
Logical Methods in Computer Science
Vol. 7 (3:19) 2011, pp. 1–42
www.lmcs-online.org

Submitted Nov. 4, 2010
Published Sep. 30, 2011

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC
STRATEGY ITERATION ALGORITHMS

OLIVER FRIEDMANN

University of Munich
e-mail address: Oliver.Friedmann@gmail.com

ABSTRACT. This paper presents a new exponential lower bound for the two most popular deter-
ministic variants of the strategy improvement algorithms for solving parity, mean payoff, discounted
payoff and simple stochastic games. The first variant improves every node in each step maximizing
the current valuation locally, whereas the second variant computes the globally optimal improve-
ment in each step. We outline families of games on which both variants require exponentially many
strategy iterations.

1. INTRODUCTION

In this paper, we study lower bounds for strategy improvement algorithms for solving parity games,
mean payoff games, discounted payoff games as well as simple stochastic games. These are
two-player games of perfect information played on directed graphs, and are related by a chain of
polynomial-time reductions.

Parity games can be reduced to mean payoff games [Pur95], mean payoff games to discounted
payoff games, and the latter ones to simple stochastic games [ZP96]. Solving games of any of these
classes is one of the few combinatorial problems that belongs to the complexity class NP∩coNP and
that is not (yet) known to belong to P [EJS93, Con92]. It has also been shown that solving parity
games as well as mean and discounted payoff games belongs to UP ∩ coUP [Jur98].

We mainly consider parity games in this paper. They are played on a directed graph that is
partitioned into two node sets associated with the two players; the nodes are labeled with natural
numbers, called priorities. A play in a parity game is an infinite sequence of nodes whose winner
is determined by the parity of the highest priority that occurs infinitely often, giving parity games
their name.

The reason why parity games seem to be the most appropriate class of games, when trying to
construct a worst-case family for one of the four classes, is that the effect of each node in a parity
game is very clear: a higher priority dominates all lower priorities (in a play), no matter how many
there are. By showing that the strategy iteration on our family of parity games directly corresponds
to the strategy iteration that solves the other classes of games, we get the lower bounds for these by
applying the standard reductions to our games.

1998 ACM Subject Classification: F.2.2.
Key words and phrases: parity games, mu calculus, payoff games, policy iteration, strategy improvement, exponential

lower bound.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (3:19) 2011
c© O. Friedmann
CC© Creative Commons

http://creativecommons.org/about/licenses

2 O. FRIEDMANN

Parity games occur in several fields of theoretical computer science, e.g. as solution to the
problem of emptiness of tree automata [GTW02, EJ91] or as algorithmic backend to the model
checking problem of the modal µ-calculus [EJS93, Sti95].

There are many algorithms that solve parity games, such as the recursive decomposing al-
gorithm due to Zielonka [Zie98] and its recent improvement by Jurdziński, Paterson and Zwick
[JPZ06], the small progress measures algorithm due to Jurdziński [Jur00] with its recent improve-
ment by Schewe [Sch07], the model-checking algorithm due to Stevens and Stirling [SS98] and fi-
nally the two strategy improvement algorithms by Vöge and Jurdziński [VJ00] and Schewe [Sch08].

All mentioned algorithms except for the two deterministic subexponential algorithms [JPZ06,
Sch07] and except for the two strategy improvement algorithms have been shown to have a super-
polynomial or exponential worst-case runtime complexity at best [Jur00, Fri10b, Fri10a]. The cur-
rently best known upper bound on the deterministic solution of parity games is O(|E| · |V |

1
3
|ranΩ|)

due to Schewe’s big-step algorithm [Sch07].
The strategy improvement, strategy iteration or policy iteration technique is the most general

approach that can be applied as a solving procedure for all of these game classes. It was introduced
by Howard [How60] for solving problems on Markov decision processes and has been adapted by
several other authors for solving nonterminating stochastic games [HK66], simple stochastic games
[Con92], discounted and mean payoff games [Pur95, ZP96] as well as parity games [VJ00].

Strategy iteration is an algorithmic scheme that is parameterized by an improvement policy
which basically defines how to select a successor strategy in the iteration process. There are two
major kinds of improvement policies: deterministic and randomized approaches; we will investigate
deterministic approaches in this paper.

For discounted payoff games, there is the deterministic algorithm due to Puri [Pur95] that can
also be used to solve mean payoff games as well as parity games by reduction [ZP96, VJ00]. Vöge
and Jurdziński’s improvement algorithm is a refined version of Puri’s on parity games that omits the
use of high-precision rational numbers; there are at least two reasonable improvement policies for
the Vöge-Jurdziński procedure appearing in the literature such as the standard locally optimizing
policy and Schewe’s globally optimizing policy.

An example has been known for some time for which a sufficiently poor choice of a single-
switch policy causes an exponential number of iterations of the strategy improvement algorithm
[BV07], but there have been no games known so far on which the policies due to Vöge/Jurdziński
or Schewe require more than linearly many iterations.

In this paper, we particularly investigate the locally optimizing policy – which is, by far, the
most natural choice for a multi-switching improvement policy – for solving parity games as it is
applied by default in the original paper of Vöge and Jurdziński. We present a family of games
comprising a linear number of nodes and a quadratic number of edges such that the strategy im-
provement algorithm using this policy requires an exponential number of iterations on them. We
explain how these games can be refined in such a way that they only comprise a linear number of
edges resulting in an undeniable exponential lower bound. Additionally, we describe what parts of
the games have to be altered in order to get a family that results in exponentially many iterations
when solved by Schewe’s strategy improvement algorithm.

Finally, we show that the parity game strategy iteration on our games directly corresponds to
the strategy iteration that solves the associated mean payoff, discounted payoff as well as simple
stochastic games, resulting in an exponential lower bound for the standard strategy improvement
algorithms for all of these game classes.

Section 2 defines the basic notions of parity games and some notations that are employed
throughout the paper. Section 3 recaps the strategy improvement algorithm by Vöge and Jurdziński;

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 3

we define the two considered improvement policies in Section 4. In Section 5, we define a subclass
of parity games called sink games that allows us to relate the lower bounds for parity games to the
other games classes. Section 6 presents a family of games on which the locally improving algo-
rithm requires an exponential number of iterations. We discuss some improvements of the family in
Section 7. In Section 8, we consider the modifications that have to be applied to our construction to
obtain a lower bound for the globally optimizing policy. In Section 9, we show how to transfer the
lower bounds to mean payoff, discounted payoff and simple stochastic games.

2. PARITY GAMES

A parity game is a tuple G = (V, V0, V1, E,Ω) where (V,E) forms a directed graph whose node
set is partitioned into V = V0 ∪ V1 with V0 ∩ V1 = ∅, and Ω : V → N is the priority function that
assigns to each node a natural number called the priority of the node. We assume the graph to be
total, i.e. for every v ∈ V there is a w ∈ V s.t. (v, w) ∈ E.

In the following we will restrict ourselves to finite parity games. W.l.o.g. we assume Ω to be
injective, i.e. there are no two different nodes with the same priority.

We also use infix notation vEw instead of (v, w) ∈ E and define the set of all successors of
v as vE := {w | vEw}. The size |G| of a parity game G = (V, V0, V1, E, Ω) is defined to be
the cardinality of E, i.e. |G| := |E|; since we assume parity games to be total w.r.t. E, this is a
reasonable way to measure the size.

The game is played between two players called 0 and 1: starting in a node v0 ∈ V , they
construct an infinite path through the graph as follows. If the construction so far has yielded a
finite sequence v0 . . . vn and vn ∈ Vi then player i selects a w ∈ vnE and the play continues with
v0 . . . vnw.

Every play has a unique winner given by the parity of the greatest priority that occurs infinitely
often. The winner of the play v0v1v2 . . . is player i iff max{p | ∀j ∈ N ∃k ≥ j : Ω(vk) = p} ≡2 i
(where i ≡k j holds iff |i − j| mod k = 0). That is, player 0 tries to make an even priority occur
infinitely often without any greater odd priorities occurring infinitely often, player 1 attempts the
converse.

We depict parity games as directed graphs where nodes owned by player 0 are drawn as circles
and nodes owned by player 1 are drawn as rectangles; all nodes are labeled with their respective
priority, and – if needed – with their name.

A strategy for player i is a – possibly partial – function σ : V ∗Vi → V , s.t. for all sequences
v0 . . . vn with vj+1 ∈ vjE for all j = 0, . . . , n − 1, and all vn ∈ Vi we have: σ(v0 . . . vn) ∈ vnE.
A play v0v1 . . . conforms to a strategy σ for player i if for all j ∈ N we have: if vj ∈ Vi then
vj+1 = σ(v0 . . . vj). Intuitively, conforming to a strategy means to always make those choices that
are prescribed by the strategy. A strategy σ for player i is a winning strategy in node v if player i
wins every play that begins in v and conforms to σ.

A strategy σ for player i is called positional if for all v0 . . . vn ∈ V ∗Vi and all w0 . . . wm ∈
V ∗Vi we have: if vn = wm then σ(v0 . . . vn) = σ(w0 . . . wm). That is, the choice of the strategy
on a finite path only depends on the last node on that path.

With G we associate two sets W0,W1 ⊆ V ; Wi is the set of all nodes v s.t. player i wins the
game G starting in v. Here we restrict ourselves to positional strategies because it is well-known
that a player has a (general) winning strategy iff she has a positional winning strategy for a given
game. In fact, parity games enjoy positional determinacy meaning that for every node v in the game
either v ∈W0 or v ∈W1 [EJ91]. Furthermore, it is not difficult to show that, whenever player i has

4 O. FRIEDMANN

winning strategies σv for all v ∈ U for some U ⊆ V , then there is also a single strategy σ that is
winning for player i from every node in U .

The problem of solving a parity game is to compute W0 and W1 as well as corresponding
winning strategies σ0 and σ1 for the players on their respective winning regions.

A strategy σ for player i induces a strategy subgame G|σ := (V, V0, V1, E|σ,Ω) where E|σ :=
{(u, v) ∈ E | u ∈ dom(σ) ⇒ σ(u) = v}. Such a subgame G|σ is basically the same game as G
with the restriction that whenever σ provides a strategy decision for a node u ∈ Vi, all transitions
from u but σ(u) are no longer accessible. The set of strategies for player i is denoted by Si(G).

3. STRATEGY IMPROVEMENT

We briefly recap the basic definitions of the strategy improvement algorithm. For a given parity
game G = (V, V0, V1, E, Ω), the reward of node v is defined as follows: rewG(v) := Ω(v) if
Ω(v) ≡2 0 and rewG(v) := −Ω(v) otherwise. The set of even resp. odd priority nodes is defined
to be V⊕ := {v ∈ V | Ω(v) ≡2 0} resp. V	 := {v ∈ V | Ω(v) ≡2 1}.

The relevance ordering < on V is induced by Ω: v < u : ⇐⇒ Ω(v) < Ω(u); additionally
one defines the reward ordering ≺ on V by v ≺ u : ⇐⇒ rewG(v) < rewG(u). Note that both
orderings are total due to injectivity of the priority function.

Let π be a path σ be a strategy for player i. We say that π conforms to σ iff for every j with
π(j) ∈ Vi we have σ(π(j)) = π(j + 1).

Let v be a node, σ be a positional player 0 strategy and τ be a positional player 1 strategy.
Starting in v, there is exactly one path πσ,τ,v that conforms to σ and τ . Since σ and τ are positional
strategies, this path can be uniquely written as follows.

πσ,τ,v = v1 . . . vk(w1 . . . wl)
ω

with v1 = v, vi 6= w1 for all 1 ≤ i ≤ k and Ω(w1) > Ω(wj) for all 1 < j ≤ l. Note that the
uniqueness follows from the fact that all nodes on the cycle have different priorities and we choose
w1 to be the node with highest priority.

Discrete strategy improvement relies on a more abstract description of such a play πσ,τ,v. In
fact, we only consider the dominating cycle nodew1, the set of more relevant nodes – i.e. all vi > w1

– on the path to the cycle node, and the length k of the path leading to the cycle node. More formally,
the node valuation of v w.r.t. σ and τ is defined as follows.

ϑσ,τ,v := (w1, {vi > w1 | 1 ≤ i ≤ k}, k)

Given a node valuation ϑ, we refer to w1 as the cycle component, to {vi > w1 | 1 ≤ i ≤ k} as the
path component, and to k as the length component of ϑ.

In order to compare node valuations with each other, we introduce a total ordering on the set of
node valuations. For that reason, we need to define a total ordering ≺ on the second component of
node valuations – i.e. on subsets of V – first. To compare two different sets M and N of nodes, we
order all nodes lexicographically w.r.t. to their relevance and consider the first position in which the
two lexicographically ordered sets differ, i.e. there is a node v ∈M and a node w ∈ N with v 6= w
s.t. u ∈ M iff u ∈ N for all u > v and all u > w. Now N is better than M iff v ≺ w, i.e. the set
which gives the higher reward in the first differing position is superior to the other set.

In other words, to determine which set of nodes is better w.r.t. ≺, one considers the node with
the highest priority that occurs in only one of the two sets. The set owning that node is greater than
the other if and only if that node has an even priority. More formally:

M ≺ N :⇐⇒ M4N 6= ∅ and max
<

(M4N) ∈ ((N ∩ V⊕) ∪ (M ∩ V))

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 5

where M4N denotes the symmetric difference of both sets.
Now we are able to extend the total ordering on sets of nodes to node valuations The motivation

behind this ordering is a lexicographic measurement of the profitability of a positional play w.r.t.
player 0: the most prominent part of a positional play is the cycle in which the plays eventually
stays, and here it is the reward ordering on the dominating cycle node that defines the profitability
for player 0. The second important part is the loopless path that leads to the dominating cycle node.
Here, we measure the profitability of a loopless path by a lexicographic ordering on the relevancy of
the nodes on path, applying the reward ordering on each component in the lexicographic ordering.
Finally, we consider the length, and the intuition behind the definition is that, assuming we have an
even-priority dominating cycle node, it is better to reach the cycle fast whereas it is better to stay as
long as possible out of the cycle otherwise. More formally:

(u,M, e) ≺ (v,N, f) :⇐⇒


(u ≺ v) or (u = v and M ≺ N) or
(u = v and M = N and e < f and u ∈ V) or
(u = v and M = N and e > f and u ∈ V⊕)

Given a player 0 strategy σ, it is our goal to find a best response counterstrategy τ that mini-
mizes the associated node valuations. A strategy τ is an optimal counterstrategy w.r.t. σ iff for every
opponent strategy τ ′ and for every node v we have: ϑσ,τ,v � ϑσ,τ ′,v.

It is well-known that an optimal counterstrategy always exists and that it is efficiently com-
putable.

Lemma 3.1 ([VJ00]). Let G be a parity game and σ be a player 0 strategy. An optimal counter-
strategy for player 1 w.r.t. σ exists and can be computed in polynomial time.

A fixed but arbitrary optimal counterstrategy will be denoted by τσ from now on. The associated
game valuation Ξσ is a map that assigns to each node the node valuation w.r.t. σ and τσ:

Ξσ : v 7→ ϑσ,τσ ,v

Game valuations are used to measure the performance of a strategy of player 0: for a fixed
strategy σ of player 0 and a node v, the associated valuation essentially states which is the worst
cycle that can be reached from v conforming to σ as well as the worst loopless path leading to that
cycle (also conforming to σ).

We also write v ≺σ u to compare the Ξσ-valuations of two nodes, i.e. to abbreviate Ξσ(v) ≺
Ξσ(u).

A run of the strategy improvement algorithm can be expressed by a sequence of improving
game valuations; a partial ordering on game valuations is quite naturally defined as follows:

Ξ � Ξ′ :⇐⇒
(
Ξ(v) � Ξ′(v) for all v ∈ V

)
and

(
Ξ 6= Ξ′

)
A valuation Ξσ can be used to create a new strategy of player 0. The strategy improvement

algorithm is only allowed to select new strategy decisions for player 0 occurring in the improvement
arena AG,σ := (V, V0, V1, E

′, Ω) where

vE′u :⇐⇒
vEu and (v ∈ V1 or (v ∈ V0 and σ(v) �σ u))

Thus all edges performing worse than the current strategy are removed from the game. A
strategy σ is improvable iff there is a node v ∈ V0, a node u ∈ V with vEu s.t. σ(v) ≺σ u.

An improvement policy now selects a strategy for player 0 in a given improvement arena. More
formally: an improvement policy is a map IG : S0(G) → S0(G) fulfilling the following two
conditions for every strategy σ.

6 O. FRIEDMANN

(1) For every node v ∈ V0 it holds that (v, IG(σ)(v)) is an edge in AG,σ.
(2) If σ is improvable then there is a node v ∈ V0 s.t. σ(v) ≺σ IG(σ)(v).
We say that an edge (v, u) is an improving edge w.r.t. σ iff v ∈ V0, u ∈ vE, σ(v) 6= u and
σ(v) ≺σ u.

Jurdziński and Vöge proved in their work that every strategy that is improved by an improve-
ment policy can only result in strategies with valuations strictly better than the valuation of the
original strategy.

Theorem 3.2 ([VJ00]). LetG be a parity game, σ be an improvable strategy and IG be an improve-
ment policy. We have Ξσ � ΞIG(σ).

If a strategy is not improvable, the strategy iteration procedure comes to an end and the winning
sets for both players as well as associated winning strategies can be easily derived from the given
valuation.

Theorem 3.3 ([VJ00]). Let G be a parity game and σ be a non-improvable strategy. Then the
following holds:
(1) W0 = {v | Ξσ(v) = (w, ,) and w ∈ V⊕}
(2) W1 = {v | Ξσ(v) = (w, ,) and w ∈ V	}
(3) σ is a winning strategy for player 0 on W0

(4) τσ is a winning strategy for player 1 on W1

(5) σ is �-optimal

The strategy iteration starts with an initial strategy ιG and runs for a given improvement policy IG
as outlined in the pseudo-code of Algorithm 1.

Algorithm 1 Strategy Iteration
1: σ ← ιG
2: while σ is improvable do
3: σ ← IG(σ)
4: end while
5: return W0, W1, σ, τ as in Theorem 3.3

4. IMPROVEMENT POLICIES

There are two major deterministic improvement policies that we consider here, namely the locally
optimizing policy due to Jurdziński and Vöge [VJ00] and the globally optimizing policy by Schewe
[Sch08].

The locally optimizing policy IlocG selects a most profitable strategy decision in every point
with respect to the current valuation. More formally, it holds for every strategy σ, every player 0
node v and every w ∈ vE that w �σ IlocG (σ)(v).

Lemma 4.1 ([VJ00]). The locally optimizing policy can be computed in polynomial time.

This policy is generally considered to be the most natural choice, particularly because it di-
rectly corresponds to the canonical versions of strategy iteration in related parts of game theory like
discounted payoff games or simple stochastic games. We will present a family of games on which
the algorithm parameterized with this policy requires exponentially many iterations.

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 7

The globally optimizing policy IgloG on the other hand computes a globally optimal successor
strategy in the sense that the associated valuation is the best under all allowed successor strategies.
More formally, given a parity game G, an improvable strategy σ and the improved strategy σ∗ =

IgloG (σ), we have for an arbitrary strategy σ′ in the arena AG,σ that Ξσ′ � Ξσ∗ .
The policy can be interpreted as providing strategy improvement with a one-step lookahead; it

computes the optimal strategy under all possible strategies that can be reached by a single improve-
ment step.

The interested reader is pointed to Schewe’s paper [Sch08] for all the details on how to effec-
tively compute the optimal strategy update.

Theorem 4.2 ([Sch08]). The globally optimizing policy can be computed in polynomial time.

We will also explain how to adapt the presented family of games in order to enforce exponen-
tially many strategy iterations on them when parameterized with the globally optimal policy.

Vöge mentions without proof in his thesis that there is an improvement policy that requires at
most |V | many iterations to find its fixed point. We find this fact to be quite remarkable and give a
short proof of it in the following.

Lemma 4.3 ([Vög00]). Let G be a parity game. There is an improvement policy IlinG s.t. the
strategy improvement algorithm requires at most |V | many iterations.

Proof. Let G = (V, V0, V1, E,Ω) be a parity game and let σ∗ be a �-optimal strategy. We define
the improvement policy IlinG as follows.

IlinG (σ)(v) :=

{
σ∗(v) if (v, σ∗(v)) ∈ AG,σ
σ(v) otherwise

We will show that IlinG is indeed an improvement policy and that the strategy iteration param-
eterized with IlinG requires at most |V0| iterations on G in one go by verifying that

m(σ) (V0 =⇒ m(σ) (m(IlinG (σ))

for all σ where m(σ) = {v ∈ V0 | σ(v) = σ∗(v)}.
Let σ be a strategy s.t. m(σ) (V0. Since m(σ) ⊆ m(IlinG (σ)) holds by definition, we simply

need to show that there is at least one node v ∈ V0 with σ(v) 6= σ∗(v) and (v, σ∗(v)) ∈ AG,σ.
Consider the game G′ = (V, V0, V1, F,Ω) where

F = {(v, w) ∈ E | v ∈ V1 or (v, w) ∈ σ or (v, w) ∈ σ∗}
It is easy to see that AG′,σ ⊆ AG,σ and also that σ∗ is a �-optimal strategy w.r.t. G′. As σ is

not optimal, there must be at least one proper improvement edge (v, w) ∈ AG′,σ. By definition of
G′, it follows that σ(v) 6= w and σ∗(v) = w.

One may be misled to combine the existence of an improvement policy IlinG that enforces
at most linearly many iterations with the existence of the improvement policy IgloG that selects
the optimal successor strategy in each iteration, in order to propose that IgloG should also enforce
linearly many iterations in the worst case.

The reason why this proposition is incorrect lies in the intransitivity of optimality of strategy
updates. Although it is true that IlinG (σ) � IgloG (σ) for every strategy σ, this is not necessarily the
case for iterated applications, i.e. IlinG (IlinG (σ)) � IgloG (IgloG (σ)) does not necessarily hold for all
strategies σ.

8 O. FRIEDMANN

5. SINK GAMES

Every approach trying to construct a game family of polynomial size that requires super-polynomially
many iterations to be solved by strategy iteration (no matter which policy the algorithm is parame-
terized with), needs to focus on the second component of game valuations: there are only linearly
many different values for the first and third component while there are exponentially many for the
second.

Particularly, as there are at most linearly many different cycle nodes that can occur in valuations
during a run, there is no real benefit in actually using different cycle nodes. Hence our basic layout
of a game exploiting exponential behavior consists of a complex structure leading to one single
loop – the only cycle node that will occur in valuations (such structures can easily be identified
by preprocessing, but obviously it is not very difficult to obfuscate the whole construction without
really altering its effect on the strategy iteration). In this setting, the strategy iteration algorithm is
just improving the paths leading to the cycle node.

More formally: we call a parity game G (in combination with an initial strategy ιG) a 1-sink
game iff the following two properties hold:
(1) Sink Existence: there is a node v∗ (called the 1-sink of G) with v∗Ev∗ and Ω(v∗) = 1 reachable

from all nodes; also, there is no other node w with Ω(w) ≤ Ω(v∗).
(2) Sink Seeking: for each player 0 strategy σ with ΞιG�Ξσ and each node w it holds that the cycle

component of Ξσ(w) equals v∗.
Obviously, a 1-sink game is won by player 1. Note that comparing node valuations in a 1-sink

game can be reduced to comparing the path components of the respective node valuations, for two
reasons. First, the cycle component remains constant. Second, the path-length component equals
the cardinality of the path component, because all nodes except the sink node are more relevant than
the cycle node itself. In the case of a 1-sink game, we will therefore identify node valuations with
their path component.

It is fairly easy to prove that a game is a 1-sink game indeed. One simply has to check that the
sink existence property holds by looking at the graph, that the game is completely won by player 1,
and that the 1-sink is the cycle component of all nodes of the initial strategy.

Lemma 5.1. Let G be a parity game fulfilling the sink existence property w.r.t. v∗. G is a 1-sink
game iff G is completely won by player 1 (i.e. W1 = V) and for each node w it holds that the cycle
component of ΞιG(w) equals v∗.

Proof. The “only-if”-part is trivial. For the “if”-part, we need to show that the sink seeking-property
holds. Let σ be a player 0 strategy with ΞιG � Ξσ, w be an arbitrary node and u be the cycle
component of Ξσ(w). Due to the fact that G is completely won by player 1, u has to be of odd
priority. Also, since ΞιG � Ξσ, it holds that Ω(u) ≤ Ω(v∗) implying u = v∗ by the sink existence-
property.

There is another reason why 1-sink games are an interesting subclass of parity games: we will
see later that the strategy iteration on a discounted payoff game that has been induced by the canonic
reduction from a 1-sink parity game, directly corresponds to the strategy iteration on the original
1-sink parity game. This connection between discounted payoff games and 1-sink parity games
allows us to directly transfer the lower bound to discounted payoff games.

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 9

6. LOWER BOUND FOR THE LOCALLY OPTIMIZING POLICY

The lower bound construction for the locally optimizing policy is a family of 1-sink parity games
that implement a binary counter. In order to reduce the overall complexity of the games, our con-
struction relies on unbounded edge outdegree, yielding a quadratic number of edges in total. We
will discuss in the next section how the number of edges can be reduced to a linear number and even
how to get binary outdegree.

The implementation of the binary counter is based on a structure called simple cycles that allows
us to encode a single bit state in a given strategy σ. By having n such simple cycles, we can represent
every state of an n-bit binary counter. In order to allow strategy improvement the transitions of
the binary counter, we need to embed the simple cycles in a more complicated structure called
cycle gadget, connect the cycle gadgets of the different bits with each other, and with an additional
structure called deceleration lane.

This section is organized as follows. First, we consider the three gadgets that will be used in our
lower bound construction, namely simple cycles, the deceleration lane and cycle gates. Then, we
present the full construction of our lower bound family and give a high-level description of strategy
iteration on these games. Finally, we prove that strategy iteration on the games indeed follows the
high-level description.

For the presentation of the gadgets, we assume the context of a 1-sink parity game. The label-
ings and priorities of the gadgets will match the final priorities of the lower bound family.

Gadgets consist of three kinds of nodes: input nodes, output nodes and internal nodes. Input
nodes are nodes that will have incoming edges from outside of the gadget, output nodes will have
outgoing edges to the outside of the gadget and internal nodes will not be directly connected to the
outside of the gadget.

In the context of 1-sink game G and a strategy σ, we will sometimes say that a node v reaches
a node w to denote the fact that w lies on the path πσ,τσ ,v.

6.1. Simple Cycles. The binary counter will contain a representation of n bits that are realized by
n instances of a gadget called a cycle gate. The most important part of a cycle gate is the simple
cycle that we will introduce first. We fix some index i for the simple cycle gadget for the sake of
this subsection in order to have consistent node labelings.

A simple cycle consists of one player 0 controlled internal node di that is connected to a set
of external nodes Di in the rest of the graph, and one player 1 controlled input node ei. The node
ei itself is connected to di (therefore the name simple cycle) and to one output node hi 6∈ Di. We
note that all ei nodes are the only player 1 controlled nodes with real choices in the complete lower
bound construction.

All priorities of the simple cycle are based on an odd priority pi. Intuitively, the pi is considered
to be a very small priority compared to the priorities of the other nodes in the external graph that
the simple cycle is connected to. We will implicitly assume this in the following.

See Figure 1 for a simple cycle of index 1 with p1 = 3. The players, priorities and edges are
described in Table 1.

d1 : 3 e1 : 4 h1

Figure 1: Simple Cycle

10 O. FRIEDMANN

Node Player Priority Successors
di 0 pi {ei} ∪Di

ei 1 pi + 1 {di, hi}
hi ? > pi + 1 ?
w ∈ Di ? > pi + 1 ?

Table 1: Description of the Simple Cycle

Given a strategy σ, we say that the cycle is closed iff σ(di) = ei and open otherwise. A closed
cycle corresponds to a bit which is set while an open cycle corresponds to an unset bit.

The main idea now is to assign priorities to the simple cycle in such a way that the simple cycle
is won by player 0, i.e. the most relevant node on the cycle needs to have an even priority. This has
important consequences for the behaviour of the player 1 controlled node.

First, assume that σ(di) = ei. The optimal counter-strategy here is τσ(ei) = hi, since otherwise
player 0 would win the cycle which is impossible with G being a 1-sink game. Player 0 is therefore
able to force player 1 to move out of the cycle; in other words, setting a bit corresponds to forcing
player 1 out of the cycle. In a set bit, the valuation of di is essentially the valuation of hi, i.e.
Ξσ(di) = Ξσ(hi) ∪ {di, ei}.

Second, assume that σ(di) = w for some w ∈ Di, and that w ≺σ hi. It follows that di ≺σ hi,
hence τσ(ei) = di. The interesting part is now that Ξσ(ei) = Ξσ(w) ∪ {di, ei}, i.e. ei is an
improving node for di (since Ξσ(w)4Ξσ(ei) = {di, ei}), but updating to ei would yield a much
greater reward than just Ξσ(ei) (namely Ξσ(hi) ∪ {ei} by forcing player 1 to leave the cycle).

Assume now that w′ ∈ Di with w ≺σ w′ but w′ ≺σ hi. Obviously, w′ and ei are improving
nodes for di, but ei ≺σ w′, hence by the locally improving policy, player 0 switches to w′ although
ei might give a much better valuation. In other words, by moving to di, the player 1 node hides the
fact that there is a highly profitable node on the other side.

We formalize the behaviour of the simple cycle in two lemmas. The first describes the valuation
of ei depending on the state of the simple cycle and the second explains the switching behaviour of
the player 0 controlled node. The claimed result can easily be obtained by tracing the paths that the
strategies take through the gadget, and then comparing valuations.

Lemma 6.1. Let σ be a strategy. The following holds:
(1) If cycle i is closed, we have τσ(ei) = hi.
(2) If cycle i is open and hi ≺σ σ(di), we have τσ(ei) = hi.
(3) If cycle i is open and σ(di) ≺σ hi, we have τσ(ei) = di.

Lemma 6.2. Let σ be a strategy and w = max≺σ Di. Let σ′ = Iloc(σ). The following holds:
(1) If cycle i is closed and w ≺σ hi, we have cycle i σ′-closed (“closed cycle remains closed”).
(2) If cycle i is open, σ(di) 6= w or hi ≺σ w, we have σ′(di) = w (“open cycle remains open”).
(3) If cycle i is open, σ(di) = w and w ≺σ hi, then cycle i is σ′-closed (“open cycle closes”).
(4) If cycle i is closed and hi ≺σ w, we have σ′(di) = w (“closed cycle opens”).

Open simple cycles have the important property that we can postpone closing them by supply-
ing them with new nodes w ∈ Di in each iteration s.t. σ(di) ≺σ w. We will use this property in the
construction of our binary counter. Since we do not want to set all bits at the same time, rather one
by one, we need to make sure that unset bits which are not supposed to be set remain unset for some
time (more precisely, until the respective bit represents the least unset bit), and this will be realized

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 11

by this property. The device that supplies us with new best-valued external nodes in each iteration
is called deceleration lane and will be described next.

6.2. Deceleration Lane. A deceleration lane has several, say m, input nodes and some output
nodes, called roots. The lower bound construction will only require a deceleration lane with two
roots s and r, however, it would be easy to generalize the construction of deceleration lanes to an
arbitrary number of roots.

More formally, a deceleration lane consists ofm internal nodes t1, . . ., tm, one additional inter-
nal node c, m input nodes a1, . . ., am and two output nodes s and r, called roots of the deceleration
lane.

All priorities of the deceleration lane are based on some odd priority p. We assume that all root
nodes have a priority greater than p+ 2m+ 1. See Figure 2 for a deceleration lane with m = 6 and
p = 15. The players, priorities and edges are described in Table 2.

Node Player Priority Successors
t1 0 p {s, r, c}
ti>1 0 p+ 2i− 2 {s, r, ti−1}
c 0 p+ 2m+ 1 {s, r}
ai 1 p+ 2i− 1 {ti}
s ? > p+ 2m+ 1 ?
r ? > p+ 2m+ 1 ?

Table 2: Description of the Deceleration Lane

s r

c : 28

a1 : 16

s r

t1 : 15

a2 : 18

s r

t2 : 17

a3 : 20

s r

t3 : 19

a4 : 22

s r

t4 : 21

a5 : 24

s r

t5 : 23

a6 : 26

s r

t6 : 25

Figure 2: A Deceleration Lane (with m = 6 and p = 15)

A deceleration lane serves the following purpose. Assume that one of the output nodes, say r,
has the better valuation compared to the other root node, and assume further that this setting sustains
for some iterations.

12 O. FRIEDMANN

The input nodes, say a1, . . . , am, now serve as an entry point, and all reach the best valued root
– r – by some internal nodes. The valuation ordering of all input nodes depends on the iteration:
at first, a1 has a better valuation than all other input nodes. Then, a2 has a better valuation than all
other input nodes and so on.

This process continues until the other output node, say s, has a better valuation than r. Within
the next iteration, the internal nodes perform a resetting step s.t. all input nodes eventually reach the
new root node. One iteration after that, a1 has the best valuation compared to all other input nodes
again.

In other words, by giving one of the roots, say s, a better valuation than another root, say r,
it is possible to reset and therefore reuse the lane again. In fact, the lower bound construction will
use a deceleration lane with two roots s and r, and will employ s only for resetting, i.e. after some
iterations with r �σ s, there will be one iteration with s �σ r and right after that again r �σ s.

From an abstract point of view, we describe the state of a deceleration lane by which of the two
roots is chosen and by how many ti nodes are already moving down to c. Formally, we say that σ is
in deceleration state (x, j) (where x ∈ {s, r} and 0 < j ≤ m+ 1 a natural number) iff
(1) σ(c) = x,
(2) σ(t1) = c if j > 1,
(3) σ(ti) = ti−1 for all 1 < i < j, and
(4) σ(ti) = x for all j ≤ i.
We say that the deceleration lane is rooted in x if σ is in state (x, ∗), and that the index is i if σ is in
state (∗, i). Whenever a strategy σ is in state (x, i), we define root(σ) = x and ind(σ) = i. In this
case, we say that the strategy is well-behaved.

We formalize the behaviour of the deceleration lane in two lemmas. The first describes the
ordering of the valuations of the input nodes depending on the state (x, i) of the deceleration lane:
(1) if the ordering of the root nodes changes, all input nodes have a worse valuation than the better
root, and (2) otherwise the best valued input node is ai−1. The second explains the switching
behaviour of the player 0 controlled nodes: (1) if the ordering of the root node changes, than the
whole lane resets, and (2) otherwise the lane assembles further, providing a new best-valued input
node.

Lemma 6.3. Let σ be a strategy in deceleration state (x, i). Let x̄ denote the other root. Then
(1) x ≺σ x̄ implies aj ≺σ x̄ for all j (“resetting results in unprofitable lane”).
(2) x̄ ≺σ x implies x ≺σ ai ≺σ . . . ≺σ am ≺σ c ≺σ a1 ≺σ . . . ≺σ ai−1 (“new best-valued node

in each iteration”).

Lemma 6.4. Let σ be a strategy that is in deceleration state (x, i). Let x̄ denote the other root. Let
σ′ = Iloc(σ). Then
(1) x ≺σ x̄ implies that σ′ is in state (x̄, 1) (“lane resets”).
(2) x̄ ≺σ x implies that σ′ is in state (x,min(i,m) + 1) (“lane assembles one step at a time”).
(3) σ′ is well-behaved (“always ending up with well-behaved strategies”).

The main purpose of a deceleration lane is to absorb the update activity of other nodes in such
a way that wise (i.e. edges that will result in much better valuations after switching and reevalu-
ating) strategy updates are postponed. Consider a node for instance that has more than one proper
improving switch; the locally optimizing policy will select the edge with the best valuation to be
switched. In order to prevent that one particular improving switch is applied for some iterations,
one can connect the node to the input nodes of the deceleration lane.

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 13

The particular scenario in which we will use the deceleration lane are simple cycles as described
in the previous subsection. We will connect the simple cycles encoding the bits of our counter to
the deceleration lane in such a way, that lower cycles have less edges entering the deceleration
lane. This construction ensures that lower open cycles (representing unset bits) will close (i.e. set
the corresponding bit) before higher open cycles (representing higher unset bits) have their turn to
close.

6.3. Cycle Gate. The simple cycles will appear in a more complicated gadget, called cycle gate.
We will have n different cycle gates in the game number n of the lower bound family, hence we
fix some index i for the cycle gate gadget for the sake of this subsection in order to have consistent
node labelings.

Formally, a cycle gate consists of two internal nodes ei and hi, two input nodes fi and gi, and
two output nodes di and ki. The output node di will be connected to a set of other nodes Di in the
game graph, and ki to some other set Ki as well. The two nodes di and ei form a simple cycle as
described earlier.

All priorities of the cycle gate are based on two odd priorities pi and p′i. See Figure 3 for a
cycle gate of index 1 with p′1 = 3 and p1 = 33. The players, priorities and edges are described in
Table 3.

Node Player Priority Successors
di 0 p′i {ei} ∪Di

ei 1 p′i + 1 {di, hi}
gi 0 p′i + 3 {fi, ki}
ki 0 pi Ki

fi 1 pi + 2 {ei}
hi 1 pi + 3 {ki}

Table 3: Description of the Cycle Gate

d1 : 3 e1 : 4 h1 : 36 k1 : 33

f1 : 35 g1 : 6

Figure 3: A Cycle Gate (index 1 with p′1 = 3 and p1 = 33)

14 O. FRIEDMANN

The main idea behind a cycle gate is to have a pass-through structure controlled by the simple
cycle that is either very profitable or quite unprofitable. The pass-through structure of the cycle
gate has one major input node, named gi, and one major output node, named ki. The input node is
controlled by player 0 and connected via two paths with the output node; there is a direct edge and
a longer path leading through the interior of the cycle gate.

However, the longer path only leads to the output node if the simple cycle, consisting of one
player 0 node di and one player 1 node ei, is closed. In this case, it is possible and profitable to
reach the output node via the internal path; otherwise, this path is not accessible, and hence, the
input node has to select the unprofitable direct way to reach the output node.

We will have one additional input node, named fi, that can only access the path leading through
the interior of the cycle gate, for the following purpose. Assume that the simple cycle has just been
closed and now the path leading through the interior becomes highly profitable. Hence, the next
switching event to happen will be the node gi switching from the direct path to the path through
the interior. However, it will be useful to be able to reach the highly profitable path from some
parts of the outside graph one iteration before it is accessible via gi. For this reason, we include an
additional input node fi that immediately accesses the interior path.

We say that a cycle gate is closed resp. open iff the interior simple cycle is closed resp. open.
Similarly, we say that a cycle gate is accessed resp. skipped iff the access control node gi moves
through the interior (σ(gi) = fi) resp. directly to ki.

From an abstract point of view, we describe the state of a cycle gate by a pair (βi(σ), αi(σ)) ∈
{0, 1}2. The first component describes the state of the simple cycle, and the second component
gives the state of the access control node. Formally, we have the following.
(1) βi(σ) = 1 iff the i-th cycle gate is closed, and
(2) αi(σ) = 1 iff the i-th cycle gate is accessed.

We formalize the behaviour of the cycle gate in two lemmas. The first describes the valuation
of all important nodes of the cycle gate, using our knowledge of simple cycles of Lemma 6.1. The
second explains the switching behaviour of the access control node. The behaviour of the simple
cycle contained in the cycle gate is described by Lemma 6.2.

Lemma 6.5. Let σ be a strategy. Then
(1) If gate i is open, we have fi ≺σ σ(di).
(2) If gate i is closed, we have σ(ki) ≺σ fi.
(3) If gate i is closed and skipped, we have gi ≺σ fi.
(4) If gate i is accessed, we have fi ≺σ gi.
(5) If gate i is skipped, we have σ(ki) ≺σ gi.

Lemma 6.6. Let σ be a strategy and σ′ = Iloc(σ).
(1) If gate i is σ-closed, then gate i is σ′-accessed (“closed gates will be accessed”).
(2) If gate i is σ-open and σ(di) ≺σ hi, then gate i is σ′-skipped (“open gates with unprofitable

exit nodes will be skipped”).
(3) If gate i is σ-open and hi ≺σ σ(di), then gate i is σ′-accessed (“open gates with profitable exit

nodes will be accessed”).

The last two items of Lemma 6.6 are based on the uniqueness of priorities in the game, implying
that there are no priorities between fi and hi.

We will use cycle gates to represent the bit states of a binary counter: unset bits will correspond
to cycle gates with the state (0, 0), set bits to the state (1, 1). Setting and resetting bits therefore
traverses more than one phase, more precisely, from (0, 0) over (1, 0) to (1, 1), and from the latter

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 15

again over (0, 1) to (0, 0). Particularly, it can be observed that the second component of the cycle
gate states switches one iteration after the first component in both cases.

6.4. Lower Bound Construction. In this subsection, we provide the complete construction of the
lower bound family. It essentially consists of a 1-sink x, a deceleration lane of length 2n that is
connected to the two roots s and r, and n cycle gates. The simple cycles of the cycle gates are
connected to the roots and to the deceleration lane with the important detail, that lower cycle gates
have less edges to the deceleration lane. This construction ensures that lower open cycle gates will
close before higher open cycle gates.

The output node of a cycle gate is connected to the 1-sink and to the g∗-input nodes of all higher
cycle gates. The s root node is connected to all f∗-input nodes, the r root node is connected to all
g∗-input nodes.

We now give the formal construction. The games are denoted byGn = (Vn, Vn,0, Vn,1, En,Ωn).
The sets of nodes are

Vn := {x, s, c, r} ∪ {ti, ai | 1 ≤ i ≤ 2n} ∪ {di, ei, gi, ki, fi, hi | 1 ≤ i ≤ n}
The players, priorities and edges are described in Table 4. The game G3 is depicted in Figure 4.

Node Player Priority Successors
t1 0 4n+ 3 {s, r, c}
ti>1 0 4n+ 2i+ 1 {s, r, ti−1}
ai 1 4n+ 2i+ 2 {ti}
c 0 8n+ 4 {s, r}
di 0 4i+ 1 {s, ei, r} ∪ {aj | j < 2i+ 1}
ei 1 4i+ 2 {di, hi}
gi 0 4i+ 4 {fi, ki}
ki 0 8n+ 4i+ 7 {x} ∪ {gj | i < j ≤ n}
fi 1 8n+ 4i+ 9 {ei}
hi 1 8n+ 4i+ 10 {ki}
s 0 8n+ 6 {fj | j ≤ n} ∪ {x}
r 0 8n+ 8 {gj | j ≤ n} ∪ {x}
x 1 1 {x}

Table 4: Lower Bound Construction for the Locally Optimizing Policy

Fact 6.1. The game Gn has 10 · n+ 4 nodes, 1.5 · n2 + 20.5 · n+ 5 edges and 12 · n+ 8 as highest
priority. In particular, |Gn| = O(n2).

As an initial strategy we select the following ιGn . It will correspond to the global counter state
in which no bit has been set.

ιGn(t1) = c ιGn(gi) = ki ιGn(∗ ∈ {ti>1, c, di}) = r ιGn(∗ ∈ {ki, s, r}) = x

Note that ιGn particularly is well-behaved. Hence, by Lemma 6.4(3) we know that all strategies that
will occur in a run of the strategy improvement algorithm will be well-behaved.

16 O. FRIEDMANN

s
:

3
0

r
:

3
2

x
:

1

sr

c
:

28

a
1

:
16

sr

t 1
:

15

a
2

:
18

sr

t 2
:

17

a
3

:
20

sr

t 3
:

19

a
4

:
22

sr

t 4
:

21

a
5

:
24

sr

t 5
:

23

a
6

:
26

sr

t 6
:

25

d
1

:
3

e 1
:

4
h
1

:
36

k
1

:
33

f 1
:

35
g 1

:
6

r
s

d
2

:
7

e 2
:

8
h
2

:
40

k
2

:
37

f 2
:

39
g 2

:
10

r
s

d
3

:
11

e 3
:

12
h
3

:
44

k
3

:
41

f 3
:

43
g 3

:
14

r
s

Figure 4: Locally Optimizing Lower Bound Game G3

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 17

We will see in the next section, how the family Gn can be refined in such a way that it only
comprises a linear number of edges. The reason why we present the games with a quadratic num-
ber of edges first is that the refined family looks even more confusing and obfuscates the general
principle.

Lemma 6.7. Let n > 0.
(1) The game Gn is completely won by player 1.
(2) x is the 1-sink of Gn and the cycle component of ΞιGn (w) equals x for all w.

Proof. Let n > 0.
(1) Note that the only nodes owned by player 1 with an outdegree greater than 1 are e1,. . .,en.

Consider the player 1 strategy τ which selects to move to hi from ei for all i. Now it is the case
that Gn|τ contains exactly one cycle that is eventually reached no matter what player 0 does,
namely the self-cycle at x which is won by player 1.

(2) The self-cycle at x obviously is the 1-sink since it can be reached from all other nodes and has
the smallest priority 1. Since xEx is the only cycle won by player 1 in Gn|ιGn , x must be the
cycle component of each node valuation w.r.t. ιGn .

By Lemma 5.1 it follows that Gn is a 1-sink game, hence it is safe to identify the valuation of a
node with its path component from now on.

6.5. Lower Bound Description and Phases. Here, we describe how the binary counter performs
the task of counting by strategy improvement. Our games implement a full binary counter in which
every bit is represented by a simple cycle encapsulated in a cycle gate. An unset bit i corresponds
to an open simple cycle in cycle gate i, a set bit i corresponds to a closed simple cycle in cycle gate
i.

Formally, we represent the bit state of the counter by elements from Bn = {0, 1}n. For b =
(bn, . . . , b1) ∈ Bn, let bi denote the i-th component in b for every i ≤ n, where bn denotes the
most and b1 denotes the least significant bit. By b ⊕ 1, we denote the increment of the number
represented by b by 1. The least resp. greatest bit states are denoted by 0n resp. 1n. We refer to
the least unset bit by µb := min({n + 1} ∪ {i ≤ n | bi = 0}), and similarly to the least set bit by
νb := min({n+ 1} ∪ {i ≤ n | bi = 1}).

From the most abstract point of view, our lower bound construction performs counting on Bn.
However, the increment of a global bit state requires more than one strategy iteration, more precisely
four different phases that will be described next (with one phase of dynamic length).

Every phase is defined w.r.t. a given global counter state b ∈ Bn. Let b ∈ Bn be a global bit
state different from 1n.

An abstract counter performs the increment from b to b⊕ 1 by computing b[µb 7→ 1][j<µb 7→
0], i.e. by setting bit µb and by resetting all lower bits j<µb. In the context of the games, we start in
phase 1 corresponding to b, and then proceed to phase 2 and phase 3 corresponding to b[µb 7→ 1],
from phase 3 to phase 4 corresponding to b[µb 7→ 1][j < µb 7→ 0], and finally from phase 4 to phase
1 again. The transition from phase 2 to phase 3 and from phase 4 to phase 1 handles the correction
of the internal structure connecting the cycles with each other.

For the sake of this subsection, let σ be a strategy and b ∈ Bn be a global counter state. All
phases will be defined w.r.t. σ and b ∈ Bn. Let σ′ = Iloc(σ).

To keep everything as simple as possible and to be able to prove all the lemmas without con-
sidering special cases, we will assume that b is different from 0n and that the two highest bits in b

18 O. FRIEDMANN

are zero and remain zero, i.e. we will only use the first n − 2 bits for counting. Note however, that
every bit works as intended in the counter.

Given a strategy σ, we denote the associated simple cycle state (βn(σ), . . . , β1(σ)) by bσ, and
the associated access state (αn(σ), . . . , α1(σ)) by aσ.

Recall that every strategy σ occurring will be well-behaved. In addition to the deceleration lane
and the cycle gates, we have two more structures that are controlled by a strategy σ, namely the two
roots r and s, and the cycle gate output nodes ki. We write σ(r) = i to denote that σ(r) = gi,
and σ(r) = n + 1 if σ(r) = x; we write σ(s) = i to denote that σ(s) = fi, and σ(s) = n + 1 if
σ(s) = x; we write σ(ki) = j to denote that σ(ki) = gj , and σ(ki) = n + 1 if σ(ki) = x. We
also use a more compact notation for the strategy decision of di-nodes of open cycles. We write
σ(di) = j if σ(di) = aj .

Recall that we say that a strategy σ is rooted in s or r, if every path in the deceleration lane
conforming to σ eventually exits to s resp. r. Likewise, we say that σ has index i if all nodes of
the deceleration lane with smaller index j < i are moving down the lane by σ, and that i is the first
index which is directly exiting through the root.

The first phase, called the waiting phase, corresponds to a stable strategy σ in which open
cycles are busy waiting to be closed while the deceleration lane is assembling. Cycle gates that
correspond to set bits are closed and accessed, while cycle gates of unset bits are open and skipped,
i.e. b = bσ = aσ. The selector nodes ki move to the next higher cycle gate corresponding to a set
bit, and both roots are connected to the least set bit νb.
More formally, we say that σ is a b-phase 1 strategy iff all the following conditions hold:
(1) b = bσ = aσ, i.e. set bits correspond to closed and accessed cycle gates, while unset bits

correspond to open and skipped cycle gates,
(2) root(σ) = r, i.e. the strategy is rooted in r,
(3) σ(s) = σ(r) = νb, i.e. both roots are connected to the least set bit,
(4) σ(ki) = min({j > i | bj = 1} ∪ {n+ 1}), i.e. the selector nodes move to the next set bit,
(5) ind(σ) ≤ 2µb+ 2, i.e. the deceleration lane has not passed the least unset bit, and
(6) σ(dj) 6= ind(σ) − 1 for all j with bj = 0, i.e. every open cycle node is not connected to the

best-valued node of the lane.

The only improving switches in the first phase are edges of open simple cycles and edges of the
deceleration lane.

Lemma 6.8. Let σ be a b-phase 1 strategy with ind(σ) < 2µb+ 2. Then σ′ is a b-phase 1 strategy
with ind(σ′) = ind(σ) + 1, and if ind(σ) > 1, then σ′(dµb) = ind(σ)− 1.

Proof. Let σ be a b-phase 1 strategy, Ξ := Ξσ and ind(σ) < 2µb+ 2.
We first compute the valuations for all those nodes directly that do not involve any complicated

strategy decision of player 1. Obviously, Ξ(x) = ∅. By Lemma 6.1(1) we know that for all set bits
i (i.e. bi = 1) we have the following.

Ξ(ei) = {ei} ∪ Ξ(hi) Ξ(di) = {ei, di} ∪ Ξ(hi) Ξ(fi) = {ei, fi} ∪ Ξ(hi)

Using these equations, we are able to compute many other valuations that do not involve any com-
plicated strategy decision of player 1. LetUj = {gj , fj , ej , hj , kj}. The following holds (by CFp(A)

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 19

we denote the function that returns A if p holds and ∅ otherwise):

Ξ(ki) = {ki} ∪
⋃
{Uj | j>i, bj=1} Ξ(hi) = {hi, ki} ∪

⋃
{Uj | j>i, bj=1}

Ξ(gi) = {gi, ki} ∪
⋃
{Uj | j ≥ i, bj = 1} Ξ(r) = {r} ∪

⋃
{Uj | bj = 1}

Ξ(s) = {s} ∪ CFb 6=0n(
⋃
{Uj | bj = 1} \ {gνb}) Ξ(c) = {c, r} ∪

⋃
{Uj | bj = 1}

Ξ(ti) = {ti} ∪ Ξ(r) ∪ CFi<ind(σ)({tj | j < i} ∪ {c}) Ξ(ai) = {ai} ∪ Ξ(ti)

It is easy to see that we have the following orderings on the nodes specified above.

s ≺σ r ≺σ a∗ ≺σ h∗ (a)

By Lemma 6.1(2), it follows from (a) that τσ(ei) = di for all unset bits i (i.e. bi = 0), hence we are
able to compute the valuations of the remaining nodes.

Ξ(ei) = {ei} ∪ Ξ(di) Ξ(fi) = {ei, fi} ∪ Ξ(di)

This completes the valuation of Ξ for all nodes.
It is easy to see that for every i with bi = 0 and every j with bj = 1 s.t. there is no i < i′ < j

with bi′ = 1, the following holds:

fi ≺σ fj gi ≺σ gj (b)

Also, for i > j with bi = 1 and bj = 1 we have

fi ≺σ fj gi ≺σ gj (c)

By (a) and Lemma 6.3(2) we obtain that the following holds:

aind(σ) ≺σ . . . ≺σ a2n ≺σ a1 ≺σ . . . ≺σ aind(σ)−1 (d)

We are now ready to prove that σ′ is of the desired form.
(1) By Lemma 6.2(1) and (a) we derive that closed cycles remain closed. By Lemma 6.6(1) we

derive that closed cycles remain accessed. By (a) and Lemma 6.6(2) we derive that open cycles
remain skipped.

By phase 1 condition (5), phase 1 condition (6), (d), it follows that for every j with bj = 0,
there is an improving node a∗ for dj . By Lemma 6.2(2), we conclude that open cycles remain
open.

(2) By (a) and Lemma 6.4(2).
(3) By (b) and (c).
(4) By (b) and (c).
(5) By Lemma 6.4(2).
(6) By Lemma 6.4(2) and Lemma 6.3(2).

By Lemma 6.4(2) it follows that ind(σ′) = ind(σ) + 1.
If ind(σ) > 1, then we have by (a) and (d) that σ′(dµb) = ind(σ)− 1).

20 O. FRIEDMANN

The first phase ends, when a simple cycle corresponding to an unset bit has no more edges
leading to the deceleration lane that keeps it busy waiting, and closes. Since lower bits have less
edges going to the lane, it is clear that this will be the least unset bit µb.

The second phase, called the set phase, corresponds to a strategy σ in which the least unset bit
has just been set, i.e. to the global state b[µb 7→ 1] = bσ. The selector nodes and roots are as in
phase 1 and also the access states, i.e. b = aσ.
More formally, we say that σ is a b-phase 2 strategy iff all the following conditions hold:
(1) b[µb 7→ 1] = bσ and b = aσ, i.e. set bits correspond to closed and accessed (for all set bits

except for µb) cycle gates, while unset bits correspond to open and skipped cycle gates,
(2) root(σ) = r, i.e. the strategy is rooted in r,
(3) σ(s) = σ(r) = νb, i.e. both roots are connected to the former least set bit,
(4) σ(ki) = min({j > i | bj = 1} ∪ {n+ 1}), i.e. the selector nodes move to the next set bit,
(5) ind(σ) ≤ 2µb+ 3, i.e. the deceleration lane has not passed the next bit, and
(6) σ(dj) 6= ind(σ) − 1 for all j > µb with bj = 0, i.e. every higher open cycle node is not

connected to the best-valued node of the lane.

Lemma 6.9. Let σ be a b-phase 1 strategy with ind(σ) = 2µb+ 2 and σ(dµb) = ind(σ). Then σ′

is a b-phase 2 strategy.

Proof. This can be shown essentially the same way as Lemma 6.8. The only difference now is that
dµb has no more improving switches to the deceleration lane and hence, by Lemma 6.2(3), we learn
that the µb-cycle has to close.

In phase 2, the deceleration lane is still assembling, and the improving switches again include
edges of open simple cycles and edges of the deceleration lane. Additionally, it is improving for the
cycle gate µb to be accessed and for the root s to update to cycle gate µb. By performing all these
switches, we enter phase three.

The third phase, called the access phase, is defined by a renewed correspondence of the cycle
gate structure again, i.e. b[µb 7→ 1] = bσ = aσ. The s root is connected to µb while r is still
connected to νb. This implies that s now has a much better valuation than r.
More formally, we say that σ is a b-phase 3 strategy iff all the following conditions hold:
(1) b[µb 7→ 1] = bσ = aσ, i.e. set bits correspond to closed and accessed cycle gates, while unset

bits correspond to open and skipped cycle gates,
(2) root(σ) = r, i.e. the strategy is rooted in r,
(3) σ(s) = µb and σ(r) = νb, i.e. one root is connected to the new set bit and the other one is still

connected to the former least set bit,
(4) σ(ki) = min({j > i | bj = 1} ∪ {n+ 1}), i.e. the selectors move to the former next set bit,
(5) σ(dj) 6= s for all j > µb with bj = 0, i.e. every higher open cycle node is not connected to the

best-valued root node.

Lemma 6.10. Let σ be a b-phase 2 strategy. Then σ′ is a b-phase 3 strategy.

Proof. Again, this can be shown essentially as the previous Lemmas 6.8 and 6.9. The main differ-
ence is that now fi ≺σ fµb for all i 6= µb which is why σ′(s) = µb, and that by Lemma 6.6(1) we
have that the µb-th gate is σ′-accessed.

The cycle gate with the best valuation is now µb, hence, there are many improving switches,
that eventually lead to cycle gate µb. First, there are all nodes of the deceleration lane that have
improving switches to s. Second, r has an improving switch to µb. Third, lower closed cycles (all
lower cycles should be closed!) have an improving switch to µb (opening them again). Fourth, all

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 21

lower selector nodes have an improving switch to µb. By performing all these switches, we enter
phase four.

The fourth and last phase, called the reset phase, corresponds to a strategy σ that performed the
full increment, i.e. bσ = b⊕ 1. However, the access states are not reset, i.e. aσ = b[µb 7→ 1] and the
deceleration lane is moving to root s.
More formally, we say that σ is a b-phase 4 strategy iff all the following conditions hold:
(1) b ⊕ 1 = bσ and b[µb 7→ 1] = aσ, i.e. set bits correspond to closed and accessed cycle gates,

while unset bits correspond to open and skipped (> µb) resp. accessed (< µb) cycles gates,
(2) root(σ) = s, i.e. the strategy is rooted in s,
(3) σ(s) = σ(r) = µb, i.e. both roots are connected to the new set bit,
(4) σ(ki) = min({j > i | (b⊕ 1)j = 1} ∪ {n+ 1}), i.e. the selectors move to the new next set bit,
(5) ind(σ) = 0, i.e. the deceleration lane has reset, and
(6) σ(dj) = s for all j with (b⊕ 1)j = 0, i.e. every open cycle node is connected to the s root.

Lemma 6.11. Let σ be a b-phase 3 strategy. Then σ′ is a b-phase 4 strategy.

Proof. Let σ be a b-phase 3 strategy, Ξ := Ξσ and b′ := b[µb 7→ 1].
We first compute the valuations for all those nodes directly that do not involve any complicated

strategy decision of player 1. Obviously, Ξ(x) = ∅. By Lemma 6.1(1) we know that for all set bits
i (i.e. b′i = 1) we have the following.

Ξ(ei) = {ei} ∪ Ξ(hi) Ξ(di) = {ei, di} ∪ Ξ(hi) Ξ(fi) = {ei, fi} ∪ Ξ(hi)

Using these equations, we are able to compute many other valuations that do not involve any
complicated strategy decision of player 1. Let Uj = {gj , fj , ej , hj , kj}.

Ξ(ki) = {ki} ∪
⋃
{Uj | j>i, bj=1} Ξ(hi) = {hi, ki} ∪

⋃
{Uj | j>i, bj=1}

Ξ(gi) = {gi, ki} ∪
⋃
{Uj | j ≥ i, bj=1} ∪ CFi=µbUi Ξ(r) = {r} ∪

⋃
{Uj | bj=1}

Ξ(s) = {s} ∪
⋃
{Uj | j≥µb, b′j=1} \ {gµb} Ξ(c) = {c, r} ∪

⋃
{Uj | bj = 1}

Ξ(ti) = {ti} ∪ Ξ(r) ∪ CFi<ind(σ)({tj | j < i} ∪ {c}) Ξ(ai) = {ai} ∪ Ξ(ti)

We have the following orderings on the nodes specified above.

r ≺σ a∗ ≺σ h∗<µb ≺σ s ≺σ h∗≥µb (a)

Note that the last inequality s ≺σ hi≥µb holds for the following reason: If i corresponds to a
set bit, then the path from s eventually reaches the node hi, but the highest priority on the way to hi
is fi, which is odd. If i on the other hand corresponds to an unset bit, then path from s to the sink
shares the common postfix with hi, which starts with the node σ(ki). Comparing the two differing
prefixes shows that the most significant difference is hi itself, which is even.

By Lemma 6.1(3), it follows from (a) that τσ(ei) = di for all unset bits i (i.e. b′i = 0), hence
we are able to compute the valuations of the remaining nodes.

Ξ(ei) = {ei} ∪ Ξ(di) Ξ(fi) = {ei, fi} ∪ Ξ(di)

It is easy to see that for every i with (b⊕ 1)i = 0 and every j with (b⊕ 1)j = 1 s.t. there is no
i < i′ < j with (b⊕ 1)i′ = 1, the following holds:

fi ≺σ fj gi ≺σ gj (b)

22 O. FRIEDMANN

Similarly, for i > j with (b⊕ 1)i = 1 and (b⊕ 1)j = 1 we have

fi ≺σ fj gi ≺σ gj (c)

We are now ready to prove that σ′ is of the desired form.
(1) By Lemma 6.2(1) and (a) we derive that closed cycles with index i ≥ µb remain closed. By

Lemma 6.2(4) and (a) we derive that closed cycles with index i < µb open. By Lemma 6.6(1)
we derive that closed cycles remain accessed. By (a) and Lemma 6.6(2) we derive that open
cycles remain skipped.

By phase 3 condition (5) and (a), it follows that for every j with bj = 0, there is the improving
node s for dj . By Lemma 6.2(2), we conclude that open cycles remain open.

(2) By (a) and Lemma 6.4(1).
(3) By (b) and (c).
(4) By (b) and (c).
(5) By Lemma 6.4(1).
(6) By (a) and Lemma 6.2(2).

By switching the lane back to the initial configuration and the access states to match the simple
cycles states, we end up in phase 1 again that corresponds to the incremented global counter state.

Lemma 6.12. Let σ be a b-phase 4 strategy and b ⊕ 1 6= 1n. Then σ′ is a b ⊕ 1-phase 1 strategy
with ind(σ′) = 1.

Proof. Let σ be a b-phase 4 strategy, Ξ := Ξσ and b′ = b⊕ 1.
We first compute the valuations for all those nodes directly that do not involve any complicated

strategy decision of player 1. Obviously, Ξ(x) = ∅. By Lemma 6.1(1) we know that for all set bits
i (i.e. b′i = 1) we have the following.

Ξ(ei) = {ei} ∪ Ξ(hi) Ξ(di) = {ei, di} ∪ Ξ(hi) Ξ(fi) = {ei, fi} ∪ Ξ(hi)

Using these equations, we are able to compute many other valuations that do not involve any com-
plicated strategy decision of player 1. Let Uj = {gj , fj , ej , hj , kj}. The following holds:

Ξ(ki) = {ki} ∪
⋃
{Uj | j>i, b′j=1} Ξ(hi) = {hi, ki} ∪

⋃
{Uj | j>i, b′j=1}

Ξ(r) = {r} ∪
⋃
{Uj | b′j = 1} Ξ(s) = {s} ∪ (

⋃
{Uj | b′j = 1} \ {gµb})

Ξ(c) = {c, s} ∪
⋃
{Uj | b′j = 1} Ξ(ti) = {ti} ∪ Ξ(s)

Ξ(ai) = {ai, ti} ∪ Ξ(s)

Additionally for all i ≥ µb, we have:

Ξ(gi) = {gi, ki} ∪
⋃
{Uj | j ≥ i, b′j = 1}

It is easy to see that we have the following orderings on the nodes specified above.

s ≺σ a∗ ≺σ r ≺σ h∗ (a)

By Lemma 6.1(2), it follows from (a) that τσ(ei) = di for all unset bits i (i.e. b′i = 0), hence we are
able to compute the valuations of the remaining nodes.

Ξ(di) = {di} ∪ Ξ(s) Ξ(ei) = {ei, di} ∪ Ξ(s) Ξ(fi) = {fi, ei, di} ∪ Ξ(s)

Additionally for all i < µb, we have:

Ξ(gi) = {gi, fi, ei, di} ∪ Ξ(s)

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 23

This completes the valuation of Ξ for all nodes.
It is easy to see that for every i with b′i = 0 and every j with b′j = 1 s.t. there is no i < i′ < j

with b′i′ = 1, the following holds:

fi ≺σ fj gi ≺σ gj (b)

Similarly, for i > j with b′i = 1 and b′j = 1 we have

fi ≺σ fj gi ≺σ gj (c)

We are now ready to prove that σ′ is of the desired form.
(1) By Lemma 6.2(1) and (a) we derive that closed cycles remain closed. By Lemma 6.6(1) we

derive that closed cycles remain accessed. By (a) and Lemma 6.6(2) we derive that open cycles
remain or will be skipped.

By Lemma 6.2(2) and (a), we conclude that open cycles remain open.
(2) By (a) and Lemma 6.4(2).
(3) By (b) and (c).
(4) By (b) and (c).
(5) By Lemma 6.4(1) it follows that ind(σ′) = 1.
(6) By (a) it follows that σ′(di) = r for every i with b′i = 0.

6.6. Lower Bound Proof. Finally, we are ready to prove that our family of games really imple-
ments a binary counter. From Lemmas 6.8, 6.9, 6.10, 6.11 and 6.12, we immediately derive the
following.

Lemma 6.13. Let σ be a phase 1 strategy and bσ 6= 1n. There is some k ≥ 4 s.t. σ′ =
(
Iloc

)k
(σ)

is a phase 1 strategy and bσ′ = bσ ⊕ 1.

Particularly, we conclude that strategy improvement with the locally optimizing policy requires
exponentially many iterations on Gn.

Theorem 6.14. Let n > 0. The Strategy Improvement Algorithm with the Iloc-policy requires at
least 2n improvement steps on Gn starting with ιGn .

6.7. Remarks. One could conjecture that 1-sink games form a “degenerate” class of parity games
as they are always won by player 1. Remember that the problem of solving parity games is to
determine the complete winning sets for both players. Given a strategy σ of player 0, we know by
Theorem 3.3 that both winning sets can be directly inferred if σ is the optimal strategy. But it is
also possible to derive some information about player 0’s winning set given a non-optimal strategy.
More precisely, W0 ⊇ {v | Ξσ(v) = (w, ,) and w ∈ V⊕}.

In other words: Is there a family of games on which the strategy improvement algorithm re-
quires exponentially many iterations to find a player 0 strategy that wins at least one node in the
game?

The answer to this question is positive. Simply take our lower bound gamesGn and remove the
edge from en to hn. Remember that the first time player 1 wants to use this edge by best response
is when the binary counter is about to flip bit n, i.e. after it processed 2n−1 many counting steps.
Eventually, the player 0 strategy is updated s.t. σ(dn) = en, forcing player 1 by best response
to move to hn. Removing this edge leaves player 1 no choice but to stay in the cycle which is
dominated by player 0.

24 O. FRIEDMANN

7. IMPROVING THE LOWER BOUND CONSTRUCTION

We briefly address two improvements of our construction. First, we explain how to reduce the
number of edges s.t. the overall size of the games is linear in n. Second, we describe how to obtain
a lower bound construction with binary edge outdegree.

7.1. Linear Number of Edges. Consider the lower bound construction again. It consists of a
deceleration lane, cycle gates, two roots and connectives between these structures. All three kinds
of structures only have linearly many edges when considered on their own. The quadratic number
of edges is solely due to the d∗-nodes of the simple cycles of the cycle gates that are connected to
the deceleration lane and due to the k∗-nodes of the cycle gates that are connected to all higher cycle
gates.

We focus on the edges connecting the d∗-nodes with the deceleration lane first. Their purpose
is twofold: lower cycle gates have less edges to the deceleration lane (so they close first), and as
long as an open cycle gate should be prevented from closing, there must be a directly accessible
lane input node in every iteration with a better valuation than the currently chosen lane input node.

Instead of connecting di to all aj with j < 2i + 1 nodes, it would suffice to connect di to
two intermediate nodes, say yi and zi, that are controlled by player 0 with negligible priorities. We
connect zi to all aj with even j < 2i+1 and yi to all aj with odd j < 2i+1. By this construction, we
shift the “busy updating”-part alternately to yi and zi, and di remains updating as well by switching
from yi to zi and vice versa in every iteration.

Next, we observe that the edges connecting yi (resp. zi) to the lane are a proper subset of the
edges connecting yi+1 (resp. zi+1) to the lane, and hence we adapt our construction in the following
way. Instead of connecting yi+1 (and similarly zi+1) to all aj with even j < 2i + 3, we simply
connect yi+1 to a2i+1 and to yi. In order to ensure proper resetting of the two intermediate lanes
constituted by y∗ and z∗ in concordance with the original deceleration, we need to connect every
additional node to c. See Figure 5 for the construction (note that by introducing new nodes with
“negligible priorities”, we simply shift all other priorities in the game).

Second, we consider the edges connecting lower cycle gates with higher cycle gates. As the set
of edges connecting ki+1 with higher gj is a proper subset of ki, we can apply a similar construction
by attaching an additional lane to cycle gate connections that subsumes shared edges.

7.2. Binary Outdegree. Every parity game can be linear-time reduced to an equivalent (in the
sense that winning sets and strategies can be easily related to winning sets and strategies in the
original game) parity game with an edge outdegree bounded by two. See Figure 6 for an example
of such a transformation.

However, not every such transformation that can be applied to our construction (for clarity of
presentation, we start with our original construction again) yields games on which strategy iteration
still requires an exponential number of iterations. We discuss the necessary transformations for
every player 0 controlled node in the following, although we omit the exact priorities of additional
helper nodes. It suffices to assign arbitrary even priorities to the additional nodes that lie below the
priorities of all other nodes of the original game (except for the 1-sink).

First, we consider the two root nodes s and r, that are connected to the 1-sink x and to f1,. . .,
fn resp. g1,. . .,gn. As r copies the decision (see the transition from the access to the reset phase) of
s, it suffices to describe how the outdegree-two transformation is to be applied to s. We introduce
n additional helper nodes s′1,. . .,s′n, replace the outgoing edges of s by x and s′n, connect s′i+1 with
fi+1 and s′i, and finally s′1 simply with f1.

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 25

c : 28

a1 : 16t1 : 15

a2 : 18t2 : 17

a3 : 20t3 : 19

a4 : 22t4 : 21

a5 : 24t5 : 23

a6 : 26t6 : 25

d1 : 3

d2 : 7

d3 : 11

c : 40

a1 : 28t1 : 27

a2 : 30t2 : 29

a3 : 32t3 : 31

a4 : 34t4 : 33

a5 : 36t5 : 35

a6 : 38t6 : 37

d1 : 15

y1 : 4

z1 : 2

c

c

d2 : 19

y2 : 8

z2 : 6

c

c

d3 : 23

y3 : 12

z3 : 10

c

c

Figure 5: Intermediate Layer

v v v′ v′′

Figure 6: Binary Outdegree Transformation

It is still possible to show that s reaches the best valued fi after one iteration. Assume that s
currently reaches some cycle gate i via the ladder that is given by the helper nodes. Let j be the
next best-valued cycle gate that just has been set. If j > i, it follows that s currently reaches s′j that
moves to s′j−1, but updates within one iteration to fj . If j < i, it must be the case that j = 1 (i
is the least bit which was set; j is the least bit which was unset). Moreover, s currently reaches s′i
that moves to fi. All lower s′k+1 with k + 1 < i move to s′k since lower unset cycle gates are more
profitable than higher unset cycle gates (unset cycle gates eventually reach one of the roots via the
unprofitable f∗ nodes). Hence, s′i updates within one iteration to s′i−1.

Second, there are the output nodes of cycle gates k1,. . ., kn. We apply a very similar ladder-
style construction here. For every ki, we introduce n−i additional helper nodes k′i,j with i < j ≤ n,
replace the outgoing edges of ki by x and k′i,i+1, connect k′i,j with gj and k′i,j+1 (if j < n). The
argument why this construction suffices runs similarly as for the root nodes.

Third, there are the nodes t1,. . .,t2n of the deceleration lane that are connected to three nodes.
Again, we introduce an additional helper node t′i for every ti, and replace the two edges to r and

26 O. FRIEDMANN

ti−1 resp. c by an edge to t′i that is connected to r and ti−1 resp. c instead. It is not hard to see that
this slightly modified deceleration lane still provides the same functionality.

Finally, there are the player 0 controlled nodes d1,. . .,dn of the simple cycles of the cycle gates.
Essentially, two transformations are possible here. Both replace di by as many helper nodes d′i,x as
there are edges from di to any other node x but ei. Then, every d′i,x is connected to the target node
x.

The first possible transformation connects every d′i,x with ei and vice versa, yielding a mul-
ticycle with ei as the center of each cycle. The second possible transformation connects ei with
the first d′i,x1 , d′i,x1 with d′i,x2 etc. and the last d′i,xl again with ei, yielding one large cycle. Both
replacements behave exactly as the original simple cycle.

The transformation described here results in a quadratic number of nodes since we started with
a game with a quadratic number of edges. We note, however, that a similar transformation can
be applied to the version of the game with linearly many edges, resulting in a game with binary
outdegree of linear size.

8. LOWER BOUND FOR THE GLOBALLY OPTIMIZING POLICY

The lower bound construction for the globally optimizing policy again is a family of 1-sink parity
games that implement a binary counter by a combination of a (modified) deceleration lane and a
chain of (modified) cycle gates

This section is organized as follows. First, we discuss the modifications of the deceleration lane
and the cycle gates and why they are required to obtain a lower bound for the globally optimizing
policy. Then, we present the full construction along with some remarks to the correctness.

The main difference between the locally optimizing policy and the globally optimizing policy
is that the latter takes cross-effects of improving switches into account. It is aware of the impact of
any combination of profitable edges, in contrast to the locally optimizing policy that only sees the
local valuations, but not the effects.

One primary example that separates both policies are the simple cycles of the previous sections:
the locally optimizing policy sees that closing a cycle is an improvement, but not that the actual
profitability of closing a cycle is much higher than updating to another node of the deceleration
lane.

The globally optimizing policy, on the other hand, is well aware of the profitability of closing
the cycle in one step. In some sense, the policy has the ability of a one-step lookahead. However,
our lower bound for the globally optimizing policy is not so different from the original construction
– the trick is to hide very profitable choices by structures that cannot be solved by a single strategy
iteration. In other words, we simply need to replace the gadgets that can be solved with a one-step
lookahead by slightly more complicated variations that cannot be solved within one iteration and
that maintain this property for as long as it is necessary.

8.1. Modified Deceleration Lane. The modified deceleration lane looks almost the same as the
original deceleration lane. It has again several, saym, input nodes a1, . . . , am along with some spe-
cial input node c. We have two output roots, r and s, this time with a slightly different connotation.
We call r the default root and s the reset root.

More formally, a modified deceleration lane consists of m (in our case, m will be 6 · n − 2)
internal nodes t1, . . ., tm, m input nodes a1, . . ., am, one additional input node c, the default root
output node r and the reset root output node s.

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 27

All priorities of the modified deceleration lane are based on some odd priority p. We assume
that all root nodes have a priority greater than p + 2m + 1. The structural difference between the
modified deceleration lane and the original one is that the lane base c only has one outgoing edge
leading to the default root r. See Figure 7 for a deceleration lane with m = 5 and p = 27. The
players, priorities and edges are described in Table 5.

Node Player Priority Successors
t1 0 p {s, r, c}
ti>1 0 p+ 2i− 2 {s, r, ti−1}
c 1 p+ 2m+ 1 {r}
ai 1 p+ 2i− 1 {ti}
s ? > p+ 2m+ 1 ?
r ? > p+ 2m+ 1 ?

Table 5: Description of the Modified Deceleration Lane

r

c : 38

a1 : 28

s r

t1 : 27

a2 : 30

s r

t2 : 29

a3 : 32

s r

t3 : 31

a4 : 34

s r

t4 : 33

a5 : 36

s r

t5 : 35

Figure 7: A Modified Deceleration Lane (with m = 5 and p = 27)

The intuition behind the two roots is the same as before. The default root r serves as an entry
point to the cycle gate structure and the reset root s is only used for a short time to reset the whole
deceleration lane structure.

We describe the state of a modified deceleration lane again by a tuple specifying which root has
been chosen and by how many ti nodes are already moving down to c. Formally, we say that σ is in
deceleration state (x, j) (where x ∈ {s, r} and 0 < j ≤ m+ 1 a natural number) iff
(1) σ(t1) = c if j > 1,
(2) σ(ti) = ti−1 for all 1 < i < j, and
(3) σ(ti) = x for all j ≤ i.

The modified deceleration lane treats the two roots differently. If the currently best-valued root
is the reset root, it is the optimal choice for all t∗- nodes to directly move to the reset root. In other

28 O. FRIEDMANN

words, no matter what state the deceleration lane is currently in, if the reset root provides the best
valuation, it requires exactly one improvement step to reach the optimal setting.

If the currently best-valued root is the default root, however, it is profitable to reach the root via
the lane base c. The globally optimizing policy behaves in this case just like the locally optimizing
policy, because the deceleration lane has exactly one improving switch at a time which is also
globally profitable.

The following lemma formalizes the intuitive description of the deceleration lane’s behaviour:
a change in the ordering of the root valuations leads to a reset of the deceleration lane, otherwise
the lane continues to align its edges to eventually reach the best-valued root node via c.

It is notable that resetting the lane by an external event (i.e. by giving s a better valuation than
r) is a bit more difficult than in the case of the locally optimizing policy. Let σ be a strategy and
σ′ = Iglo(σ). Assume that the current state of the deceleration lane is (r, i) and now we have that
s has a better valuation than r, i.e. s �σ r. Assume further – which for instance applies to our
original lower bound construction – that the next strategy σ′ assigns a better valuation to r again,
i.e. r �σ′ s. Therefore, it would not be the globally optimal choice to reset the deceleration lane to
s, but instead just to keep the original root r.

In other words, the globally optimizing policy refrains from resetting the lane if the resetting
event persists for only one iteration. The solution to fool the policy, however, is not too difficult: we
just alter our construction in such a way that the resetting root will have a better valuation than the
default root for two iterations.

Lemma 8.1. Let σ be a strategy that is in deceleration state (x, i). Let x̄ denote the other root. Let
σ′ = Iglo(σ). Then
(1) r �σ s, x = r implies that σ′ is in state (r,min(m, i) + 1).
(2) x̄ �σ x and x̄ �σ′ x implies that σ′ is in state (x̄, 1).

The purpose of the modified deceleration lane is exactly the same as before: we absorb the
update activity of cyclic structures that represent the counting bits of the lower bound construction.

8.2. Stubborn Cycles. With the locally optimizing policy, we employed simple cycles and hid the
fact that the improving edge leading into the simple cycle results in a much better valuation than
updating to the next best-valued node of the deceleration lane.

However, simple cycles do not suffice to fool the globally optimizing policy. If it is possible to
close the cycle within one iteration, the policy sees that closing the cycle is much more profitable
than updating to the deceleration lane.

The solution to this problem is to replace the simple cycle structure by a cycle consisting of
more than one player 0 node s.t. it is impossible to close the cycle within one iteration. More
precisely, we use a structure consisting again of one player 1 node e and three player 0 nodes d1,
d2 and d3, called stubborn cycle. We connect all four nodes with each other in such a way that they
form a cycle, and connect all player 0 nodes with the deceleration lane. See Figure 8 for an example
of such a situation.

More precisely, we connect the player 0 nodes in a round robin manner to the deceleration
lane, for instance d1 to a3, a6, . . ., d2 to a2, a5, . . ., and d3 to a1, a4, We assume that it is more
profitable for player 1 to move into the cyclic structure as long as it is not closed.

Now let σ be a strategy s.t. σ is in state (r, 6) and σ(d1) = a3, σ(d2) = d3 and σ(d3) = a4.
There are exactly two improving switches here: d2 to a5 (which is the best-valued deceleration
node) and d1 to d2 (because d2 currently reaches a4 via d3 which has a better valuation than a3). In
fact, the combination of both switches is the optimal choice.

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 29

d01 : 3

d11 : 5

d21 : 7

e1 : 8

Figure 8: A Stubborn Cycle

A close observation reveals that the improved strategy has essentially the same structure as the
original strategy σ: two nodes leave the stubborn cycle to the deceleration lane and one node moves
into the stubborn cycle. By this construction, we can ensure that cycles are not closed within one
iteration. In other words, the global policy makes no progress towards closing the cycle (it switches
one edge towards the cycle, and one edge away from the cycle, leaving it in the exact same position).

8.3. Modified Cycle Gate. We again use a slightly modified version of the cycle gates as a pass-
through structure that is either very profitable or quite unprofitable. Essentially, we apply two
modifications. First, we replace the simple cycle by a stubborn cycle, for the reasons outlined in the
previous subsection. Second, we put an additional player 0 controlled internal node yi between the
input node gi and the internal node fi. It will delay the update of gi to move to the stubborn cycle
after closing the cycle by one iteration. By this, we ensure that the modified deceleration lane will
have enough time to reset itself.

Formally, a modified cycle gate consists of three internal nodes ei, hi and yi, two input nodes
fi and gi, and four output nodes d1

i , d
2
i , d

3
i and ki. The output node d1

i (resp. d2
i and d3

i) will be
connected to a set of other nodes D1

i (resp. D2
i and D3

i) in the game graph, and ki to some set Ki.
All priorities of the cycle gate are based on two odd priorities pi and p′i. See Figure 9 for a

cycle gate of index 1 with p′1 = 3 and p1 = 65. The players, priorities and edges are described in
Table 6.

Node Player Priority Successors
d1
i 0 p′i {d2

i } ∪D1
i

d2
i 0 p′i + 2 {d3

i } ∪D2
i

d3
i 0 p′i + 4 {ei} ∪D3

i

ei 1 p′i + 5 {d1
i , hi}

yi 0 p′i + 6 {fi, ki}
gi 0 p′i + 7 {yi, ki}
ki 0 pi Ki

fi 1 pi + 2 {ei}
hi 1 pi + 3 {ki}

Table 6: Description of the Modified Cycle Gate

30 O. FRIEDMANN

d01 : 3

d11 : 5

d21 : 7

e1 : 8 h1 : 68 k1 : 65

f1 : 67 g1 : 10y1 : 9

Figure 9: A Modified Cycle Gate (index 1 with p′1 = 3 and p1 = 65)

From an abstract point of view, we describe the state of a modified cycle gate again by a pair
(βi(σ), αi(σ)) ∈ {0, 1, 2, 3} × {0, 1, 2}. The first component describes the state of the stubborn
cycle, counting the number of edges pointing into the cycle, and the second component gives the
state of the two access control nodes. Formally, we have the following.

βi(σ) = |{dji | σ(dji) 6∈ D
j
i }| αi(σ) =


2 if σ(gi) = yi

0 if σ(gi) = σ(yi) = ki

1 otherwise

The behaviour is formalized in terms of modified cycle gate states as follows. Intuitively, it functions
as the original cycle gates: if the cycle is σ-closed and remains closed, it is profitable to go through
the cycle gate. If the cycle opens by some external event and remains open, it is more profitable to
directly move to the output node instead.

Lemma 8.2. Let σ be a strategy and σ′ = Iglo(σ).
(1) If βi(σ) = βi(σ

′) = 3, we have αi(σ′) = min(αi(σ) + 1, 2) (“closed gates will be successively
accessed”).

(2) If βi(σ) < 3, βi(σ′) < 3 and σ(ki) �σ′ fi, we have αi(σ′) = 0 (“open gates with unprofitable
exit nodes will be skipped”).

We use modified cycle gates again to represent the bit states of a binary counter: unset bits will
correspond to modified cycle gates with the state (1, 0), set bits to the state (3, 2). Setting and
resetting bits therefore traverses more than one phase, more precisely, from (1, 0) over (2, 0), (3, 0)
and (3, 1) to (3, 2), and from the latter again over (1, 2) to (1, 0).

8.4. Modified Construction. In this subsection, we provide the complete construction of the lower
bound family for the globally optimizing policy. It again consists of a 1-sink x, a modified decelera-
tion lane of length 6n−3 that is connected to the two roots s and r, and nmodified cycle gates. The
stubborn cycles of the cycle gates are connected to the r root, the lane base c and to the deceleration
lane. The modified cycle gates are connected to each other in the same manner as in the original
lower bound structure for the locally optimizing policy.

The way the stubborn cycles are connected to the deceleration lane is more involved as in
the previous lower bound construction. Remember that for all open stubborn cycles, we need to

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 31

maintain the setting in which two edges point to the deceleration lane while the other points into
the cycle. We achieve this task by assigning the three nodes of the respective stubborn cycle to the
input nodes of the deceleration lane in a round-robin fashion.

We now give the formal construction. The games are denoted byHn = (Vn, Vn,0, Vn,1, En,Ωn).
The sets of nodes are

Vn :={x, s, c, r} ∪ {ai, ti | 0 < i ≤ 6n− 2}∪
{d1

i , d
2
i , d

3
i , ei, fi, hi, gi, yi, ki | 0 < i ≤ n}

The players, priorities and edges are described in Table 7. The game H3 is depicted in Fig-
ure 10. However, the edges connecting the cycle gates with the deceleration lane are not included
in the figure.

Node Player Priority Successors
t1 0 8n+ 3 {s, r, c}
ti>1 0 8n+ 2i+ 1 {s, r, ti−1}
ai 1 8n+ 2i+ 2 {ti}
c 1 20n {r}
d1
i 0 8i+ 1 {s, c, d2

i } ∪ {a3j+3 | j ≤ 2i− 2}
d2
i 0 8i+ 3 {d3

i } ∪ {a3j+2 | j ≤ 2i− 2}
d3
i 0 8i+ 5 {ei} ∪ {a3j+1 | j ≤ 2i− 1}
ei 1 8i+ 6 {d1

i , hi}
yi 0 8i+ 7 {fi, ki}
gi 0 8i+ 8 {yi, ki}
ki 0 20n+ 4i+ 3 {x} ∪ {gj | i < j ≤ n}
fi 1 20n+ 4i+ 5 {ei}
hi 1 20n+ 4i+ 6 {ki}
s 0 20n+ 2 {fj | j ≤ n} ∪ {x}
r 0 20n+ 4 {gj | j ≤ n} ∪ {x}
x 1 1 {x}

Table 7: Lower Bound Construction for the Globally Optimizing Policy

Fact 8.1. The game Hn has 21 · n nodes, 3.5 · n2 + 40.5 · n − 4 edges and 24 · n + 6 as highest
priority. In particular, |Hn| = O(n2).

As an initial strategy we select the following strategy ιHn . Again, it corresponds to a global
counter setting in which no bit has been set.

ιHn(t1) = c ιHn(t1<i≤3) = ti−1 ιHn(ti>3) = r

ιHn(c) = r ιHn(d1
i) = d2

i ιHn(d2
i) = a2

ιHn(d3
i) = a1 ιHn(gi) = ki ιHn(yi) = ki

ιHn(ki) = x ιHn(s) = x ιHn(r) = x

It is easy to see that the Hn family again is a family of 1-sink games.

32 O. FRIEDMANN

s
:

30

r
:

32

x
:

1

r
c

:
60

a
1

:
28

sr

t 1
:

27

a
2

:
30

sr

t 2
:

29

a
3

:
32

sr

t 3
:

31

a
4

:
34

sr

t 4
:

33

a
5

:
36

sr

t 5
:

35

d
0 1

:
3

d
1 1

:
5

d
2 1

:
7

e 1
:

8
h
1

:
68

k
1

:
6
5

f 1
:

67
y 1

:
9

g 1
:

1
0

c
s

d
0 2

:
11

d
1 2

:
13

d
2 2

:
15

e 2
:

16
h
2

:
72

k
2

:
6
9

f 2
:

71
y 2

:
17

g 2
:

1
8

c
s

d
0 3

:
19

d
1 3

:
21

d
2 3

:
23

e 3
:

24
h
3

:
76

k
3

:
7
3

f 3
:

75
y 3

:
25

g 3
:

2
6

c
s

Figure 10: Globally Optimizing Lower Bound Game H3

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 33

 1

 10

 100

 1000

 10000

 6 8 10 12 14

T
im

e
[s

];
 l
o

g
 s

c
a

le

G[n]; linear scale

Locally Optimizing Policy
Globally Optimizing Policy

Figure 11: Empirical Evaluation

Lemma 8.3. Let n > 0.
(1) The game Hn is completely won by player 1.
(2) x is the 1-sink of Hn and the cycle component of ΞιHn (w) equals x for all w.

Again, we note that it is possible to refine the family Hn in such a way that it only comprises a
linear number of edges and only outdegree two.

8.5. Remarks. The way to prove the construction corrects runs almost exactly the same as for the
locally optimizing policy. Every global counting step is separated into some counting iterations of
the deceleration lane with busy updating of the open stubborn cycles of the cycle gates until the least
significant open cycle closes. Then, resetting of the lane, reopening of lower cycles and alignment
of connecting edges is carried out.

Theorem 8.4. Let n > 0. The Strategy Improvement Algorithm with the Iglo-policy requires at
least 2n improvement steps on Hn starting with ιHn .

Our publicly available PGSOLVER Collection [FL09a] of parity game solvers contains imple-
mentations of strategy iteration, and particularly parameterizations with the locally and globally
optimizing policy. Additionally, the platform features a number of game generators, including all
the games and extensions that are presented here. Benchmarking both strategy iteration variants
with our lower bound constructions results in exponential run-time behavior as can be seen in Fig-
ure 11.

34 O. FRIEDMANN

9. MEAN PAYOFF, DISCOUNTED PAYOFF AND SIMPLE STOCHASTIC GAMES

We now show that the standard reductions [Pur95, ZP96] from parity games to mean payoff, dis-
counted payoff as well as simple stochastic games can be used to derive worst-case families for all
the other game classes.

A mean payoff game is a tuple G = (V, V0, V1, E, r) where V , V0, V1 and E are as in the
definition of parity games and r : V → R is the so-called reward function. A discounted payoff
game is a tupleG = (V, V0, V1, E, r, β) where (V, V0, V1, E, r) is a mean payoff game and 0 < β <
1 is the so-called discount factor. Whenever we do not want to distinguish between a discounted
and a mean payoff game, we simply write payoff game.

Strategies and plays are defined exactly the same as in the definition of parity games. Given
a play π, the payoff of the play RG(π) is defined as follows. For a mean payoff game G =
(V, V0, V1, E, r), it is

RG(π) := lim inf
n→∞

1

n

n∑
k=0

r(πk)

and in the case of a discounted payoff game G = (V, V0, V1, E, r, β), it is

RG(π) :=

∞∑
k=0

βk · r(πk)

Let G be a payoff game. For a given node v, a player 0 strategy σ and a player 1 strategy %, let
πv,σ,% denote the unique play that starts in v and conforms to σ and %. We say that a node v has a
value iff supσ inf%RG(πv,σ,%) and inf% supσ RG(πv,σ,%) exist, and

sup
σ

inf
%
RG(πv,σ,%) = inf

%
sup
σ
RG(πv,σ,%)

Whenever a node v has a value, we write ϑG(v) := supσ inf%RG(πv,σ,%) to refer to it. If every node
has a value, we say that a player 0 strategy σ is optimal iff inf%RG(πv,σ,%) ≥ inf%RG(πv,σ′,%) for
every node v and every player 0 strategy σ′ and similarly for player 1.

Theorem 9.1 ([EM79]). Let G be a mean payoff game. Every node v has a value and there are
optimal positional strategies σ and % s.t. ϑG(v) = RG(πv,σ,%) for every v.

Note that given two optimal positional strategies, it is fairly easy to compute the associated
values.

Parity Games can be easily polynomial-time reduced to mean payoff games s.t. optimal strate-
gies correspond to winning strategies and the values of the nodes directly induce corresponding
winning sets in the original parity game. Given a parity gameG = (V, V0, V1, E,Ω), theG-induced
mean payoff game IndMPG(G) = (V, V0, V1, E, rΩ) operates on the same graph and defines the
reward function rΩ as follows.

rΩ : v 7→ (−|V |)Ω(v)

Theorem 9.2 ([Pur95]). Let G be a parity game and let σ and % be optimal positional strategies
w.r.t. IndMPG(G). Then the following holds.
(1) W0 = {v ∈ V | ϑIndMPG(G)(v) ≥ 0} is the G-winning set of player 0
(2) W1 = {v ∈ V | ϑIndMPG(G)(v) < 0} is the G-winning set of player 1
(3) σ is a G-winning strategy for player 0 on W0

(4) % is a G-winning strategy for player 1 on W1

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 35

Mean payoff games can be reduced to discounted payoff games by specifying a discount factor
that is sufficiently close to 1. Given a mean payoff game G = (V, V0, V1, E, r), the G-induced
discounted payoff game IndDPG(G) = (V, V0, V1, E, r, βG) operates on the same graph with the
same reward function and defines the discount factor βG as follows. We assume that r : V → Z.

βG := 1− 1

4 · |V |3 ·max{|r(v)| | v ∈ V }
Every parity game G obviously also induces a discounted payoff game via an intermediate mean
payoff game.

Let v be a node in a mean payoff game G, let ϑ(v) be the value of v in G, and let ϑβ(v) be the
value of v in IndDPG(G). Zwick and Paterson [ZP96] show that the value ϑ(v) can be essentially
bounded by ϑβ(v), i.e. |ϑβ(v) − ϑ(v)| ≤ 1−β

2|V |2(1−βG)
. By choosing β ≥ βG, it follows that ϑ(v)

can be obtained from ϑβ(v) by rounding to the nearest rational with a denominator less than |V |. It
follows that optimal strategies in an induced discouned payoff game coincide with optimal strategies
in the original mean payoff game.

Theorem 9.3 ([ZP96]). Let G be a mean payoff game and let σ and % be optimal positional strate-
gies w.r.t. IndDPG(G). Then σ and % are also optimal positional strategies w.r.t. G.

LetG be a discounted payoff game. Every player 0 strategy σ induces an optimal (not necessar-
ily unique) counterstrategy %σ s.t. RG(πv,σ,%) ≤ RG(πv,σ,%′) for all other player 1 strategies %′ and
all nodes v. Note that %σ can be computed by solving an LP-problem as described in Algorithm 2.

Algorithm 2 Computation of Optimal Counter Strategy in a DPG
Maximize

∑
v∈V ϕ(v) w.r.t.

ϕ(v) = r(v) + β · ϕ(σ(v)) for all v ∈ V0

ϕ(v) ≤ r(v) + β · ϕ(u) for all v ∈ V1 and u ∈ vE

The value assignment ϕ can be computed in strongly polynomial time by applying the algo-
rithm of Madani, Thorup and Zwick [MTZ10] for instance. Given ϕ, an optimal counterstrategy %σ
can be easily induced.

We say that a strategy σ is improvable iff there is a node v ∈ V0 and a node u ∈ vE s.t.
RG(πσ(v),σ,%σ) < RG(πu,σ,%σ). Again, an improvement policy is a function IG : S0(G) → S0(G)
that satisfies the following two conditions for every strategy σ.
(1) For every node v ∈ V0 it holds that RG(πσ(v),σ,%σ) ≤ RG(πIG(σ)(v),σ,%σ).
(2) If σ is improvable then there is a node v ∈ V0 s.t. RG(πσ(v),σ,%σ) < RG(πIG(σ)(v),σ,%σ).

As with parity game strategy improvement, it is the case that improving a strategy following
improvement edges results indeed in an improved strategy.

Theorem 9.4 ([Pur95]). Let G be a discounted payoff game, σ be a player 0 strategy and IG be an
improvement policy. Then RG(πv,σ,%σ) ≤ RG(πv,IG(σ),%IG(σ)

) for every node v. If σ is not optimal,
then σ is improvable.

Puri’s algorithm for solving discounted payoff games – as well as mean payoff and parity games
via the standard reductions – starts with an initial strategy ιG and runs for a given improvement
policy IG as outlined in Algorithm 3. Note that the algorithmic scheme is exactly the same as the
discrete version for solving parity games.

36 O. FRIEDMANN

Algorithm 3 Puri’s Algorithm for Solving Discounted Payoff Games
1: σ ← ιG
2: while σ is improvable do
3: σ ← IG(σ)
4: end while
5: return σ, %σ

Next, we will show that the strategy iteration for discounted payoff games behaves exactly the
same as the strategy iteration for 1-sink-parity games.

Vöge proves in his thesis [Vög00] the following theorem that relates parity game strategy iter-
ation to Puri’s Algorithm for solving the induced discounted payoff game.

Theorem 9.5 ([Vög00]). Let G be a parity game, H = IndDPG(IndMPG(G)) be the induced
discounted payoff game and σ be a player 0 strategy. For every two nodes v and u the following
holds.

Ξσ(v) ≺ Ξσ(u) ⇒ RH(πv,σ,%σ) < RH(πu,σ,%σ)

In other words, every improving switch in the original parity game is also an improving switch
in the induced discounted payoff game. The reason why this holds true is that by the reduction
from parity games to mean payoff games, the priorities are mapped to such extremely large rewards
that the largest reward that occurs on a path dominates all lower ones, the largest reward on a cycle
dominates all other ones and that the cycle itself dominates all finite paths leading into it.

Theorem 9.5 is almost what we need to show that strategy iteration for discounted payoff games
behaves exactly the same on IndDPG(IndMPG(Gn)) as the discrete strategy iteration algorithm
on Gn. Essentially, we need to show the conversion which is equivalent to showing

Ξσ(v) = Ξσ(u) ⇒ RH(πv,σ,%σ) = RH(πu,σ,%σ)

However, this statement is not true for every parity game. The reason why a run of the strategy
improvement algorithm on general parity games may differ from a run on the induced discounted
payoff game is that the parity game strategy iteration does not care about the priority of all nodes
on its path to the dominating cycle node that are less relevant. In case of 1-sink-parity games, the
only occurring dominating cycle node has the least priority in the game, and therefore all priorities
occurring in paths influence the valuations. Also, the strategy iteration on arbitrary parity games
does not consider the priorities of all the nodes on a cycle appearing in a node valuation.

First, we show that optimal player 1 counter strategies in the induced discounted payoff game
also eventually reach the 1-sink.

Lemma 9.6. LetG be a 1-sink-parity game with v∗ being the 1-sink,H = IndDPG(IndMPG(G))
be the induced discounted payoff game, and σ be a player 0 strategy s.t. ΞιG � Ξσ. Let v0 6= v∗ be
an arbitrary node. Then, πv0,σ,%σ is of the following form:

πv0,σ,%σ = v0v1 . . . vl−1(v∗)ω

Proof. Consider the gamesG′ := G|σ andH ′ := H|σ and note that τGσ = τG
′

σ as well as %Hσ = %H
′

σ .
Note that G′ is won by player 1 following τG

′
σ since G is 1-sink parity game.

By Theorems 9.2 and 9.3 it follows that %H
′

σ must be also a player 1 winning strategy for
the whole game G′. Therefore, it follows that every play πv0,σ,%σ eventually ends in cycle with a
dominating cycle node w∗ of odd priority, hence Ω(w∗) ≥ Ω(v∗).

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 37

If Ω(w∗) > Ω(v∗), it follows that there is a w∗-dominated cycle reachable in G′ starting from
v0. But since Ξσ(v0) = (v∗, ,), this cannot be the case. Hence Ω(w∗) = Ω(v∗), implying that
w∗ = v∗.

Second, we show that the value ordering between two different paths leading to the 1-sink again
depends solely on the most relevant node in the symmetric difference of the paths.

Lemma 9.7. LetG be a 1-sink-parity game with v∗ being the 1-sink,H = IndDPG(IndMPG(G))
be the induced discounted payoff game. Let π and ξ be two paths of the form π = u0u1 . . . ul−1(v∗)ω

and ξ = w0w1 . . . wk−1(v∗)ω and let U = {u0, . . . , ul−1} and W = {w0, . . . , wk−1}. Then
U ≺W implies RH(π) ≺ RH(ξ).

Proof. Let V = {v0, . . . , vn−1} s.t. pn−1 > pn−2 > . . . > p0 with pi = Ω(vi) and v0 = v∗, and let
β be the discount factor ofH . W.l.o.g. assume that n > 2 since otherwise both paths are necessarily
the same. Let a : {1, . . . , n− 1} → {0, . . . , n− 2,⊥} be a map s.t.

a(i) =

{
j if uj = vi

⊥ if there is no j s.t. uj = vi

and let b : {1, . . . , n − 1} → {0, . . . , n− 2,⊥} be defined accordingly for wj . Set β⊥ := 0. Note
that the following holds.

RH(π) =

n−1∑
i=1

βa(i) · (−n)pi +
n · βl

β − 1
RH(ξ) =

n−1∑
i=1

βb(i) · (−n)pi +
n · βk

β − 1

Let m = max{i | (a(i) = ⊥ and b(j) 6= ⊥) or (a(i) 6= ⊥ and b(j) = ⊥)} and note that m indeed
is well-defined. Set

∆ := RH(ξ)−RH(π) = ∆1 + ∆2 + ∆3 + ∆4

where

∆1 :=
n−1∑

i=m+1

(βb(i) − βa(i)) · (−n)pi

∆2 := (βb(m) − βa(m)) · (−n)pm

∆3 :=
m−1∑
i=1

(βb(i) − βa(i)) · (−n)pi

∆4 :=
n · (βk − βl)

β − 1

Regarding ∆1, let m < i < n and consider that |βb(i) − βa(i)| ≤ |1− βn−2|. The following holds.

|βb(i) − βa(i)| · npi ≤ |1− βn−2| · npi = (

n−3∑
j=0

βj) · (1− β) · npi

≤ n · (1− β) · npi =
npi+1

4 · n3 · npn−1
≤ n−2

We conclude that |∆1| ≤ n−1−m
n2 ≤ 1.

38 O. FRIEDMANN

Regarding ∆2, note that b(m) 6= ⊥ implies that pm is even and b(m) = ⊥ implies that pm is
odd. Let c = b(m) iff b(m) 6= ⊥ and c = a(m) otherwise. Hence the following holds.

∆2 = βc · npm ≥ βn−1 · npm = (βn−1 − 1) · npm + npm

= (

n−2∑
j=0

βj) · (β − 1) · npm + npm ≥ (1− n) · (1− β) · npm + npm

=
1− n

4 · npn−1+3
· npm + npm ≥ 3

4
· npm

Regarding ∆3, let 0 < i < m and consider that |βb(i) − βa(i)| ≤ 1. The following holds.

|∆3| ≤
m−1∑
i=1

|βb(i) − βa(i)| · npi ≤
m−1∑
i=1

npi

Now we need to distinguish on whether pm = 2. If so, note that m = 1, b(m) 6= ⊥ and k = l + 1.
Hence, regarding ∆4, the following holds.

|∆4| =
n · |βl+1 − βl|
|β − 1|

= n · β ≤ n

Therefore we conclude (remember that n > 2)

∆ ≥ ∆2 − |∆1| − |∆3| − |∆4| ≥
3

4
· n2 − 1− 0− n > 0

Otherwise, if pm > 2, it holds that |βk − βl| ≤ |1 − βn−1| ≤ (n − 1) · (1 − β) and hence
|∆4| ≤ n2 − n. Additionally, consider ∆3 again.

|∆3| ≤
m−1∑
i=1

npi ≤
pm−1∑
i=2

ni =

pm−1∑
i=0

ni − 1− n =
npm − 1

n− 1
− 1− n

We conclude the following (remember again that n > 2).

∆ ≥ ∆2 − |∆1| − |∆3| − |∆4|

≥ 3

4
· npm − 1− npm − 1

n− 1
+ 1 + n− n2 + n

=
3

4
· npm − npm − 1

n− 1
− (n− 1)2 + 1

≥ 3

4
· npm − npm

2
− (n− 1)2 + 1

=
1

4
· npm − (n− 1)2 + 1 > 0

Third, we derive that the strategy iteration for discounted payoff games behaves exactly the same as
the strategy iteration for 1-sink-parity games.

Theorem 9.8. Let G be a 1-sink-parity game, v be a node, H = IndDPG(IndMPG(G)) be the
induced discounted payoff game and σ be a player 0 strategy s.t. ΞιG � Ξσ. Then %σ = τσ.

Proof. Assume by contradiction that %σ 6= τσ. Hence, there is a node v s.t. πv,σ,τσ 6= πv,σ,%σ . Since
G is a 1-sink parity game and ΞιG � Ξσ, it follows by Lemma 9.6 that πv,σ,%σ eventually reaches
the 1-sink. It follows that RH(πv,σ,%σ) < RH(πv,σ,τσ) which is impossible due to Lemma 9.7.

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 39

Corollary 9.9. Let G be a 1-sink-parity game, H = IndDPG(IndMPG(G)) be the induced dis-
counted payoff game and σ be a player 0 strategy s.t. ΞιG � Ξσ. For every two nodes v and u the
following holds.

Ξσ(v) ≺ Ξσ(u) ⇐⇒ RH(πv,σ,%σ) < RH(πu,σ,%σ)

Corollary 9.10. Puri’s algorithm for solving payoff games requires exponentially many iterations
in the worst case when parameterized with the locally or the globally optimal policy.

We note that it is possible to define strategy iteration for mean payoff games directly, i.e. with-
out applying the reduction to discounted payoff games first. Unfortunately, with mean payoff games,
it is not the case that if σ is not optimal then there necessarily exists at least one switch that strictly
improves the reward. There are several way to remedy this situation; most of them are based on a
lexicographic ordering again with the first component being the reward and the second component
being a description of the nodes leading to the cycle, usually called potential. We note without proof
that our results translate to this variant of strategy iteration as well.

Finally, we relate our results to simple stochastic games. Particularly, we consider simple sto-
chastic games with arbitrary outdegree and arbitrary probabilities that halt almost surely. Zwick,
Paterson and Condon show that there is direct correspondence between this version of simple sto-
chastic games and the original one [ZP96, Con92].

A simple stochastic game is a tuple G = (V, Vmin , Vmax , Vavg , 0, 1, E, p) s.t. Vmin , Vmax ,
Vavg , {0} and {1} are a partition of V , (V,E) is a directed graph with exactly two sinks 0 and 1,
and p : E∩ (Vavg ×V)→ [0; 1] is the probability mapping s.t.

∑
u∈vE p(v, u) = 1 for all v ∈ Vavg .

We say that a simple stochastic game halts with probability 1 iff every node v in G|σ,τ has a
path with non-negligible probabilities to a sink for every pair of strategies σ and τ . Every simple
stochastic game can be reduced to an equivalent simple stochastic game that halts with probability
1 in polynomial time [Con92]. We assume from now on that every given simple stochastic game
halts with priority 1.

Given a simple stochastic game and a play π, we say that player Max wins π iff it ends in
the 1-sink and similarly that player Min wins π if it ends in the 0-sink. Let RG(v, σ, %) denote
the probability that player Max wins starting from v conforming to the Max -strategy σ and the
Min-strategy %.

We say that a node v has a value iff supσ inf%RG(πv,σ,%) and inf% supσ RG(πv,σ,%) exist, and

sup
σ

inf
%
RG(πv,σ,%) = inf

%
sup
σ
RG(πv,σ,%)

Whenever a node v has a value, we write ϑG(v) := supσ inf%RG(πv,σ,%) to refer to it. If every node
has a value, we say that a player 0 strategy σ is optimal iff inf%RG(πv,σ,%) ≥ inf%RG(πv,σ′,%) for
every node v and every player 0 strategy σ′ and similarly for player 1.

Theorem 9.11 ([Con92]). Let G be a simple stochastic game. Every node v has a value and there
are optimal positional strategies σ and % s.t. ϑG(v) = RG(πv,σ,%) for every v.

Again, simple stochastic games can be solved by strategy iteration. Given a player Max strat-
egy σ, an (not necessarily unique) optimal counterstrategy %σ – i.e. RG(v, σ, %) ≤ RG(v, σ, %′) for
all other player Min strategies %′ and all nodes v – can be computed by solving an LP-problem as
described in Algorithm 4.

The value assignment ϕ can be computed in polynomial time by applying Khachiyan’s algo-
rithm [Kha79] for instance. Given ϕ, an optimal counterstrategy %σ can be efficiently deduced. The
strategy iteration that solves the simple stochastic games runs exactly the same as for discounted
payoff games.

40 O. FRIEDMANN

Algorithm 4 Computation of Optimal Counter Strategy in a SSG
Maximize

∑
v∈V ϕ(v) w.r.t.

ϕ(v) = ϕ(σ(v)) for all v ∈ Vmax

ϕ(v) ≤ ϕ(u) for all v ∈ Vmin and u ∈ vE

ϕ(v) =
∑
u∈vE

p(v, u) · ϕ(u) for all v ∈ Vavg

ϕ(1) = 1

ϕ(0) = 0

Zwick and Paterson [ZP96] describe a simple reduction from discounted payoff games to sim-
ple stochastic games that halt with probability 1. LetG = (V, V0, V1, E, r, β) be a discounted payoff
game and let l = min{r(v) | v ∈ V }, u = max{r(v) | v ∈ V } and d = max(1, u− l).

TheG-induced simple stochastic game is the game IndSSG(G) = (V ′, Vmin , Vmax , Vavg , 0, 1, E
′, p)

where Vmin = V1, Vmax = V0, Vavg = E, V ′ = Vmin ∪ Vmax ∪ Vavg ∪ {0, 1} and

E′ = {(v, (v, u)), ((v, u), u), ((v, u), 0), ((v, u), 1) | v ∈ V and u ∈ E}

p :


((v, u), u) 7→ β

((v, u), 1) 7→ (1− β) · r(v)−l
d

((v, u), 0) 7→ (1− β) · (1− r(v)−l
d)

Clearly, the induced simple stochastic game halts with probability 1. As Zwick and Paterson pointed
out, the values of the induced simple stochastic game directly correspond to the values of the original
discounted payoff game.

Lemma 9.12 ([ZP96]). Let G be a discounted payoff game and G′ = IndSSG(G). Let σ be a
player 0 strategy and % be a player 1 strategy. Then (1− β) ·RG(πv,σ,%) = d ·RG′(v, σ, %) + l for
every node v where l = min{r(v) | v ∈ V }, u = max{r(v) | v ∈ V } and d = max(1, u− l).

This particularly implies that RG(πv,σ,%) = d
1−β ·RG′(v, σ, %) + l with d

1−β > 0, i.e. the values
of the original discounted payoff game correspond to the values of the induced simple stochastic
game by an affine transformation that preserves the ordering.

Corollary 9.13. The standard strategy iteration for simple stochastic games requires exponentially
many iterations in the worst case.

10. CONCLUSION

We have presented a family of games on which the deterministic strategy improvement algorithm
for parity games requires exponentially many iterations. Additionally, we have shown how to adapt
this family to prove an exponential lower bound on Schewe’s policy.

Finally, we have shown that the presented family can be used to transfer the exponential lower
bound to mean payoff, discounted payoff and simple stochastic games by applying the standard
reductions.

Although there are many preprocessing techniques that could be used to simplify the family
of games presented here – e.g. decomposition into strongly connected components, compression

AN EXPONENTIAL LOWER BOUND FOR THE LATEST DETERMINISTIC STRATEGY ITERATION ALGORITHMS 41

of priorities, direct-solving of simple cycles, see [FL09b] for instance – they are no solution to
the general weakness of strategy iteration on these games, simply due to the fact that all known
preprocessing techniques can be fooled quite easily without really touching the inner structure of
the games.

Parity games are widely believed to be solvable in polynomial time, yet there is no algorithm
known that is performing better than superpolynomially. Jurdziński and Vöge presented the strategy
iteration technique for parity games over ten years ago, and this class of solving procedures is
generally supposed to be the best candidate to give rise to an algorithm that solves parity games in
polynomial time since then. Unfortunately, the locally and the globally optimizing technique are
not capable of achieving this goal.

We think that the strategy iteration still is a promising candidate for a polynomial time algo-
rithm, however it may be necessary to alter more of it than just the improvement policy.

Acknowledgements. I am very thankful to Martin Lange and Martin Hofmann for their guidance
and numerous inspiring discussions on the subject. Also, I would like to thank the anonymous ref-
erees for their thorough reports containing many comments that helped to improve the presentation
of this paper.

REFERENCES

[BV07] Henrik Björklund and Sergei Vorobyov. A combinatorial strongly subexponential strategy improvement algo-
rithm for mean payoff games. Discrete Appl. Math., 155(2):210–229, 2007.

[Con92] Anne Condon. The complexity of stochastic games. Information and Computation, 96:203–224, 1992.
[EJ91] E. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In Proc. 32nd Symp. on Foundations of

Computer Science, pages 368–377, San Juan, 1991. IEEE.
[EJS93] E. Emerson, C. Jutla, and A. Sistla. On model-checking for fragments of µ-calculus. In Proc. 5th Conf. on

CAV, CAV’93, volume 697 of LNCS, pages 385–396. Springer, 1993.
[EM79] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. Internat. J. Game Theory,

8:109–113, 1979.
[FL09a] Oliver Friedmann and Martin Lange. The PGSolver collection of parity game solvers, 2009. University of

Munich. Available from http://www.tcs.ifi.lmu.de/pgsolver.
[FL09b] Oliver Friedmann and Martin Lange. Solving parity games in practice. In ATVA, pages 182–196, 2009.
[Fri10a] O. Friedmann. Recursive solving of parity games requires exponential time. A preprint available from http:

//www.tcs.ifi.lmu.de/˜friedman, 2010.
[Fri10b] Oliver Friedmann. The stevens-stirling-algorithm for solving parity games locally requires exponential time.

Int. J. Found. Comput. Sci., 21(3):277–287, 2010.
[GTW02] E. Grädel, W. Thomas, and Th. Wilke, editors. Automata, Logics, and Infinite Games, LNCS. Springer, 2002.
[HK66] A. J. Hofmann and R. M. Karp. On nonterminating stochastic games. Management Science, 12(5):359–370,

1966.
[How60] Ronald Howard. Dynamic Programming and Markov Processes. The M.I.T. Press, 1960.
[JPZ06] M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for solving parity games.

In Proc. 17th Ann. ACM-SIAM Symp. on Discrete Algorithm, SODA’06, pages 117–123. ACM, 2006.
[Jur98] M. Jurdziński. Deciding the winner in parity games is in UP ∩ coUP. Inf. Process. Lett., 68(3):119–124, 1998.
[Jur00] M. Jurdziński. Small progress measures for solving parity games. In H. Reichel and S. Tison, editors, Proc.

17th Ann. Symp. on Theo. Aspects of Computer Science, STACS’00, volume 1770 of LNCS, pages 290–301.
Springer, 2000.

[Kha79] Leonid Khachiyan. A polynomial algorithm in linear programming. Soviet Math. Dokl., 20:191–194, 1979.
[MTZ10] Omid Madani, Mikkel Thorup, and Uri Zwick. Discounted deterministic markov decision processes and dis-

counted all-pairs shortest paths. ACM Transactions on Algorithms, 6(2), 2010.
[Pur95] Anuj Puri. Theory of Hybrid Systems and Discrete Event Systems. PhD thesis, University of California, Berke-

ley, 1995.
[Sch07] Sven Schewe. Solving parity games in big steps. In Proc. FST TCS. Springer-Verlag, 2007.

http://www.tcs.ifi.lmu.de/pgsolver
http://www.tcs.ifi.lmu.de/~friedman
http://www.tcs.ifi.lmu.de/~friedman

42 O. FRIEDMANN

[Sch08] S. Schewe. An optimal strategy improvement algorithm for solving parity and payoff games. In 17th Annual
Conference on Computer Science Logic (CSL 2008), 2008.

[SS98] P. Stevens and C. Stirling. Practical model-checking using games. In B. Steffen, editor, Proc. 4th Int. Conf.
on Tools and Alg. for the Constr. and Analysis of Systems, TACAS’98, volume 1384 of LNCS, pages 85–101.
Springer, 1998.

[Sti95] C. Stirling. Local model checking games. In Proc. 6th Conf. on Concurrency Theory, CONCUR’95, volume
962 of LNCS, pages 1–11. Springer, 1995.

[VJ00] J. Vöge and M. Jurdzinski. A discrete strategy improvement algorithm for solving parity games. In Proc. 12th
Int. Conf. on Computer Aided Verification, CAV’00, volume 1855 of LNCS, pages 202–215. Springer, 2000.

[Vög00] Jens Vöge. Strategiesynthese für Paritätsspiele auf endlichen Graphen. PhD thesis, University of Aachen,
2000.

[Zie98] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. TCS,
200(1–2):135–183, 1998.

[ZP96] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theoretical Computer Sci-
ence, 158(1-2):343–359, 1996.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or
send a letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105,
USA, or Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Parity Games
	3. Strategy Improvement
	4. Improvement Policies
	5. Sink Games
	6. Lower Bound for the Locally Optimizing Policy
	6.1. Simple Cycles
	6.2. Deceleration Lane
	6.3. Cycle Gate
	6.4. Lower Bound Construction
	6.5. Lower Bound Description and Phases
	6.6. Lower Bound Proof
	6.7. Remarks

	7. Improving the Lower Bound Construction
	7.1. Linear Number of Edges
	7.2. Binary Outdegree

	8. Lower Bound for the Globally Optimizing Policy
	8.1. Modified Deceleration Lane
	8.2. Stubborn Cycles
	8.3. Modified Cycle Gate
	8.4. Modified Construction
	8.5. Remarks

	9. Mean Payoff, Discounted Payoff and Simple Stochastic Games
	10. Conclusion
	References

