
Logical Methods in Computer Science

Vol. 8(3:27)2012, pp. 1–15

www.lmcs-online.org

Submitted Dec. 10, 2010

Published Sep. 29, 2012

APPLYING CEGAR TO THE PETRI NET STATE EQUATION

HARRO WIMMEL AND KARSTEN WOLF

Universität Rostock, Institut für Informatik
e-mail address: {harro.wimmel, karsten.wolf}@uni-rostock.de

Abstract. We propose a reachability verification technique that combines the Petri net

state equation (a linear algebraic overapproximation of the set of reachable states) with the
concept of counterexample guided abstraction refinement. In essence, we replace the search
through the set of reachable states by a search through the space of solutions of the state
equation. We demonstrate the excellent performance of the technique on several real-world
examples. The technique is particularly useful in those cases where the reachability query
yields a negative result: While state space based techniques need to fully expand the state
space in this case, our technique often terminates promptly. In addition, we can derive
some diagnostic information in case of unreachability while state space methods can only
provide witness paths in the case of reachability.

1. Introduction

Reachability is the fundamental verification problem. For place/transition Petri nets (which
may have infinitely many states), it is one of the hardest decision problems known among
the naturally emerging yet decidable problems in computer science. General solutions have
been found by Mayr [14] and Kosaraju [9] with later simplifications made by Lambert [11],
but there are complexity issues. All these approaches use coverability graphs which can have
a non-primitive-recursive size with respect to the corresponding Petri net. A new approach
by Leroux [12] not using such graphs gives some hope, but a concrete upper bound for the
worst case complexity so far eludes us. In a sense even worse, Lipton [13] has shown that
the problem is EXPSPACE-hard, so any try at programming a tool efficiently solving this
problem to the full extent must surely fail.

Nevertheless, efficient tools exist that are applicable to a considerable number of prob-
lem instances. Model checkers, symbolic [3] or with partial order reduction [20], have been
used successfully to solve quite large reachability problems. On a positive answer, a model
checker can typically generate a trace, i.e. a firing sequence leading to the final marking.
In contrast, negative answers are usually not accompanied by any diagnostic information.
Such information, i.e. a counterexample or reasoning why the problem has a negative so-
lution would require a deep analysis of the structure of the Petri net. So far, no tools are
known that analyze the structure of a net and allow for such reasoning.

1998 ACM Subject Classification: F.2.2, I.6.4.
Key words and phrases: Petri Net, Reachability Problem, Integer Programming, CEGAR, Structure

Analysis, Partial Order Reduction.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8(3:27)2012

c© H. Wimmel and K. Wolf
CC© Creative Commons

http://creativecommons.org/about/licenses

2 H. WIMMEL AND K. WOLF

This paper presents an approach to the reachability problem that combines two existing
methods. First, we employ the state equation for Petri nets. This is a linear-algebraic over-
approximation on the set of reachable states. Second, we use the concept of counterexample
guided abstraction refinement (CEGAR) [4] for enhancing the expressiveness of the state
equation. In essence, we iteratively analyse spurious solutions of the state equation and
add constraints that exclude a solution found to be spurious but do not exclude any real
solution. The approach has several advantages compared to (explicit or symbolic) purely
state space based verification techniques:

• The search is quite focussed from the beginning as we traverse the solution space of the
state equation rather than the set of reachable states;

• The search is close to breadth-first traversal, so small witness traces are generated;
• The method may perform well on unreachable problem instances (where state space
techniques compute maximum size state spaces);

• In several unreachable problem instances, some kind of diagnostic information can be
provided;

• A considerable workload can be shifted to very mature tools for solving linear program-
ming problems.

In Sect. 2 we give the basic definitions. Section 3 shows how to use integer programming
tools to find candidates for a solution. Section 4 deals with the analysis of the Petri net
structure that is needed to push the integer programming onto the right path. In Sect. 5
we use methods of partial order reduction to mold the results of the integer programming
into firing sequences solving the reachability problem. In Sect. 6 the overall algorithm is
presented and in Sect. 7 we drop a few hints on how and when diagnostic information for
unreachability can be generated. Finally, Sect. 8 compares the results of an implementa-
tion with another model checker, showing that structure analysis can compete with other
approaches.

2. The Reachability Problem

Definition 2.1 (Petri net, marking, firing sequence). A Petri net N is a tuple (S, T, F)
with a set S of places, a set T of transitions, where S 6= ∅ 6= T and S ∩ T = ∅, and a
mapping F : (S × T) ∪ (T × S) → N defining arcs between places and transitions.

A marking or state of a Petri net is a map m: S → N. A place s is said to contain k

tokens under m if m(s) = k. A transition t ∈ T is enabled under m, m[t〉, if m(s) ≥ F (s, t)
for every s ∈ S. A transition t fires under m and leads to m′, m[t〉m′, if additionally
m′(s) = m(s)− F (s, t) + F (t, s) for every s ∈ S.

A word σ ∈ T ∗ is a firing sequence under m and leads to m′, m[σ〉m′, if either m = m′

and σ = ε, the empty word, or σ = wt, w ∈ T ∗, t ∈ T and ∃m′′: m[w〉m′′[t〉m′. A firing
sequence σ under m is enabled under m, i.e. m[σ〉. The Parikh image of a word σ ∈ T ∗ is
the vector ℘(σ): T → N with ℘(σ)(t) = #t(σ), where #t(σ) is the number of occurrences
of t in σ. For any firing sequence σ, we call ℘(σ) realizable.

As usual, places are drawn as circles (with tokens as black dots inside them), transitions
as rectangles, and arcs as arrows with F (x, y) > 0 yielding an arrow pointing from x to y.
If an arc has a weight of more than one, i.e. F (x, y) > 1, the number F (x, y) is written next
to the arc. In case F (x, y) = F (y, x) > 0, we may sometimes draw a line with arrowheads
at both ends.

APPLYING CEGAR TO THE PETRI NET STATE EQUATION 3

Note, that the Parikh image is not an injective function. Therefore, ℘(σ) can be
realizable even if σ is not a firing sequence (provided there is another firing sequence σ′

with ℘(σ) = ℘(σ′)).

Definition 2.2 (Reachability problem). A marking m′ is reachable from a marking m in a
net N = (S, T, F) if there is a firing sequence σ ∈ T ∗ with m[σ〉m′. A tuple (N,m,m′) of a
net and two markings is called a reachability problem and has the answer “yes” if and only
if m′ is reachable from m in N . The set RP = {(N,m,m′) |N is a Petri net, m′ is reachable
from m in N} is generally called the reachability problem, for which membership is to be
decided.

It is well-known that a necessary condition for a positive answer to the reachability
problem is the feasibility of the state equation.

Definition 2.3 (State equation). For a Petri net N = (S, T, F) let C ∈ N
S×T , defined by

Cs,t = F (t, s) − F (s, t), be the incidence matrix of N . For two markings m and m′, the
system of linear equations m+Cx = m′ is the state equation of N for m and m′. A vector
x ∈ N

T fulfilling the equation is called a solution.

Proposition 2.4. For any firing sequence σ of a net N = (S, T, F) leading from m to m′,
i.e. m[σ〉m′, holds m + C℘(σ) = m′, i.e. the Parikh vector of σ is a solution of the state
equation for N , m, and m′.

This is just a reformulation of the firing condition for σ.

Proposition 2.5. If the Petri net is acyclic, i.e. the transitive closure of F is irreflexive
then the existence of a solution of the state equation for N , m, and m′ is a sufficient
condition for reachability of m′ from m in N .

In an acyclic net, minimal transitions (with respect to F) that occur in the support of
a solution x of the state equation must be enabled under m. Firing such a transition with
resulting marking m∗ leads to a smaller reachability problem (N,m∗,m′) that has x minus
one occurrence of t as a solution. By induction, the whole solution can be unwound to a
firing sequence.

In Petri nets with cycles, it is possible to have a sequence σ such that its Parikh image
fulfills the state equation but it is not a firing sequence. The easiest example for this occurs
in a net N = ({s}, {t}, F) with F (s, t) = 1 = F (t, s). Let m and m′ be the empty marking,
i.e. one with zero tokens overall, then m[t〉m′ is obviously wrong but m+C℘(σ) = m′ holds
since C = (0). The effect can occur whenever the Petri net contains a cycle of transitions.
Interestingly, certain cycles of transitions can also help to overcome this problem, see Fig. 1.
Here, we would like to fire a word tt′ from the marking m with m(s1) = m(s2) = 0 and
m(s3) = 1, but obviously, this is impossible. If we interleave, however, tt′ with the sequence
uu′ we can fire utt′u′. The sequence utt′u′ corresponds to a solution of the state equation
for N , m, and m′ that is not minimal. More precisely, we have C℘(uu′) = 0. At first glance,
such a sequence does not change the marking and appears to be neglegible. However, it
has a valuable effect on tt′ in “lending a token” to s2. The transition u provides that token,
u′ takes it back, but meanwhile the token helps the sequence tt′ to proceed. The process
of “lending tokens” is not visible in the state equation as the latter overapproximates the
token game of Petri nets to linear algebra. In consequence, it is necessary for our approach
to consider non-minimal solutions of the state equation and in particular solutions to the
corresponding homogeneous system of equations.

4 H. WIMMEL AND K. WOLF

t

s2

t′

s1

u′

u

s3

1 −1 0 0
−1 1 1 −1
0 0 −1 1

s1

s2

s3

t t′ u u′

Figure 1: The word tt′ cannot fire, but we can borrow a token from the circle uu′, so utt′u′

can fire and leads to the same marking as tt′. The incidence matrix of the net is
shown on the right

Definition 2.6 (T-invariant). Let N = (S, T, F) be a Petri net and C its incidence matrix.
A vector x ∈ NT is called a T -invariant if Cx = 0. If a T-invariant corresponds to some
executable firing sequence, it is called realizable.

A realizable T -invariant represents a cycle in the state space. Corresponding firing
sequences do not change the marking. However, its interleaving with another sequence σ

may turn σ from unrealizable to realizable.
Solving the state equation is a non-negative integer programming problem. From linear

algebra we know that the solution space is semi-linear.

Corollary 2.7 (Solution space). For a given state equation m + Cx = m′ over a net
N = (S, T, F), there are numbers j, k ∈ N and finite sets of vectors B = {bi ∈ N

T | 1 ≤ i ≤ j}
(base vectors) and P = {pi ∈ N

T | 1 ≤ i ≤ k} (period vectors) such that:

• all bi ∈ B are pairwise incomparable (by standard componentwise comparison for vectors)
and thus minimal solutions,

• P forms a basis for the non-negative solution space P ∗ = {
∑k

i=1 nipi |ni ∈ N, pi ∈ P} of
Cx = 0,

• for all solutions x there are ni ∈ N for 1 ≤ i ≤ k and n ∈ {1, . . . , j} such that x =

bn +
∑k

i=1 nipi,
• for every solution x, all vectors of the set x+ P ∗ are solutions as well.

Note that only linear combinations with nonnegative coefficients are considered in this
representation. In this setting, the number of base vectors as well as the number of period
vectors may exponentially depend on the size of the net. Permitting negative combinations
(and thus solutions in the integers instead of the natural numbers) would yield a significant
loss in precision of the state equation.

So we know that all solutions can be obtained by taking a minimal solution b of the
state equation and adding a linear combination of T -invariants from some basis P . Usually,
not all the elements from B and P we use for a solution are realizable, though. While the
sum of two realizable T -invariants remains realizable (just concatenate the according firing
sequences as they have identical initial and final marking), the sum of two non-realizable
T -invariants may well become realizable. This can be seen in Fig. 2, where neither ℘(tt′) nor
℘(uu′) is realizable under the marking m with m(s1) = m(s4) = 1 and m(s2) = m(s3) = 0,
but the sequence tut′u′ realizes ℘(tt′uu′). The matter is even more complicated when a
minimal solution from B is introduced, because positive minimal solutions are never T -
invariants (unless m = m′), i.e. they change the marking of the net, so their realizations
cannot just be concatenated.

APPLYING CEGAR TO THE PETRI NET STATE EQUATION 5

t s2

t′s1

u s4

u′s3

Figure 2: Neither the T -invariant ℘(tt′) nor ℘(uu′) is realizable, but ℘(tt′uu′) is, by the
sequence tut′u′

3. Traversing the Solution Space

Though realizability of transition vectors is and remains a problem, the first real problem we
encounter when we try to solve the state equation is a practical one. While there are solvers
that can determine the complete sets of base and period vectors for the solution space, e.g.
4ti2 [1], these programs can only do that for very small systems. If the system has a hundred
or more variables, we are out of luck. On the other hand, integer programming (IP) solvers
like lp solve [2] are much faster but will only find one solution to the state equation at a
time.

Another point of interest to know about IP solvers is the objective function, which can
be any function over the variables of the linear system to solve. While looking for a solution,
the solver tries to minimize or maximize this function. Minimizing seems more valuable here,
since we might use the sum over all variables as our objective function, effectively telling
the solver to produce a solution that would lead to a shortest firing sequence if realizable.
In the following, we will assume such an objective function.

Fortunately, we can force an IP solver to produce more than just one solution — this
is the CEGAR part of our approach. If a solution found is not realizable, we may add an
inequation to our state equation to forbid that solution. Starting the IP solver again will
then lead to a different solution. The trick is, of course, to add inequations in such a way
that no realizable solution is lost.

Definition 3.1 (Constraints). Let N = (S, T, F) be a Petri net. We define two forms of
constraints, both being linear inequations over transitions:

• a jump constraint takes the form t < n with n ∈ N and t ∈ T . In general, it is intended
to switch (jump) to another base solution, exploiting the incomparability of different
minimal base solutions.

• an increment constraint takes the form
∑k

i=1 niti ≥ n with ni ∈ Z, n ∈ N, and ti ∈ T .
Among others, it can be used to force non-minimal solutions.

To understand the idea for differentiating between these two forms of constraints, it is
necessary to introduce the concept of a partial solution first. A partial solution is obtained
from a solution of the state equation under given constraints by firing as many transitions
as possible.

Definition 3.2 (Partial solution). Let N = (S, T, F) be a Petri net and Ω a total order
over NT that includes the partial order given by x < y if

∑
t∈T x(t) <

∑
t∈T y(t).

A partial solution of a reachability problem (N,m,m′) is a tuple (Γ, x, σ, r) of

• a family of (jump and increment) constraints Γ = (c1, . . . , cn),

6 H. WIMMEL AND K. WOLF

• the Ω-smallest solution x fulfilling the state equation of (N,m,m′) and the constraints of
Γ,

• a firing sequence σ ∈ T ∗ with m[σ〉 and ℘(σ) ≤ x,
• a remainder r with r = x− ℘(σ) and ∀t ∈ T : (r(t) > 0 =⇒ ¬m[σt〉).

The vectors x and r are included for convenience only, they can be computed from Γ, σ, Ω,
and the problem instance.

A full solution is a partial solution (Γ, x, σ, r) with r = 0. In this case, σ is a firing
sequence solving our reachability problem (with answer ’yes’).

We choose Ω such that an IP solver can be assumed to always produce the Ω-smallest
solution that does not contradict its linear system of equations. Note that from any firing
sequence solving our reachability problem we can easily deduce a full solution:

Corollary 3.3 (Realizable solutions are full solutions). For any realizable solution x of the
state equation (realized by a firing sequence σ) we find a full solution (Γ, x, σ, 0) where Γ
consists of constraints t ≥ x(t) for every t with x(t) > 0, and ℘(σ) = x.

Note, that x is the smallest solution fulfilling Γ and therefore also the Ω-smallest solu-
tion.

By adding a constraint to a partial solution we may obtain new partial solutions (or
not, if the linear system becomes infeasible). Any full solution can eventually be reached
by consecutively extending an Ω-minimal partial solution with constraints. The following
lemma is thus a core argument for the correctness of our approach.

Lemma 3.4 (A path to a full solution). Let b be the Ω-minimal solution of the state equation

of a reachability problem (N,m,m′) and ps′ = ((cj)1≤j≤ℓ, b
′+

∑k
i=1 nipi, σ

′, 0) a full solution
of the problem. For 0 ≤ n ≤ ℓ, there are partial solutions psn = ((cj)1≤j≤n, xn, σn, rn) with
ps0 = (∅, b, σ0, r0), psℓ = ps′, and xn1

≤Ω xn2
for n1 ≤ n2.

Proof. Let Γn = (cj)1≤j≤n. If psn1
, psn2

are two partial solutions (with 1 ≤ n1 < n2 ≤ ℓ)
then xn2

is a solution of the state equation plus Γn1
, since it even fulfills the state equation

plus Γn2
with Γn1

⊆ Γn2
. As xn1

is the Ω-smallest solution of the state equation plus Γn1
,

xn1
≤Ω xn2

holds. Therefore, b ≤Ω x1 ≤Ω . . . ≤Ω xℓ. Since xℓ = b′ +
∑k

i=1 nipi is an
existing solution of the strictest system, i.e. state equation plus Γℓ, each system of state
equation plus one family of constraints Γn is solvable. As a σn can be determined by just
firing transitions as long as possible, all the partial solutions psn exist.

Now, let us assume a partial solution ps = (Γ, x, σ, r) that is not a full solution, i.e.
r 6= 0. Obviously, some transitions cannot fire often enough. There are three possible
remedies for this situation:

(1) x may still be realizable by a different firing sequence that corresponds to x. That is,
we can find a full solution ps′ = (Γ, x, σ′, 0) with ℘(σ′) = x.

(2) We can add a jump constraint to obtain an Ω-greater solution vector for a different
partial solution.

(3) If r(t) > 0 for some transition t, we can add an increment constraint to increase the
maximal number of tokens available on a place in the preset of t. Since the final marking
remains the same, this means to borrow tokens for such a place. This can be done by
adding a T -invariant containing the place to the solution.

A visualization of these ideas can be seen in Fig. 3 where b denotes the Ω-smallest solution.
The cone over b represents all solutions b + P ∗ with P being the set of period vectors, i.e.

APPLYING CEGAR TO THE PETRI NET STATE EQUATION 7

b

Figure 3: Paths from the Ω-minimal solution b to any solution. Black dots represent so-
lutions, cones stand for linear solution spaces over such solutions, which may or
may not intersect or include each other. Normal arrows increment a solution
by adding a T -invariant, dashed arrows are jumps to an incomparable Ω-greater
solution. Such jumps can also occur on higher levels of linear solution spaces,
shown by the dotted arrow

T -invariants. Jump constraints lead along the dashed or dotted lines to the next Ω-minimal
solution while normal arrows representing increment constraints lead upwards to show the
addition of a T -invariant. How to build constraints doing just what we want them to do is
the content of the next section.

4. Building Constraints

Let us first argue that for a state equation, any of the minimal solution vectors in B can
be obtained by using jump constraints.

Lemma 4.1 (Jumps to minimal solutions). Let b, b′ ∈ B be base vectors of the solution
space of the state equation m + Cx = m′ plus some set of constraints Γ. Assume b to be
the Ω-minimal solution of the system. Then, we can obtain b′ as output of our IP solver by
consecutively adding jump constraints of the form ti < ni with ni ∈ N to Γ.

Proof. We know b ≤Ω b′ holds, but since b′ is a minimal solution, b ≤ b′ cannot hold.
Therefore, a transition t with b′(t) < b(t) must exist. After adding the constraint t < b(t)
to Γ the IP solver can no longer generate b as a solution. Assume b′′ is the newly generated
solution. If b′ = b′′ we are done. Otherwise, since b′ fulfills t < b(t), it is still a solution of our
system, and also a minimal one as the solution space is restricted by the added constraint.
Thus, b′′ ≤Ω b′ holds and we may recursively use the same argument as above for b := b′′.
Since there are only finitely many solutions Ω-smaller than b′, the argument must terminate
reaching b′.

Non-minimal solutions may not be reachable this way, since the argument “b′(t) < b(t)
for some t” does not necessarily hold. We will need increment constraints for this, but
unluckily, increment constraints and jump constraints may contradict each other. Assume
our state equation has a solution of the form b′+p with a period vector p ∈ P and to obtain
b′ ∈ B from the Ω-minimal solution b ∈ B we need to add (at least) a jump constraint
ti < ni to the state equation. If p contains ti often enough, we will find that (b′+p)(ti) ≥ ni

holds. Therefore, b′+p is not a solution of the state equation plus the constraint ti < ni, i.e.
adding an increment constraint demanding enough occurrences of ti for b′ + p will render
the linear equation system infeasible. The only way to avoid this problem is to remove the
jump constraints before adding increment constraints.

8 H. WIMMEL AND K. WOLF

Lemma 4.2 (Transforming jumps). Let z be the Ω-minimal solution of the state equation
m+Cx = m′ plus some constraints Γ. Let Γ′ consist of all increment constraints of Γ plus a
constraint t ≥ z(t) for each transition t. Then, for all y ≥ z, y is a solution of m+Cx = m′

plus Γ∩Γ′ if and only if y is a solution of m+Cx = m′ plus Γ′. Furthermore, no Ω-smaller
solution of m+ Cx = m′ plus Γ than z solves m+ Cx = m′ plus Γ′.

Proof. Let y ≥ z be a solution of m + Cx = m′ plus Γ ∩ Γ′. The additional constraints
in Γ′ only demand y(t) ≥ z(t), which is obviously the case. The other direction is trivial.
For the second part, let z′ ≤Ω z with z 6= z′ be some solution of m + Cx = m′ plus Γ.
Since

∑
t z

′(t) ≤
∑

t z(t) (following from Ω) but z 6= z′, for at least one transition t holds
z′(t) < z(t). Due to the constraint t ≥ z(t) in Γ′, z′ cannot be a solution of m+ Cx = m′

plus Γ′.

As a consequence, if we are only interested in solutions of the cone z + P ∗ over z, we
can add increment constraints guaranteeing solutions greater or equal than z and remove all
jump constraints without any further restriction. Our IP solver will yield z as the Ω-minimal
solution for both families of constraints, Γ and Γ′, and we can add further constraints leading
us to any solution in the cone z + P ∗ now.

Let ps = (Γ, x, σ, r) now be a partial solution with r > 0. We would like to determine
sets of places that need additional tokens (and the number of these tokens) that would
enable us to fire the remainder r of transitions. Obviously, this problem is harder than the
original problem of finding out if a transition vector is realizable, i.e. just testing if zero
additional tokens are sufficient. A recursive approach would probably be very inefficient as
for every solution x there may be many different remainders r. Even though the remainders
are smaller than the solution vector x, the number of recursion steps might easily grow
exponentially with the size of x, i.e.

∑
t x(t). We therefore adopt a different strategy,

namely finding good heuristics to estimate the number of tokens needed. If a set of places
actually needs n additional tokens with n > 0, our estimate may be any number from one
to n. If we guess too low, we will obtain a new partial solution allowing us to make a guess
once again, (more or less) slowly approaching the correct number. We propose a two-part
algorithm.The first part computes sets of places and transitions that are of interest, the
second estimates the number of tokens. For the first part, we use a dependency graph
that is known from partial order reduction approaches [18]. For every disabled transition,
we can choose an insufficiently marked place. For every such place, we consider its pre-
transitions. Applying this idea to a partial solution (where all transitions in r are disabled),
this graph yields cycles, or more generally strongly connected components) of mutually
blocked transitions and their insufficiently marked scapegoat places. In order to make parts
of r fireable, we need to interleave r with a T-invariant that is able to lend tokens to any
of the involved scapegoat places. Obviously, source SCC (i.e. SCC without incoming edges)
are of particular interest for enabling parts of r. The following algorithm computes sets of
places where additional tokens are necessary.

input: Reachability prob. (N,m,m′); partial solution ps = (Γ, x, σ, r)

output: A set of tuples (Si, Ti, Xi) with Si ⊆ S, Ti ∪Xi ⊆ T

Determine m̂ with m[σ〉m̂;

Build a bipartite graph G = (S0 ∪ T0, E) with

T0 := {t ∈ T | r(t) > 0}; S0 := {s ∈ S | ∃t ∈ T0: F (s, t) > m̂(s)};

E := {(s, t) ∈ S0 × T0 |F (s, t) > m̂(s)} ∪ {(t, s) ∈ T0 × S0 |F (t, s) > F (s, t)};

Calculate the strongly connected components (SCCs) of G;

APPLYING CEGAR TO THE PETRI NET STATE EQUATION 9

i := 1;

for each source SCC (i.e. one without incoming edges):

Si := SCC ∩ S0;

Ti := SCC ∩ T0;

Xi := {t ∈ T0\SCC | ∃s ∈ Si : (s, t) ∈ E};

i := i+ 1;

end for

The edges of the graph G constructed in the algorithm have a different meaning de-
pending on their direction. Edges from transitions to places signal that the transition would
increase the number of tokens on the place upon firing, while edges in the other direction
show the reason for the non-enabledness of the transition. A source SCC, i.e. a strongly
connected component without incoming edges from other components, can therefore not
obtain tokens by the firing of transitions from other SCCs. This means, tokens must come
from somewhere else, that is, from firing transitions not appearing in the remainder r. For
each set of places Si such identified as non-markable by the remainder itself, there are two
sets of transitions. If one transition from the set Ti would become firable, it is possible
that all other transitions could fire as well, since the former transition effectively produces
tokens on some place in the component. If the set Ti is empty (the SCC consisting of a
single place), the transitions mentioned in r will not produce any tokens on the SCC. Thus,
the token needs of the transitions depending on this SCC, i.e. those in Xi, must all be
fulfilled together, since they cannot activate each other. Overall, we obtain:

Lemma 4.3. The previous algorithm determines source SCCs (Si, Ti) with insufficient num-
bers of tokens to enable the remainder r of a partial solution as well as sets Xi of transitions
depending on those SCCs for firing.

Since enough additional tokens to enable one transition from a set Ti might later enable
the rest of Ti and Xi as well, it is difficult to compute the exact number of tokens needed
on some SCC and where to place them. The following algorithm thus is a heuristic to
determine a least number of tokens necessary on a source SCC.

input: A tuple (Si, Ti, Xi); (N,m,m′) and m̂ from above

output: A number of tokens n (additionally needed for Si)

if Ti 6= ∅

then n := mint∈Ti
(
∑

s∈Si
max{0, (F (s, t)− m̂(s))})

else sort Xi in groups Gj := {t ∈ Xi |F (t, s) = j} (with Si = {s});

n := 0; c := 0;

for j with Gj 6= ∅ downwards loop

c := c+ j +
∑

t∈Gj
r(t) ∗ (F (s, t)− j);

if c > 0 then n := n+ c end if;

c := −j

end for

end if

Lemma 4.4. For each set of places Si that need additional tokens according to the first
part of the algorithm, the second part estimates that number of tokens (in a range from one
to the actual minimum number of tokens necessary).

Proof. Consider a triple (Si,Ti,Xi) computed by the first algorithm. If Ti is not empty, only
line 4 of the second algorithm is executed, computes the number of tokens missing for each

10 H. WIMMEL AND K. WOLF

of the transitions in Ti, and takes the minimum over these numbers. By construction, this
number is at least one and any lower number would not activate any transition from Ti.

If Ti is empty, all transitions in Xi depend on a single place which must provide all
the necessary tokens to fire all the transitions in Xi. Note that while the transitions in
Xi all effectively consume tokens from s ∈ Si, they may also put tokens back onto this
place due to a loop. By firing those transitions with the lowest F (t, s)-values last, we
minimize the leftover. Transitions with the same F (t, s)-value j can be processed together,
each consuming effectively F (s, t)− j tokens except for the “first” transition which requires
the existence of j additional tokens. If some group Gj of transitions leaves tokens on s,
the next group can consume them, which is memorized in the variable c (for carryover or
consumption). Overall, we get the minimal number of tokens necessary to fire all transitions
in Xi.

Observe, that the algorithm cannot return zero or negative values: There must be at
least one transition in Ti ∪Xi, otherwise there would be no transition that cannot fire due
to a place in Si and the places in Si would not have been computed at all. If Ti is not empty,
line 4 in the algorithm minimizes over positive values, i.e. the numbers of tokens missing for
each transition in Ti; if Ti is empty, line 8 will set c to a positive value at its first execution,
yielding a positive value for n.

We can thus try to construct a constraint from a set of places Si generated by the first
part of the algorithm and the token number calculated in the second part. Since our state
equation has transitions as variables, we must transform our condition on places into one
on transitions first.

Lemma 4.5. Let N = (S, T, F) be a Petri net, (N,m,m′) the reachability problem to be
solved, ps = (Γ, x, σ, r) a partial solution with r > 0, and m̂ the marking reached by m[σ〉m̂.
Let Si be a set of places and n a number of tokens to be generated on Si. Further, let
Ti := {t ∈ T | r(t) = 0 ∧

∑
s∈Si

(F (t, s)− F (s, t)) > 0}. We define a constraint c by
∑

t∈Ti

∑

s∈Si

(F (t, s)− F (s, t))t ≥ n+
∑

t∈Ti

∑

s∈Si

(F (t, s)− F (s, t))℘(σ)(t).

Then, for the system m + Cx = m′ plus Γ plus c, if our IP solver can generate a solution
x+y (y being a T -invariant) we can obtain a partial solution ps′ = (Γ∪{c}, x+y, στ, r+z)
with ℘(τ) + z = y. Furthermore,

∑
t∈T

∑
s∈Si

(F (t, s)− F (s, t))y(t) ≥ n.

Proof. (Sketch) First, note that Ti contains the transitions that produce more on Si than
they consume, but we have explicitly excluded all transitions of the remainder r, since we
do not want the IP solver to increase the token production on Si by adding transitions
that could not fire anyway. I.e., we would like to have a chance to fire the additional
transitions in y at some point, though there are no guarantees. The left hand side of
c contains one instance of a transition t for each token that t effectively adds to Si. If
we apply some transition vector u to the left hand side of c (i.e. replacing t by u(t) for
each transition t ∈ Ti), we therefore get the number of tokens added to Si by firing the
transitions from Ti in u. Of course, other transitions in u (outside Ti) might reduce this
number again. For the right hand side of c, we calculate how many tokens are actually
added to Si by the transitions from Ti in the firing sequence σ (and therefore also in the
solution x) and increase that number by the n extra tokens we would like to have. Since
the extra tokens cannot come from x in a solution u := x + y, they must be produced by

APPLYING CEGAR TO THE PETRI NET STATE EQUATION 11

y, i.e.
∑

t∈T

∑
s∈Si

(F (t, s) − F (s, t))y(t) ≥ n. We might be able to fire some portion of y
after σ, resulting in the obvious ℘(τ) + z = y.

When we apply our constraint we might get less or even more than the n extra tokens,
depending on the T -invariants in the net. There are three possible outcomes when we apply
the new constraint: The constraint might be unsatisfiable, we might detect that the new
constraint has not brought us any closer to a solution, or some of the remainder transitions
can now fire (or have at least come closer to firing). In the first two cases, our partial solution
just cannot be extended to a full solution, nothing is lost if we throw it away. Failing to
detect the second case will not cut off any solutions but might prohibit termination. In the
third case, we continue extending the partial solution with the help of further constraints.
Therefore, if a solution exists, we can still find it, and we know that we can find it with the
help of jump and increment constraints, since we only add necessary constraints. Further
jump constraints may be necessary as there may be many incomparable, minimal solutions
fulfilling the latest increment constraint.

Theorem 4.6 (Reachability of solutions). If a reachability problem has a solution, a re-
alizable solution of the solution space of the state equation can be reached by consecutively
adding constraints to the system of equations, always transforming jump constraints before
adding increment constraints. This even holds, given some solution x, if we limit the in-
crement constraints to those built by lemma 4.5 and jump constraints to those of the form
t < x(t).

Proof. (Sketch) The first sentence is obvious from lemma 3.4. For the second part, let σ

be a realizable solution with ℘(σ) = x and let b be a minimal solution with b ≤ x. We can
obtain b by a set of jump constraints according to lemma 4.1. Either b is realizable and
we are done, or b is not realizable. In the latter case, we compute an increment constraint
forcing additional tokens to undermarked places according to lemma 4.3, 4.4, and 4.5, not
losing any full solutions. Let y be the solution computed for this extended system, then
b ≤ y holds. If y is realizable, we are done. If y ≤ x, we add the next increment constraint.
Otherwise, we test further jump constraints now and obtain all solutions y1, . . . , yn fulfilling
the increment constraint but being incomparable to y. For one of them, yk ≤ x must hold
(as we have not lost any full solutions). We continue by checking realizability of yk and, in
the negative case, repeat adding a necessary increment constraint. Since x is finite and each
constraint leads only to bigger solutions, at some point we must find a realizable solution
or reach x.

5. Finding Partial Solutions

Producing partial solutions ps = (Γ, x, σ, r) from a solution x of the state equation (plus Γ)
is actually quite easily done by brute force. We can build a tree with marking-annotated
nodes and the firing of transitions as edges, allowing at most x(t) instances of a transition t

on any path from the root of the tree to a leaf. Any leaf is a new partial solution from which
we may generate new solutions by adding constraints to the state equation and forwarding
the evolving linear system to our IP solver. If we just make a depth-first-search through
our tree and backtrack at any leaf, we build up all possible firing sequences realizable from
x. This is obviously possible without explicitly building the whole tree at once, thus saving
memory. Of course, the tree might grow exponentially in the size of the solution vector x

12 H. WIMMEL AND K. WOLF

and so some optimizations are in order to reduce the run-time. We would like to suggest a
few ones here, especially partial order reductions.

(1) The stubborn set method [10] determines a set of transitions that can be fired before
all others by investigating conflicts and dependencies between transitions at the active
marking. The stubborn set is often much smaller than the set of enabled transitions
under the same marking, leading to a tree with a lower degree. In our case, in particular
the version of [15] is useful as, using this method, the reduced state space contains, for
each trace to the target marking, at least one permution of the same trace. Hence, the
reduction is consistent with the given solution of the state equation.

(2) Especially if transitions should fire multiple times (x(t) > 1) we observe that the stub-
born set method alone is not efficient. The situation in Fig. 4 may occur quite often.
Assume we reach some marking m̂ by a firing sequence α, so that transitions t and u

are enabled. After proceeding through the subtree behind t we backtrack to the same
point and now fire u followed by some sequence σ after which t is enabled, leading to
m[α〉m̂[uσt〉m̃. If m̂[tσu〉 holds, we know that it reaches the same marking m̃ and the
same remainder r of transitions still has to fire. Therefore, in both cases the future is
identical. Since we have already investigated what happens after firing αtσu, we may
backtrack now omitting the subtree after αuσt. Note that a test if m̂[tσu〉 holds is quite
cheap, as only those places s with Cs,t < Cs,u can prevent the sequence tσ. Enabledness
of u after tσ can be tested by reverse calculating m̃1 = m̃ − Cu and checking whether
m̃1 is a marking and m̃1[u〉m̃ holds.

(3) There are situations where a leaf belongs to a partial solution ps′ that cannot lead to
a (new) full solution. In this case the partial solution does not need to be processed.
If we already tried to realize x yielding a partial solution ps = (Γ, x, σ, r) and ps′ =
(Γ∪{c}, x+ y, σ, r+ y) is our new partial solution with an increment constraint c and a
T -invariant y, any realizable solution x+ y+ z obtainable from ps′ can also be reached
from ps by first adding a constraint c′ for the T -invariant z (and later c, y). If no
transition of z can be fired after σ, y + z is also not realizable after firing σ. We may
be able to mingle the realization of z with the firing of σ, but that will be reflected by
alternate partial solutions (compared to both, ps and ps′). Therefore, not processing
ps′ will not lose any full solutions.

(4) A similar situation occurs for ps′ = (Γ ∪ {c}, x + y, στ, r) with ℘(τ) = y. There is one
problem, though. Since we estimated a token need when choosing c and that estimate
may be too low, it is possible that while firing τ we get closer to enabling some transition
t in r without actually reaching that limit where t becomes firable. We thus have to
check for such a situation (by counting the minimal number of missing tokens for firing
t in the intermediate markings occurring when firing σ and τ). If τ does not help in
approaching enabledness of some t in r, we do not need to process ps′ any further.

(5) Partial solutions should be memorized if possible to avoid using them as input for
CEGAR again if they show up more than once.

6. The complete algorithm

The following algorithm integrates the results from the previous sections, using a queue of
partial solutions as a job queue that is ordered by ascending size of the possible output, i.e.
the firing sequence from an initial marking m to a final marking m′.

APPLYING CEGAR TO THE PETRI NET STATE EQUATION 13

m m̂α

m̂1

m̂2

t

u

m̃1

m̃2

σ

σ

m̃

m̃

u

t

Figure 4: If both sequences αtσu and αuσt can be fired, the subtrees after the nodes with
marking m̃ are identical. Only one of the subtrees needs to be evaluated, the
other one may be omitted. Snaked lines denote firing sequences

input: Reachability problem (N,m,m′)

output: Firing sequence from m to m′ if one exists

var: Queue Q of partial solutions (Γ, x, σ, r) to work on

var: Set S of all partial solutions computed (for optimisation (5))

Put (∅, 0, ε, 0) into Q;

while Q 6= ∅:

Remove from Q an element (Γ, x, σ, r) with minimal size for x;

Compute new increment constraints ∆ from r (see section 4);

if (Γ ∪∆, ·, ·, ·) ∈ S then continue to the next loop;

Compute the minimal solution y for state equation plus Γ ∪∆;

if no solution y exists then continue to the next loop;

for each set of jump constraints ∅ 6= R ⊆ {t < y(t) | y(t) > x(t)}

Transform jump constraints in Γ ∪R to increment constraints;

Create a new partial solution (Γ ∪R, x, σ, r) in Q and S;

Traverse the tree of firing sequences σ′ with ℘(σ′) ≤ y:

(Depth first, use optimisations (1) and (2) to prune the tree)

Upon reaching a leaf (σ′ cannot be prolonged):

if y = ℘(σ′) then halt with solution σ′;

if optimisation (3) or (4) applies then backtrack;

if (Γ ∪∆, y, σ′, y − ℘(σ′)) ∈ S then backtrack;

Put (Γ ∪∆, y, σ′, y − ℘(σ′)) into Q and S

end while;

Print "no solution"

In each while-loop one candidate from the partial solutions queue is processed. First,
the constraints ∆ are added according to the non-firable remainder r and a minimal solution
vector y is computed. If this is successful, jump constraints are added to the old solution
x to obtain other new solutions in a later loop. The minimal solution vector y is then
checked for realizable firing sequences. If at some point a firing sequence is incomplete
and not extendable, a new partial solution is generated to be able to add more increment
constraints later on. The result “no solution” can be obtained by two mechanisms: a partial
solution is thrown away if no solution vector y can be computed and the optimisations may
prune the trees of firing sequences so much that no new partial solutions are created anymore.
There is no guarantee for termination, of course, but in practise this works well.

Note that new jump constraints can lead to an exponential growth in the number of
partial solutions, as one such partial solution is created for each subset of transitions where
the new solution exceeds the old one. Usually, there are only few different partial solutions,

14 H. WIMMEL AND K. WOLF

i.e. we have just a problem with space limitations but not really with computation time.
Thus, we advise to modify the algorithm such that the new partial solutions created from
jump constraints are not introduced all at once but one at a time, each time a former one
has been processed. If a full solution is found, the unprocessed jump constraints are deleted
before they consume space and time, if no full solution exists our experience says that jump
constraints are scarce anyway.

7. Diagnostic Information for Unreachability

If one of the optimizations 3 or 4 occurs, we know that an increment constraint c added
to our system of linear equations did not have the desired effect. This means, we wanted
to increase the number of tokens on some set of places but were not able to do so, i.e. a
T -invariant either was not firable or it had some side effect cancelling the usefulness of the
token increase. Such a thing could happen for example if we added a transition t′′ to Fig. 1
that consumes a token from each s2 and s3 and tried to fire it. The T -invariant u+ u′ will
produce a token on s2, where we need it, but takes away that token from s3, cancelling its
positive effect. Even if we fire this T -invariant more than once, it is of no use.

Compare the partial solutions ps = (Γ, x, σ, r) and ps′ = (Γ ∪ {c}, x + y, σ, r + y) resp.
ps′ = (Γ ∪ {c}, x + y, στ, r) from optimizations 3 and 4. It is obvious that adding the
constraint c had not the desired effect, i.e. c failed. We were not able to obtain enough
tokens on some set of places Si (that was the reason for introducing c) to enable some
transitions Ti (or Xi, see section 4). If we memorize Si and Ti/Xi and the number of tokens
n missing on Si together with c, we can now give a (partial) reason for unreachability. We
need at least n more tokens on the set Si to fire one transition in Ti or all transitions in
Xi after the firing sequence σ. Indeed, Si produces a kind of deadlock: Si ∪ Ti forms a
component of the net N that is strongly connected and the transitions of Ti ∪ Xi cannot
fire after σ since there are not enough tokens left in Si. There may be other transitions
though, that could put tokens onto Si. If our partial solutions could not be extended with
them to obtain a full solution, these transitions are either dead after firing σ or they lead
to a system of state equation plus constraints that can not be fulfilled. In the latter case,
after firing such a transition the final marking becomes unreachable.

Even if we find a reason for unreachability, there may still be other paths that lead to
a solution. But if the algorithm terminates altogether (which we are not able to guarantee)
and we have not found any solution, we can pick up our failed constraints and present
them as diagnostic information. Fig.5 in the next section shows a visualization of such
information in a small example Petri net. Hence, our tool cannot only tell the user that a
certain marking is unreachable but can also give hints as to where the bottlenecks of the
token distribution are that cannot be passed.

8. Experimental Results

The algorithm presented here has been implemented in a tool named Sara [19]. We compare
Sara to LoLA [20], a low level analyzer searching the (reduced) state space of a Petri net.
According to independent reports, e.g. [17], LoLA performs very well on reachability queries
and possibly is the fastest tool for standard low level Petri nets. The following tests, real-
world examples as well as academic constructions, were run on a 2.6GHz PC with 4GB

APPLYING CEGAR TO THE PETRI NET STATE EQUATION 15

RAM under Windows XP and Cygwin. While the CPU had four cores, only one was used
for the tools. Tests on a similar Linux system lead to comparable but slightly faster results.

• 590 business processes with about 20 up to 300 actions each were tested for “relaxed
soundness”. Relaxed soundness means that, for each transition t of the net, it is possible
to reach the final marking from the initial marking with a path that contains t. This
problem can be solved using the methods presented above for reachability. The occurrence
of t can be asserted by an additional constraint t > 0 to the IP solver. The processes
were transformed into Petri nets and for each action a test was performed to decide if
it was possible to execute the action and reach the final state of the process afterwards.
Successful tests for all actions/transitions yield relaxed soundness. Sara was able to decide
relaxed soundness for all of the 590 nets together (510 were relaxed sound) in 198 seconds,
which makes about a third of a second per net. One business process was especially hard
and took 12278 calls to lp solve and 24 seconds before a decision could be made. LoLA
was unable to solve 17 of the problems (including the one mentioned above) and took 24
minutes for the remaining 573.

• Four Petri nets derived in the context of verifying parameterized boolean programs (and
published on a web page [8]) were presented to us to decide coverability. Sara needed less
than one time slice of the CPU per net and solved all instances correctly. LoLA was not
able to find the negative solution to one of the problems due to insufficient memory (here,
tests were made with up to 32GB RAM), the remaining three problems were immediately
solved.

• In 2003, H. Garavel [7] proposed a challenge on the internet to check a Petri net derived
from a LOTOS specification for dead (i.e. never firable) transitions. The net consisted
of 776 transitions and 485 places, so 776 tests needed to be made. Of the few tools
that succeeded, LoLA was the fastest with about 10 minutes, but it was necessary to
handle two of the transitions separately with a differently configured version of LoLA. In
our setting, seven years later, LoLA needed 41 seconds to obtain the same result. Sara
came to the same conclusions in 26 seconds. In most cases the first solution of lp solve
was sufficient, but for some transitions it could take up to 15 calls to lp solve. Since
none of the 776 transitions is dead, Sara also delivered 776 firing sequences to enable the
transitions, with an average length of 15 and a longest sequence of 28 transitions. In
2003 the best upper bound for the sequences lengths was assumed to be 35, while LoLA
found sequences of widely varying length (the longest having several thousand transition
occurrences), though most were shorter than 50 transitions.

• We investigated five nets that represent biochemical reaction chains. The nets stem
from the Pathway Logic Assistent [17] where LoLA is integrated for solving reachability
problems. For some of the nets (which have several hundred places and transitions),
LoLA was incapable of verifying reachability. Sara was able to solve the problems. For
three systems, Sara ran less than a second, the remaining two problems could be solved
in approximately half an hour. In one of these problem instances the given marking was
unreachable.

• Using specifically constructed nets with increasing arc weights (and token numbers) it was
possible to outsmart Sara – the execution times rose exponentially with linearly increasing
arc weights, the first five times being 0.1, 3.3, 32, 180, and 699 seconds. LoLA, on the
other hand, decided reachability in less than 3 seconds (seemingly constant time) in these
cases.

16 H. WIMMEL AND K. WOLF

Net Inst. Sol? Full ¬1 ¬2 ¬3/4 ¬5
garavel 776 15 26s (0.11) 25s (0.11) 26s (0.11) 26s (0.11) 26s (0.11)
bad-bp 142 - 24s (85) 24s (85) 24s (85) 24s (85) NR
good-bp 144 53 1.7s (0) 1.7s (0) 1.7s (0) 1.7s (0) 1.7s (0)
test7 10 175 29s (13) 990s (22) NR 49s (14) 29s (13)
test8-1 1 40 0.1s (13) 0.35s (22) 49s (13) 0.2s (14) 0.11s (13)
test8-2 1 76 3.3s (21) 24s (51) NR 11s (34) 3.8s (21)
test8-3 1 112 32s (27) 390s (80) NR 175s (71) 33s (27)
test9 1 - 0.4s (53) 22s (464) NR NR 0.9s (65)

Table 1: Results for shutting down one heuristic. Inst. is the number of problem instances to
be solved for the net, Sol? the average solution length or “-” if no solution exists.
Columns Full, ¬1, ¬2, ¬3/4, and ¬5 contain the result with all optimizations,
without stubborn sets, without subtree cutting, without partial solution cutting,
and without saving intermediate results (numbers are according to Sect. 5). Each
entry shows the elapsed time and the number of necessary CEGAR steps (average),
or NR if no result could be obtained in less than a day

In addition to these experiments, Sara participated in the Model Checking Contest [6] that
was organized within the workshop on Scalable and Usable Model Checking for Petri Nets
and Other Models of Concurrency in June 2011 in Newcastle upon Tyne. In this contest,
Sara competed in reachability queries on place/transition Petri nets representing a flexible
manufacturing system, a KANBAN system, and a biochemical reaction chain. Experiments
were done on increasing state spaces that were obtained by adding additional tokens (up to
several hundred) on certain places. Sara was able to solve most problem instances in less
than a second, the remaining cases were solved within a few seconds. Only two queries led
to memory overflow. Sara outperformed all other participating tools including LoLA.

We also checked our heuristics from Sect. 5 with some of the above nets by switching the
former off and comparing the results (see Table 1). Our implementation needs both forms
of constraints, jump and increment, to guarantee that all solutions of the state equation
can be visited. Going through these solutions in a different order, e.g. the total order Ω, is
difficult and a comparison was not possible so far.

The nets tested fall in two categories. Garavel’s net and the business processes are
extensive nets with a low token count and without much concurrency that could be tackled
by partial order reduction. The heuristics have no effect here, short runtimes result from
finding a good solution to the state equation early on. Only for the hardest of the busi-
ness processes (bad-bp) memorizing intermediate results to avoid checking the same partial
solution over and over made sense – without it we did not get a result at all.

The other category are compact nets. In our test examples a high number of tokens
is produced and then must be correctly distributed, before the tokens can be removed
again to produce the final marking. With a high level of concurrency in the nets, partial
order reduction is extremely useful, the cutting off of already seen subtrees(2) even more
than the stubborn set method(1). In the last net (test9), the sought intermediate token
distribution is unreachable but the state equation has infinitely many solutions. Only by
cutting off infinite parts of the solution tree with the help of optimization 3 and 4 it becomes
possible to solve the problem at all. Without them, the number of outstanding CEGAR
steps reaches 1000 within less than a minute and continues to increase monotonically. The

APPLYING CEGAR TO THE PETRI NET STATE EQUATION 17

i

u

d

c1

a1

k1 c2 k2

x2

a2

ℓ

x1 o

Figure 5: A condensed, flawed business process. One token should flow from the initial
place i to the output place o with all other places empty finally. Non-white
transitions appear in Sara’s solution to the state equation, but only the dark
gray one is fireable. Ascending stripes show the area with non-fireable transitions
where additional tokens could not be generated

algorithm slows down more and more then as the solutions to the state equation and thus
the potential firing sequences become larger.

As mentioned in the previous section, Sara can also provide diagnostic information for
unreachable problem instances as long as the state equation has a solution. This feature
was tested e.g. with the hardest of the 590 business processes from above, which provides
such a negative case for some of its 142 transitions. Using the diagnostic information, we
were able to understand the reason for unreachability thus validating the result computed
by Sara. Since we cannot present such a large net here, a condensed version with the same
important features is shown in Fig. 5.

Sara provides a partitioning of the net showing where the relaxed soundness test (for
any of the transitions k1, k2, or x2) fails, e.g. it is impossible to fire x2 and afterwards reach
the final marking with exactly one token on place o (other places being empty). The solution
d + k1 + k2 + x2 of the state equation can neither be realized nor extended to a “better”
solution. The ascending pattern shows a region of the net (given by Sara) where tokens
are needed but cannot be generated without violating the state equation. The descending
pattern marks areas that are affected by the former ones, i.e. areas with also non-fireable
transitions. The gray transition d is the only fireable transition occurring in the solution.
When analyzing the net we can see that the cycle c1− k1− c2− k2 indeed constitutes a flaw
for a business process: if the cycle gets marked and then emptied later, at least two tokens
must flow through a2, one of which can never be removed. Using u instead of d is therefore
impossible, i.e. dx1 is the only firing sequence reaching the final marking.

9. Towards Parallel Execution

In essence, Sara solves and evaluates a large number of IP problems corresponding to partial
solutions. Different partial solutions are processed mostly independently. In addition, Fig. 3
suggests that our search space is in fact a tree. It is thus natural to consider a parallelization
scheme where new threads are opened whenever there is more than one possibility to add
a constraint to a partial solution.

The network traffic for opening a new thread is rather low. The Petri net input as well
as the problem instance can be loaded by each thread independently and ahead of the actual
activation. Then, only the description of a partial solution, especially a set of additional

18 H. WIMMEL AND K. WOLF

constraints, needs to be transmitted. Compared to the network traffic, the internal work
involves solving at least one IP problem including subsequent analysis.

Hence, the crucial factor for feasibility of this approach is the branching factor in the
search space. With branching factor, we mean the number of new subproblems that are
introduced upon the analysis of a partial solution. If the branching factor is one, the
subproblems appear sequentially and parallelization does not make sense. Larger values
suggest better parallelization results.

We measured the branching factors in several of the examples listed in the previous
section. Among those instances that were solved by Sara in less then a second, the maximum
branching factor was two while the average branching factor was close to one. In nontrivial
examples with practical background (e.g. the hard instances of biochemical reaction chains),
the maximal branching factor was two. The average branching factor ranged between 1.25
and 1.99, so there is enough room for feeding many independent threads. Substantial
speedup can be expected for processing the large number of IP instances (beyond 160.000).
In academic challenges, the maximum branching factor was four, with 2.6 being a typical
average value.

We conclude, that the potential for parallel execution is excellent, especially in those
problem instances where it is most needed.

10. Conclusion

We proposed a promising technique for reachability verification. It is based on the Petri net
state equation that naturally provides an overapproximation of the set of reachable states of
Petri net. Using the idea of counterexample guided abstraction refinement, we were able to
significantly improve the precision of the technique. Our approach has several advantages
compared to state space techniques:

(1) It is very efficient, for two reasons. First, we traverse the set of solutions of the state
equation rather than the set of all reachable states. That is, our search space is already
substantially constrained. Second, we employ the very mature technology of IP solving.
We could validate the efficiency in a large number of challenging examples as well as in the
independent assessment made in the model checking contest in 2011.

(2) It tends to produce very small (not necessarily minimal) witness paths. This is due
to the gradual introduction of period vectors to a minimal solution of the state equation.
Unlike explicit state space techniques, short witnesses come without exponentially blowing
up the search space. In this regard, the state equation as such resembles a symbolic state
representation. Indeed, one solution to the state equation represents up to exponentially
many different firing sequences.

(3) It has the tendency to terminate early on unreachable problem instances. In several
cases, the initial state equation may already assert unreachability. In contrast, state space
techniques (whether explicit or symbolic) cannot benefit from the on-the-fly paradigm if
the target state is unreachable. So they would produce all the reachable states modulo the
applied state space reduction techniques.

(4) It has a rather pleasant memory consumption. As IP solving is an NP complete
problem, polynomial space is sufficient for the core procedure. Only the management of
open subproblems may require arbitrary space.

(5) It has an excellent potential for parallelization. Internal executions (IP solving) are
nontrivial while network traffic (transmitting a problem description) is rather lightweight.

APPLYING CEGAR TO THE PETRI NET STATE EQUATION 19

(6) It produces some kind of diagnostic information for unreachable problem instances.
This potential must be further explored. In particular, usefulness of the diagnostics must
be assessed in studies with independent users unaware of the internal mechanisms of Sara.

On the negative side, we need to mention that our approach is incomplete. We are
not able to show termination of our procedure and a guaranteed termination may even
contradict the EXPSPACE hardness of the reachability problem in general. On the other
hand, our experience with Sara so far is very encouraging.

Our approach applies the concept of counterexample guided abstraction refinement in
a novel context: the abstraction is not given as a transition system but as a linear-algebraic
overapproximation of the reachable states.

The state equation as such has been used earlier for verification purposes, see for in-
stance [5]. In [16], it is used as an initial way of narrowing the state space exploration but
not refined according to the CEGAR.

References

[1] 4ti2 team. 4ti2 — A software package for algebraic, geometric and combinatorial problems on linear
spaces. http://www.4ti2.de/, 2010.

[2] M. Berkelaar, K. Eikland, and P. Notebaert. lp solve Reference Guide. http://lpsolve.sourceforge.net/,
2010.

[3] G. Ciardo, R. Marmorstein, and R. Siminiceanu. The saturation algorithm for symbolic state space
exploration. Software Tools for Technology Transfer, 8(1):4–25, 2006.

[4] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement.
In Proc. CAV, 2000.

[5] J. Esparza, S. Melzer, and J. Sifakis. Verification of safety properties using integer programming: Beyond
the state equation. Formal Methods in System Design, 16 (2)(2):159–189, 2000.

[6] F. Kordon et al. Report on the model checking contest at Petri nets 2011. To appear in ToPNoC, 2012.
[7] H. Garavel. Efficient Petri Net tool for computing quasi-liveness. http://www.informatik.uni-

hamburg.de/cgi-bin/TGI/pnml/getpost?id=2003/07 /2709, 2003.
[8] G. Geeraerts, J. F. Raskin, and L. Van Begin. Expand, enlarge and check.

http://www.ulb.ac.be/di/ssd/ggeeraer/eec/, 2010.
[9] S. R. Kosaraju. Decidability of reachability in vector addition systems. In Proceedings of the 14th Annual

ACM STOC, pages 267–281, 1982.
[10] L. M. Kristensen, K. Schmidt, and A. Valmari. Question-guided Stubborn Set Methods for State Prop-

erties. Formal Methods in System Design, 29(3):215–251, 2006.
[11] J. L. Lambert. A structure to decide reachability in Petri nets. Theoretical Computer Science, 99:79–104,

1992.
[12] J. Leroux. The General Vector Addition System Reachability Problem by Presburger Inductive Invari-

ants. In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, pages 4–13,
Los Alamitos, CA, USA, 2009. IEEE Computer Society.

[13] R. J. Lipton. The Reachability Problem Requires Exponential Space. Research Report, 62, 1976.
[14] E. Mayr. An algorithm for the general Petri net reachability problem. SIAM Journal of Computing,

13(3):441–460, 1984.
[15] K. Schmidt. Stubborn sets for standard properties. In Applications and Theory of Petri Nets 1999: 20th

International Conference, ICATPN’99, Williamsburg, Virginia, USA, June 1999. Proceedings, volume
1639 of Lecture Notes in Computer Science, pages 46–65. Springer-Verlag, June 1999.

[16] K. Schmidt. Narrowing Petri net state spaces using the state equation. Fundamenta Informaticae, 47
(3-4):325–335, 2001.

[17] C. Talcott and D. Dill. The pathway logic assistant. In Third International Workshop on Computational

Methods in Systems Biology, 2005.
[18] A. Valmari and Henri Hansen. Can stubborn sets be optimal? In Johan Lilius and Wojciech Penczek,

editors, Petri Nets, volume 6128 of Lecture Notes in Computer Science, pages 43–62. Springer, 2010.

20 H. WIMMEL AND K. WOLF

[19] H. Wimmel. Sara – Structures for Automated Reachability Analysis. http://service-
technology.org/tools/download, 2010.

[20] K. Wolf. Generating Petri net state spaces. In ICATPN 2007, LNCS 4546, pages 29–42. Springer, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. The Reachability Problem
	3. Traversing the Solution Space
	4. Building Constraints
	5. Finding Partial Solutions
	6. The complete algorithm
	7. Diagnostic Information for Unreachability
	8. Experimental Results
	9. Towards Parallel Execution
	10. Conclusion
	References

