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Abstract. Automated market makers (AMMs) are one of the most prominent decentral-
ized finance (DeFi) applications. AMMs allow users to trade different types of crypto-tokens,
without the need to find a counter-party. There are several implementations and models
for AMMs, featuring a variety of sophisticated economic mechanisms. We present a theory
of AMMs. The core of our theory is an abstract operational model of the interactions
between users and AMMs, which can be concretised by instantiating the economic mecha-
nisms. We exploit our theory to formally prove a set of fundamental properties of AMMs,
characterizing both structural and economic aspects. We do this by abstracting from the
actual economic mechanisms used in implementations, and identifying sufficient conditions
which ensure the relevant properties. Notably, we devise a general solution to the arbitrage
problem, the main game-theoretic foundation behind the economic mechanisms of AMMs.

1. Introduction

Decentralized finance (DeFi) is a software infrastructure, based on blockchains and smart
contracts, which allows users to create and trade crypto-tokens without the intermediation
of central authorities, unlike traditional finance [WPG+21,QZA+21]. Automated Market
Makers (AMMs) are one of the main DeFi archetypes: roughly, AMMs are decentralized
markets of crypto-tokens, providing users with three core operations: depositing crypto-
tokens to obtain shares in an AMM; the dual operation of redeeming shares in the AMM
for the underlying tokens; and swapping tokens of a given type for tokens of another type.
The amount of tokens received by a user upon a swap is algorithmically determined by the
AMM: roughly, this is the amount of tokens sent from the user to the AMM, times the swap
rate, which is computed by the AMM based on its internal state and the input amount.

Despite the apparent simplicity of these operations, AMMs manifest an emerging
behaviour, where users are incentivized to swap tokens to keep their swap rates aligned with
the exchange rate, i.e. the ratio between the prices of the exchanged tokens given by external
price oracles. Namely, if an AMM offers a better swap rate than the oracles’ exchange rate,
rational users will perform swaps to narrow the gap. Formally, the optimal strategy can be
seen as the solution of a game, called the arbitrage game. Executing the optimal strategy
closes the gap between AMM’s and oracles’ exchange rates, and in this sense AMMs offer
users exhange rates that align towards the external, global exchange rates.
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As of December 2022, the two AMM platforms leading by user activity, Uniswap and
Curve Finance, alone hold $3B and $4B worth of tokens, and process $1B and $250M
worth of transactions daily [uni22, cur22]. Although this massive adoption could suggest
that AMMs are a consolidated, well-understood technology, in practice their economic
mechanisms are inherently hard to design and implement. For instance, interactions with
AMMs are sensitive to transaction ordering attacks, where actors with the power to influence
the order of transactions in the blockchain can profit from an opportunistic behaviour,
causing detriment to other users. The relevance of attacks to AMMs is witnessed by the
proliferation of scientific literature on the topic [BCL22,ZQT+21,DGK+20,EMC20,QZG21].
Still, attacks to DeFi applications are not purely theoretical: indeed, there is a growing
history of DeFi incidents, which have caused losses exceeding $2.4B [def22] so far. These
issues witness a need for foundational work to devise formal theories of AMMs which allow
the understanding of their structural properties and of their economic incentive mechanisms.

Current descriptions of AMMs are either economic models [AKC+21, AC20, EAC21,
AEC20], which focus on the incentive mechanism alone, or concrete AMM implementations.
While economic models are useful to understand the macroscopic financial aspects of AMMs,
they do not precisely describe the interactions between AMMs and their users. Still, a
precise formalisation of these interactions is fundamental to understand the structural and
economic properties of AMMs, and to determine possible deviations from safe behaviour.
Implementations, instead, reflect the exact behaviour of AMMs, but at a level of detail that
hampers high-level understanding and reasoning. Moreover, the rich variety of implemen-
tations, proposals and models for AMMs, each featuring different economic mechanisms,
makes it difficult to compare AMM designs or to provide a clear contour for the space of
possible “well behaving” designs.

1.1. Contributions. In this paper we exploit techniques from concurrency theory to provide
a formal backbone for AMMs and to study their fundamental properties. More specifically,
our main contributions can be summarised as follows:

(1) We introduce a formal model of AMMs (section 2), which distils the common features of
leading AMM implementations like Uniswap [uni21], Curve [cur21b], and Balancer [bal19].
The core of our model is a transition system that describes the evolution of AMM states
resulting from the interaction between users and AMMs. A peculiar aspect of our model
is that it abstracts from the swap rate function, a key economic mechanism of AMMs,
which is used to determine the exchange rates between tokens.

(2) Building upon our model, in section 3 we define basic economic notions like token prices,
exchange rates, slippage, net worth, and gain. We compute the gain resulting from swap
actions (Lemma 3.2), and we establish a key relation between the gain of swap actions,
the swap rate and the exchange rate: a swap action has a strictly positive gain if and
only if the swap rate is strictly greater than the exchange rate between the swapped
tokens (Lemma 3.3). Both lemmata are instrumental to prove many subsequent results.

(3) In section 4 we establish a set of structural properties of AMMs. In particular, we
establish preservation results for the supply of tokens (Lemma 4.3) and for the global
net worth (Lemma 4.5). We show that assets cannot be frozen within AMMs, i.e. users
can always extract any amount of the token reserves deposited in AMMs (Lemma 4.8).
In Lemma 4.9 we investigate when transactions can be reordered without affecting
the resulting state. In Theorems 4.10 and 4.11 we study compositionality of deposit
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and redeem transactions: in particular, we establish that two deposit actions on the
same AMM can be merged in a single action (and similarly for two redeems), and
that the effect of deposits and redeem actions can be reverted by suitable transactions.
Remarkably, all the structural properties in section 4 do not depend on the choice of the
swap rate function.

(4) In section 5 we devise sufficient conditions on swap rate functions that induce good
behavioural properties of AMMs. These conditions allow us to extend to swap actions
the additivity and reversibility properties enjoyed by deposit and redeem actions (The-
orems 5.6 and 5.9), as well as to compute the gain of composed and reversed swaps
(Lemmata 5.7 and 5.10). We study the effect of deposits and redeems on the swap rate
and on the internal exchange rate (Lemma 5.13). We then study the properties of three
notable swap rate functions: the constant sum, the constant product, and the constant
mean.

(5) In section 6 we investigate the incentive mechanism of AMMs. We start by considering
the arbitrage problem, which requires to find the action which maximizes the gain of a
user. Performing such optimal action has the side effect of aligning the internal exchange
rate of the AMM to the external exchange rate given by token price oracles. This gives
one of the landmark economic properties of AMMs: assuming rational users, AMMs can
be seen as price oracles themselves [AC20]. Notably, while solutions to the arbitrage
problem are already known for specific swap rate functions, in Theorem 6.3 we generalize
the result to any swap rate function respecting the conditions given in section 5. We then
show that depositing tokens into AMMs incentivizes subsequent swaps (Theorem 6.6),
while redeeming tokens disincentivizes them (Theorem 6.9). Finally, in Theorems 6.8
and 6.10 we relate the solution of the arbitrage problem in the states before and after a
deposit or redeem action, and we compare their gains.

(6) In section 7 we discuss Maximal Extractable Value (MEV), a class of attacks where
miners exploit their power of dropping and reordering user transactions (and inserting
their own) to increase their gain to the detriment of users. These attacks are one of the
most carefully studied AMM phenomena, occuring widely in practice and frequently
making up the bulk of interactions with AMMs [QZG21]. The fact that our AMM model
can accurately express these attacks supports the coherence of our modelling choices
with respect to behaviour exhibited by actual AMM implementations.

(7) In section 8 we discuss some extensions to our basic AMM model to make it closer to
the implementation of Uniswap [uni21], and their impact on the results in the paper.

(8) As a byproduct, we provide an open-source Ocaml implementation of our executable
semantics as a companion of this paper.1

(9) We provide full proofs of all our statements in the Appendices.

1.2. Related Work. The work [AKC+21] proposed one of the first analyses of the incentive
mechanism of Uniswap. This analysis was then generalised in [AC20] to constant function
AMMs (CFMMs), where, for a pair of token types, the reserves r0, r1 before a swap and the
reserves r′0, r

′
1 after the swap must preserve the invariant f(r0, r1) = f(r′0, r

′
1), for a given

trading function f . Constant product AMMs, like Uniswap, are an instance of CFMMs,
where f(x, y) = xy. Both works study the arbitrage problem, for constant product AMMs
and CFMMs, respectively. The two works show that the solution can be efficiently computed,

1https://github.com/blockchain-unica/defi-workbench

https://github.com/blockchain-unica/defi-workbench
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and suggest that constant product AMMs accurately report exchange rates. Our work
and [AC20] share a common goal, i.e. a theory of AMMs generalizing that of constant
product AMMs. However, the two approaches are quite different. The work [AC20] considers
a class of AMMs, i.e. CFMMs with a convex trading set, and studies the properties enjoyed
by AMMs under these assumptions. Instead, in this paper we devise a minimal set of
properties of the swap rate function which induce good behavioural properties of AMMs.
Notably, we find conditions on the swap rate function which ensure that a given swap
action maximizes the gain of the player (Theorem 6.3). Another difference is that the
AMM model in [AC20] describes the evolution of a single AMM, abstracting away the other
components of the state (i.e. the users and the other AMMs); instead, we model AMMs
as reactive systems, borrowing techniques from concurrency theory. While the approach
followed by [AC20] is still adequate to study problems that concern AMMs in isolation
(e.g., arbitrage), viewing AMMs as reactive systems allows us to study what happens when
many agents (users and AMMs) can interact. E.g., we are able to reason about Maximal
Extractable Value (section 7).

The work [DKP21] generalises the arbitrage problem to the setting where a swap between
two token types τ0 and τn can be obtained through a sequence of n intermediate swaps
between τi and τi+1, for 0 ≤ i < n. In practice, this represents the situation where users can
interact with different AMM platforms, each one providing its own set of token pairs. To
model this scenario, [DKP21] introduces exchange networks, i.e. multi-graphs where nodes
are tokens, and edges are AMMs which allow users to swap the two endpoint tokens. To
encompass different AMM platforms, each edge has its own price function, which determines
how many output tokens are paid for a given amount of input tokens. The authors show that,
under some conditions on the price functions (i.e., monotonicity, continuity, boundedness
and concavity), the arbitrage problem always admits a non-trivial solution. In the special
case of constant product AMMs, a closed formula for the solution is provided. Besides
arbitrage, [DKP21] also considers the optimal routing problem, i.e. finding a strategy to
maximize the amount of tokens τ1 received for at most a given amount of tokens τ0. Under
the same assumptions on the price function used for the arbitrage problem, the optimal
routing problem admits a solution. There are several differences between our approach and
that of [DKP21], besides the fact that we assume the same swap rate function for all AMMs,
and a graph instead of a multi-graph (i.e., we admit at most one AMM for each token pair).
A technical difference is that we assume that the amount y of output tokens received for
an amount x of input tokens is given by y = SX (x, r0, r1) · x, whereas [DKP21] defines this
amount as y = fr0,r1(x). This results in different structural properties for SX (x, r0, r1) and
f(x) in order to achieve the desired behavioural properties of AMMs. Having the AMM
reserves r0, r1 as parameters of our swap rate functions SX has a benefit, in that we can
express conditions which relate states before and after a transaction: this is what happens,
e.g., in the additivity, reversibility and homogeneity properties (Definitions 5.5, 5.8 and 5.11).
As a consequence of this choice, compared to [DKP21] our theory encompasses also deposit
and redeem actions, providing results that clarify how these actions interfere with swaps
(e.g., Theorems 6.6, 6.9, 6.8, and 6.10).

A few alternatives to constant product AMMs have been studied. Balancer [bal19]
generalizes the constant product function used by Uniswap to a constant (weighted geometric)
mean f(r1, · · · , rn) =

∏n
i=1 r

wi
i , where the weight wi reflects the relevance of a token τi in a

tuple of tokens (τ1, · · · , τn). This still fits within the CFMM setting of [AC20], thus inheriting
its results about solvability of the arbitrage problem [EAC21]. Curve [Ego19] features a hybrid
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of a constant sum and constant product function, optimized for large swap volumes between
stable coins, where the swap rate can support large amounts with small sensitivity. To
efficiently compute swap rates, implementations perform numerical approximations [cur21a].
Should these approximations fail to converge, these implementations still guarantee that
the AMM remains liquid. The work [KFG21] proposes a constant product invariant that is
adjusted dynamically based on the oracle price feed, thus reducing the need for arbitrage
transactions, but at the cost of lower fee accrual. AMMs with virtual balances have been
proposed [vir18] and implemented [moo20b,moo20a]. In these AMMs, the swap rate depends
on past actions, besides the current funds balances in the AMM. This, similarly to [KFG21],
aims to minimize the need for arbitrage transactions to ensure the local AMM swap rate
tends towards the exchange rates. Establishing whether these sophisticated swap rate
functions enjoy the properties in section 5 is an interesting open problem.

AMMs are well-known to suffer from transaction-ordering attacks, through which an
adversary with the power of influencing the order of transactions (e.g., a miner) can extract
value from user transactions. For instance, if the transaction pool contains a swap transaction
sent by user A, then a miner M can extract value from A’s swap through a transaction
“sandwich” constructed as follows. First, M front-runs A’s swap with its own swap, crafted
so that A’s swap decreases A’s net worth as much as possible. Then, M closes the sandwich
by appending another swap transaction which maximizes M’s gain, and finalises the whole
sandwich on the blockchain. In this way, A will always have a negative gain, which is
counterbalanced by a positive gain of M. This and other kinds of attacks have fostered the
research on adversarial and defensive strategies, and on empirical analyses of the impact of
attacks [BCL22,CAE22,ZQT+21,QZG21,DGK+20,EMC20]. For instance, the work [BCL22]
devises an optimal strategy through which an adversary can extract the maximal value
from users’ transactions (not only swaps, but also deposits and redeems), in the setting
of Uniswap-like AMMs. The swap-rate-agnostic approach pursued by this paper could be
exploited to generalise the attack of [BCL22] to AMMs beyond Uniswap.

A high-level survey on various AMM protocols is in [XVPC22].

Comparison with previous work. A preliminary version of this work was presented at
COORDINATION 2021 [BCL21b]. The current version substantially extends it, streamlining
the theory and providing additional results. A crucial difference between the two papers is
that, while in [BCL21b] the semantics of swap actions was parameterized by an invariant
between the old and the new token reserves, here we make the semantics parametric w.r.t.
the swap rate function SX . This leads to a substantial simplification of the conditions that
are put to obtain nice behavioural properties of swaps, and consequently of the corresponding
proofs. Among the new results w.r.t. [BCL21b], we mention in particular the additivity and
reversibility properties (Theorems 4.10, 4.11, 5.6, and 5.9), and the results that relate the
gain of swaps before and after deposit/redeem actions (Theorems 6.6, 6.9, 6.8, and 6.10).
Besides these extensions, the current paper includes a discussion of the constant sum and of
the constant mean swap rate functions, a new section on MEV attacks (see section 7), and
it provides detailed proofs for all its statements.



12:6 M. Bartoletti, J. Chiang, and A. Lluch-Lafuente Vol. 18:4

2. A formal model of Automated Market Makers

We introduce a formal, operational model of AMMs, which focusses on the common operations
implemented by AMM platforms. In order to simplify the resulting theory, our model
abstracts from a few features that are often found in AMM implementations, like e.g. fees,
price updates, and guarded transactions. We discuss in §8 how to extend our model to make
it closer to the Uniswap protocol [uni21].

We introduce here some general notation. We denote by fx the application of a function
f to a value x (we use parentheses, e.g. f(x), to resolve ambiguities). We denote with dom f
the domain of f . We use the standard notation f{v/x} to update a partial map f at point x:
namely, f{v/x}(x) = v, while f{v/x}(y) = fy for y 6= x.

2.1. AMM basics.

Tokens. We assume a set T0 of atomic token types, which represent native cryptocur-
rencies and application-specific tokens. For instance, T0 may include ETH, the native
cryptocurrency of Ethereum, and WBTC, i.e. Bitcoins wrapped with the ERC20 interface
for Ethereum tokens. A minted token type is an unordered pair of distinct atomic token
types: if τ0 and τ1 are atomic token types and τ0 6= τ1, then the minted token type {τ0, τ1}
represents shares in an AMM holding reserves of τ0 and τ1. We denote by T1 the set of
minted token types. In our model, tokens are fungible, i.e. individual units of the same
type are interchangeable. This means that amounts of tokens of the same type can be split
into smaller parts, and two amounts of tokens of the same type can be joined. We use
v, v′, r, r′, x, x′ to range over nonnegative real numbers (R≥0). We write T for the universe
of all token types, i.e. T = T0 ∪ T1, and we use τ, τ ′, . . . to range over T. We write r : τ to
denote r units of a token of type τ, either atomic or minted.

Wallets and AMMs. We assume a set of users A, ranged over by A,A′ , . . . We model
the wallet of a user A as a term A[σ], where the finite partial map σ ∈ T ⇀ R≥0 represents
A’s token balance. We model an AMM holding reserves of r0 : τ0 and r1 : τ1 (with τ0 6= τ1)
as an unordered pair {r0 : τ0, r1 : τ1}. Since the order of the token reserves in an AMM is
immaterial, the terms {r0 : τ0, r1 : τ1} and {r1 : τ1, r0 : τ0} denote exactly the same AMM.

States. We model the interaction between users and AMMs as a labelled transition system
(LTS). Its labels represent blockchain transactions , while the states Γ,Γ′,∆, . . . are finite
non-empty compositions of wallets and AMMs. Formally, states are terms of the form:

A1[σ1] | · · · | An[σn] | {r1 : τ1, r
′
1 : τ ′1} | · · · | {rk : τk, r

′
k : τ ′k}

and subject to the following conditions. For all i 6= j:

(1) Ai 6= Aj (each user has a single wallet);
(2) {τi, τ ′i} 6= {τj , τ ′j} (distinct AMMs cannot hold exactly the same token types).

Note that these conditions allow AMMs to have a common token type τ, e.g. as in
{r1 : τ1, r : τ}, {r′ : τ, r2 : τ2}, thus enabling indirect trades between token pairs not directly
provided by any AMM. A state is initial when it has no AMMs, and its wallets hold only
atomic tokens. We stipulate that the ordering of terms in a state is immaterial. Hence, we
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consider two states Γ and Γ′ to be equivalent when they contain the same terms (regardless
of their order). For a term Q and a state Γ, we write Q ∈ Γ when Γ = Q | Γ′, for some Γ′.

Transactions. State transitions are triggered by transactions T ,T′ , . . ., which can have
the following forms (where τ0 and τ1 are atomic tokens):

• A : dep(v0 : τ0, v1 :τ1). A deposits v0 : τ0 and v1 : τ1 to an AMM {r0 : τ0, r1 : τ1}, receiving
in return some freshly-minted units of the token {τ0, τ1};
• A : swap(v, τ0, τ1). A tranfers v : τ0 to an AMM {r0 : τ0, r1 : τ1}, receiving in return some

units of τ1, which are removed from the AMM;
• A : rdm(v : {τ0, τ1}). A redeems v units of the minted token {τ0, τ1}: this means that

some units of τ0 and τ1 are transferred from the AMM {r0 : τ0, r1 : τ1} to A’s wallet, and
that v units of {τ0, τ1} are burned.

We denote with type(T) the type of T (i.e., dep, swap, or rdm), with wal(T) the user whose
wallet is affected by T, and with tok(T) the set of token types affected by T. For example,
if T = A : swap(v, τ0, τ1), then type(T) = swap, wal(T) = A, and tok(T) = {τ0, τ1}.

Token supply. We use SΓτ to denote the supply of a token type τ in a state Γ, defined
as the sum of the reserves of τ in all the wallets and the AMMs in Γ. Formally, we define
SΓτ by induction on the structure of states as follows:

SA[σ]τ =

{
στ if τ ∈ domσ

0 otherwise
S{r0:τ0,r1:τ1}τ =

{
ri if τ = τi

0 otherwise
SΓ|Γ′τ = SΓτ + SΓ′τ

For example, let Γ = A[1 : τ0, 2 : {τ0, τ1}] | {3 : τ0, 4 : τ1} | {5 : τ0, 6 : τ2}. We have that
SΓτ0 = 9, SΓτ1 = 4, SΓτ2 = 6, while SΓτ = 0 for τ 6∈ {τ0, τ1, τ2}. Note that SΓτ is always
defined, since it is defined when Γ is an atomic term (wallet or AMM), and states Γ are
finite compositions of atomic terms.

2.2. AMM semantics. We now formalise the transition rules between states. We write

Γ
T−→ Γ′ for a state transition from Γ to Γ′, triggered by a transaction T. When Γ

T−→ Γ′

for some Γ′, we say that T is enabled in Γ. We denote with −→∗ the reflexive and transitive

closure of −→. Given a finite sequence of transactions λ = T1 · · ·Tk, we write Γ
λ−→ Γ′ when

Γ
T1−→ · · · Tk−→ Γ′, and in this case we say that λ is enabled in Γ. We say that a state Γ is

reachable if Γ0 −→∗ Γ for some initial Γ0. Hereafter, all the states mentioned in our results
are implicitly assumed to be reachable. Given a partial map σ ∈ T ⇀ R≥0, a token type
τ ∈ T and a partial operation ◦ ∈ R≥0 × R≥0 ⇀ R≥0 with ◦ ∈ {+,−}, we define the partial
map σ ◦ v : τ as follows:

σ ◦ v : τ =

{
σ{(στ) ◦ v/τ} if τ ∈ domσ and (στ) ◦ v ∈ R≥0

σ{v/τ} if τ 6∈ domσ and ◦ = +

These partial operations allow to increase/decrease the amount of tokens in a balance. For
instance, if σ = 5 : τ0, then σ + 1 : τ0 = 6 : τ0, and σ + 1 : τ1 = 5 : τ0, 1 : τ1.
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Deposit. Any user can create an AMM for two tokens τ0 and τ1, if such an AMM is not
already present in the state. This is achieved by the transaction A : dep(v0 : τ0, v1 :τ1),
through which A transfers v0 : τ0 and v1 : τ1 to the new AMM. In return for the deposit, A
receives a certain positive amount of units of a new token type {τ0, τ1}, which is minted by
the AMM.2 We formalise this behaviour by the rule:

στi ≥ vi > 0 (i ∈ {0, 1}) SΓ{τ0, τ1} = 0

A[σ] | Γ A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→
A[σ − v0 : τ0 − v1 : τ1 + v0 : {τ0, τ1}] | {v0 : τ0, v1 : τ1} | Γ

[Dep0]

Note that the premise SΓ{τ0, τ1} = 0 implies that τ0, τ1 are distinct atomic tokens, since
otherwise {τ0, τ1} would not be a minted token. If Γ is reachable, then this premise also
implies that Γ does not contain an AMM for the token pair τ0, τ1.

Once an AMM is created, any user can deposit tokens into it — as long as doing so
preserves the ratio of the token reserves in the AMM. When a user deposits v0 : τ0 and
v1 : τ1 to an existing AMM, it receives in return an amount of minted tokens of type {τ0, τ1}.
This amount is the ratio between the deposited amount v0 and the redeem rate of {τ0, τ1}
in the current state Γ, which is defined as follows for i ∈ {0, 1}:

RX i
Γ(τ0, τ1) =

ri
SΓ{τ0, τ1}

if {r0 : τ0, r1 : τ1} ∈ Γ (2.1)

The effect of a deposit transaction on the state is then formalised by the following rule:

στi ≥ vi > 0 (i ∈ {0, 1}) vi = v · RX i
Γ(τ0, τ1)

Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆
A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→

A[σ − v0 : τ0 − v1 : τ1 + v : {τ0, τ1}] | {r0 + v0 : τ0, r1 + v1 : τ1} | ∆

[Dep]

We anticipate that the premises of the [Dep] rule ensure that deposits preserve some key
quantities across state transitions, namely:

• the ratio between the reserves of τ0 and τ1 in the AMM (see Lemma 4.4(a)). This ratio is
always defined, since the reserves of a token in an AMM cannot be zeroed (see Lemma 4.2);
• the net worth of the user performing the action (see Lemma 4.5). In particular, the value

of the minted tokens {τ0, τ1} received by the user upon a deposit is equal to the value of
the tokens τ0, τ1 transferred to the AMM;
• the internal exchange rate of the AMM (see Lemma 5.12). This preservation property

holds for a relevant class of swap rate functions, called homogeneous (see Definition 5.11).

Redeem. Any user can redeem units of a minted token {τ0, τ1}, obtaining in return units
of the underlying atomic tokens τ0 and τ1. Their actual amounts are determined by the
redeem rate: the idea is that each unit of the minted token {τ0, τ1} can be redeemed for
equal fractions of τ0 and τ1 remaining in the AMM:

σ{τ0, τ1} ≥ v > 0 v < SΓ{τ0, τ1} vi = v · RX i
Γ(τ0, τ1) (i ∈ {0, 1})

Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆
A:rdm(v:{τ0,τ1})−−−−−−−−−−→

A[σ + v0 : τ0 + v1 : τ1 − v : {τ0, τ1}] | {r0 − v0 : τ0, r1 − v1 : τ1} | ∆

[Rdm]

2The actual amount of received units is irrelevant. Here we choose v0, but any other choice would be valid.
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Note that the premise v < SΓ{τ0, τ1} ensures that the reserves are not depleted, i.e. vi < ri.
Similarly to the [Dep] rule, the premises of [Rdm] ensure that:

• the net worth of the user performing the action is preserved (i.e., the net worth of burnt
minted tokens is equal to that of the tokens received by A);
• the internal exchange rate of the AMM is unaffected by the transition, if the swap rate

function is homogeneous.

Swap. Any user A can swap v units of τ0 in her wallet for some units of τ1 in an AMM
{r0 : τ0, r1 : τ1} through the transaction A : swap(v, τ0, τ1). Symmetrically, A can swap v of
her units of τ1 for units of τ0 in the AMM through a transaction A : swap(v, τ1, τ0). The
swap rate SX (x, r0, r1) determines the amount of output tokens τ1 that a user receives
upon an amount of x input tokens τ0 in an AMM {r0 : τ0, r1 : τ1}.

στ0 ≥ x y = x · SX (x, r0, r1) < r1

A[σ] | {r0 : τ0, r1 : τ1} | Γ
A:swap(x,τ0,τ1)−−−−−−−−−→

A[σ − x : τ0 + y : τ1] | {r0 + x : τ0, r1 − y : τ1} | Γ

[Swap]

The swap rate function is a parameter of our model: we will discuss in §5 some desiderata
for this function, and the behavioural properties they induce on the AMM semantics. As
an instance, we consider below the constant product swap rate [rva18], which is used in
mainstream AMM implementations, like e.g. in Uniswap v2 [uni21], Mooniswap [moo20a]
and SushiSwap [sus21]. We will use this swap rate function in all the examples in this paper.

Definition 2.1 (Constant product swap rate). The constant product swap rate function is:

SX (x, r0, r1) =
r1

r0 + x

The constant product swap rate ensures that, if an AMM {r0 : τ0, r1 : τ1} evolves into
{r0 + x : τ0, r1 − y : τ1} upon a swap, then the product between the reserves is preserved:

(r0 + x)(r1 − y) = (r0 + x)
(
r1 − x ·

r1

r0 + x

)
= r0r1

Overall, the behaviour of the transition rules discussed above highlights some landmark
properties of AMMs, namely:

• since neither deposits nor redeems affect the net worth of the users performing them, the
only way for users to increase their net worth is to perform swaps. Since, as we will see in
Lemma 4.5, the global net worth is constant, this means that increasing ones’ net worth
results in a decrease of someone else’s net worth;
• the internal exchange rate of an AMM is affected only by swap actions (provided that

the swap rate function is homogeneous). This is a natural behaviour, because swaps
reflect the value of tokens perceived by users. We will show later in §5 that the constant
sum/product/mean swap rate functions are homogeneous.

Example 2.2. Figure 1 shows a computation in our model. We discuss below the effect of
the fired transactions, showing in Figure 2 the evolution of the token reserves in the AMM:

(1) A : dep(70 : τ0, 70 :τ1). Starting from an initial state, A creates a new AMM, depositing
70 : τ0 and 70 : τ1. In return, A receives 70 units of the minted token {τ0, τ1}.
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A[70 : τ0, 70 : τ1] | B[30 : τ0, 10 : τ1]

A:dep(70:τ0,70:τ1)−−−−−−−−−−−→ A[70 : {τ0, τ1}] | B[30 : τ0, 10 : τ1] | {70 : τ0, 70 : τ1}
B:swap(30,τ0,τ1)−−−−−−−−−−→ A[70 : {τ0, τ1}] | B[0 : τ0, 31 : τ1] | {100 : τ0, 49 : τ1}
B:swap(21,τ1,τ0)−−−−−−−−−−→ A[70 : {τ0, τ1}] | B[30 : τ0, 10 : τ1] | {70 : τ0, 70 : τ1}

A:rdm(30:{τ0,τ1})−−−−−−−−−−−→ A[30 : τ0, 30 : τ1, 40 : {τ0, τ1}] | B[30 : τ0, 10 : τ1] | {40 : τ0, 40 : τ1}
B:swap(30,τ0,τ1)−−−−−−−−−−→ A[30 : τ0, 30 : τ1, 40 : {τ0, τ1}] | B[0 : τ0, 27 : τ1] | {70 : τ0, 23 : τ1}

A:rdm(30:{τ0,τ1})−−−−−−−−−−−→ A[82 : τ0, 47 : τ1, 10 : {τ0, τ1}] | B[0 : τ0, 27 : τ1] | {18 : τ0, 6 : τ1}

Figure 1: Interactions between two users and an AMM.

(2) B : swap(30, τ0, τ1). B swaps 30 units of τ0 for an amount y of units of τ1 determined
by the swap rate. Since we are assuming the constant product swap rate, we obtain
y = 30 · 70/70+30 = 21. This swap rate function ensures that swaps preserve the product
between the token reserves in the AMM: in Figure 2, we show indeed that the swap results
in a traversal along the curve k = 70 · 70 from {70 : τ0, 70 : τ1} to {100 : τ0, 49 : τ1}.

(3) B : swap(21, τ1, τ0). B reverses the effect of his previous action by swapping 21 units of
τ1 for y = 21 · 100/49+21 = 30 of τ0. Figure 2 shows that the swap results in a traversal
from {100 : τ0, 49 : τ1} to {70 : τ0, 70 : τ1} along the curve k = 70 · 70.

(4) B : rdm(30 : {τ0, τ1}). B redeems 30 units of the minted token {τ0, τ1}, accordingly
reducing the token reserves in the AMM to {40 : τ0, 40 : τ1}. Note that the received
tokens exhibit the same 1-to-1 ratio as after the initial deposit.

(5) B : swap(30, τ0, τ1). B swaps 30 units of τ0, receiving y = 30 · 40/40+30 ≈ 17 units of τ1.
Note that the swap rate, i.e. 40/40+30 ≈ 0.57, has decreased w.r.t. the first swap, i.e.
70/70+30 = 0.7, even though the AMM has the same 1-to-1 reserves ratio. This is caused
by the reduction in reserves occurred after A’s redeem action: thus, the swap rate is
sensitive not only to the ratio of reserves in the AMM, but also on their actual values.

(6) A : rdm(30 : {τ0, τ1}). A redeems 30 units of the minted token {τ0, τ1}, thereby extracting
52 units of τ0 and 17 units of τ1 from the AMM. Note that the ratio of redeemed tokens
is no longer 1-to-1 as in the previous redeem action, as the prior swap has changed the
ratio between the funds of τ0 and τ1 in the AMM.

Finally, observe that the supply of both τ0 and τ1 remains constant. We will show in
Lemma 4.3 that the supply of atomic token types is always preserved. �

3. Prices, exchange rates and net worth

In this section we introduce some economic notions which are pivotal for understanding the
economic mechanisms of AMMs.

Token prices and exchange rates. We assume an external oracle that prices atomic
tokens. Formally, we model this oracle as a function P : T0 → R>0, assuming that the prices
given by the oracle are constant along executions (see subsection 8.2 for a discussion about
dynamic price updates). While the prices of atomic tokens are constant, that of minted
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(40:τ0, 40:τ1)

(18:τ0, 6:τ1)

(70:τ0, 70:τ1)

(100:τ0, 49:τ1)

(70:τ0, 23:τ1)

τ0

τ1
x·y = k'

x·y = k''

x·y = k

Figure 2: Evolution of reserves of AMM (τ0, τ1) along the trace in Figure 1.

tokens may vary at run-time as a function of the state. More precisely, the price PΓ{τ0, τ1}
of a minted token {τ0, τ1} depends both on the supply of the minted token in the users’
wallets and on the reserves of τ0 and τ1 in the AMM:

PΓ{τ0, τ1} =
r0 · Pτ0 + r1 · Pτ1

SΓ{τ0, τ1}
if {r0 : τ0, r1 : τ1} ∈ Γ (3.1)

For uniformity, we define PΓτ = Pτ when τ ∈ T0. Lemma 4.2 will ensure that r0, r1 > 0
and SΓ{τ0, τ1} > 0 in every reachable state Γ containing an AMM for the token pair τ0, τ1.
Therefore, the price of the token {τ0, τ1} is always defined and positive in reachable states.

The idea underlying Equation (3.1) is that the price of one unit of minted token must
be equal to the value of the atomic tokens that can be obtained by redeeming the minted
token. Indeed, by rule [Rdm] and Equation (2.1) we have that:

PΓ{τ0, τ1} =
r0

SΓ{τ0, τ1}
Pτ0 +

r1

SΓ{τ0, τ1}
Pτ1 = RX 0

Γ(τ0, τ1) · Pτ0 + RX 1
Γ(τ0, τ1) · Pτ1

which substantiates our desideratum. This intuition will be formalized later in Lemma 4.6.
The exchange rate X(τ0, τ1) between atomic token types τ0 and τ1 is the number of

units of τ1 that one can buy with 1 unit of τ0 at the price given by the external oracle:

X(τ0, τ1) =
Pτ0

Pτ1
(3.2)

Hence, assuming an exchange at the prices of the external oracle, a user paying x units
of τ0 would receive x ·X(τ0, τ1) units of τ1.

Note that the exchange rate between two token types only depends on external oracles,
neglecting the state of AMMs. However, AMMs themselves can act as (decentralised) price
oracles [AC20], since they induce an exchange rate based on the effect of swaps in the current
state. More precisely, the internal exchange rate XΓ(τ0, τ1) between two atomic token
types τ0 and τ1 in a state Γ is the limit of the swap rate function as x approaches 0: 3

XΓ(τ0, τ1) = lim
x→0

SX (x, r0, r1) if {r0 : τ0, r1 : τ1} (3.3)

3This notion is also dubbed as marginal price [AC20] or spot exchange rate [XVPC22] in literature.
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The intuition is similar to that in Equation (3.2): a user swapping x units of τ0 for τ1

through the AMM (for x very small) would expect to receive x ·XΓ(τ0, τ1) units of τ1. We
will see later in section 6 that rational users will perform actions that align the internal
exchange rate to the one given by external oracles.

Slippage measures the discrepancy between the internal exchange rate and the actual
ratio between the amounts of output and input tokens obtained upon the swap [XVPC22]:

∆XΓ(x, τ0, τ1) =
XΓ(τ0, τ1)

SX (x, r0, r1)
− 1 if {r0 : τ0, r1 : τ1} (3.4)

Ideally, slippage should disadvantage large trades, i.e. trying to obtain a larger amount
of tokens with a swap should make them more expensive, increasing the slippage. We will
compute in sections 5.6-5.8 the internal exchange rate and the slippage of some common
AMMs.

Example 3.1. Let Γ = A[82 : τ0, 47 : τ1, 10 : {τ0, τ1}] | {18 : τ0, 6 : τ1} | B[· · ·] be the final
state of the computation in Figure 1. We have that SΓ{τ0, τ1} = 10, since only A’s wallet
contains units of the minted token. Assume that the prices of atomic tokens are Pτ0 = 5
and Pτ1 = 9. The price of the minted token {τ0, τ1} is then:

PΓ{τ0, τ1} =
18 · Pτ0 + 6 · Pτ1

10
=

18 · 5 + 6 · 9
10

= 14.4

The exchange rate between the two tokens is:

X(τ0, τ1) =
Pτ0

Pτ1
=

5

9
= 0.55

which means that to buy 1 unit of τ0, one needs 0.55 units of τ1. Note instead that the
internal exchange rate is:

XΓ(τ0, τ1) = lim
x→0

SX (x, 18, 6) =
6

18
≈ 0.33

We will see in Example 6.5 that the discrepancy between internal and oracle exchange rate
can by exploited by users to increase their gain. The slippage of a swap(x, τ0, τ1) is:

∆XΓ(x, τ0, τ1) =
XΓ(τ0, τ1)

SX (x, 18, 6)
− 1 =

x

18

from which we can see that the slippage grows with the input amount x. �

Net worth and gain. The net worth of a user A is a measure of A’s wealth in tokens
(both atomic and minted). Formally, we define the net worth of A in a state Γ as:

WA(Γ) =

{∑
τ∈domσ στ · PΓτ if A[σ] ∈ Γ

0 otherwise
(3.5)

Note that WA(Γ) ∈ R≥0, since balances σ are finite maps, and PΓτ is always defined.
The global net worth W (Γ) in a state Γ is the sum of the net worth in users’ wallets.

Note that the token reserves in AMMs are not accounted for by W (Γ), because their value
is already recorded by minted tokens held in users’ wallets. Indeed, the equality:

SΓ{τ0, τ1} · PΓ{τ0, τ1} = r0 · Pτ0 + r1 · Pτ1
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between the net worth of a minted token and the value of the AMM is a direct consequence
of the definition of price in Equation (3.1).

We denote by GA(Γ, λ) the gain of user A upon performing a sequence of transactions
λ enabled in state Γ (if λ is not enabled in Γ, we stipulate that the gain is zero):

GA(Γ, λ) = WA(Γ′)−WA(Γ) if Γ
λ−→ Γ′ (3.6)

To maximize their gain, users can perform different interactions with the AMM, e.g., by
investing tokens or trading units of differently priced token types.

The following lemma quantifies the gain of users upon firing a swap transaction. Note
that this quantification does not depend on any of the properties of the swap rate function
introduced later on in section 5: actually, it holds for any swap rate function.

Lemma 3.2 (Swap gain). Let Γ = {r0 : τ0, r1 : τ1} | ∆, and let T = A : swap(x, τ0, τ1) be
enabled in Γ. Then:

GA(Γ,T) = x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σA{τ0, τ1}
SΓ{τ0, τ1}

)
if A[σA ] ∈ Γ

GB(Γ,T) = −x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
· σB{τ0, τ1}

SΓ{τ0, τ1}
if B[σB ] ∈ Γ, B 6= A

A direct consequence of Lemma 3.2 is that if A performs a swap between τ0 and τ1 and
she holds all the units of the minted token {τ0, τ1}, then her gain will be zero. Further, A
maximizes her gain when she has no minted tokens of type {τ0, τ1}. The lemma also implies
that if the user performing the swap has a positive gain, then all the users who hold units of
{τ0, τ1} will have a negative gain.

The following lemma states that a swap transaction on an AMM {r0 : τ0, r1 : τ1} has a
strictly positive gain if and only if the swap rate is strictly greater than the oracle exchange
rate between τ0 and τ1. This holds for any swap rate function, under the condition that the
user who performs the swap has no minted tokens of type {τ0, τ1}.

Lemma 3.3 (Swap rate vs. exchange rate). Let Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆ be such that
σ{τ0, τ1} = 0, and let T = A : swap(x, τ0, τ1) be enabled in Γ. Then:

GA(Γ,T) ◦ 0 ⇐⇒ SX (x, r0, r1) ◦X(τ0, τ1) for ◦ ∈ {<,=, >}

Example 3.4. Let Γ0 = A[70 : τ0, 70 : τ1] | B[30 : τ0, 10 : τ1] be the initial state of the
computation in Figure 1. Let Pτ0 = 5 and Pτ1 = 9. The users’ net worth in Γ0 and in the
final state Γ = A[82 : τ0, 47 : τ1, 10 : {τ0, τ1}] | B[0 : τ0, 27 : τ1] | {18 : τ0, 6 : τ1} is as follows:

WA(Γ0) = 70 · Pτ0 + 70 · Pτ1 = 980 WB(Γ0) = 30 · Pτ0 + 10 · Pτ1 = 240

WA(Γ) = 82 · Pτ0 + 47 · Pτ1 + 10 · PΓ{τ0, τ1} = 977 WB(Γ) = 27 · Pτ1 = 243

Note that A’s net worth of has decreased w.r.t. the initial state, while that of B has increased:
indeed, the gain of A upon the sequence of transactions λ is GA(Γ, λ) = 977− 980 = −3,
while that of B is GB(Γ, λ) = 243−240 = 3. One may think that B has been more successful
than A, but this depends on the users’ goals. Note, e.g., that A holds 10 units of the minted
token {τ0, τ1}, whose price may increase in the future. �
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4. Structural properties of AMMs

We now establish some structural properties of AMMs, which do not depend on the design
of the economic mechanisms, i.e. on the choice of the swap rate function. These structural
properties are the basis for AMM interactions that occur in the wild, and that cumulatively
give rise to complex emerging behaviours like arbitrage and MEV. Hence, establishing these
structural properties is a preliminary sanity check for our AMM model. We will provide
further support for the coherence between our model and actual AMMs by showing that
the above-mentioned complex behaviours are expressible in our model (see section 6 and
section 7).

First, we establish that the AMMs’ transition system is deterministic. This follows from
the fact that, given a state Γ and a transaction T, there is at most one applicable rule.
Note that determinism is a crucial property for blockchains, since it ensures that all the
nodes in the blockchain network are able to reconstruct a common state from a sequence of
transactions. Therefore, it makes sense that determinism holds also for our AMM model.

Lemma 4.1 (Determinism). If Γ
T−→ Γ′ and Γ

T−→ Γ′′, then Γ′ = Γ′′.

We can lift the statement to sequences of transactions by using a simple inductive
argument. The same applies to other single-step results in this section.

Lemma 4.2 ensures that the reserves in an AMM cannot be zeroed, and that the same
holds for the units of any minted token. Summing up, this ensures that the price of any
minted token is always defined and positive.

Lemma 4.2 (Non depletion). For all states Γ, if {r0 : τ0, r1 : τ1} ∈ Γ then:

(a) ri > 0, for i ∈ {0, 1};
(b) SΓ{τ0, τ1} > 0.

4.1. Preservation properties. Lemma 4.3 ensures that transactions preserve the supply
of atomic tokens. Minted tokens, instead, are preserved only by swap transactions, since
deposit and redeem transactions, respectively, create and destroy minted tokens. This fact
will be instrumental to prove the preservation of the net worth (see Lemma 4.5).

Lemma 4.3 (Preservation of token supply). Let Γ
T−→ Γ′. Then:

(a) for all τ ∈ T0, SΓτ = SΓ′τ
(b) if type(T) = swap, then for all τ ∈ T1, SΓτ = SΓ′τ

Lemma 4.4 states that deposit and redeem transactions preserve the reserves ratio in
AMMs, the redeem rate, and the price of minted tokens. These preservation properties will
be exploited later on to determine the solution to the arbitrage game after deposits and
redeems (see Theorems 6.8 and 6.10).

Lemma 4.4 (Preservation upon deposits/redeems). Let Γ
T−→ Γ′, with {r0 : τ0, r1 : τ1} ∈ Γ.

If type(T) ∈ {dep, rdm}, then:

(a) if {r′0 : τ0, r
′
1 : τ1} ∈ Γ′, then r1/r0 = r′1/r′0

(b) RX i
Γ(τ0, τ1) = RX i

Γ′(τ0, τ1), for i ∈ {0, 1}
(c) PΓ{τ0, τ1} = PΓ′{τ0, τ1}
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Lemma 4.5 ensures that transactions (of any type) preserve the global net worth, whereas
the net worth of individual users is preserved only by redeem and deposit transactions. A
direct consequence of this preservation result is that users can increase their net worth only
by performing swaps: Indeed, we will find in Theorem 6.3 that the solution of the arbitrage
game only contains swap transactions. Furthermore, if a user has a positive gain, then some
other user must have a loss.

Lemma 4.5 (Preservation of net worth). Let Γ
T−→ Γ′. Then:

(a) if type(T) 6= swap then, for all A: WA(Γ) = WA(Γ′)
(b) W (Γ) = W (Γ′)

The following lemma, which is a direct consequence of Lemma 4.5(a), supports the
definition of the price of minted tokens in Equation (3.1): indeed, computing the net worth
of a user A under that price definition corresponds to making A first redeem all her minted
tokens, and then summing the price of the resulting atomic tokens.

Lemma 4.6. Let Γ
λ−→ Γ′, where λ contains only rdm actions of A. If A[σ] ∈ Γ′ and

domσ ∩ T1 = ∅, then:

WA(Γ) =
∑

τ∈domσ

στ · Pτ

Example 4.7. Let Γ = A[82 : τ0, 47 : τ1, 10 : {τ0, τ1}] | {27 : τ0, 9 : τ1} | B[5 : {τ0, τ1}], and
let Pτ0 = 5 and Pτ1 = 9. We have that PΓ{τ0, τ1} = 14.4, and WA(Γ) = 977. Assume
that A performs a transaction from Γ to redeem all 10 units of {τ0, τ1} in her wallet. The
resulting state is Γ′ = A[100 : τ0, 53 : τ1] | {9 : τ0, 3 : τ1} | · · · . We compute A’s net worth in
Γ′ using the oracle token prices:

WA(Γ′) = 100 · Pτ0 + 53 · Pτ1 = 100 · 5 + 53 · 9 = 977

which is coherent with the net worth predicted by Lemma 4.6. �

4.2. Liquidity. Lemma 4.8 ensures that funds cannot be frozen in an AMM, i.e. that users
can always redeem arbitrary amounts of the tokens deposited in an AMM, as long as the
reserves are not zeroed. Note that, since {r0 : τ0, r1 : τ1} = {r1 : τ1, r0 : τ0}, the statement
also holds when swapping r0 with r1.

Lemma 4.8 (Liquidity). Let Γ be such that {r0 : τ0, r1 : τ1} ∈ Γ. Then, for all r′0 < r0, there

exist r′1 < r1, Γ′ and λ only containing rdm transactions such that Γ
λ−→ {r′0 : τ0, r

′
1 : τ1} | Γ′.

4.3. Reordering of transactions. In general, given two transactions T0 and T1 and a
state Γ, executing T0T1 or T1T0 from Γ yields different states. However, under some
conditions it is possible to invert the order of the two transactions, preserving the resulting
state. This is always the case, e.g., of two transactions which operate on disjoint sets of
tokens. Lemma 4.9 establishes sufficient conditions for preserving the state upon reordering.
Besides the case cited before, this is always possible if both transactions are deposits, or if
they are bot redeems (case (a) of the statement). Note that, in these cases, the assumption
that T0T1 is enabled in Γ implies that also T1T0 is such. This is no longer true when one of
the two transactions is a deposit and the other one is a redeem. For instance, if T1 redeems
the minted tokens obtained upon a deposit T0, then T1 may not be enabled in Γ because
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there are not enough minted tokens in the user’s wallet. Therefore, case (b) of the statement
uses the additional hypothesis that also T1T0 is enabled in Γ.

Lemma 4.9 (Reordering of transactions). Let Γ
T0T1−−−→ Γ01. Then:

(a) if tok(T0) ∩ tok(T1) = ∅ or type(T0) = type(T1) ∈ {dep, rdm}, then Γ
T1T0−−−→ Γ01;

(b) otherwise, if type(T0), type(T1) 6= swap and Γ
T1T0−−−→ Γ10, then Γ01 = Γ10.

As we shall see in section 6, it is actually desirable, and crucial for the economic
mechanism of AMMs, that swaps interfere with other transactions that trade the same token
type.

4.4. Additivity of deposit and redeem actions. Deposit and redeem actions satisfy an
additivity property: if a user performs two successive deposits (resp. redeems) on an AMM,
then the same result can be obtained through a single deposit (resp. redeem). Instead, swap
actions are not additive, in general: we will study sufficient conditions for the additivity of
swap actions in section 5 (see Theorem 5.6).

Theorem 4.10 (Additivity). Let Γ
T0−→ Γ0

T1−→ Γ1. Then:

(1) if T0 = A : dep(v0 : τ0, v1 :τ1) and T1 = A : dep(v′0 : τ0, v
′
1 :τ1), then:

Γ
A:dep(v0+v′0:τ0,v′1+v′1:τ1)
−−−−−−−−−−−−−−−−→ Γ1

(2) if T0 = A : rdm(v : τ) and T1 = A : rdm(v′ : τ), then:

Γ
A:rdm(v+v′:τ)−−−−−−−−−→ Γ1

4.5. Reversibility of deposit and redeem actions. The following theorem establishes
that deposit and redeem transactions are reversible: more precisely, the effect of a deposit
action can be reverted by a redeem action, and vice versa, the effect of a redeem action
can be reverted by a deposit action. The only exception is a deposit action that creates an
AMM, through the rule [Dep0]. Swap actions are not reversible, in general: we will study
sufficient conditions for their reversibility in section 5 (see Theorem 5.9).

Theorem 4.11 (Reversibility). Let Γ
T−→ Γ′, where type(T) ∈ {dep, rdm} and for all τ ∈ T1,

if SΓτ = 0 then SΓ′τ = 0. Then there exists T−1 such that Γ′
T−1

−−→ Γ.

In general, the study of reversible computation models, which dates back to [Ben73],
is an active area of research, which has led to a wide range of applications in software
systems [MSG+20]. In particular, the reversibility of AMM actions has useful consequences
on their behaviour. For instance, it guarantees that, starting from a “stable” state where
no arbitrage is possible, after any transaction it is possible to return to the stable state.
More in general, if the swap rate function satisfies the conditions of section 5 that ensure
the additivity and reversibility also for swap actions, then for any sequence of transactions:

Γ0
T1−→ Γ1

T2−→ · · ·Γn
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it is possible to fire another transaction and return to the state Γ0. Indeed, by additivity we
obtain that the effect of the sequence T1 · · ·Tn can be emulated by a single transaction T,
and then reversibility ensures that T can be reversed, i.e.:

Γ0
T−→ Γn

T−1

−−→ Γ0

5. The swap rate function

In the previous section we have established some key structural properties of deposit and
redeem actions, e.g. their additivity and reversibility. In general, these properties do not
hold for swap actions: it is easy to find swap rate functions SX ∈ R3

≥0 → R≥0 that make
these properties false. Throughout this section we introduce some general properties of swap
rate functions, and we discuss the properties they induce on the behaviour of AMMs. In
sections 5.6-5.8 we then discuss the properties enjoyed by the swap rate functions used in
some concrete AMM implementations. Coherently with these implementations, we assume
that a swap rate function is defined and non-negative for all x > 0, and that the internal
exchange rate (i.e., the limit of SX for x leading to 0, see (3.3)) is always defined.

5.1. Output-boundedness. Output boundedness guarantees that an AMM has always
enough output tokens τ1 to send to the user who performs a swap(x, τ0, τ1).

Definition 5.1 (Output-boundedness). A swap rate function SX is output-bounded when,
for all x, r0, r1 such that x ≥ 0 and r0, r1 > 0:

x · SX (x, r0, r1) < r1

The following lemma establishes sufficient conditions for a swap action to be enabled.

Lemma 5.2. Let T = A : swap(x, τ0, τ1), and let A[σ] ∈ Γ. If SΓ{τ0, τ1} > 0, σ(τ0) ≥ x
and SX is output-bounded, then T is enabled in Γ.

5.2. Monotonicity. Consider a transaction A : swap(x, τ0, τ1) on an AMM {r0 : τ0, r1 : τ1}.
Without making any assumptions on the swap rate function, there is no relation between
the effect of this transaction and that of a swap where the parameters have been varied.
Monotonicity, instead, ensures that there exists a meaninful relation: the swap rate increases
if we decrease the input amount x or the reserves of τ0, and if we increase the reserves of
τ1. The intuition is that lower reserves of τ0 in the AMM make the x : τ0 paid by A more
“valuable” for the AMM, hence the AMM will output more units of τ1 for the same input
amount. Increasing the reserves of τ1 in the AMM (keeping those of τ0 unaltered) produces
the same effect. Monotonicity on x also ensures that the internal exchange rate of the AMM
is defined, for each token pair.

Definition 5.3 (Monotonicity). A swap rate function SX is monotonic when:

x′ ≤ x, r′0 ≤ r0, r1 ≤ r′1 =⇒ SX (x, r0, r1) ≤ SX (x′, r′0, r
′
1)

Further, SX is strictly monotonic when, for i ∈ {0, 1, 2} and Ci ∈ {<,≤}:

x′ C0 x, r
′
0 C1 r0, r1 C2 r

′
1 =⇒ SX (x, r0, r1) C3 SX (x′, r′0, r

′
1)



12:18 M. Bartoletti, J. Chiang, and A. Lluch-Lafuente Vol. 18:4

where:

C3 =

{
≤ if Ci =≤ for i ∈ {0, 1, 2}
< otherwise

Note that strict monotonicity trivially implies monotonicity. The following lemma relates
monotonicity of the swap rate function with the gain of swap transactions, concretising the
intuition given before from the point of view of A’s gain.

Lemma 5.4. Let Γ = {r0 : τ0, r1 : τ1} | ∆ and Γ′ = {r′0 : τ0, r
′
1 : τ1} | ∆, with r′0 ≤ r0 and

r1 ≤ r′1, and let T = A : swap(x, τ0, τ1) be enabled in Γ and in Γ′. If SX is monotonic, then
GA(Γ,T) ≤ GA(Γ′,T).

5.3. Additivity. To extend the additivity property of Theorem 4.10 to swap actions, we
must require that the swap rate function is additive.

Definition 5.5 (Additivity). A swap rate function SX is additive when:

α = SX (x, r0, r1), β = SX (y, r0 + x, r1 − αx) =⇒ SX (x+ y, r0, r1) =
αx+ βy

x+ y

The idea here is that a user fires a swap transaction (say, T0) with input amount x in a
state Γ, and then in the state reached after firing T0, she fires another swap transaction
(say, T1) with input amount y on the same AMM. The definition of additivity requires that
the swap rate of a swap transaction with input amount x+ y in Γ is in a given relation with
the swap rates computed for T0 and T1 and with the input amounts x and y. Theorem 5.6
states that if this relation holds, then a single swap with input amount x+ y in Γ produces
exactly the same effect of performing first T0 and then T1. Then, Lemma 5.7 allows us to
compute the gain of this transaction as the sum of the gains of T0 and T1.

Theorem 5.6 (Additivity of swap). Let Γ
T0−→ Γ0

T1−→ Γ1, with Ti = A : swap(xi, τ0, τ1) for
i ∈ {0, 1}. If SX is additive, then:

Γ
A:swap(x0+x1,τ0,τ1)−−−−−−−−−−−−−→ Γ1

Lemma 5.7 (Additivity of swap gain). Let T(x) = A : swap(x, τ0, τ1), and let Γ
T(x0)−−−→ Γ′.

If SX is output-bounded and additive, then:

GA(Γ,T(x0 + x1)) = GA(Γ,T(x0)) + GA(Γ′,T(x1))

5.4. Reversibility. The reversibility property in Theorem 4.11 states that the effect of
deposit and redeem transactions can be reverted. We now devise a property of swap rate
functions that give the same guarantee for swap transactions.

Definition 5.8 (Reversibility). A swap rate function SX is reversible when:

α = SX (x, r0, r1) =⇒ SX (αx, r1 − αx, r0 + x) =
1

α
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Consider now a state Γ = {r0 : τ0, r1 : τ1} | ∆, and let α = limx→0 SX (x, r0, r1) be the
internal exchange between τ0 and τ1 in Γ. If the swap rate function is reversible, then:

lim
x→0

SX (x, r1, r0) = lim
x→0

SX (αx, r1 − αx, r0 + x) = lim
x→0

1

α
=

1

α

from which we obtain:

XΓ(τ1, τ0) =
1

XΓ(τ0, τ1)
(5.1)

The intuition of Definition 5.8 is that, to reverse the effect of a swap transaction T that
pays x : τ0 to receive y : τ1, one must fire a swap transaction T−1 that pays y : τ1 to receive
x : τ0. Of course, this results in the same AMM state that we had before performing T.
Writing α for the swap rate SX (x, r0, r1), the [Swap] rule fixes y = αx. Hence, assuming that
in the initial state the AMM has reserves r0 : τ0 and r1 : τ1, after performing T its reserves
will be r0 + x : τ0 and r1 − αx : τ1. In this state, requiring that the swap rate for an input
of y : τ1 is 1

α (as done by Definition 5.8) implies that the AMM outputs x : τ0, reverting the
reserves of the AMM to the initial values.

The following theorem formalises the intuition above, establishing that, when the swap
rate function is reversible, swap transactions are reversible. Together with Theorem 4.11, all
the AMM actions are reversible under this hypothesis.

Theorem 5.9 (Reversibility of swap). Let T = A : swap(x, τ0, τ1), and let Γ
T−→ Γ′. If SX

is reversible, then there exists T−1 such that Γ′
T−1

−−→ Γ.

Lemma 5.10 allows us to compute the gain of the reverse transaction T−1 in the state
reached after performing T as a function of the gain of T. As expected by preservation of
the global net worth, the gain of T−1 is the opposite of that of T.

Lemma 5.10. Let T = A : swap(x, τ0, τ1), and let Γ
T−→ Γ′. If SX is reversible, then

GA(Γ,T) = −GA(Γ′,T−1).

5.5. Homogeneity. A swap rate function is homogeneous when the swap rate is not affected
by a linear scaling of the three parameters. Homogeneity is useful to relate the swap rate
before and after deposit or redeem transactions, since their effect is a linear scaling of the
AMM reserves. Lemma 5.12 establishes one the the landmark properties of AMMs we have
anticipated in section 2: when the swap rate function is homogeneous, deposits and redeems
do not affect the internal swap rate.

Definition 5.11 (Homogeneity). A swap rate function SX is homogeneous when, for a > 0:

SX (ax, ar0, ar1) = SX (x, r0, r1)

Lemma 5.12 (Preservation of internal exchange rate upon deposits/redeems). Let Γ
T−→ Γ′,

where tok(T) = {τ0, τ1} and type(T) ∈ {dep, rdm}. If SX is homogeneous, then:

XΓ(τ0, τ1) = XΓ′(τ0, τ1)

The following lemma shows that deposits increase swap rates, whilst redeems have the
opposite effect. Dually, deposits decrease the slippage, while redeems increase it. In section 6
we will exploit this fact to show that deposits incentivize swaps, while redeems disincentivize
them (see Theorems 6.6 and 6.9).
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Lemma 5.13. Let Γ
T−→ Γ′, where {r0 : τ0, r1 : τ1} ∈ Γ, {r′0 : τ0, r

′
1 : τ1} ∈ Γ′ and tok(T) =

{τ0, τ1}. If SX is homogeneous and strictly monotonic, then for all x > 0:

(a) type(T) = dep =⇒ SX (x, r0, r1) < SX (x, r′0, r
′
1) and ∆XΓ(x, τ0, τ1) > ∆XΓ′(x, τ0, τ1)

(b) type(T) = rdm =⇒ SX (x, r0, r1) > SX (x, r′0, r
′
1) and ∆XΓ(x, τ0, τ1) < ∆XΓ′(x, τ0, τ1)

It is easy to find swap rate functions that violate the properties discussed before:
for instance SX (x, r0, r1) = 1/x violates output-boundedness, additivity, reversibility and
homogeneity. In the rest of the section we discuss some notable swap rate functions, used in
actual AMM implementations, showing that they satisfy most of our properties.

5.6. Constant sum swap rate. The constant sum function mandates the sum of the token
reserves in an AMM to remain constant, i.e. r0 + r1 = k, where the constant k is fixed upon
the first deposit in the AMM.

Theorem 5.14 (Constant sum swap rate). The constant sum swap rate function:

SX (x, r0, r1) = 1

is monotonic, reversible, additive, and homogeneous. Furthermore, its internal swap rate
and its slippage are given by:

XΓ(τ0, τ1) = 1 ∆XΓ(x, τ0, τ1) = 0

Note that the constant sum function is not output-bounded, since the output amount
may exceed the reserves of the output token. A positive aspect of constant sum AMMs is
that they do not suffer from slippage. With constant sum AMMs, the internal exchange rate
is always 1, and so there is zero slippage (see Equations (3.3) and (3.4)). A negative aspect
is that constant sum AMMs do not allow the token reserves to grow unboundedly: indeed,
the bound is fixed with the first deposit. This makes constant sum AMMs unsuitable for
scenarios where one wants the liquidity of the AMM to increase over time, and to incentivise
users to deposit through minted tokens. When the oracle and internal exchange rates are not
aligned (i.e., when the prices of the two tokens are different), then rational users will drain
the reserves of the most expensive token type held by the AMM. Despite these drawbacks,
the constant sum swap rate is suitable situations where the two token types in the AMM are
supposed to be equally prices, like for stablecoins. This is the case e.g. for mStable [mSt20].

5.7. Constant product swap rate. The constant product swap rate function (introduced
before in Definition 2.1) enjoys all the properties discussed previously in this section.4

Theorem 5.15 (Constant product). The constant product swap rate function is output-
bounded, strictly monotonic, reversible, additive, and homogeneous. Furthermore, its internal
swap rate and its slippage are given by:

XΓ(τ0, τ1) =
r1

r0
∆XΓ(x, τ0, τ1) =

x

r0

Compared to the constant sum swap rate, a point in favour of the constant product is
output-boundedness, which allows users to add unbounded liquidity to the AMM. A point
against is slippage, which grows linearly with the amount of the input token. Therefore,
when the internal exchange rate is aligned with the oracle’s, users are disincentivised from

4The existence of other classes of swap rate functions enjoying all the six properties is an open question.
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performing large swaps. The most prominent AMM platform adopting the constant product
is Uniswap v2 [uni21]. Curve [cur20] uses a hybrid swap rate function, which approximates
a constant sum for an interval of input values x, and behaves as a constant product outside
the interval. In this way, it achieves a small slippage within the interval, at the same time
allowing unbounded liquidity thanks to output-boundedness.

5.8. Constant mean swap rate. The constant mean swap rate function generalises the
constant product by associating weights w0, w1 ∈ R>0 to the token types held by the AMM,
so to preserve the following equality:

rw0
0 rw1

1 = (r0 + x)w0(r1 + y)w1 where y = x · SX (x, r0, r1)

The following theorem shows that the constant mean function enjoys most of the
properties of the constant product, except reversibility.

Theorem 5.16 (Constant mean swap rate). The constant mean swap rate function:

SX (x, r0, r1) =
r1

x

(
1−

( r0

r0 + x

)w0
w1

)
is output-bounded, monotonic, additive, and homogeneous. Furthermore, its internal swap
rate and its slippage are given by:

XΓ(τ0, τ1) =
r1w0

r0w1
∆XΓ(x, τ0, τ1) =

xw0

r0w1

(
1−

(
r0

r0+x

)w0
w1

) − 1

The most prominent AMM plaform using the constant mean swap rate is Balancer [bal19].
Users fix the weights w0, w1 of token types when an AMM is created; once fixed, these
weights cannot be changed. The constant product swap rate can be seen as the special case
of the constant mean where the two weights are equal.

6. The economic mechanism of AMMs

AMMs can be seen as games where users compete to increase their net worth. We now study
the incentive mechanisms of AMMs from a game-theoretic perspective.

6.1. Arbitrage. The arbitrage game is a single-player, single-round game, where the
player can perform a single move on a given AMM pair τ0, τ1 in order to maximize her
gain. The initial game states have the form Γ0 = A[σ] | {r0 : τ0, r1 : τ1} | ∆, where A is the
player; the moves of A are all the possible transactions that can be fired by A (we also
consider doing nothing as a possible move). More formally, a move is a sequence λ such
that either λ = ε (the empty sequence), or λ = T with wal(T) = A. The goal of A is to
maximize her gain GA(Γ0, λ) on the AMM pair τ0, τ1. A solution to the game is a move λ
that satisfies such goal. We study the arbitrage game under the assumption that A holds
no minted tokens {τ0, τ1}. In this way, by Lemma 3.2, A’s gain only depends on the input
amount of A’s swap, on the reserves of τ0 and τ1 in the AMM, and on their prices. In
practice, AMM users are logically partitioned in two groups, e.g. liquidity providers (who
perform deposits and redeems) and traders (who perform swaps), so basically here we are
considering the arbitrage game from the traders’ point of view. We further assume that A’s
balance is enough to allow A to perform the optimal swap. This is a common assumption
in formulations of the arbitrage game: in practice, this can be achieved by borrowing the
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needed amount of the input token from a lending pool via a flash-loan [QZLG21,WWL+20].
Theorem 6.3 shows that a rational agent is incentivized to perform a swap to realign the
internal and the oracle’s exchange rate. The optimal solution to the arbitrage game can be
approximated by multiple users who swap smaller amounts than the optimal one.

Before devising a solution to the arbitrage game, we examine the potential candidates
for the solution. Observe that doing nothing (i.e., λ = ε) has clearly zero gain, as well as
depositing or redeeming, as established by Lemma 4.5. Hence, if one of such moves is a
solution, so are the other two: without loss of generality, we assume that A’s move will be
λ = ε when there is no strategy which allows A to increase her gain.

We first show in Lemma 6.2 that, if a swap with input τ0 and output τ1 has a positive
gain, then a swap with input τ1 and output τ0 will have a negative gain, whatever input
amount is chosen. This holds whenever the swap rate function is monotonic and reversible.
Lemma 6.1 is instrumental to prove Lemma 6.2, as it finds the needed relation between the
swap rate function and the exchange rate. Passing from this relation to the gain of the swap
transaction is obtained by means of Lemma 3.3.

Lemma 6.1. If SX is strictly monotonic and reversible, then for all x > 0:

SX (x, r0, r1) ≥ X(τ0, τ1) =⇒ ∀y > 0. SX (y, r1, r0) < X(τ1, τ0)

Lemma 6.2 (Unique direction for swap gain). Let Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆ be such
that σ{τ0, τ1} = 0, and let Td(x) = A : swap(x, τd, τ1−d), for x > 0 and d ∈ {0, 1}. If SX is
output-bounded, strictly monotonic and reversible, then for all y > 0 such that στ1−d ≥ y:

GA(Γ,Td(x)) > 0 =⇒ GA(Γ,T1−d(y)) < 0

Theorem 6.3 devises a general solution to the arbitrage game, determining the swap
transaction that maximizes A’s gain. This is the transaction A : swap(x0, τ0, τ1) such that,
in the state Γ′ reached after performing it from the initial state, the internal exchange rate
between τ0 and τ1 is aligned to the oracle’s exchange rate. By Lemma 3.3, no move from
Γ′ can increase A’s gain, i.e. the solution for the arbitrage game in Γ′ is to do nothing.
Lemma 6.2 guarantees that swaps in the other direction are not solutions, since they decrease
A’s gain. Note that if the internal exchange rate is already aligned to the oracle’s, or if A
has not enough balance to perform the optimal swap, then the solution to the arbitrage
problem is to do nothing.

Theorem 6.3 (Arbitrage). Let Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆ be such that σ{τ0, τ1} = 0.
For all x > 0, let T(x) = A : swap(x, τ0, τ1). Let x0 be such that:

XΓ′(τ0, τ1) = X(τ0, τ1) where Γ
T(x0)−−−→ Γ′ (6.1)

If SX is output-bounded, strictly monotonic, additive and reversible, then:

∀x 6= x0 : GA(Γ,T(x0)) > GA(Γ,T(x))

Furthermore, if an x0 satisfying Equation (6.1) exists, it is unique.

An implicit desideratum on these solutions is that, given a specific instance of the swap
rate function, they are efficiently computable: this is the case, e.g., for the constant product,
for which Lemma 6.4 finds a closed formula for the arbitrage solution.

Lemma 6.4 (Arbitrage and constant product). Let Γ = A[σ] | {r0 : τ0, r1 : τ1}, and let:

x0 =

√
Pτ1

Pτ0
r0r1 − r0 (6.2)
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If SX is the constant product swap rate and x0 > 0, then A : swap(x0, τ0, τ1) is the solution
to the arbitrage game in Γ.

Example 6.5. Consider an initial state Γ = A[σ] | {18 : τ0, 6 : τ1} | ∆. Assuming the
constant product swap rate, and Pτ0 = 3, Pτ1 = 4, we have that:

XΓ(τ0, τ1) = 6/18 < 3/4 = X(τ0, τ1)

XΓ(τ1, τ0) = 18/6 > 4/3 = X(τ1, τ0)

By Theorem 6.3 it follows that the solution to the arbitrage game is T(x) = A : swap(x, τ1, τ0),
for suitable x. By Lemma 6.4, we find that the optimal input value is:

x1 =

√
3

4
· 18 · 6− 6 = 3

and the corresponding output value is x1 · SX (x1, 6, 18) = 6. We then obtain:

Γ
T(x1)−−−→ Γ′ = A[σ − 3 : τ1 + 6 : τ0] | {12 : τ0, 9 : τ1}

This action maximizes A’s gain GA(Γ,T(x1)) = WA(Γ′)−WA(Γ) = 6Pτ0 − 3Pτ1 = 6. Any
other action would result in a lower gain for A. Note that the internal exchange rate in Γ′ is
aligned to the oracle’s: XΓ′(τ0, τ1) = 9/12 = 3/4 = X(τ0, τ1). �

6.2. Swaps after deposits. We show in Theorem 6.6 that deposits incentivise swaps.
Namely, if a user B performs a deposit on an AMM for the token pair τ0, τ1, and then a
different user A performs a swap in the resulting state, then A’s gain is increased w.r.t. the
gain that she would have obtained by performing the same transaction before B’s deposit.
The intuition is that larger amounts of tokens in an AMM provide decrease the slippage,
therefore attracting users interested in swaps.

Theorem 6.6 (Swap after deposit). Let Tswap and Tdep be two transactions such that
wal(Tswap) = A 6= wal(Tdep) and, for ` ∈ {swap, dep}, type(T`) = ` and tok(T`) = {τ0, τ1}.
Let Γ be such that both Tswap and TdepTswap are enabled in Γ. If the swap rate function is
homogeneous and strictly monotonic, then:

GA(Γ,TdepTswap) > GA(Γ,Tswap)

Example 6.7. Let Γ = A[5 : τ0] | {5 : τ0, 10 : τ1} | ∆, let Tdep = B : dep(40 : τ0, 80 :τ1), and
let Tswap = A : swap(5, τ0, τ1). Assuming the constant product swap rate, we have that:

Γ
Tswap−−−→ Γs = A[5 : τ1] | {10 : τ0, 5 : τ1} | ∆

Γ
Tdep−−→ Γd = A[5 : τ0] | {45 : τ0, 90 : τ1} | ∆′

Tswap−−−→ Γds = A[9 : τ1] | {50 : τ0, 81 : τ1} | ∆′

Now, assuming Pτ0 = 1 and Pτ1 = 1, we have the following gains for A:

GA(Γ,TdepTswap) = 4 > 0 = GA(Γ,Tswap)

as correctly predicted by Theorem 6.6. Note that in the state Γ before the deposit, A has
zero gain from her swap, while the same transaction has a positive gain after the deposit. �

Theorem 6.8 finds the solution of the arbitrage game after a deposit of another user.
More precisely, let λ be the solution in Γ, and let λ′ be the solution in the state Γ′ reached
after a deposit. If λ is empty, then also λ′ is such. If λ is a swap with input τ0 and output
τ1, then also λ′ is such (but for the input amount).
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Theorem 6.8 (Arbitrage after deposit). Let Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆, and let:

Γ
B:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→ Γd where Γd = A[σ′] | {r′0 : τ0, r

′
1 : τ1} | ∆′ and B 6= A

Let λ and λd be the solutions of the arbitrage game in Γ and in Γd, respectively. If SX is
output-bounded, strictly monotonic, additive, reversible, and homogeneous, then:

(1) if λ = A : swap(x, τ0, τ1), then

λd = A : swap(ax, τ0, τ1) GA(Γd, λd) = aGA(Γ, λ) where a =
r1 + v1

r1

(2) if λ = ε, then λd = ε.

6.3. Swaps after redeems. We now study swaps and arbitrage after redeems. Conversely
to what we have shown before in Theorem 6.6, we find that redeems disincentivise swaps
(Theorem 6.9). Similarly to Theorem 6.8, if the solution to the arbitrage game in a state
Γ is a swap, then after a redeem in Γ the solution is still a swap which only differs in the
input amount (Theorem 6.10).

Theorem 6.9 (Swap after redeem). Let Tswap and Trdm be two transactions such that
wal(Tswap) = A 6= wal(Trdm) and, for ` ∈ {swap, rdm}, type(T`) = ` and tok(T`) = {τ0, τ1}.
Let Γ be such that both Tswap and TrdmTswap are enabled in Γ. If the swap rate function is
homogeneous and strictly monotonic, then:

GA(Γ,TrdmTswap) < GA(Γ,Tswap)

Theorem 6.10 (Arbitrage after redeem). Let Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆, and let:

Γ
B:rdm(v:{τ0,τ1})−−−−−−−−−−→ Γd where Γd = A[σ′] | {r′0 : τ0, r

′
1 : τ1} | ∆′ and B 6= A

Let λ and λd be the solutions of the arbitrage game in Γ and in Γd, respectively. If SX is
output-bounded, strictly monotonic, additive, reversible, and homogeneous, then:

(1) if λ = A : swap(x, τ0, τ1), then

λd = A : swap(ax, τ0, τ1) GA(Γd, λd) = aGA(Γ, λ) where a = 1− v

SΓ{τ0, τ1}
(2) if λ = ε, then λd = ε.

7. Maximal extractable value

Maximal Extractable Value (MEV) refers to a class of attacks to smart contracts where
miners/validators exploit their power to reorder, drop or insert transactions in a block to
“extract” value from the mempool (i.e., the set of transactions sent to the blockchain network,
but not appearing yet in a block). Empirical research has shown that AMMs are routinely
targeted by MEV attacks [DGK+20,QZG21,ZQC+21,ZQT+21], and indeed recent versions of
the Ethereum protocol implementation include a MEV extraction mechanism [mev22]. This
has negative effects on AMM users, as well as on transaction fees and network congestion.

We show that our AMM model makes it possible to faithfully express MEV attacks.
Consider a constant product AMM for two token types τ0, τ1 with the same price, e.g.
Pτ0 = Pτ1 = 1, and consider a state:

Γ = M[· · ·] | A[50 : τ0] | {10 : τ0, 10 : τ1} | · · ·
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where we use A to impersonate a honest user, and M for a miner, acting as an adversary.
By Lemma 3.3 we know that the AMM is in equilibrium in Γ, because, for each x > 0:

SX (x, 10, 10) =
10

10 + x
< 1 = X(τ0, τ1)

Therefore, neither a miner nor any other user can increase their net worth in Γ.
Assume now that A sends the transaction TA = A : swap(50, τ0, τ1) to the blockchain

network. Before being included in a block, TA is added to the mempool, from where miners
gather transactions to construct blocks. Any miner owning enough token units can increase
their gain by firing A’s transaction within a sandwich of M’s swaps. For instance, assume
that M’s wallet is M[40 : τ0, 1 : τ1]. Then M can construct a block:

λ = M : swap(40, τ0, τ1) TA M : swap(9, τ1, τ0)

We have that Γ
λ−→ Γ′, where:

Γ
M:swap(40,τ0,τ1)−−−−−−−−−−→ M[0 : τ0, 9 : τ1] | A[50 : τ0] | {50 : τ0, 2 : τ1} | · · ·
A:swap(50,τ0,τ1)−−−−−−−−−−→ M[0 : τ0, 9 : τ1] | A[0 : τ0, 1 : τ1] | {100 : τ0, 1 : τ1} | · · ·
M:swap(9,τ1,τ0)−−−−−−−−−−→ M[90 : τ0, 0 : τ1] | A[0 : τ0, 1 : τ1] | {10 : τ0, 10 : τ1} | · · · = Γ′

This results in a positive gain for M, since:

GM(Γ, λ) = WM(Γ′)−WM(Γ) = 90 · Pτ0 − (40 · Pτ0 + 1 · Pτ1) = 49

GA(Γ, λ) = WA(Γ′)−WA(Γ) = 1 · Pτ1 − 50 · Pτ0 = −49

Summing up, M has managed to extract value from A’s transaction in the mempool,
improving her gain to the detriment of A’s net worth.

The mechanism of guarded transactions, which allows users to specify a lower bound to
the amount of tokens outputted upon a swap (see section 8), is a partial countermeasure
against MEV attacks. For instance, in the scenario above A could have sent a guarded
transaction T′A = A : swap(50 : τ0, 8.3 : τ1), which would have ensured A to receive at
least 8.3 : τ1 upon the swap. This would have neutralised the sandwich attack described
before, since after the first M’s transaction, T′A is no longer valid. Even though guarded
transactions mitigate the issue of not knowing the state where one’s transaction will be fired,
they are not a complete defence against MEV attacks. Indeed, in [BCL22] it is shown that
adversaries can craft sandwiches that extract value from any non-empty mempool of swap
and dep (guarded) transactions. Further analyses the effect of MEV on constant-function
AMMs are developed in [KDC22]. Several approaches to prevent MEV attacks are discussed
in [HW22,ByCD+21].

8. Variants of the basic model

Our AMM model abstracts from implementation-specific features, and from the features
that are orthogonal to the core functionality of AMMs (e.g., governance). We discuss below
some extensions and variants of our model to make it closer to actual implementations, and
their impact on our theory.
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8.1. Fees. In actual AMM implementations, the swap rate — and consequently, the seman-
tics of [Swap] actions — also depends on a trading fee 1− φ. For instance, incorporating this
fee in the constant product swap rate function is usually done as follows:

SX φ(x, r0, r1) =
φ r1

r0 + φx
where φ ∈ [0, 1]

In this case, when the trading fee is zero (i.e., φ = 1), the swap rate preserves the product
between AMM reserves; a higher fee, instead, results in reduced amounts of output tokens
received from swap actions. Intuitively, the AMM retains a portion of the swapped amounts,
but the overall reserves are still distributed among all minted tokens, thereby increasing the
redeem rate of minted tokens. The structural properties in section 4 are not affected by
swap fees.

8.2. Price updates. An underlying assumption of our model is that the price of atomic
tokens is constant, and consequently that exchange rates are stable. In the wild, prices and
exchange rates can vary over time, possibly making the net worth of users holding minted
tokens decrease — a phenomenon commonly referred to as impermanent loss [imp20].

Introducing price updates in our AMM model is straightforward: it suffices to extend
states Γ with price oracles, parameterize with Γ the exchange rate X, and extend the
AMM semantics with a rule to non-deterministically update token prices. Most of the
structural properties in section 4 would not be affected by this extension: the exceptions
are determinism (Lemma 4.1) and net worth preservation (Lemma 4.5(b), while part (a)
would still be true for deposits and redeems). Technically, also the properties about swaps
and incentives in section 5 and section 6 are preserved, although this happens because most
of these properties assume sequences of deposits, redeems and swaps. If we allow these
actions to be interleaved with price updates, some properties no longer hold: notably, the
optimality of the solution λ to the arbitrage problem (Theorem 6.3) is lost if λ is front-run
by a price update that alters the exchange rates, since this affects the condition provided by
Theorem 6.3.

In practice, the assumption of constant exchange rates assumed by Theorem 6.3 may
hold in the case of exchanges between stable coins [mak20]. Here, arbitrage ensures the
alignment between swap rates and exchange rates, so users are hence incentivized to provide
liquidity to AMMs, as the redeem rate is likely to increase over time.

8.3. Guarded transactions. The semantics of AMMs in section 2 defines how the state
evolves upon transactions. In practice, when a user emits a transaction, she cannot predict
the exact state in which it will be actually committed. This may lead to unexpected or
unwanted behaviours. For instance, the gain of a swap transaction sent by A may be
reduced if the transaction is front-run by a redeem transaction sent by B, as established by
Theorem 6.9. The problem here is that redeems decrease the swap rate (by Lemma 5.13),
and consequently the amount of output tokens received by A. As a partial countermeasure
to this issue, Uniswap allows users to specify a lower bound ymin to the amount of received
tokens. In our model, we could formalise this behaviour by amending the [Swap] rule as
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follows:
στ0 ≥ x > 0 y = x · SX (x, r0, r1) ymin ≤ y < r1

A[σ] | {r0 : τ0, r1 : τ1} | Γ
A:swap(x:τ0,ymin:τ1)−−−−−−−−−−−−−→

A[σ − x : τ0 + y : τ1] | {r0 + x : τ0, r1 − y : τ1} | Γ

[Swap]

Similar countermeasures apply to [Rdm] and [Dep] rules. For redeems, the user can enforce
lower bounds vmin

0 , vmin
1 on the amount of received tokens τ0, τ1 as follows:

σ{τ0, τ1} ≥ v > 0 v < SΓ{τ0, τ1} vi = v · RX i
Γ(τ0, τ1) vmin

i ≤ vi

Γ = A[σ] | {r0 : τ0, r1 : τ1} | Γ′
A:rdm(v:{τ0,τ1},vmin

0 :τ0,vmin
1 :τ1)

−−−−−−−−−−−−−−−−−−−−→
A[σ + v0 : τ0 + v1 : τ1 − v : {τ0, τ1}] | {r0 − v0 : τ0, r1 − v1 : τ1} | Γ′

[Rdm]

Amending the [Dep] rule is more complex, since here we must define ranges for the deposited
amounts v0, v1, and we must preserve the ratio between the AMM reserves. A possible way
to achieve this behaviour is the following rule:

στi ≥ vi > 0 v = vi
RX i

Γ (τ0,τ1)
(v0, v1) =

{
(vmax

0 , vmax
0 · r1r0 ) if vmin

1 ≤ vmax
0 · r1r0 ≤ v

max
1

(vmax
1 · r0r1 , v

max
1 ) if vmin

0 ≤ vmax
1 · r0r1 ≤ v

max
0

Γ = A[σ] | {r0 : τ0, r1 : τ1} | Γ′
A:dep(vmin

0 ,vmax
0 :τ0,vmin

1 ,vmax
1 :τ1)

−−−−−−−−−−−−−−−−−−−−→
A[σ − v0 : τ0 − v1 : τ1 + v : {τ0, τ1}] | {r0 + v0 : τ0, r1 + v1 : τ1} | Γ′

[Dep]

These amendments, which are coherent with Uniswap implementation [uni21], preserve
all the properties, both structural and economic, established in the previous sections, modulo
a restatement of the properties which have transactions in their hypotheses. For instance, in
Theorem 6.8, the scaling factor a will be computed on the actual deposited value, rather
than on the parameter of the transaction. Note that, although the new rules can disable
some transactions which were enabled with the rules in section 2, this does not affect the
transactions reordering result (Lemma 4.9).

8.4. Other variants. There are further differences between our model and the existing
AMM platforms, that could be accounted for in extensions of our model. Uniswap implements
flash-loans as part of the swap actions: namely, the user can optionally borrow available
pair funds [uni20a] whilst returning these within the same atomic group of actions. Further,
Uniswap implements an exchange rate oracle, allowing smart contracts to interpret (averages
of) recent swap rates as exchange rates [uni20b]. Balancer [bal19] extends token pairs to
token tuples : a user can swap any two non-coinciding sets of supported tokens, such that the
swap rate is maintained. In all AMM implementations, token balances are represented as
integers: consequently, they are subject to rounding errors [rva18]. AMM platforms frequently
implement a governance logic, which allow “governance token” holders to coordinate changes
to AMM fee-rates or swap rate parameters.

9. Conclusions

We have proposed a theory of AMMs, which encompasses and generalizes the main functional
and economic aspects of the mainstream AMM implementations, providing solid grounds
for the design of future AMMs.
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The core of our theory is a formal model of AMMs (section 2), based on a thorough
inspection of leading AMM implementations like Uniswap [uni21], Curve [cur21b], and
Balancer [bal19]. An original aspect of our model is that it is parametric with respect to
the key economic mechanism — the swap rate function — that algorithmically determines
exchange rates between tokens. Our model features an executable semantics, which can
support future implementations and analysis tools; an open-source implementation of our
semantics is available as a companion of this paper.

Building upon our model, we prove a set of properties characterizing both structural
(section 4) and economic (section 3, section 6) aspects of AMMs. Structural properties
include, e.g., that value cannot be created or destroyed (Lemma 4.5), that tokens cannot be
frozen within an AMM (Lemma 4.8) and that some sequences of transactions can be reordered
without affecting their semantics (Lemma 4.9). Concerning the economic properties, we
address the arbitrage problem, the main game-theoretic foundation behind the economic
incentives of AMMs. Theorem 6.3 provides sufficient conditions for the existence of solutions,
and links the solutions to the expected relation between internal exchange rate and oracle’s
exchange rate. We show that deposits incentivize swaps, while redeems have the opposite
effect. With respect to previous works, which focus on specific economic mechanisms, all
our results are parametric with respect to the swap rate function. We identify indeed, for
each property, a set of conditions on swap rate functions that are sufficient for the property
to hold (section 5).

AMM platforms like Uniswap [uni21] and Curve [Ego19] have overtaken centralized
cryptocurrency markets in size and usage. On the one hand, a better understanding of
AMM design in cases where AMMs host the majority of the token’s global swap volume is
critical [AEC20]. On the other hand, the growth of AMMs is making them more attractive
for malicious users, even if it is difficult to exactly quantify the effect of attacks.

This paper, together with our work on formalizing another DeFi archetype called
lending pool [BCL21a], is the first step towards a general theory of DeFi [BCL21c]. We
believe that a general theory encompassing interactions between different DeFi archetypes is
crucial to be able to reason about their structural, economic and security aspects, as typical
DeFi applications operate within a wider ecosystem, composed by a set of collaborating or
competing agents, which interact through possibly separate execution environments.
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Appendix A. Proofs for Section 3

Proof of Lemma 3.2. Let Γ and T be as in the hypotheses, let Γ
T−→ Γ′, and let y =

x · SX (x, r0, r1). By definition of gain (Equation 3.6), we have that:

GA(Γ,T) = WA(Γ′)−WA(Γ)

By definition of net worth (Equation 3.5), we have that:

WA(Γ) = σA(τ0) · Pτ0 + σA(τ1) · Pτ1

+ σA{τ0, τ1} ·
r0 · Pτ0 + r1 · Pτ1

SΓ{τ0, τ1}
+
∑

τ 6∈{τ0,τ1,{τ0,τ1}} σA(τ) · PΓτ

WA(Γ′) = (σA(τ0)− x) · Pτ0 + (σA(τ1) + y) · Pτ1

+ σA{τ0, τ1} ·
(r0 + x) · Pτ0 + (r1 − y) · Pτ1

SΓ′{τ0, τ1}
+
∑

τ 6∈{τ0,τ1,{τ0,τ1}} σA(τ) · PΓ′τ

Since SΓ{τ0, τ1} = SΓ′{τ0, τ1} and PΓτ = PΓ′τ for all τ 6= {τ0, τ1}:

WA(Γ′)−WA(Γ) = y · Pτ1 − x · Pτ0 + σA{τ0, τ1}
x · Pτ0 − y · Pτ1

SΓ{τ0, τ1}

=
(
y · Pτ1 − x · Pτ0

)(
1− σA{τ0, τ1}

SΓ{τ0, τ1}

)
= x ·

(
SX (x, r0, r1)Pτ1 − Pτ0

)(
1− σA{τ0, τ1}

SΓ{τ0, τ1}

)
Using similar calculations, for B 6= A, we obtain:

GB(Γ,T) = σB{τ0, τ1}
x · Pτ0 − y · Pτ1

SΓ{τ0, τ1}

Proof of Lemma 3.3. Let y = x · SX (x, r0, r1). Since σ{τ0, τ1} = 0, by Lemma 3.2 we
have that:

GA(Γ,T) ◦ 0 ⇐⇒ y Pτ1 − x Pτ0 ◦ 0

⇐⇒ y

x
◦ Pτ0

Pτ1

⇐⇒ SX (x, r0, r1) ◦X(τ0, τ1)

Appendix B. Proofs for Section 4

Proof of Lemma 4.1. Straightforward inspection of the rules [Dep0], [Dep], [Rdm], [Swap]

in section 2.
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Proof of Lemma 4.2. For item (a), we proceed by induction on the length of a computation
Γ0 −→∗ Γ, where Γ0 is initial. The base case (computation of zero steps) is trivial, since
initial states does not contain AMMs. For the inductive case, note that rule [Dep0] requires
that the initial reserves of an AMM are strictly greater than zero. The rules that decrease
the token reserves in AMMs, i.e. [Rdm] and [Swap], have premises that ensure that the reserves
cannot be zeroed.

For item (b), we proceed by induction on the length of a computation Γ0 −→∗ Γ, where
Γ0 is initial. The base case is trivial, since initial states do not contain AMMs. For the
inductive case, we assume that Γ satisfies the property, and we prove that it is preserved
by a transition Γ −→ Γ′. Assume that Γ′ contains an AMM {r′0 : τ0, r

′
1 : τ1}. By item ((a)),

r′0 > 0 and r′1 > 0. There are the following cases, depending on the rule used to infer Γ −→ Γ′:

• [Dep0], [Dep]. Trivial, because deposits can only increase the supply of minted tokens.
• [Swap]. Trivial, because swap actions do not affect the supply of minted tokens.
• [Rdm]. Assume that {r0 : τ0, r1 : τ1} ∈ Γ. By contradiction, suppose that the [Rdm] action

burns all the supply of the minted token, i.e. it burns v = SΓ{τ0, τ1} units. The rule
premise requires v > 0, and it implies:

r′0 = r0 − v
r0

SΓ{τ0, τ1}
= 0 r′1 = r1 − v

r1

SΓ{τ0, τ1}
= 0

Therefore, we would have r′0 = r′1 = 0 — contradiction.

Proof of Lemma 4.3. By cases on the rule used in the transition Γ
T−→ Γ′. It is straight-

forward to check that, in all the rules, the changes applied to atomic tokens cancel out.
Further, the [Swap] rule does not affect the supply of minted tokens.

Proof of Lemma 4.4. Let Γ
T−→ Γ′, where {r0 : τ0, r1 : τ1} ∈ Γ and {r′0 : τ0, r

′
1 : τ ′1} ∈ Γ′.

If T = A : dep(v0 : τ0, v1 :τ1), then by the [Dep] rule it must be r′i = ri + vi for i ∈ {0, 1}.
Furthermore, by the premises of [Dep], we obtain:

r1v0 = r1v · RX 0
Γ(τ0, τ1) = v · r0r1

SΓ{τ0, τ1}
= r0v · RX 1

Γ(τ0, τ1) = r0v1

Therefore:

r1 + v1

r0 + v0
=

( r0v1
v0

) + v1

r0 + v0
=

r0v1 + v0v1

(r0 + v0)v0
=

(r0 + v0)v1

(r0 + v0)v0
=

v1

v0
=

r1

r0
(B.1)

If T = A : rdm(v : {τ0, τ1}), then by rule [Rdm] it must be, for i ∈ {0, 1}:

r′i = ri − vi = ri − vRX i
Γ(τ0, τ1) = ri − v

ri
SΓ{τ0, τ1}

Therefore, since SΓ{τ0, τ1} = SΓ′{τ0, τ1}+ v:

r1 − v1

r0 − v0
=

r1 − v r1
SΓ{τ0,τ1}

r0 − v r0
SΓ{τ0,τ1}

=
r1(SΓ′{τ0, τ1}+ v)− vr1

r0(SΓ′{τ0, τ1}+ v)− vr0
=

r1

r0
(B.2)

Summing up, (B.1) and (B.2) give item (a).
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For item (b), if T = A : dep(v0 : τ0, v1 :τ1), then by the [Dep] rule it must be r′i = ri + vi for
i ∈ {0, 1}, and SΓ′{τ0, τ1} = SΓ{τ0, τ1}+ vi

ri
SΓ{τ0, τ1}. Therefore:

RX i
Γ′(τ0, τ1) =

ri + vi
SΓ′{τ0, τ1}

=
ri + vi

SΓ{τ0, τ1}(1 + vi
ri

)
=

(ri + vi)ri
SΓ{τ0, τ1}(ri + vi)

= RX i
Γ(τ0, τ1)

Otherwise, if T = A : rdm(v : {τ0, τ1}), then by rule [Rdm] it must be, for i ∈ {0, 1}:

r′i = ri − vi = ri − vRX i
Γ(τ0, τ1) = ri − v

ri
SΓ{τ0, τ1}

Therefore:

RX i
Γ′(τ0, τ1) =

ri − vi
SΓ{τ0, τ1} − v

=
ri − v ri

SΓ{τ0,τ1}

SΓ{τ0, τ1} − v
=

riSΓ{τ0, τ1} − vri
(SΓ{τ0, τ1} − v)SΓ{τ0, τ1}

=
ri

SΓ{τ0, τ1}
= RX i

Γ(τ0, τ1)

For item (c), if T = A : dep(v0 : τ0, v1 :τ1), we have that:

PΓ′{τ0, τ1} =
r′0 · Pτ0 + r′1 · Pτ1

SΓ′{τ0, τ1}
by Equation (3.1)

=
(1 + v0

r0
) · r0 · Pτ0 + (1 + v1

r1
) · r1 · Pτ1

SΓ{τ0, τ1}+ vi
ri

SΓ{τ0, τ1}

=
(1 + vi

ri
) · r0 · Pτ0 + (1 + vi

ri
) · r1 · Pτ1(

1 + vi
ri

)
· SΓ{τ0, τ1}

since v0
r0

= v1
r1

= PΓ{τ0, τ1} by Equation (3.1)

The proof for the case T = A : rdm(v : {τ0, τ1}) is similar.

Proof of Lemma 4.5. Let Γ
T−→ Γ′. We first prove item (a). Depending on the rule used

to fire the transition, we have the following cases:

• [Dep0]. Let T = B : dep(v0 : τ0, v1 :τ1). We have that:

Γ = B[σ] | Γ0

Γ′ = B[σ − v0 : τ0 − v1 : τ1 + v0 : {τ0, τ1}] | {v0 : τ0, v1 : τ1} | Γ0

If B 6= A, then A’s net worth is unaffected. Otherwise, if B = A, then:

WA(Γ′) = WA(Γ)− v0Pτ0 − v1Pτ1 + v0PΓ{τ0, τ1}

= WA(Γ)− v0Pτ0 − v1Pτ1 + v0
v0Pτ0 + v1Pτ1

v0
by Equation (3.1)

= WA(Γ)

• [Dep]. Let T = B : dep(v0 : τ0, v1 :τ1). We have that:

Γ = B[σ] | {r0 : τ0, r1 : τ1} | Γ0

Γ′ = B[σ − v0 : τ0 − v1 : τ1 + v : {τ0, τ1}] | {r0 + v0 : τ0, r1 + v1 : τ1} | Γ0

where:

v =
v0 · SΓ{τ0, τ1}

r0



12:34 M. Bartoletti, J. Chiang, and A. Lluch-Lafuente Vol. 18:4

If B 6= A, then A’s net worth is unaffected (note that the value of minted tokens in A’s
wallet is preserved by deposits, by Lemma 4.4(c)). Otherwise, if B = A, then:

WA(Γ′) = WA(Γ)− v0Pτ0 − v1Pτ1 + vPΓ{τ0, τ1}

= WA(Γ)− v0Pτ0 − v1Pτ1 + v
r0Pτ0 + r1Pτ1

SΓ{τ0, τ1}
by Equation (3.1)

= WA(Γ)− v0Pτ0 − v1Pτ1 +
v0

r0

(
r0Pτ0 + r1Pτ1

)
= WA(Γ)− v1Pτ1 +

v0

r0
r1Pτ1

= WA(Γ) since r1v0 = r0v1

• [Swap]. This case cannot happen, since we are assuming type(T) 6= swap.
• [Rdm]. Let T = B : rdm(v : {τ0, τ1}). We have that:

Γ = B[σ] | {r0 : τ0, r1 : τ1} | Γ0

Γ′ = B[σ + v0 : τ0 + v1 : τ1 − v : {τ0, τ1}] | {r0 − v0 : τ0, r1 − v1 : τ1} | Γ0

where:

v0 =
v · r0

s
v1 =

v · r1

s
s = SΓ{τ0, τ1}

If B 6= A, then A’s net worth is unaffected (note that the value of minted tokens in A’s
wallet is preserved by redeems, by Lemma 4.4(c)). Otherwise, if B = A, then:

WA(Γ′) = WA(Γ) + v0Pτ0 + v1Pτ1 − vPΓ{τ0, τ1}

= WA(Γ) + v0Pτ0 + v1Pτ1 −
v · r0

s
Pτ0 −

v · r1

s
Pτ1

= WA(Γ) +
v · r0

s
Pτ0 +

v · r1

s
Pτ1 −

v · r0

s
Pτ0 −

v · r1

s
Pτ1

= WA(Γ)

We now prove item (b), i.e. that the global net worth is preserved by any transactions. First,
we recall from section 3 the definition of global net worth. Let:

Γ = A1[σ1] | · · · | An[σn] | {r1 : τ1, r
′
1 : τ ′1} | · · · | {rk : τk, r

′
k : τ ′k}

Then, the global net worth of Γ is:

W (Γ) =
n∑
i=1

WAi
(Γ)

We have the following cases:

• [Dep0], [Dep], [Rdm]. These rules affect the token reserves in AMMs, which do not contribute
to the global net worth, and the balances of users, which we know to be preserved.
Therefore, the global net worth is preserved.
• [Swap]. Let A : swap(v, τ0, τ1) be the fired transaction. We have that:

Γ = A[σ] | {r0 : τ0, r1 : τ1} | Γ0

Γ′ = A[σ − v : τ0 + v′ : τ1] | {r0 + v : τ0, r1 − v′ : τ1} | Γ0

The global net worth in Γ′ can be computed in terms of the global net worth in Γ, by
removing the value of the v : τ0 paid by A to the AMM, adding the value of the v1 : τ1
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obtained by A through the swap, and then adding the difference between the value of the
minted tokens in Γ′ and in Γ, i.e.:

SΓ′{τ0, τ1}PΓ′{τ0, τ1} − SΓ{τ0, τ1}PΓ{τ0, τ1}
By Lemma 4.3, we have that SΓ′{τ0, τ1} = SΓ{τ0, τ1}. Therefore:

W (Γ′) = W (Γ)− vPτ0 + v′Pτ1 + SΓ{τ0, τ1}
(
PΓ′{τ0, τ1} − PΓ{τ0, τ1}

)
= W (Γ)− vPτ0 + v′Pτ1

+ SΓ{τ0, τ1} ·
(r0Pτ0 + r1Pτ1 + vPτ0 − v′Pτ1

SΓ{τ0, τ1}
− r0Pτ0 + r1Pτ1

SΓ{τ0, τ1}

)
= W (Γ)

Proof of Lemma 4.6. Direct consequence of Lemma 4.5(a) and of the hypothesis that A
does not hold minted tokens in Γ′.

Proof of Lemma 4.8. Let Γ0 = {r0 : τ0, r1 : τ1} | ∆0 be a reachable state. We define
below a procedure to construct a sequence of transitions:

Γ0 T1−→ · · · Tn−−→ Γn where Γn = {ri0 : τ0, r
i
1 : τ1} | ∆n

By Lemma 4.2, we have that ri0 > 0, ri1 > 0, and SΓi{τ0, τ1} > 0 for all i. At step i:

(1) Let x = ri0 − r′0 be the amount of τ0 that users must redeem from the AMM, and let:

v =
x

ri0
SΓi{τ0, τ1}

(2) if there exists some A[σ] ∈ Γi such that σ({τ0, τ1}) ≥ v, then A can fire A : rdm(v : {τ0, τ1}),
obtaining, for some r′1 ≤ r1:

{ri0 : τ0, r
i
1 : τ1} | ∆i −→ Γ′ =

{
ri0 − v

ri0
SΓi{τ0, τ1}

, r′1 : τ1

}
| · · ·

= {r′0 : τ0, r
′
1 : τ1} | · · ·

(3) otherwise, pick an A[σ] ∈ Γi such that σ({τ0, τ1}) = v′ ≥ 0, fire A : rdm(v′ : {τ0, τ1}).
Note that the procedure always terminates: since SΓi{τ0, τ1} > 0 for all i, either step (2)

or (3) can be performed; further, the number of performed transactions is bounded by the
number of users, which is finite.

Proof of Lemma 4.9. Assume that Γ
T0−→ Γ0

T1−→ Γ01. We have the following exhaustive
cases on the type of the transactions T0 and T1:

(1) T0 = A0 : dep(v0 : τ0, v
′
0 :τ ′0).

(a) T1 = A1 : dep(v1 : τ1, v
′
1 :τ1). Both transactions are dep, so we are in case (a) of

the statement. If {τ0, τ
′
0} 6= {τ1, τ

′
1}, then the thesis is straightforward, since T0,T1

operate on different AMMs. Otherwise, let:

a0 = 1 + v0
r0

m0 = v0
r0

SΓ{τ0, τ1} a01 = 1 + v1
a0r0

m01 = v1
a0r0

SΓ0{τ0, τ1}

a1 = 1 + v1
r0

m1 = v1
r0

SΓ{τ0, τ1} a10 = 1 + v0
a1r0

m10 = v0
a1r0

SΓ1{τ0, τ1}
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We have that:

A[σ] | {r0 : τ0, r1 : τ1} | ∆
T0−→ A[σ − v0 : τ0 − v′0 : τ1 +m0 : {τ0, τ1}] | {a0r0 : τ0, a0r1 : τ1} | ∆
T1−→ A[σ − (v0 + v1) : τ0 − (v′0 + v′1) : τ1 + (m0 +m01) : {τ0, τ1}] |
{a01a0r0 : τ0, a01a0r1 : τ1} | ∆

Inverting the two transactions, we obtain:

A[σ] | {r0 : τ0, r1 : τ1} | ∆
T1−→ A[σ − v1 : τ0 − v′1 : τ1 +m1 : {τ0, τ1}] | {a1r0 : τ0, a1r1 : τ1} | ∆
T0−→ A[σ1 − (v0 + v1) : τ0 − (v′0 + v′1) : τ1 + (m1 +m10) : {τ0, τ1}] |
{a10a1r0 : τ0, a10a1r1 : τ1} | ∆

We have that a01a0 = a10a1, since:

a10a1 =
(
1 + v0

a1r0

)
a1 =

a1r0 + v0

r0
=

(
1 + v1

r0

)
r0 + v0

r0
=
r0 + v0 + v1

r0

a01a0 =
(
1 + v1

a0r0

)
a0 =

a0r0 + v1

r0
=

(
1 + v0

r0

)
r0 + v1

r0
=
r0 + v0 + v1

r0

Furthermore, we have that m0 +m01 = m1 +m10, since:

m10 +m1 =
v0v1 + a1r0v1 + r0v0

a1r2
0

SΓ{τ0, τ1}

=
v0v1 + v1(r0 + v1) + r0v0

(r0 + v1)r0
SΓ{τ0, τ1}

=
(v0 + v1)(r0 + v1)

(r0 + v1)r0
SΓ{τ0, τ1} =

v0 + v1

r0
SΓ{τ0, τ1}

m01 +m0 =
v0v1 + a0r0v0 + r0v1

a0r2
0

SΓ{τ0, τ1}

=
v0v1 + v0(r0 + v0) + r0v1

(r0 + v0)r0
SΓ{τ0, τ1}

=
(v0 + v1)(r0 + v0)

(r0 + v0)r0
SΓ{τ0, τ1} =

v0 + v1

r0
SΓ{τ0, τ1}

Summing up, we have shown that Γ01 = Γ10.
(b) T1 = A1 : swap(v1, τ1, τ

′
1). Then, we are in case (a) of the statement, with tok(T0)

disjoint from tok(T1). The thesis is straightforward by analysis of the rules.
(c) T1 = A1 : rdm(v1 : {τ1, τ

′
1}). There are two subcases. If we are in case (a), then

T0,T1 operate on different AMMs, and so the thesis is straightforward. Otherwise,
if we are in case (b) of the statement, by hypothesis we know that T1T0 is enabled
in Γ, leading to a state Γ10. If {τ0, τ

′
0} 6= {τ1, τ

′
1}, then the thesis is straightforward.

Otherwise, the proof is done by computing the states Γ01 and Γ10 and showing they
are equal, similarly to what we have done in case (1a).

(2) T0 = A0 : rdm(v0 : {τ0, τ
′
0}).

(a) T1 = A1 : dep(v1 : τ1, v
′
1 :τ ′1). Symmetric to case (1c).
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(b) T1 = A1 : swap(v1, τ1, τ
′
1). Then, we are in case (a) of the statement, where {τ1, τ

′
1}

and {τ0, τ
′
0} are disjoint. Then, the thesis is straightforward.

(c) T1 = A1 : rdm(v1 : {τ1, τ
′
1}). Then, we are in case (a) of the statement. If tok(T0)

is disjoint from tok(T1), then the thesis is straightforward. Otherwise, note that
the tokens paid by the AMM in response of T0 and T1 only depend on the ratio
between the amounts of τ0 and τ ′0 initially held by the AMM, which are constrained
to preserve the ratio.

(3) T0 = A0 : swap(v0, τ0, τ
′
0). The only case not covered by the previous items is when

T1 = A1 : swap(v1, τ1, τ
′
1). Then, we are in case (a) of the statement, where {τ1, τ

′
1} and

{τ0, τ
′
0} are disjoint. The thesis is straightforward.

Proof of Theorem 4.10. For item 1, there are two cases, depending on whether T0 is
fired through rule [Dep0] or [Dep]. If T0 is fired through rule [Dep], let Γ = {r0 : τ0, r1 : τ1} | ∆.
We have that:

Γ0 = {r0 + v0 : τ0, r1 + v1 : τ1} | ∆0 r1v0 = r0v1 (B.3)

Γ1 = {(r0 + v0) + v′0 : τ0, (r1 + v1) + v′1 : τ1} | ∆1 (r1 + v1)v′0 = (r0 + v0)v′1 (B.4)

We must just check that the premises for firing A : dep(v0 + v′0 : τ0, v
′
1 + v′1 :τ1) are satisfied:

r1(v0 + v′0) = r1v0 + r1v
′
0

= r0v1 + r1v
′
0 by (B.3)

= r0v1 + r1

(r0 + v0

r1 + v1

)
v′1 by (B.4)

= r0v1 + r1
r0

r1
v′1 by (B.1)

= r0(v1 + v′1)

The case where T0 is fired through rule [Dep0] is similar:

Γ0 = {v0 : τ0, v1 : τ1} | ∆0

Γ1 = {v0 + v′0 : τ0, v1 + v′1 : τ1} | ∆1 v1v
′
0 = v0v

′
1

The premises of [Dep0] when firing A : dep(v0 + v′0 : τ0, v
′
1 + v′1 :τ1) are trivially satisfied,

hence the thesis follows.

For item 2, let Γ = {r0 : τ0, r1 : τ1} | ∆ let τ = {τ0, τ1}, and let s = SΓτ. By rule [Rdm],
we have that:

Γ0 = {r0 − v0 : τ0, r1 − v1 : τ1} | ∆0 vi = v · ri
s

(B.5)

Γ1 = {(r0 − v0)− v′0 : τ0, (r1 − v1)− v′1 : τ1} | ∆1 v′i = v′ · ri − vi
s− v

(B.6)
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Therefore, for i ∈ {0, 1}, we have that:

ri − vi − v′i = ri − v ·
ri
s
− v′ ·

ri − v · ris
s− v

by (B.5), (B.6)

= ri − v ·
ri(s− v)

s(s− v)
− v′ · sri − v · ri

s(s− v)

= ri −
vri(s− v) + v′(sri − vri)

s(s− v)

= ri −
vri(s− v) + v′ri(s− v)

s(s− v)

= ri − (v + v′) · ri
s

from which the thesis follows.

Proof of Theorem 4.11. By cases on the rule used to deduce Γ
T−→ Γ′. The premise that

SΓτ = 0 implies SΓ′τ = 0 excludes the case [Dep0], so we have two cases:

• [Dep]. We have that A : dep(v0 : τ0, v1 :τ1), Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆, and:

Γ′ = A[σ − v0 : τ0 − v1 : τ1 + v : {τ0, τ1}] | {r0 + v0 : τ0, r1 + v1 : τ1} | ∆
= A[σ′] | {r′0 : τ0, r

′
1 : τ1} | ∆

where v = vi
ri
· s, with s = SΓ{τ0, τ1}. Let T−1 = A : rdm(v : {τ0, τ1}). We have that:

Γ′
T−1

−−→ A[σ′ + v′0 : τ0 + v′1 : τ1 − v : {τ0, τ1}] | {r′0 − v′0 : τ0, r
′
1 − v′1 : τ1} | ∆ = Γ′′

where, for i ∈ {0, 1} and s′ = SΓ{τ0, τ1} = s+ v:

v′i = v · r
′
i

s′
= v · ri + vi

s+ v
=
(vi
ri
· s
)
· ri + vi

s+
(
vi
ri
· s
) =

vis(ri + vi)

ris+ vis
= vi

Since vi = v′i for i ∈ {0, 1}, we conclude that Γ′′ = Γ.
• [Rdm]. We have that T = A : rdm(v : {τ0, τ1}), Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆, and:

Γ′ = A[σ + v0 : τ0 + v1 : τ1 − v : {τ0, τ1}] | {r0 − v0 : τ0, r1 − v1 : τ1} | ∆
= A[σ′] | {r′0 : τ0, r

′
1 : τ1} | ∆

where vi = v · ris , for i ∈ {0, 1} and s = SΓ{τ0, τ1}. Let T−1 = A : dep(v0 : τ0, v1 :τ1). We
have that:

Γ′
T−1

−−→ A[σ′ − v0 : τ0 − v1 : τ1 + v′ : {τ0, τ1}] | {r′0 + v0 : τ0, r
′
1 + v1 : τ1} | ∆ = Γ′′

where v′ = vi
r′i
· s′, with s′ = SΓ′{τ0, τ1} = s− v. We have that:

v′ =
vi
r′i
· s′ =

v · ris
ri − v · ris

· (s− v) =
v · ri

sri − vri
· (s− v) =

v

s− v
· (s− v) = v

Since v′ = v, we conclude that Γ′′ = Γ.
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Appendix C. Proofs for Section 5

Proof of Lemma 5.2. The condition SΓ{τ0, τ1} > 0 ensures that Γ contains an AMM for
the pair τ0, τ1. The premise σ(τ0) ≥ x ensures that A has enough units of the input token
τ0. Output-boundedness implies the premise x · SX (x, r0, r1) < r1 of [Swap].

Proof of Lemma 5.4. Straightforward by Definition 5.3 and Lemma 3.2.

Proof of Theorem 5.6. Let Γ = {r0 : τ0, r1 : τ1} | ∆. We have that:

Γ0 = {r0 + x0 : τ0, r1 − y0 : τ1} | ∆0 y0 = x0 · SX (x0, r0, r1)

Γ1 = {r0 + x0 + x1 : τ0, r1 − y0 − y1 : τ1} | ∆1 y1 = x1 · SX (x1, r0 + x0, r1 − y0)

Since SX is additive, we have that:

SX (x0 + x1, r0, r1) =
y0 + y1

x0 + x1

Therefore, rule [Swap] gives the thesis:

Γ
A:swap(x0+x1,τ0,τ1)−−−−−−−−−−−−−→ {r0 + x0 + x1 : τ0, r1 − (y0 + y1) : τ1} | ∆1

Proof of Lemma 5.7. Since SX is output-bounded, then by Lemma 5.2, T(x0) and
T(x0 + x1) are enabled in Γ, and T(x1) is enabled in Γ′. Let:

α = SX (x0, r0, r1) β = SX (x1, r0 + x0, r1 − αx0)

By additivity of SX (Definition 5.5), we have that:

γ = SX (x0 + x1, r0, r1) =
αx0 + βx1

x0 + x1
(C.1)

Therefore:

GA(Γ,T(x0 + x1))−GA(Γ,T(x0))

= γ(x0 + x1)Pτ1 − (x0 + x1)Pτ0 − αx0Pτ1 + x0Pτ0 (Lemma 3.2)

=
(
(γ(x0 + x1)− αx0

)
Pτ1 − x1Pτ0

=
(
αx0 + βx1 − αx0)

)
Pτ1 − x1Pτ0 (Equation C.1)

= βx1Pτ1 − x1Pτ0

= GA(Γ′,T(x1)) (Lemma 3.2)
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Proof of Theorem 5.9. Let Γ = {r0 : τ0, r1 : τ1} | ∆, and let y = x · SX (x, r0, r1). By the
[Swap] rule, there exists ∆′ such that:

Γ′ = {r0 + x : τ0, r1 − y : τ1} | ∆′

Let T−1 = A : swap(y, τ1, τ0), and let x′ = y · SX (y, r1 − y, r0 + x). For some ∆′′, we have:

Γ′
T−1

−−→ {r0 + x− x′ : τ0, r1 − y + y : τ1} | ∆′′

By reversibility of the swap rate, we have that:

y

x
= SX (x, r0, r1) =⇒ SX (y, r1 − y, r0 + x) =

x

y

from which we obtain that:

x′ = y · SX (y, r1 − y, r0 + x) = y · x
y

= x

from which we obtain the thesis.

Proof of Lemma 5.10. Straightforward from the definition of gain and from Theorem 5.9.

Proof of Lemma 5.12. Let {r0 : τ0, r1 : τ1} ∈ Γ, {r′0 : τ0, r
′
1 : τ1} ∈ Γ′, and let a = r′0/r0.

We have that:

XΓ(τ0, τ1) = lim
x→0

SX (x, r0, r1) by Equation (3.3)

= lim
x→0

SX (ax, ar0, ar1) since SX is homogeneous

= lim
x→0

SX (ax, r′0, r
′
1) by Lemma 4.4(a)

= XΓ′(τ0, τ1) by Equation (3.3)

Proof of Lemma 5.13. For item (a), let T = A : dep(v0 : τ0, v1 :τ1). By rule [Dep],
r′i = ri + vi for i ∈ {0, 1}, with r0v1 = r1v0. By Lemma 4.4(a), r0+v0/r1+v1 = r0/r1. Then:

r0 + v0 =
r1 + v1

r1
r0 = a r0 r1 + v1 =

r1 + v1

r1
r1 = a r1 where a = r1+v1

r1

Therefore:

SX (x, r′0, r
′
1) = SX (x, ar0, ar1)

= SX (xa , r0, r1) (homogeneity)

> SX (x, r0, r1) (strict monotonicity, a > 1 =⇒ x
a < x)

The thesis ∆XΓ(x, τ0, τ1) > ∆XΓ′(x, τ0, τ1) follows from this inequality and Lemma 5.12.
For item (b), let T = A : rdm(v : {τ0, τ1}). By rule [Rdm], for i ∈ {0, 1}:

r′i = ri − vi = ri − v
ri

SΓ{τ0, τ1}
= a ri where a = 1− v

SΓ{τ0,τ1}
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Therefore:

SX (x, r′0, r
′
1) = SX (x, ar0, ar1)

= SX (xa , r0, r1) (homogeneity)

< SX (x, r0, r1) (strict monotonicity, a < 1 =⇒ x
a < x)

The thesis ∆XΓ(x, τ0, τ1) < ∆XΓ′(x, τ0, τ1) follows from this inequality and Lemma 5.12.

Proof of Theorem 5.15. For output-boundedness, let x > 0 and r0, r1 > 0. We have that:

SX (x, r0, r1) =
r1

r0 + x
<
r1

x

For monotonicity, Let x′ ≤ x, r′0 ≤ r0 and r1 ≤ r′1. We have that:

SX (x′, r′0, r
′
1) =

r′1
r′0 + x′

≥ r1

r0 + x
= SX (x, r0, r1)

The proof for strict monotonicity is similar.
For additivity, by Definition 2.1 we have that:

α = SX (x, r0, r1) =
r1

r0 + x

β = SX (y, r0 + x, r1 − αx) =
r1 − αx
r0 + x+ y

=
r0r1

(r0 + x)(r0 + x+ y)

Therefore:

αx+ βy

x+ y
=

1

x+ y

( r1x

r0 + x
+

r0r1y

(r0 + x)(r0 + x+ y)

)
=

1

x+ y

r0r1x+ r1x
2 + r1xy + r0r1y

(r0 + x)(r0 + x+ y)

=
r1(r0 + x)(x+ y)

(x+ y)(r0 + x)(r0 + x+ y)

=
r1

r0 + x+ y

= SX (x+ y, r0, r1)

For reversibility, let α = SX (x, r0, r1). By Definition 2.1, we have that:

SX (αx, r1 − αx, r0 + x) =
r0 + x

(r1 − αx) + αx
=

r0 + x

r1
=
( r1

r0 + x

)−1
=

1

α

For homogeneity, we have that:

SX (ax, ar0, ar1) =
ar1

ar0 + ax
=

r1

r0 + x
= SX (x, r0, r1)

The computations of the internal exchange rate and of the slippage are straightforward.
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Proof of Theorem 5.16. Output-boundedness, monotonicity and homogeneity are straight-
forward. For additivity, by Definition 5.16 we have that:

α = SX (x, r0, r1) =
r1

x

(
1−

( r0

r0 + x

)w0
w1

)
β = SX (y, r0 + x, r1 − αx) =

r1 − αx
y

(
1−

( r0 + x

r0 + x+ y

)w0
w1

)
Therefore:

αx+ βy

x+ y
=

1

x+ y

(
αx+ (r1 − αx)

(
1−

( r0 + x

r0 + x+ y

)w0
w1

))

=
1

x+ y

(
r1 − r1

( r0 + x

r0 + x+ y

)w0
w1 + r1

(
1−

( r0

r0 + x

)w0
w1

)( r0 + x

r0 + x+ y

)w0
w1

)

=
1

x+ y

(
r1 − r1

( r0

r0 + x

)w0
w1

( r0 + x

r0 + x+ y

)w0
w1

)
=

r1

x+ y

(
1−

( r0

r0 + x+ y

)w0
w1

)
= SX (x+ y, r0, r1)

Appendix D. Proofs for Section 6

Proof of Lemma 6.1. Assume that SX (x, r0, r1) ≥ X(τ0, τ1). Let α(z) = SX (z, r1, r0).
We have that:

SX (y, r1, r0) < lim
z→0

SX (z, r1, r0) (strict monotonicity)

= lim
z→0

1

SX (α(z) · z, r0 − α(z) · z, r1 + z)
(reversibility)

<
1

SX (x, r0, r1)
(strict monotonicity)

≤ 1

X(τ0, τ1)
(hypothesis)

= X(τ1, τ0) (def. of X)

where in the second application of strict monotonicity, we have exploited the (asymptotic)
inequalities α(z) · z < x (where limz→0 α(z) · z = 0 follows from the existence of the internal
exchange rate), r0 − α(z) · z < r0, and r1 + z > r1.

Proof of Lemma 6.2. Let y > 0. Assume that GA(Γ,Td(x)) > 0. Then, Td(x) is enabled
in Γ, and so by Lemma 3.3, we have that SX (x, rd, r1−d) > X(τd, τ1−d). Then, by Lemma 6.1
it follows that SX (y, r1−d, rd) < X(τ1−d, τd). Since στ1−d ≥ y and SX is output-bounded,
then Lemma 5.2 implies that T1−d(y) is enabled in Γ. By using again Lemma 3.3, concluding
that GA(Γ,T1−d(y)) < 0.
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Proof of Theorem 6.3. Let x0 and Γ′ be as in the hypotheses, i.e.:

Γ
T(x0)−−−→ Γ′ = A[σ′] | {r0 + x0 : τ0, r1 − αx0 : τ1} | ∆ where

α = SX (x0, r0, r1)
XΓ′(τ0, τ1) = X(τ0, τ1)

We have two cases, depending on whether x > x0 or x < x0.

• If x > x0, let x1 > 0 be such that x = x0 + x1. Since SX is output-bounded and additive,
then by Lemma 5.7:

GA(Γ,T(x)) = GA(Γ,T(x0)) + GA(Γ′,T(x1)) (D.1)

We have that:

SX (x1, r0 + x0, r1 − αx0) < lim
z→0

SX (z, r0 + x0, r1 − αx0) (strict monotonicity)

= XΓ′(τ0, τ1) def. XΓ′

= X(τ0, τ1) (hypothesis)

Then, by Lemma 3.3 we obtain GA(Γ′,T(x1)) < 0. By Equation (D.1), we conclude that
GA(Γ,T(x)) < GA(Γ,T(x0)).
• If x < x0, let x1 > 0 be such that x0 = x + x1. Since SX is output-bounded, then by

Lemma 5.2, T(x0) and T(x) are enabled in Γ, and T(x1) is enabled in the state Γ1 reached
after performing T(x1), i.e.:

Γ
T(x)−−−→ Γ1

T(x1)−−−→ Γ′

Since SX is output-bounded and additive, then by Lemma 5.7:

GA(Γ,T(x0)) = GA(Γ,T(x)) + GA(Γ1,T(x1))

Since SX is reversible, then by Theorem 5.9, T(x1) has an inverse, which has the form
T−1(x1) = A : swap(y1, τ1, τ0) for some y1 > 0. Then, by Lemma 5.10, GA(Γ1,T(x1)) =
−GA(Γ′,T−1(y1)), therefore:

GA(Γ,T(x0)) = GA(Γ,T(x))−GA(Γ′,T−1(y1)) (D.2)

We have that:

SX (y1, r1 − αx0, r0 + x0) < lim
z→0

SX (z, r1 − αx0, r0 + x0) (strict monotonicity)

= XΓ′(τ1, τ0) def. XΓ′

=
1

XΓ′(τ0, τ1)
(Equation (5.1))

=
1

X(τ0, τ1)
(hypothesis)

= X(τ1, τ0) (def. X)

Then, by Lemma 3.3 we obtain GA(Γ′,T−1(y1)) < 0. By Equation (D.2), we conclude
that GA(Γ,T(x)) < GA(Γ,T(x0)).

For uniqueness, by contradiction assume that there exists x1 6= x0 satisfying Equa-
tion (6.1). Then, it should be GA(Γ,T(x1)) > GA(Γ,T(x0)) — contradiction.
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Proof of Lemma 6.4. Let Γ
T−→ Γ′ = A[σ′] | {r0 + x0 : τ0, r1 − x0 · SX (x0, r0, r1) : τ1}.

We have that:

XΓ′(τ0, τ1) =
r1 − x0 · SX (x0, r0, r1)

r0 + x0
by Theorem 5.15

=
r1 − x0 · r1

r0+x0

r0 + x0
by Definition 2.1

=
r0r1

(r0 + x0)2

=
r0r1

Pτ1
Pτ0

r0r1

by Equation (6.2)

= X(τ0, τ1) by Equation (3.2)

The thesis follows from Theorem 6.3.

Proof of Theorem 6.6. Let:

Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆
Tdep−−→ Γ′ = A[σ′] | {r′0 : τ0, r

′
1 : τ1} | ∆′

The hypothesis wal(Tswap) = A 6= wal(Trdm) means that the user who performs the deposit
is not A, hence the deposit does not affect the number of minted tokens in A’s wallet. Then:

GA(Γ,TdepTswap)

= GA(Γ′,Tswap)

= x ·
(
SX (x, r′0, r

′
1)Pτ1 − Pτ0

)
·
(

1− σ′{τ0, τ1}
SΓ′{τ0, τ1}

)
(Lemma 3.2)

> x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σ′{τ0, τ1}
SΓ′{τ0, τ1}

)
(Lemma 5.13(a))

= x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σ{τ0, τ1}
SΓ′{τ0, τ1}

)
(σ′{τ0, τ1} = σ{τ0, τ1})

> x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σ{τ0, τ1}
SΓ{τ0, τ1}

)
(SΓ′{τ0, τ1} > SΓ{τ0, τ1})

= GA(Γ,Tswap)

Proof of Theorem 6.8. Let Γ and Γd be as in the statement. By rule [Dep], r′i = ri + vi
for i ∈ {0, 1}. By Lemma 4.4(a), we have that r0+v0/r1+v1 = r0/r1. Then:

r′0 = r0 + v0 =
r1 + v1

r1
r0 = a r0 r′1 = r1 + v1 =

r1 + v1

r1
r1 = a r1 where a =

r1 + v1

r1

For item (1), assume that λ = A : swap(x, τ0, τ1) is a solution to the arbitrage game in Γ.
By Theorem 6.3, it must be:

XΓs(τ0, τ1) = X(τ0, τ1) where Γ
λ−→ Γs (D.3)
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Let x′ = ax, let T′ = A : swap(x′, τ0, τ1), and let Γd
T′−→ Γds. We have that:

XΓds
(τ0, τ1)

= lim
z→0

SX (z, r′0 + x′, r′1 − x′ · SX (x′, r′0, r
′
1))

= lim
z→0

SX (z, ar0 + ax, ar1 − ax · SX (ax, ar0, ar1))

= lim
z→0

SX (z, ar0 + ax, ar1 − ax · SX (x, r0, r1)) (homogeneity)

= lim
z→0

SX (z, r0 + x, r1 − x · SX (x, r0, r1)) (homogeneity)

= XΓs(τ0, τ1) (def. XΓs)

= X(τ0, τ1) (Equation (D.3))

Therefore, Theorem 6.3 implies that T′ is a solution to the arbitrage game in Γd. We compute
the gain of T′ in Γd as follows:

GA(Γd,T
′) = x′ ·

(
SX (x′, r′0, r

′
1)Pτ1 − Pτ0

)
= ax ·

(
SX (ax, ar0, ar1)Pτ1 − Pτ0

)
= ax ·

(
SX (x, r0, r1)Pτ1 − Pτ0

)
(homogeneity)

= aGA(Γ,T)

For item (2), assume that ε is a solution to the arbitrage game in Γ. By contradiction,
assume that λd = A : swap(x′, τ0, τ1) is a solution in Γd. By Theorem 6.3, it must be:

XΓds
(τ0, τ1) = X(τ0, τ1) (D.4)

The chain of equations above shows that XΓds
(τ0, τ1) = XΓs(τ0, τ1). By Equation (D.4), this

implies that XΓds
(τ0, τ1) = X(τ0, τ1). Hence, by Theorem 6.3, ε cannot be a solution to the

arbitrage game in Γ — contradiction.

Proof of Theorem 6.9. Let:

Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆
Trdm−−−→ Γ′ = A[σ′] | {r′0 : τ0, r

′
1 : τ1} | ∆′

The hypothesis wal(Tswap) = A 6= wal(Trdm) means that the user who performs the redeem
is not A, hence the redeem does not affect the number of minted tokens in A’s wallet. Then:

GA(Γ,TrdmTswap)

= GA(Γ′,Tswap)

= x ·
(
SX (x, r′0, r

′
1)Pτ1 − Pτ0

)
·
(

1− σ′{τ0, τ1}
SΓ′{τ0, τ1}

)
(Lemma 3.2)

< x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σ′{τ0, τ1}
SΓ′{τ0, τ1}

)
(Lemma 5.13(b))

= x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σ{τ0, τ1}
SΓ′{τ0, τ1}

)
(σ′{τ0, τ1} = σ{τ0, τ1})

< x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σ{τ0, τ1}
SΓ{τ0, τ1}

)
(SΓ′{τ0, τ1} < SΓ{τ0, τ1})

= GA(Γ,Tswap)
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Proof of Theorem 6.10. Let Γ and Γd be as in the statement. By rule [Rdm], it must be,
for i ∈ {0, 1}:

r′i = ri− vi = ri− vRX i
Γ(τ0, τ1) = ri− v

ri
SΓ{τ0, τ1}

= ari where a = 1− v

SΓ{τ0, τ1}
The rest of the proof follows exactly that of Theorem 6.8.
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