
Logical Methods in Computer Science
Vol. 5 (2:1) 2009, pp. 1–32
www.lmcs-online.org

Submitted Jun. 7, 2007
Published Apr. 8, 2009

A FAITHFUL SEMANTICS FOR

GENERALISED SYMBOLIC TRAJECTORY EVALUATION

KOEN CLAESSEN a AND JAN-WILLEM ROORDA b

a Chalmers University of Technology, Sweden
e-mail address: koen@chalmers.se

b Fenix Design Automation, the Netherlands
e-mail address: janwillem@fenix-da.com

Abstract. Generalised Symbolic Trajectory Evaluation (GSTE) is a high-capacity for-
mal verification technique for hardware. GSTE is an extension of Symbolic Trajectory
Evaluation (STE). The difference is that STE is limited to properties ranging over finite
time-intervals whereas GSTE can deal with properties over unbounded time.

GSTE uses abstraction, meaning that details of the circuit behaviour are removed from
the circuit model. This improves the capacity of the method, but has as down-side that
certain properties cannot be proven if the wrong abstraction is chosen.

A semantics for GSTE can be used to predict and understand why certain circuit
properties can or cannot be proven by GSTE. Several semantics have been described for
GSTE by Yang and Seger. These semantics, however, are not faithful to the proving
power of GSTE-algorithms, that is, the GSTE-algorithms are incomplete with respect to
the semantics. The reason is that these semantics do not capture the abstraction used in
GSTE precisely.

The abstraction used in GSTE makes it hard to understand why a specific property
can, or cannot, be proven by GSTE. The semantics mentioned above cannot help the user
in doing so. So, in the current situation, users of GSTE often have to revert to the GSTE
algorithm to understand why a property can or cannot be proven by GSTE.

The contribution of this paper is a faithful semantics for GSTE. That is, we give a simple
formal theory that deems a property to be true if-and-only-if the property can be proven
by a GSTE-model checker. We prove that the GSTE algorithm is sound and complete
with respect to this semantics. Furthermore, we show that our semantics for GSTE is a
generalisation of the semantics for STE and give a number of additional properties relating
the two semantics.

1998 ACM Subject Classification: B.6.3, F.3.2, F.4.3.
Key words and phrases: Formal Verification, Formal Specification, Model Checking, Symbolic Simulation,

Generalized Symbolic Trajectory Evaluation, Semantics.
lsuper bThis work was carried out while employed at Chalmers University.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-5 (2:1) 2009

c© K. Claessen and J.-W. Roorda
CC© Creative Commons

http://creativecommons.org/about/licenses

2 K. CLAESSEN AND J.-W. ROORDA

Figure 1: A memory cell

1. Introduction

The rapid growth in hardware complexity has led to a need for formal verification

of hardware designs to prevent bugs from entering the final silicon. Model checking is a
verification method in which a model of a system is checked against a property, describing
the desired behaviour of the system over time. Today, all major hardware companies use
model checkers in order to reduce the number of bugs in their designs.

1.1. Symbolic Trajectory Evaluation. Symbolic Trajectory Evaluation (STE) [12] is a
high-performance model checking technique based on simulation. STE combines three-
valued simulation (using the standard values 0 and 1 together with the extra value X,
“don’t know”) with symbolic simulation (using symbolic expressions to drive inputs). STE
has been extremely successful in verifying properties of circuits containing large data paths
(such as memories, FIFOs, and floating point units) that are beyond the reach of traditional
symbolic model checking [1, 10, 12].

Consider the circuit in Figure 1. The circuit consists of two AND-gates, an OR-gate, a
register (depicted by the letter R), and an inverter (depicted by the black dot). The register
has output node reg and input node reg′. The value of the output of the register at time
t+ 1 is the value of its input at time t. The memory cell can be written with the value at
node in by making node set high.

In STE, circuit specifications are assertions of the form A =⇒ C. Here, A is called the
antecedent and C the consequent. For example, an STE-assertion for the memory cell is:

(in is a) and (set is 1) =⇒ N(out is a)

Here a is a symbolic constant1 , which can take on the value 0 or 1, and in, set and out are
node names. N is the next-time operator. The assertion states that when node in has value
a, and node set has value 1, then at the next point in time, node out must have value a.

1 The name symbolic constant is used to indicate that the variable keeps a constant value over different
points in time. In plain STE, such variables are called symbolic variables. As this paper deals with GSTE,
we will use the GSTE terminology even when we discuss plain STE.

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 3

1.2. Generalised Symbolic Trajectory Evaluation. One of the main disadvantages of
STE is that it can only deal with properties ranging over a finite number of time-steps.
Generalised Symbolic Trajectory Evaluation (GSTE) [16, 15, 18, 17] is an extension of STE
that can deal with properties ranging over unbounded time.

In GSTE, circuit properties are given by assertion graphs. For example, an assertion
graph for the memory cell is:

init
(in is a) and (set is 1)/·

// v

set is 0/·

��

·/out is a
// w ff (1.1)

In the assertion graph, each edge is labelled with a pair A/C. As in STE, A is called the
antecedent and C is called the consequent. The syntax of A and C is like the syntax of
the antecedent and consequent in STE without the next-time operator N. The N operator
can not be used because each edge only represents a single time-point. A dot (·) means an
empty antecedent or consequent.

The assertion graph above states that if we write value a to the memory cell, and then
for arbitrary many time-steps we do not write, the memory cell still contains value a.

Each finite path, starting in the initial vertex init of the graph, represents an STE
property. For instance, the finite paths through the assertion graph above represent the
following STE properties:

(in is a) and (set is 1) =⇒ N(out is a)
(in is a) and (set is 1) and N(set is 0) =⇒ NN(out is a)
(in is a) and (set is 1) and N(set is 0) and NN(set is 0) =⇒ NNN(out is a)
. . .

Each of these assertions can be proven by an STE model checker. But, as the set of
assertions is infinite, we cannot use plain STE to prove all of them. However, if we use
GSTE to prove that the circuit satisfies the above assertion graph, it follows that all STE-
assertions represented by the assertion graph hold as well.

Note that in GSTE, just like in STE, the initial values of registers are ignored.

1.3. Earlier work on semantics for GSTE. A semantics for GSTE can be used to
predict and understand why certain circuit properties can or cannot be proven by GSTE.
In [17, 18] three semantics for GSTE are distinguished: (1) the strong semantics, (2) the
normal semantics, and (3) the fair semantics. The semantics have in common that a circuits
satisfies an assertion-graph if it satisfies all appropriate paths in the assertion graph. The
meaning of appropriate differs over the three semantics, as we explain in the following
paragraphs. As in [5], we refer to this class of semantics as the ∀-semantics, because these
semantics really consider all concrete paths, rather than approximating this quantification
by applying abstraction.

In the strong semantics, a circuit satisfies a GSTE assertion graph if-and-only-if the
circuit satisfies all STE-assertions corresponding to finite paths in the assertion graph. For
instance, as the memory cell satisfies the set of finite assertions above, it also satisfies
assertion graph (1.1).

Consider the following assertion graph:

init
(set is 1)/(in is a)

// v
out is a/·

// w ff (1.2)

4 K. CLAESSEN AND J.-W. ROORDA

Intuitively, we might want the above assertion graph to state that if at some time-point
node out has value a, and just before that, node set was high, then at this time-point node
in should have value a. This is an example of a backwards property, that is, a property in
which a consequent depends on an antecedent at a later time-point.

The strong semantics cannot deal with such backwards properties. For instance, for
the above property, the path starting in vertex init and ending in vertex v corresponds to
the assertion

(set is 1) =⇒ (in is a)

This assertion is, of course, not true for the memory cell. But, any run of the circuit that
makes in is a fail, makes N(out is a) fail as well. So, intuitively, the assertion is not satisfied
because a consequent failed before the antecedent it depended on could fail.

In the normal semantics, a circuit satisfies a GSTE assertion graph if-and-only-if the
circuit satisfies the STE-assertions corresponding to all infinite paths in the assertion graph.
Therefore, the normal semantics can deal with backwards properties as well. For instance, in
assertion graph (1.2), there is only one infinite path. This path corresponds to the following
assertion:

(set is 1) and N(out is a) =⇒ (in is a)

As any circuit trace that satisfies the antecedent satisfies the consequent as well, this asser-
tion is satisfied by the circuit. Thus, in the normal semantics, the GSTE assertion graph is
satisfied.

Finally, the need for the fair semantics is illustrated by the following example. Consider
the assertion graph:

init
(set is 1)/(in is a)

// v

set is 0/·

��

out is a/·
// w ff (1.3)

The assertion graph above states that if at some time-point node out has value a, and before
that, for a period of time no values were written to the memory-cell, and before that, set
was high, then at this time-point in should have value a.

In the normal semantics, the memory cell circuit does not satisfy this assertion graph.
Consider the infinite path starting in init and then cycling at the self-loop at v for ever.
This path corresponds to the infinite assertion:

(set is 1) and N(set is 0) and NN(set is 0) and . . . =⇒ in is a

For a given a, this assertion can be falsified by the trace in which value ¬a is written at
time 0, and is kept in memory since then.

In the fair semantics for GSTE, this problem is solved by selecting a set of fair edges.
The semantics only considers paths that visit every fair edge infinitely often. For instance,
if in the above assertion graph the edge from vertex w to itself is made fair, the assertion
graph holds in the fair semantics.

1.4. GSTE model checking. In the same papers [17, 18], model checking algorithms for
normal, strong and fair GSTE are described. It is proven that the model checking algorithms
are sound with respect to their corresponding semantics. However, the algorithms are not
complete. The reason is that the ∀-semantics do not precisely capture the information loss
due to the three-valued abstraction in GSTE.

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 5

For example, consider the following circuit

and the following assertion graph

init

p′ is 1/·
++

p′ is 0/·

33 v
·/out is 1

// w ff

The assertion graph represents the following STE-assertions:

p′ is 1 =⇒ N(out is 1)
p′ is 0 =⇒ N(out is 1)

Both assertions hold. So, the semantics described above predict that the circuit satisfies
the assertion graph.

However, it turns out that the GSTE-algorithm cannot prove the assertion graph! The
reason is that GSTE algorithms only compute one three-valued assertion for each edge in
the assertion graph. This is in general not enough to take account for all STE assertions
corresponding to all paths through the assertion graph, so a certain information loss hap-
pens. In this particular case, the state calculated on the edge from v to w gives value X

to node out. This can be explained as follows. The antecedent at the top edge between
vertices init and v requires node p′ to have value 1. The antecedent at the bottom edge
requires node p′ to have value 0. Node p′ is the input to a register with node p as output.
So, when the edge from v to w is reached via the top edge between init and v node p will
receive value 1. When the edge from v to w is reached via the bottom edge between init

and v, node p will receive value 0. As the value of node p should comply with both paths,
the algorithm chooses value X for node p, and thus node out receives value X as well.

1.5. The problem. The previous example illustrates that the ∀-semantics for GSTE dis-
cussed previously cannot be used to explain how the three-valued abstraction causes certain
properties to be not provable with GSTE. This can lead to situations where seemingly trivial
changes to either the circuit or the assertion can suddenly make an assertion not provable
anymore.

This is an undesirable situation. We believe that a faithful semantics for GSTE is
needed.

A faithful semantics deems a property to be true if-and-only-if the property can be
proven by a GSTE-model checker. Without a faithful semantics, a GSTE verification engi-
neer is left to the particular internals of the model checker at hand to understand what can
and cannot be proved. Also, a faithful semantics can be used to understand differences be-
tween different GSTE model checkers. For example, the GSTE semantics of satGSTE [14]

6 K. CLAESSEN AND J.-W. ROORDA

is expressed using successive unrollings of the assertion graph as STE assertions. However,
the abstraction obtained in that way does not correspond to the abstraction in standard
GSTE model checkers. This means that there are assertion graphs for which satGSTE and
standard GSTE model checkers give different answers.

To further clarify the importance of a faithful GSTE semantics, we would like to point
out that there is a difference between the use of abstraction in (G)STE, and the application
of abstraction as a performance enhancer in model checkers for standard temporal logics
like LTL and CTL. In the latter case, a model checker might simply give up when it happens
to choose an abstraction that is too weak to prove a property, but it is still clear to the
verification engineer what the specification means. In (G)STE, what abstraction to use in
the model checker is an artefact of the specification, not an artefact of the model checker. So,
in (G)STE it is vital to understand what a specification means, separate from a particular
model checker, including the abstraction that is specified.

In previous work [9], we have described a faithful semantics for STE. However, up till
now, no faithful semantics for GSTE has been described.

1.6. Our contribution. In this paper, we present a semantics for GSTE that is faithful
to the proving power of the GSTE model checking algorithm. Compared to the semantics
described in [17, 18], our semantics corresponds to the strong semantics of GSTE. That is, in
this paper, we do not consider backwards properties or fairness constraints, which remains
future work. One difference with the strong semantics in [17, 18] is that our semantics
captures the three-valued abstraction of GSTE precisely, and thus can be used to explain
the information loss caused by the three-valued abstraction in GSTE.

Another difference is that our semantics for GSTE follows the same structure as the
semantics for STE [9, 12, 6]. For instance, where STE deals with sequences to represent
abstract circuit behaviour, our GSTE semantics uses sequence graphs. Here, a sequence
graph is a mapping from edges in an assertion graph to abstract circuit states. We show
that our GSTE semantics is a generalisation of the STE semantics. That is, given a linear
assertion graph, the STE-semantics and GSTE-semantics are equivalent. Finally, we state
a number of additional properties relating the two semantics.

We believe that our faithful semantics for STE is an important contribution to the
research on GSTE for at least two reasons.

First of all, a faithful semantics makes GSTE more accessible to novice users: a faithful
semantics enables users to understand the abstraction used in GSTE, without having to
understand the details of the model checking algorithm. Additionally, in this paper, we aim
at increasing the understanding for GSTE users of subtle cases of information-loss due to
abstraction by providing enlightening examples.

Furthermore, a faithful semantics for GSTE can be used as basis for research on new
GSTE model checking algorithms and other GSTE tools. To illustrate this, in previous
work [8], we described a new SAT-based model checking algorithm for STE and proven
that it is sound and complete with respect to our faithful semantics for STE presented
in [9]. Without a faithful semantics for STE, we would have been forced to prove the
correctness of our algorithm by relating it to other model checking algorithms for STE.
This is clearly a more involved and less elegant approach. In fact, we believe that without
constructing a faithful semantics for STE first, we would not have obtained the level of
understanding of STE needed to develop the new SAT-based model checking algorithm.

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 7

In the same way, we expect that the faithful semantics for GSTE presented in this
paper will open the door for new research on GSTE model checking algorithms and other
GSTE tools.

1.7. Other related work. The following papers are based on the ∀-semantics for GSTE.

GSTE as partitioned model checking. In [11], the relation between GSTE and classic sym-
bolic model checking is studied. It is explained how GSTE can be seen as a partitioned form
of classic symbolic model checking. However, the abstraction of GSTE is not taken into
account. Therefore, this paper, focussing on the abstraction in GSTE, is complementary to
[11].

Using SAT for debugging of GSTE assertion graphs. In [14], the tool satGSTE is presented.
The tool considers a finite subset of all finite paths in an assertion graphs, for instance, all
paths up to a certain length. For each path in this subset, the tool model checks the
corresponding STE assertion. The authors explain how the tool can be used to debug and
refine GSTE assertion graphs. However, their tool does not follow the same semantics as
standard GSTE model checking algorithms. Thus, certain counter examples that would
occur in a standard GSTE model checker due to the use of abstraction cannot be found
with their algorithm.

Monitor circuits for GSTE assertion graphs. In (conventional, non-symbolic) simulation,
a model of a circuit is fed with a large number of inputs. For every input it is checked
whether the output is as expected. Typically, a monitor circuit is used to make this check.
The monitor circuit observes the system under verification without interfering. During each
step of the simulation, it indicates whether the system has obeyed the formal specification
thus far.

In [4, 7] methods for automatic construction of monitor circuits for GSTE assertion
graphs are described. The method in [4] requires the use of a symbolic simulator if the
assertion graph contains symbolic constants. In [7] it is explained how, for the class of
so-called simulation friendly assertion graphs, the method of [4] can be extended to deal
with symbolic constants even in conventional non-symbolic simulation.

The papers explain how monitor circuits can be used to make a bridge between GSTE
model checking and conventional simulation. For instance, monitor circuits can be used to
quickly debug and refine GSTE specifications before trying to use more labour intensive
GSTE model checking.

Reasoning about GSTE assertion graphs. Using the construction of monitor circuits for
GSTE assertion graphs, [5] describes two algorithms that can be used in compositional
verification using GSTE. The first algorithm decides whether one assertion graph implies
another. The second algorithm can be used to model check an assertion graph under the
assumption that another assertion graph is true.

8 K. CLAESSEN AND J.-W. ROORDA

1.7.1. Relation to this paper. Each of the papers above is based on the ∀-semantics for
GSTE. As explained above, the ∀-semantics are not faithful to the proving power of the
GSTE model checking algorithms. So, it can occur that a tool described in the papers deems
a GSTE assertion to be true, while the GSTE model checking algorithm cannot prove it.

For instance, the monitor circuits described above cannot be used to debug and refine
assertions graphs that are true in the ∀-semantics but yield a spurious counter-example
when trying to prove them with a GSTE model checker. The satGSTE tool is limited in
the same way. We elaborate further on this in the future work section of this paper.

1.8. Structure of this paper. In the next section, we revisit the semantics of STE asser-
tions. Then, in Section 3, we present our semantics of GSTE assertion graphs. In Section 4,
we compare the STE semantics with the GSTE semantics by giving a number of properties
describing their relation. In Section 5, we describe the GSTE model checking algorithm
and show that it is sound and complete with respect to our semantics. Finally, in Section
6, we conclude and give suggestions for future work.

2. STE Preliminaries

A semantics for STE was first described by Seger and Bryant [12]. Later, a simplified
and easier to understand semantics was given by Melham and Jones [6]. Both of these
semantics are expressed in terms of a next state function, expressing the relationship between
two consecutive states in the circuit. Unfortunately, neither of these semantics matches the
proving power of currently available STE model checkers. The problem is that they cannot
deal with combinational properties (properties ranging over one single point in time). All
such properties are deemed to be false by the semantics. Therefore standard next state
semantics does not seem to be a good starting point for finding a faithful semantics for
GSTE.

In previous work [9], we have described an alternative semantics for STE that actually
is faithful to the proving power of STE model checkers. The semantics is called the closure

semantics. Informally, the closure semantics only differs from the traditional STE semantics
for combinational properties.

A main ingredient of the closure semantics for STE is the concept of a closure function.
The idea is that a closure function takes as input a state of the circuit, and calculates
all information about the circuit state at the same point in time that can be derived by
propagating the information in the input state in a forwards fashion. In the next section,
we give an alternative semantics for GSTE also based on closure functions.

In this section we briefly describe the closure semantics for STE. For more examples
and a discussion on the differences with the semantics given in [12, 6], we refer the reader
to [9].

Readers familiar with [9] can skip most of this section; compared to [9] we slightly
changed notation in the definition of the closure function on sequences, and we introduced an
extra variant of a closure semantics called the simple semantics. Furthermore, we adapted
the terminology to GSTE: we call the variables in STE-assertions symbolic constants to
indicate that they keep a constant value over time. Finally, we use finite sequences to
represent circuit behaviour, as opposed to the standard use of infinite sequences. Notice
that this is a very superficial change on the notational level; it does not change the semantics

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 9

T

0

�������

>>
>>

>>
> 1

>>>>>>>

��
��

��
�

X

Figure 2: The STE lattice

v ¬v
0 1
1 0
X X

T T

& 0 1 X T

0 0 0 0 T

1 0 1 X T

X 0 X X T

T T T T T

+ 0 1 X T

0 0 1 X T

1 1 1 1 T

X X 1 X T

T T T T T

⊔ 0 1 X T

0 0 T 0 T

1 T 1 1 T

X 0 1 X T

T T T T T

⊓ 0 1 X T

0 0 X X 0
1 X 1 X 1
X X X X X

T 0 1 X T

Figure 3: Four-valued extensions of the logical operators, least upper bound and greatest
lower bound operators.

itself. The reason for making the change is that it enables us to considerably simplify the
proof of Proposition 4.1 on page 24.

2.1. Values and Circuits States. Values In STE, we can abstract away from specific
Boolean values of a node, by using the value X, which stands for unknown. The value T

stands for over constrained. A node takes on the value T when is required to have both
value 0 and value 1.

On this set an information-ordering ≤ is introduced, see Figure 2. The unknown value
X contains the least information, so X ≤ 0 and X ≤ 1, while 0 and 1 are incomparable. The
over-constrained value contains the most information, so 0 ≤ T and 1 ≤ T. If v ≤ w it is
said that v is weaker than w.

The set V together with the ordering ≤ forms a lattice. The least upper bound operator

is written ⊔, the greatest lower bound operator is written ⊓, see Figure 3.
The logical operators for conjunction, written &, disjunction, written +, and negation,

written ¬, are extended to the four-valued domain as in Figure 3.
States A circuit state, written s : State, is a function from the set of nodes of a circuit to
the values {0, 1,X,T}2.

2.2. Closure functions. In our semantics for STE, closure functions are used as circuit
models. The idea is that a closure function, written F : State → State takes as input a
state of the circuit, and calculates all information about the circuit state at the same point

2Such an STE circuit state can be thought of as representing a set of regular states, commonly used in
set-based abstractions, where X represents the set {0, 1} and T represents the empty set. This view induces
a natural set-theoretic lattice, with set inclusion as its ordering. It is perhaps confusing that the standard
STE lattice ordering (also used here) goes exactly the other way around; i.e. the STE ⊔ corresponds to ∩
and ⊓ corresponds to ∪.

10 K. CLAESSEN AND J.-W. ROORDA

in time that can be derived by propagating the information in the input state in a forwards

fashion.

Example 2.1. The closure function for a circuit consisting of a single AND-gate with
inputs p and q, and output r is given by the table below. Here, s is a state and n is a node.

n F (s)(n)
p s(p)
q s(q)
r (s(p) & s(q)) ⊔ s(r)

The least upper bound operator in the expression for F (s)(r) combines the value of r in
the given state s, and the value for r that can be derived from the values of p and q, being
s(p) & s(q).

A state s : {p, q, r} → V can be written as a vector s(p), s(q), s(r). For example, the
state that assigns the value 1 to nodes p and q and the value X to node r is written as 11X.
Applying the closure function to the state 11X yields 111. The reason is that when both
inputs to the AND-gate have value 1, then by forwards propagation of information, also the
output has value 1. Applying the closure function to state 1XX yields 1XX. The reason is
that the output of the AND-gate is unknown when one input has value 1 and the other value
X. The forwards nature of simulation becomes clear when the closure function is applied
to state XX1, resulting in XX1. Although the inputs to the AND-gate must have value 1
when the output of the gate has value 1, this cannot be derived by forwards propagation.

A final example shows how the over-constrained value T can arise. Applying the closure
function to state 0X1 yields 0XT. The reason is that the input state gives node r value 1
and node p value 0. From p having value 0 it can be derived by forwards propagation that
r has value 0, therefore r receives the over-constrained value T.

A closure function is a function F : State → State satisfying the following three
conditions:

• F is monotonic, that is, for all states s1, s2: s1 ≤ s2 implies F (s1) ≤ F (s2). This means
that a more specified input state cannot lead to a less specified result. The reason is that
given a more specified input state, more information about the state of the circuit can be
derived.

• F is idempotent, that is, for every state s: F (F (s)) = F (s). This means that repeated
application of the closure function has the same result as applying the function once. The
reason is that the closure function should derive all information about the circuit state
in one go.

• F is extensive, that is, for every state s: s ≤ F (s). This means that the application of
a closure function to a circuit state should yield a state at least as specified as the input
state. The reason is that the closure function is required not to lose any information.

Netlists Here, a netlist is an acyclic list of definitions describing the relations between
the values of the nodes. Inverters are not modelled explicitly in our netlists, instead they
occur implicitly for each mention of the negation operator ¬ on the inputs of the gates.
Registers are not mentioned explicitly in the netlist either. Instead, for a register with
output node n in the circuit, the input of the register is node n′ which is mentioned in the
netlist. For simplicity, we only allow AND-gates and OR-gates in netlists. It is, however,
straightforward to extend this notion of netlists to include more operations.

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 11

Induced Closure Function Given the netlist of a circuit c, the induced closure function

for the circuit, written Fc, can easily be constructed by interpreting each definition in the
netlist as a four-valued gate (see Figure 3). Each

Given a state s, a circuit c, and a circuit node n, we calculate Fc(s)(n) as follows:

• If n is a circuit input or the output of a register, then we define Fc(s)(n) = s(n).
• If n is the output of an AND-gate with input nodes p and q, then we define

Fc(s)(n) = (Fc(s)(p) & Fc(s)(q)) ⊔ s(n).

• If n is the output of an OR-gate with input nodes p and q, then we define

Fc(s)(n) = (Fc(s)(p) + Fc(s)(q)) ⊔ s(n).

• If n is the output of an inverter with input node p, then we define

Fc(s)(n) = ¬Fc(s)(p) ⊔ s(n).

This definition is well-defined because netlists are acyclic by definition.

Proposition 2.2. The induced closure function for a circuit is by construction monotonic,

idempotent and extensive.

Proof. The closure function Fc is a composition of the monotonic functions of four-valued
negation, four-valued conjunction and least upper bound, therefore it is monotonic itself.

As netlists are acyclic by definition, we can prove properties by induction over the def-
inition of a node. We prove idempotency by proving Fc(Fc(s))(n) = Fc(s)(n) by induction
on the definition of n. Assume n is in the set of input- and state-holding nodes I ∪S, then
Fc(Fc(s))(n) = Fc(s)(n) by definition. If n is defined by n = p and q, then:

Fc(Fc(s))(n)
= (Fc(Fc(s))(p) & Fc(Fc(s))(q)) ⊔ Fc(s)(n) (definition)
= (Fc(s)(p) & Fc(s)(q)) ⊔ Fc(s)(n) (ind. hyp.)
= (Fc(s)(p) & Fc(s)(q)) ⊔ (Fc(s)(p) & Fc(s)(q)) ⊔ s(n) (definition)
= (Fc(s)(p) & Fc(s)(q)) ⊔ s(n) (property ⊔)
= Fc(s)(n) (definition)

A similar argument holds when n is defined by a different gate definition.
The extensivity of Fc follows directly from its definition: If n is an input or state holding

node then Fc(s)(n) = s(n), otherwise F (c)(n) is defined as the least upper bound of s(n)
and another expression, so s(n) ≤ Fc(s)(n).

2.3. A closure function for sequences. Sequences A sequence of depth d, written
σ : {0, 1, . . . , d} → State, is a function from a point in time to a circuit state, describing
the behaviour of a circuit over time. The set of all sequences is written Seq. A three-valued

sequence is a sequence that does not assign the value T to any node at any time.
The order ≤ and the operators ⊔ and ⊓ are extended to sequences in a point-wise

fashion. That is, the order ≤ on sequences is defined by σ1 ≤ σ2 iff for all n, σ1(n) ≤ σ2(n).
Furthermore, (σ1 ⊔ σ2)(n) = (σ1(n) ⊔ σ2(n)), and (σ1 ⊓ σ2)(n) = (σ1(n) ⊓ σ2(n)).
Closure for sequences In STE, a circuit is simulated over multiple time steps. During
simulation, information is propagated forwards through the circuit and through time, from
each time step t to time step t+ 1. Note that the initial values of registers are ignored.

To model this forwards propagation of information through time, a closure function for

sequences, notation F→ : Seq → Seq, is used. Given a sequence, the closure function for

12 K. CLAESSEN AND J.-W. ROORDA

sequences calculates all information that can be derived from that sequence by forwards
propagation. The closure function for sequences preserves the depth of the given sequence.

Recall that for every register with output n, the input to the register is node n′. There-
fore, the value of node n′ at time t is propagated to node n at time t + 1 in the forwards
closure for sequences.

Given a circuit state s, the function next calculates the information that is propagated
by the registers, and is defined by:

next(s)(n) =

{

s(n′), n ∈ S
X, otherwise

The closure function for sequences F→ is defined in terms of a closure function F . Given a
closure function F for a circuit with a set of outputs of registers S, the closure function for

sequences, written F→ : Seq → Seq, is inductively defined by:

F→(σ)(0) = F (σ(0))
F→(σ)(t+ 1) = F (σ(t+ 1) ⊔ next(F→(σ)(t))) (0 ≤ t ≤ d− 1)

Proposition 2.3. The function F→ inherits the properties of being monotonic, idempotent

and extensive from F .

Proof. The closure function F→ is a composition of the monotonic functions, F and least
upper bound, therefore it is monotonic itself.

We prove the idempotency of F→ by proving F→(F→(σ))(t) = F→(σ)(t) by induction
on t.

Suppose t = 0, then

F→(F→(σ))(0)
= F (F→(σ)(0)) (definition of F→)
= F (F (σ(0)) (definition of F→))
= F (σ(0)) (idempotency of F)
= F→(σ)(0) (definition of F→))

The induction hypothesis is: F→(F→(σ))(t) = F→(σ)(t) for a fixed t. Suppose that the
induction hypothesis holds, then:

F→(F→(σ))(t + 1)
= F (F→(σ)(t+ 1) ⊔ next(F→(F→(σ))(t))) (definition of F→)
= F (F→(σ)(t+ 1) ⊔ next(F→(σ)(t))) (ind. hyp.)

Now we reduce the term F→(σ)(t+ 1) ⊔ next(F→(σ)(t)) further.

F→(σ)(t+ 1) ⊔ next(F→(σ)(t))
= F (σ(t+ 1) ⊔ next(F→(σ)(t))) ⊔ next(F→(σ)(t)) (def. F→)
= F (σ(t+ 1) ⊔ next(F→(σ)(t))) (F extensive, prop. ⊔)

Thus:
F→(F→(σ))(t + 1)

= F (F→(σ)(t + 1) ⊔ next(F→(σ)(t))) (see above)
= F (F (σ(t+ 1) ⊔ next(F→(σ)(t)))) (see above)
= F (σ(t+ 1) ⊔ next(F→(σ)(t))) F idempotent
= F→(σ)(t+ 1) (def. F→)

Finally, F→ being extensive follows directly from the definition of F→ and the properties
of ⊔.

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 13

2.4. Semantics for STE. Before giving our semantics for STE we first introduce the
concept of trajectories:
Trajectories A trajectory is defined as a sequence in which no more information can be
derived by forwards propagation. That is, a sequence τ is a trajectory of a closure function
when it is a fixed-point of the closure function for sequences. So, a sequence τ is a trajectory

of F iff τ = F→(τ).
STE-assertions have the form A =⇒ C. Here A and C are formulas in Trajectory

Evaluation Logic (TEL). The only variables in the logic are time-independent Boolean
variables taken from the set V of symbolic constants. The language is given by the following
grammar:

f ::= n is 0 | n is 1 | f1 and f2 | P → f | Nf

where n is a circuit node and P is a Boolean propositional formula over the set of symbolic
constants W . The operator is is used to make a statement about the Boolean value of a
particular node in the circuit, and is conjunction, → is used to make conditional statements,
and N is the next time operator. Note that symbolic constants only occur in the Boolean
propositional expressions on the left-hand side of an implication. The notation n is P ,
where P is a Boolean symbolic expression over the set of symbolic constants V , is used to
abbreviate the formula: (¬P → n is 0) and (P → n is 1).

The depth of a TEL-formula f is the maximal degree of nestings of N in f . The depth
of an STE-assertion A =⇒ C is the maximum of the depth of A and the depth of C.

The meaning of a TEL formula is defined by a satisfaction relation that relates valua-
tions of the symbolic constants and sequences to TEL formulas. Here, the following nota-
tion is used: The time shifting operator σ1 is defined by σ1(t)(n) = σ(t + 1)(n). Standard
propositional satisfiability is denoted by |=Prop. Satisfaction of a trajectory evaluation logic
formula f of depth d, by a sequence σ of at least depth d, and a valuation φ : W → {0, 1}
(written φ, σ |= f) is defined by

φ, σ |= n is b ≡ σ(0)(n) = b , b ∈ {0, 1}
φ, σ |= f1 and f2 ≡ φ, σ |= f1 and φ, σ |= f2
φ, σ |= P → f ≡ φ |=Prop P implies φ, σ |= f
φ, σ |= Nf ≡ φ, σ1 |= f

Semantics for STE We introduce three semantics for STE. They differ in the way that is
dealt with the over-constrained value T. There are several ways of dealing with this value
in a semantics for STE.

First of all, we can treat T as a global contradiction. That is, a sequence that gives
value T to any node, satisfies any antecedent and consequent. So, in order to check whether
an STE-assertion holds we need only consider three-valued sequences.

Definition 2.4. A circuit with closure function F satisfies a trajectory assertion A =⇒ C
of depth d, written F |= A =⇒ C, iff for every valuation φ : W → {0, 1} of the symbolic
constants, and for every three-valued trajectory τ of F of depth d, it holds that:

φ, τ |= A ⇒ φ, τ |= C.

Secondly, we can treat T as a local contradiction. For example, the requirement that a
node should have value 1 is fulfilled if the node has value T. But other, unrelated require-
ments are unaffected. We introduce the simple semantics for STE using this approach.

14 K. CLAESSEN AND J.-W. ROORDA

Definition 2.5. A circuit with closure function F simply satisfies a trajectory assertion
A =⇒ C of depth d, written F |=Simple A =⇒ C, iff for every valuation φ : W → {0, 1} of
the symbolic constants, and for every trajectory τ of F of depth d, it holds that:

φ, τ |= A ⇒ φ, τ |= C.

The simple semantics turns out to be useful when we compare the proving power of
STE and GSTE in a precise way in Sect. 4. In the simple semantics, it is for example
meaningful to talk about what happens in a sequence before certain nodes get a value T

forced by an antecedent.
Finally, we can treat T as an error. That is, if a node is required to have value T by the

antecedent of an STE-assertion, the STE-assertion is not true. This is the default approach
taken in Intel’s in-house verification toolkit Forte [3]: it raises an antecedent failure if a
node is required to have value T by the antecedent. We call this semantics, the cautious

semantics for STE.

Definition 2.6. A circuit with closure function F cautiously satisfies a trajectory assertion
A =⇒ C of depth d, written F |=Cautious A =⇒ C, if both F |= A =⇒ C and for every
valuation φ of the symbolic constants there exists a three-valued trajectory τ of depth d
such that φ, τ |= A.

Example 2.7. For an AND-gate with inputs in1 and in2, and output out, the assertion

(out is 1) and (in1 is a) and (in2 is b) =⇒ (in1 is 1) and (in2 is 1)

is true in the normal semantics but not in the cautious semantics.
For valuations that give at least one of the symbolic constants a and b the value 0,

there are no three-valued trajectories that meet the antecedent: there are no three-valued
trajectories in which at least one of the inputs of the AND-gate (nodes in1 and in2) has
value 0, while the output (node out) has value 1. Only for the valuation that gives both
the symbolic constants value 1, there exists a three-valued trajectory that satisfies the
antecedent. As this trajectory satisfies the consequent as well, the assertion is true in the
normal semantics.

3. A Faithful Semantics for GSTE

In this section, we present an alternative semantics for GSTE. As stated in the intro-
duction, there are two reasons for doing so. First of all, the existing semantics for GSTE [17]
are not faithful to the proving power of GSTE algorithms. Therefore, they cannot be used
to understand or predict whether certain properties can be proven by GSTE model checkers.
Secondly, a faithful semantics for GSTE can be used as basis for research on new GSTE
model checking algorithms and other GSTE tools.

The semantics presented in this section is built up in the same way as the semantics
for STE in the previous section. First, we introduce the concept of sequence graphs. Like
sequences in STE, sequence graphs represent circuit behaviour over time.

Then, we define a closure function for sequence graphs. Comparable to the closure
function for sequences in STE, the closure function for sequence graphs, given a sequence
graph, calculates all information that can be derived by forwards propagation of information.

After that, we introduce the concept of trajectory graphs. A trajectory graph is a
sequence graph in which no more information can be derived by forwards propagation of

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 15

Figure 4: A simple circuit

information. Thus, a sequence graph is a trajectory graph precisely when it is a fixpoint of
the closure function for sequence graphs.

Then, we formally define the concept of assertion graphs. Examples of assertion graphs
are given in the introduction of this paper. An assertion graph describes a property of the
behaviour of the circuit, possibly ranging over unbounded time.

Finally, by combining all these concepts, we introduce a faithful semantics for GSTE.

3.1. Sequence Graphs. We introduce the concept of sequence graphs to represent circuit
behaviours over time. They are comparable to the concept of sequences in STE. Sequence
graphs, however, are more expressive: each sequence graph represents a (possibly infinite)
number of sequences.

Example 3.1. Consider the circuit given in Figure 4. The following picture represents a
sequence graph of the circuit.

init

11X
((

0XX

66 v
XXX // w 000ff (3.1)

The sequence graph has vertices init, v and w, two edges from init to v, an edge from v
to w, and an edge from w to itself. In the picture, states are represented by vectors of
truth-values, in the order in, out′,out. For instance, in the state represented by 11X, node
in has value 1, node out′ has value 1, and node out has value X.

Each path in the graph starting in initial vertex init, represents a possible behaviour of
the circuit over time. For instance, consider the path starting in init, going through the top
edge between init and v, and then cycles twice through the looping edge at vertex w. This
path represents the sequence

[11X,XXX, 000, 000]

The reader should note the difference between sequence graphs and assertion graphs (see
page 3 for an example of an assertion graph). Sequence graphs represent circuit behaviour
(corresponding to sequences in STE), whereas assertion graphs describe desired properties

of circuit behaviour (corresponding to assertions in STE).

Definition 3.2. A sequence graph is a triple (V,E,Σ), where:

16 K. CLAESSEN AND J.-W. ROORDA

• V is a finite set of vertices containing the initial vertex init.
• E is a finite set of directed edges between vertices. Each edge e has a start vertex start(e)
and an end vertex end(e). Multiple edges between two vertices are allowed.

• Σ : E → State is a function from edges to circuit states.

We say that sequence graphs (V1, E1,Σ1) and (V2, E2,Σ2) are of the same shape iff V1 = V2

and E1 = E2. The set of all sequence graphs is denoted SeqGraph.

Usually, a sequence graph is identified by the function Σ only.
The order ≤ and the operators ⊔ and ⊓ on the domain {0, 1,X,T} are extended in a

point-wise fashion to pairs of sequence graphs of the same shape. That is, the order ≤ on
sequence graphs is defined by Σ1 ≤ Σ2 iff for all edges e and nodes n, Σ1(e)(n) ≤ Σ2(e)(n).
Furthermore, (Σ1 ⊔ Σ2)(e)(n) = (σ1(e)(n) ⊔ σ2(e)(n)) and (Σ1 ⊓ Σ2)(n) = (Σ1(e)(n) ⊓
Σ2(e)(n)).

An edge is initial if it starts in the initial vertex init. We define the set of incoming
edges of an edge e, written in(e) by:

in(e) = { e′ ∈ E | start(e) = end(e′)}

A path of depth d is a list of edges ρ = (e0, e1, . . . , ed) such that for each i, start(ei+1) =
end(ei). An initial path is a path whose first edge is initial.

A finite initial path ρ of depth d in a sequence graph Σ represents the sequence seq(Σ, ρ)
of depth d defined by

seq(Σ, ρ)(t) = Σ(ρ(t)).

A sequence graph Σ represents the set of sequences seq(Σ) defined by

seq(Σ) = {seq(Σ, ρ) | ρ is a finite initial path in Σ}

We will only consider sequence graphs in which each edge and each vertex is reachable from
the initial vertex init. That is, we require that for each edge there exists an initial path
containing the edge, and for each vertex there exists an initial path containing the vertex.
The reason is that states at unreachable edges cannot appear in the sequences represented
by the sequence graph.

Example 3.3. The sequence graph (3.1) represents the following infinite set of sequences:

[11X]
[11X,XXX]
[11X,XXX, 000]
[11X,XXX, 000, 000]
. . .
[0XX]
[0XX,XXX]
[0XX,XXX, 000]
[0XX,XXX, 000, 000]
. . .

The sequence graph

init
111 // v

XXX

�� 000 // w

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 17

represents the following infinite set of sequences:

[111]
[111, 000]
[111,XXX]
[111,XXX, 000]
[111,XXX,XXX]
[111,XXX,XXX, 000]
. . .

3.2. Trajectory Graphs and Closure Functions. We introduce the concept of trajec-
tory graphs to represent sequence graphs in which no more information can be derived by
forwards propagation of information. Trajectory graphs are comparable to the concept of
trajectories in STE.

In order to define trajectory graphs, we define a closure function for sequence graphs,
written F ◦ : SeqGraph → SeqGraph. The idea is that such a closure function, given
a sequence graph, derives all information that can be derived by forwards propagation.
Then, a trajectory graph is defined as a fixpoint of this closure function.

Before doing so, let us first get some more intuition on desired properties for a closure
function for sequence graphs. Recall that a sequence graph represents a (possibly infinite)
collection of sequences. Each initial path ρ in the graph represents a sequence seq(Σ, ρ) as
defined before.

Furthermore, recall, from the introduction, when a circuit satisfies a GSTE assertion
graph, the circuit should also satisfy all STE-assertion corresponding to finite initial paths
in the assertion graphs.

Therefore, given a sequence graph and an initial path ρ in the graph, we expect that the
closure function on sequence graphs F ◦ for the edges in ρ derives at most the information
as the closure function for sequences F→ does for the sequence seq(Σ, ρ). The reason
for requiring this is that if the closure function on sequence graphs were to derive more
information for a particular sequence in the sequence graph than the closure function on
sequences, then we could construct a GSTE assertion graph that is satisfied by the circuit,
but that contains a path corresponding to an untrue STE-assertion.

So, we require the following property:

Property 3.4. A closure function F ◦ for sequence graphs derives no more information

than a closure function on sequences F→, if for all sequence graphs Σ and initial paths ρ,

seq(F ◦(Σ), ρ) ≤ F→(seq(Σ, ρ))

The closure function for sequence graphs is allowed to derive less information for a
particular path than the closure function for sequences does. The reason is that an edge
might be reached via different initial paths. If, for these paths, the closure function for
sequences derives conflicting values for a circuit node at that edge, the above property
forces the circuit node to take on value X. We elaborate on this in Example 3.6 on page 19.

Defining a closure function for sequence graphs is a greater challenge than defining a
closure function for sequences. There are two reasons for this.

First of all, in STE, for a state at time t + 1, there is precisely one “previous” state,
namely the state at time t. So, it is clear how the information from previous points in time

18 K. CLAESSEN AND J.-W. ROORDA

should be propagated. In GSTE, however, a state at an edge can have multiple predecessors.
So, we have to decide how to combine information from incoming edges.

Secondly, in STE-sequences, the state at each time-point depends only on the previous
states, and, thus, never on itself. In GSTE sequence graphs, however, cycles may be present,
therefore a state may, via a cycle, depend on itself.

In the following, we gradually construct a closure function for sequence graphs by
considering closure functions for increasingly more complex sets of sequence graphs. First,
we only consider linear sequence graphs, then we look at acyclic sequence graphs, and
finally we consider general sequence graphs.

Linear sequence graphs. Let us take one step at the time. So, first, assume we have a
sequence graph where each vertex has at most one successor and at most one predecessor,
and no cycles are present. Such a sequence graph has the following form:

init // v1 // v2 // . . . // vd

For edges that have exactly one incoming edge, we define the function pre {pre(e)} = in(e).
(Recall that in(e) is the set of all incoming edges of e.)

For the above sequence graph, a closure function F ◦
line can be defined in the same way

as in STE. For the initial edge, no information is propagated from a previous time-point,
so only closure of the initial state is needed. For each other time-point, information from
the previous state should be propagated.

This yields the closure function F ◦
line:

F ◦
line(Σ)(e) =

{

F (Σ(e)), e is initial
F (Σ(e) ⊔ next(F ◦

line(Σ)(pre(e))), otherwise

The function F ◦
line is well defined as the graphs we consider here are acyclic and edges have

at most one predecessor. Note the similarity with the closure function for sequences F→ on
page 12.

Note that, just like in STE, the initial values of registers are ignored.
F ◦
line calculates precisely the same information as F→. That is, for each initial path ρ

in a sequence graph Σ of the above form,

seq(F ◦
line(Σ), ρ) = F→(seq(Σ, ρ)).

Acyclic sequence graphs. Now, let us consider a more general situation: an acyclic graph.

Example 3.5. Consider the following sequence graph:

init

11X
((

000

66 v
XXX // w

The edge starting at v has two incoming edges. For this edge, the state at the previous
time-point can be any of the states at the predecessor edges, that is 11X and 000. The first
state gives node out′ value 1, so if this state had been the only predecessor state, we would
have concluded that node out should have value 1 at the edge starting at v. However, the
state at the second incoming edge gives node out′ value 0, so according to this state, node
out should have value 1 at the edge starting at v. Therefore, as the two incoming edges do
not agree on the value of node out′, nothing can be derived about the value of node out at
the edge starting in v. So, no more information can be derived from this sequence graph.

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 19

So, only if all the states of the incoming edges agree on a Boolean value of an input to
a register, should this value be propagated to the output of the register. Thus, to combine
the values on the inputs of the register, the greatest lower bound should be used. This yields
the closure function F ◦

nocycle:

F ◦
nocycle(Σ)(e) =

{

F (Σ(e)), e is initial
F (Σ(e) ⊔ ⊓

i∈in(e)
next(F ◦

nocycle(Σ)(i))), otherwise

Example 3.6. Applied to the sequence graph in Example 3.5, the closure function yields
the same sequence graph. In the graph, the top edge between init and v gives value 1 to
out′, the bottom edge gives value 0 to this node, so 0 ⊓ 1 = X is propagated for the value
of node out for the edge starting in v.

In this example, the closure function for sequence graphs derives less information than
the closure function for sequences for the paths in the assertions. The reason is that the
greatest lower-bound operator is used to combine conflicting information from incoming
edges.

Applied to

init

1XX
((

1XX

66 v
XXX // w

the closure function yields

init

11X
((

11X

66 v
X11 // w

As both incoming edges give value 1 to node out′ this value is propagated to node out.

General sequence graphs. Now that we have dealt with sequence graphs where edges can
have multiple predecessors, it is time to tackle the next challenge: cycles. The following
example illustrates that when cycles are present, the equations for F ◦

nocycle no longer define
a function, but, instead, may have more than one solution.

Example 3.7. Consider the sequence graph:

init
1XX // v XXXee (3.2)

Here, the result for the initial edge still can be calculated (yielding 11X), but the result for
the self-loop at vertex v is problematic. The equations state:

F ◦
nocycle(Σ)((v, v)) = F (XXX ⊔ (next(11X) ⊓ next(F ◦

nocycle(Σ)((v, v)))))

This can be simplified to:

F ◦
nocycle(Σ)((v, v)) = F (X11 ⊓ next(F ◦

nocycle(Σ)((v, v)))),

further simplified to:

F ◦
nocycle(Σ)((v, v)) = F (X11 ⊓ XX(F ◦

nocycle(Σ)((v, v))(out
′))),

and finally simplified to:

F ◦
nocycle(Σ)((v, v)) = F (XX(1 ⊓ F ◦

nocycle(Σ)((v, v))(out
′))).

20 K. CLAESSEN AND J.-W. ROORDA

This equation can be rewritten to:

F ◦
nocycle(Σ)((v, v)) = (λs.F (XX(1 ⊓ s((v, v))(out′))) F ◦

nocycle(Σ)((v, v))

This equation has as solutions precisely the fixpoints of

(λs.F (XX(1 ⊓ s(out′)))

The two fixed-points are XXX or X11.
The first fixed-point yields the following sequence graph:

init
11X // v XXXee (3.3)

This contradicts our intuition: if at the first point in time node in has value 1, then we
expect that, from the next time-point on, node out and out′ have value 1 as well. So, only
the second fixed-point gives the expected sequence graph:

init
11X // v X11ee (3.4)

So, in general, when cycles are introduced, the equations for F ◦
nocycle no longer define a

function: the equations may have more than one solution. Let us study this set of solutions
more closely.

To do so, we define, for a given sequence graph Σ, the function F ◦
Σ : SeqGraph →

SeqGraph by:

F ◦
Σ(∆)(e) =

{

F (Σ(e)), e is initial
F (Σ(e) ⊔ ⊓

i∈in(e)
next(∆(i))), otherwise

Using this, the equations for F ◦
nocycle can be rewritten to:

F ◦
nocycle(Σ) = F ◦

Σ(F
◦
nocycle(Σ))

The solutions of this equation are the set of fixpoints of F ◦
Σ. For example, for Σ equal to

sequence graph (3.2) the fixpoints are sequence graphs (3.3) and (3.4).
The following lemma states that each fixpoint satisfies Property 3.4.

Lemma 3.8. For each ∆ that is a fixpoint of F ◦
Σ and for each initial path ρ in the sequence

graph Σ, it holds that:

seq(∆, ρ) ≤ F→(seq(Σ, ρ))

Proof. The proof is by induction on the position in the sequence. The base-case (t = 0)
follows directly from the definitions of seq and F→. The induction hypothesis is:

seq(∆, ρ)(t) ≤ (F→(seq(Σ, ρ)))(t)

If ρ(t+ 1) is not initial, then

seq(∆, ρ)(t + 1) = F (Σ(ρ(t+ 1)) ⊔ ⊓
i∈in(ρ(t+1))

next(∆(i)))

Now:

⊓
i∈in(ρ(t+1))

next(∆(i))

≤ next(∆(ρ(t))) (ρ(t) ∈ in(ρ(t+ 1))
= next(seq(∆, ρ)(t))) (Definition seq)
≤ next(F→(seq(Σ, ρ))(t)) ((Induction hypothesis and monotonicity next)

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 21

Thus,
seq(∆, ρ)(t+ 1) ≤ F (seq(Σ, ρ)(t+ 1) ⊔ next(F→(seq(Σ, ρ))(t)))

So, by the definition of F→,

seq(∆, ρ)(t+ 1) ≤ F→(seq(Σ, ρ))(t+ 1)

The case for ρ(t+ 1) is initial is similar but easier.

The question now is: which fixpoint should the closure function for sequence graphs
choose? As each fixpoint satisfies Property 3.4, it is sound to choose any of them. The
following property states there exists a unique greatest fixpoint.

Proposition 3.9. For each Σ, the function F ◦
Σ has a unique greatest fixpoint.

Proof. It is easy to see that F ◦
Σ is monotonic. The collection of sequence graphs with the

same vertices and edges as Σ and giving values to the same circuit nodes as Σ is finite and
forms, together with the order ≤ on sequence graphs, a complete lattice. So, by Tarski’s
fixpoint theorem [13], F ◦

Σ has a greatest fixpoint.

As each fixpoint satisfies Property 3.4, we can safely choose the greatest one, giving the
most information. Thus, we define the closure function for sequence graphs as follows:

Definition 3.10. Given a closure function F , the closure function for sequence graphs,
written F ◦ : SeqGraph → SeqGraph is defined by:

F ◦(Σ) = gfp∆.F ◦
Σ(∆)

Proposition 3.11. Given a closure function F , F ◦ is a closure function as well.

Proof. Suppose F is a closure function, we have to prove that F ◦ is monotonic, extensive
and idempotent. F ◦ being extensive follows directly from the definition of F ◦.

We now prove that F ◦ is monotonic. Suppose Σ1 ≤ Σ2, ∆1 = F ◦(Σ1) and ∆2 = F ◦(Σ2),
then

∆1 = F ◦
Σ1
(∆1) ≤ F ◦

Σ2
(∆1)

Tarski’s fixpoint theorem [13] states that

gfp∆.F ◦
Σ2
(∆) = ⊔{∆ |∆ ≤ F ◦

Σ2
(∆)}

Thus ∆1 ≤ gfp∆.F ◦
Σ2

(∆) = ∆2.

Finally, we prove that F ◦ is idempotent. Suppose F ◦(Σ) = ∆ and F ◦(∆) = ∆′. We
need to prove that ∆ = ∆′. By monotonicity of F ◦ follows ∆ ≤ ∆′. We prove that ∆′ ≤ ∆
by proving that ∆′ is a fixpoint of F ◦

Σ (then, because ∆ is the greatest fix-point of F ◦
Σ, it

follows that ∆′ ≤ ∆). The case for when e is initial is trivial. Suppose e is not initial.

F ◦
Σ(∆

′)(e)
= F (Σ(e) ⊔ ⊓

i∈in(e)
next(∆′(i))) (Definition F ◦

Σ)

= F (Σ(e) ⊔ ⊓
i∈in(e)

next(∆(i)) ⊔ ⊓
i∈in(e)

next(∆′(i))) (Prop ⊔, ∆ ≤ ∆′)

= F (F (Σ(e) ⊔ ⊓
i∈in(e)

next(∆(i))) ⊔ ⊓
i∈in(e)

next(∆′(i))) (F is closure function)

= F (∆(e) ⊔ ⊓
i∈in(e)

next(∆′(i))) (∆ is fixpoint of F ◦
Σ)

= ∆′(e) (∆′ is fixpoint of F ◦
∆)

22 K. CLAESSEN AND J.-W. ROORDA

3.2.1. Trajectory Graphs. We define a trajectory graph of F as a sequence graph that is a
fixpoint of F ◦.

Definition 3.12. A sequence graph Σ is a trajectory graph of a closure function F , if

F ◦(Σ) = Σ

3.3. Assertion Graphs. In GSTE, circuit properties are given by assertion graphs. An
example of an assertion graph is:

init
in is 1/·

// v ·/out is 1ee (3.5)

In the assertion graph, each edge is labelled with a pair A/C, here A is called the antecedent
and C is called the consequent. Just like in STE, the antecedent represents assumptions
made, and the consequent represents requirements.

Both A and C are, like in STE, formulas in trajectory evaluation logic (TEL). However,
as each edge represents the state of a single time-point, no occurrences of the next-time
operator N are allowed. We call the subset of TEL in which no next-time operators occur
GTEL.

The assertion graph above states that if at some time point, node in has value 1, then
at each later time-point node out has value 1 as well.

Definition 3.13. An assertion graph is a four-tuple G = (V,E, ant , cons). Here, V is a
set of vertices containing a vertex init which is called the initial vertex, E is a set of edges
between the vertices. Finally, ant , cons : E → GTEL are functions from edges to formulas
in GTEL.

Recall that path is called initial iff it starts in the initial vertex init. A finite initial path
ρ of depth d in an assertion graph G represents an STE assertion Ass(G, ρ) defined by

Ass(G, ρ) = (and
0≤i≤d

Niant(ρ(t))) ⇒ (and
0≤i≤d

Nicons(ρ(t)))

An assertion graph represents a (possibly infinite) collection of STE-assertions: for each
finite initial path ρ in the graph, an STE-assertion Ass(G, ρ). The set of STE-assertions in
assertions graph G, written Ass(G), is defined by:

Ass(G) = {Ass(G, ρ) | ρ is a finite initial path in G}

Example 3.14. Assertion graph (3.5) above represents the following infinite set of STE-
assertions:

in is 1 =⇒ N(out is 1)
in is 1 =⇒ N(out is 1) and NN(out is 1)
in is 1 =⇒ N(out is 1) and NN(out is 1) and NNN(out is 1)

. . .

The idea is that when a circuit satisfies a GSTE assertion graph, the circuit graph also
satisfies all STE assertions in the assertion graph. The converse, however, does not hold,
as we will see in the next section.

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 23

3.4. Satisfiability. Satisfaction of a GTEL-formula f , by a circuit state s : State and a
valuation φ : W → {0, 1} of the symbolic constants (written φ, s |= f) is defined by

φ, s |= n is b ≡ σ(0)(n) = b , b ∈ {0, 1}
φ, s |= f1 and f2 ≡ φ, s |= f1 and φ, s |= f2
φ, s |= P → f ≡ φ |=Prop P implies φ, s |= f

Example 3.15. If s(in) = 1 and s(out) = 0, and φ(a) = 1 and φ(b) = 0, then

φ, s |= (in is a) and (out is b) and (in is ¬(a ∧ b))

We say that a sequence graph (V,E,Σ) satisfies a function f : E → GTEL, f ∈
{ant , cons} and a valuation φ : W → {0, 1} of the symbolic constants, written φ,Σ |= f , if
for all edges e:

φ,Σ(e) |= f(e)

Note that the definition of satisfaction above requires that the shape of the sequence graph
be identical to the shape of the assertion graph from which the antecedent or consequent is
taken.

Example 3.16. If G = (V,E, ant , cons) is assertion graph (3.5), Σ1 is sequence graph (3.2),
and Σ2 is sequence graph (3.4), then for any φ: φ,Σ1 |= ant , φ,Σ2 |= ant , φ,Σ1 6|= cons ,
and φ,Σ2 |= cons .

Just like in STE, in GSTE, there are several ways of dealing with the over-constrained
value T. We can treat T just as any other value, leading to the simple semantics of GSTE.
Or, we can treat an over-constrained value as an error, leading to the cautious semantics

of GSTE.
In GSTE, however, we cannot treat T as a contradiction in the same way as we did

in STE. The reason is the following. Consider a semantics in which a sequence graph that
assigns a T to a circuit node at an edge satisfies any antecedent and consequent. In such
a semantics, GSTE assertion graphs containing false STE-assertions may still be true. For
example, given a GSTE assertion graph containing a false STE assertion, we can simply
add a fresh initial edge with an inconsistent antecedent, making the GSTE assertion true.

If, instead, we require a T value at each path in the graph to deem a sequence graph
contradictory, this problem does not occur. However, as the implementation of such a
semantics in a GSTE model checker seems cumbersome, we will not elaborate on such a
semantics further.

In the definition of simple satisfaction for GSTE, the value T is treated just like any
other value, and models a local conflict of demands made by the assertion. In this paper,
we consider this the ‘standard’ semantics for GSTE. As explained in Sect. 4, this turns out
to correspond well with what most GSTE algorithms do in practice.

Definition 3.17. We say that a closure function F simply satisfies an assertion graph
G = (V,E, ant , cons), written F |=Simple G, if for all assignments of symbolic constants
φ : W → {0, 1}, trajectory graphs Σ,

Σ |= ant ⇒ Σ |= cons .

Example 3.18. If G = (V,E, ant , cons) is assertion graph (3.5), and F is the closure
function for the circuit in Figure 4, then F |=Simple G.

This can be explained as follows. It is easy to see that, for any φ, sequence graph
(3.2) is the weakest sequence graph that makes the antecedent of G true. Let us call this

24 K. CLAESSEN AND J.-W. ROORDA

sequence graph Σ. Trajectory graph (3.4) is F ◦(Σ). We claim that F ◦(Σ) is the weakest
trajectory graph satisfying ant . This can be proven easily. Suppose T is a trajectory graph
satisfying ant , then Σ ≤ T , so by monotonicity of F ◦ and because T is a fix-point of F ◦,
F ◦(Σ) ≤ F ◦(T) = T . Thus, as the weakest trajectory graph satisfying ant also satisfies
cons , all trajectory graphs that satisfy ant satisfy cons as well. So, F |=Simple G.

In Section 5, we explain that, in the general case, to check whether a circuit simply
satisfies an assertion graph, we only have to, for each φ, consider the weakest trajectory
graph that satisfies the antecedent ant .

In the definition of cautious satisfaction for GSTE, the value T is treated as an error.

Definition 3.19. We say that a circuit model F , cautiously satisfies an assertion graph
G = (V,E, ant , cons), written F |=Cautious G, if F simply satisfies G and for all assignments
of symbolic constants φ : W → {0, 1}, there exists a trajectory graph Σ of F such that
Σ |= ant .

The following example illustrates the difference between the two definitions.

Example 3.20. The circuit in Figure 4 simply satisfies the following assertion graph. It
does, however, not cautiously satisfy it.

init
in is 1/·

// v out is 0/out is 1ee

4. Comparing with STE

In this section we compare STE with GSTE. The purpose is to make the relationship
between STE and GSTE model checking clear.

The following proposition states that if a closure function satisfies an assertion graph,
it simply satisfies all STE-assertions in the assertion graph as well.

Proposition 4.1. Given an assertion graph G = (V,E, ant , cons) for a circuit with closure

function F :

F |= G ⇒ (for all assertions (A =⇒ C) ∈ Ass(G) : F |=Simple (A =⇒ C))

Proof. Suppose F |= G, ρ is a finite path of depth d in G, A =⇒ C = Ass(G, ρ), φ a
valuation of the symbolic constants, and τ a trajectory of F of depth d such that φ, τ |= A.
We need to prove that φ, τ |= C.

Let Σ be the sequence graph that has the same shape as assertion graph G and is
further defined by:

Σ(e) = ⊓
0≤t≤d,ρ(t)=e

τ(t)

Note that Σ(e)(n) = T for edges not in the path ρ. We now prove that φ,Σ |= ant . As
τ |= A, and A = and

0≤t≤d
Ntant(ρ(t))), for each t holds:

φ, τ(t) |= ant(ρ(t))

Thus for all e ∈ E:
φ, ⊓

t∈N,ρ(t)=e
τ(t) |= ant(e)

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 25

Thus, φ,Σ |= ant . As F ◦ is extensive, φ, F ◦(Σ) |= ant as well. As F ◦(Σ) is a trajectory
graph, and F |= G, it holds that φ, F ◦(Σ) |= cons . By Property 3.4:

seq(F ◦(Σ), ρ) ≤ F→(seq(Σ, ρ))

Thus:
seq(F ◦(Σ), ρ) ≤ F→(τ) = τ

Now, as F ◦(Σ) |= cons , for all e ∈ E:

φ,Σ(e) |= cons(e)

Thus:
φ, ⊓

0≤t≤d,ρ(t)=e
τ(t) |= cons(ρ(t))

As C = and
0≤i≤d

Nicons(ρ(t))), it follows that φ, τ |= C.

The converse

(for all assertions (A =⇒ C) ∈ Ass(G) : F |=Simple (A ⇒ C)) ⇒ F |= G

however, is not true. The reason is that GSTE combines conflicting information between
incoming edges by using the greatest lower bound operator. This is illustrated by the
following example.

Example 4.2. Consider the following circuit:

The induced closure function of this circuit satisfies the STE-assertions p′ is 1 =⇒ N(out is 1)
and p′ is 0 =⇒ N(out is 1). Consider the following sequence graph. In the picture, states
are represented by vectors of truth-values, in the order p′, p, out.

init

1XX
((

0XX

66 v
XXX // w

The sequence graph is a trajectory graph of the closure function. Thus, the closure function
does not satisfy the below GSTE assertion graph.

init

p′ is 1/·
++

p′ is 0/·

33 v
·/out is 1

// w

The following example shows that if a GSTE assertion graph is cautiously satisfied
(that is, no node has to assume value T to satisfy the antecedent), there may still be an
STE-assertion represented by the assertion graph that is not cautiously satisfied.

26 K. CLAESSEN AND J.-W. ROORDA

Example 4.3. Consider a circuit consisting of a single register with input reg′ and output
reg, and the following assertion graph.

init

reg′ is 1/·
++

reg′ is 0/·

33 v
reg is 1/reg is 1

// w

The induced closure function of the circuit satisfies the assertion graph. The reason is that
the two incoming edges at vertex v disagree on the value of node reg′, therefore the value
X is propagated to the outgoing edge of vertex v. The outgoing edge of vertex v requires
reg to have value 1, therefore the consequent at that edge is satisfied. The antecedent does
not force any node take on value T, so the assertion graph is cautiously satisfied.

But, the STE-assertion corresponding to the bottom initial path

(reg′ is 0) and N(reg is 1) =⇒ N(reg is 1)

is not cautiously satisfied as every trajectory that satisfies the antecedent gives node reg

value T at time 1.

5. GSTE model checking

In [16, 15, 18, 17] model checking algorithms for GSTE are described. In this section,
we show the correspondence between the GSTE semantics presented in this paper and
a standard model checking algorithm. We do this by first relating our semantics to a
GSTE algorithm designed by ourselves, which uses a non-standard fixpoint computation.
We proceed by showing that our algorithm computes the same result as the algorithm
presented in [17].

Furthermore, as we are concerned with precisely describing abstraction only, we ignore
extensions of GSTE algorithms such as backwards information flow and fairness constraints.

5.1. Fundamental theorem of GSTE. Comparable to STE, GSTE model checking is
based on the following: Instead of checking that for every trajectory graph, the antecedent
implies the consequent, a unique weakest trajectory graph satisfying the antecedent is cal-
culated. We call this graph the defining trajectory graph.

To check whether a circuit simply satisfies an assertion graph, it suffices to check
whether the defining trajectory graph satisfies the consequent part of the assertion graph.

Before giving the definition of the defining trajectory graph, we first introduce the
concept of the defining sequence graph. The defining sequence graph of an antecedent is the
unique weakest sequence satisfying the antecedent and is defined as follows.

Given an antecedent function ant : E → GTEL, and an assignment of symbolic constants
φ, we define the defining sequence graph of ant and φ, written φ[ant] by:

φ[ant](e) = φ[ant(e)]state

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 27

where
φ[m is b]state(n) =

{

b, if m=n
X, otherwise

φ[f1 and f2]state = φ[f1]state ⊔
φ[f2]state

φ[P → f]state =

{

φ[f]state, if φ |= P
X, otherwise

Proposition 5.1. φ[ant] is the weakest sequence graph satisfying ant and φ.

Proof. Trivial, by considering one edge at the time and induction on the structure of the
antecedent at that edge.

Given an antecedent function ant : E → GTEL, a closure function F , and an assignment
of symbolic constants φ, we define the defining trajectory graph of ant , F and φ, written
φ
F [[ant]] by:

φ
F [[ant]] = F ◦(φ[ant])

Proposition 5.2.
φ
F [[ant]] is the weakest trajectory graph satisfying ant.

Proof. From F ◦ being extensive, it follows directly that φ[ant] ≤ F ◦(φ[ant]), so φ
F [[ant]] |=

ant .
Suppose T is a trajectory graph satisfying ant , then φ[ant] ≤ T . From monotonicity of

F ◦, it follows that F ◦(ant) ≤ F ◦(T). As T is a fixpoint of F ◦ it follows that F ◦(ant) ≤ T .

Theorem 5.3 (Fundamental Theorem of GSTE). For each closure function F , assignment

of symbolic constants φ, and assertion graph G = (V,E, ant , cons),

(φ[cons] ≤ φ
F [[ant]]) ⇔ F |=Simple G

Proof. Directly from Proposition 5.2.

The fundamental theorem of GSTE states that to check whether a circuit with closure
function F satisfies an assertion graph, we only have to check that, for each φ, the defining
trajectory graph of F satisfies the consequent.

5.2. GSTE Algorithm. The GSTE algorithm calculates a symbolic representation of the
defining trajectory graph of an antecedent. Then, it checks whether this symbolic defining
trajectory graph meets the consequent.

We first present a scalar version of the algorithm.

5.2.1. A scalar GSTE-algorithm. In (our version of the) scalar GSTE-algorithm, the defin-
ing trajectory graph of the antecedent is calculated using the constructive version of Tarski’s
fixpoint theorem [13].

Proposition 5.4. For each Σ, the greatest fixpoint of the function F ◦
Σ is equal to limit ∆Σ

∗

of the sequence ∆Σ
k = (F ◦

Σ)
k(T). Here, T represents the sequence graph with the same edges

and vertices as Σ that gives value T to each circuit node at each edge.

28 K. CLAESSEN AND J.-W. ROORDA

Proof. A function is continuous if for all sequence d0, d1, d2, . . . such that di+1 ≤ di holds:

f(⊔
k∈N

dk) = ⊔
k∈N

f(dk)

The constructive version of Tarski’s fixpoint theorem [13] states that the greatest fixpoint
of a monotone and continuous function f on a complete lattice is given by: ⊓

k∈N
fk(T).

We will use this version of Tarski’s fixpoint theorem to prove the proposition. First,
we prove that each monotonic function on a finite domain is also continuous. Suppose f is
continuous on a finite domain, and d0, d1, d2, . . . is a sequence such that di+1 ≤ di, then the
sequence has a fixpoint d∗, thus:

f(⊔
k∈N

dk) = f(d∗)

By monotonicity of f , also the sequence f(d0), f(d1), f(d2), . . . is increasing, so the sequence
has the fix-point f(d∗) as well. So:

⊔
k∈N

f(dk) = f(d∗)

Therefore, F ◦
Σ is both monotone and continuous. Thus:

gfp∆.F ◦
Σ(∆) = ⊓

k∈N
(F ◦

Σ)
k(T) = ⊓

k∈N
∆Σ

k

We prove by induction on k that ∆Σ
k+1 ≤ ∆Σ

k for each k.

The case for k = 0 is trivial. The induction hypothesis is ∆Σ
k+1 ≤ ∆Σ

k . We prove that

∆Σ
k+2 ≤ ∆Σ

k+1. The case for e is initial is trivial. Suppose e is not initial. Then,

∆Σ
k+2(e)

= F ◦
Σ(∆

Σ
k+1)(e) (Definition ∆Σ

k+2)
= F (Σ(e) ⊔ ⊓

i∈in(e)
next(∆Σ

k+1(i))) (Definition F ◦
Σ)

≤ F (Σ(e) ⊔ ⊓
i∈in(e)

next(∆Σ
k (i))) (Induction Hypothesis)

= F ◦
Σ(∆

Σ
k+1)(e) (Defintion F ◦

Σ)
= ∆Σ

k+1(e) (Definition ∆Σ
k+1)

So, the sequence ∆Σ
0 ,∆

Σ
1 ,∆

Σ
2 will eventually reach a fixpoint ∆Σ

∗ .
Thus:

gfp∆.F ◦
Σ(∆) = ∆Σ

∗

Definition 5.5 (Scalar GSTE-algorithm). Given an assertion graph G, and a closure func-
tion F , the scalar GSTE-algorithm calculates for every φ the defining trajectory graph
φ
F [[ant]] by calculating ∆

φ[ant]
∗ and checks whether

φ[cons] ≤ φ
F [[ant]]

If this check fails for any φ the algorithm returns False, otherwise it returns True.

Proposition 5.6. The scalar algorithm is sound and complete with respect to the presented

semantics for GSTE.

Proof. Directly from the fundamental theorem of GSTE and Proposition 5.4.

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 29

Comparing with earlier presentation In [17] the fixpoint is calculated in a slightly
different way. If we adjust the presentation to use the closure function F instead of a
transition relation, the following sequence is defined for a given sequence graph Σ:

ΓΣ
0 (e) =

{

F (Σ(e)), e is an initial edge
T, otherwise

ΓΣ
k+1(e) = ΓΣ

k (e) ⊓ F (Σ(e) ⊔ ⊓
i∈in(e)

next(∆k(i)))

Proposition 5.7. For each Σ, ΓΣ
∗ = ∆Σ

∗ .

Proof. By definition,

∆Σ
0 (e)(n) = T

∆Σ
k+1(e) =

{

F (Σ(e)), e is initial
F (Σ(e) ⊔ ⊓

i∈in(e)
next(∆k(i))), otherwise

We prove by induction on k that for each initial edge e, for each k, ΓΣ
k = F (Σ(e)). The base

case is trivial. Now suppose for each initial edge e, ΓΣ
k (e) = F (Σ(e)), then for an arbitrary

initial edge e:
ΓΣ
k+1(e)

= ΓΣ
k (e) ⊓ F (Σ(e) ⊔ . . .) (Definition ΓΣ

k+1)
= F (Σ(e)) ⊓ F (Σ(e) ⊔ . . .) (Induction Hypothesis)
= F (Σ(e)) (Property ⊔,⊓)

So, for each initial edge and k > 0, ΓΣ
k (e) = ∆Σ

k (e).
We prove by induction on k that for each non-initial edge e, for each k > 0,

ΓΣ
k (e) = ∆Σ

k (e)

In the base-case, k is equal to 1,

ΓΣ
1 (e)

= ΓΣ
0 (e) ⊓ F (Σ(e) ⊔ ⊓

i∈in(e)
next(Γ0(i)) (Definition ΓΣ

k+1)

= T ⊓ F (Σ(e) ⊔ ⊓
i∈in(e)

next(T(i)) (Definition ΓΣ
0)

= F (Σ(e) ⊔ ⊓
i∈in(e)

next(T(i)) (Property ⊓)

= F (Σ(e) ⊔ ⊓
i∈in(e)

next(∆0(i)) (Definition ∆Σ
0)

= ∆Σ
1 (Definition ∆Σ

1)

Now suppose ΓΣ
k (e) = ∆Σ

k (e), then:

ΓΣ
k+1(e)

= ΓΣ
k (e) ⊓ F (Σ(e) ⊔ ⊓

i∈in(e)
next(Γk(i)) (Definition ΓΣ

k+2)

= ∆Σ
k (e) ⊓ F (Σ(e) ⊔ ⊓

i∈in(e)
next(∆k(i)) (Induction Hypothesis)

= ∆Σ
k (e) ⊓∆Σ

k+1(e) (Definition ∆Σ
k+1(e))

= ∆Σ
k+1(e) (Property ⊓,∆Σ

k+1(e) ≤ ∆Σ
k (e))

So, for each non-initial edge and k > 0, ΓΣ
k (e) = ∆Σ

k (e). So, for k > 0, ΓΣ
k = ∆Σ

k . Thus,

ΓΣ
∗ = ∆Σ

∗ .

30 K. CLAESSEN AND J.-W. ROORDA

5.2.2. A symbolic GSTE-algorithm. In actual implementations of GSTE, the above algo-
rithm is implemented symbolically. That is, instead of calculating the defining trajectory
graph for a specific valuation φ, it calculates, using BDDs, a symbolic defining trajectory
graph in terms of the symbolic constants in φ.

Then, a BDD is constructed that specifies under which conditions on the symbolic
constants the symbolic defining trajectory graph satisfies the consequent. If this BDD is
equal to the logical constant True, the property is proven. Otherwise, the BDD indicates for
which valuations of the symbolic constants the antecedent does not imply the consequent.

6. Future Work

Extension to the semantics for GSTE. There exist several extensions of the GSTE algorithm
that considerably improve the algorithm’s proving power. Examples of such extensions are
precise nodes [18, 15] and knots [7]. We would like to give semantic characterisations of
these extensions.

In [17, 16, 18], a backwards algorithm for GSTE is described. Using this algorithm
properties can be proven that depend on a backwards (that is, from outputs to inputs,
and from time t + 1 to t) information flow. In [17, 18] a semantics for this form of GSTE
is given. The semantics is however not faithful as the algorithm is incomplete w.r.t. the
semantics [17]. A faithful semantics for this form of GSTE could be a topic of future work.

SAT-based GSTE model checking. The model checking algorithms for GSTE described in
the current literature are based on BDDs. In previous work we described how a faithful
semantics for STE [9] enabled us to construct a new SAT-based model checking algorithm
for STE [8]. In the same way, our faithful semantics for GSTE could be used to construct
a SAT-based model checking algorithm for GSTE. The aim would be to create a tool very
much like satGSTE [14] that actually respects the GSTE semantics, so that it can possibly
find all counter examples. In this way, the tool could be used seamlessly in conjunction
with a GSTE model checker.

Monitor circuits for GSTE assertion graphs. In [4, 7] methods for automatic construction
of monitor circuits for GSTE assertion graphs are described.

The papers explain how monitor circuits can be used to quickly debug and refine GSTE
specifications before trying to use, more labour intensive, GSTE model checking.

The monitor circuits implement the ∀-semantics for GSTE. However, as explained in
this paper, the GSTE model checking algorithms are not faithful to this semantics. There-
fore, monitor circuits cannot be used to debug and refine assertion graphs that are true in
the ∀-semantics, but yield a spurious counter-example when trying to prove them with a
GSTE model checker. Future work could consist of constructing monitor circuits that can
be used to debug and refine assertion graphs in this class. Here, the faithful semantics for
GSTE can be used as a starting point.

A FAITHFUL SEMANTICS FOR GENERALISED SYMBOLIC TRAJECTORY EVALUATION 31

Reasoning about GSTE assertion graphs. Using the construction of monitor circuits for
GSTE assertion graphs, [5] describes two algorithms that can be used in compositional
verification using GSTE. The first algorithm decides whether one assertion graph implies
another. The second algorithm can be used to model check an assertion graph under the
assumption that another assertion graph is true.

The algorithms, and the corresponding soundness and completeness proofs, are based
on the ∀-semantics. Therefore, as the algorithms are based on GSTE model checking, the
methods are incomplete when abstraction is used. A possible direction for future work is
explaining how the GSTE abstraction affects the completeness of the algorithms.

7. Conclusion

The semantics for GSTE given in [17, 18] are not faithful to the proving power of
GSTE model checking algorithms, that is, the algorithms are incomplete with respect to
the semantics. The reason is that the the semantics do not capture the abstraction used in
GSTE precisely.

The abstraction used in GSTE makes it hard to understand why a specific property
can, or cannot, be proven by GSTE. The semantics mentioned above cannot help the user
in doing so. So, in the current situation, users of GSTE often have to revert to the GSTE
algorithm to understand why a property can or cannot be proven by GSTE.

In this paper, we have presented a semantics for GSTE that is faithful to the proving
power of the main GSTE model checking algorithm. We believe that this semantics is an
important contribution to the research on GSTE for at least two reasons.

First of all, a faithful semantics makes GSTE more accessible to novice users: a faithful
semantics enables users to understand the abstraction used in GSTE, without having to
understand the details of the model checking algorithm.

Furthermore, a faithful semantics for GSTE can be used as basis for research on new
GSTE model checking algorithms and other GSTE tools. To illustrate this, in previous
work [8], we described a new SAT-based model checking algorithm for STE and proven
that it is sound and complete w.r.t. to our faithful semantics for STE presented in [9].
Without a faithful semantics for STE, we would have been forced to prove the correctness
of our algorithm by relating it to other model checking algorithms for STE. This is clearly
a more involved and less elegant approach. In fact, we believe that without constructing a
faithful semantics for STE first, we would not have obtained the level of understanding of
STE needed to develop the new SAT-based model checking algorithm.

In the same way, we expect that the faithful semantics for GSTE presented in this
paper will open the door for new research on GSTE model checking algorithms and other
GSTE tools.

Acknowledgements. Thanks to Tom Melham, Mary Sheeran, Rachel Tzoref, and the anony-
mous referees for commenting on earlier drafts of this paper.

References

[1] Mark Aagaard, Robert B. Jones, Thomas F. Melham, John W. O’Leary, and Carl-Johan H. Seger.
A methodology for large-scale hardware verification. In Warren A. Hunt Jr. and Steven D. Johnson,
editors, FMCAD, volume 1954 of Lecture Notes in Computer Science, pages 263–282. Springer, 2000.

32 K. CLAESSEN AND J.-W. ROORDA

[2] Mark Aagaard and John W. O’Leary, editors. Formal Methods in Computer-Aided Design, 4th Interna-
tional Conference, FMCAD 2002, Portland, OR, USA, November 6-8, 2002, Proceedings, volume 2517
of Lecture Notes in Computer Science. Springer, 2002.

[3] FORTE.
http://www.intel.com/software/products/opensource/tools1/verification.

[4] Alan J. Hu, Jeremy Casas, and Jin Yang. Efficient generation of monitor circuits for GSTE asser-
tion graphs. In International Conference on Computer-Aided Design (ICCAD), pages 154–160. IEEE
Computer Society / ACM, 2003.

[5] Alan J. Hu, Jeremy Casas, and Jin Yang. Reasoning about GSTE assertion graphs. In Daniel Geist and
Enrico Tronci, editors, Correct Hardware Design and Verification Methods (CHARME), volume 2860
of Lecture Notes in Computer Science, pages 170–184. Springer, 2003.

[6] Thomas F. Melham and Robert B. Jones. Abstraction by symbolic indexing transformations. In Aagaard
and O’Leary [2], pages 1–18.

[7] Kelvin Ng, Alan J. Hu, and Jin Yang. Generating monitor circuits for simulation-friendly GSTE asser-
tion graphs. In International Conference on Computer Design (ICCD), pages 409–416. IEEE Computer
Society, 2004.

[8] Jan-Willem Roorda and Koen Claessen. A new SAT-based algorithm for symbolic trajectory evalua-
tion. In Dominique Borrione and Wolfgang J. Paul, editors, Correct Hardware Design and Verification
Methods (CHARME), volume 3725 of Lecture Notes in Computer Science, pages 238–253. Springer,
2005.

[9] Jan-Willem Roorda and Koen Claessen. Explaining symbolic trajectory evaluation by giving it a faithful
semantics. In Dima Grigoriev, John Harrison, and Edward A. Hirsch, editors, International Computer
Science Symposium in Russia (CSR), volume 3967 of Lecture Notes in Computer Science, pages 555–566.
Springer, 2006.

[10] Thomas Schubert. High level formal verification of next-generation microprocessors. In Design Automa-
tion Conference (DAC), pages 1–6. ACM, 2003.

[11] Roberto Sebastiani, Eli Singerman, Stefano Tonetta, and Moshe Y. Vardi. GSTE is partitioned model
checking. In Rajeev Alur and Doron Peled, editors, Computer-Aided Verification (CAV), volume 3114
of Lecture Notes in Computer Science, pages 229–241. Springer, 2004.

[12] Carl-Johan H. Seger and Randal E. Bryant. Formal verification by symbolic evaluation of partially-
ordered trajectories. Formal Methods in System Design, 6(2), 1995.

[13] A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific J. of Mathematics, 5:285–
309, 1955.

[14] Jin Yang, Rami Gil, and Eli Singerman. satGSTE: Combining the abstraction of GSTE with the capacity
of a SAT solver. In Designing Correct Circuits (DCC), A satellite event of the ETAPS 2004 group of
conferences, 2004.

[15] Jin Yang and Amit Goel. GSTE through a case study. In Lawrence T. Pileggi and Andreas Kuehlmann,
editors, International Conference on Computer-Aided Design (ICCAD), pages 534–541. ACM, 2002.

[16] Jin Yang and C.-J. H. Seger. Introduction to generalized symbolic trajectory evaluation. In International
Conference on Computer Design (ICCD), pages 360–367, Washington - Brussels - Tokyo, 2001. IEEE.

[17] Jin Yang and Carl Seger. Generalized symbolic trajectory evaluation. Unpublished draft, 2001.
[18] Jin Yang and Carl-Johan H. Seger. Generalized symbolic trajectory evaluation - abstraction in action.

In Aagaard and O’Leary [2], pages 70–87.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://reativeommons.org/lienses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	1.1. Symbolic Trajectory Evaluation
	1.2. Generalised Symbolic Trajectory Evaluation
	1.3. Earlier work on semantics for GSTE
	1.4. GSTE model checking
	1.5. The problem
	1.6. Our contribution
	1.7. Other related work
	1.8. Structure of this paper

	2. STE Preliminaries
	2.1. Values and Circuits States
	2.2. Closure functions
	2.3. A closure function for sequences
	2.4. Semantics for STE

	3. A Faithful Semantics for GSTE
	3.1. Sequence Graphs
	3.2. Trajectory Graphs and Closure Functions
	3.3. Assertion Graphs
	3.4. Satisfiability

	4. Comparing with STE
	5. GSTE model checking
	5.1. Fundamental theorem of GSTE
	5.2. GSTE Algorithm

	6. Future Work
	7. Conclusion
	References

