
Logical Methods in Computer Science
Vol. 10(4:17)2014, pp. 1–45
www.lmcs-online.org

Submitted Apr. 5, 2013
Published Dec. 26, 2014

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY ∗

FRANÇOIS LAROUSSINIE a AND NICOLAS MARKEY b

a LIAFA – Université Paris Diderot & CNRS
e-mail address: francoisl@liafa.univ-paris-diderot.fr

b LSV – ENS Cachan & CNRS
e-mail address: markey@lsv.ens-cachan.fr

Abstract. While it was defined long ago, the extension of CTL with quantification over
atomic propositions has never been studied extensively. Considering two different seman-
tics (depending whether propositional quantification refers to the Kripke structure or to its
unwinding tree), we study its expressiveness (showing in particular that QCTL coincides
with Monadic Second-Order Logic for both semantics) and characterise the complexity of
its model-checking and satisfiability problems, depending on the number of nested proposi-
tional quantifiers (showing that the structure semantics populates the polynomial hierarchy
while the tree semantics populates the exponential hierarchy).

1. Introduction

Temporal logics. Temporal logics extend propositional logics with modalities for spec-
ifying constraints on the order of events in time. Since [Pnu77, CE82, QS82], they have
received much attention from the computer-aided-verification community, since they fit
particularly well for expressing and automatically verifying (model checking) properties of
reactive systems.

Two important families of temporal logics have been considered: linear-time tem-
poral logics (e.g. LTL [Pnu77]) can be used to express properties of one single execu-
tion of the system under study, while branching-time temporal logics (e.g. CTL [CE82,
QS82] and CTL∗ [EH86]) consider the execution tree. Since the 90s, many extensions of
these logics have been introduced, of which alternating-time temporal logics (such as ATL,
ATL∗ [AHK97]) extend CTL towards the study of open systems (involving several agents).

2012 ACM CCS: [Theory of computation]: Formal languages and automata theory; Logic—Modal
and temporal logics; [Software and its engineering]: Software organization and properties—Software
functional properties—Formal methods—Software verification; Model checking.

Key words and phrases: Temporal logics; model checking; expressiveness; tree automata.
∗ This is a long version of paper [DLM12], which appeared in CONCUR’12.
b This work benefited from the support of the ERC Starting Grant EQualIS and of the EU-FP7 project

Cassting.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(4:17)2014
c© F. Laroussinie and N. Markey
CC© Creative Commons

http://creativecommons.org/about/licenses

2 F. LAROUSSINIE AND N. MARKEY

In this landscape of temporal logics, both CTL and ATL enjoy the nice property of
having polynomial-time model-checking algorithms. In return for this, both logics have
quite limited expressiveness. Several extensions have been defined in order to increase this
limited expressive power.

Our contributions. We are interested in the present paper in the extension of CTL
(and CTL∗) with propositional quantification [Sis83, ES84]. In that setting, propositional
quantification can take different meaning, depending whether the extra propositions label
the Kripke structure under study (structure semantics) or its execution tree (tree semantics).
While these extensions of CTL with propositional quantification have been in the air for
thirty years, they have not been extensively studied yet: some complexity results have been
published for existential quantification [Kup95], for the two-alternation fragment [KMTV00]
and for the full extension [Fre01]; but expressiveness issues, as well as a complete study of
model checking and satisfiability for the whole hierarchy, have been mostly overlooked.

We answer these questions in the present paper: in terms of expressiveness, we prove
that QCTL and QCTL∗ are equally expressive, and coincide with Monadic Second-Order
Logic1. As regards satisfiability and model-checking, we characterise the complexity of
these problems depending on the quantifier alternation: under the structure semantics,
the model-checking problem populates the polynomial-time hierarchy (and satisfiability is
undecidable); for the tree semantics, the model-checking problem populates the exponential-
time hierarchy (and so does the satisfiability problem). Finally, we also characterise the
model- and formula-complexities of our problems, when one of the inputs to the model-
checking problem is fixed. All these results are summarized in Tables 1 and 2, which are
displayed in the conclusion of this paper.

Applications to alternating-time temporal logics. Our initial motivation for this
work comes from alternating-time temporal logics. Indeed ATL also has several flaws in
terms of expressiveness: namely, it can only focus on (some) zero-sum properties, i.e., on
purely antagonist games, in which two coalitions fight with opposite objectives. In many
situations, games are not purely antagonist, but involve several independent systems, each
having its own objective. Recently, several extensions of ATL have been defined to express
properties of such non-zero-sum games. Among those, our logic ATLsc [DLM10] extends ATL
with strategy contexts, which provides a way of expressing interactions between strategies.
Other similar approaches include Strategy Logics (SL) [CHP07, MMV10], (Basic) Strategy-
Interaction Logic ((B)SIL) [WHY11], or Temporal Cooperation Logic (TCL) [HSW13].

Designing decision procedures for these extensions is much more difficult than for the
standard ATL fragment. Interestingly, QCTL appears to be a convenient, uniform inter-
mediary logic in order to obtain algorithms for ATLsc, SL and related formalisms. Indeed,
strategies of the players can be represented2 by a finite set of atomic propositions labelling

1This claim assumes a special notion of equivalence between formulas, since MSO is evaluated globally on
a structure while QCTL formulas are evaluated at the initial state. This will be made clear in the paper.

2Notice that the link between strategy quantification and propositional quantification already emerges in
Qdµ [Pin07], which extends the decision µ-calculus with some flavour of propositional quantification. Also,
the main motivation of [KMTV00] for studying the two-alternation fragment of QCTL is a hardness result
for the control and synthesis of open systems.

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 3

the execution tree of the game structure under study. Strategy quantification is then nat-
urally expressed as propositional quantification; since the resulting labelling is persistent,
it can encode interactions between strategies. Notice that while the tree semantics of QCTL
encodes plain strategies, the structure semantics also finds a meaning in that translation,
as it may correspond to memoryless strategies [DLM12].

Using such a translation, any instance of the model-checking problem for ATLsc (or SL)
can be translated into an instance of the model-checking problem for QCTL. The algo-
rithms proposed in this paper then yield algorithms for the former problems, which can be
proved to have optimal complexity. Unfortunately, the satisfiability problem cannot follow
the same reduction scheme: indeed, when translating an ATLsc formula into a QCTL one,
we need to know the set of agents and their allowed moves. It turns out that satisfiability
is undecidable for ATLsc and SL (while we prove it decidable for QCTL in the tree seman-
tics). Interestingly, when restricting satisfiability checking to turn-based game structures,
an alternative translation into QCTL can be used to obtain decidability of the problem.

Because they involve a lot of new definitions and technical proofs, we do not develop
these questions here, and refer the interested reader to [LM14] for full details.

Related works. Extending modal logics with quantification dates back to early works of
Kripke [Kri59]) and Fine [Fin70]. We refer to [FM98, AP06, tC06] for more details.

(Propositional) quantification was first used in temporal logics by Sistla and others,
both for linear-time [Sis83, SVW87] and branching-time temporal logics [ES84], mainly
with the aim of augmenting the expressiveness of the classical logics. In the linear-time
setting, the model-checking problem for the k-alternation fragment was shown k-EXPSPACE-
complete [Sis83, SVW87]. The stutter-invariant fragment of QLTL, with a restricted notion
of propositional quantification, was developed in [Ete99]. Proof systems for QLTL were
developed in the linear-time setting, both with and without past-time modalities [KP02,
FR03].

As regards branching time, the extension of CTL∗ with external existential quantifica-
tion (hereafter called EQ1CTL∗) was proved as expressive as parity tree automata over binary
tree [ES84]. The existential logics EQ1CTL and EQ1CTL∗ were further studied in [Kup95],
both in the structure- and in the tree semantics; model checking EQ1CTL and EQ1CTL∗ are
shown NP- and PSPACE-complete respectively (for the structure semantics) and EXPTIME-
and 2-EXPTIME-complete respectively (for the tree semantics). The extensions of those
logics with past-time modalities were studied in [KP95]. The extensions with arbitrary
quantification were studied in [Kai97, Fre01] (in slightly different settings): satisfiability
of QCTL∗ was proven undecidable in the structure semantics, and decidable in the tree
semantics [Fre01].

Several alternative semantics were proposed for quantification: the amorphous seman-
tics defined in [Fre01] allows to take a bisimilar structure before labelling it. In [RP03], quan-
tification is expressed as taking a synchronized product with a labelling automaton. Finally,
quantification over states (rather than over atomic propositions) is studied in [PBD+02,
CDC04], where model checking is proved PSPACE-complete (both for branching-time and
for linear-time).

Finally, quantified temporal logics have found applications in model checking and con-
trol: AQ1LTL and AQ1CTL∗ have been used to reason about vacuity detection (checking
whether a formula is satisfied “too easily”) [AFF+03, GC04, GC12]. The one-alternation

4 F. LAROUSSINIE AND N. MARKEY

fragments (which we call EQ2CTL and EQ2CTL∗ hereafter) have been used in [KMTV00] to
prove hardness results for the control problem with CTL and CTL∗ objectives. The linear-
time logic EQLTL was used as the specification language for supervisory control of Petri
nets in [Mar10]. To conclude, propositional quantification was considered in the setting of
timed temporal logics in [HRS98].

2. Preliminaries

2.1. Kripke structures and trees. We fix once and for all a set AP of atomic propositions.

Definition 2.1. A Kripke structure S is a 3-tuple 〈Q,R, `〉 where Q is a countable set of
states, R ⊆ Q2 is a total3 relation and ` : Q → 2AP is a labelling function. The size of S,
denoted with |S|, is the size of Q (which can be infinite).

Let S be a Kripke structure 〈Q,R, `〉. In the following, we always assume that the set
of states S is equipped with a total linear order �. We use SuccS(q) to denote the ordered
list 〈q′0, . . . , q′k〉 of successors of q in S (i.e., such that (q, q′i) ∈ R for any 0 ≤ i ≤ k, and such
that q′i � q′j if, and only if, i ≤ j). We write dS(q) for the degree of q ∈ Q, i.e., the size

of SuccS(q). Finally SuccS(q, i) denotes the i-th successor of q in S for 0 ≤ i < dS(q), and
this notation is extended to finite words over N∗ as follows: SuccS(q, ε) = q and SuccS(q, w ·
i) = SuccS(SuccS(q, w), i) when q′ = SuccS(q, w) is well defined and 0 ≤ i < dS(q′).

An execution (or path) in S is an infinite sequence ρ = (qi)i∈N s.t. (qi, qi+1) ∈ R for

all i ∈ N. We use Path(q) to denote the set of executions issued from q and Pathf(q) for
the set of all finite prefixes of executions of Path(q). Given ρ ∈ Path(q) and i ∈ N, we write
ρi for the path (qi+k)k∈N of Path(qi) (the i-th suffix of ρ), ρi for the finite prefix (qk)k≤i
(the i-th prefix), and ρ(i) for the i-th state qi. Given a path ρ = (qi)i∈N, we write `(ρ) for
the sequence (`(qi))i∈N, and Inf(l(ρ)) for the set of letters in Σ that appear infinitely many
times along `(ρ).

Definition 2.2. Let Σ be a finite set. A Σ-labelled tree is a pair T = 〈T, l〉, where

• T ⊆ N∗ is a non-empty set of finite words on N satisfying the following constraints:
for any non-empty word x = y · c in T with y ∈ N∗ and c ∈ N, the word y is in T and
every word y · c′ with 0 ≤ c′ < c is also in T ;
• l : T → Σ is a labelling function.

Let T = 〈T, l〉 be a Σ-labelled tree. The elements of T are the nodes of T and the
empty word ε is the root of T . Such a tree can be seen as a Kripke structure, with T as set
of states, and transitions from any node x ∈ T to any node of the form x · c ∈ T , for c ∈ N.
The size of T , and the notions of successors of a node x (written SuccT (x)), of degree of a
node x (written dT (x)), of path issued from the root (whose set is written PathT), follow
from this correspondence.

A tree has bounded branching if the degree of all its nodes is bounded. Given a finite set
of integers D ⊆ N, a 〈Σ,D〉-tree is a Σ-labelled tree 〈T, l〉 whose nodes have their degrees
in D (i.e., for any x ∈ T , it holds dT (x) ∈ D). Given a node x ∈ T , we denote with Tx the
(sub)tree 〈Tx, lx〉 rooted at x, defined by Tx = {y ∈ T | ∃z ∈ T s.t. z = x · y}.

3I.e., for all q ∈ Q, there exists q′ ∈ Q s.t. (q, q′) ∈ R.

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 5

Definition 2.3. Given a finite-state Kripke structure S = 〈Q,R, `〉 and a state q ∈ Q, the
unwinding of S from q is the (bounded-degree) 2AP-labelled tree TS(q) = 〈TS,q, `T 〉 defined
as follows:

(1) TS,q contains exactly all nodes x ∈ N∗ such that SuccS(q, x) is well-defined
(2) `T (x) = `(SuccS(q, x)).

If D =
⋃
q∈Q{dS(q)}, then TS(q) clearly is a 〈2AP,D〉-tree. Note also that any 2AP-

labelled tree can be seen as an infinite-state Kripke structure.

For a function ` : Q → 2AP and P ⊆ AP, we write ` ∩ P for the function defined as
(` ∩ P)(q) = `(q) ∩ P for all q ∈ Q.

Definition 2.4. For P ⊆ AP, two (possibly infinite-state) Kripke structures S = 〈Q,R, `〉
and S ′ = 〈Q′, R′, `′〉 are P -equivalent (denoted by S ≡P S ′) if Q = Q′, R = R′ and
` ∩ P = `′ ∩ P .

S0

r
q0

q1

S1

p, r
q0

q1

S2

r
q0

p
q1

S3

p, r
q0

p
q1

Fig. 1: Four {r}-equivalent Kripke structures

2.2. CTL and quantified extensions.

Definition 2.5. The syntax of QCTL∗ is defined by the following grammar:

ϕstate, ψstate ::= p | ¬ϕstate | ϕstate ∨ψstate | Eϕpath | ∃p. ϕstate

ϕpath, ψpath ::=ϕstate | ¬ϕpath | ϕpath ∨ψpath | Xϕpath | ϕpath Uψpath

where p ranges over AP. Formulas defined as ϕstate are called state-formulas, while ϕpath

defines path-formulas. Only state formulas are QCTL∗ formulas.

∀z

∨

¬

z

E

X

z

∀z

∨

¬

z

E

X

Fig. 2: Two representations of ∀z.(¬ z ∨ EX z)

Naturally, any QCTL∗ formula ϕ can be represented as a finite tree Tϕ, in which each
node represents a subformula (see Fig. 2). Alternatively, formula ϕ can be seen as a finite

6 F. LAROUSSINIE AND N. MARKEY

acyclic Kripke structure Sϕ whose unwinding is Tϕ. The size of ϕ is the size of Tϕ, and
its DAG-size (for directed-acyclic-graph size) is the size of the smallest Kripke structure Sϕ
whose unwinding is Tϕ. Obviously, when sharing large subformulas, the size of a formula
can be significantly larger than its DAG-size.

We use standard abbreviations as: > = p∨¬ p, ⊥ = ¬>, Fϕ = >Uϕ, Gϕ = ¬F ¬ϕ,
Aϕ = ¬ E¬ϕ, and ∀p. ϕ = ¬∃p. ¬ϕ. The logic QCTL is a fragment of QCTL∗ where
temporal modalities are under the immediate scope of path quantifiers:

Definition 2.6. The syntax of QCTL is defined by the following grammar:

ϕstate, ψstate ::= p | ¬ϕstate | ϕstate ∨ψstate | ∃p. ϕstate |
Eϕstate Uψstate | Aϕstate Uψstate | EXϕstate | AXϕstate.

Standard definition of CTL∗ and CTL are obtained by removing the use of quantifica-
tion over atomic proposition (∃p.ϕ) in the formulas. In the following, ∃ and ∀ are called
(proposition) quantifiers, while E and A are path quantifiers.

Given QCTL∗ (state) formulas ϕ and (ψi)i and atomic propositions (pi)i appearing free
in ϕ (i.e., not appearing as quantified propositions), we write ϕ[(pi → ψi)i] (or ϕ[(ψi)i]
when (pi)i are understood from the context) for the formula obtained from ϕ by replacing
each occurrence of pi with ψi. Given two sublogics L1 and L2 of QCTL∗, we write L1[L2] =
{ϕ[(ψi)i] | ϕ ∈ L1, (ψi)i ∈ L2}.

2.3. Structure- and tree semantics. Formulas of the form ∃p.ϕ can be interpreted in
different manners (see [Kup95, Fre01, RP03]). Here we consider two semantics: the structure
semantics and the tree semantics.

2.3.1. Structure semantics. Given a QCTL∗ state formula ϕ, a (possibly infinite-state) Kripke
structure S = 〈Q,R, `〉 and a state q ∈ Q, we write S, q |=s ϕ to denote that ϕ holds at q
under the structure semantics. We extend the notation to S, ρ |=s ϕ when ϕ is a path
formula and ρ is a path in S. This is defined as follows:

S, q |=s p iff p ∈ `(q)
S, q |=s ¬ϕstate iff S, q 6|=s ϕstate

S, q |=s ϕstate ∨ψstate iff S, q |=s ϕstate or S, q |=s ψstate

S, q |=s Eϕpath iff ∃ρ ∈ Path(q) s.t. S, ρ |=s ϕpath

S, q |=s ∃p.ϕstate iff ∃S ′ ≡AP\{p} S s.t. S ′, q |=s ϕstate

S, ρ |=s ϕstate iff S, ρ(0) |=s ϕstate

S, ρ |=s ¬ϕpath iff S, ρ 6|=s ϕpath

S, ρ |=s ϕpath ∨ψpath iff S, ρ |=s ϕpath or S, ρ |=s ψpath

S, ρ |=s Xϕpath iff S, ρ1 |=s ϕpath

S, ρ |=s ϕpath Uψpath iff ∃i ≥ 0. S, ρi |=s ψpath and ∀0 ≤ j < i. S, ρj |=s ϕpath

Example 2.7. As an example, consider the formula selfloop = ∀z.(z⇒ EX z). If a state q
in S satisfies this formula, then the particular labelling in which only q is labelled with z

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 7

implies that q has to carry a self-loop. Conversely, any state that carries a self-loop satisfies
this formula (for the structure semantics).

Let ϕ be a QCTL∗ formula, and consider now the formula

uniq(ϕ) = EF (ϕ)∧∀z.
(

EF (ϕ∧ z)⇒ AG (ϕ⇒ z)
)
.

In order to satisfy such a formula, at least one ϕ-state must be reachable. Assume now that
two different such states q and q′ are reachable: then for the particular labelling where only q
is labelled with z, the second part of the formula fails to hold. Hence uniq(ϕ) holds in a
state (under the structure semantics) if, and only if, exactly one reachable state satisfies ϕ.
Similarly, we can count the number of successors satisfying a given formula:

EX1 ϕ = EXϕ∧∀z.
(

EX (ϕ∧ z)⇒ AX (ϕ⇒ z)
)

EX≥k ϕ = ∃p1, ..., pk.

[
AX

(∧
i 6=j

¬ pi ∨¬ pj
)
∧
∧

1≤i≤k
EX (pi ∧ϕ)

]
As another example, let us mention that propositional quantification can be used to

flatten “until” formulas:

Eϕ1 Uϕ2 ≡ ∃z1, z2. Ez1 U z2 ∧ AG [z1⇒ϕ1 ∧ z2⇒ϕ2] (2.1)

Actually, “until” can be expressed using only “next” and “always”. This is easily achieved
in QCTL∗, where we would write e.g.

Eϕ1 Uϕ2 ≡ ∃z1, z2.

[
E
([
z2 ∨(z1 ∧F z2)

]
∧

G
[
z1⇒X (z1 ∨ z2)

])
∧ AG (

[
z1⇒ϕ1 ∧ z2⇒ϕ2

]]
.

The expression in QCTL is more involved. We rely on a more general translation
through the µ-calculus [Koz83]: in this formalism, we can express the “until” modality as a
fixpoint:

EαUβ ≡ µT. (β ∨ EX (α∧T)).

Now, a least-fixpoint formula µT. ϕ(T) (where we assume that ϕ(T1) ⊆ ϕ(T2) whenever
T1 ⊆ T2) can be expressed4 in QCTL as follows:

µT. ϕ(T) ≡ ∃t.
[

AG (t⇔ ϕ(t))∧∀u.
[
AG (u⇔ ϕ(u))⇒ AG (t⇒u)

]]
The first part of the formula (before quantifying over u) states that the labelling with t is a
fixpoint. The second part enforces that it precisely corresponds to the least one.

4We have to be careful here with the exact notion of equivalence. We keep it imprecise in this example,
and develop the technical details in Section 3.2, where we prove that QCTL without “until” can actually
express the whole Monadic Second-Order Logic.

8 F. LAROUSSINIE AND N. MARKEY

2.3.2. Tree semantics. The tree-semantics is obtained from the structure semantics by see-
ing the execution tree as an infinite-state Kripke structure. We write S, q |=t ϕ to denote
that formula ϕ holds at q under the tree semantics. Formally, seeing TS(q) as an infinite-
state Kripke structure, we define:

S, q |=t ϕ iff TS(q), q |=s ϕ

Clearly enough, selfloop is always false under the tree semantics, while uniq(ϕ) holds if, and
only if, ϕ holds at only one node of the execution tree.

Example 2.8. Formula acyclic = AG
(
∃z. (z ∧ uniq(z)∧ AX AG ¬ z)

)
expresses that all

infinite paths (starting from the current state) are acyclic, which for finite Kripke structures
is always false under the structure semantics and always true under the tree semantics.

2.3.3. Equivalences between QCTL∗ formulas. We consider two kinds of equivalences de-
pending on the semantics we use. Two state formulas ϕ and ψ are said s-equivalent (resp.
t-equivalent), written ϕ ≡s ψ (resp. written ϕ ≡t ψ) if for any finite-state Kripke struc-
ture S and any state q of S, it holds S, q |=s ϕ iff S, q |=s ψ (resp. S, q |=t ϕ iff S, q |=t ψ).
We write ϕ ≡s,t ψ when the equivalence holds for both ≡s and ≡t.

Note that both equivalences ≡s and ≡t are substitutive, i.e., a subformula ψ can be
replaced with any equivalent formula ψ′ without changing the truth value of the global
formula. Formally, if ψ ≡s ψ′ (resp. ψ ≡t ψ′), we have Φ[ψ] ≡s Φ[ψ′] (resp. Φ[ψ] ≡t Φ[ψ′])
for any QCTL∗ formula Φ.

2.4. Fragments of QCTL∗. In the sequel, besides QCTL and QCTL∗, we study several
interesting fragments. The first one is the fragment of QCTL in prenex normal form, i.e., in
which propositional quantification must be external to the CTL formula. We write EQCTL
and EQCTL∗ for the corresponding logics5

We also study the fragments of these logics with limited quantification. For prenex-
normal-form formulas, the fragments are defined as follows:

• for any ϕ ∈ CTL and any p ∈ AP, ∃p.ϕ is an EQ1CTL formula, and ∀p.ϕ is in AQ1CTL;
• for any ϕ ∈ EQkCTL and any p ∈ AP, ∃p.ϕ is in EQkCTL and ∀p.ϕ is in AQk+1CTL.

Symmetrically, if ϕ ∈ AQkCTL, then ∃p.ϕ is in EQk+1CTL while ∀p.ϕ remains in AQkCTL.

Using similar ideas, we define fragments of QCTL and QCTL∗. Again, the definition is
inductive: Q1CTL is the logic CTL[EQ1CTL], and Qk+1CTL = Q1CTL[QkCTL]. Notice that
a more refined definition of QkCTL could be given, where the index k would count quantifier
alternation (in a way similar to EQkCTL) instead of the mere quantifier depth that we use
here. This however requires taking care of the number of negations between two quantifiers,
where “negation” here also includes hidden negations (e.g. a quantifier nested on the left-
hand side of an “until” formula should be considered negated). Our results would carry on
to this variant of QkCTL.

The corresponding extensions of CTL∗, which we respectively denote with EQkCTL∗,
AQkCTL∗ and QkCTL∗, are defined in a similar way.

5Notice that the logics named EQCTL and EQCTL∗ in [Kup95] are restrictions of our prenex-normal-
form logics where only existential quantification is allowed. They correspond to our fragments EQ1CTL and
EQ1CTL∗.

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 9

Remark 2.9. Notice that EQkCTL and AQkCTL are (syntactically) included in QkCTL,

and EQkCTL∗ and AQkCTL∗ are fragments of QkCTL∗.

3. Expressiveness

As a preliminary remark, let us mention that propositional quantification increases the
expressive power of CTL. For example, it is easy to see that the formula uniq(P) defined
in the previous section allows us to distinguish between two bisimilar structures; therefore
such a formula cannot be expressed in CTL∗. Note also that it makes QCTL (and QCTL∗)
to not be bisimilar invariant. This observation motivated an alternative semantics, called
the amorphous semantics, for the propositional quantifications, in order to make QCTL
(and QCTL∗) bisimilar invariant. We do not develop this semantics further, and refer the
reader to [Fre01] for more details.

In this section we present several results about the expressiveness of our logics for both
the structure- and the tree semantics. We show that QCTL, QCTL∗ and Monadic Second-
Order Logic are equally expressive. First we show that any QCTL formula is equivalent to
a formula in prenex normal form (which extends to QCTL∗ thanks to Proposition 3.8).

3.1. Prenex normal form. By translating path quantification into propositional quan-
tification, we can extract propositional quantification out of purely temporal formulas:
for instance, EX (Q.ϕ) where Q is some propositional quantification is equivalent to

∃z.Q.
(

uniq(z)∧ EX (z ∧ϕ)
)

. This generalizes to full QCTL under both semantics:

Proposition 3.1. In both semantics, EQCTL and QCTL are equally expressive.

Proof. We prove the result for structure equivalence, turning a given a QCTL formula ϕ
into prenex normal form. The transformation being correct also for infinite-state Kripke
structures, the result for tree-equivalence follows.

In the following, we assume w.l.o.g. no atomic proposition is quantified twice. We use Q
to denote a sequence of quantifications, and write Q̄ for the dual sequence. Our translation
is defined as a sequence of rewriting rules that are to be applied in a bottom-up manner,
first replacing innermost subformulas with s-equivalent ones. As for CTL, we only consider
the temporal modalities EX, EU and EG (which is sufficient since AXϕ ≡s,t ¬ EX ¬ϕ
and AϕUψ ≡s,t ¬ EG ¬ψ ∧¬ E¬ψU (¬ϕ∧¬ψ)).

For propositional and Boolean subformulas, we have:

¬Q.ϕ ≡s Q̄ ¬ϕ Q1.ϕ1 ∨Q2ϕ2 ≡s Q1.Q2.(ϕ1 ∨ϕ2)

We now present the transformation for all three temporal modalities. Extracting a bloc
of quantifiers out of an EX operator can be done as follows:

EXQ.ϕ ≡s ∃z.Q.
(

uniq(z)∧ EX (z ∧ϕ)
)

Here variable z (which is assumed to not appear in Q.ϕ) is used to mark an immedi-
ate successor that satisfies Q.ϕ. We require z to be unique: allowing more than one
successor would make the equivalence to be wrong, as can be seen on the Kripke struc-
tures S0 of Fig. 1 using formula EX (∀p. [(EF p)⇒ p]) (this formula is false, while formula
∃z. ∀p. EX (z ∧[(EF p)⇒ p]) is true by labelling both states with z).

10 F. LAROUSSINIE AND N. MARKEY

Note that the right-hand-side formula is not yet in prenex form, because uniq(z) involves
a universal quantifier under a Boolean operator; applying the above rules for Boolean sub-
formulas concludes the translation for this case.

For EG (Q.ϕ), the idea again is to label a short (lasso-shaped) path with z, ensuring
that Q.ϕ always holds along that path:

EG (Q.ϕ) ≡s ∃z.∀z′.Q.
(
z ∧ AG (z⇒ EX1 z)∧(uniq(z′)⇒ AG ((z ∧ z′)⇒ϕ))

)
.

Finally, E(Q1.ϕ1) U (Q2.ϕ2) is handled by first rewriting it as

∃z1, z2. Ez1 U z2 ∧ AG [z1⇒Q1.ϕ1 ∧ z2⇒Q2.ϕ2]

using Equivalence (2.1), and by noticing that AG (Q.ϕ) ≡s ∀z.Q.(uniq(z)⇒ AG (z⇒ϕ)).

Before we prove correctness of the above equivalences, we introduce a useful lemma:

Lemma 3.2. Consider a Kripke structure S = 〈Q,R, `〉, a state q and a QCTL formula
Q.ϕ with Q = Q1z1 · · · Qkzk and ϕ ∈ CTL. We have S, q |=s Q.ϕ if, and only if, there is a
non-empty family ξ of Kripke structures such that

(1) each S ′ ∈ ξ is of the form 〈Q,R, `′〉 where `′ and ` coincide over AP \ {z1, . . . , zk};
(2) for any S ′ = 〈Q,R, `′〉 in ξ, any i with Qi = ∀, and any labzi : Q→ 2{zi}, there exists
〈Q,R, `′′〉 ∈ ξ such that `′′ ∩ {zi} = labzi, and `′′ and `′ coincide over AP \ {zi · · · zk};

(3) for all S ′ ∈ ξ, it holds S ′, q |=s ϕ.

A non-empty set ξ satisfying the first two properties of Lemma 3.2 is said to be (Q,S)-
compatible.

Proof. The proof proceeds by induction on the number of quantifiers in Q. The equivalence
is trivial when there is no quantification. Now assume that the equivalence holds for some
quantification Q.

We first consider formula ∃z.Q.ϕ. Assume S, q |=s ∃z.Q.ϕ. Then there exists a struc-
ture S ′ = 〈Q,R, `′〉, with `′ coincides with ` over AP\{z}, such that S ′, q |=s Q.ϕ. Applying
the induction hypothesis to S ′, we obtain a family of structures satisfying conditions (1)
to (3) for S ′ and Q.ϕ. One easily checks that the very same family also fulfills all three
conditions for S and ∃z.Q.ϕ.

Conversely, if there is a family of structures satisfying all three conditions for S and
(∃z.Q).ϕ. Pick any structure S ′ = 〈Q,R, `′〉 in that family. It holds S ′, q |=s ∃z.Q.ϕ, and
moreover ` and `′ coincide over AP \ {z, z1, · · · , zk}, where {z1, · · · , zk} are the variables
appearing in Q. Hence also S, q |=s ∃z.Q.ϕ.

Now consider formula ∀z.Q.ϕ, and assume S, q |=s ∀z.Q.ϕ. Then for any S ′ = 〈Q,R, `′〉
where ` and `′ coincide over AP\{z}, we have S ′, q |=s Q.ϕ. Applying the induction hypoth-
esis, for each such S ′, we get a family of Kripke structures satisfying all three conditions for
S ′ and Q.ϕ. Let ξ be the union of all those families. Then ξ clearly fulfills conditions (1)
and (3). Condition (2) for universal quantifiers in Q follows from the induction hypothe-
sis. For the universal quantifier on z, pick S ′ = 〈Q,R, `′〉 and labz. Then by construction,
ξ contains a structure S ′′ = 〈Q,R, `′′〉 where `′′ ∩ {z} = labz. By construction, ξ contains a
family of structures satisfying all three conditions for S ′′ and Q.ϕ, which entails the result.

If conversely there is a family ξ of structures satisfying the conditions of the lemma,
then for each labz, this family contains a structure S ′ = 〈Q,R, `′〉 with `′ ∩ {z} = labz and
satisfying Q.ϕ, which entails the result.

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 11

We now proceed to the proof of the previous equivalences. We omit the easy cases of
propositional and Boolean formulas, and focus on EX and EG:

• EX (Q.ϕ): Assume S, q |=s EX (Q.ϕ) with S = 〈Q,R, `〉. Then there exists (q, q′) ∈ R
such that S, q′ |=s Q.ϕ. Therefore there exists a set ξ of Kripke structures that is (Q,S)-
compatible and such that S ′, q′ |=s ϕ for every S ′ ∈ ξ. Now consider the set ξ′ defined as
follows:

ξ′ =
{
S ′ = 〈Q,R, `′〉

∣∣∣ ∃〈Q,R, `′′〉 ∈ ξ s.t. `′ = `′′ ⊕ {q′ 7→ z}
}

with:

(`⊕ {q 7→ x})(r) =

{
`(r) ∪ {x} if r = q

`(r) \ {x} otherwise

Then ξ′ is (∃z.Q,S)-compatible, and for every Kripke structure S ′ ∈ ξ′, we have:
S ′, q |=s uniq(z)∧ EX (z ∧ϕ). It follows S, q |=s ∃z.Q.(uniq(z)∧ EX (z ∧ϕ)).

Now assume S, q |=s ∃z.Q.
(
uniq(z)∧ EX (z ∧ϕ)

)
. Then there exists a Kripke struc-

ture S ′ ≡AP\{z} S such that S ′, q |=s Q.
(
uniq(z)∧ EX (z ∧ϕ)

)
. In particular, only one

state q′ of S ′ is labelled with z, and q′ is a successor of q. Moreover, there exists a (Q,S ′)-
compatible set ξ such that for any S ′′ ∈ ξ, it holds S ′′, q |=s EX (z ∧ϕ). Since only q′ is
labelled with z, we have S ′′, q′ |=s ϕ, for all S ′′ ∈ ξ. Hence S ′, q′ |=s Q.ϕ, and S ′, q |=s

EX (Q.ϕ). Finally, the formula is independent of z, so that also S, q |=s EX (Q.ϕ).

• EG (Q.ϕ): Assume S, q |=s EG (Q.ϕ). There must exist a lasso-shape path ρ =
q0q1q2 . . . (qi . . . qj)

ω, with q0 = q, along which Q.ϕ always holds. We can also assume
that ρ is a direct path, i.e., that S does not contain a transition (qk, ql) unless l = k + 1
(otherwise a simpler witnessing path would exist). Thus labeling all states of ρ with z
makes the formula (z ∧ AG (z⇒ EX1 z) hold at q. Moreover, for every k < j, we have
S, qk |=s Q.ϕ, so that there exists a set ξk of Kripke structures that are (Q,S)-compatible
and such that S ′, qk |=s ϕ for every S ′ ∈ ξk. Now, let ξ be the following set of Kripke
structures:

ξ =
{
S ′ = 〈Q,R, `′〉

∣∣∣ ∃k < j. ∃〈Q,R, `′′〉 ∈ ξk s.t.

`′ = `′′ ⊕ {ql 7→ z}l=0,...,j−1 ⊕ {qk 7→ z′}
}
.

For every S ′ ∈ ξ, we have

S ′, q |=s z ∧ AG (z⇒ EX1 z)∧(uniq(z′)⇒ AG ((z ∧ z′⇒ϕ))).

But the set ξ is not (∃z.∀z′.Q,S)-compatible: it only contains Kripke structures in which
z′ labels a single state of ρ, while condition (2) requires that we consider all labellings.
It suffices to extend ξ with arbitrary Kripke structures involving all other forms of z′-

labellings to obtain a compatible set ξ̂. Note that the additional Kripke structures still
satisfy (uniq(z′)⇒ AG ((z ∧ z′⇒ϕ))). Applying Lemma 3.2,

S, q |=s ∃z.∀z′.Q.
(
z ∧ AG (z⇒ EX1 z)∧(uniq(z′)⇒ AG ((z ∧ z′)⇒ϕ))

)
.

Conversely, assume that this formula holds true at q in S. Accordingly, let S ′ ≡AP\{z} S
be the structure obtained from S by extending its labelling with z in such a way that
(1) S ′, q |=s z ∧ AG (z⇒ EX1 z)
(2) S ′, q |=s ∀z′.Q(uniq(z′)⇒ AG ((z ∧ z′)⇒ϕ)).

12 F. LAROUSSINIE AND N. MARKEY

The first property ensures that the z-labelling describes a lasso-shape path starting from q.
The second one entails that there exists a (∀z′Q,S ′)-compatible set ξ s.t. for every S ′′ ∈ ξ,
we have S ′′, q |=s uniq(z′)⇒ AG ((z ∧ z′)⇒ϕ). This entails that for any position k along
the z-path, there exists a (Q,S ′′)-compatible set in which S, qk |=s ϕ, which entails the
result.

Let us briefly measure the size and alternation depth of the resulting formula: in terms of
its size, the transformation never duplicates subformulas of the initial formula, so that the
final size is linear in the size of the original formula. Regarding proposition quantifiers, it
can be checked that the alternation depth of the resulting formula is at most two plus the
sum of the number of nested quantifiers in the original formula. In the end, the number of
quantifier alternations of the resulting formula is linear in the number of quantifiers in the
original formula.

Remark 3.3. The translation used in the proof above to transform any QCTL formula into
an equivalent formula in prenex normal form has been defined for the structure semantics.
It is still correct when considering the tree semantics but in this framework, we could define
a simpler transformation (in particular, we can get rid of the dpath(z0, z2) formula).

3.2. QCTL and Monadic Second-Order Logic. We briefly review Monadic Second-
Order Logic (MSO) over trees and over finite Kripke structures (i.e., labelled finite graphs).
In both cases, we use constant monadic predicates Pa for a ∈ AP and a relation Edge either
for the immediate successor relation in a 2AP-labelled tree 〈T, l〉 or for the relation R in a
finite KS 〈Q,R, `〉.

MSO is built with first-order (or individual) variables for vertices (denoted with low-
ercase letters x, y, ...), monadic second-order variables for sets of vertices (denoted with
uppercase letters X,Y, ...). Atomic formulas are of the form x = y, Edge(x, y), x ∈ X,
and Pa(x). Formulas are constructed from atomic formulas using the boolean connectives
and the first- and second-order quantifier ∃. We write ϕ(x1, ..., xn, X1, ..., Xk) to state that
x1, ..., xn and X1, ..., Xk may appear free (i.e. not within the scope of a quantifier) in ϕ.
A closed formula contains no free variable. We use the standard semantics for MSO, writing
M, s1, ..., sn, S1, ..., Sk |= ϕ(x1, ..., xn, X1, ..., Xk) when ϕ holds on M when si (resp. Sj) is
assigned to the variable xi (resp. Xj) for i = 1, ..., n (resp. j = 1, ..., k).

In the following, we compare the expressiveness of QCTL with MSO over the finite
Kripke structures (the structure semantics) and the execution trees corresponding to a finite
Kripke structure (tree semantics). First note that MSO formulas may express properties on
the whole trees or graphs, while our logics are interpreted over states of these structures.
Therefore we use MSO formulas with one free variable x, which represents the state where
the formula is evaluated. Moreover, we restrict the evaluation of MSO formulas to the
reachable part of the model from the given state. This last requirement makes an important
difference for the structure semantics, since MSO can express e.g. that a graph is not
connected while QCTL can only deal with what is reachable from the initial state.

Formally, for the tree semantics, we say that ϕ(x) ∈ MSO is t-equivalent to some QCTL∗

formula ψ (written ϕ(x) ≡t ψ) when for any finite Kripke structure S and any state q ∈ TS ,
it holds TS(q), q |= ϕ(x) iff TS(q), q |=s ψ. Similarly, for the structure semantics: ϕ(x) is
s-equivalent to ψ (written ϕ(x) ≡s ψ) iff for any finite Kripke structure S and any state

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 13

q ∈ S, it holds Sq, q |= ϕ(x) iff Sq, q |=s ψ, where Sq is the reachable part of S from q. For
these definitions, we have:

Proposition 3.4. Under both semantics, MSO and QCTL are equally expressive.

Proof. The translation from QCTL to MSO is easy: translating CTL into MSO is standard
and adding propositional quantifications can be managed with second-order quantifications.

Now we consider the translation from MSO to QCTL. This translation (which is valid
for both semantics) is defined inductively with a set of rewriting rules. Given ϕ(x) ∈ MSO,
we define ϕ̂ ∈ QCTL as follows:

¬̂ϕ = ¬ ϕ̂ ϕ̂∧ψ = ϕ̂∧ ψ̂

P̂a(x) = a P̂a(xi) = EF (pxi ∧ a)

x̂ = xi = pxi x̂i = xj = EF (pxi ∧ pxj)

x̂ ∈ Xi = pXi ̂xi ∈ Xj = EF (pxi ∧ pXj)

̂Edge(x, xi) = EX pxi
̂Edge(xi, xj) = EF (pxi ∧ EX pxj)

∃̂Xi.ϕ = ∃pXi .ϕ̂ ∃̂xi.ϕ = ∃pxi .uniq(pxi)∧ ϕ̂

The last rule not listed above concerns ̂Edge(xi, x), and depends on the semantics: in the
tree semantics, there is no edges coming back to the root and the formula is then equivalent
to false; in the structure semantics, we have to mark the root with an individual variable
and use the same kind of rule as above:

̂Edge(xi, x) =

{
⊥ in the tree semantics.

EF (pxi ∧ EX px) in the structure semantics.

The correctness of the translation w.r.t. both semantics is stated in the two following
Lemmas, whose inductive proofs are straightforward:

Lemma 3.5. For any ϕ(x, x1, ..., xn, X1, ..., Xk) ∈ MSO, any finite Kripke structure S and
any state q, we have:

TS(q), q, s1, ..., sn, S1, ..., Sk |=s ϕ(x, x1, ..., xn, X1, ..., Xk) iff T ′S(q), q |=s ϕ̂

where TS and T ′S only differ in the labelling of propositions pxi and pXi: in TS , no state
is labelled with these propositions, while in T ′S , we have (1) pxi ∈ `(s) iff s = si and
(2) pXi ∈ `(s) iff s ∈ Si.

As a special case, we get that TS(q), q |= ϕ(x) if, and only if, TS(q), q |=s ϕ̂, which
entails ϕ(x) ≡t ϕ̂.

As regards the structure semantics, using similar ideas, we have:

Lemma 3.6. For any ϕ(x, x1, ..., xn, X1, ..., Xk) ∈ MSO, any finite Kripke structure S and
and state q, we have:

Sq, q, s1, ..., sn, S1, ..., Sk |= ϕ(x, x1, ..., xn, X1, ..., Xk) iff S ′q, q |=s ϕ̂

where Sq and S ′q only differ in the labelling of propositions pxi and pXi: in Sq, no state is
labelled with these propositions, while in S ′q we have (1) px ∈ `(s) iff s = q, (2) pxi ∈ `(s)
iff s = si and (3) pXi ∈ `(s) iff s ∈ Si.

14 F. LAROUSSINIE AND N. MARKEY

In the end, after labelling state q with px, we obtain Sq, q |= ϕ(x) if, and only if,
S ′q, q |=s ϕ̂, where S ′q only differs from Sq by the fact that q is labelled with px. It follows
that ϕ(x) ≡s ∃px.(px ∧ uniq(px)∧ ϕ̂).

Remark 3.7. One can also notice that it is easy to express fixpoint operators with QCTL in
both semantics, thus µ-calculus can be translated into QCTL. For instance, the least fixpoint
equation µT.[b∨(a∧ EXT)] would be written as

∃T.
[

AG
(
T ⇔ [b∨(a∧ EXT)]

)
∧ ∀U.

{
AG (U ⇔ [b∨(a∧ EXU)])⇒ AG (T ⇒ U)

}]
.

Such a formula says that there is a fixpoint T such that for any fixpoint U , T is included
in U ; this precisely characterises least fixpoints. Since the µ-calculus extended with counting
capabilities has the same expressiveness as MSO on trees [MR03], we get another evidence
that QCTL can express all MSO properties when interpreted over trees.

3.3. QCTL and QCTL∗. Finally, we show that QCTL∗ and QCTL are equally expressive
for both semantics. The main idea of the proof is an inductive replacement of quantified
subformulas with extra atomic propositions. Indeed note that for any CTL∗ state formula
Φ and any QCTL∗ state formula ψ, we have Φ[ψ] ≡s,t ∃pψ.

(
Φ[pψ]∧ AG (pψ ⇔ ψ)

)
where

pψ is a fresh atomic proposition. We have:

Proposition 3.8. Under both semantics, QCTL∗ and QCTL are equally expressive.

Proof. The result for the tree semantic has been shown in [Fre01]. Here we give a different
translation, which is correct for both semantics. Consider a QCTL∗ formula Φ. The proof
is by induction over the number k of subformulas of Φ that are not in QCTL. If k = 0,
Φ already belongs to QCTL. Otherwise let ψ be one of the smallest Φ-subformulas in
QCTL∗ \QCTL. Let αis with i = 1, . . . ,m be the largest ψ-subformulas belonging to QCTL
(these are state formulas). Then ψ[(αi ← pi)i=1,...,m] is a CTL∗ formula: every subformula
of the form ∃p. ξ in ψ belongs to some QCTL formula αi, since ψ is one of the smallest
QCTL∗ \ QCTL subformula. Therefore ψ is equivalent (w.r.t. both semantics) to:

∃p1 . . . ∃pm.
(
ψ[(αi ← pi)i=1,...,m]∧

∧
i=1,...,m

AG (pi⇔αi)
)

Since CTL∗ can be translated into the µ-calculus [Dam94], and the µ-calculus can in turn
be translated into QCTL (see Remark. 3.7), we get that ψ[(αi ← pi)i=1,...,m] is equivalent to
some QCTL formula Ω. Hence

ψ ≡s,t ∃p1 . . . ∃pm.
(

Ω∧
∧

i=1,...,m

AG (pi⇔αi)
)

Now, consider the formula obtained from Φ by replacing ψ with the right-hand-side formula
above. This formula is equivalent to Φ and has at most k−1 subformulas in QCTL∗ \QCTL,
so that the induction hypothesis applies.

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 15

From Propositions 3.1, 3.4 and 3.8, we get:

Corollary 3.9. Under both semantics, the four logics EQCTL, QCTL and QCTL∗ and MSO
are equally expressive.

Remark 3.10. In [Fre01], Tim French considers a variant of QCTL∗ (which we call FQCTL∗),
with propositional quantification within path formulas: ∃p. ϕpath is added in the definition of
path formulas. The semantics is defined as follows:

S, ρ |=s ∃p.ϕpath iff ∃S ′ ≡AP\{p} S s.t. S ′, ρ |=s ϕpath.

It appears that this logic is not very different from QCTL∗ under the tree semantics: French
showed that QCTL is as expressive as FQCTL∗. Things are different in the structure-
semantics setting, where we now show that FQCTL∗ is strictly more expressive than MSO.
To begin with, consider the following formula:

EG
(
∃z.∀z′.[uniq(z)∧ uniq(z′)∧ z ∧¬ z′]⇒X (¬ zU z′)

)
.

This formula expresses the existence of an (infinite) path along which, between any two
occurrences of the same state, all the other reachable states will be visited. This precisely
corresponds to the existence of a Hamilton cycle, which is known not to be expressible in
MSO [EF95, Cor. 6.3.5]. However, note that the existence of a Hamilton cycle can be
expressed in Guarded Second Order Logic GSO6, in which quantification over sets of edges
is allowed (in addition to quantification over sets of states). Still, FQCTL∗ is strictly more
expressive than GSO, as it is easy to modify the above formula to express the existence of
Euler cycles:

EG
(
∃x.∃y.∀x′.∀y′.

[
tr(x, y)∧ tr(x′, y′)∧ next tr(x, y)∧¬ next tr(x′, y′)

]
⇒X (¬ next tr(x, y) U next tr(x′, y′))

)
where tr(x, y) = uniq(x)∧ uniq(y)∧ EF (x∧X y) states that x and y mark the source and
target of a reachable transition, and next tr(x, y) = x∧X y states that the next transition
along the current path jumps from x to y. This can be seen to express the existence of an
Euler cycle, which cannot be expressed in GSO (otherwise evenness could also be expressed).

Proposition 3.11. Under the structure semantics, FQCTL∗ is more expressive than QCTL∗

and MSO.

Nevertheless FQCTL∗ model checking (see next section) is decidable: for the tree seman-
tics, it suffices to translate FQCTL∗ to QCTL, as proposed by French [Fre01]. The problem
in the structure semantics can then be encoded in the tree semantics: for this we first need
to extend the labelling of the Kripke structure S with fresh propositions, one per state (e.g.
assume that state q is labeled by pq). Let S ′ be such an extension (notice that the existence
of an Euler path in such a Kripke structure can be expressed in CTL). Then any quantifi-
cation ∃P. ϕ in some FQCTL∗ formula Φ (for the structure semantics) is considered in the
tree semantics. For this to be correct, we augment Φ with the extra requirement that any

6This logic is called MS2 in [CE11].

16 F. LAROUSSINIE AND N. MARKEY

two copies of the same state receive the same labelling. We thus build a formula Φ̂S
′
, by

replacing every subformula ∃P. ψ in Φ with

∃P.
∧
q∈Q

(
EF pq⇒

(
EF (pq ∧P)⇔¬ EF (pq ∧¬P)

))
∧ ψ̂S′ .

We then have: S, q |=s Φ iff S ′, q |=t Φ̂S
′
.

4. Model checking

We now consider the model-checking problem for QCTL∗ and its fragments under both se-
mantics: given a finite Kripke structure S, a state q and a formula ϕ, is ϕ satisfied in state q
in S under the structure (resp. tree) semantics? In this section, we characterise the complex-
ity of this problem. A few results already exist, e.g. for EQ1CTL and EQ1CTL∗ under both
semantics [Kup95]. Hardness results for EQ2CTL and EQ2CTL∗ under the tree semantics
can be found in [KMTV00]. Here we extend these results to all the fragments of QCTL∗ we
have defined. We also characterize the program- and formula-complexities [Var82] of model-
checking for these fragments: the formula complexity (resp. program complexity) consists
in evaluating the complexity of the problem S |= ϕ when the model S (resp. formula ϕ)
is assumed to be fixed. Except for Theorem 4.8, our results hold true irrespective of the
notion of size (classical size of DAG-size) we use for QCTL∗ formulas. Appendix A proposes
a short introduction to the complexity classes used in the rest of the paper (especially the
polynomial-time and exponential hierarchies).

4.1. Model checking for the structure semantics.

4.1.1. Fragments of QCTL. First we consider the fragments of QCTL with limited quan-
tifications: EQkCTL, AQkCTL, and QkCTL. Prenex-normal-form formulas are (technically)

easy to handle inductively: a formula in EQkCTL can be checked by non-deterministically
guessing a labelling and applying a model-checking procedure for AQk−1CTL. We prove
that the model-checking problems for these fragments populate the polynomial-time hierar-
chy [Sto76]:

Theorem 4.1. Under the structure semantics, model checking EQkCTL is ΣP
k -complete and

model checking AQkCTL is ΠP
k -complete.

Proof. We begin with noticing that an AQkCTL formula is nothing but the negation of an
EQkCTL formula. Hence it suffices to prove the result for EQkCTL. The case where k = 0
corresponds to CTL model-checking, which is PTIME-complete. For k > 0, hardness is
easy, as EQkCTL model checking subsumes the following problem, which is known to be
ΣP

k -complete [Pap94]:

Problem: ΣP
k SAT

Input: k families of variables Ui = {ui1, . . . , uin}, and a propositional formula
Φ(U1, . . . , Uk) over

⋃
i Ui;

Question: is the quantified Boolean formula Q1U1Q2U2 . . .QkUk.Φ(U1, . . . , Uk)
true, where Qi is ∃ (resp. ∀) when i is odd (resp. even)?

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 17

Membership in ΣP
k is proved inductively: an EQ1CTL instance ∃u1

1 . . . ∃u1
k. ϕ can be

solved in NP =ΣP
1 by non-deterministically picking a labelling of the Kripke structure un-

der study with atomic propositions u1
1 to u1

k, and then checking (in polynomial time) whether

the CTL formula ϕ holds true in the resulting Kripke structure. Similarly, an EQkCTL for-
mula ∃u1

1 . . . ∃u1
k. ϕ, where ϕ is in AQk−1CTL, can be checked by first non-deterministically

labelling the Kripke structure with atomic propositions u1
1 to u1

k, and checking the remain-

ing AQk−1CTL formula ϕ in the resulting Kripke structure. The latter is in ΠP
k−1 according

to the induction hypothesis, so that the whole procedure is in ΣP
k .

When dropping the prenex-normal-form restriction, we get

Theorem 4.2. Under the structure semantics, model checking QkCTL is ∆P
k+1[O(log n)]-

complete.

Proof. We define the algorithm for QkCTL inductively: when k = 0, we just have a CTL
model-checking problem, which is complete for PTIME = ∆P

1 [O(log n)]. Assume that we
have a ∆P

k+1[O(log n)] algorithm for the QkCTL model-checking problem, and consider a

formula ϕ ∈ Qk+1CTL: it can be written under the form ϕ = Φ[(qi → ∃Pi. ψi)i] with Φ being
a CTL formula involving fresh atomic propositions qi, and ∃Pi. ψi are subformulas7 of ϕ.
The existential quantifiers in these subformulas are the outermost propositional quantifiers
in ϕ, and ψi belongs to QkCTL, as we assume that Φ is a CTL formula. As a consequence,
∃Pi. ψi is a state-formula, whose truth value only depends on the state in which it is
evaluated. For such a formula, we can non-deterministically label the Kripke structure with
propositions in Pi, and check whether ψi holds in the resulting Kripke structure. Computing

the set of states satisfying ∃Pi. ψi is then achieved in NP∆P
k+1[O(logn)], which is equal to ΣP

k+1.
Moreover, the queries for all the selected subformulas are independent and can be made in
parallel. It just remains to check whether the CTL formula Φ holds, which can be achieved
in polynomial time. This algorithm is thus in ∆P

k+2[O(log n)], since ∆P
k+2[O(log n)] = ∆P

k+2,||
(see [Wag90]).

We prove hardness using problems PARITY(ΣP
k), defined as follows:

Problem: PARITY(ΣP
k)

Input: m instances of ΣP
k SAT Qi1U

i
1 . . . Q

i
kU

i
k.Φ

i(U i1, . . . , U
i
k), where Qij = ∃

when j is odd and Qij = ∀ otherwise;

Question: is the number of positive instances even?

This problem is ∆P
k+1[O(log n)]-complete [Got95]. We encode it into a QkCTL model-

checking problem. Fix 1 ≤ i ≤ m; the instance Ψi = Qi1U
i
1 . . . Q

i
kU

i
k.Φ

i(U i1, . . . , U
i
k) of

ΣP
k SAT is encoded as in the previous reduction, using a one-state Kripke structure Si that

will be labelled with atomic propositions uij,l. The QkCTL formula to be checked is then Ψi

itself. We label the unique state of that Kripke structure with an atomic proposition xi,
that will be used in the sequel of the reduction.

Now, consider the Kripke structure S obtained as the “union” of the one-state Kripke
structures above, augmented with an extra state xm+1 and transitions (xi, xi+1), for each
1 ≤ i ≤ m. We define ϕ =

∨
1≤i≤m(xi ∧Ψi). This formula holds true in those states xi

7∃Pi denotes a sequence of existential quantifications.

18 F. LAROUSSINIE AND N. MARKEY

of S whose corresponding ΣP
k SAT instance is positive. It remains to build a formula for

“counting” these sets: we let

ψ0 = E(¬ϕUxm+1) and ψi+1 = E(¬ϕU (ϕ∧ EXψi)).

It is easily seen that ψs holds true in state x1 of S iff exactly s of the m instances of ΣP
k SAT

are positive. Moreover, each ψi has quantifier height at most k. The final formula is then
the disjunction of the formulas ψ2i, for 0 ≤ i ≤ m/2.

4.1.2. EQCTL and extensions of CTL∗. When considering logics with no quantification re-
striction or the extensions of CTL∗, model-checking complexity becomes PSPACE-complete:

Theorem 4.3. Under the structure semantics, model checking EQCTL, QCTL, EQkCTL∗,
AQkCTL∗, QkCTL∗, EQCTL∗ and QCTL∗ is PSPACE-complete.

Proof. PSPACE-hardness is straightforward because (1) any instance of QBF is a special case
of a model checking problem for every logic with unbounded quantifications (EQCTL, QCTL,
EQCTL∗ and QCTL∗) and (2) the model-checking problem is PSPACE-hard for CTL∗ [SC85],
hence also for any extension thereof.

For PSPACE membership, it is sufficient to show the result for QCTL∗. Consider a
formula Φ = ∃p1 . . . ∃pk.ϕ with ϕ ∈ CTL∗. We can easily consider the same kind of al-
gorithm we used for EQkCTL in Theorem 4.1: we only replace the CTL model-checking
algorithm with a CTL∗ model-checking algorithm running in polynomial space [CES86].

Since NPPSPACE = PSPACE, the resulting algorithm is in PSPACE. This clearly provides a
PSPACE algorithm for any QCTL∗ formula.

4.1.3. Program-complexity. Now we consider the program complexity (or model complexity)
of model checking for the structure semantics. In this context, we assume that the formula
is fixed, and the complexity is then expressed only in terms of the size of the model.

Theorem 4.4. Under the structure semantics, for any k > 0, the program-complexity of
model checking is ΣP

k -complete for EQkCTL and EQkCTL∗, and ΠP
k -complete for AQkCTL

and AQkCTL∗.

Proof. Membership in ΣP
k for EQkCTL and AQkCTL comes directly from the general algo-

rithms (Theorem 4.1). For EQkCTL∗ and AQkCTL∗, we can use the same approach: fix
a formula Φ = ∃u1

1 . . . ∃u1
k.ϕ with ϕ ∈ CTL∗. Deciding the truth value of Φ can be done

in NP by first non-deterministically guessing a labelling of the model with {u1
1, ..., u

1
k} and

then checking the fixed formula ϕ (model checking a fixed formula of CTL∗ is NLOGSPACE-
complete [Sch03]). Thus with the same argument we used for the proof of Theorem 4.1,

we get a ΣP
k algorithm for any fixed EQkCTL∗ formula (and a ΠP

k algorithm for a AQkCTL∗

formula).

We now prove hardness in ΣP
k for EQkCTL (the results for EQkCTL∗, AQkCTL and

AQkCTL∗ are proven similarly). We begin with the case where k = 1 (for which the result
is already given in [Kup95] with a proof derived from [HK94]): quantification is encoded

in the (fixed) EQkCTL formula, while the model encodes the SAT formula to be checked.
We begin with an NP-hardness proof for EQ1CTL, and then explain how it can be extended
to EQkCTL.

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 19

ϕb

C1 C2 Cm
· · · · · ·

test

p1 ¬ p1

test

p2 ¬ p2

test

pk ¬ pk· · ·

Fig. 3: The model used for proving ΣP
k -hardness of model checking a fixed EQkCTL formula.

Consider an instance ∃P. ϕb(P), where P is a set of variables. We assume w.l.o.g. that
propositional formula ϕb is a conjunction of disjunctive clauses. We begin with defining the
model associated to ϕb, and then build the formula, which will depend neither on ϕb, nor
on P .

Write ϕb =
∧

1≤i≤m
∨

1≤j≤n `i,j , where li,j is in {pk,¬pk | pk ∈ P}. The model is defined
as follows:

• it has one initial state, named ϕb, m states named Ci for 1 ≤ i ≤ m, and 3|P | states
named pk, ¬ pk and test(pk) for each pk ∈ P .
• there is a transition from ϕb to each Ci and to each test(pk), a transition from each test(pk)

to the corresponding pk and ¬pk, and a transition from each Ci to its constitutive liter-
als `i,j . Finally, each pk and ¬pk carries a self-loop.
• states test(pk) are labelled with an atomic proposition test, which is the only atomic

proposition in the model.

Figure 3 displays an example of this construction. The intuition is as follows: one of the
states pk and ¬pk will be labelled (via the EQCTL formula) with an extra proposition ⊕.
That exactly one of them is labelled will be checked by the test-states. That the labelling
defines a satisfying assignment will be checked by the Ci-states. The formula writes as
follows:

Φ = ∃ ⊕ . [AX (test⇒ (EX ⊕ ∧ EX¬⊕)) ∧ AX (¬ test⇒ EX⊕)].

One is easily convinced that a labelling with ⊕ defines a valuation of the propositions in P
(by the first part of Φ), and that ϕb evaluates to true under that valuation (by the second
part of Φ). Conversely, a satisfying assignment can be used to prove that Φ holds true in
the model.

This reduction can be extended to prove ΣP
k -hardness of model checking a fixed formula

of EQkCTL. Consider an instance of ΣP
k SAT of the form ∃P1 . . .QkPk. ϕb(P1, . . . , Pk),

assuming w.l.o.g. that the sets Pi are pairwise disjoint. The model now involves k test-
propositions test1 to testk, and a test-state associated with a proposition in Pl is labelled
with testl. The rest of the construction is similar. Assuming that k is even (in which case
Qk is universal, and ϕb is a disjunction of conjunctive clauses—the dual case being similar),

20 F. LAROUSSINIE AND N. MARKEY

formula Φk then writes as follows:

Φk = ∃ ⊕1 . . . ∀ ⊕k .[AX (test2i+1 ⇒ (EX ⊕2i+1 ∧ EX¬⊕2i+1)) ∧
[AX (test2i+2 ⇒ (EX ⊕2i+2 ∧ EX¬⊕2i+2))]⇒ (AX (¬ test⇒ EX⊕))].

For QkCTL and QkCTL∗, we have:

Theorem 4.5. Under the structure semantics, for any k > 0, the program-complexity of
model checking is ∆P

k+1[O(log n)]-complete for QkCTL and QkCTL∗.

Proof. To prove membership in ∆P
k+1[O(log n)] for QkCTL∗, we reuse the same algorithm

as for Theorem 4.2: we get the same complexity for QkCTL∗ and QkCTL because program-
complexity for CTL∗ is in PTIME (as for CTL).

Now we prove hardness in ∆P
k+1[O(log n)] for the fixed-formula model-checking problem

for QkCTL. Fix some k, and consider of PARITY (ΣP
k), made of m instances of ΣP

k SAT, which
we write Φi(U i1, . . . , U

i
k) (assuming w.l.o.g. that they all begin with an existential quantifier).

We begin with defining a partial view of the Kripke structure that we will use for the con-
struction: it has an initial state init and a final state final, and, for each 1 ≤ i ≤ m, four states
labelled with i and either 0 or 1 (to indicate the parity of the number of positive formulas up
to Φi) and either⊕ or	 (to indicate the validity of the i-th instance). Transitions are defined
as follows: from init, there is a transition to (1, 0,⊕) and (1, 0,); from (i, 0,⊕) and (i, 1,),
there are transitions to (i + 1, 1,⊕) and to (i + 1, 1,); from (i, 1,⊕) and (i, 0,), there
are transitions to (i+ 1, 0,⊕) and (i+ 1, 0,). Finally, there is a transition from (m, 0,)
and (m, 1,⊕) to final, and self-loops on final, (m, 0,⊕) and (m, 1,). Consider a path in
such a Kripke structure, and assume that we can enforce that the path visits a ⊕-state if,
and only if, the corresponding ΣP

k SAT instance is positive. Then this path reaches final if,
and only if, the total number of positive instances is even. Otherwise, the path will be stuck
in (m, 0,⊕) or in (m, 1,). In other words, formula EF final holds true if, and only if, the
number of positive instances is even.

It remains to enforce the correspondence between positive states and positive instances
of ΣP

k SAT. This is achieved using the reduction of the proof of Theorem 4.4: we first extend
the above Kripke structure by plugging, at each state (i, j, k), one copy of the Kripke
structure built in the proof of Theorem 4.4. Now, the formula to be checked in the resulting
structure has to be reinforced as follows:

Ψk = E(⊕ ⇔ Φ̃k) U final

where Φ̃k is (a slightly modified version of) the formula built in the proof of Theorem 4.4.

When model checking a fixed formula of QCTL∗ (hence with fixed alternation depth),
there is no hope of being able to encode arbitrary alternation: the program complexity of
QCTL∗ (and QCTL) model checking thus lies in the small gap between PH and PSPACE,
unless the polynomial-time hierarchy collapses:

Theorem 4.6. Under the structure semantics, the program-complexity of model checking is
PH-hard but not in PH, and in PSPACE but not PSPACE-hard, for EQCTL, QCTL, EQCTL∗

and QCTL∗ (unless the polynomial-time hierarchy collapses).

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 21

Proof. From Theorem 4.4, model-checking a fixed formula in EQCTL or EQCTL∗ is PH-
hard. Membership in PSPACE follows from Theorem 4.3. If these problems were in PH,
they would lie in ΣP

k for some k, and the polynomial-hierarchy would collapse. Similarly,

if they were PSPACE-hard, then a fixed formula (in EQCTL or EQCTL∗, hence in EQkCTL
or EQkCTL∗ for some k) could be used to encode any instance of QSAT, again collapsing
the polynomial-time hierarchy. The same method applies to QCTL and QCTL∗ thanks to
Theorem 4.5.

4.1.4. Formula-complexity. Now we consider the formula complexity of model checking for
the structure semantics. In this context we assume that the the model is assumed to be
fixed, and the complexity is then expressed only in term of the size of the formula. We
will see that every complexity result obtained for combined complexity also holds for the
formula complexity: these logics are expressive enough to provide complexity lower bounds
for fixed models.

In Theorem 4.1, complexity lower-bounds for model-checking EQkCTL and AQkCTL are
proved with a fixed model. Therefore these results apply also to formula complexity:

Theorem 4.7. Under the structure semantics, the formula-complexity of model checking
is ΣP

k -complete for EQkCTL and ΠP
k -complete for AQkCTL.

For QkCTL, we have the following result:

Theorem 4.8. Under the structure semantics, the formula-complexity is ∆P
k+1[O(log n)]-

complete for QkCTL when considering the DAG-size of QCTL formulas. When considering
the standard size of formulas, the problem is in ∆P

k+1[O(log n)] and BH(ΣP
k)-hard.

Proof. Membership in ∆P
k+1[O(log n)] can be proved using the same algorithm as in the

proof of Theorem 4.2, and noticing that its complexity is unchanged when considering the
DAG-size of the formula.

In order to prove hardness in ∆P
k+1[O(log n)], we again reduce PARITY (ΣP

k) to a model-

checking problem for QkCTL over the Kripke structure S with one state and a self-loop as
follows: consider an instance I of PARITY (ΣP

k) consisting in m instances Ψi (i = 1, . . . ,m)

of ΣP
k SAT. We let α1 = ¬Ψ1 and αi+1 = (¬Ψi+1 ∧αi)∨(Ψi+1 ∧¬αi). Clearly αi holds

in S iff there is an even number of positive instances in the set {Ψ1, . . . ,Ψi}, so that the
instance I is positive iff αm holds in S. However, since αi is duplicated in the definition
of αi+1, the reduction is in logarithmic space only if we represent the formula as a DAG.

If we consider the usual notion of size of a formula, one can easily see that formula
complexity of QkCTL model checking is ΣP

k -hard and ΠP
k -hard. Actually, as CTL is closed

under Boolean combinations, the problem is hard for any level of the Boolean hierarchy
BH(ΣP

k) over ΣP
k (we refer to [Hem98] for more details about Boolean hierarchies).

Finally formula complexity of CTL∗ model-checking is already PSPACE-hard [Sch03]
and any QBF instance can be reduced to a model-checking problem for EQCTL over a
fixed structure. This provides the complexity lower-bounds of the following result (the
complexity upper-bound come from the general case, see Theorem 4.3):

Theorem 4.9. Under the structure semantics, the formula-complexity is PSPACE-complete
for EQkCTL∗, AQkCTL∗, QkCTL∗, EQCTL, QCTL, EQCTL∗, and QCTL∗.

22 F. LAROUSSINIE AND N. MARKEY

4.2. Model checking for the tree semantics. This section is devoted to QCTL model
checking over the tree semantics. We begin with proving a hardness result, extended tech-
niques of [SVW87] (for QLTL) to the branching-time setting.

Hardness proof. We prove that the QkCTL model-checking problems populate the ex-
ponential-time hierarchy:

Theorem 4.10. Model checking EQkCTL under the tree semantics is k-EXPTIME-hard (for
positive k).

Proof. The proof uses the ideas of [KMTV00, SVW87]: we encode an alternating Turing
machine M whose tape is bounded by the following recursively-defined function:

E(0, n) = n E(k + 1, n) = 2E(k,n).

An execution of M on an input word y of length n is then a tree. Our reduction consists
in building a Kripke structure K and a QkCTL formula ϕ such that ϕ holds true in K (for
the tree semantics) iff M accepts y.

As a first step, we design a set of (polynomial-size) formulas of EQkCTL that are able
to relate two states that are at distance E(k, n) (actually, a slightly different value). This
will be used in our reduction to ensure that the content of one cell of the Turing machine
is preserved from one configuration to the next one, unless the tape head is around. Define

F (0, n) = n F (k + 1, n) = F (k, n) · 2F (k,n),

and assume we are given a tree labelled with atomic propositions s and t (among others).
We first require that s and t appear exactly once along any branch, by means of the following
formula

once(ϕ) = AFϕ∧ AG (ϕ⇒ AX AG ¬ϕ).

Our formula for requiring one occurrence of s and t (in that order) along each branch then
reads

delimiters(s, t) = once(s)∧ once(t)∧ AG (s⇒ AF t). (4.1)

s

t

F (k, n)
s

t

F (k, n)

Fig. 4: Chunks of height F (k, n)

#

1
1
0
#

F (k,n)

0
1
0
#

1
1
0
#

0
1
0
#

0
0
0
#

1
0
0
#

Fig. 5: Encoding runs of M

We now inductively build our “yardstick” formulas enforcing that, along any branch,
the distance between the occurrence of s and that of t is precisely F (k, n) (see Fig. 4). When

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 23

k = 0, this is easy:

yardstickn0 (s, t) = AG
(
s⇒

(
(AX)nt∧

∧
0≤k<n

(AX)k ¬ t
))
. (4.2)

For the subsequent cases, we use propositional quantification to insert a number of interme-
diary points (labelled with r), at distance F (k − 1, n) apart. We then associate with each
occurrence of r a counter, encoded in binary (with least significant bit on the right) using
a fresh proposition c on the F (k − 1, n) cells between the present occurrence of r and the
next one. Our global formula then looks as follows:

yardsticknk = ∃r.∃c. (graduationk(r, s, t)∧ counterk(c, r, s, t)). (4.3)

When k = 1, graduation1(r, s, t) is rather easy (notice that we allow graduations outside
the [s, t]-interval):

graduation1(r, s, t) = AG ((s∨ t)⇒ r)∧ yardstickn0 (r, r).

As regards the counter, we have to enforce that, between s and t, it has value zero exactly
at s and value 2n−1 exactly at t, and that it increases between two consecutive r-delimited
intervals:

counter1(c, r, s, t) = zeros1(c, r, s, t)∧ ones1(c, r, s, t)∧ increment1(c, r, s, t)

zeros1(c, r, s, t) = AG (s⇔(r∧¬ c∧ AX A(¬ cU r)))

ones1(c, r, s, t) = AG ((r∧ AX A(¬ rU t))⇒ A(cU t))

increment1(c, r, s, t) = AG (s⇒(AG ((c⇔(AX)nc)⇔ AX A(¬ rU (¬ c∧¬ r))))).
The first two formulas are easy: zeros1 requires that s be the only position that can be
followed by only zeros until the next occurrence of r; ones1 expresses that in the last
r-delimited interval before t, c always equals 1. Finally, increment1 requires that, starting
from s, the value of c is changed from one interval to the next one if, and only if, c equals one
in all subsequent positions of the first interval. One can check that this correctly encodes
the incrementation of the counter. In the end, yardstick1 is an EQ1CTL formula.

For any k ≥ 2, yardstickk is obtained using similar ideas, with slightly more involved
formulas.

graduationk(r, s, t) = AG ((s∨ t)⇒ r)∧∀u.∀v.
[
(delimiters(u, v)∧ yardsticknk−1(u, v))⇒

(AG (u⇒ AF (r∧ AF v))∧ AG ((r∧ AF v ∧¬ AFu)⇒ AX A(¬ rU v)))
]
.

Roughly, this states that the labelling with r has to satisfy the constraint that, between
any two points u and v at distance F (k − 1, n) apart, there must be exactly one r. Notice
that formula yardsticknk−1 appears negated in graduationk. Regarding the counter, formulas
zerosk and onesk are the same as zeros1 and ones1, respectively. Incrementation is handled
using the same trick as for graduationk:

incrementk(c, r, s, t) = ∀u.∀v.
[
(delimiters(u, v)∧ yardsticknk−1(u, v))⇒

AG
(
(s∧ AFu)⇒(AG (((u∧ c)⇔ AG (v⇒ c))⇔(AX A¬ rU (¬ c∧¬ r))))

)]
This formula is a mix between increment1, in that it uses the same trick of requiring that
the value of c is preserved if there is a zero at a lower position, and the labelling with u
and v to consider all positions that are at distance F (k − 1, n) apart.

24 F. LAROUSSINIE AND N. MARKEY

Now, since yardsticknk−1 is, by induction hypothesis, in EQk−1CTL, formula yardsticknk
is in EQkCTL (notice that yardsticknk−1 appears negated after the universal quantifiers on u
and v).

We now explain how we encode the problem whether a word y is accepted by an
alternating Turing machine equipped with a tape of size E(k − 1, |y|) into an EQkCTL
model-checking problem. Assume we are given such a Turing machine M = 〈Q, q0, δ, F 〉
on a two-letter alphabet Σ = {α, β}, and an input word y ∈ Σn. An execution of M on y
is encoded as (abstractly) depicted on Fig. 5, with one configuration being encoded as a
sequence of cells, and branching occurring only between two consecutive configurations.

With M, we associate a Kripke structure SM = 〈S,R, `〉 where S = (Q ∪ {ε}) × (Σ ∪
{◦}) ∪ {#} (where ◦ denotes empty cells of the tape and # will be used to delineate the
successive configurations ofM), R = S×S is the complete transition relation, and ` labels
each state with its name (hence the initial set of atomic propositions is S). We write s0 for
the state #, where our formula will be evaluated.

The execution tree of SM from s0 contains as branches any word in s0 · Sω. We use
symbol # to divide that tree into slices of height F (k − 1, n): formula

#∧∀u.∀v.
[
(delimiters(u, v)∧ yardsticknk−1(u, v))⇒

AG ((u∧#)⇒ AX A(¬#) U (v ∧#))
]

(4.4)

enforces that along any branch, symbol # occurs at every level multiple of F (k − 1, n).

Notice that this formula is in AQk−1CTL, since the yardsticknk−1 formula is in EQk−1CTL.
Notice that when k = 1, a simpler CTL formula can be used.

Now, not all branches of the execution tree of SM are needed in order to represent
an accepting execution of M: only states labelled with # may have several successors
(see Fig. 5). In order to keep track of the relevant branches, we label them with a fresh,
existentially-quantified proposition a. The fact that branching only occurs at #-nodes can
be expressed as

a∧ AG (a⇒ EX a)∧ AG
[
(a∧¬#)⇒

∧
p 6=q∈S

¬
(
EX (a∧ p)∧ EX (a∧ q)

)]
.

Enforcing the initial state of the Turing machine (namely, that the tape contains y, Turing
machine is in state q0 and the tape head is on the first letter of y) is straightforward (by
expressing that a must label the corresponding sequence of states in the tree). Expressing
“local” requirements on the encoding of a configuration (e.g. that each configuration contains
exactly one state representing a position for the tape head) is straightforward, using the
delimiter #. The fact that an accepting state is reached along any a-branch is also easy.
It only remains to express that there is a transition linking any configuration with its
successor configurations. This can be achieved using similar formulas as formula (4.4),
using delimiters u and v to ensure that the content of the tape is preserved and that the
tape head has been moved by one position.

In the end, the global formula has an external existential quantification on a, followed
by formulas in AQk−1CTL similar to formula (4.4) (of CTL formulas when k = 1). The

whole formula is then in EQkCTL, which concludes the proof that model checking this logic
is k-EXPTIME-hard.

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 25

When using CTL∗, the above proof can be improved to handle one more exponential:
indeed, using CTL∗, formula yardstickn0 (s, t) can be made to enforce that the distance be-
tween s and t is 2n. This way, using k quantifier alternations, we can encode the computation
of an alternating Turing machine running in space (k + 1)-exponential. In the end:

Theorem 4.11. Model checking EQkCTL∗ under the tree semantics is (k + 1)-EXPTIME-
hard (for positive k).

Algorithms for the tree semantics. We use tree-automata techniques to develop
model-checking algorithms for our logics. We recall the definitions and main results of
this classical setting, and refer to [MS87, MS95, Tho97, KVW00] for a more detailed pre-
sentation.

We begin with defining alternating tree automata, which we will use in the proof.
This requires the following definition: the set of positive boolean formulas over a finite set P
of propositional variables, denoted with PBF(P), is the set of formulas defined as

PBF(P) 3 ζ ::= p | ζ ∧ ζ | ζ ∨ ζ | > | ⊥
where p ranges over P . That a valuation v : P → {>,⊥} satisfies a formula in PBF(P) is
defined in the natural way. We abusively say that a subset P ′ of P satisfies a formula ϕ ∈
PBF(P) iff the valuation 1P ′ (mapping the elements of P ′ to > and the elements of P rP ′

to ⊥) satisfies ϕ. Since negation is not allowed, if P ′ |= ϕ and P ′ ⊆ P ′′, then also P ′′ |= ϕ.

Definition 4.12. Let Σ be a finite alphabet. Let D ⊆ N be a finite subsets of degrees.
An alternating parity D-tree automaton on Σ, or 〈D,Σ〉-APT, is a 4-tuple A = 〈Q, q0,
τ,Ω〉 where

• Q is a finite set of states,
• q0 ∈ Q is the initial state,
• τ is a family of transition functions (τd)d∈D such that for all d ∈ D, it holds τd : Q×Σ→

PBF({0, . . . , d− 1} ×Q),
• Ω: Q→ {0, . . . , k − 1} is a parity acceptance condition.

The size of A, denoted by |A|, is the number of states in Q. The range k of Ω is the index
of A, denoted by idx(A).

A non-deterministic D-tree automaton on Σ, or 〈D,Σ〉-NPT, is a 〈D,Σ〉-APT where

for any d ∈ D, q ∈ Q and σ ∈ Σ, we have: τd(q, σ) =
∨
i

(∧
0≤c<d

(c, qi,c)
)

.

We now define the semantics of our tree automata. Notice that contrary to the classical
setting, where tree automata are defined to deal with fixed-arity trees, we better use the
setting of [KVW00], where the transition function depends on the arity of the node where
it is applied. Let A = 〈Q, q0, τ,Acc〉 be an 〈D,Σ〉-APT, and T = 〈T, lT 〉 be a 〈Σ,D〉-tree.
An execution tree of A on T is a T ×Q-labelled tree E = 〈E, p〉 such that

• p(ε) = (ε, q0),
• for each node e ∈ E with p(e) = (t, q) and d = dT (t), there exists a subset ξ =
{(c0, q

′
0), . . . , (cm, q

′
m)} ⊆ {0, . . . , d−1}×Q such that ξ |= τd(q, lT (t)), and for i = 0, . . . ,m,

we have e · i ∈ E and p(e · i) = (t · ci, q′i).
We write pQ for the labelling function restricted to the second component: when p(e) = (t, q),
then pQ(e) = q. Given an infinite path π ∈ PathE in an execution tree, pQ(π) is the set of

26 F. LAROUSSINIE AND N. MARKEY

states of visited along π, and Inf(pQ(π)) is the set of states visited infinitely many times.
An execution tree is accepting if min{Ω(q) | q ∈ Inf(pQ(π))} is even for every infinite path
π ∈ PathE . A tree T is accepted by A if there exists an accepting execution tree of A on T .

Deciding whether a given tree is accepted by a tree automaton is decidable. More
precisely, given a tree automaton A and a regular tree T (i.e., a tree for which there exists
a finite Kripke structure S and a state q such that T = TS(q)), the problem whether T
is accepted by A is decidable. Moreover, given a tree automaton A, the problem whether
A accepts some tree at all is also decidable8, and when the answer is positive, A accepts a
regular tree. We summarise these results in the following theorem:

Theorem 4.13. The problem whether an APT A with d priorities accepts regular tree T
represented as a Kripke structure S can be solved in time O((|A| · |S|)d). Checking the
emptiness of an APT A is EXPTIME-complete [Löd13]. Additionally, If A accepts some
infinite tree, then it accepts a regular one [Rab72].

We now recall some standard properties of APT, which we will use later to define
our model-checking algorithm for QkCTL. First note that the use of Boolean formulae
in the transition function makes the treatment of operations like union, intersection and
complement easy to handled with APT and there is no cost in term of the size of the
resulting automata [MS87]. Now we assume we are given a Kripke structure S = 〈Q,R, `〉
on a set AP of atomic propositions, and we write D for the set of degrees in S.

Lemma 4.14. [KVW00] Given a CTL formula ϕ over AP and a set D of degrees, we can
construct a 〈D, 2AP〉-APT Aϕ accepting exactly the 2AP-labelled D-trees satisfying ϕ. The au-
tomaton Aϕ has size linear in the size of ϕ, and uses a constant number of priorities.

Sketch of proof. We only describe the construction, and refer to [KVW00] for a detailed
proof of the result. W.l.o.g. we assume that negations in ϕ are followed by atomic proposi-
tions; This might require adding the two extra modalities E W and A W , which satisfy
the following equivalences:

¬(EϕUψ) ≡ A(¬ψ) W (¬ψ ∧¬ϕ)

¬(AϕUψ) ≡ E(¬ψ) W (¬ψ ∧¬ϕ)

The automaton Aϕ = 〈Qϕ, q0, τ,Ωϕ〉 is defined as follows:

• Qϕ is the set of state subformulas (not including > and ⊥),
• the initial state q0 is ϕ,
• given a degree d ∈ D, ψ ∈ Qϕ and σ ∈ 2AP, we define τd(ψ, σ) as follows:

τd(P, σ) =

{
> if P ∈ σ
⊥ otherwise

τd(¬P, σ) =

{
⊥ if P 6∈ σ
> otherwise

τd(ψ1 ∧ψ2) = τd(ψ1)∧ τd(ψ2) τd(ψ1 ∨ψ2) = τd(ψ1)∨ τd(ψ2)

τd(EXψ, σ) =
∨

0≤c<d
(c, ψ) τd(AXψ, σ) =

∧
0≤c<d

(c, ψ)

τd(Eψ1 U Ψ2, σ)= τd(ψ2, σ)∨
(
τd(ψ1, σ)∧

∨
0≤c<d(c, Eψ1 Uψ2)

)
8Note that for an APT, emptiness checking and universality checking have the same complexity because

building the complement automaton can be done efficiently.

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 27

τd(Eψ1 W Ψ2, σ)= τd(ψ2, σ)∨
(
τd(ψ1, σ)∧

∨
0≤c<d(c, Eψ1 Wψ2)

)
τd(Aψ1 U Ψ2, σ)= τd(ψ2, σ)∨

(
τd(ψ1, σ)∧

∧
0≤c<d(c, Aψ1 Uψ2)

)
τd(Aψ1 W Ψ2, σ)= τd(ψ2, σ)∨

(
τd(ψ1, σ)∧

∧
0≤c<d(c, Aψ1 Wψ2)

)
• the acceptance condition is defined as

Ωϕ(Eψ1 Uψ2) = Ωϕ(Aψ1 Uψ2) = 1

Ωϕ(Eψ1 Wψ2) = Ωϕ(Aψ1 Wψ2) = 2

Note that the definition of Ωϕ for other nodes (i.e., boolean combinations) is not needed as
these nodes cannot be visited infinitely often along a branch.

QCTL quantifications over atomic propositions will be handled with the projection
operation on tree automata. To this aim, we will use the following lemma (notice that it
requires non-deterministic tree automata as input):

Lemma 4.15. [MS85] Let A be a 〈D, 2AP〉-NPT, with AP = AP1 ∪ AP2. For all i ∈ {1, 2},
we can build a 〈D, 2AP〉-NPT Bi such that, for any 2AP-labelled D-tree T , it holds: T ∈ L(Bi)
iff ∃T ′ ∈ L(A). T ≡APi T ′. The size and index of Bi are those of A.

In order to use this result, we will have to apply the simulation theorem, which allows for
turning APTs into NPTs. Having varying degrees does not change the result (for example,
one can adapt the proofs of Lemma 3.9 and Theorem 3.10 in [Löd13] in order to get the
result in our extended setting):

Lemma 4.16. [MS95] Let A be a 〈D, 2AP〉-APT. We can build an 〈D, 2AP〉-NPT N ac-

cepting the same language as A, and such that |N | ∈ 2O(|A|idx(A)·log(|A|idx(A))) and idx(N) ∈
O(|A| · idx(A)).

Now we are ready to describe the construction of the automaton for QkCTL:

Theorem 4.17. Given a QkCTL formula ϕ over AP and a set D of degrees, we can construct
a 〈D, 2AP〉-APT Aϕ accepting exactly the 2AP-labelled D-trees satisfying ϕ. The automaton
Aϕ has size k-exponential and number of priorities (k − 1)-exponential in the size of ϕ.

Proof. We proceed by induction over k.

• if ϕ ∈ Q1CTL, then ϕ is of the form Φ[(ψi)1≤i≤m] where Φ is a CTL formula and (ψi)1≤i≤m
are EQ1CTL formulas. We handle each ψi separately. Assume that ψi = ∃p1 . . . ∃pl. ψ′
with ψ′ ∈ CTL. From Lemma 4.14, one can build an APT Aψ′ recognizing the D-trees
satisfying ψ′; moreover, |Aψ′ | is in O(|ψ′|) and idx(A)ψ′ = 2. Applying Lemma 4.16,

we get an equivalent NPT Nψ′ whose size is in 2O(|ψ′|·log(|ψ′|)) and number of priorities is
in O(|ψ′|). Applying Lemma 4.15 (to Nψ′ and for atomic propositions p1, . . . , pl), we get

an NPT Bψi = 〈Qψi , q
ψi
0 , τψi ,Ωψi〉 recognizing the models of ψi. The size of Bψi is in

2O(|ψi|·log(|ψi|)), and its number of priorities is in O(|ψi|).
Now to complete the construction it remains to construct the final automaton Aϕ =

〈Q, q0, τ,Ω〉. It is based on the APT associated with the CTL context Φ[−] (w.r.t.
Lemma 4.14) and the different NPTs built for the subformulas ψi. Indeed the transition

28 F. LAROUSSINIE AND N. MARKEY

function τ follows the rules of Lemma 4.14 for Φ[−] and we just add the two following
rules to deal with the subformulae ψi and their negations9:

– τ(ψi, σ) = τψi(q
ψi
0 , σ), and

– τ(¬ψi, σ) = τψ̄i(q
ψ̄i
0 , σ) where τψ̄i is the transition function of Bψi (the dual of Bψi).

Therefore Aϕ is an APT whose size is in 2O(|ϕ|·log(|ϕ|)) and its number of priorities is in
O(|ϕ|).
• if ϕ ∈ QkCTL with k > 1, the construction follows almost the same steps as in the base

case. Here ϕ is of the form Φ[(ψi)1≤i≤m], where Φ is a CTL formula and each ψi belongs
to EQ1CTL[Qk−1CTL], i.e., is of the form ∃p1 . . . ∃pl. ψ′ with ψ′ ∈ Qk−1CTL.

From the induction hypothesis, we can build an APT A′ψ recognizing the D-trees

satisfying ψ′, and whose size is (k − 1)-exponential and whose number d of priorities is
(k − 2)-exponential in |ψ′|. Applying Lemma 4.16, we get an equivalent NPT Nψ′ whose

size is k-exponential in |ψ′| (precisely in 2O(|A′ψ |·log(|A′ψ |·d))) and whose number of priorities
is |Aψ′ | · d, i.e., (k − 1)-exponential in |ψ′|. From Lemma 4.15 (applied to Nψ′ and for
propositions p1, . . . , pl), we get an NPT Bψi recognizing the models of ψi. Again the size
and number of priorities of Bψ are identical to those of Nψ′ .

Now we finish the construction as before in combining these NPTs with the APT
provided by the CTL context Φ. This provides an APT Aϕ whose size is k-exponential
in |ϕ| and its number of priorities is k − 1-exponential.

Combining this with the result of Theorem 4.13, we get our final result for QkCTL:

Theorem 4.18. Model checking QkCTL under the tree semantics is in k-EXPTIME (for
positive k).

The proof is easily adapted to the quantified extensions of CTL∗:

Theorem 4.19. Model checking QkCTL∗ under the tree semantics is in (k + 1)-EXPTIME
(for positive k).

Proof. The proof proceeds along the same lines as in the proof of Theorem 4.17. However,
we have to build automata for a CTL∗ formula in the base case, so that the automaton for
a Q1CTL∗ formula has size 2-exponential and number of priorities exponential.

During the induction step, we consider automata for Qk−1CTL∗ formulas, apply the
simulation theorem and projection, and combine them with an (exponential-size) automaton
for a CTL∗ formula [KVW00]. One can easily see that the resulting automaton has size k+1-
exponential, and number of priorities k-exponential. Theorem 4.13 then entails the result.

From Theorems 4.10, 4.11, 4.18 and 4.19, we obtain:

Corollary 4.20. Under the tree semantics, for any k > 0, model checking EQkCTL,
AQkCTL and QkCTL is k-EXPTIME-complete, and model checking EQkCTL∗, AQkCTL∗ and
QkCTL∗ is (k + 1)-EXPTIME-complete.

It follows:

Theorem 4.21. Model checking EQCTL, QCTL, EQCTL∗ and QCTL∗ under the tree se-
mantics is TOWER-complete.

9Remember the construction for CTL formulae assumes that negations precede atomic propositions.

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 29

4.2.1. Program-complexity. When fixing the formula, the problem becomes much easier
(in terms of its theoretical complexity): given ϕ, one can build an automaton A2

ϕ such
that for every Kripke structure S, deciding whether S, q |=t ϕ is equivalent to deciding
whether the unfolding of a variant of S is accepted by A2

ϕ which can be done in polynomial

time (because |A2
ϕ| is assumed to have constant size).

First consider a finite Kripke structure S = 〈Q,R, `〉. We define S2 = 〈Q2, R2, `2〉 with
Q2 = Q ∪Qint, `2(q) = `(q) for q ∈ Q and `2(q) = {pint} for q ∈ Qint (pint is a fresh atomic
proposition). Finally Qint and R2 are defined in order to mimic S-transitions with nodes
of degree 2: if q1, . . . , qk (with k > 1) are the k successors of q in S, we have a transition
(q, qε) ∈ R2 and qε is the root of a complete binary tree with k leaves q1, . . . , qk. For this,
we need k− 1 internal nodes (including qε). If q has a unique successor q′ in S, we just add
the transition (q, q′) to R2. Thus the size of Qint is

∑
q∈Q d(x)− 1.

Now consider a QCTL formula Φ (that does not use pint). Let Φ̂ be the QCTL formula
defined as follows:

ÊϕUψ = E(pint ∨ ϕ̂) U (¬ pint ∧ ψ̂) ϕ̂∧ψ = ϕ̂∧ ψ̂

ÂϕUψ = A(pint ∨ ϕ̂) U (¬ pint ∧ ψ̂) ϕ̂∨ψ = ϕ̂∨ ψ̂

ÊXϕ = EX E pint U (¬ pint ∧ ϕ̂) P̂ = P

∃̂P. ϕ = ∃P. ϕ̂ ¬̂ϕ = ¬ ϕ̂

The following lemma which relates the truth value of Φ on S with that of Φ̂ on S2:

Lemma 4.22. For any Kripke structure S = 〈Q,R, `〉, for any QCTL formula Φ, and for

any q ∈ Q, we have S, q |=t Φ if, and only if, S2, q |=t Φ̂.

Proof. The proof is done by structural induction over Φ.

Theorem 4.23. Under the tree semantics, the program-complexity of model-checking is
PTIME-complete for all our fragments between EQ1CTL and AQ1CTL to QCTL∗.

Proof. Let Ψ be a QCTL∗ formula. By Proposition 3.8, we can build an equivalent QCTL
formula Φ. Now consider Φ̂ as above. Let A

Φ̂
be the alternating tree automaton built for

proving Theorem 4.18 when D = {1, 2}. It is easy to see that A
Φ̂

recognizes the 2AP-labeled

trees having nodes with degrees in {1, 2} and satisfying Φ̂.

Now consider a model-checking instance S, q |=t Φ, it clearly reduces to S2, q |=t Φ̂ and
then to TS2(q) ∈ L(A

Φ̂
). This last problem can be solved in polynomial time (in |S2|) when

the size of A
Φ̂

is assumed to be fixed: following Theorems 4.13 and 4.17, the polynomial

has degree (k − 1)-exponential in |Φ| when Φ ∈ QkCTL.

We now prove hardness in PTIME, by reducing the CIRCUIT-VALUE problem (actually
a simplified version of it, with no negation [GJ79]) to a model-checking problem for a
fixed formula in EQ1CTL. Pick a monotone circuit with fan-out 2 (i.e., an acyclic Kripke
structure in which all states are labelled with ∨© or ∧© and have two outgoing edges, except
for two “terminal” states respectively labelled with 0 and 1, and which only have a self-
loop as outgoing edges). The value of the circuit is the value of its initial node, defined in
the natural way. See Fig. 6 for an instance of CIRCUIT-VALUE (self-loops omitted) whose
initial node evaluates to 1.

30 F. LAROUSSINIE AND N. MARKEY

∨

∨∧

∧∧∨

∨∧∧

10

Fig. 6: A monotone boolean circuit

Consider the CTL formula

ϕ = AG
[
(1⇒ p)∧(0⇒¬ p)∧

(
∧©⇒(p⇔ AX p)

)
∧
(
∨©⇒(p⇔ EX p)

)]
and choose a labelling of the circuit with a new atomic proposition p satisfying ϕ (in the
initial state). By an easy induction, we get that a state is labelled with p if, and only if,
its value is 1. As a consequence, the circuit has value one if, and only if, the initial state
of its associated Kripke structure satisfies the fixed EQ1CTL formula ∃p. (p∧ϕ). The same
equivalence holds for the AQ1CTL formula ∀p.(ϕ⇒ p), as it is easily seen that only one
p-labelling satisfies ϕ.

4.2.2. Formula-complexity. The reductions used in general cases can be made to work with
a fixed model. Thus we have:

Theorem 4.24. Under the tree semantics, the formula-complexity of model-checking is
k-EXPTIME-complete for EQkCTL and QkCTL, and it is (k + 1)-EXPTIME-complete for

EQkCTL∗ and QkCTL∗, for positive k.

Proof. Membership in k-EXPTIME (resp. in (k + 1)-EXPTIME) follows from the general

case. We can adapt the hardness proof for EQkCTL (Theorem 4.10) to work with a fixed
Kripke structure S. Let M be a (k− 1)-EXPSPACE alternating Turing machine 〈Q, q0,
δ, F 〉 with Q = {q1, . . . , ql} and let y be an input word over Σ. Assume (w.l.o.g.) that
Σ = {α, β}. In order to reuse the reduction performed for the general case, we need to
encode the unfolding of SM (defined in the proof of Theorem 4.10) with an unfolding of
some fixed Kripke structure S (hence with a fixed arity and a fixed labelling). For this we use
the Kripke structure S = 〈S,R, `〉 with S = {s0, s1}, R = {(s0, s0), (s0, s1), (s1, s0), (s1, s1)}
and `(si) = ∅ for i = 0, 1: its unfolding is a binary tree and it contains no atomic proposition.
We use intermediary states (labeled by pint) to encode the arity of the states of SM (i.e.,
every “regular” node s will be the root of some finite binary tree labeled with pint and
whose leaves correspond to all possible successors of s in KM), and we use an additional
existential propositional quantification to describe the states (content of the tape, control

state, separator, ...). Let AP be the set {q1, . . . , ql, α, β,#}. The EQkCTL specification used
to describe the existence of an accepting run of M over y is the following formula Φ where

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 31

ΦM,y is a slight variant of the EQkCTL formula used in the proof of Theorem 4.10 and Φb

is a CTL formula described below:

Φ = ∃pint∃q0. . . .∃ql.∃α.∃β.∃#.
(

Φb ∧ ΦM,y

)
Formula Φb describes the labelling of the binary tree with {pint, pq0 , . . . , pql , α, β,#}:
• ¬ pint is true initially,
• every state satisfying ¬ pint satisfies exactly one proposition in {α, β,#} and at most one

in {pq0 , . . . , pql} can be associated with α or β,
• every ¬ pint state can reach (along a pint-labeled path) every ¬ pint state with one the

following labellings:

{{α}, {β}, {#}, {α, q0}, . . . , {α, ql}, {β, q0}, . . . , {β, ql}}
• and every pint state satisfies AF ¬ pint (every intermediary state is inevitably followed

by a regular state).

In ΦM,y, the only change we have to do is for yardstickn0 (s, t): we replace AX n by a
sequence of n nested formulae of the form “ AX (Apint U (¬ pint ∧ . . .))” in order to find the

n-th cell without considering intermediary states. Clearly Φ is still in EQkCTL and we have
y ∈ L(M) iff K, s0 |= Φ.

The same approach can be done for EQkCTL∗ and QkCTL∗ with an extra exponential
level due to the ability of CTL∗ to describe a run of length 2n.

As a consequence of the previous result, we have:

Theorem 4.25. Under the tree semantics, the formula-complexity of model-checking is
TOWER-complete for EQCTL, QCTL, EQCTL∗ and QCTL∗.

5. Satisfiability

We now address the satisfiability problem for our two semantics: given formula ϕ in QCTL∗

(or a fragment thereof), does there exist a finite Kripke structure S such that S, q |= ϕ for
some state q of S?

Structure semantics. As a corollary of our Prop. 3.4 and of the undecidability of MSO
over finite graphs [See76], we have

Theorem 5.1. For the structure semantics, satisfiability of QCTL and QCTL∗ is undecid-
able.

Notice that satisfiability of QCTL and QCTL∗ is clearly recursively enumerable: the
finite Kripke structures can be enumerated and checked against the considered formula,
using our model-checking algorithms.

Similar undecidability results were already proved by French: in [Fre01], he proved that
satisfiability of QCTL (more precisely, AQ1CTL) is undecidable over infinite-state Kripke
structure; in [Fre03], he proved that satisfiability of QLTL over finite-state Kripke structures
is undecidable (from which we get the result for AQ1CTL∗).

To complete the picture, we prove the following results:

Theorem 5.2. Under the structure semantics, the satisfiability problem is undecidable for
AQkCTL (when k ≥ 1) and EQkCTL (when k ≥ 2).

32 F. LAROUSSINIE AND N. MARKEY

Notice that satisfiability for EQ1CTL and EQ1CTL∗ under the structure semantics is
nothing but satisfiability of CTL and CTL∗, respectively: if ϕ is in CTL∗, ∃p.ϕ is satisfiable
if, and only if, ϕ is.

The core of the reduction is an EQ2CTL formula characterising those Kripke structures
that are finite grids10. We say that a Kripke structure is a finite grid when it is linear (i.e.,
the underlying graph (Q,R) is isomorphic to the graph Lm = ([1,m], {(i, i + 1) | 1 ≤ i ≤
m − 1} ∪ {(m,m)}) for some m) or when it is isomorphic to a product Lm × Ln for some
integers m and n. The outermost existential quantifiers of our EQ2CTL formula can then
be handled together with the existential quantification on the Kripke structure (because we
deal with satisfiability), so that our reduction will work for AQ1CTL.

The main idea behind our formula is a labelling of every other horizontal (resp. vertical)
line of the structures with atomic propositions h (resp. v). Using universal quantification,
we impose alternation between lines of h-states and lines of ¬h-states using the following
formula of the following form, enforcing small squares as depicted on Fig. 7:

∀γ.AG
[
(h∧ EX (h∧ EX (¬h∧ γ)))⇒ EX (¬h∧ EX (¬h∧ γ))

]
.

The full formula and a proof that it correctly characterises finite grids are given in Appen-
dix B.

(h,v) (h,¬ v)

(¬h,v) (¬h,¬ v)

Fig. 7: The horizontal and vertical lines of a grid

Proof of Theorem 5.2. We consider the following tiling problem: given a finite set of different
tiles, is it possible to tile any finite grid? This problem is easily shown undecidable, e.g. by
encoding the computations of a Turing machine.

Now, we encode the dual problem, expressing the existence of a finite grid for which
any tiling has a local mismatch. This can be achieved using the formula for grids and an
additional (universal) quantification for placing tiles on that grid, for which a CTL formula
will express the existence of a position where neighboring tiles do not match.

Tree semantics. We prove the following result:

Theorem 5.3. Under the tree semantics, satisfiability is (k + 1)-EXPTIME-complete for

AQkCTL and QkCTL, and it is k-EXPTIME-complete for EQkCTL (for positive k).

Proof. We first prove (k + 1)-EXPTIME-hardness for AQkCTL satisfiability. This is a straight-
forward adaptation of the proof of Theorem 4.10: in that proof, from an input word y and an
alternating Turing machineM equipped with a tape of size E(k, |y|), we built an EQk+1CTL

10This follows the same ideas as in [Fre01] for proving undecidability of AQ1CTL over infinite Kripke
structures. However, the restriction to finite grids comes with many more technicalities (not all states will
have two successors, to begin with).

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 33

formula of the form ∃a. Φ, where Φ is in AQkCTL, which is true in the Kripke structure SM
if, and only if, M accepts the input word y. Now we claim that it is also equivalent to the
satisfiability of Φ∧χM, where χM is an AQ1CTL-formula that encodes the Kripke struc-
ture SM. Letting AP = (Q∪ {ε})× (Σ∪ {◦})∪ {#}, formula χM expresses the fact that #
is the initial state, and that any reachable state has exactly one successor labelled with p,
for each p ∈ AP (see the proof of Theorem 4.10 for the definition of SM). More precisely,
χM can be written as

#∧ AG
[∨
p∈AP

(
p∧

∧
q∈AP\{p}

¬ q
)]
∧∀z.

∧
p∈AP

AG
[

EX p∧(EX (p∧ z)⇒ AX (p⇒ z))
]
.

We write ΦM for Φ∧χM.
First assume that ∃a. Φ is true in SM (for the tree semantics). Then also ∃a. (ΦM)

is true in that Kripke structure (notice that χM does not depend on a). Applying Theo-
rem 4.17 to ΦM for D = {|AP|}, we know that there is an alternating tree automaton AΦM
accepting exactly the D-trees in which ΦM holds. Since ∃a. (ΦM) is true in SM, we know
that AΦ accepts at least one tree. From Theorem 4.13, it accepts a regular tree. As a
consequence, there is a finite-state Kripke structure where ΦM holds. Conversely, if ΦM is
satisfiable, then ∃a. ΦM also is (for the tree semantics). Pick a Kripke structure S satisfying
∃a. ΦM. Then S satisfies χM, so that the unwindings of S and of SM are the same, and
state # of SM satisfies ∃a. Φ.

This proves the lower bound for AQkCTL and QkCTL. As EQkCTL contains AQk−1CTL,
it also gives the complexity lower-bound for EQkCTL.

Now we prove membership in (k + 1)-EXPTIME for QkCTL satisfiability. Let Φ be

a QkCTL formula. Let Φ̂ be the corresponding formula over {1, 2}-trees, as defined at
Section 4.2.1. Let Φ2 be the CTL formula ¬ pint ∧ AG AF ¬ pint. The following lemma

allows us to reduce the satisfiability problem for Φ to the satisfiability problem for Φ̂∧Φ2

for {1, 2}-trees:

Lemma 5.4. There exists a Kripke structure S with a state q such that S, q |=t Φ if, and

only if, there exists a regular {1, 2}-tree T such that T , ε |=s Φ̂∧Φ2.

Proof. If S, q |=t Φ then S2, q |=t Φ̂ (see Section 4.2.1). Since S2, q |=t Φ2, the result follows.

We now prove the converse direction. Assume T , ε |=s Φ̂∧Φ2. Note that the root
satisfies ¬ pint (enforced by Φ2). Now consider the tree T ′ where the intermediary state
(those labeled with pint) has been removed, and replaced with direct transitions from their
father node to their child nodes. This new tree is still regular and it can be easily proved

to satisfy Φ (by construction of Φ̂).

From the previous result, it remains to build an 〈{1, 2}, 2AP〉-APT for Φ̂∧Φ2, as de-
scribed in Theorem 4.17. The size of this automaton is k-exponential in Φ. Checking
emptiness can be done in time (k + 1)-exponential.

Now consider the case of some EQkCTL formula Φ. Let Φ′ be the AQk−1CTL formula
obtained from Φ by removing the outermost existential block of quantifiers. Clearly Φ′

is satisfiable iff Φ is: satisfiability implicitly uses an existential quantification over atomic
propositions, which can include the first block of existential quantifications. This provides
us with a k-EXPTIME algorithm for EQkCTL satisfiability.

34 F. LAROUSSINIE AND N. MARKEY

The result is lifted to fragments of QCTL∗ as follows:

Theorem 5.5. Under the tree semantics, satisfiability is (k + 2)-EXPTIME-complete for

AQkCTL∗ and QkCTL∗, and it is (k + 1)-EXPTIME-complete for EQkCTL∗.

Proof. As explained above, using CTL∗ allows us to gain an exponential level in the reduction:
yardstickn0 (s, t) can enforce that the distance between s and t is 2n.

Finally we have:

Corollary 5.6. Under the tree semantics, satisfiability is TOWER-complete for EQCTL,
QCTL, EQCTL∗ and QCTL∗.

Remark 5.7. In our definition, the satisfiability problem for the tree semantics asks for
the existence of a finite Kripke structure. Another satisfiability problem can be considered,
asking for the existence of a labeled tree T satisfying the input formula. This version of the
problem is also decidable, and is equivalent to the previous one. Indeed, assume that such
a T exists, then there is a finitely branching tree T ′ satisfying Φ, because Φ is equivalent
to some MSO formula and MSO has the finite-branching property. As T ′ |=s Φ, we clearly

have that Φ̂∧Φ2 is satisfiable by some {1, 2}-tree; thanks to Lemma 5.4, we get that there
exists a finite Kripke structure satisfying Φ for the tree semantics.

6. Conclusions

satisfiability model checking formula-compl. program-compl.

EQkCTL ΣP
k -complete (Th. 4.1, 4.4, 4.7)

QkCTL EXPTIME-c. for EQ1CTL ∆P
k+1[O(log n)]-complete11 (Th. 4.2, 4.5, 4.8)

EQkCTL∗ 2-EXPTIME-c. for EQ1CTL∗ ΣP
k -complete (Th. 4.4)

QkCTL∗ Undecidable otherwise PSPACE-complete ∆P
k+1[O(log n)]-c.(Th. 4.5)

(E)QCTL PH-hard, in PSPACE

(E)QCTL∗ (Th. 5.2) (Th. 4.3, 4.9) (Th. 4.6)

Table 1: Results for the structure semantics

satisfiability model checking formula-compl. program-compl.

EQkCTL k-EXPTIME-c.(Th. 5.3) k-EXPTIME-complete

QkCTL (k + 1)-EXPTIME-c.(Th. 5.3) (Cor. 4.20,Th. 4.24)

EQkCTL∗ (k + 1)-EXPTIME-c.(Th. 5.5) (k + 1)-EXPTIME-complete PTIME-complete

QkCTL∗ (k + 2)-EXPTIME-c.(Th. 5.5) (Cor. 4.20, Th. 4.24) (Th. 4.23)

(E)QCTL TOWER-complete

(E)QCTL∗ (Th. 4.21, 4.25, Cor. 5.6)

Table 2: Results for the tree semantics.

11Hardness in ∆P
k+1[O(logn)] for the formula-complexity of QkCTL model checking only holds when

considering the DAG-size of formulas. With the standard size, the problem is BH(ΣP
k)-hard, and in

∆P
k+1[O(logn)].

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 35

While it was introduced thirty years ago, the extension of CTL with propositional
quantifiers had never been studied in details. Motivated by a correspondence with temporal
logics for multi-player games, we have proposed an in-depth study of that logic, in terms of
its expressiveness (most notably, we proved that propositional quantification fills in the gap
between temporal logics and monadic second-order logic), of its model-checking problem
(which we proved is decidable—see a summary of our results in Tables 1 and 2) and of its
satisfiability (which is partly decidable).

Temporal logics extended with propositional quantification are simple, yet very powerful
extensions of classical temporal logics. They have a natural semantics, and optimal algo-
rithms based on standard automata constructions. Their powerful expressiveness is very
convenient to encode more intricate problems over extensions of temporal logics, as was
done for multi-agent systems in [LM14]. We expect that QCTL will find more applications
in related areas shortly.

Acknowledgement. We thank Thomas Colcombet, Olivier Serre and Sylvain Schmitz
for helpful comments during the redaction of this paper. We also thank the reviewers for
their many valuable remarks.

References

[AFF+03] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and M. Y.
Vardi. Enhanced vacuity detection in linear temporal logic. In Proceedings of the 15th
International Conference on Computer Aided Verification (CAV’03), LNCS 2725, p. 368–
380. Springer, 2003.

[AHK97] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Pro-
ceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS’97),
p. 100–109. IEEE Comp. Soc. Press, 1997.

[AP06] H. Arló-Costa and E. Pacuit. First-order classical modal logic. Studia Logica, 84(2):171–
210, 2006.

[CDC04] K. Chatterjee, P. Dasgupta, and P. P. Chakrabarti. The power of first-order quantifica-
tion over states in branching and linear time temporal logics. Information Processing
Letters, 91(5):201–210, 2004.

[CE82] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Proceedings of the 3rd Workshop on Logics of
Programs (LOP’81), LNCS 131, p. 52–71. Springer, 1982.

[CE11] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic, a
Language Theoretic Approach. Cambridge University Press, 2011.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, 1986.

[CHP07] K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In Proceedings of
the 18th International Conference on Concurrency Theory (CONCUR’07), LNCS 4703,
p. 59–73. Springer, 2007.

[Dam94] D. R. Dams. CTL* and ECTL* as fragments of the modal µ-calculus. Theoretical
Computer Science, 126(1):77–96, 1994.

[DLM10] A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy contexts: Expressive-
ness and model checking. In Proceedings of the 30th Conferentce on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’10), LIPIcs 8, p. 120–
132. Leibniz-Zentrum für Informatik, 2010.

36 F. LAROUSSINIE AND N. MARKEY

[DLM12] A. Da Costa, F. Laroussinie, and N. Markey. Quantified CTL: Expressiveness and model
checking. In Proceedings of the 23rd International Conference on Concurrency Theory
(CONCUR’12), LNCS 7454, p. 177–192. Springer, 2012.

[EF95] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.
[EH86] E. A. Emerson and J. Y. Halpern. ”Sometimes” and ”not never” revisited: On branching

versus linear time temporal logic. Journal of the ACM, 33(1):151–178, 1986.
[ES84] E. A. Emerson and A. P. Sistla. Deciding full branching time logic. Information and

Control, 61(3):175–201, 1984.
[Ete99] K. Etessami. Stutter-invariant languages, ω-automata, and temporal logic. In Proceed-

ings of the 11th International Conference on Computer Aided Verification (CAV’99),
LNCS 1633, p. 236–248. Springer, 1999.

[Fin70] K. Fine. Propositional quantifiers in modal logic. Theoria, 36(3):336–346, 1970.
[FM98] M. Fitting and R. L. Mendelsohn. First-Order Modal Logic, Synthese Library. Number

277 in Synthese Library. Springer, 1998.
[FR03] T. French and M. Reynolds. A sound and complete proof system for QPTL. In Proceed-

ings of the 4th Workshop on Advances in Modal Logic (AIML’02), p. 127–148. King’s
College Publications, 2003.

[Fre01] T. French. Decidability of quantified propositional branching time logics. In Proceedings
of the 14th Australian Joint Conference on Artificial Intelligence (AJCAI’01), LNCS
2256, p. 165–176. Springer, 2001.

[Fre03] T. French. Quantified propositional temporal logic with repeating states. In Proceedings
of the 10th International Symposium on Temporal Representation and Reasoning and
of the 4th International Conference on Temporal Logic (TIME-ICTL’03), p. 155–165.
IEEE Comp. Soc. Press, 2003.

[GC04] A. Gurfinkel and M. Chechik. Extending extended vacuity. In Proceedings of the 5th
International Conference on Formal Methods in Computer-Aided Design (FMCAD’04),
LNCS 3312, p. 306–321. Springer, 2004.

[GC12] A. Gurfinkel and M. Chechik. Robust vacuity for branching temporal logic. ACM
Transactions on Computational Logic, 13(1), 2012.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1979.

[Got95] G. Gottlob. NP trees and Carnap’s modal logic. Journal of the ACM, 42(2):421–457,
1995.

[Hem98] H. Hempel. Boolean Hierarchies – On Collapse Properties and Query Order. PhD thesis,
Friedrich-Schiller Universität Jena, Germany, 1998.

[HK94] J. Y. Halpern and B. M. Kapron. Zero-one laws for modal logic. Annals of Pure and
Applied Logic, 69(2-3):157–193, 1994.

[HRS98] T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time languages.
In Proceedings of the 25th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’98), LNCS 1443, p. 580–591. Springer, 1998.

[HSW13] C.-H. Huang, S. Schewe, and F. Wang. Model-checking iterated games. In Proceedings
of the 19th International Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS’13), LNCS 7795, p. 154–168. Springer, 2013.

[Kai97] R. Kaivola. Using Automata to Characterise Fixed Point Temporal Logics. Phd thesis,
School of Informatics, University of Edinburgh, UK, 1997.

[KMTV00] O. Kupferman, P. Madhusudan, P. S. Thiagarajan, and M. Y. Vardi. Open systems in
reactive environments: Control and synthesis. In Proceedings of the 11th International
Conference on Concurrency Theory (CONCUR’00), LNCS 1877, p. 92–107. Springer,
2000.

[Koz83] D. C. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 37

[KP95] O. Kupferman and A. Pnueli. Once and for all . In Proceedings of the 10th Annual
Symposium on Logic in Computer Science (LICS’95), p. 25–35. IEEE Comp. Soc. Press,
1995.

[KP02] Y. Kesten and A. Pnueli. Complete proof system for QPTL. Journal of Logic and
Computation, 12(5):701–745, 2002.

[Kri59] S. A. Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic, 24(1):1–
14, 1959.

[Kup95] O. Kupferman. Augmenting branching temporal logics with existential quantification
over atomic propositions. In Proceedings of the 7th International Conference on Com-
puter Aided Verification (CAV’95), LNCS 939, p. 325–338. Springer, 1995.

[KVW00] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model-checking. Journal of the ACM, 47(2):312–360, 2000.

[LM14] F. Laroussinie and N. Markey. Augmenting ATL with strategy contexts. Research
Report LSV-14-05, Laboratoire Spécification et Vérification, ENS Cachan, France, 2014.
45 pages.

[LMS01] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking CTL+ and FCTL is
hard. In Proceedings of the 4th International Conference on Foundations of Software
Science and Computation Structure (FoSSaCS’01), LNCS 2030, p. 318–331. Springer,
2001.

[Löd13] C. Löding. Automata on Infinite Trees (preliminary version for the handbook of the
AutoMathA project), 2013.

[Mar10] M. B. Martins. Supervisory Control of Petri Nets using Linear Temporal Logic. Thèse de
doctorat, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal, 2010.

[MMV10] F. Mogavero, A. Murano, and M. Y. Vardi. Reasoning about strategies. In Proceedings of
the 30th Conferentce on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’10), LIPIcs 8, p. 133–144. Leibniz-Zentrum für Informatik, 2010.

[MR03] F. Moller and A. Rabinovich. Counting on CTL*: on the expressive power of monadic
path logic. Information and Computation, 184(1):147–159, 2003.

[MS85] D. E. Muller and P. E. Schupp. Alternating automata on infinite objects, determi-

nacy and Rabin’s theorem. In Automata on Infinite Words – École de Printemps
d’Informatique Théorique (EPIT’84), LNCS 192, p. 99–107. Springer, 1985.

[MS87] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54(2-3):267–276, 1987.

[MS95] D. E. Muller and P. E. Schupp. Simulating alternating tree automata by nondeterministic
automata: New results and new proofs of the theorems of Rabin, McNaughton and Safra.
Theoretical Computer Science, 141(1-2):69–107, 1995.

[Pap94] Ch. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[PBD+02] A. C. Patthak, I. Bhattacharya, A. Dasgupta, P. Dasgupta, and P. P. Chakrabarti.

Quantified computation tree logic. Information Processing Letters, 82(3):123–129, 2002.
[Pin07] S. Pinchinat. A generic constructive solution for concurrent games with expressive con-

straints on strategies. In Proceedings of the 5th International Symposium on Automated
Technology for Verification and Analysis (ATVA’07), LNCS 4762, p. 253–267. Springer,
2007.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science (FOCS’77), p. 46–57. IEEE Comp. Soc. Press,
1977.

[QS82] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proceedings of the 5th International Symposium on Programming (SOP’82),
LNCS 137, p. 337–351. Springer, 1982.

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/ rr-lsv-2014-05.pdf

38 F. LAROUSSINIE AND N. MARKEY

[Rab72] M. O. Rabin. Automata on infinite objects and Church’s thesis, Regional Conference
Series in Mathematics. Number 13 in Regional Conference Series in Mathematics. Amer-
ican Mathematical Society, 1972.

[RP03] S. Riedweg and S. Pinchinat. Quantified µ-calculus for control synthesis. In Proceedings
of the 28th International Symposium on Mathematical Foundations of Computer Science
(MFCS’03), LNCS 2747, p. 642–651. Springer, 2003.

[SC85] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics.
Journal of the ACM, 32(3):733–749, 1985.

[Sch03] Ph. Schnoebelen. The complexity of temporal logic model checking. In Proceedings of
the 4th Workshop on Advances in Modal Logic (AIML’02), p. 481–517. King’s College
Publications, 2003.

[Sch13] S. Schmitz. Complexity hierarchies beyond elementary. Research Report
cs.CC/1312.5686, arXiv, 2013.

[See76] D. G. Seese. Entscheidbarkeits- und Interpretierbarkeitsfragen monadischer Theorien
zweiter Stufe gewisser Klassen von Graphen. PhD thesis, Humboldt-Universitt zu Berlin,
German Democratic Republic, 1976.

[Sis83] A. P. Sistla. Theoretical Issues in the Design and Verification of Distributed Systems.
PhD thesis, Harvard University, Cambridge, Massachussets, USA, 1983.

[Sto76] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–
22, 1976.

[SVW87] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi
automata with applications to temporal logics. Theoretical Computer Science, 49:217–
237, 1987.

[tC06] B. ten Cate. Expressivity of second order propositional modal logic. Journal of Philo-
sophical Logic, 35(2):209–223, 2006.

[Tho97] W. Thomas. Languages, automata and logics. In Handbook of Formal Languages, p. 389–
455. Springer, 1997.

[Var82] M. Y. Vardi. The complexity of relational query languages. In Proceedings of the 14th
Annual ACM Symposium on the Theory of Computing (STOC’82), p. 137–146. ACM
Press, 1982.

[Wag90] K. W. Wagner. Bounded query classes. SIAM Journal on Computing, 19(5):833–846,
1990.

[WHY11] F. Wang, C.-H. Huang, and F. Yu. A temporal logic for the interaction of strategies.
In Proceedings of the 22nd International Conference on Concurrency Theory (CON-
CUR’11), LNCS 6901, p. 466–481. Springer, 2011.

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 39

Appendix A. The polynomial-time and exponential hierarchies

In this section, we briefly define the complexity classes that are used in the paper. More
details about those complexity classes can be found e.g. in [Pap94].

We write PTIME (resp. NP) for the class of decision problems that can be decided in
polynomial time by a deterministic (resp. non-deterministic) Turing machine.

Given a decision problem L (for instance SAT), a Turing machine with oracle L is a
Turing machine equipped with an extra tape (the oracle tape) and three special states qoracle,
qyes and qno. During the computation, whenever the Turing machine enters state qoracle,
it directly jumps to qyes if the instance of L written on the oracle tape is positive, and to qno

otherwise.
We write PTIMEL for the set of languages accepted by deterministic Turing machines

with oracle L and halting in polynomial time (in the size of the input). We write NPL

for the analogous class defined with non-deterministic machines. When L is complete for
some complexity class C, we also write PTIMEC for PTIMEL (and NPC for NPL). Notice
that these definitions do not depend on the selected C-complete problem. We also define
PTIMEC[logn] as the subclass of problems of PTIMEC that can be solved by a deterministic
Turing machine in polynomial time but with only a logarithmic number of visits to the
qoracle-state. Finally, PTIMEC‖ is the subclass of problems of PTIMEC that can be solved in

polynomial time by a deterministic Turing machine slightly different from the previous ones:
several queries can be written on the oracle tape, but once the oracle state is visited, the
oracle tape cannot be modified anymore. This can be seen as solving all queries in parallel.

The polynomial-time hierarchy is the following sequence of complexity classes, defined
recursively with ΣP

0 = PTIME and

ΣP
i+1 = NPΣP

i ΠP
i+1 = coNPΣP

i ∆P
i+1 = PTIMEΣP

i

∆P
i+1[O(log n)] = PTIMEΣP

i [logn] ∆P
i+1,|| = PTIME

ΣP
i [logn]

‖

The classes in this hierarchy lie between PTIME and PSPACE (and it is an open problem
whether the hierarchy collapses). Notice for instance that ΣP

1 = NP, since an oracle for
PTIME problems is useless to a non-deterministic Turing machine running in polynomial
time. Similarly, ∆P

1 = PTIME. On the other hand, ∆P
2 = PTIMENP contains those problems

that can be solved in polynomial time by a deterministic Turing machine with an NP oracle.
This includes both NP and coNP.

A natural problem in ΣP
i is the problem QSATi of finding the truth value of

∃X1. ∀X2. ∃X3 . . . QiXi. ϕ(X1, X2, X3, . . . , Xi)

where ϕ is a boolean formula with variables in X1 to Xi. The dual problem (where the
sequence of quantifications begins with a universal one) is ΠP

i -complete. The problem
SNSATi, made of several instances of QSATi where the k-th instance uses the truth value
of the k − 1 previous ones, is an example of a ∆P

i+1-complete problem [LMS01].

The complexity class PH is the union of all the classes in the polynomial-time hierarchy.
Equivalently, PH =

⋃
i∈NΣP

i . Clearly, PH ⊆ PSPACE. Whether these two classes are equal
is open. Notice that PH is not known to contain complete problems: if a problem is complete
for PH, then it is at least as hard as any other problem in PH, but on the other hand is
belongs to ΣP

i for some i, which implies that the polynomial-time hierarchy would collapse.

40 F. LAROUSSINIE AND N. MARKEY

The class k-EXPTIME (resp. k-EXPSPACE) is the class of decision problems that can
be solved by a deterministic Turing machine running in time (resp. space) O(expk(p(n)))
for some polynomial p, where expk is defined inductively as follows:

exp1(n) = 2n expk(n) = 2expk−1(n)

For instance, exp5(n) = 222
22
n

(and exp5(1) is a number with 65.536 binary digits). It is
not difficult to prove that

k-EXPTIME ⊆ k-EXPSPACE ⊆ (k + 1)-EXPTIME,

and one of the two inclusions is strict (i.e., k-EXPTIME ((k + 1)-EXPTIME).
In the same way as for the polynomial-time hierarchy, we let ELEMENTARY be the

union of all the classes in the exponential hierarchy: ELEMENTARY =
⋃
k∈N k-EXPTIME.

Since this hierarchy is known to be strict, ELEMENTARY cannot have complete problems.

In order to define classes above ELEMENTARY, we define the function tower(n) =
expn(1). The class TOWER is then the class of problems that can be decided by a deter-
ministic Turing machine in time O(tower(p(n))) where p is a polynomial. It is quite clear
that ELEMENTARY ⊆ TOWER (because expk(p(n)) ≤ tower(k + p(n))). But now, as ar-
gued in [Sch13], TOWER has complete problems, and TOWER-hardness can be proved by
showing k-EXPTIME-hardness for all k using uniform reductions.

Appendix B. Characterising grid-like structures with EQ2CTL

Let S = 〈Q,R, `〉 be an arbitrary (finite-state) Kripke structure. Then S is a grid (in a
sense that will be made precise at Prop. B.6) if it can be labelled with atomic propositions
s, h, v, l, r, t and b in such a way that the following conditions are fulfilled:

• all states have at least one successor, and at most two:

AG EX> ∧ ∀α, β. AG

[(
EX (α∧β)∧ EX (α∧¬β)

)
⇒(

(AXα)∧
∧

hs∈{h,¬h}
vs∈{v,¬ v}

[
(hs ∧ vs)⇒(EX (¬hs ∧ vs)∧ EX (hs ∧¬ vs))

])]
(B.1)

Notice that the formula also requires that when a state has two successors, then they are
labelled differently w.r.t. both h and v.
• the Kripke structure has exactly one self-loop, which has only one outgoing transition

(the loop itself). It is the role of atomic proposition s to mark that state:

uniq(s)∧ AG (s⇒ AG s)∧ AF s. (B.2)

The first two conjuncts impose that the state labelled with s has only a self-loop as
outgoing transition. The third conjunct requires that all paths eventually reach s, which
means that the structure is acyclic (except at s).
• the atomic propositions h and v (for horizontal and vertical) are used to define the

direction of the grid. This contains several formulas: first, we impose that the initial
state has two successors:

(h∧ v)∧ EX (h∧¬ v)∧ EX (¬ v ∧h) (B.3)

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 41

We then impose that if a state has two successors, then those two successors have a
common successor, as depicted on Fig. 7. This is expressed as follows:

∀γ. AG

[∧
d∈{h,¬h,v,¬ v}

(d∧ EX d∧ EX ¬ d)⇒(
∧

EX (d∧ AX γ)⇒ EX (¬ d∧ EX (¬ d∧ γ))

EX (¬ d∧ AX γ)⇒ EX (d∧ EX (¬ d∧ γ))

)]
(B.4)

In the same vein, we also impose another formula, which we will use as a sufficient
condition for having two successors:

∀γ. AG

 ∧
d∈{h,¬h,v,¬ v}

d⇒

 EX (d∧ EX (¬ d∧ γ))
⇔

EX (¬ d∧¬ s∧ EX (¬ d∧ γ))

 (B.5)

We also impose globally that each state can be reached from the initial state by two
particular paths that are made of one “horizontal part” followed by a “vertical part” (and
conversely). This is expressed as follows:

∀γ.
[

EF γ⇒
∨

hq∈{h,¬h}
vq∈{v,¬ v}

∨
hγ∈{h,¬h}
vγ∈{v,¬ v}

Ehq U (hq ∧ Evγ U (vγ ∧ γ))∧

Evq U (vq ∧ Ehγ U (hγ ∧ γ))
]

(B.6)

Symmetrically, from any state, the s-state can be reached using similar paths. Here
we have to enumerate the possible values for h and v in the s-state:∨
hs∈{h,¬h}
vs∈{v,¬ v}

AG
[∨
hq∈{h,¬h}
vq∈{v,¬ v}

Ehq U (hq ∧ Evs U (vs ∧ s))∧

Evq U (vq ∧ Ehs U (hs ∧ s))
]

(B.7)

• finally, we label the left, right, top and bottom borders of the grid, which we define as
follows:

A(v ∧ l) U (¬ v ∧¬ l)∧ AG (¬ v⇒ AG ¬ l)∧ AG (r⇔(AG v ∨ AG ¬ v))

∧ A(h∧ t) U (¬h∧¬ t)∧ AG (¬h⇒ AG ¬ t)∧ AG (b⇔(AGh∨ AG ¬h)) (B.8)

Propositions h and v are used to mark “horizontal” and “vertical” lines. A successor u′ of a
state u is a horizontal successor if both u and u′ have the same labelling w.r.t. h. Similarly,
it is a vertical successor when they have the same labelling w.r.t. v. Similarly, a horizontal
path (resp. vertical path) is a path in S along which the truth value of h (resp. of v) is
constant. Finally, we let L, R, T and B be the sets of states labelled with l, r, t and b,
respectively.

We now give a few intermediary results that will be convenient for proving that the
conjunction of the formulas above characterises grids. These lemmas assume that the initial
state q of S satisfies the conjunction of Formulas (B.1) to (B.8), and that all states of S are
reachable from q.

Lemma B.1. Pick two states u and u′ in S, such that there is a transition between u and u′

(in either direction). Then

• either u and u′ are the same state (hence they are labelled with s),
• or they have the same labelling with h if, and only if, they have different labelling with v.

42 F. LAROUSSINIE AND N. MARKEY

In other terms, a successor of a state is either a horizontal successor or a vertical
successor, and not both (except for the state carrying the self-loop).

Proof. We proceed by contradiction: pick a transition (u, u′) (not the self-loop) such that u
and u′ are both labelled with h and v (the other cases would be similar). We assume that u
is (one of) the minimal such u, with “minimal” here being defined w.r.t. the sum of the
length of all paths from the initial state q of S to u.

First notice that it cannot be the case that u = q, because of Formulas (B.1) and (B.3).
Hence u must have a predecessor w. By minimality of u, that state satisfies the condition
in the lemma. We assume that w is labelled with h and ¬ v (the other case, with ¬h
and v, would be similar). From Formula (B.5) (with d = ¬ v), there must be a successor w′

of w labelled with ¬ v, and having u′ as successor (this is the common successor with u).
According to Formula (B.1), w′ is labelled with ¬h. Now, applying Formula (B.4) in w for
proposition h, there must be another common successor u′′ to u and w′, labelled with ¬h.
We get a contradiction, since u now has two successors but does not satisfies Formula (B.1).

Lemma B.2. If a state is in L and not in T (or in T and not in L) then it has exactly
one predecessor. Only the initial state is both in L and T . Symmetrically, any state in R
or in B has only one successor, and the only state in R ∩B is labelled with s.

Proof. According to Formula (B.8), the initial state must be labelled with l and t. More-
over, the initial state has two successors, labelled with (h,¬ v) and (¬h, v), according to
Formula (B.3). Formula (B.8) enforces that the former state satisfies ¬ l, and the latter
satisfies ¬ t. Hence no other state will ever satisfy l∧ t.

Now, consider a state u labelled with l and not with t, and assume it has two predeces-
sors w and w′. From Formula (B.8), any path between the initial state q and state u can
only visit v-states. So there must be some state between q and u having two v-successors,
which is forbidden by Formula (B.1). The proof for t is similar.

Now, assume that some state u in R has two successors. From Formula (B.8), both
successors will be labelled with v or both with ¬ v, which again contradicts Formula (B.1).

Finally, if a state u is labelled with both r and b, then Formula (B.8) imposes that all
its successors must have the same labelling as u w.r.t. h and v. From Lemma B.1, u is
labelled with s.

Lemma B.3. Pick a state u, different from the initial state. Then u is in L (resp. in T)
if, and only if, it has no horizontal (resp. vertical) predecessor.

Similarly, pick a state u not labelled with s. Then u ∈ R (resp. u ∈ B) if, and only if,
it has no horizontal (resp. vertical) successor.

Proof. We begin with proving the equivalence for the horizontal case. The vertical case is
similar. We consider the four possible labellings of u w.r.t. h and v:

• if u |= h∧ v: from Formula (B.6), there exists a path from q to u that is made of two parts:
first a vertical path visiting only v-states, followed by a horizontal path visiting only h-
states. In case u has no h-predecessor, it must be the case that the second part is trivial,
so that u can be reached from q by a path visiting only v-states. From Formula (B.8),
u is labelled with l.

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 43

Conversely, if u is in L, from Lemma B.2 it has only one predecessor. That predecessor
must be labelled with v (Formula (B.8)), hence it cannot be labelled with h (Lemma B.1).
So u has no h-predecessor.
• if u |= ¬h∧ v: the same arguments apply, replacing h with ¬h.
• if u |= h∧¬ v: again from Formula (B.6), we get the existence of a path from q to u

visiting only v-states first, and only h-states in a second part. Now, because u |= ¬ v, the
second part must contain at least two states, so that u has a predecessor labelled with h.
Moreover, as u is labelled with ¬ v, it cannot be in L (Formula (B.8)).
• if u |= ¬h∧¬ v, the same arguments apply.

Now, the proof for R (and B) is even simpler: Formula (B.8) precisely says that the
states labelled with r (resp. b) are precisely those that have only vertical (resp. horizontal)
successors. Apart for the s-state, this entails that those states do not have horizontal (resp.
vertical) successors.

Lemma B.4. Pick two states u and u′ in L (resp. in T). Then there is a vertical (resp.
horizontal) path between u and u′ (in one or the other direction).

Proof. From Formula (B.8), there exist vertical paths from the initial state q to u and to u′.
Let π be the longest common prefix of these two paths: it contains at least q. Consider its
last state x: if x is u or u′, then our result follows. Otherwise, there are two distinct vertical
paths from x to u and u′, which means that x has two vertical successors, contradicting
Formula (B.1). The proof for T is similar.

Following Lemma (B.4), we can define a binary relation �L on L (resp. �T on T) by
letting u �L u′ if, and only if, there is a (vertical) path from u to u′ (resp. u �T u′ if,
and only if, there is a horizontal path from u to u′). These are easily seen to be ordering
relations, because S is (mostly) acyclic. Lemma B.4 entails that these orders are total,
with q as minimal element.

Now, pick a state u. By Formulas (B.6) and (B.8), there exist (at least) one l-state x
such that there is a horizontal path from x to u. Similarly, there is (at least) one t-state y
with a vertical path from y to u. Notice that from Formula (B.1), we know that there is
only one (maximal) horizontal (resp. vertical) path starting in any given state. We now
prove that the states x and y above are uniquely determined from u.

Lemma B.5. Let u be any state of S. Let x and x′ be l-states (resp. t-states) such that u
is on the horizontal (resp. vertical) paths from x and from x′. Then x = x′.

Proof. We prove the “horizontal” case, the other one being similar. So we assume we have
two different states x and x′, and w.l.o.g. that x′ �L x. We show that there exists a “grid”
containing q, x and u, i.e., a sequence of states (ui,j)0≤i≤m,0≤j≤n, having the following
properties:

(1) for all 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n, (ui,j , ui+1,j) is a horizontal transition;
(2) for all 0 ≤ i ≤ m and 0 ≤ j ≤ n− 1, (ui,j , ui,j+1) is a vertical transition;
(3) u0,0 = q, u0,n = x and um,n = u.

The grid is built by repeatedly applying Formula (B.5) as follows: first, there is a unique
path from q to x, which defines the values (u0,j)0≤j≤n. Similarly, the unique path from x
to u defines the values (ui,n)0≤i≤m. Notice that (3) is fulfilled with this definition.

44 F. LAROUSSINIE AND N. MARKEY

Now we apply Formula (B.5) to u0,n−1, which has a vertical successor u0,n followed by a
horizontal successor u1,n. Hence there must exist a horizontal successor u1,n−1 of u0,n−1 of
which u1,n is a vertical successor. The same argument applies to all states between u0,n−2

and u0,0, thus forming a vertical path (u1,j)0≤j≤n. The same argument applies again to
form the subsequent vertical paths, until building path (um,j)0≤j≤n.

Since x′ �L x, there must exist an integer k for which u0,k = x′. By construction,
we know that u appears on the horizontal path originating from x′. But it cannot be the
case that there is a p such that up,k = u: this would give rise to a cycle on u. Hence there
must be a horizontal path from um,k to u.

0

k

n

n+ d

0 m m+ p

B

q

x′

x

y

u

u

z

z

um,k

Fig. 8: Overview of the construction of the proof of Lemma B.5

Let us recap the situation: we have a state (um,k) from which there is a non-trivial
vertical path (um,k+j)0≤j≤n−k to u, as well as a non-trivial horizontal path to u, which
we write (um+i,k)0≤i≤p (see Fig. 8). Now, from Formula (B.7), from u there is a vertical
path to a b-state z. That path is unique, thanks to Formula (B.1). Hence there is a
unique integer d and a unique sequence of states (um,n+i)0≤i≤d that forms a vertical path
from um,n = u to a b-state um,n+d = z. Notice that z is not labelled with s, because it has
vertical predecessors that have horizontal successors. Now, starting from the horizontal
path (um+i,k)0≤i≤p and the vertical path (um,k+j)0≤j≤n−k+d and applying Formula (B.4),
we build a grid (um+i,k+j)0≤i≤p,0≤j≤n−k+d. But since there is only one maximal vertical
path from u, it must be the case that um+p,k+d = z: hence this state is not labelled with s,
but it has a vertical successor and belongs to B, which is a contradiction.

We are now ready for proving our result:

Proposition B.6. Write ϕ for the conjunction of all formulas above. Then S, q |= ϕ if,
and only if, the part of S that is reachable from q is a (two-dimensional) grid (i.e., it can
be defined as the product of two finite-state “linear” Kripke structures).

Proof. One the one hand, it is clear that a grid can be labelled with h, v, l, r, t, b and s in
such a way that ϕ holds.

QUANTIFIED CTL: EXPRESSIVENESS AND COMPLEXITY 45

We now prove the converse, assuming that all the states of S are reachable from q. We
assume that S is labelled with h, v, l, r, t, b and s in a way that witnesses all the formulas
constituting ϕ.

Using h and v, we define the following relations: two states u and u′ are h-equivalent
if there is a sequence (ui)0≤i≤k of states such that u0 = u, uk = u′, the labelling of (ui)I
is constant w.r.t. h, and for all 0 ≤ i ≤ k − 1, there is a transition (ui, ui+1) or (ui+1, ui).
Notice that in particular u and u′ have the same h-labelling. v-equivalence is defined
similarly. Clearly enough, these are equivalence relations, and we write H and V for the
sets of equivalence classes of these relations. Each set forms a partition of the set of states
of S.

We also define the sets L, R, T and B as the sets of states labelled with the correspond-
ing atomic propositions (l, r, t and b, respectively). First notice that L and R are sets of V,
and T and B are in H:

• L ∈ V: the initial state must be labelled with l (and v). We prove that L is the v-
equivalence class of q: first, L contains precisely those states that are reachable from q
via a vertical path. Since any vertical predecessor of a state in L is in L (Lemma B.2),
we get the result.
• R ∈ V: the s-state is in R, and we prove that R is the v-equivalence class of the s-state.

For more clarity, we assume that the s-state is labelled with v. Then R contains exactly
the v-states from which only v-states are reachable. This proves the result.

The proof for T and B is similar.

Now, from Formula (B.6) and Lemma B.5, any H ∈ H contains exactly one element
from L, which we write l(H). Similarly, any V ∈ V is the equivalence class of a unique
element of T , denoted with t(V). Then any H ∈ H and V ∈ V have non-empty intersection:
this can be proven by building a grid containing q, l(H) and t(V). If some H and V were to
have two states in common, we would be in a similar situation as in the proof of Lemma B.5.
As a consequence, all the elements of H contain the same number of states (namely, the
number of elements of V). Similarly for the elements of V. Finally, since each state u in a
set H of H also belongs to V, it can be associated with an element t(u) of T . This gives
rise to an order in each set H. One easily sees that these orders are compatible with the
“vertical successor” relation, meaning that if u ≺H u′, then their vertical successors x and x′

satisfy x ≺H′ x′. Hence the graph of S is isomorphic to the product of L and T (augmented
with a self-loop on their last states).

Notice that we only characterised two-dimensional grids. One-dimensional grids can be
characterised by

∃r. ∀γ.AG (EX>∧(EX γ⇒ AX γ))∧(EF (r∧ γ)⇒ AG (r⇒ γ))∧ EF AG r.

The first conjunct enforces that each state as exactly one successor; the second conjunct
expresses the fact at most one state is labelled with r. The last conjunct enforces that the
r-state is eventually reached and never escaped, thus requiring that it has a self-loop.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Kripke structures and trees
	2.2. ATL and quantified extensions
	2.3. Structure- and tree semantics
	2.4. Fragments of QCTL *.

	3. Expressiveness
	3.1. Prenex normal form
	3.2. QCTL and Monadic Second-Order Logic
	3.3. QCTL and QCTL *

	4. Model checking
	4.1. Model checking for the structure semantics
	4.2. Model checking for the tree semantics

	5. Satisfiability
	6. Conclusions
	References
	Appendix A. The polynomial-time and exponential hierarchies
	Appendix B. Characterising grid-like structures with EQCTL 2

