup_{i} W_{i}=U,(\forall N)(\exists i \geq N)\left(\operatorname{diam} W_{i}<(N+1)^{-1}\right\} .\right.
$$

If $(U, K) \in \operatorname{dom} \hat{D}$ (i.e. $U \subseteq K$) and $\left(\tilde{W}_{i}\right)_{i} \in V(U), W_{i}^{*}:=\tilde{W}_{i} \backslash \bigcup_{j<i} \tilde{W}_{j}$, we can also write $W_{i}^{\prime}:=\iota^{\prime}\left(W_{i}^{*}\right) \cap K$ where $\cap: \Pi_{1}^{0}(X) \times \mathcal{K}_{>}(X) \rightarrow \mathcal{K}_{>}(X)$ and $\iota^{\prime}: \Delta_{1}^{0}(X) \rightarrow \Pi_{1}^{0}(X)$ are computable. Using compactness, for each i an ideal cover $w^{(i)} \in \mathbb{N}^{*}$ of W_{i}^{\prime} can be found, by ideal balls of formal diameter $<(i+1)^{-1}$ and formally included in W_{i}^{*}.

Considering relatively open sets in W_{i}^{*}, apply the reduction principle to the cover $\alpha\left(w_{j}^{(i)}\right) \cap W_{i}^{*}\left(j<\left|w^{(i)}\right|\right)$: let

$$
\left(W_{i, j}\right)_{j} \in \tilde{S}^{W_{i}^{*}}\left(\alpha\left(w_{0}^{(i)}\right) \cap W_{i}^{*}, \ldots, \alpha\left(w_{\left|w^{(i)}\right|-1}^{(i)}\right) \cap W_{i}^{*}, \emptyset, \emptyset, \ldots\right) \subseteq \Delta_{1}^{0}\left(W_{i}^{*}\right) \subseteq \Delta_{1}^{0}(X) .
$$

In fact a $\left(\delta_{\Sigma_{1}^{0}(X)}^{\omega}, \delta_{\Sigma_{1}^{0}(X)}^{\omega}\right)$-realiser for \tilde{S}^{X} will also $\left(\delta^{\omega}, \delta^{\omega}\right)$-realise \tilde{S}^{Y} for any $Y \subseteq X$ if δ is the representation of $\Sigma_{1}^{0}(Y)$ defined from the effective topological space $\left(Y,\left.\mathcal{T}_{X}\right|_{Y}, \alpha_{Y}\right)$. A similar statement is true for R^{Y}, so each $R^{W_{i}^{*}} \circ \tilde{S}^{W_{i}^{*}}: \subseteq \Sigma_{1}^{0}\left(W_{i}^{*}\right)^{\mathbb{N}} \rightrightarrows \Delta_{1}^{0}\left(W_{i}^{*}\right)^{\mathbb{N}}$ is computable, uniformly in i, as are the inclusions $\Delta_{1}^{0}\left(W_{i}^{*}\right) \rightarrow \Delta_{1}^{0}(X)$ (use $\delta_{\Delta_{1}^{0}(X)}$-names of W_{i}^{*} and computability of binary intersection on $\Sigma_{1}^{0}(X), \Pi_{1}^{0}(X)$ respectively $)$.

Letting $r_{i}:=\left|w^{(i)}\right|, W_{\sum_{i<k} r_{i}+j}:=W_{k, j}\left(j<\left|w^{(k)}\right|, k \in \mathbb{N}\right)$, we have sequences $r,\left(W_{i}\right)_{i}$ almost as in definition of \hat{D}. To prove \hat{D} computable it remains to ensure $r_{i} \geq 1$ for all i and detect nonemptiness of the W_{i}. From a $\delta_{\Delta_{1}^{0}(X)}$-name of $W_{i, j}$ and $\delta_{\text {cover }}$-name of K
$\left(\supseteq U \supseteq W_{i, j}\right)$, a $\delta_{\mathcal{K O}}$-name of $W_{i, j}$ is computable. Also, $\left.z\right|^{\mathcal{K O}}$ is $\left(\delta_{\mathcal{K O}},\left.\delta_{\mathbb{N}}\right|^{\{0,1\}}\right)$ computable where

$$
z: \Delta_{1}^{0}(X) \rightarrow\{0,1\}, W \mapsto \begin{cases}0, & \text { if } W=\emptyset \\ 1, & \text { if } W \neq \emptyset\end{cases}
$$

Fixing some $a_{0} \in \operatorname{dom} \alpha=\mathbb{N}$ we modify the above argument to pick $w^{(i)}$ as a one-element cover $a_{0} \in \mathbb{N} \subseteq \mathbb{N}^{*}$ if $W_{i}^{*}=\emptyset$, and choose $w^{(i)}$ irredundant otherwise (nonemptiness of $\alpha\left(w_{j}^{(i)}\right)=\alpha\left(w_{j}^{(i)}\right) \cap W_{i}^{*}$ is clearly decidable without using $\left.z\right)$. Then $r_{i} \geq 1$ for all i.

This completes the proof.
As an application of Proposition 7.3 (using the operation \hat{D}), we present an effectivisation Theorem 7.6 of (7), the retract characterisation of zero-dimensionality from Section 1 . In Section 8 a converse to this result will be proven. Before stating the theorem, we give two lemmas relevant for dealing with compactness in situations involving the representations $\delta_{\text {dist }}^{>}, \delta_{\text {range }}$. For any closed $A, B \subseteq X$, denote $d(A, B):=\inf \{d(x, y) \mid x \in A, y \in B\}$ with the convention $\inf \emptyset=\infty$.
Lemma 7.4. For any computable metric space $X, \hat{d}: \subseteq \mathcal{A}(X) \times \mathcal{K}(X) \rightarrow \overline{\mathbb{R}},(A, K) \mapsto$ $d(A, K)$ (dom $\hat{d}=\{(A, K) \mid A \neq \emptyset\})$ is $\left(\left[\delta_{\text {dist }}^{>}, \delta_{\text {cover }}\right], \overline{\rho_{<}}\right)$-computable.
Proof. Suppose $p \in\left(\delta_{\text {dist }}^{>}\right)^{-1}\{A\}, q \in \delta_{\text {cover }}^{-1}\{K\}, r \in \mathbb{Q}$. Then we claim

$$
\begin{aligned}
& d(A, K)>r \Longleftrightarrow(\exists n)\left(\exists w \in \mathbb{N}^{*}\right)\left(q_{n}=\langle w\rangle \wedge(\forall i<|w|)\left(d_{A}\left(\nu\left(\pi_{1} w_{i}\right)\right)-\nu_{\mathbb{Q}^{+}}\left(\pi_{2} w_{i}\right)>r\right)\right) \\
& \Longleftrightarrow(\exists n)\left(\exists w \in \mathbb{N}^{*}\right)\left(q_{n}=\langle w\rangle \wedge\right. \\
&\left.(\forall i<|w|)(\exists j, k)\left(\left(\eta_{p} \circ F\right)\left(\pi_{1} w_{i} \cdot 0^{\omega}\right)_{j}=k+1 \wedge \nu_{\mathbb{Q}}(k)>r+\nu_{\mathbb{Q}^{+}}\left(\pi_{2} w_{i}\right)\right)\right)
\end{aligned}
$$

where $F: \subseteq \mathbb{B} \rightarrow \mathbb{B}$ is a computable $\left(\delta_{\mathbb{N}}, \delta_{X}\right)$-realiser of $\nu: \mathbb{N} \rightarrow X$.
For the first equivalence, if $d(A, K)>r$ then every $x \in K$ has $d_{A}(x)>r$ and by density of ν and continuity of d_{A} there exists $a \in \mathbb{N}$ such that $x \in \alpha(a)$ and $\left(d_{A} \circ \nu\right)\left(\pi_{1} a\right)>$ $r+\nu_{\mathbb{Q}^{+}}\left(\pi_{2} a\right)$. Compactness gives an ideal cover w as required. Conversely, given such w, any $x \in K$ has some $i<|w|$ such that $x \in \alpha\left(w_{i}\right)$, so $d_{A}(x)>\left(d_{A} \circ \nu\right)\left(\pi_{1} w_{i}\right)-\nu_{\mathbb{Q}^{+}}\left(\pi_{2} w_{i}\right)$. Now $d(A, K)=\inf _{x \in K} d_{A}(x) \geq \min _{i<|w|}\left(\left(d_{A} \circ \nu\right)\left(\pi_{1} w_{i}\right)-\nu_{\mathbb{Q}^{+}}\left(\pi_{2} w_{i}\right)\right)>r$. One checks this argument works for $K=\emptyset$ also. The second equivalence follows from $p \in\left(\delta_{\text {dist }}^{>}\right)^{-1}\{A\}$.
Lemma 7.5. Let X be a computable metric space. If $K \subseteq X$ is compact and $K \subseteq N_{\epsilon}(\bar{S})$ then there exist $\left(s_{i}\right)_{i<n} \subseteq S$ and an ideal cover $v \in \mathbb{N}^{*}$ of K such that v 'formally refines' $\left(B\left(s_{i} ; \epsilon\right)\right)_{i<n}$, i.e. for every $i<|v|$ there exists $j<n$ such that $d\left(\nu\left(\pi_{1} v_{i}\right), s_{j}\right)+\nu_{\mathbb{Q}^{+}}\left(\pi_{2} v_{i}\right)<\epsilon$.
Proof. Whenever $x \in B(s ; \epsilon)$ we can pick $q \in \mathbb{Q}^{+}$with $d(x, s)+q<\epsilon$, then $a \in \nu^{-1}(B(x ; q) \cap$ $B(s ; \epsilon-q)$) (so $b=\langle a, \bar{q}\rangle$ satisfies $x \in \alpha(b)$ and $\left.d\left(\nu\left(\pi_{1} b\right), s\right)+\nu_{\mathbb{Q}^{+}}\left(\pi_{2} b\right)<\epsilon\right)$. But applying compactness once gives $K \subseteq \bigcup_{i<n} B\left(s_{i} ; \epsilon\right)$ for some $\left(s_{i}\right)_{i<n} \subseteq S$, and again gives an ideal cover as desired.

Theorem 7.6. (cf. [11, Cor 26.II.2]) Suppose X is $\delta_{\text {disj-cover-computable. Then } E: \subseteq} \subseteq$ $\mathcal{A}(X) \rightrightarrows C(X, X), A \mapsto\left\{f|\operatorname{im} f=A \wedge f|_{A}=\operatorname{id}_{A}\right\} \quad(\operatorname{dom} E=\mathcal{A}(X) \backslash\{\emptyset\})$ is well-defined and computable (where $\mathcal{A}(X)$ is represented by $\delta_{\text {range }} \sqcap \delta_{\text {dist }}^{>}$).
Proof Sketch. First (by Proposition [7.3) recall $\hat{D}: \subseteq \Sigma_{1}^{0}(X) \times \mathcal{K}_{>}(X) \rightrightarrows \Delta_{1}^{0}(X)^{\mathbb{N}} \times\left(\mathbb{Z}^{+}\right)^{\mathbb{N}} \times$ $\{0,1\}^{\mathbb{N}}$ is computable, say let G be a computable realiser. For a fixed name of $A \in$ $\mathcal{A}(X) \backslash\{\emptyset\}$ as input, consider corresponding $\left(\left(W_{i}\right)_{i}, \xi, s\right) \in \hat{D}(X \backslash A, X)$ and pick $\left(x_{i} \in\right.$ W_{i}, if $s_{i} \neq 0 ; x_{i} \in \operatorname{im} \nu$, if $\left.s_{i}=0\right)$ and also $y_{i} \in A$ computably such that $d\left(x_{i}, y_{i}\right)<$
$d\left(A, W_{i}\right)+(i+1)^{-1}(i \in \mathbb{N})$. This is possible since $d\left(A, W_{i}\right)$ is computable from below uniformly in the input and i (use Lemma 7.4), and since $\delta_{\text {range-names of }} A, W_{i}$ are available.

Next define

$$
f: X \rightarrow X, x \mapsto \begin{cases}x, & \text { if } x \in A \\ y_{i}, & \text { if }(\exists i) W_{i} \ni x\end{cases}
$$

That f is continuous is shown by Kuratowski; we will check f is computable in the inputs directly by showing $f^{-1} V$ is computable uniformly in the inputs and a $\delta_{\Sigma_{1}^{0-n}}$ name of $V \in$ $\Sigma_{1}^{0}(X)$. Roughly speaking, we consider (instead of disjoint cases as in the definition of f) a disjunction $(\exists i) x \in W_{i} \vee(\exists N)\left(x \in \bigcap_{i<N}\left(X \backslash W_{i}\right)\right)$ where in the second case N has to be suitably large. This will be used to define computable $F: \subseteq \mathbb{B} \rightarrow \mathbb{B},\langle\langle p, q\rangle, r\rangle \mapsto t$ so that each induced function $u=\delta_{\Sigma_{1}^{0}} \circ F\langle\langle\cdot, q\rangle, r\rangle: \operatorname{dom} \delta_{X} \rightarrow \Sigma_{1}^{0}(X)$ satisfies $\left(\delta_{X}(p) \in\right.$ $u(p) \subseteq f^{-1} \delta_{\Sigma_{1}^{0}}(r)$, if $p \in \delta_{X}^{-1} f^{-1} \delta_{\Sigma_{1}^{0}}(r) ; u(p)=\emptyset$, if $\left.p \in \operatorname{dom} \delta_{X} \backslash \delta_{X}^{-1} f^{-1} \delta_{\Sigma_{1}^{0}}(r)\right)$. Then Lemma 3.1 can be applied to computably obtain a name for $f^{-1} \delta_{\Sigma_{1}^{0}}(r)$ (f being dependent on $q=\left\langle\left\langle q^{(0)}, \ldots\right\rangle, \xi, s,\left\langle t^{(0)}, \ldots\right\rangle\right\rangle$ where $q^{(i)} \in \delta_{\Delta_{1}^{0}}^{-1}\left\{W_{i}\right\}, t^{(i)} \in \delta_{X}^{-1}\left\{y_{i}\right\}$ for all $\left.i \in \mathbb{N}\right)$.

To define t, we dovetail repeated output of ' 0 ' with searching for large M, N and an ideal ball $a=\left\langle p_{j}, \overline{2^{-j+1}}\right\rangle$ small enough to satisfy

$$
R_{0}(p, q, r, j): \equiv(\exists i, k, l, m)\left(q_{2 k}^{(i)} \geq 1 \wedge a \sqsubset q_{2 k}^{(i)}-1 \wedge r_{l} \geq 1 \wedge\left\langle t_{m}^{(i)}, \overline{2^{-m+1}}\right\rangle \sqsubset r_{l}-1\right)
$$

or

$$
\begin{aligned}
& R_{1}(p, q, r, j, M, N): \equiv(\forall i<N)(\exists k)\left(q_{2 k+1}^{(i)} \geq 1 \wedge a \sqsubset q_{2 k+1}^{(i)}-1\right) \wedge N \geq \sum_{i<M} \xi_{i} \wedge \\
& \quad 2^{-j+2} \leq(M+1)^{-1} \wedge\left(\exists v \in \mathbb{N}^{*}\right)\left(v \text { appears in a } \delta_{\text {cover }}-\text { name for } \bigcap_{i<N}\left(X \backslash W_{i}\right)\right.
\end{aligned}
$$

v 'formally refines' a finite cover by $(M+1)^{-1}$-balls about points of the $\delta_{\text {range }}$-name of A)

$$
\wedge(\exists k)\left(r_{k} \geq 1 \wedge\left\langle p_{j}, \overline{2^{-j+1}+\frac{3}{M+1}}\right\rangle \sqsubset r_{k}-1\right)
$$

If found we should output ' $a+1$ ' followed by 0^{ω}. Any $x \in f^{-1} V$ either has $W_{i} \ni x$ for some i or else $x \in A$. In the former case, $y_{i} \in V$ and property (1) from Definition 2.1 applied twice gives $R_{0}(p, q, r, j)$, so assume $x \in A$. From $V \ni f x=x$ and $r \in \delta_{\Sigma_{1}^{0}}^{-1}\{V\}$ we can pick k, M such that $r_{k} \geq 1$ and $d\left(x, \nu\left(\pi_{1}\left(r_{k}-1\right)\right)\right)+\frac{4}{M+1}<\nu_{\mathbb{Q}^{+}}\left(\pi_{2}\left(r_{k}-1\right)\right)$, then $N \geq \sum_{i<M} \xi_{i}(\geq$ $M)$ such that $\bigcap_{i<N}\left(X \backslash W_{i}\right) \subseteq N_{(M+1)^{-1}}(A)$, then finally $j \in \mathbb{N}, v \in \mathbb{N}^{*}$ and $a=\left\langle p_{j}, \overline{2^{-j+1}}\right\rangle$ as follows: such that v appears in a $\delta_{\text {cover }}$-name for $\bigcap_{i<N}\left(X \backslash W_{i}\right)$, v 'formally refines' $\left(B\left(z_{i} ;(M+1)^{-1}\right)\right)_{i<n}$ for some $z_{0}, \ldots, z_{n-1} \in A$ given by the input $\delta_{\text {range }}$-name of A, a is 'formally included' in $\bigcap_{i<N}\left(X \backslash W_{i}\right), 2^{-j+2} \leq(M+1)^{-1}$ and $\left\langle p_{j}, \overline{2^{-j+1}+\frac{3}{M+1}}\right\rangle \sqsubset r_{k}-1$. To see such j exists use $\nu\left(p_{j}\right) \rightarrow x, 2^{-j+1} \rightarrow 0$ and continuity of d in inequalities corresponding to the last three requirements; to see suitable v exists use Lemma 7.5. In this case one checks $R_{1}(p, q, r, j, M, N)$ holds.

Conversely, we will show $U:=\delta_{\Sigma_{1}^{0}}(t)$ must be contained in $f^{-1} V$, indeed that any j, M, N with $R_{0}(p, q, r, j) \vee R_{1}(p, q, r, j, M, N)$ must correspondingly satisfy $\alpha(a) \subseteq f^{-1} V$ (where $a=\left\langle p_{j}, \overline{2^{-j+1}}\right\rangle$). For, in the first clause necessarily $f \alpha(a) \subseteq f\left(W_{i}\right)=\left\{y_{i}\right\} \subseteq V$, so we suppose the second clause holds. Now any $z \in \alpha(a)$ has either $z \in A$ or $W_{i} \ni z$ for
some i. In the first case, $f z=z \in \alpha(a) \subseteq B\left(\nu\left(p_{j}\right) ; 2^{-j+1}+\frac{3}{M+1}\right) \subseteq V$. In the second case, $z \in \alpha(a)$ implies $i \geq N$ and $d_{A}(z)<(M+1)^{-1}$, so

$$
\begin{aligned}
d\left(f z, \nu\left(p_{j}\right)\right) & =d\left(y_{i}, \nu\left(p_{j}\right)\right) \leq d_{W_{i}}\left(y_{i}\right)+\operatorname{diam} W_{i}+d\left(z, \nu\left(p_{j}\right)\right) \\
& <\left(d\left(A, W_{i}\right)+(i+1)^{-1}\right)+\operatorname{diam} W_{i}+2^{-j+1}<\frac{3}{M+1}+2^{-j+1}
\end{aligned}
$$

This completes the proof.

8. Bilocated subsets

In this final section, we present a converse to Theorem 7.6 (in other words, an effectivisation of the reverse direction of [10, Thm 7.3]), namely Proposition 8.5. This relies on a version of the construction of so-called bilocated sets from the constructive analysis literature see Proposition 8.4. Such a construction for us involves an application of the effective Baire category theorem and a decomposition of compact sets formally different to that in Section 7 (see Theorem 8.2). The proofs of both Theorem 8.2 and Proposition 8.4 are adapted to computable analysis in an ad hoc way (not following an established interpretation of constructive proofs in this context). It is also worth noting a constructive development of dimension theory exists [13], [2] which, though based on information weaker than we shall consider, does also use bilocated subsets fundamentally [2, Thm 0.1].

We begin with several representations from [5], namely with $\delta_{\text {min-cover }}$ (similar to $\delta_{\text {cover }}$ except that each ball of each ideal cover is required to intersect K), $\delta_{\text {range }}^{\prime}$ and $\delta_{\text {Hausdorff }}$. Here $\left\langle q, p^{(0)}, p^{(1)}, \ldots\right\rangle \in\left(\delta_{\text {range }}^{\prime}\right)^{-1}\{K\}$ iff $\left\{p^{(i)} \mid i \in \mathbb{N}\right\} \subseteq \operatorname{dom} \delta_{X}, K=\operatorname{cl}\left\{\delta_{X}\left(p^{(i)}\right) \mid i \in \mathbb{N}\right\}$, q is unbounded and $d_{\mathrm{H}}\left(K_{i}, K_{j}\right)<2^{-\min \{i, j\}}$ for all $i, j \in \mathbb{N}$, where $K_{i}:=\left\{\delta_{X}\left(p^{(k)}\right) \mid k \leq q_{i}\right\}$ $(i \in \mathbb{N})$.

To define $\delta_{\text {Hausdorff }}$, we first consider $\mathcal{K}(X) \backslash\{\emptyset\}$ metrized by the Hausdorff metric d_{H} and denote $\mathcal{Q}:=\{A \subseteq \operatorname{im} \nu \mid A$ finite, $A \neq \emptyset\}=E(\operatorname{im} \nu) \backslash\{\emptyset\} \subseteq \mathcal{K}(X) \backslash\{\emptyset\}$ with numbering $\nu_{\mathcal{Q}}$ defined by $\nu_{\mathcal{Q}}\langle w\rangle:=\left\{\nu\left(w_{i}\right)|i<|w|\}\right.$ for any $w \in \mathbb{N}^{*} \backslash\{\lambda\}$. Then $p \in \delta_{\text {Hausdorff }}^{-1}\{K\}$ iff $\operatorname{im} p \subseteq \operatorname{dom} \nu_{\mathcal{Q}}, d_{\mathrm{H}}\left(\nu_{\mathcal{Q}}\left(p_{i}\right), \nu_{\mathcal{Q}}\left(p_{j}\right)\right)<2^{-\min \{i, j\}}$ for all $i, j \in \mathbb{N}$ and $K=\lim _{i \rightarrow \infty} \nu_{\mathcal{Q}}\left(p_{i}\right)$ with respect to d_{H}. Most relevant below will be the following result from [5, Thm 4.12]:
Lemma 8.1. $\delta_{\text {Hausdorff }} \equiv \delta_{\text {range }}^{\prime} \equiv \delta_{\text {min-cover }} \mid \mathcal{K}(X) \backslash\{\emptyset\}$.
On the decomposition of arbitrary compact sets, we then have the following result (a version of [4, Thm (4.8)]).

Theorem 8.2. Let X be a computable metric space. Then $S: \mathcal{K}(X) \times \mathbb{N} \rightrightarrows \mathcal{K}(X)^{*}$ defined by

$$
S(K, l):=\left\{K_{0} \ldots K_{n-1} \mid K=\bigcup_{i<n} K_{i}, \max _{i<n} \operatorname{diam} K_{i}<2^{-l}\right\}
$$

is $\left(\left[\delta_{\text {min-cover }}, \delta_{\mathbb{N}}\right], \delta_{\text {min-cover }}^{*}\right)$-computable.
Proof sketch. Assume $F: \subseteq \mathbb{B} \rightarrow \mathbb{B}$ is a computable witness of $\left.\delta_{\text {min-cover }}\right|^{\mathcal{K}(X) \backslash\{\emptyset\}} \leq \delta_{\text {range }}^{\prime}$. Given $p \in \delta_{\text {min-cover }}^{-1}\{K\}$ and l, compute $n \in \mathbb{N}$ and singletons $X_{j}^{0} \subseteq K(j<n)$ such that $(\forall x \in K)\left(\min _{j<n} d_{X_{j}^{0}}(x)<3^{-2} 2^{-l}\right)$; for instance, use appropriately the $(l+4)^{\text {th }}$ finite approximation to K from the $\delta_{\text {range }}^{\prime}$-name $F(p)$. Similarly, for each $i \in \mathbb{N}$, we define X_{j}^{i+1} $(j<n)$ in terms of corresponding X_{j}^{i} as follows: find a strict $3^{-i-3} 2^{-l}$-approximation
$\left\{x_{j} \mid j<N\right\} \subseteq K$ to K (using $F(p)$ appropriately); compute some partition $S \dot{\cup} T=$ $[0, N) \times[0, n) \subseteq \mathbb{N}^{2}$ where

$$
(m, j) \in S \Longrightarrow d_{X_{j}^{i}}\left(x_{m}\right)<3^{-i-1} 2^{-l} \quad \text { and } \quad(m, j) \in T \Longrightarrow d_{X_{j}^{i}}\left(x_{m}\right)>3^{-i-1} 2^{-l-1}
$$

for $j<n$ let $X_{j}^{i+1}:=X_{j}^{i} \cup\left\{x_{m} \mid m<N,(m, j) \in S\right\}$. The finite sets $X_{j}^{i}(j<n, i \in \mathbb{N})$ thus defined easily satisfy the first two properties of
(1) $X_{j}^{i} \subseteq X_{j}^{i+1}$,
(2) $(\forall x \in K)(\forall j<n)\left(x \in X_{j}^{i+1} \Longrightarrow d_{X_{j}^{i}}(x)<3^{-i-1} 2^{-l}\right)$,
(3) $(\forall x \in K)(\forall j<n)\left(d_{X_{j}^{i}}(x)<3^{-i-2} 2^{-l} \Longrightarrow d_{X_{j}^{i+1}}(x)<3^{-i-3} 2^{-l}\right)$.

For the third, let $x \in K$ with $d_{X_{j}^{i}}(x)<3^{-i-2} 2^{-l}$ and choose $m<N$ such that $d\left(x, x_{m}\right)<$ $3^{-i-3} 2^{-l}$. We have

$$
\begin{aligned}
& d_{X_{j}^{i}}\left(x_{m}\right) \leq d\left(x_{m}, x\right)+d_{X_{j}^{i}}(x)<\left(3^{-i-3}+3^{-i-2}\right) 2^{-l}<3^{-i-1} 2^{-l-1} \\
& \quad \Longrightarrow(m, j) \notin T \Longrightarrow(m, j) \in S \Longrightarrow x_{m} \in X_{j}^{i+1}
\end{aligned}
$$

It follows that $d_{X_{j}^{i+1}}(x) \leq d\left(x, x_{m}\right)<3^{-i-3} 2^{-l}$.
We now check $Y_{j}:=\bigcup_{i \in \mathbb{N}} X_{j}^{i}$, or rather $X_{j}:=\overline{Y_{j}}(j<n)$ satisfy total boundedness and the diameter condition. First, consider $m \in \mathbb{N}$ and $y \in Y_{j}$. For i with $y \in X_{j}^{i}$, either $i \leq m$ (so $\left.d_{X_{j}^{m}}(y)=0\right)$ or $i>m$. In the latter case, (2) $\left.\right|_{k \in[m, i)}$ allows to construct $\left(y_{k}\right)_{k=m}^{i}$ with

$$
y_{i}=y \wedge(\forall k)\left(m \leq k<i \Longrightarrow y_{k} \in X_{j}^{k} \wedge d\left(y_{k}, y_{k+1}\right)<3^{-k-1} 2^{-l}\right)
$$

(that is, if $y_{k+1} \in X_{j}^{k+1}$, pick $y_{k} \in X_{j}^{k}$ such that $d\left(y_{k+1}, y_{k}\right)<3^{-k-1} 2^{-l}$, inductively for $k=i-1, \ldots, m)$.

Then $d_{X_{j}^{m}}(y) \leq d\left(y_{i}, y_{m}\right) \leq \sum_{m \leq k<i} d\left(y_{k}, y_{k+1}\right)<\sum_{k \geq m} 3^{-k-1} 2^{-l}=\frac{3^{-m-1} 2^{-l}}{1-3^{-1}}=$ $2^{-l-1} 3^{-m}$. As X_{j}^{m} is a finite $3^{-m} 2^{-l-1}$-approximation to Y_{j}, it is also a finite $3^{-m} 2^{-l}-$ approximation to X_{j}. Since m was arbitrary, X_{j} is totally bounded. Next consider $i \in \mathbb{N}$ and $x, x^{\prime} \in X_{j}^{i+1}$; we have

$$
d\left(x, x^{\prime}\right) \leq d_{X_{j}^{i}}(x)+\operatorname{diam} X_{j}^{i}+d_{X_{j}^{i}}\left(x^{\prime}\right)<3^{-i-1} 2^{-l+1}+\sum_{k=1}^{i} 3^{-k} 2^{-l+1}=\sum_{k=1}^{i+1} 3^{-k} 2^{-l+1}
$$

provided diam $X_{j}^{i} \leq \sum_{k=1}^{i} 3^{-k} 2^{-l+1}$. Plainly the latter condition holds for $i=0$, so an inductive argument applies. In particular, $\operatorname{diam} X_{j} \leq \sum_{k=1}^{\infty} 3^{-k} 2^{-l+1}=\frac{3^{-1} 2^{-l+1}}{1-3^{-1}}=2^{-l}$. Finally, if $x \in K$, pick $j<n$ such that $d_{X_{j}^{0}}(x)<3^{-2} 2^{-l}$. By induction on $i \in \mathbb{N}$ using (3) we have $d_{X_{j}^{i}}(x)<3^{-i-2} 2^{-l}$ for all i (case $i=0$ by choice of j). Thus $Y_{j}=\bigcup_{i} X_{j}^{i}$ contains points arbitrarily close to x, i.e. $x \in \overline{Y_{j}}=X_{j}$.

Using the above construction, observe (1), (2) imply $d_{\mathrm{H}}\left(X_{j}^{i}, X_{j}^{i+1}\right) \leq 3^{-i-1} 2^{-l}$, so if $i^{\prime} \geq i$ then

$$
d_{\mathrm{H}}\left(X_{j}^{i}, X_{j}^{i^{\prime}}\right) \leq \sum_{i \leq k<i^{\prime}} d_{\mathrm{H}}\left(X_{j}^{k}, X_{j}^{k+1}\right) \leq \sum_{i \leq k<i^{\prime}} 3^{-k-1} 2^{-l}<\frac{3^{-i-1} 2^{-l}}{1-3^{-1}}=3^{-i} 2^{-l-1} \leq 2^{-i}
$$

Clearly then $d_{\mathrm{H}}\left(X_{j}^{i}, X_{j}^{i^{\prime}}\right)<2^{-\min \left\{i, i^{\prime}\right\}}$ for all i, i^{\prime}. Defining q in the obvious way, we obtain a $\delta_{\text {range }}^{\prime}$-name for each $X_{j}(j<n)$, and each can be translated into a $\delta_{\text {min-cover-name }} q^{(j)}$. Now, consider the possibility that $K=\emptyset$. Observe for $p \in \operatorname{dom} \delta_{\text {min-cover }}$ that
(p contains ideal cover λ) iff (p contains only ideal cover λ) iff $p \in \delta_{\text {min-cover }}^{-1}\{\emptyset\}$.
Using this condition it is possible to decide from $p \in \delta_{\text {min-cover }}^{-1}\{K\}$ whether $K=\emptyset$. If so, we output $n .\langle p, p, \ldots\rangle$ for some fixed $n \geq 1$, otherwise we output $n .\left\langle q^{(0)}, \ldots, q^{(n-1)}, 0^{\omega}, 0^{\omega}, \ldots\right\rangle$ defined as above.

Next we must recall the effective Baire category theorem (see [8, Thm 7.20] and the references there).
Theorem 8.3. Suppose X is a complete computable metric space. Then

$$
B: \subseteq \Pi_{1}^{0}(X)^{\mathbb{N}} \rightrightarrows X^{\mathbb{N}},\left(A_{i}\right)_{i \in \mathbb{N}} \mapsto\left\{\left(x_{i}\right)_{i \in \mathbb{N}} \mid\left(x_{i}\right)_{i} \text { dense in } X \backslash \bigcup_{i} A_{i}\right\}
$$

(dom $B=\left\{\left(A_{i}\right)_{i} \mid\right.$ each A_{i} nowhere dense $\}$) is computable.
Proposition 8.4. (cf. [3, Ch 4,Thm 8], [14, Ch 7,Prop 4.14]) Let X be a computable metric space. Define $p^{+}, p^{-}: \mathbb{R} \times C(X, \mathbb{R}) \rightarrow \Sigma_{1}^{0}(X)$ and $P^{+}, P^{-}: \mathcal{K}(X) \times \mathbb{R} \times C(X, \mathbb{R}) \rightarrow \mathcal{K}(X)$ by

$$
\begin{aligned}
p^{+}(\alpha, f) & :=f^{-1}(\alpha, \infty), \quad p^{-}(\alpha, f):=f^{-1}(-\infty, \alpha), \\
P^{+}(K, \alpha, f) & :=K \cap f^{-1}[\alpha, \infty), \quad P^{-}(K, \alpha, f):=K \cap f^{-1}(-\infty, \alpha] .
\end{aligned}
$$

p^{+}, p^{-}are computable and P^{+}, P^{-}are $\left(\delta_{\text {cover }}, \rho,\left[\delta_{X} \rightarrow \rho\right] ; \delta_{\text {cover }}\right)$-computable.
Moreover A is $\left(\delta_{\text {min-cover }}, \delta_{\mathbb{Q}}^{2}, \delta ;\left[\rho, \delta_{\text {min-cover }}^{2}\right]\right)$-computable where $\delta:=\left[\delta_{X} \rightarrow \rho\right]$ and $A: \subseteq$ $\mathcal{K}(X) \times \mathbb{Q}^{2} \times C(X, \mathbb{R}) \rightrightarrows \mathbb{R} \times \mathcal{K}(X)^{2}$ is defined by

$$
A(K, a, b, f):=\left\{\left(\alpha, P^{-}(K, \alpha, f), P^{+}(K, \alpha, f)\right) \mid a<\alpha<b \wedge \overline{\overline{K \cap p^{-}(\alpha, f)}}=P^{-}(K, \alpha, f) \wedge, ~ \begin{array}{rl}
\overline{K \cap p^{+}(\alpha, f)} & \left.=P^{+}(K, \alpha, f)\right\}
\end{array}\right.
$$

with $\operatorname{dom} A=\{(K, a, b, f) \mid K \neq \emptyset \wedge a<b\}$.
Proof. First, $p^{+}, p^{-}, P^{+}, P^{-}$are computable: by computability of preimages of $f\left(\Sigma_{1}^{0}(\mathbb{R}) \times\right.$ $\left.C(X, \mathbb{R}) \rightarrow \Sigma_{1}^{0}(X), \Pi_{1}^{0}(\mathbb{R}) \times C(X, \mathbb{R}) \rightarrow \Pi_{1}^{0}(X)\right)$ and the operation $\cap: \Pi_{1}^{0}(X) \times \mathcal{K}_{>}(X) \rightarrow$ $\mathcal{K}_{>}(X)$.

Now, given a $\delta_{\text {min-cover-name }}$ of K, for each $k \in \mathbb{N}$ consider a decomposition $K=$ $\bigcup_{j<N_{k}} X_{j}^{k}$ as in Theorem 8.2 with $\max _{j} \operatorname{diam} X_{j}^{k}<2^{-k-1}$. We can compute maxima and minima of f on each X_{j}^{k}, effectively in k, j (and uniformly in names of K, f), and will call these $c_{k, j}^{ \pm}$. As they form a sequence computable from K, f (for instance $\left.c_{0,0}^{-}, c_{0,0}^{+} ; \ldots ; c_{0, N_{0}-1}^{-}, c_{0, N_{0}-1}^{+} ; c_{1,0}^{-}, c_{1,0}^{+} ; \ldots\right)$ one can compute $\alpha \in(a, b)$ which avoids all $c_{k, j}^{ \pm}$ (formally, use Theorem 8.3).

Using positive information on X_{j}^{k}, if $c_{k, j}^{-}<\alpha$ we compute some $x_{k, j}^{-} \in X_{j}^{k}$ with $f\left(x_{k, j}^{-}\right)<$ α, similarly if $\alpha<c_{k, j}^{+}$we compute some $x_{k, j}^{+} \in X_{j}^{k}$ with $\alpha<f\left(x_{k, j}^{+}\right)$. We will write $M_{k}^{-}:=\left\{j<N_{k} \mid c_{k, j}^{-}<\alpha\right\}, M_{k}^{+}:=\left\{j<N_{k} \mid c_{k, j}^{+}>\alpha\right\}$ and set $Y_{k}^{-}:=\left\{x_{k, j}^{\sigma} \mid j \in M_{k}^{\sigma}\right\}$ $(\sigma=+,-)$. Note that Y_{k}^{σ} is a finite 2^{-k-1}-approximation to $X_{\alpha}^{\sigma}:=K \cap p^{\sigma}(\alpha, f)$ (for, $Y_{k}^{-} \subseteq X_{\alpha}^{-}$while any $x \in X_{\alpha}^{-}$has some $j<N_{k}$ such that $X_{j}^{k} \ni x$, with necessarily $c_{k, j}^{-} \leq f(x)<\alpha$ and $d\left(x, x_{k, j}^{-}\right) \leq \operatorname{diam} X_{j}^{k}<2^{-k-1}$. The proof for $\sigma=+$ is similar). As a
consequence, we have the equivalence $X_{\alpha}^{\sigma}=\emptyset$ iff $Y_{k}^{\sigma}=\emptyset$ for all k iff $Y_{k}^{\sigma}=\emptyset$ for some k, and also for each k the equivalence $Y_{k}^{\sigma}=\emptyset$ iff $M_{k}^{\sigma}=\emptyset$. Moreover, we can (if $M_{k+1}^{\sigma} \neq \emptyset$) compute finite sets of ideal points approximating Y_{k+1}^{σ} : writing $M_{k+1}^{\sigma}=\left\{j_{1}, \ldots, j_{P}\right\}$ in strictly ascending order and $p^{(k, i)} \in \delta_{X}^{-1}\left\{x_{k+1, j_{i}}^{\sigma}\right\}$ for the Cauchy name calculated by our algorithm, define $u_{k}^{\sigma}=\left\langle p_{k+1}^{(k, 1)}, \ldots, p_{k+1}^{(k, P)}\right\rangle$; then $\nu_{\mathcal{Q}}\left(u_{k}^{\sigma}\right) \subseteq \bar{N}_{2^{-k-1}}\left(Y_{k+1}^{\sigma}\right)$ and $Y_{k+1}^{\sigma} \subseteq \bar{N}_{2^{-k-1}}\left(\nu_{\mathcal{Q}}\left(u_{k}^{\sigma}\right)\right)$.

Overall we get

$$
\begin{equation*}
\nu_{\mathcal{Q}}\left(u_{k}^{\sigma}\right) \subseteq \bar{N}_{2^{-k-1}}\left(X_{\alpha}^{\sigma}\right) \wedge X_{\alpha}^{\sigma} \subseteq N_{2^{-k-2}+2^{-k-1}}\left(\nu_{\mathcal{Q}}\left(u_{k}^{\sigma}\right)\right) \tag{8.1}
\end{equation*}
$$

and in particular any $k, l \in \mathbb{N}$ satisfy $\nu_{\mathcal{Q}}\left(u_{k}^{\sigma}\right) \subseteq N_{2^{-k-1}+2^{-l-2}+2^{-l-1}}\left(\nu_{\mathcal{Q}}\left(u_{l}^{\sigma}\right)\right)$. For $k>l$ thus

$$
\begin{aligned}
d_{\mathrm{H}}\left(\nu_{\mathcal{Q}}\left(u_{k}^{\sigma}\right), \nu_{\mathcal{Q}}\left(u_{l}^{\sigma}\right)\right) & <\max \left\{2^{-k-1}+2^{-l-2}+2^{-l-1}, 2^{-l-1}+2^{-k-2}+2^{-k-1}\right\} \\
& =2^{-k-1}+2^{-l-2}+2^{-l-1}=2^{-l}\left(2^{-(k-l)-1}+2^{-2}+2^{-1}\right) \leq 2^{-l} .
\end{aligned}
$$

On the other hand, for any $\epsilon>0$ there exists k with $2^{-k-2}+2^{-k-1}<\epsilon$ and in this case (8.1) implies $d_{\mathrm{H}}\left(\overline{X_{\alpha}^{\sigma}}, \nu_{\mathcal{Q}}\left(u_{k}^{\sigma}\right)\right)<\epsilon$. For $X_{\alpha}^{\sigma} \neq \emptyset$ we have thus shown $u_{0}^{\sigma} u_{1}^{\sigma} \cdots \in \mathbb{B}$ is a $\delta_{\text {Hausdorff }}$-name for $\overline{X_{\alpha}^{\sigma}}$, computable from the inputs.

We now verify $\overline{X_{\alpha}^{-}}=K \cap f^{-1}(-\infty, \alpha]$. First, $\overline{X_{\alpha}^{-}} \subseteq K \cap f^{-1}(-\infty, \alpha]$ by closedness of K and continuity of f. On the other hand, suppose there exists $x \in\left(K \cap f^{-1}\{\alpha\}\right) \backslash \overline{X_{\alpha}^{-}}$, say $V \in \mathcal{T}_{X}$ is such that $x \in V \cap K \subseteq K \cap f^{-1}[\alpha, \infty)$. Then for k sufficiently large and $j<N_{k}$ such that $X_{j}^{k} \ni x$, we have $X_{j}^{k} \subseteq V \cap K$, but by construction $c_{k, j}^{-} \leq f(x)=\alpha$ implies $c_{k, j}^{-}<\alpha$ and thus $X_{j}^{k} \cap f^{-1}(-\infty, \alpha) \neq \emptyset$, a contradiction. $\overline{X_{\alpha}^{+}}=K \cap f^{-1}[\alpha, \infty)$ is verified in a similar way.

Finally, we describe the output of the algorithm. If $X_{\alpha}^{\sigma}=\emptyset$ (equivalently, $M_{0}^{\sigma}=\emptyset$) for some $\sigma \in\{ \pm\}$ we should output some fixed computable $\delta_{\text {min-cover }}$-name of \emptyset as the name of $\overline{X_{\alpha}^{\sigma}}$ for the corresponding σ. Otherwise, we should compute a $\delta_{\text {Hausdorff }}$-name of $\overline{X_{\alpha}^{\sigma}}$ (as above) and translate this into a $\delta_{\text {min-cover-name. Since }} M_{0}^{\sigma} \in E(\mathbb{N})$ is computable from the inputs, the choice between these two cases is decidable. This completes the description of the algorithm.

Finally, we give our converse to Theorem 7.6,
Proposition 8.5. Suppose X is $\delta_{\text {cover-computable and }} E: \subseteq \mathcal{A}(X) \rightrightarrows C(X, X), A \mapsto\{f \mid$ $\left.\operatorname{im} f=\left.A \wedge f\right|_{A}=\operatorname{id}_{A}\right\} \quad(\operatorname{dom} E=\mathcal{A}(X) \backslash\{\emptyset\})$ is well-defined and computable, where $\mathcal{A}(X)$ is represented by $\delta_{\text {range }} \sqcap \delta_{\text {dist }}^{>}$. Then X is zero-dimensional and M from Section 5 is computable.
Proof. First, (nonuniformly) note any $\delta_{\text {cover }}$-name of X is also a $\delta_{\text {min-cover-name }}$ of X. For given $x \in X$ and $k \in \mathbb{N}$ we will compute a $\delta_{\Delta_{1}^{0}}$-name of a neighbourhood $W \ni x$ with diam $W \leq 2^{-k}$. Namely, if $p \in \delta_{X}^{-1}\{x\}$ we will apply Proposition 8.4 twice to $d(x, \cdot)$ (in place of f) to get some $0<\alpha_{0}<\alpha_{1}<2^{-k-1}$ with

$$
\overline{B\left(x ; \alpha_{i}\right)}=\bar{B}\left(x ; \alpha_{i}\right) \wedge \overline{X \backslash \bar{B}\left(x ; \alpha_{i}\right)}=X \backslash B\left(x ; \alpha_{i}\right)
$$

for each i. Then, in particular, $A:=\bar{B}\left(x ; \alpha_{1}\right) \backslash B\left(x ; \alpha_{0}\right)$ is the closure of $V:=B\left(x ; \alpha_{1}\right) \backslash$ $\bar{B}\left(x ; \alpha_{0}\right)$.
Proof of claim: Clearly

$$
y \in V \Longleftrightarrow \alpha_{0}<d(x, y)<\alpha_{1} \Longrightarrow \alpha_{0} \leq d(x, y) \leq \alpha_{1} \Longleftrightarrow y \in A
$$

so also $\bar{V} \subseteq A$. Conversely, if $y \in A$, either $\tau:=d(x, y) \in\left(\alpha_{0}, \alpha_{1}\right)$ or $\tau=\alpha_{0}$ or $\tau=\alpha_{1}$. If $\tau=\alpha_{0}$, use $\overline{X \backslash \bar{B}\left(x ; \alpha_{0}\right)}=X \backslash B\left(x ; \alpha_{0}\right)$ to get some sequence $\left(y_{j}\right)_{j \in \mathbb{N}} \subseteq X \backslash \bar{B}\left(x ; \alpha_{0}\right)$ convergent to y. For large j we get $y_{j} \in V$, so $y \in \bar{V}$. Case $\tau=\alpha_{1}$ is similar using $\overline{B\left(x ; \alpha_{1}\right)}=\bar{B}\left(x ; \alpha_{1}\right)$. This completes proof of the claim.

Note Cauchy names of α_{0}, α_{1} allow us to compute a $\delta_{\Sigma_{1}^{0}}$-name of $V=d(x, \cdot)^{-1}\left(\alpha_{0}, \alpha_{1}\right)$ from p, hence (using properties of formal inclusion) a $\delta_{\text {range }}$-name of $\bar{V}=A$. On the other hand, a $\delta_{\Pi_{1}^{0}}$-name of $A=d(x, \cdot)^{-1}\left[\alpha_{0}, \alpha_{1}\right]$ can be used to compute a $\delta_{\text {dist }}^{>}$-name of A (and similarly for $A \cup\{x\}$), since (in notation of [5]) $\delta_{\text {cover }} \leq \delta_{\mathcal{K}}^{>}$and $\delta^{>} \leq \delta_{\text {dist }}^{>}$, and $\cap: \Pi_{1}^{0}(X) \times \mathcal{K}_{>}(X) \rightarrow \mathcal{K}_{>}(X)$ is computable. Consequently, a name of some $f \in E(A \cup\{x\})$ is available. Now let $W:=\bar{B}\left(x ; \alpha_{1}\right) \cap f^{-1}\{x\}$. Since $f(A)$ is disjoint from x, also $W=$ $B\left(x ; \alpha_{0}\right) \cap f^{-1} B\left(x ; \alpha_{0}\right)$, and the result follows (since $2 \alpha_{0} \leq 2^{-k}$).

More formally, one can extract from Theorem [7.6 and Proposition 8.5 the following equivalence statement: if computable metric space X is $\delta_{\text {cover-computable then }}$
$\operatorname{dim} X=0 \Longleftrightarrow E$ well-defined \& computable $\Longleftrightarrow X$ eff. of covering dimension ≤ 0.
This uses $\left.\delta_{\text {disj-cover }}^{\prime} \equiv \delta_{\text {cover }}\right|^{Z_{c}(X)}$; we leave details to the reader.
Acknowledgements. The author is very grateful to the anonymous referees, whose comments have helped in improving the presentation of this paper. Many thanks also to Paul Wright, who proofread the paper at a late stage.

References

[1] N. Aoki and K. Hiraide. Topological theory of dynamical systems. North-Holland Publishing Co., Amsterdam, 1994.
[2] Gordon O. Berg, W. Julian, R. Mines, and F. Richman. The constructive equivalence of covering and inductive dimensions. General Topology and Appl., 7(1):99-108, 1977.
[3] Errett Bishop. Foundations of constructive analysis. McGraw-Hill Book Co., New York, 1967.
[4] Errett Bishop and Douglas Bridges. Constructive analysis, volume 279 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1985.
[5] V. Brattka and G. Presser. Computability on subsets of metric spaces. Theoret. Comput. Sci., 305(1-3):43-76, 2003.
[6] Vasco Brattka and Guido Gherardi. Borel complexity of topological operations on computable metric spaces. J. Logic Comput., 19(1):45-76, 2009.
[7] Vasco Brattka and Guido Gherardi. Effective choice and boundedness principles in computable analysis. Bull. Symbolic Logic, 17(1):73-117, 2011.
[8] Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial on computable analysis. In New computational paradigms, pages 425-491. Springer, New York, 2008.
[9] R. Engelking. General topology. Heldermann Verlag, Berlin, second edition, 1989.
[10] A. S. Kechris. Classical descriptive set theory, volume 156 of Grad. Texts in Math. Springer-Verlag, New York, 1995.
[11] K. Kuratowski. Topology. Vol. I. Academic Press, New York, 1966.
[12] Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge, 1995.
[13] F. Richman, Gordon O. Berg, H. Cheng, and R. Mines. Constructive dimension theory. Compositio Math., 33(2):161-177, 1976.
[14] A. S. Troelstra and D. van Dalen. Constructivism in mathematics. Vol. I, volume 121 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1988. An introduction.
[15] J. van Mill. Infinite-dimensional topology, volume 43 of North-Holland Mathematical Library. NorthHolland Publishing Co., Amsterdam, 1989. Prerequisites and introduction.
[16] K. Weihrauch. Computability. Springer-Verlag, Berlin, 1987.
[17] K. Weihrauch. On computable metric spaces Tietze-Urysohn extension is computable. In Computability and complexity in analysis (Swansea, 2000), volume 2064 of Lecture Notes in Comput. Sci., pages 357-368, Berlin, 2001. Springer.
[18] Klaus Weihrauch. Computable analysis. Springer-Verlag, Berlin, 2000.

[^0]: 2012 ACM CCS: [Mathematics of computing]: Continuous mathematics-Topology-Point-set topology.

 Key words and phrases: zero-dimensional, dimension theory, computable analysis.

 * Results in Section 4 have been presented at CCA 2013, Nancy, France, Jul 8-10 2013.

[^1]: ${ }^{1}$ The subspace case could subsequently be treated following Section 6 to an effectivisation of the theorem on closed subspaces [9] Thm 7.1.8], but we will not do that here.

