
Logical Methods in Computer Science

Vol. 8 (2:16) 2012, pp. 1–32

www.lmcs-online.org

Submitted Oct. 12, 2011

Published Jun. 26, 2012

GENERALIZED CRAIG INTERPOLATION FOR STOCHASTIC

BOOLEAN SATISFIABILITY PROBLEMS WITH APPLICATIONS TO

PROBABILISTIC STATE REACHABILITY AND REGION STABILITY

TINO TEIGE AND MARTIN FRÄNZLE

Carl von Ossietzky University of Oldenburg, Department of Computing Science, Research Group
Hybrid Systems, D-26111 Oldenburg, Germany
e-mail address: {tino.teige,fraenzle}@informatik.uni-oldenburg.de

Abstract. The stochastic Boolean satisfiability (SSAT) problem has been introduced
by Papadimitriou in 1985 when adding a probabilistic model of uncertainty to propo-
sitional satisfiability through randomized quantification. SSAT has many applications,
among them probabilistic bounded model checking (PBMC) of symbolically represented
Markov decision processes. This article identifies a notion of Craig interpolant for the
SSAT framework and develops an algorithm for computing such interpolants based on a
resolution calculus for SSAT.

As a potential application area of this novel concept of Craig interpolation, we address
the symbolic analysis of probabilistic systems. We first investigate the use of interpolation
in probabilistic state reachability analysis, turning the falsification procedure employing
PBMC into a verification technique for probabilistic safety properties. We furthermore
propose an interpolation-based approach to probabilistic region stability, being able to
verify that the probability of stabilizing within some region is sufficiently large.

Introduction

Papadimitriou [Pap85] has proposed the idea of modeling uncertainty within propositional
satisfiability (SAT) by adding randomized quantification to the problem description. The
resultant stochastic Boolean satisfiability (SSAT) problems consist of a quantifier prefix
followed by a propositional formula. The quantifier prefix is an alternating sequence of ex-
istentially quantified variables and variables bound by randomized quantifiers. The meaning
of a randomized variable x is that x takes value true with a certain probability p and value
false with the complementary probability 1− p. Due to the presence of such probabilistic
assignments, the semantics of an SSAT formula Φ no longer is qualitative in the sense that

1998 ACM Subject Classification: D.2.4, F.3.1, F.4.1.
Key words and phrases: stochastic Boolean satisfiability, Craig interpolation, probabilistic state reacha-

bility, probabilistic region stability.
This work has been supported by the German Research Council (DFG) as part of the Transregional

Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS, www.avacs.org) as well as by the European Union Seventh Framework Programme FP7/2007-2013
under the MoVeS Project (grant agreement No. 257005, http://www.movesproject.eu).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (2:16) 2012

c© T. Teige and M. Fränzle
CC© Creative Commons

www.avacs.org
http://www.movesproject.eu
http://creativecommons.org/about/licenses

2 T. TEIGE AND M. FRÄNZLE

Φ is satisfiable or unsatisfiable, but rather quantitative in the sense that we are interested
in the maximum probability of satisfaction of Φ. Intuitively, a solution of Φ is a strategy
for assigning the existential variables, i.e. a tree of assignments to the existential variables
depending on the probabilistically determined values of preceding randomized variables,
such that the assignments maximize the probability of satisfying the propositional formula.

In recent years, the SSAT framework has attracted interest within the Artificial In-
telligence community, as many problems from that area involving uncertainty have con-
cise descriptions as SSAT problems, in particular probabilistic planning problems [LMP01,
ML98, ML03]. Inspired by that work, other communities have started to exploit SSAT and
closely related formalisms within their domains. The Constraint Programming community
is working on stochastic constraint satisfaction problems [Wal02, BS06] to address, among
others, multi-objective decision making under uncertainty [BS07]. Recently, a technique
for the symbolic analysis of probabilistic hybrid systems based on stochastic satisfiability
has been suggested by the authors [FHT08, TF09, FTE10, TEF11]. To this end, SSAT
has been extended by embedded theory reasoning over arithmetic theories, as known from
satisfiability modulo theories (SMT) [BSST09], which yields the notion of stochastic satis-

fiability modulo theories (SSMT). By the expressive power of SSMT, bounded probabilistic
reachability problems of uncertain hybrid systems can be phrased symbolically as SSMT
formulae yielding the same probability of satisfaction [FHT08, TF09, FTE10, TEF11]. As
this bounded model checking approach yields valid lower bounds lb of the probability of
reaching undesirable system states along unbounded runs, it is able to falsify probabilistic
safety requirements of shape “a system error occurs with probability at most 0.1h”, namely
if a lower bound lb > 0.1h is computed.

Though the general SSAT problem and even its restriction to 2CNF, i.e. to formu-
lae in conjunctive normal form containing clauses with two literals only, are PSPACE-
complete [TF10], the plethora of real-world applications calls for practically efficient al-
gorithms. The first SSAT algorithm, suggested by Littman [Lit99], extends the Davis-
Putnam-Logemann-Loveland (DPLL) procedure [DP60, DLL62] for SAT with appropriate
quantifier handling and algorithmic optimizations like thresholding. Majercik further im-
proved the DPLL-based SSAT algorithm by non-chronological backtracking [Maj04]. The
SSMT algorithm from [FHT08, TF08, TF09, TEF11] being implemented in the SSMT
tool SiSAT builds on the DPLL-based SSAT procedures plus conflict-driven clause learn-
ing, but also integrates an underlying theory solver addressing non-linear arithmetics, and
was successfully applied to realistic case studies featuring hybrid discrete-continuous state
spaces [TF09, FTE10, TEF11]. Unlike these explicit tree-traversal approaches and mo-
tivated by work on resolution for propositional and first-order formulae [Rob65] and for
quantified Boolean formulae (QBF) [BKF95], the authors have recently developed an alter-
native SSAT procedure based on resolution [TF10].

In this article, we investigate the concept of Craig interpolation for SSAT. Given two
formulae A and B for which A ⇒ B is true, a Craig interpolant [Cra57] I is a formula
over variables common to A and B that “lies in between” A and B in the sense that
A ⇒ I and I ⇒ B. In the automatic hardware and software verification communi-
ties, Craig interpolation has found widespread use in model checking algorithms, both as
a means of extracting reasons for non-concretizability of a counterexample obtained on
an abstraction as well as for obtaining a symbolic description of reachable state sets. In
McMillan’s approach [McM03, McM05], interpolants are used to symbolically describe an
overapproximation of the step-bounded reachable state set. If the sequence of interpolants

GENERALIZED CRAIG INTERPOLATION FOR SSAT 3

y = true

x = true

p = 0.3
y = true

p = 0.3

Pr = 1 Pr = 0 Pr = 0 Pr = 1

Pr = 0.3 · 0 + 0.7 · 1 = 0.7

x

Pr = 0.3 · 1 + 0.7 · 0 = 0.3
y y

Pr(Φ) = max(0.3, 0.7) = 0.7

x = false

y = false

p = 0.7p = 0.7

truetrue false false

Φ = ∃x

R0.3y : (x ∨ ¬y) ∧ (¬x ∨ y)

y = false

Figure 1: Semantics of an SSAT formula depicted as a tree.

thus obtained stabilizes eventually, i.e. no additional state is found to be reachable, then
the corresponding state-set predicate R has all reachable system states as its models. The
safety property that states satisfying B, where B is a predicate, are never reachable is then
verified by checking R ∧B for unsatisfiability.

Given McMillan’s verification approach to reachability analysis of non-probabilistic sys-
tems based on Craig interpolation for SAT, it is natural to ask whether a corresponding
probabilistic counterpart can be developed, i.e. a verification approach to probabilistic reach-

ability analysis of probabilistic systems based on Craig interpolation for stochastic SAT. Such
an approach would complement the aforementioned falsification procedure for probabilistic
systems based on SSAT/SSMT. In this article, we suggest a solution to the issue above.

In addition to probabilistic state reachability, we address the problem of probabilistic
region stability. The latter problem is motivated by the notion of region stability for non-
probabilistic hybrid systems [PW07a, PW07b], where a system is called stable with respect
to some region R iff all system runs eventually reach R and finally stay in R forever. In
this article, we suggest an adaptation of region stability to the probabilistic case along
with a symbolic, interpolation-based procedure for the verification of probabilistic stability
properties like “the probability that the system stabilizes within region R is at least 99.9%”.

Structure of the article. After a formal introduction to SSAT in Section 1, Section 2 is de-
voted to a generalization of the notion of Craig interpolants suitable for SSAT. Thereafter,
Section 3 elaborates on an algorithm for computing such generalized Craig interpolants,
which relies on a resolution calculus for SSAT. The application of generalized Craig in-
terpolation to the symbolic analysis of probabilistic systems, namely to probabilistic state
reachability as well as to probabilistic region stability, is then addressed in Section 4, where
applicability of these novel techniques is illustrated on small examples. Section 5 finally
concludes the article.

1. Stochastic Boolean satisfiability

A stochastic Boolean satisfiability (SSAT) formula is of the form Φ = Q : ϕ with a prefix
Q = Q1x1 . . . Qnxn of quantified propositional variables xi, where Qi is either an existential
quantifier ∃ or a randomized quantifier

Rpi with a rational constant 0 < pi < 1, and a
propositional formula ϕ such that Var(ϕ) ⊆ {x1, . . . , xn}, where Var(ϕ) denotes the set
of all (necessarily free) variables occurring in ϕ. Note that SSAT formula Φ thus has
no free variables. Without loss of generality, we assume that ϕ is in conjunctive normal

4 T. TEIGE AND M. FRÄNZLE

form (CNF), i.e. a conjunction of disjunctions of propositional literals. A literal ℓ is a
propositional variable, i.e. ℓ = xi, or its negation, i.e. ℓ = ¬xi. A clause is a disjunction
of literals. Throughout the article and without loss of generality, we require that a clause
does not contain the same literal more than once as ℓ ∨ ℓ ≡ ℓ. Consequently, we may also
identify a clause with its set of literals. The semantics of Φ, as illustrated in Figure 1, is
defined by the maximum probability of satisfaction Pr(Φ) as follows.

Pr(ε : ϕ) =

{
0 if ϕ is logically equivalent to false

1 if ϕ is logically equivalent to true

Pr(∃x Q : ϕ) = max(Pr(Q : ϕ[true/x]), P r(Q : ϕ[false/x]))
Pr(

Rpx Q : ϕ) = p · Pr(Q : ϕ[true/x]) + (1− p) · Pr(Q : ϕ[false/x])

Note that the semantics is well-defined as Φ has no free variables such that all variables
have been substituted by the constants true and false when reaching the quantifier-free
base case.

2. Generalized Craig interpolants

Craig interpolation [Cra57] is a well-studied notion in formal logics which has several ap-
plications in Computer Science, among them model checking [McM03, McM05]. Given two
formulae ϕ and ψ such that ϕ ⇒ ψ is valid, a Craig interpolant for (ϕ,ψ) is a formula I
which refers only to common variables of ϕ and ψ, and I is “intermediate” in the sense that
ϕ ⇒ I and I ⇒ ψ. Such interpolants do trivially exist in all logics permitting quantifier
elimination, for instance, in propositional logic. The observation that ϕ ⇒ ψ holds iff
ϕ ∧ ¬ψ is unsatisfiable gives rise to an equivalent definition which we refer to in the rest of
the article:1 given an unsatisfiable formula ϕ ∧ ¬ψ, a formula I is a Craig interpolant for
(ϕ,ψ) iff both ϕ∧¬I and I ∧¬ψ are unsatisfiable and I mentions only common variables.

In this section, we investigate the issue of Craig interpolation for stochastic SAT. We
propose a generalization of Craig interpolants suitable for SSAT and show the general
existence of such interpolants. In Section 3, we then devote our attention to an automatic
method for computing generalized Craig interpolants based on a resolution calculus for
SSAT.

When approaching a reasonable definition of interpolants for SSAT, the semantics of
the non-classical quantifier prefix poses problems: Let Φ = Q : (A∧B) be an SSAT formula.
Each variable in A ∧ B is bound by Q, which provides the probabilistic interpretation of
the variables that is lacking without the quantifier prefix. This issue can be addressed
by considering the quantifier prefix Q as the global setting that serves to interpret the
quantifier-free part, and consequently interpreting the interpolant also within the scope of
Q, thus reasoning aboutQ : (A∧¬I) andQ : (I∧B). A more fundamental problem is that a
classical Craig interpolant for Φ only exists if Pr(Φ) = 0, since A∧B has to be unsatisfiable
by definition of a Craig interpolant which applies iff Pr(Q : (A∧B)) = 0. The precondition
that Pr(Q : (A∧B)) = 0 would be far too restrictive for application of interpolation, as the
notion of unsatisfiability of A ∧ B is naturally generalized to satisfiability with insufficient
probability, i.e. Pr(Q : (A ∧ B)) being “sufficiently small”, in the stochastic setting. Such

1This is of technical nature as SSAT formulae are interpreted by the maximum probability of satisfaction.
As the maximum probability that an implication ϕ ⇒ ψ holds is inappropriate for our purpose, we reason
about the maximum satisfaction probability p of the negated implication, i.e. of ϕ∧¬ψ, instead. The latter
relates to the minimum probability 1− p that ϕ ⇒ ψ holds, which is the desired notion.

GENERALIZED CRAIG INTERPOLATION FOR SSAT 5

relaxed requirements actually appear in practice, for instance, in probabilistic verification
where safety properties like “a fatal system error is never reachable” are frequently replaced
by probabilistic ones like “a fatal system error is reachable only with (sufficiently small)
probability of at most 0.1h”. Motivated by above facts, interpolants for SSAT should also
exist when A ∧B is satisfiable with reasonably low probability.

The resulting notion of interpolation, which is to be made precise in Definition 2.1,
matches the following intuition. In classical Craig interpolation, when performed in logics
permitting quantifier elimination, the Craig interpolants of (A,¬B) form a lattice with im-

plication as its ordering, A∃ = ∃a1, . . . aα : A as its bottom element andB
∀
= ¬∃b1, . . . bβ : B

as its top element, where the ai and bi are the local variables of A and of B, respectively.

In the generalized setting required for SSAT2, A ⇒ ¬B and thus A∃ ⇒ B
∀
may no longer

hold such that the above lattice can collapse to the empty set. To preserve the overall
structure, it is however natural to use the lattice of propositional formulae “in between”

A∃ ∧B
∀
as bottom element and A∃ ∨B

∀
as top element instead. This lattice is non-empty

and coincides with the classical one whenever A ∧B is unsatisfiable.

Definition 2.1 (Generalized Craig interpolant). Let A,B be propositional formulae and
VA := Var(A) \ Var(B) = {a1, . . . , aα}, VB := Var(B) \ Var (A) = {b1, . . . , bβ}, VA,B :=

Var(A)∩Var(B), A∃ = ∃a1, . . . , aα : A, and B
∀
= ¬∃b1, . . . , bβ : B. A propositional formula

I is called generalized Craig interpolant for (A,B) iff Var(I) ⊆ VA,B,
(

A∃ ∧B
∀
)

⇒ I,

and I ⇒
(

A∃ ∨B
∀
)

.

Given any two propositional formulae A and B, the four quantifier-free propositional

formulae equivalent to A∃ ∧ B
∀
, to A∃, to B

∀
, and to A∃ ∨ B

∀
, are generalized Craig

interpolants for (A,B). These generalized interpolants always exist since propositional
logic has quantifier elimination.

While Definition 2.1 motivates the generalized notion of Craig interpolant from a model-
theoretic perspective, we state an equivalent definition of generalized Craig interpolants in
Lemma 2.2 that substantiates the intuition of generalized interpolants and allows for an
illustration of their geometric shape. Given two formulae A and B, the idea of generalized
Craig interpolant is depicted in Figure 2. The set of solutions of A is defined by the rectangle
on the VA, VA,B-plane with a cylindrical extension in VB-direction as A does not contain
variables in VB . Similarly, the solution set of B is given by the triangle on the VB , VA,B-
plane and its cylinder in VA-direction. The solution set of A∧B is then determined by the
intersection of both cylinders. Since A∧B∧¬(A∧B) is unsatisfiable, the sets A∧¬(A∧B)
and B ∧ ¬(A∧B) are disjoint. This gives us the possibility to talk about interpolants wrt.
these sets. However, a formula I over only common variables in VA,B may not exist when
demanding A ∧ ¬(A ∧B)∧ ¬I and I ∧B ∧ ¬(A ∧B) to be unsatisfiable. This is indicated
by Figure 2 and proven by the simple example A = (a), B = (b). As VA,B = ∅, I is either
true or false. In first case, true∧ (b)∧¬(a∧ b) is satisfiable, while (a)∧¬(a∧ b)∧¬false
is in second case. If we however project the solution set of A ∧ B onto the VA,B-axis and
subtract the resulting hyperplane SA,B from A and B then such a formula I over VA,B-
variables exists. The next lemma formalizes such generalized interpolants I and shows their
equivalence to the ones from Definition 2.1.

2Though the concept seems to be more general, this article addresses SSAT only.

6 T. TEIGE AND M. FRÄNZLE

B

SA,B

A

I

VB

VA

VA,B

B

A ∧ B

A

SA,B

I

Figure 2: Geometric interpretation of a generalized Craig interpolant I. VA-, VB-, and
VA,B-axes denote assignments of variables occurring only in A, only in B, and in
both A and B, respectively.

Lemma 2.2 (Generalized Craig interpolant for SSAT). Let Φ = Q : (A ∧ B) be some

SSAT formula, VA, VB, VA,B be defined as in Definition 2.1, and SA,B be a propositional

formula with Var(SA,B) ⊆ VA,B such that SA,B ≡ ∃a1, . . . , aα, b1, . . . , bβ : (A ∧ B). Then,

a propositional formula I is a generalized Craig interpolant for (A,B) iff the following

properties are satisfied.

(1) Var(I) ⊆ VA,B

(2) Pr(Q : (A ∧ ¬SA,B ∧ ¬I)) = 0
(3) Pr(Q : (I ∧B ∧ ¬SA,B)) = 0

Proof. As Var (I) ⊆ VA,B holds for generalized Craig interpolants I, it remains to show

that (A∃ ∧ B
∀
) ⇒ I and I ⇒ (A∃ ∨ B

∀
) iff Pr(Q : (A ∧ ¬SA,B ∧ ¬I)) = 0 and Pr(Q :

(I ∧B ∧¬SA,B)) = 0. Observe that |= (A∃ ∧B
∀
) ⇒ I iff |= ∀a1, . . . , aα : (A∧B

∀
) ⇒ I iff

|= (A ∧B
∀
) ⇒ I iff |= (A ∧ (¬A∃ ∨B

∀
)) ⇒ I iff |= (A ∧ ¬SA,B) ⇒ I iff A ∧ ¬SA,B ∧ ¬I

is unsatisfiable iff Pr(Q : (A ∧ ¬SA,B ∧ ¬I)) = 0. Analogously, |= I ⇒ (A∃ ∨ B
∀
) iff

|= ∀b1, . . . , bβ : I ⇒ (A∃ ∨ ¬B) iff |= I ⇒ (A∃ ∨ ¬B) iff |= I ⇒ ((A∃ ∧ ¬B
∀
) ∨ ¬B) iff

|= I ⇒ (SA,B ∨ ¬B) iff I ∧ ¬SA,B ∧B is unsatisfiable iff Pr(Q : (I ∧B ∧ ¬SA,B)) = 0.

GENERALIZED CRAIG INTERPOLATION FOR SSAT 7

We remark that the concept of generalized Craig interpolants is a generalization of Craig
interpolants in the sense that whenever A∧B is unsatisfiable, i.e. when Pr(Q : (A∧B)) = 0,
then each generalized Craig interpolant I for (A,B) actually is a Craig interpolant for A
and B since SA,B ≡ false.

3. Computation of generalized Craig interpolants

In this section, we proceed to the efficient computation of generalized Craig interpolants.
The remark following Definition 2.1 shows that generalized interpolants can in principle
be computed by explicit quantifier elimination methods, like Shannon’s expansion or bi-
nary decision diagrams (BDDs). We aim at a more efficient method based on SSAT
resolution [TF10] akin to resolution-based Craig interpolation for propositional SAT by
Pudlák [Pud97]. The latter approach has been integrated into DPLL-based SAT solvers
featuring conflict analysis and successfully applied to symbolic model checking [McM03,
McM05]. To this end, we first recall the sound and complete resolution calculus for SSAT
from [TF10] in Section 3.1. Thereafter, SSAT resolution is enhanced in order to compute
generalized Craig interpolants in Section 3.2.

3.1. Resolution for SSAT. As basis of the SSAT interpolation procedure introduced in
Section 3.2, we recall the sound and complete resolution calculus for SSAT from [TF10],
subsequently called S-resolution. In contrast to SSAT algorithms implementing a DPLL-
based backtracking procedure, thereby explicitly traversing the tree given by the quantifier
prefix and recursively computing the individual satisfaction probabilities for each subtree
by the scheme illustrated in Figure 1, S-resolution follows the idea of resolution for propo-
sitional and first-order formulae [Rob65] and for QBF formulae [BKF95] by deriving new
clauses cp annotated with probabilities 0 ≤ p ≤ 1. S-resolution differs from non-stochastic
resolution, as such derived clauses cp need not be implications of the given formula, but
are just entailed with some probability. Informally speaking, the derivation of a clause cp

means that under SSAT formula Q : ϕ, the clause c is violated with a maximum probability
at most p, i.e. the satisfaction probability of Q : (ϕ∧¬c) is at most p. More intuitively, the
minimum probability that clause c is implied by ϕ is at least 1 − p.3 Once an annotated
empty clause ∅p is derived, it follows that the probability of the given SSAT formula is at
most p, i.e. Pr(Q : (ϕ ∧ ¬false)) = Pr(Q : ϕ) ≤ p.

In what follows, letQ : ϕ be an SSAT formula with ϕ in CNF. Without loss of generality,
ϕ contains only non-tautological clauses4, i.e. ∀c ∈ ϕ : 6|= c. Let Q = Q1x1 . . . Qnxn be the
quantifier prefix and ϕ be some propositional formula with Var(ϕ) ⊆ {x1, . . . , xn}. The
quantifier prefix Q(ϕ) is defined to be shortest prefix of Q that contains all variables from
ϕ, i.e. Q(ϕ) = Q1x1 . . . Qixi where xi ∈ Var (ϕ) and for each j > i : xj /∈ Var(ϕ). Let
further be Var(ϕ) ↓k:= {x1, . . . , xk} for each integer 0 ≤ k ≤ n. For a non-tautological
clause c, i.e. if 6|= c, we define the unique assignment ff c that falsifies c as the mapping

ff c : Var(c) → B such that ∀x ∈ Var(c) : ff c(x) =

{
true ; ¬x ∈ c,
false ; x ∈ c.

Consequently, c evaluates to false under assignment ff c.

3We remark that Pr(Q : ψ) = 1−Pr(Q′ : ¬ψ), where Q′ arises from Q by replacing existential quantifiers
by universal ones, where universal quantifiers call for minimizing the satisfaction probability.

4Tautological clauses c, i.e. |= c, are redundant, i.e. Pr(Q : (ϕ ∧ c)) = Pr(Q : ϕ).

8 T. TEIGE AND M. FRÄNZLE

Starting with clauses in ϕ, S-resolution is given by the consecutive application of
rules R.1 to R.3 to derive new clauses cp with 0 ≤ p ≤ 1. Rule R.1 derives a clause
c0 from an original clause c in ϕ. Referring to the definition of Pr(Q : ϕ) in Section 1,
R.1 corresponds to the quantifier-free base case where ϕ is equivalent to false under any
assignment that falsifies c.

c ∈ ϕ

c0
(R.1)

Similarly, R.2 reflects the quantifier-free base case in which ϕ is equivalent to true under any
assignment τ ′ that is conform to the partial assignment τ since |= ϕ[τ(x1)/x1] . . . [τ(xi)/xi].
The constructed clause c1 then encodes the opposite of this satisfying (partial) assignment
τ . We remark that finding such a τ in the premise of R.2 is NP-hard (equivalent to finding
a solution of a propositional formula in CNF). This strong condition on τ is not essential
for soundness and completeness and could be removed5 but, as mentioned above, facilitates
a less technical presentation of generalized interpolation in Section 3.2. Another argument
justifying the strong premise of R.2 is a potential integration of S-resolution into DPLL-
based SSAT solvers since whenever a satisfying (partial) assignment τ of ϕ is found by an
SSAT solver then τ meets the requirements of R.2.

c ⊆ {x,¬x|x ∈ Var(ϕ)}, 6|= c,Q(c) = Q1x1 . . . Qixi,
for each τ : Var(ϕ) ↓i→ B with ∀x ∈ Var(c) : τ(x) = ff c(x) :

|= ϕ[τ(x1)/x1] . . . [τ(xi)/xi]

c1
(R.2)

Rule R.3 finally constitutes the actual resolution rule as known from the non-stochastic
case. Depending on whether an existential or a randomized variable is resolved upon, the
probability value of the resolvent clause is computed according to the semantics Pr(Q : ϕ)
defined in Section 1.

(c1 ∨ ¬x)p1 , (c2 ∨ x)
p2 , Qx ∈ Q, Qx /∈ Q(c1 ∨ c2), 6|= (c1 ∨ c2),

p =

{
max(p1, p2) ; Q = ∃
px · p1 + (1− px) · p2 ; Q =

Rpx

(c1 ∨ c2)p
(R.3)

The derivation of a clause cp by R.1 from c, by R.2, and by R.3 from cp11 , c
p2
2 is denoted

by c ⊢R.1 cp, by ⊢R.2 cp, and by (cp11 , c
p2
2) ⊢R.3 cp, respectively. Given rules R.1 to R.3,

S-resolution is sound and complete in the following sense.

Lemma 3.1. Let clause cp be derivable by S-resolution and let Q(c) = Q1x1 . . . Qixi. For

each τ : Var(ϕ) ↓i→ B with ∀x ∈ Var(c) : τ(x) = ff c(x) it holds that Pr(Qi+1xi+1 . . . Qnxn :
ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) = p.

Proof. We show the lemma by induction over the application of rules R.1, R.2, and R.3.
The base case is given by rules R.1 and R.2. By construction of τ , ϕ[τ(x1)/x1] . . . [τ(xi)/xi]
is unsatisfiable for R.1 and tautological for R.2 which immediately establishes the result for
the base case. Now assume that the assumption holds for all clauses in the premises of R.3,
i.e.

Pr(Qj+1xj+1 . . . Qnxn : ϕ[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj]) = p1,
P r(Qj+1xj+1 . . . Qnxn : ϕ[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj]) = p2,

5Then, Lemma 3.1 must be weakened to Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ (x1)/x1] . . . [τ (xi)/xi]) ≤ p, as for
original S-resolution [TF10].

GENERALIZED CRAIG INTERPOLATION FOR SSAT 9

where xj = x with j ≥ i+1. By definition of Pr, for each τ with τ(x) = τ1(x) if x ∈ Var (c1)
and τ(x) = τ2(x) if x ∈ Var(c2) we then have

Pr(Qjxj Qj+1xj+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) = p.

The result is obvious for j = i+ 1. For j > i+ 1, note that variables xi+1, . . . , xj−1 do not
occur in the derived clause (c1 ∨ c2). Hence, for k = j − 1 down to i + 1 we successively
conclude that

Pr(Qk+1xk+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xk−1)/xk−1][true/xk]) = p,
Pr(Qk+1xk+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xk−1)/xk−1][false/xk]) = p.

From case k = i+ 1 the lemma follows.

Corollary 3.2 (Soundness of S-resolution). If the empty clause ∅p is derivable by S-

resolution from a given SSAT formula Q : ϕ then Pr(Q : ϕ) = p.

Corollary 3.2 follows directly from Lemma 3.1, namely for the special case cp = ∅p.
Theorem 3.3 shows completeness of S-resolution.

Theorem 3.3 (Completeness of S-resolution). If Pr(Q : ϕ) = p for some SSAT formula

Q : ϕ then the empty clause ∅p is derivable from Q : ϕ by S-resolution.

Proof. If ∅ ∈ ϕ, i.e. ϕ contains the empty clause, then p = 0 and the empty clause ∅0 is
derivable by rule R.1. In the remaining proof, we assume that ∅ /∈ ϕ. We prove the theorem
by induction over the number of quantifiers in the quantifier prefix Q. For the base case
Q = Qx we distinguish three cases: 1) ϕ = (¬x) ∧ (x). Then p = 0, and (¬x)0, (x)0

are derivable by R.1, and R.3 finally yields ∅0. 2) ϕ = (¬x). Clauses (¬x)0 and (x)1 are
derivable by R.1 and R.2, respectively, the latter since |= ϕ[false/x]. If Q = ∃ or Q =

Rpx

then p = 1 or p = (1−px), and ∅1 or ∅(1−px) can be derived by R.3, respectively. 3) ϕ = (x).
Analogously to 2), if Q = ∃ or Q =

Rpx then p = 1 or p = px, and ∅1 or ∅px can be derived
by R.3, respectively.

In the induction step, we show that ∅p is derivable for Pr(QxQ : ϕ) = p. Let
p1 = Pr(Q : ϕ[true/x]) and p2 = Pr(Q : ϕ[false/x]). Induction hypothesis assumes
that ∅p1 and ∅p2 are derivable from Q : ϕ[true/x] and Q : ϕ[false/x]. Applying the res-
olution sequence deriving ∅p1 from Q : ϕ[true/x] on Qx Q : ϕ yields either ∅p1 or (¬x)p1 .
Analogously, either ∅p2 or (x)p2 is derivable from Qx Q : ϕ. If ∅p1 (respectively, ∅p2) was
derived then p = p1 (respectively, p = p2) by Corollary 3.2. (Note that if both ∅p1 and ∅p2

are derivable then p1 = p2.) Otherwise, i.e. (¬x)p1 and (x)p2 are derived, application of R.3
gives ∅p.

The above presentation of S-resolution differs slightly from [TF10] in order to avoid
overhead in interpolant generation incurred when employing the original definition, like the
necessity of enforcing particular resolution sequences. For readers familiar with [TF10], the
particular modifications are: 1) derived clauses cp may also carry value p = 1, 2) former
rules R.2 and R.5 are joined into the new rule R.2, and 3) former rules R.3 and R.4 are
collapsed into rule R.3. These modifications do not affect soundness and completeness of
S-resolution, confer Corollary 3.2 and Theorem 3.3. The advantage of the modification is
that derivable clauses cp are forced to have a tight bound p in the sense that under each
assignment which falsifies c, the satisfaction probability of the remaining subproblem exactly

is p, confer Lemma 3.1. This fact confirms the conjecture from [TF10, page 14] about the
existence of such clauses (c ∨ ℓ)p and allows for a generalized clause learning scheme to be
integrated into DPLL-SSAT solvers: the idea is that under a partial assignment falsifying

10 T. TEIGE AND M. FRÄNZLE

c, one may directly propagate literal ℓ as the satisfaction probability of the other branch,
for which the negation of ℓ holds, is known to be p already.

Example of S-resolution. Consider the SSAT formula Φ =

R0.8x1 ∃x2

R0.3x3 : ((x1 ∨ x2) ∧
(¬x2) ∧ (x2 ∨ x3)) with Pr(Φ) = 0.24. Clauses (x1 ∨ x2)

0, (¬x2)
0, (x2 ∨ x3)

0 are then
derivable by R.1. As x1 = true, x2 = false, x3 = true is a satisfying assignment, ⊢R.2

(¬x1 ∨ x2 ∨¬x3)
1. Then, ((¬x1 ∨ x2 ∨ ¬x3)

1, (x2 ∨ x3)
0) ⊢R.3 (¬x1 ∨ x2)

0.3, ((¬x2)
0, (¬x1 ∨

x2)
0.3) ⊢R.3 (¬x1)

0.3, ((¬x2)
0, (x1 ∨ x2)

0) ⊢R.3 (x1)
0, and finally ((¬x1)

0.3, (x1)
0) ⊢R.3 ∅0.24.

3.2. Interpolating resolution for SSAT. We now devote our attention to the com-
putation of generalized Craig interpolants for SSAT by means of an enhanced version of
S-resolution, which is akin to resolution-based Craig interpolation for propositional SAT
by Pudlák [Pud97]. We remark that on SSAT formulae Q : (A ∧ B), Pudlák’s algorithm,
which has unsatisfiability of A∧B as precondition, will not work in general. When instead
considering the unsatisfiable formula A ∧ B ∧ ¬SA,B with ¬SA,B in CNF then Pudlák’s
method would be applicable and would actually produce a generalized Craig interpolant.
The main drawback of this approach however is the explicit construction of ¬SA,B, calling
for explicit quantifier elimination.

In the following, we propose an algorithm based on S-resolution for computing general-
ized Craig interpolants which operates directly on A ∧ B without adding ¬SA,B, and thus
does not comprise any preprocessing involving quantifier elimination. For this purpose, the
rules of S-resolution are enhanced to deal with pairs (cp, I) of annotated clauses cp and
propositional formulae I. Such formulae I are in a certain sense intermediate generalized
interpolants, i.e. generalized interpolants for subformulae arising from instantiating some
variables by partial assignments that falsify c, confer Lemma 3.4. Once a pair (∅p, I) com-
prising the empty clause is derived, I thus is a generalized Craig interpolant for the given
SSAT formula. This augmented S-resolution, which we call interpolating S-resolution, is
defined by rules RI.1, RI.2, and RI.3. The construction of intermediate interpolants I in
RI.1 and RI.3 coincides with the classical rules by Pudlák [Pud97], while RI.2 misses a
corresponding counterpart. The rationale is that RI.2 (or rather R.2) refers to satisfying
valuations τ of A ∧ B, which do not exist in classical interpolation. As A ∧ B becomes a
tautology after substituting the partial assignment τ from R.2 into it, its quantified vari-
ant SA,B = ∃a1, . . . , b1, . . . : A ∧ B also becomes tautological under the same substitution
SA,B[τ(x1)/x1, . . . , τ(xi)/xi]. Consequently, ¬SA,B[τ(x1)/x1, . . . , τ(xi)/xi] is unsatisfiable,
and so are (A ∧ ¬SA,B)[τ(x1)/x1, . . . , τ(xi)/xi] and (B ∧ ¬SA,B)[τ(x1)/x1, . . . , τ(xi)/xi].
This implies that the actual intermediate interpolant in RI.2 can be chosen arbitrarily over
variables in VA,B. This freedom will allow us to control the geometric extent of general-
ized interpolants within the “don’t care”-region provided by the models of SA,B, confer
Corollary 3.6.

c ⊢R.1 c
p, I =

{
false ; c ∈ A
true ; c ∈ B

(cp, I)
(RI.1)

⊢R.2 c
p, I is any formula over VA,B

(cp, I)
(RI.2)

GENERALIZED CRAIG INTERPOLATION FOR SSAT 11

((c1 ∨ ¬x)p1 , I1), ((c2 ∨ x)
p2 , I2),

((c1 ∨ ¬x)p1 , (c2 ∨ x)
p2) ⊢R.3 (c1 ∨ c2)

p,

I =

I1 ∨ I2 ; x ∈ VA
I1 ∧ I2 ; x ∈ VB

(¬x ∨ I1) ∧ (x ∨ I2) ; x ∈ VA,B

((c1 ∨ c2)p, I)
(RI.3)

The following lemma establishes the theoretical foundation of computing generalized Craig
interpolants by interpreting the derived pairs (cp, I).

Lemma 3.4. Let Φ = Q : (A∧B) with Q = Q1x1 . . . Qnxn be some SSAT formula, and the

pair (cp, I) be derivable from Φ by interpolating S-resolution, where Q(c) = Q1x1 . . . Qixi.
Then, for each τ : Var(A ∧B) ↓i→ B with ∀x ∈ Var(c) : τ(x) = ff c(x) it holds that

(1) Var(I) ⊆ VA,B,

(2) Pr(Qi+1xi+1 . . . Qnxn : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0, and
(3) Pr(Qi+1xi+1 . . . Qnxn : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0.

Proof. We prove the lemma by induction over application of the interpolating S-resolution
rules RI.1, RI.2, and RI.3. In the base case, we can just apply RI.1 and RI.2. Item 1 clearly
holds for both rules since I contains only variables in VA,B. Let us consider RI.1 first. If
c ∈ A then I = false. By construction of τ , i.e. c evaluates to false under τ , it follows
that A[τ(x1)/x1] . . . [τ(xi)/xi] is unsatisfiable and thus

Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 .

As I = false, immediately

Pr(Q′ : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 .

If c ∈ B then I = true. Obviously,

Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0

and by construction of τ ,

Pr(Q′ : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 .

For rule RI.2, we have |= (A∧B)[τ(x1)/x1] . . . [τ(xi)/xi] which immediately implies that |=
(∃a1, . . . , aα, b1, . . . , bβ : (A∧B))[τ(x1)/x1] . . . [τ(xi)/xi], i.e. |= SA,B[τ(x1)/x1] . . . [τ(xi)/xi]
by definition of SA,B. Rephrasing the latter, ¬SA,B[τ(x1)/x1] . . . [τ(xi)/xi] is unsatisfiable.
Consequently, for any propositional formula I

Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 ,

P r(Q′ : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 .

This proves items 2 and 3 for the base case.
In the induction step, we now assume that the lemma holds for all clauses in the premises

of rule RI.3. Then, by construction of I, item 1 clearly holds for I, i.e. Var(I) ⊆ VA,B.
Induction hypothesis assumes that

Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I1)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj]) = 0 ,

P r(Q′ : (I1 ∧B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj]) = 0

12 T. TEIGE AND M. FRÄNZLE

holds for ((c1 ∨ ¬xj)
p1 , I1) and for each τ1 : Var(A ∧ B) ↓j−1→ B with ∀x ∈ Var(c1) :

τ1(x) = ff c1
(x), and that

Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I2)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj]) = 0 ,

P r(Q′ : (I2 ∧B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj]) = 0

holds for ((c2∨xj)
p2 , I2) and for each τ2 : Var(A∧B) ↓j−1→ B with ∀x ∈ Var(c2) : τ2(x) =

ff c2
(x), where j ≥ i+ 1 and Q′ = Qj+1xj+1 . . . Qnxn. Let τ : Var (A ∧B) ↓j−1→ B be any

assignment with τ(x) = τ1(x) if x ∈ Var(c1) and τ(x) = τ2(x) if x ∈ Var(c2). Note that τ
is well-defined as 6|= (c1 ∨ c2), i.e. for each x ∈ Var(c1) ∩ Var(c2) : τ1(x) = τ2(x). We now
show that

PrA := Pr(QjxjQ
′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) = 0 ,

P rB := Pr(QjxjQ
′ : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) = 0

by proving that

PrA,x := Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xj−1)/xj−1][true/xj]) = 0 ,

P rA,¬x := Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xj−1)/xj−1][false/xj]) = 0 ,

P rB,x := Pr(Q′ : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1][true/xj]) = 0 ,

P rB,¬x := Pr(Q′ : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1][false/xj]) = 0 .

We therefore distinguish the three cases xj ∈ VA, xj ∈ VB , and xj ∈ VA,B.
First, let be xj ∈ VA. Then, I = I1 ∨ I2. By induction hypothesis and by construction

of I,

0 = Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I1)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

≥ Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I1 ∧ ¬I2)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

= Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj]) .

Due to construction of τ , it holds in particular that

0 = PrA,x .

Analogously,

0 = Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I2)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

≥ Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I1 ∧ ¬I2)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

= Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

and thus

0 = PrA,¬x .

As xj /∈ Var(I) ∪ Var(B) ∪Var (¬SA,B), for each v ∈ B it holds that

Pr(Q′ : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1][v/xj])

= Pr(Q′ : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1])

which implies PrB,x = PrB,¬x. We conclude from induction hypothesis that

Pr(Q′ : (I1 ∧B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1]) = 0 ,

GENERALIZED CRAIG INTERPOLATION FOR SSAT 13

Pr(Q′ : (I2 ∧B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1]) = 0

again by virtue of xj /∈ Var(I) ∪ Var(B) ∪ Var(¬SA,B). Moreover,

Pr(Q′ : (I1 ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) = 0 ,

P r(Q′ : (I2 ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) = 0

due to construction of τ . Note that if Pr(Q : ϕ1) = 0 and Pr(Q : ϕ2) = 0 then Pr(Q :
(ϕ1 ∨ ϕ2)) = 0 since Pr(Q : ϕ) = 0 if and only if ϕ is unsatisfiable.6 As a consequence,

0 = Pr

(

Q′ :

(
(I1 ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]

∨ (I2 ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]

))

= Pr(Q′ : ((I1 ∨ I2) ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1])

= Pr(Q′ : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1])

= PrB,x = PrB,¬x .

Second, let be xj ∈ VB . Then, I = I1 ∧ I2. As xj /∈ Var(A) ∪ Var(¬SA,B) ∪ Var(¬I),
with the same argument as above,

0 = Pr

(

Q′ :

(
(A ∧ ¬SA,B ∧ ¬I1)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]

∨ (A ∧ ¬SA,B ∧ ¬I2)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]

))

= Pr(Q′ : (A ∧ ¬SA,B ∧ (¬I1 ∨ ¬I2))[τ(x1)/x1] . . . [τ(xj−1)/xj−1])

= Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xj−1)/xj−1])

= PrA,x = PrA,¬x .

Again following the reasoning above, we have

0 = Pr(Q′ : (I1 ∧B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

≥ Pr(Q′ : (I1 ∧ I2 ∧B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

= Pr(Q′ : (I ∧B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

and thus

0 = PrB,x

as well as

0 = Pr(Q′ : (I2 ∧B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

≥ Pr(Q′ : (I1 ∧ I2 ∧B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

= Pr(Q′ : (I ∧B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj]) ,

and thus

0 = PrB,¬x .

Third, let be xj ∈ VA,B. Then, I = (¬xj ∨ I1) ∧ (xj ∨ I2), and we deduce

0 = Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I1)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

6This statement is not true in general if Q also contains universal quantifiers, which is not the case in
this article. However, extensions of SSAT involving universal quantifiers have also been considered in the
literature, confer [Maj09].

14 T. TEIGE AND M. FRÄNZLE

= Pr(Q′ : (A ∧ ¬SA,B

∧ ((xj ∧ ¬I1) ∨ (¬xj ∧ ¬I2)))[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

= Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

and, in particular,

0 = PrA,x .

Analogously,

0 = Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I2)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

= Pr(Q′ : (A ∧ ¬SA,B

∧ ((xj ∧ ¬I1) ∨ (¬xj ∧ ¬I2)))[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

= Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

and, in particular,

0 = PrA,¬x .

Furthermore,

0 = Pr(Q′ : (I1 ∧B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

= Pr(Q′ : ((¬xj ∨ I1) ∧ (xj ∨ I2) ∧B

∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

= Pr(Q′ : (I ∧B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

and, in particular,

0 = PrB,x .

Finally,

0 = Pr(Q′ : (I2 ∧B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

= Pr(Q′ : ((¬xj ∨ I1) ∧ (xj ∨ I2) ∧B

∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

= Pr(Q′ : (I ∧B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

and, in particular,

0 = PrB,¬x .

Having shown that PrA,x = PrA,¬x = PrB,x = PrB,¬x = 0, we can now prove the interme-
diate result above, i.e. PrA = PrB = 0. If Qj = ∃ then PrA = max(PrA,x, P rA,¬x) = 0 and
PrB = max(PrB,x, P rB,¬x) = 0, and ifQj =

Rpx then PrA = px·PrA,x+(1−px)·PrA,¬x = 0
and PrB = px · PrB,x + (1− px) · PrB,¬x = 0.

To finish the proof, we finally need to show that items 2 and 3, i.e.

Pr(Qi+1xi+1 . . . Qnxn : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 ,

GENERALIZED CRAIG INTERPOLATION FOR SSAT 15

Pr(Qi+1xi+1 . . . Qnxn : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 ,

follow from PrA = PrB = 0, i.e. from

Pr(Qjxj . . . Qnxn : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) = 0 ,

P r(Qjxj . . . Qnxn : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) = 0 .

If j = i+1 then the result is obvious. Otherwise, i.e. if j > i+1, the variables xi+1, . . . , xj−1

do not occur in the derived clause (c1 ∨ c2) since Q(c1 ∨ c2) = Q1x1 . . . Qixi. By definition
of assignment τ , for k = j − 1 down to i+ 1 we may therefore successively conclude that

Pr(Qk+1xk+1 . . . Qnxn :

(A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xk−1)/xk−1][true/xk]) = 0 ,

P r(Qk+1xk+1 . . . Qnxn :

(A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xk−1)/xk−1][false/xk]) = 0 ,

P r(Qk+1xk+1 . . . Qnxn :

(I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xk−1)/xk−1][true/xk]) = 0 ,

P r(Qk+1xk+1 . . . Qnxn :

(I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xk−1)/xk−1][false/xk]) = 0 .

From case k = i+ 1 the result immediately follows.

Completeness of S-resolution, as stated in Theorem 3.3, together with above Lemma 3.4,
applied to the derived pair (∅p, I), yields

Corollary 3.5 (Generalized Craig interpolants computation). If Q : (A ∧ B) is an SSAT

formula then a generalized Craig interpolant for (A,B) can be computed by interpolating

S-resolution.

Note that computation of generalized interpolants does not depend on the actual truth
state of A ∧ B. The next observation facilitates to effectively control the geometric extent
of generalized Craig interpolants within the “don’t care”-region SA,B. This result will be
useful within applications of generalized Craig interpolation to the symbolic analysis of
probabilistic systems being investigated in Section 4.

Corollary 3.6 (Controlling generalized Craig interpolants computation). If I = true is

used within each application of rule RI.2 then Pr(Q : (A∧¬I)) = 0. Likewise, if I = false

is used in rule RI.2 then Pr(Q : (I ∧B)) = 0.

Proof. The proof works analogously to the one of Lemma 3.4. For the base case, it is
clear that the desired property for RI.1 is independent of ¬SA,B. For RI.2, if I = true

then clearly Pr(Q′ : (A ∧ ¬I)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0, and if I = false then Pr(Q′ :
(I ∧ B)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0. Then, we can modify the induction hypothesis: for
case “I = true in RI.2”, we assume that Pr(Q′ : (A ∧ ¬I1)[τ1(x1)/x1] . . . [true/xj]) = 0,
Pr(Q′ : (A ∧ ¬I2)[τ2(x1)/x1] . . . [false/xj]) = 0, and for “I = false in RI.2” that Pr(Q′ :
(I1 ∧B)[τ1(x1)/x1] . . . [true/xj]) = 0, Pr(Q′ : (I2 ∧B)[τ2(x1)/x1] . . . [false/xj]) = 0. The
induction step then follows the same reasoning as in the remaining proof of Lemma 3.4.

16 T. TEIGE AND M. FRÄNZLE

(
∅0.12,¬x ∨ (y ∧DC)

)

(
(¬a)0.15,¬x ∨ (y ∧DC)

)

(
(¬a ∨ ¬x ∨ ¬y)0.3, DC

)

(
(¬a ∨ ¬x)0.15, y ∧DC

)

(
(a)0,¬x

)

1) DC = true ; I1 = ¬x ∨ y 2) DC = false ; I2 = ¬x

(
(¬a ∨ ¬x ∨ ¬y ∨ ¬b)1, DC

)(
(¬y ∨ b)0, true

)(
(y)0, false

)(
(a ∨ ¬x)0, false

) (
(x)0, true

)

Φ =

R0.8a ∃x

R0.5y

R0.3b : (

A
︷ ︸︸ ︷

(y) ∧ (a ∨ ¬x) ∧

B
︷ ︸︸ ︷

(x) ∧ (¬y ∨ b))

y

a

b

x

y

a

b

x

B

A

B

A

SA,B SA,B

RI.3 RI.3

RI.3

RI.3

RI.3

RI.2RI.1RI.1RI.1RI.1

Figure 3: Example of interpolating S-resolution and illustration of the resulting generalized
Craig interpolants by means of Karnaugh-Veitch diagrams. Arrows denote appli-
cations of the specified interpolating S-resolution rules, while DC stands for any
formula over VA,B as in rule RI.2.

Observe that the special interpolants I from Corollary 3.6 relate to the classical strongest

and weakest Craig interpolants A∃ and B
∀
, respectively, in the following sense: Pr(Q :

(A∧¬I)) = 0 iff |= A ⇒ I iff |= ∀a1, . . . , aα : (A ⇒ I) iff |= (A∃ ⇒ I), as a1, . . . , aα do not
occur in I. Analogously, Pr(Q : (I ∧B)) = 0 iff |= I ⇒ ¬B iff |= ∀b1, . . . , bβ : (I ⇒ ¬B)

iff |= I ⇒ B
∀
.

GENERALIZED CRAIG INTERPOLATION FOR SSAT 17

0.1

0.9 0.4
0.6

1

1

0.5 0.5

i

f

s

e

b

a

Figure 4: A simple MDP M.

Example of computing generalized Craig interpolants by interpolating S-resolution. For an
example of interpolating S-resolution, consider the SSAT formula Φ =

R0.8a ∃x

R0.5y

R0.3b :
(A∧B) with A = ((y)∧ (a∨¬x)) and B = ((x)∧ (¬y∨ b)). Then, VA = {a}, VB = {b}, and
VA,B = {x, y}. It is not hard to see that the only satisfying assignment τ of the propositional
formula A∧B is given by τ(a) = true, τ(x) = true, τ(y) = true, and τ(b) = true. Hence,
Pr(Φ) = 0.12. A derivation of the empty clause ∅0.12 together with its associated generalized
Craig interpolant ¬x∨ (y∧DC) is shown in Figure 3, while DC stands for any formula over
variables in VA,B as in rule RI.2. Note that pair ((¬a ∨ ¬x ∨ ¬y ∨ ¬b)1,DC) is derivable
by rule RI.2 since |= (A ∧ B)[τ(a)/a][τ(x)/x][τ(y)/y][τ(b)/b]. Applying Corollary 3.6 by
choosing DC = true and DC = false, we obtain the generalized Craig interpolants I1 =
¬x∨y and I2 = ¬x, respectively, such that Pr(Q : (A∧¬I1)) = 0 and Pr(Q : (I2∧B)) = 0.
In other words, A ⇒ I1 and I2 ⇒ ¬B, as illustrated by the Karnaugh-Veitch diagrams in
Figure 3.

4. Applications of generalized Craig interpolation to analysis of

probabilistic systems

In this section, we investigate the application of generalized Craig interpolation to the
symbolic analysis of probabilistic systems. We direct our attention to two analysis goals,
namely to probabilistic state reachability in Section 4.1 as well as to probabilistic region

stability in Section 4.2. As a system model, we consider finite-state Markov decision pro-
cesses (MDPs) [Bel57]. An MDP M = (ı, S,Act , ps(·, ·, ·)) is a finite-state system in which
state changes are subject to non-deterministic selection among available actions followed
by a probabilistic choice among potential successor states, while the probability distribu-
tion of the latter choice depends on the selected action. More precisely, S is a finite set
of states, ı ∈ S is the initial state, Act is a finite set of actions, and ps(s, a, s′) gives the
probability that M performs a transition step from s ∈ S to s′ ∈ S under action a ∈ Act .
For an example, consider the simple MDP M from Figure 4 where ı = i, S = {i, f, e, s},
and Act = {a, b}. A transition ps(z, act , z′) = p > 0 is indicated by an arrow from z to
z′ accompanied by action act and by the corresponding transition probability p. If two
states are not connected by an arrow then the corresponding transition probability is 0,
and if no action is specified then that transition is feasible for all actions. A probability
measure of an MDP is well-defined only if considering a particular scheduler σ resolving
the non-determinism. That is, σ schedules the action for the current state. Different such

18 T. TEIGE AND M. FRÄNZLE

schedulers σ have been investigated in the literature, confer, for instance, [BHKH05]: σ
may select the next action either in a deterministic or randomized fashion. In both cases,
σ may have access to and thus base its selection on either the current state only or the full
system history. In our scenarios, we do not manipulate schedulers explicitly, but define the
probability measures obtained by worst-case deterministic schedulers achieving maximum
or minimum, depending on how the worst case is understood, probability of reaching target
states directly as the limit of a recursive function over N. For each k ∈ N, the recursive
function determines the maximum or minimum probability of reaching target states within
k steps, as achieved by a worst-case history-dependent scheduler. As a worst-case history-
dependent scheduler will always maximize or minimize the probability of reaching the target
within the remaining number of steps, its performance coincides with the probabilities com-
puted by a backward induction resolving non-deterministic choices by taking the maximum
or minimum, respectively, of the probability values obtained from the next-lower recursion
depth.

All experiments mentioned in this section were performed on a 1.83 GHz Intel Core 2
Duo machine with 1 GByte physical memory running Linux.

4.1. Interpolation-based probabilistic state reachability. Let be given an MDP M
and a set of target states Target ⊆ S in M. With regard to probabilistic state reachability,
the goal is to compute the probability of reaching the target states Target from the initial
state ı under some explicitly or implicitly (e.g., by an optimality condition) given scheduler
σ. In most applications, the target states are considered to be bad, for instance, to be fatal
system errors, such that one is faced with computing the worst-case probability of reaching
the bad states, i.e. maximizing the reachability probability under each possible scheduler.
This maximum probability MaxReach(M,Target) can be defined directly as the limit of
the maximum step-bounded probability of reaching the target states as similarly shown
by [FHH+11, Lemma 1], i.e.

MaxReach(M,Target) = lim
k→∞

MaxReachk
M,Target(ı)

where

MaxReachk
M,Target(s) =

1 ; s ∈ Target

0 ; s /∈ Target , k = 0

max
a∈Act

∑

s′∈S

ps(s, a, s′) ·MaxReachk−1
M,Target(s

′) ; s /∈ Target , k > 0

gives the maximum probability of reaching the target states from state s ∈ S within k
steps (k ∈ N) under each possible scheduler. For some threshold value θ ∈ [0, 1], the safety

verification problem is to decide whether the worst-case probability of reaching the bad
states is at most θ, i.e. to decide whether

MaxReach(M,Target) ≤ θ (4.1)

holds.
In previous work [FHT08, FTE10, TEF11], we have established a symbolic falsification

procedure for above problem 4.1. Though this approach is based on SSMT, i.e. an arithmetic
extension of SSAT, and works for the more general class of discrete-time probabilistic hybrid
systems, which roughly are MDPs with arithmetic-logical transition guards and actions,
the same procedure restricted to SSAT is applicable for finite-state MDPs. The key idea
here is to adapt bounded model checking (BMC) [BCCZ99] to the probabilistic case by

GENERALIZED CRAIG INTERPOLATION FOR SSAT 19

encoding step-bounded reachability as an SSAT problem: like in classical BMC, the initial
states, the transition relation, and the target states of an MDP M are symbolically encoded
by propositional formulae in CNF, namely by Init(s), Trans(s,nt,pt, s′), and Target(s),
respectively, where the propositional variable vector s represents the system state before and
s′ after a transition step. To keep track of the non-deterministic and probabilistic selections
of transitions in Trans(s,nt,pt, s′), we further introduce propositional variables nt and pt

to encode non-deterministic selection among available actions and to describe probabilistic
choice of the successor state, respectively. Assignments to these variables determine which
of possibly multiple available transitions departing from s is taken. In contrast to traditional
BMC, all variables are quantified: all state variables s and s′ are existentially quantified in
the prefixes Qs and Qs′ . The transition-selection variables nt encoding non-deterministic
choice are existentially quantified by Qnt, while the probabilistic selector variables pt are
bound by randomized quantifiers in Qpt.

7 For the sake of clarity, let be t := nt ∪ pt and
Qt := QntQpt.

According to [FHT08, Proposition 1], the maximum probability of reaching the target

states in M from the initial state ı within k transition steps, i.e. MaxReachk
M,Target(ı), is

equal to the satisfaction probability

lbk := Pr
(

Q(k) :
(

states reachable within k steps
︷ ︸︸ ︷

Init(s0) ∧
∧k

i=1
Trans(si−1, ti, si)∧

hit target states
︷ ︸︸ ︷(
∨k

i=0
Target(si)

)))

(4.2)

with Q(k) := Qs0Qt1Qs1 . . .Qsk−1
QtkQsk .

Observe that each value lbk = MaxReachk
M,Target(ı) can be computed by an SSAT solver

and constitutes a lower bound of the maximum reachability probabilityMaxReach(M,Target)

due to monotonicity of the chain
(
MaxReachk

M,Target(ı)
)

k∈N
. This symbolic approach, called

probabilistic bounded model checking (PBMC), is able to falsify safety properties of shape 4.1
once a value lbk > θ is computed for some k.

However, the development of a corresponding counterpart based on SSAT that is able to
compute upper bounds ubk of the maximum reachability probability MaxReach(M,Target)
was left as an open challenge. Such an approach would permit to verify safety properties
of shape 4.1 once a value ubk ≤ θ is computed for some k.

In the remainder of this section, we propose such a symbolic verification procedure for
above problem 4.1 by means of generalized Craig interpolation. This verification method
proceeds in two phases. Phase 1 computes a symbolic representation of an overapproxima-

tion of the backward reachable state set, where a state is backward reachable if it is the origin
of a transition sequence leading into Target . Phase 1 can be integrated into PBMC, as used
to falsify the probabilistic safety property. Whenever such falsification fails for a given step
depth k, we apply generalized Craig interpolation to the (just failed) PBMC proof to com-
pute a symbolic overapproximation of the backward reachable state set at depth k and then
proceed to PBMC at some higher depth k′ > k. As an alternative to the integration into
PBMC, interpolants describing the backward reachable state sets can be successively ex-
tended by “stepping” them by prepending another transition, as explained below. In either
case, phase 1 ends when the backward reachable state set becomes stable, in which case we

7Non-deterministic branching of n alternatives can be represented by a binary tree of depth ⌈log2 n⌉ and
probabilistic branching by a sequence of at most n − 1 binary branches, yielding ⌈log2 n⌉ existential and
n− 1 randomized quantifiers, respectively.

20 T. TEIGE AND M. FRÄNZLE

have computed a symbolic overapproximation of the whole backward reachable state set.
In phase 2, we construct an SSAT formula with parameter k that forces the system to stay

within the backward reachable state set for k steps. The maximum satisfaction probability
of that SSAT formula then gives an upper bound on the maximum probability of reaching
the target states. The rationale is that system runs leaving the backward reachable state
set will never reach the target states.

Phase 1. Given an SSAT encoding of an MDP M as above, the state-set predicate Bk(s)
for k ∈ N over state variables s is inductively defined as

• B0(s) := Target(s), and
• Bk+1(s) := Bk(s) ∨ Ik+1(s)

where Ik+1(sj−1) is a generalized Craig interpolant for

(
=A

︷ ︸︸ ︷

Trans(sj−1, tj, sj) ∧ Bk(sj),

=B
︷ ︸︸ ︷

Init(s0) ∧
∧j−1

i=1
Trans(si−1, ti, si)

)

with j ≥ 1 with respect to SSAT formula

Q(j) :
(

j − 1 steps “forward” (=B)
︷ ︸︸ ︷

Init(s0) ∧
∧j−1

i=1
Trans(si−1, ti, si)∧

one step “backward” (=A)
︷ ︸︸ ︷

Trans(sj−1, tj, sj) ∧ Bk(sj)
)

. (4.3)

Observe that each generalized Craig interpolant Ik+1(s) can be computed by interpolating
S-resolution if we rewrite Bk(s) into CNF, the latter being always possible in linear time by
adding auxiliary VA-variables. During computation of each Ik+1(s), we take I = true in
every application of rule RI.2 such that Bk(s) overapproximates all system states backward
reachable from target states within k steps due to Corollary 3.6. Whenever Bk(s) has
stabilized, i.e.

Bk+1(s) ⇒ Bk(s) ,

we can be sure that B(s) := Bk(s) overapproximates all backward reachable states. It is
obvious that Bk(s) finally stabilizes in the finite-state case.

Note that parameter j ≥ 1 can be chosen arbitrarily, i.e. the system may execute any
number of transitions until state sj−1 is reached since this does not destroy the “backward-

overapproximating” property of Bk+1(s). The rationale of having parameter j is the addi-
tional freedom in constructing generalized interpolants since j may influence the shape of
Ik+1(s), as we will see in the example below.

We remark that phase 1 is a clean generalization of McMillan’s approach [McM03,
McM05], the latter having unsatisfiability of A ∧B as precondition in each iteration k.8

8Instead of overapproximating the backward reachable state set, McMillan’s scheme [McM03, McM05]
actually targets at forward reachable states, which however makes no fundamental difference in the non-
probabilistic setting.

GENERALIZED CRAIG INTERPOLATION FOR SSAT 21

Phase 2. Having symbolically described all backward reachable states by the predicate B(s),
upper bounds ubk of the maximum probability MaxReach(M,Target) of reaching the target
states Target can now be computed by SSAT solving applied to

ubk := Pr
(

Q(k) :
(

states reachable within k steps
︷ ︸︸ ︷

Init(s0) ∧
∧k

i=1
Trans(si−1, ti, si)∧

stay in back-reach set
︷ ︸︸ ︷
∧k

i=0
B(si)

))

. (4.4)

First observe that the formula above excludes all system runs that leave the set of backward
reachable states. This is sound since leaving B(s) means to never reach the Target(s) states.
Second, the system behavior becomes more and more constrained for increasing k, i.e. the
ubk’s are monotonically decreasing. With regard to solving problem 4.1, the safety property
MaxReach(M,Target) ≤ θ is verified by the procedure above once an upper bound ubk ≤ θ
is computed for some k.

Example. To illustrate the symbolic approach to probabilistic safety verification based on
generalized Craig interpolation, consider the simple MDP M from Figure 4 with s being
the only target state.

With regard to the symbolic encoding ofM, we introduce four Boolean variables i, f, e, s
to describe the state space. The literal i means that M is in state i while literal ¬i expresses
that M is not in i. The same holds analogously for the other states. Note that, in order
to encode valid system states, we have to ensure that exactly one of the variables i, f, e, s
is true in each time instant. The encoding of this constraint will be explained later on.
The non-deterministic choice between actions a and b is encoded by a Boolean variable
act while action a is represented by the positive literal act and action b by the negative
literal ¬act . For the three probabilistic choices in M, we introduce three Boolean variables
pi for the choice from i, pea for the choice from e under action a, and peb for the choice
from e under action b. Recall that all state variables as well as variables encoding non-
deterministic selection are existentially quantified while variables describing probabilistic
choices are bound by randomized quantifiers. We thus obtain the corresponding quantifier
prefixes

Qs = ∃i ∃f ∃e ∃s ,
Qt = ∃act

R0.9pi

R0.6pea

R0.5peb ,
Qs′ = ∃i′ ∃f ′ ∃e′ ∃s′ .

The formulae in CNF representing the initial state and the target states are specified by

Init(s) = (i) ∧ (¬f) ∧ (¬e) ∧ (¬s) and Target(s) = (s) ,

respectively. To obtain the transition relation predicate, we encode each single transition
step. For instance, a step from state e to f under action a can be encoded by the implication
(e∧ act ∧¬pea) ⇒ f ′, the latter being equivalent to the clause (¬e∨¬act ∨ pea ∨ f ′). The
conjunction of all these clauses then encodes the full system behavior symbolically. Since
we represent each system state by an own Boolean variable, as mentioned above, we need
to enforce that exactly one of the primed state variables, constituting the system state after
the transition step, carries value true. This is simply achieved by the formula in CNF
exactly one(i′, f ′, e′, s′) = (i′ ∨ f ′ ∨ e′ ∨ s′) ∧ (¬i′ ∨ ¬f ′) ∧ (¬i′ ∨ ¬e′) ∧ (¬i′ ∨ ¬s′) ∧ (¬f ′ ∨

22 T. TEIGE AND M. FRÄNZLE

j I1 B1 I2 B2 I3 B3 B

1 ¬i ¬i ∨ s true true true true true

{f, e, s} {f, e, s} {i, f, e, s} {i, f, e, s} {i, f, e, s} {i, f, e, s} {i, f, e, s}

2 ¬f ¬f ∨ s ¬f ¬f ∨ s — — ¬f ∨ s
{i, e, s} {i, e, s} {i, e, s} {i, e, s} — — {i, e, s}

3 ¬i ∧ ¬f ¬i ∧ ¬f ∨ s ¬f ¬f ∨ s ¬f ¬f ∨ s ¬f ∨ s
{e, s} {e, s} {i, e, s} {i, e, s} {i, e, s} {i, e, s} {i, e, s}

Table 1: Experimental results of applying the generalized interpolation scheme 4.3 on M
from Figure 4 for different values of parameter j. In addition to the formal pre-
sentation of the predicates, the concrete state sets are given explicitly.

¬e′) ∧ (¬f ′ ∨ ¬s′) ∧ (¬e′ ∨ ¬s′). The transition relation predicate in CNF then is

Trans(s, t, s′) = (¬i ∨ pi ∨ f ′) ∧ (¬i ∨ ¬pi ∨ e′)
∧ (¬e ∨ ¬act ∨ pea ∨ f ′) ∧ (¬e ∨ ¬act ∨ ¬pea ∨ s′)
∧ (¬e ∨ act ∨ peb ∨ s′) ∧ (¬e ∨ act ∨ ¬peb ∨ i′)
∧ (¬f ∨ f ′) ∧ (¬s ∨ s′) ∧ exactly one(i′, f ′, e′, s′) .

We are now interested in the maximum probability of reaching the target state s from
the initial state i. Applying the PBMC scheme 4.2, we are only able to compute lower
bounds lbk of the maximum reachability probability, for instance, lb0 = lb1 = 0, lb2 = lb3 =
0.54, lb4 = lb5 = 0.693, . . ., lb20 = 0.817971, . . ., lb100 = 0.81818181818181803208. The
latter results were achieved by employing the SSMT solver SiSAT9 [TEF11] that provides
a convenient input language for specifying probabilistic transition systems like MDPs. Un-
winding of the system’s transition relation for increasing step bounds k, i.e. the construction
of the SSAT formulae specified by scheme 4.2 in our context, is done fully automatically.
Furthermore, several algorithmic optimizations are exploited to improve performance of
the tool. Concerning runtime, all 100 SSAT formulae were solved within 37.05 seconds,
while computation of the first 20 lower bounds lb0 to lb20 just needed 370 milliseconds.
The highest computation time for a single SSAT problem was obtained for lb100, namely
1.14 seconds. The evolution of the lbk’s up to k = 20 is presented graphically on the right
of Figure 5. Given these results, one can suppose that the lower bounds converge to and
never exceed value 9/11 = 0.81. However, there is no mathematical guarantee for the latter
guess.

To overcome this limitation, we first apply the generalized interpolation scheme 4.3 to
compute an overapproximation of the backward reachable state set. The latter then facil-
itates to compute upper bounds ubk of the maximum reachability probability by means of
scheme 4.4. In order to compute the generalized Craig interpolants Ik+1(sj−1) automat-
ically during solving the SSAT formulae 4.3, we have implemented a simple DPLL-based
SSAT solver that integrates interpolating S-resolution. As mentioned earlier, scheme 4.3
allows freedom in choosing parameter j ≥ 1. This parameter permits to specify the number
j − 1 of transition steps until system state sj−1 is reached, which is the common state of
formula parts A and B. The experimental results of applying the generalized interpolation
scheme 4.3 on the MDP M for different values of j are shown in Table 1.

9The SiSAT tool is available on http://sisat.gforge.avacs.org/.

http://sisat.gforge.avacs.org/

GENERALIZED CRAIG INTERPOLATION FOR SSAT 23

1

1

0.1

0.9 0.4
0.6

0.5 0.5

i

f

s

e

b

a

B0

I1,B1

I2,B2, I3,B3,B 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

p
ro

b
a
b
ili

ty

number k of transition steps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

p
ro

b
a
b
ili

ty

number k of transition steps

upper bounds ub_k
lower bounds lb_k

Figure 5: Illustration of the computed state sets for MDP M by the generalized interpola-
tion scheme 4.3 with j = 3 (left), and lower bounds lbk and upper bounds ubk of
the maximum probability of reaching target state s over number k of transition
steps computed by schemes 4.2 and 4.4, respectively (right).

From the results of Table 1, we observe that the value of j actually has an impact
on the shape of the resulting interpolants. Let us consider the first interpolants I1 which
overapproximate all states backward reachable in one step. Clearly, the exact set of states
backward reachable in one step is {e, s}. For j = 1, the overapproximated set {f, e, s}
computed by the procedure is too coarse and actually contains a state which is not backward
reachable at all, namely f . Though the set {i, e, s} for j = 2 actually consists of backward
reachable states only, it is not tight enough as the initial state i is backward reachable
after two steps only. For j = 3, we achieved the precise set {e, s}. Continuing the scheme
for j = 1, I2 and then I3 become true meaning that the overapproximated set of the
backward reachable states B covers the whole state space. Using this inconclusive result in
scheme 4.4 yields only trivial upper bounds ubk = 1 for all k. With regard to j = 2, the
interpolation process has stabilized after computation of I2. The resulting state set {i, e, s}
encoded by B actually is the precise set of all backward reachable states. Though I1 was
too coarse, this could be compensated in the computation of I2. For j = 3, we observe that
all generalized interpolants I1, I2, and I3 describe the corresponding backward reachable
states accurately, thus leading to the precise set of all backward reachable states. The
computed state sets for j = 3 are illustrated on the left of Figure 5. After having examined
the results above, it seems that the greater the value of j, i.e. the more transition steps are
performed, the more accurate the resulting overapproximation of the backward reachable
state set.

Concerning runtime, each generalized Craig interpolant was computed by the interpo-
lating DPLL-based SSAT solver within fractions of a second, where the highest runtime of
36 milliseconds was observed when computing I3 for j = 3.

Having computed a symbolic representation B(s) of an overapproximation of all back-
ward reachable states, we are now able to compute upper bounds ubk of the maximum
reachability probability by means of scheme 4.4, where we use B(s) = ¬f ∨ s as obtained
for j = 3 as well as for j = 2. Again employing the SSMT tool SiSAT, some of the results
are ub0 = 1, ub1 = ub2 = 0.9, ub3 = ub4 = 0.855, ub5 = ub6 = 0.83475, . . ., ub20 = 0.818243,
. . ., ub100 = 0.81818181818181821948. Concerning runtime, all 100 SSAT formulae were

24 T. TEIGE AND M. FRÄNZLE

solved within 54.76 seconds, while computation of the first 20 upper bounds ub0 to ub20
just needed 400 milliseconds. The highest computation time for a single SSAT problem
was obtained for ub100, namely 1.77 seconds. The evolution of the ubk’s up to k = 20 is
presented graphically on the right of Figure 5.

In addition to estimating the maximum reachability probability from below using the
PBMC scheme 4.2, we are now able to estimate the probability also from above. In our
example, we can safely conclude that

0.81818181818181803208 = lb100 ≤ MaxReach(M, {s}) ≤ ub100 = 0.81818181818181821948

holds where the difference ub100 − lb100 is below 10−15. The total computational effort for
obtaining this precise result is about 92 seconds. If reduced accuracy suffices then runtime
obviously improves. For instance, the fact

0.817971 = lb20 ≤ MaxReach(M, {s}) ≤ ub20 = 0.818243

with ub20 − lb20 < 10−3 was deduced within one second. With regard to the safety verifica-
tion problem 4.1, system safety for each threshold value θ with θ < 0.817971 or θ ≥ 0.818243
is falsified or verified, respectively, within a second.

With respect to competitive and more established methods based on value or policy
iteration, we observed that the runtime of our prototypic tool chain does not compare favor-
ably on the simple probabilistic reachability problem above. For instance, the version 4.0.1
of the PRISM model checker10 [KNP11] solved the problem in about 600 milliseconds with
a precision of 10−15 (returning the result 0.8181818181818175).

In spite of the above fact, we have identified two promising directions for future research
where probabilistic reachability analysis based on generalized Craig interpolation may pay
off:

(1) Embedding the same interpolation process into SSMT [FHT08], i.e. an arithmetic exten-
sion of SSAT, renders the generalized Craig interpolation scheme 4.3 directly applicable
to probabilistic hybrid discrete-continuous systems, yielding a symbolic overapproxima-
tion of the backward reachable state set. As for the finite state case, scheme 4.4 then
facilitates computing upper bounds of the reachability probability for hybrid systems
by means of SSMT solving, just as already pursued when computing lower bounds
according to the PBMC scheme 4.2 [FHT08, TF08, FTE10, TEF11].

It is important to remark that classical value or policy iteration procedures are not

directly applicable in the hybrid state case but even after finite-state abstraction, confer,
for instance, [ZSR+10, FHH+11].

(2) Due to its symbolic nature, the analysis procedures based on SSAT and SSMT support
compact representations of concurrent probabilistic (finite-state and hybrid) systems
without an explicit construction of the product automaton [TEF11], the latter being of
size exponential in the number of parallel components. This fact constitutes a strong
argument that these symbolic procedures are able to alleviate the state explosion prob-
lem, which arises necessarily when applying explicit-state algorithms or methods based
on finite-state abstraction refinement.

10More information can be found on http://www.prismmodelchecker.org/.

http://www.prismmodelchecker.org/

GENERALIZED CRAIG INTERPOLATION FOR SSAT 25

4.2. Interpolation-based probabilistic region stability. In addition to probabilistic
state reachability being investigated in the previous section, we now address the problem
of probabilistic region stability. For that purpose, we take into account the notion of re-
gion stability as introduced for non-probabilistic hybrid systems by Podelski and Wagner
in [PW07a, PW07b]. According to their definition, given some set R of states called region,
a (non-probabilistic) system is called stable with respect to region R iff for every infinite run
〈s0, s1, . . . , si, . . .〉 of the system, i.e. for every infinite sequence of states that follows the
transition relation, there is some point of time i ≥ 0 such that from i on the system remains
in R forever, i.e. ∃i ≥ 0 ∀j ≥ i : sj ∈ R.

Concerning the probabilistic case, several adaptations of region stability seem feasible,
some of which pose measurability problems. Our main concern in this article being to iden-
tify potential application areas for generalized Craig interpolation rather than to discuss
semantic issues of probabilistic stabilization, we do study a simple notion of probabilistic
region stability in the sequel which circumvents measure-theoretic issues. As for probabilis-
tic state reachability, we aim at defining a reasonable probability measure as the limit of
the value of a recursive function defining the corresponding step-bounded measures. In-
tuitively, we consider finite run prefixes 〈s0, s1, . . . , si〉 such that from time point i on the
probabilistic system remains in the given region forever under each possible future behavior,
i.e. independent of the non-deterministic and probabilistic choices the system will take. The
latter fact is guaranteed whenever the system has reached an invariance kernel of the given
region that can never be left. The probability measure is then defined by the minimum
probability of reaching the maximal invariance kernel.

Formally, let be given an MDP M and a set of states Region ⊆ S called the stabilization
region or the region for short. An invariance kernel K ⊆ Region with respect to M is a set
of states from Region such that there is no transition from a state in K to a state outside
K, i.e. there does not exist a tuple (z, act , z′) ∈ K × Act × (S \ K) : ps(z, act , z′) > 0. An
invariance kernel K is called maximal if adding any new states to K does not lead to an
invariance kernel, i.e. each K ∪ Z with Z ⊆ Region \ K and Z 6= ∅ is not an invariance
kernel. Note that the maximal invariance kernel is unique. The latter fact can be simply
shown using the observation that the set of all invariance kernels K ⊆ Region with respect
to M is closed under union. Let K∗ ⊆ Region be the (unique) maximal invariance kernel
with respect to M. Then, the minimum probability MinStable(M,Region) that M is stable
with respect to Region is defined as the limit of the minimum step-bounded probability of
reaching the maximal invariance kernel K∗, i.e.

MinStable(M,Region) = lim
k→∞

MinReachk
M,K∗(ı)

where

MinReachk
M,K∗(s) =

1 ; s ∈ K∗

0 ; s /∈ K∗, k = 0

min
a∈Act

∑

s′∈S

ps(s, a, s′) ·MinReachk−1
M,K∗(s′) ; s /∈ K∗, k > 0

gives the minimum probability of reaching K∗ from state s ∈ S within k steps (k ∈ N)
under each possible scheduler.

When considering stabilization within Region as the desired property then the value of
MinStable(M,Region) establishes the probability of stabilizing in worst case, i.e. under an
optimal adversarial scheduler. For some threshold value θ ∈ [0, 1], the stability verification

problem then is to decide whether this worst-case probability is at least θ, i.e. to decide

26 T. TEIGE AND M. FRÄNZLE

whether
MinStable(M,Region) ≥ θ (4.5)

holds.
In what follows, we propose a symbolic verification procedure for above problem 4.5.

In a first phase, we compute a symbolic representation of an invariance kernel by means of
generalized Craig interpolation. The main idea here is to iteratively eliminate states z not
belonging to an invariance kernel from Region until a fixed point is reached. Due to the use
of interpolation, the set of such states z is overapproximated in each iteration, meaning that
potentially too many states are removed. This implies that the resulting invariance kernel
is not necessarily maximal. However, each invariance kernel can be used for computing
valid lower bounds of MinStable(M,Region). The latter computation then is performed
in a second phase by means of SSAT-based bounded reachability checking. Once a lower
bound lb ≥ θ is computed, property 4.5 is verified.

Phase 1. Let be given an SSAT encoding of an MDP M as explained in Section 4.1 as well
as some propositional formula Region(s) encoding the stabilization region Region . Then,
the state-set predicate Rk(s) for k ∈ N over state variables s is inductively defined as

• R0(s) := Region(s), and
• Rk+1(s) := Rk(s) ∧ ¬Ik+1(s)

where Ik+1(sj−1) is a generalized Craig interpolant for

(
=A

︷ ︸︸ ︷

Trans(sj−1, tj , sj) ∧ ¬Rk(sj),

=B
︷ ︸︸ ︷

Init(s0) ∧
∧j−1

i=1
Trans(si−1, ti, si)

)

with j ≥ 1 with respect to SSAT formula

Q(j) :
(

j − 1 steps “forward” (=B)
︷ ︸︸ ︷

Init(s0) ∧
∧j−1

i=1
Trans(si−1, ti, si)∧

one step “backward” from ¬Rk (=A)
︷ ︸︸ ︷

Trans(sj−1, tj , sj) ∧ ¬Rk(sj)
)

. (4.6)

Observe that each Ik+1(s) can be computed by interpolating S-resolution if we rewrite
¬Rk(s) into CNF, the latter being always possible in linear time by adding auxiliary VA-
variables. During computation of each Ik+1(s), we take I = true in every application
of rule RI.2 such that Ik+1(s) overapproximates all system states directly leading to the
state set ¬Rk(s) due to Corollary 3.6. As a consequence, from each state in Rk+1(s) =
Rk(s) ∧ ¬Ik+1(s) it is infeasible to leave the set Rk(s) in one step. Whenever the chain
Rk(s) has stabilized, i.e.

Rk(s) ⇒ Rk+1(s) ,

it follows that K(s) := Rk(s) is an invariance kernel of Region(s) with respect to M, i.e.
once entered, the system cannot leave the set K(s). Obviously, the chain Rk(s) eventually
stabilizes in the finite-state case.

Similar to scheme 4.3, parameter j ≥ 1 can be chosen arbitrarily, i.e. the system may
execute any number of transitions until state sj−1 is reached since this does not destroy the

overapproximation property of Ik+1(s). The presence of parameter j gives us additional
freedom in constructing generalized interpolants as j may influence the shape of Ik+1(s),
as we will see in the example below.

GENERALIZED CRAIG INTERPOLATION FOR SSAT 27

Phase 2. Having computed a symbolic representation K(s) of a (not necessarily maximal)
invariance kernel K with respect to M, we now compute lower bounds of the minimum
probability MinStable(M,Region) of stabilizing within Region by means of SSAT solving.

To this end, first observe that MinReachk
M,K∗(ı) is monotonic in k which implies that

MinReachk
M,K∗(ı) ≤ MinStable(M,Region) for each k ∈ N. Let K∗ be the unique maximal

invariance kernel with respect to M. Then, K ⊆ K∗ since K is an invariance kernel and the
maximal invariance kernel K∗ is unique. As a consequence,

MinReachk
M,K(ı) ≤ MinReachk

M,K∗(ı)

for each k ∈ N. Summing up, each value of MinReachk
M,K(ı) establishes a lower bound of

MinStable(M,Region). In principle, MinReachk
M,K(ı) can be reduced to an SSAT formula

similar to PBMC scheme 4.2. The difference, however, is that we need to minimize the
satisfaction probability. The latter can be achieved by a very similar SSAT encoding scheme
that exploits universal quantifiers to resolve non-deterministic transition choices. Universal
quantifiers then aim at minimizing the satisfaction probability. Though the SSMT solver
SiSAT actually supports universal quantification, confer [TF09, TEF11], we instead stay
within the scope of the logic exposed in this article and rephrase minimum probabilistic
state reachability as a maximum probabilistic state avoidance problem as follows:

MaxAvoidk
M,K(s) =

0 ; s ∈ K
1 ; s /∈ K, k = 0

max
a∈Act

∑

s′∈S

ps(s, a, s′) ·MaxAvoidk−1
M,K(s

′) ; s /∈ K, k > 0

It then holds that
MinReachk

M,K(ı) = 1−MaxAvoidk
M,K(ı)

which can be proven by straightforward induction over step bound k. In the base cases, i.e.
if k = 0 and s ∈ K or s /∈ K, the statement is clear. Within the induction step, we exploit
the property that

mini
∑

j
pi,j · Pi,j = 1−maxi

∑

j
pi,j · (1− Pi,j)

is true for 0 ≤ Pi,j ≤ 1 and
∑

j pi,j = 1.

The problem of computing the value of MaxAvoidk
M,K(ı) can be reduced to computing

the maximum probability of satisfaction of the SSAT formula

Φk
M,K = Q(k) :

(

states reachable within k steps
︷ ︸︸ ︷

Init(s0) ∧
∧k

i=1
Trans(si−1, ti, si)∧

avoid invariance kernel
︷ ︸︸ ︷
∧k

i=0
¬K(si)

)

.

According to the definition ofMaxAvoidk
M,K(ı), the propositional formula of Φk

M,K describes
all system runs avoiding the invariance kernel K for at least k transition steps. That is, all
assignments encoding such latter runs yield satisfaction probability 1, while assignments en-
coding runs that visit K within the first k steps do not satisfy the propositional formula, thus

leading to satisfaction probability 0. As a consequence, MaxAvoidk
M,K(ı) = Pr

(

Φk
M,K

)

.

28 T. TEIGE AND M. FRÄNZLE

j I1 R1 I2 R2 K

1 true false true false false

{i, f, e, s} ∅ {i, f, e, s} ∅ ∅

2 true false true false false

{i, f, e, s} ∅ {i, f, e, s} ∅ ∅

3 ¬s ¬f ∧ s ¬s ¬f ∧ s ¬f ∧ s
{i, f, e} {s} {i, f, e} {s} {s}

4 ¬s ¬f ∧ s ¬s ¬f ∧ s ¬f ∧ s
{i, f, e} {s} {i, f, e} {s} {s}

Table 2: Experimental results of applying the generalized interpolation scheme 4.6 on M
from Figure 4 for different values of parameter j. In addition to the symbolic
representations computed by interpolation, the concrete state sets represented by
these predicates are stated explicitly.

Using above facts, we deduce the following relation

1− Pr
(

Φk
M,K

)

= 1−MaxAvoidk
M,K(ı)

= MinReachk
M,K(ı)

≤ MinReachk
M,K∗(ı)

≤ MinStable(M,Region) .

This finally enables us to compute lower bounds lbk of MinStable(M,Region) using the
scheme

lbk := 1− Pr
(

Φk
M,K

)

, (4.7)

the latter being addressed by SSAT solving. Note that the system behavior encoded by
Φk
M,K becomes more and more constrained for increasing k such that the satisfaction prob-

abilities Pr
(

Φk
M,K

)

are monotonically decreasing. This in turn means that the lbk’s are

monotonically increasing. With regard to solving the stability verification problem 4.5, the
desired property MinStable(M,Region) ≥ θ is verified by the procedure above once a lower
bound lbk ≥ θ is computed for some k.

Example. To illustrate the symbolic approach to probabilistic region stability based on
generalized Craig interpolation, again consider the simple MDP M from Figure 4 where
the symbolic representation of the region is given by Region(s) = ¬f . That is, the region
in which M should stabilize consists of the states i, e, and s. The symbolic SSAT encoding
of M being introduced in the example of Section 4.1 is reused in the following.

We are first interested in computing an invariance kernel K ⊆ Region(s) with respect
to M by means of the generalized Craig interpolation scheme 4.6. To cope with the latter
scheme automatically, we employ the simple interpolating DPLL-based SSAT solver men-
tioned in Section 4.1. The results of these experiments for different values of j are shown in
Table 2. It is not hard to see that the unique maximal invariance kernel K∗ consists of the
state s only. Recall that each interpolant Ik+1 overapproximates all system states directly
leading to the state set ¬Rk. When setting parameter j to value 1 or 2, we observe that
interpolant I1 = true is too coarse since it includes the whole state space. This causes the

GENERALIZED CRAIG INTERPOLATION FOR SSAT 29

1

1
0.1

0.9 0.4
0.6

0.5 0.5

i

f

s

e

b

a

R0 = Region

R1,R2,K

I1, I2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

p
ro

b
a
b
ili

ty

number k of transition steps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

p
ro

b
a
b
ili

ty

number k of transition steps

lower bounds lb_k

Figure 6: Illustration of the computed state sets for MDP M by the generalized interpo-
lation scheme 4.6 with j ∈ {3, 4} (left), and lower bounds lbk of the minimum
probability of reaching the invariance kernel K = {s} over number k of transition
steps computed by scheme 4.7 (right).

trivial invariance kernel K = false representing the empty set. For choices j = 3 and j = 4,
however, I1 = ¬s describes the exact set of states which lead to ¬R0 = ¬Region. Finally,
the non-trivial invariance kernel K = ¬f ∧ s consisting of state s only is computed. Note
that K actually is the maximal invariance kernel. The computed state sets for j ∈ {3, 4}
are illustrated on the left of Figure 6.

These results confirm the observation made from the experiments of Section 4.1, namely
that the greater the value of j, i.e. the more transition steps are performed, the more
accurate the resulting overapproximations. Concerning runtime, each generalized Craig
interpolant was computed by the interpolating DPLL-based SSAT solver within fractions
of a second, where the highest runtime of 88 milliseconds was observed when computing I2

for j = 4.
Having computed an invariance kernel K(s) ⊆ Region(s) with respect toM, we are now

able to compute lower bounds lbk of the minimum probability that M is stable with respect
to Region by means of scheme 4.7, where we use K(s) = ¬f ∧ s as obtained for j ∈ {3, 4}.
Employing the SSMT tool SiSAT, some of the results are lb0 = lb1 = 0, lb2 = lb3 = 0.45,
lb4 = lb5 = 0.54, . . ., lb100 = 0.54. Concerning runtime, all 100 SSAT formulae were solved
within 88.16 seconds, while computation of the first 20 lower bounds lb0 to lb20 just needed
600 milliseconds. The highest computation time for a single SSAT problem was obtained for
lb100, namely 2.91 seconds. The evolution of the lbk’s up to k = 10 is presented graphically
on the right of Figure 6. With regard to the stability verification problem 4.5, the desired
property MinStable(M,Region) ≥ θ is verified for each threshold value θ ≤ 0.54 within a
second.

Concerning competitive approaches, we remark that the probabilistic model checking
tool PRISM 4.0.1 [KNP11] is also able to deal with probabilistic region stability of MDPs
by means of path operators.11 To determine the value of MinStable(M,Region) for the
example above, we used the specification Pmin=?[F P>=1 [G (!f)]] meaning that we are
interested in the minimum probability (Pmin=?) that finally (F) the system satisfies almost

11Confer http://www.prismmodelchecker.org/manual/PropertySpecification/ThePOperator for
more detailed information.

http://www.prismmodelchecker.org/manual/PropertySpecification/ThePOperator

30 T. TEIGE AND M. FRÄNZLE

surely (P>=1) the property that globally (G) state f is never visited (!f). PRISM solved
the problem in 644 milliseconds returning the result 0.54.

As discussed for the case of probabilistic state reachability at the end of Section 4.1,
we are also confident that the presented approach to probabilistic region stability based
on generalized Craig interpolation becomes beneficial when adapted to probabilistic hybrid

systems, where the classical procedures are not directly applicable. Furthermore, a partic-
ular pay-off is expected when dealing with concurrent probabilistic systems owing to the
symbolic nature of the interpolation-based technique.

5. Conclusion and future work

In this article, we elaborated on the idea of Craig interpolation for stochastic Boolean sat-
isfiability. In consideration of the difficulties that arise in this stochastic extension of the
propositional satisfiability problem, we first proposed a suitable definition of a generalized
Craig interpolant and then presented an algorithm for automatically computing such inter-
polants. For the latter purpose, we enhanced the SSAT resolution calculus by corresponding
rules for the construction of generalized Craig interpolants. We furthermore demonstrated
two applications of generalized Craig interpolation as a means of automated analysis of
probabilistic finite-state systems.

We first considered probabilistic state reachability. The resulting procedure is able to
verify probabilistic safety requirements of the form “the worst-case probability of reach-
ing undesirable system states is at most some given safety threshold”. This complements
the existing SSAT-based probabilistic bounded model checking approach, which mechanizes
falsification of such safety properties. As a second application, we gave attention to proba-
bilistic region stability and presented a symbolic technique for verifying stability properties
like “the worst-case probability that the system stabilizes within some given region is at
least some given safety threshold”.

For future work, we are particularly interested in the adaptation of generalized Craig
interpolation to SSMT, i.e. the extension of SSAT with arithmetic theories. One of the
most challenging issues here will be the enhancement of the SSAT resolution calculus as
well as the corresponding rules for the construction of generalized interpolants in order to
deal with SSMT problems. The ability of computing generalized Craig interpolants for
SSMT would lift the interpolation schemes 4.3 and 4.6 to SSMT problems, thus establish-
ing symbolic verification approaches to probabilistic state reachability and to probabilistic
region stability for discrete-time probabilistic hybrid systems. We are confident that such
symbolic procedures will prove beneficial within the analysis of probabilistic hybrid systems,
in particular when systems with a high degree of concurrency are considered.

Acknowledgement

The authors wish to acknowledge fruitful discussions with the researchers in the AVACS
project as well as in the MoVeS project, in particular with Andreas Eggers. Furthermore, we
would like to thank the anonymous reviewers for their advice on how to enhance readability
of the article.

GENERALIZED CRAIG INTERPOLATION FOR SSAT 31

References

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. In Rance Cleaveland, editor, Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Analysis of Systems, TACAS ’99,
volume 1579 of Lecture Notes in Computer Science, pages 193–207. Springer, 1999.

[Bel57] Richard Bellman. A Markovian decision process. Journal of Mathematics and Mechanics,
6(5):679–684, 1957.

[BHKH05] Christel Baier, Holger Hermanns, Joost-Pieter Katoen, and Boudewijn R. Haverkort. Efficient
computation of time-bounded reachability probabilities in uniform continuous-time Markov
decision processes. Theor. Comput. Sci., 345(1):2–26, 2005.

[BHvMW09] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
February 2009.

[BKF95] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified Boolean
formulas. Inf. Comput., 117(1):12–18, 1995.

[BS06] Thanasis Balafoutis and Kostas Stergiou. Algorithms for stochastic CSPs. In Frédéric Ben-
hamou, editor, Proceedings of the 12th International Conference on Principles and Practice
of Constraint Programming (CP 2006), volume 4204 of Lecture Notes in Computer Science,
pages 44–58. Springer, 2006.

[BS07] Lucas Bordeaux and Horst Samulowitz. On the stochastic constraint satisfaction framework.
In Proceedings of the 2007 ACM Symposium on Applied Computing (SAC), pages 316–320.
ACM, 2007.

[BSST09] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability modulo
theories. In Biere et al. [BHvMW09], chapter 26, pages 825–885.

[Cra57] William Craig. Linear reasoning. a new form of the Herbrand-Gentzen theorem. J. Symb. Log.,
22(3):250–268, 1957.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

[FHH+11] Martin Fränzle, Ernst Moritz Hahn, Holger Hermanns, Nicolás Wolovick, and Lijun Zhang.
Measurability and safety verification for stochastic hybrid systems. In Proceedings of the 14th
International Conference on Hybrid Systems: Computation and Control (HSCC 2011), pages
43–52, New York, NY, USA, 2011. ACM.

[FHT08] Martin Fränzle, Holger Hermanns, and Tino Teige. Stochastic satisfiability modulo theory:
A novel technique for the analysis of probabilistic hybrid systems. In Magnus Egerstedt and
Bud Mishra, editors, Proceedings of the 11th International Conference on Hybrid Systems:
Computation and Control (HSCC 2008), volume 4981 of Lecture Notes in Computer Science,
pages 172–186. Springer, 2008.

[FTE10] Martin Fränzle, Tino Teige, and Andreas Eggers. Engineering constraint solvers for auto-
matic analysis of probabilistic hybrid automata. Journal of Logic and Algebraic Programming,
79(7):436–466, 2010.

[KNP11] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification of probabilistic
real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Proceedings of the 23rd
International Conference on Computer Aided Verification (CAV 2011), volume 6806 of Lecture
Notes in Computer Science, pages 585–591. Springer, 2011.

[Lit99] Michael L. Littman. Initial experiments in stochastic satisfiability. In Proceedings of the 16th
National Conference on Artificial Intelligence, pages 667–672, 1999.

[LMP01] Michael L. Littman, Stephen M. Majercik, and Toniann Pitassi. Stochastic Boolean satisfia-
bility. Journal of Automated Reasoning, 27(3):251–296, 2001.

[Maj04] Stephen M. Majercik. Nonchronological backtracking in stochastic Boolean satisfiability. In
16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004), pages
498–507. IEEE Computer Society, 2004.

[Maj09] Stephen M. Majercik. Stochastic Boolean satisfiability. In Biere et al. [BHvMW09], chapter 27,
pages 887–925.

32 T. TEIGE AND M. FRÄNZLE

[McM03] Kenneth L. McMillan. Interpolation and SAT-based model checking. In Warren A. Hunt Jr.
and Fabio Somenzi, editors, Proceedings of the 15th International Conference on Computer
Aided Verification (CAV 2003), volume 2725 of Lecture Notes in Computer Science, pages
1–13. Springer, 2003.

[McM05] Kenneth L. McMillan. Applications of Craig interpolants in model checking. In Nicolas Halb-
wachs and Lenore D. Zuck, editors, Proceedings of the 11th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2005), volume 3440 of
Lecture Notes in Computer Science, pages 1–12. Springer, 2005.

[ML98] Stephen M. Majercik and Michael L. Littman. MAXPLAN: A new approach to probabilis-
tic planning. In Proceedings of the Fourth International Conference on Artificial Intelligence
Planning Systems, pages 86–93. AAAI, 1998.

[ML03] Stephen M. Majercik and Michael L. Littman. Contingent planning under uncertainty via
stochastic satisfiability. Artificial Intelligence Special Issue on Planning with Uncertainty and
Incomplete Information, 147(1-2):119–162, 2003.

[Pap85] Christos H. Papadimitriou. Games against nature. J. Comput. Syst. Sci., 31(2):288–301, 1985.
[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computa-

tions. Journal of Symbolic Logic, 62(3):981–998, September 1997.
[PW07a] Andreas Podelski and Silke Wagner. Region stability proofs for hybrid systems. In Jean-

François Raskin and P. S. Thiagarajan, editors, Proceedings of the 5th International Con-
ference on Formal Modeling and Analysis of Timed Systems (FORMATS 2007), volume 4763
of Lecture Notes in Computer Science, pages 320–335. Springer, 2007.

[PW07b] Andreas Podelski and Silke Wagner. A sound and complete proof rule for region stability
of hybrid systems. In Alberto Bemporad, Antonio Bicchi, and Giorgio C. Buttazzo, editors,
Proceedings of the 10th International Workshop on Hybrid Systems: Computation and Control
(HSCC 2007), volume 4416 of Lecture Notes in Computer Science, pages 750–753. Springer,
2007.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23–41, 1965.

[TEF11] Tino Teige, Andreas Eggers, and Martin Fränzle. Constraint-based analysis of concurrent
probabilistic hybrid systems: An application to networked automation systems. Nonlinear
Analysis: Hybrid Systems, 5(2):343–366, 2011.

[TF08] Tino Teige and Martin Fränzle. Stochastic satisfiability modulo theories for non-linear arith-
metic. In Laurent Perron and Michael A. Trick, editors, Proceedings of the 5th International
Conference on Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems (CPAIOR 2008), volume 5015 of Lecture Notes in Computer
Science, pages 248–262. Springer, 2008.

[TF09] Tino Teige and Martin Fränzle. Constraint-based analysis of probabilistic hybrid systems. In
Alessandro Giua, Cristian Mahulea, Manuel Silva, and Janan Zaytoon, editors, Proceedings of
the 3rd IFAC Conference on Analysis and Design of Hybrid Systems, pages 162–167. IFAC,
2009.

[TF10] Tino Teige and Martin Fränzle. Resolution for stochastic Boolean satisfiability. In Christian G.
Fermüller and Andrei Voronkov, editors, Proceedings of the 17th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-17), volume 6397 of
Lecture Notes in Computer Science, pages 625–639. Springer, 2010.

[Wal02] Toby Walsh. Stochastic constraint programming. In Frank van Harmelen, editor, Proceedings
of the 15th European Conference on Artificial Intelligence (ECAI 2002), pages 111–115. IOS
Press, 2002.

[ZSR+10] Lijun Zhang, Zhikun She, Stefan Ratschan, Holger Hermanns, and Ernst Moritz Hahn. Safety
verification for probabilistic hybrid systems. In Tayssir Touili, Byron Cook, and Paul Jackson,
editors, Proceedings of the 22nd International Conference on Computer Aided Verification,
CAV 2010, volume 6174 of Lecture Notes in Computer Science, pages 196–211. Springer, 2010.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	1. Stochastic Boolean satisfiability
	2. Generalized Craig interpolants
	3. Computation of generalized Craig interpolants
	3.1. Resolution for SSAT
	3.2. Interpolating resolution for SSAT

	4. Applications of generalized Craig interpolation to analysis of probabilistic systems
	4.1. Interpolation-based probabilistic state reachability
	4.2. Interpolation-based probabilistic region stability

	5. Conclusion and future work
	Acknowledgement
	References

