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Abstract. This article is a fundamental study in computable analysis. In the framework
of Type-2 effectivity, TTE, we investigate computability aspects on finite and infinite
products of effective topological spaces. For obtaining uniform results we introduce natural
multi-representations of the class of all effective topological spaces, of their points, of their
subsets and of their compact subsets. We show that the binary, finite and countable
product operations on effective topological spaces are computable. For spaces with non-
empty base sets the factors can be retrieved from the products. We study computability
of the product operations on points, on arbitrary subsets and on compact subsets. For the
case of compact sets the results are uniformly computable versions of Tychonoff’s Theorem
(stating that every Cartesian product of compact spaces is compact) for both, the cover
multi-representation and the “minimal cover” multi-representation.

1. Introduction

In this article we study basic aspects of computable analysis in the framework of Type-2 the-
ory of effectivity (TTE) [13, 2, 17]. In computable analysis usually computability has been
studied on fixed computable structures such as computable topological spaces (e.g. R

n),
computable metric spaces, computable Banach spaces, computable Hilbert spaces, com-
putable Sobolev spaces or computable measure spaces. Computability of such a structure
means that some of its “characteristic data” can be computed.

Sometimes in a proof, an “intermediate” structure, for example a metric space, is used
the characteristic data of which can be computed from not necessarily computable input
data and hence may be non-computable. Therefore, the known theorems about computable
metric spaces cannot be applied. A more general computability theory uniform on all
metric spaces is needed where the metric space occurs as a parameter and the functions in
the theorems are computable also in the characteristic data of the metric space.

Often the validity of such uniform computability results is almost obvious and used in
a somewhat informal fashion. In some articles proofs of the uniform versions are presented.
But sometimes the validity of the uniform version is not at all obvious. For example, to prove
the computability of bi-holomorphic mappings on simply connected domains, a computable
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Tychonoff theorem is used to prove in a simple way the compactness of certain function
spaces [10]. However, without a uniform version of this theorem, the results either depend
on some kind of informal argumentation on uniformity, or are restricted to a very bounded
class of domains. In this article we will prove, among others, a uniformly computable
Tychonoff theorem.

Since the cardinality of the class of underlying spaces is usually greater than that of
the continuum (that is, the set of infinite sequences of symbols), it has no representation.
Sometimes the cardinality problem can be solved by factorization, where spaces are identi-
fied which have the same data specifying computability. In this way one gets a class of at
most continuum cardinality (see e.g. [5],[9][13, Section 8.1]). In our case this method fails.
We solve the problem by using a multi-representation of the class of all “effective” spaces
under consideration.

In this article we continue the study of elementary computable topology [13, 17, 15, 16,
6, 11]. We define a natural multi-representation ∆ of the class of all effective topological
spaces [17] and study the product operation on this class. We work in the representation
model of computable analysis [7, 13, 2].

In Section 2 we introduce some basic definitions and notations from computable anal-
ysis. For more details see [13, 2, 17].

In Section 3 we define a multi-representation ∆ of the class of all effective topological
spaces, where we apply the definition of “effective topological space” from [17]. We mention
that there are other slightly different definitions of “effective topological spaces”, e.g. in
[13], which, however, have turned out to be less natural and useful. We formulate a meta-
theorem by which essentially all theorems in [17] stating computability have a computable
version uniform in the spaces under consideration. The canonical (multi-)representations δ

of the points, θ of the open sets, ψ̃ of all subsets and κ and κ̃ of the compact sets for a fixed
effective topological space from [17] are generalized in two ways to the class of all spaces.

In Section 4 we define finite and infinite products of effective topological spaces. We
characterize the product by universal properties. We prove that the product operations on
the spaces are computable w.r.t. the multi-representation ∆. For spaces with non-empty
base sets the factors can be retrieved from their products. In general the product is, up to
equivalence of spaces, commutative and associative.

In Section 5 we study computability of the product operations and their inverses on
points (a tuple of points from a sequence of spaces is mapped to a point in the product
space), on arbitrary sets and on compact sets for finite and infinite sequences of effective
topological spaces. We prove computability uniform in the class of all effective topological
spaces. As corollaries we obtain the versions for fixed computable spaces and for computable
points of fixed computable spaces.

By Tychonoff’s theorem from topology, every Cartesian product of compact spaces is
compact. As a main result we obtain that the (finite as well as countable) product of
compact subsets of effective topological spaces can be computed uniformly in the spaces.
This is true for the multi-representations of the compact sets by finite covers as well as for
the multi-representations of the compact sets by minimal finite covers [13, Section 5.2],[17].

Brattka [1] has shown that
∏∞

i=1[−|xi|; |xi|] is a computable compact set in R
N if (xi)i∈N

is a computable sequence of real numbers. Gherardi et al. [5, Lemma 8.8] have shown that
the operator (xi)i∈N 7→

∏∞
i=1[−|xi|; |xi|] is computable. These results are applications of

Theorem 5.4. Escardó [4] has proved that the computable countable product of searchable
subsets of a domain D is searchable in DN, where searchable sets are a special kind of
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computable compact sets. This corresponds to the following corollary of Corollary 5.8(3):
For a computable topological space the product of a computable sequence of compact sets
is a computable compact set (in the computable product space). Since “searchable” and
“computably compact” are different concepts, the two results are incomparable. The main
result in this article, Theorem 5.4(3), is much more uniform with respect to computability.

In this article we study computability on the class of all effective topological spaces.
The methods can be used as a blueprint to provide uniform computability on many other
classes of spaces considered in Type-2 theory of effectivity.

2. Preliminaries

In this section we recall some definitions of Type-2 theory of effectivity (TTE). We nev-
ertheless assume basic knowledge on the theory and furthermore depend on the notations
introduced in [13, 2, 17].

Let Σ be a finite alphabet such that 0, 1 ∈ Σ. By Σ∗ we denote the set of finite words
over Σ and by Σω the set of infinite sequences p : N → Σ over Σ, p = (p(0)p(1) . . .). We
use the “wrapping function” ι : Σ∗ → Σ∗, ι(a1a2 . . . ak) := 110a10a20 . . . ak011 for coding
words such that ι(u) and ι(v) cannot overlap properly. Let 〈i, j〉 := (i+ j)(i+ j + 1)/2 + j
be the bijective Cantor pairing function on N. We consider standard functions for finite or
countable tupling on Σ∗ and Σω [13, Definition 2.1.7], in particular,

〈u1, . . . , un〉 := ι(u1) . . . ι(un) ,

〈u, p〉 := ι(u)p ,

〈p1, p2, . . . , pn〉 := (p1(0)p2(0) . . . pn(0)p1(1)p2(1) . . . pn(1))p1(2) . . . ,

〈p0, p1, . . .〉〈i, j〉 := pi(j)

where u, u1, u2, . . . ∈ Σ∗ and p, q, p0, p1, . . . ∈ Σω. For u ∈ Σ∗ and p ∈ Σ∗ or p ∈ Σω, u≪ p
means that ι(u) is a subword of p (that is, p = vι(u)q for some v, q). As a technical detail,
notice that n can be determined from 〈u1, . . . , un〉 in Line 1 but not from 〈p1, p2, . . . , pn〉 in
Line 3.

For a notation (that is, a surjective function) µ : ⊆ Σ∗ → Y the canonical notation
µfs of the finite subsets of Y is defined by µfs(w) = W iff (∀v ≪ w) v ∈ dom(µ) and
W = {µ(v) | v ≪ w} [13, 17]. For the natural numbers we will use the notation νN, where
νN(0

n) := n and w 6∈ dom(νN) for all other words w ∈ Σ∗. Then νN is equivalent to other
standard notations of N [13].

In TTE representations are used as “naming systems” for sets of abstract objects and
computations are performed on “names” from Σ∗ or Σω. In this article multi-representations
are essential. Formally, a multi-representation of a class (not necessarily set)M is a relation
δ ⊆ Y ×M where Y = Σ∗ or Y = Σω such that (∀x ∈ M)(∃p ∈ Y )(p, x) ∈ δ. We write
δ : Y ⇒ M and define δ(p) := {x ∈ M | (p, x) ∈ δ} and dom(δ) := {p ∈ Y | δ(p) 6= ∅}. We
do not consider δ as a (single-valued) representation of a subset of 2M . If x ∈ δ(p) we can
say “p is a δ-name of x”. In general such a name does not identify an object but only gives
some property of the object. (For example, “Peter” is the first name of many people.) We
mention that in TTE there are two interpretations of the concept “multi-function” which
can be distinguished formally by the definition of composition, see [14, Sections 3 and 6].

Computability on multi-represented sets is defined as follows. Let γ : Y ⇒ M and
γ′ : Y ′

⇒M ′ (Y, Y ′ ∈ {Σ∗,Σω}) be multi-representaions of classesM andM ′, respectively.
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A partial function g : ⊆ Y → Y ′ realizes f : ⊆ M → M ′ if f(x) ∈ γ′ ◦ g(p) whenever
x ∈ dom(f)∩ δ(p). The partial function f : ⊆M →M ′ is (γ, γ′)-computable iff there exists
a computable (by a Type-2-Turing machine) function g : ⊆ Y → Y ′ which realizes f . A
subset X⊆M is γ-r.e. (recursively enumerable), iff there is a Type-2 machine N such that
for all x, p with x ∈ γ(p): N halts on input p iff x ∈ X [18].

Computability on products can be defined in the same way. See e.g. [14, Section 6] for
further details. Given two multi-representations γ, γ′ of classes M ⊆ M ′, respectively, we
say that γ is reducible to γ′ (γ ≤ γ′ for short) iff the inclusion m 7→ m of M into M ′ is
(γ, γ′)-computable. We call γ and γ′ equivalent (γ ≡ γ′) iff M =M ′ and γ ≤ γ′ and γ′ ≤ γ.
Notice that γ ≤ γ′ iff γ(p) ⊆ γ′ ◦ h(p) for some computable function h. (If γ and γ′ were

considered as single-valued representations of 2M and 2M
′
, respectively, then we should use

equality γ(p) = γ′ ◦ h(p).)
Let ν : Σ∗

⇒ X be a multi-representation. Define δν : Σω
⇒ X by δ(ι(w)00 . . .) = ν(w)

for w ∈ dom(ν). Since the function h : Σ∗ → Σω, h(w) := ι(w)00 . . . and its inverse are
computable [13, Theorem 2.1.8], ν ≡ δν where the functions h−1 and h translate back and
forth. Notice that the same function h works for all notations. Therefore, for convenience
it suffices to consider only multi-representations δ : Σω

⇒ X in all theorems where multi-
representations can be replaced by equivalent ones.

The functions that are computable w.r.t. multi-representations are closed under com-
position [14, Sections 3 and 6]. More generally, they are closed under programming with
“Turing machines on represented sets” [12], which are a useful model for discussing algo-
rithms in computable analysis. Implicitly we will use this model without further mentioning.

3. Computability on the Class of Effective Topological Spaces

The basic structure in [17] is the computable topological space.

Definition 3.1 (effective/computable topological space [17]). An effective topological space
is a 4-tuple X = (X, τ, β, ν) such that (X, τ) is a topological T0-space and ν : ⊆Σ∗ → β is
a notation of a base β of τ . Let T be the class of all effective topological spaces.

X is a computable topological space if dom(ν) is recursive and

ν(u) ∩ ν(v) =
⋃

{ν(w) | (u, v, w) ∈ S} for all u, v ∈ dom(ν) (3.1)

for some r.e. set S⊆(dom(ν))3.

A closer look at [17] shows that all the proofs of computability use from the underlying
computable topological space only the characteristic function of dom(ν) and an enumeration
of a set S⊆(dom(ν))3 such that (3.1) holds. (Spaces with the same characteristic function
and the same enumeration cannot even be distinguished.) Therefore, the whole theory
can be generalized to effective topological spaces where the formerly computable functions
become computable with the (not necessarily computable) characteristic function of dom(ν)
and some (not necessarily computable) enumeration of the set S as oracles. Following these
ideas we introduce a multi-representation of the class of effective topological spaces as
follows.

Definition 3.2. Define a multi-representation ∆ : Σω
⇒ T of the class T of effective

topological spaces as follows: X = (X, τ, β, ν) ∈ ∆〈r, s〉 (r, s ∈ Σω) iff r enumerates the
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graph of the characteristic function of dom(ν) and s enumerates a subset S⊆(dom(ν))3 such
that

ν(u) ∩ ν(v) =
⋃

{ν(w) | (u, v, w) ∈ S} for all u, v ∈ dom(ν) .

Obviously, X is a computable topological space, iff X ∈ ∆(t) for some computable
t ∈ Σω. For every set S⊆(Σ∗)3 let TS be the class of effective topological spaces for which
S realizes intersection. Then every non-empty class TS has a maximal element X′ ∈ TS
such that X ∈ TS iff X can be obtained from X′ by deleting some points and renaming
the other points [17, Proposition 34, Theorem 36]. In particular, the representation ∆ is
multi-valued in general, and spaces with the same name may be not even homeomorphic.
Our observation on uniformization can be formulated as follows.

Theorem 3.3 (Meta-Theorem). Consider a theorem in [17] of the following form where
Y0, . . . , Yn ∈ {Σ∗,Σω} :

Let X = (X, τ, β, ν) be a computable topological space. Then there is a
computable function h : ⊆Y1 × . . .× Yn → Y0 such that Q(h,X).

Then the following uniform generalization is true:

There is a computable function h : ⊆ Σω × Y1 × . . . × Yn → Y0 such that
Q(ht,X) for all X = (X, τ, β, ν) ∈ ∆(t), where ht(y1, . . . , yn) := h(t, y1, . . . , yn).

This meta-theorem holds accordingly if finitely many effective topological spaces are involved.

We can say: There is a function h uniformly computable in X such that Q(h,X).

Proof. For every theorem in in [17] under consideration check its proof and observe that
from every computable topological space X = (X, τ, β, ν) only the characteristic function
of dom(ν) and an enumeration of a set S⊆(dom(ν))3 such that (3.1) holds are used.

For effective topological spaces the following natural (multi)-representations have been
introduced [8, 13, 17, 11].

Definition 3.4. For an effective topological space X = (X, τ, β, ν) define a representation

δX of the points, a representation θX of the open sets, a multi-representation ψ̃X of all
subsets and multi-representations κX and κ̃X of the compact subsets as follows:

x = δX(p) : ⇐⇒ (∀w ∈ Σ∗) (w ≪ p ⇐⇒ x ∈ ν(w)) , (3.2)

W = θX(p) : ⇐⇒

{
w ≪ p =⇒ w ∈ dom(ν),
W =

⋃
{ν(w) | w ≪ p},

(3.3)

B ∈ ψ̃X(p) : ⇐⇒ (∀w ∈ Σ∗) (w ≪ p ⇐⇒ B ∩ ν(w) 6= ∅) , (3.4)

K ∈ κX(p) : ⇐⇒ (∀w ∈ Σ∗) (w ≪ p ⇐⇒ K⊆
⋃
νfs(w)) , (3.5)

K ∈ κ̃X(p) ⇐⇒ (∀w ∈ Σ∗) (w ≪ p ⇐⇒

{
K⊆

⋃
νfs(w)) ∧

(∀u≪ w)ν(u) ∩K 6= ∅ .
(3.6)

In (3.2) “x ∈ ν(w)” includes w ∈ dom(ν), correspondingly in (3.4) and w ∈ dom(νfs)
in (3.5) and (3.6). The above definitions induce mappings from T to the class of multi-
representations of points, open sets, subsets and compact sets (X 7→ δX etc.). Every such
mapping can be generalized to a multi-representation as follows.
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Definition 3.5. Let TP , TO, TS and TC (points, open sets, arbitrary sets and compact
sets) be the class of pairs (X, x), (X,W ), (X, B) and (X,K), respectively, where X ∈ T,
x ∈ X is a point, W ⊆ X is an open set, B ⊆ X is a set, and K ⊆ X is a compact set.

Define multi-representations δ, θ, ψ̃ , κ and κ̃ of TP , TO, TS and TC, respectively, as follows:

(X, x) ∈ δ(s) : ⇐⇒ x = δX(s) ,

(X,W ) ∈ θ(s) : ⇐⇒ W = θX(s) ,

(X, B) ∈ ψ̃(s) : ⇐⇒ B ∈ ψ̃X(s) ,

(X,K) ∈ κ(s) : ⇐⇒ K ∈ κX(s) ,

(X,K) ∈ κ̃(s) : ⇐⇒ K ∈ κ̃X(s) .

for X ∈ T, x ∈ X, open W⊆X, B⊆X, and compact K⊆X.

Computability with respect to the above multi-representations means that the realizing
function is independent of the represented effective T0-space. To allow to use information
on this space we introduce a second kind of multi-representations, again derived from the

natural multi-representations δX, θX, ψ̃X and κX.

Definition 3.6. Define multi-representations δ∆, θ∆, ψ̃
∆
, κ∆ and κ̃∆ of TP , TO, TS and

TC, respectively, as follows:

(X, x) ∈ δ∆〈r, s〉 : ⇐⇒ X ∈ ∆(r) ∧ x = δX(s) ,

(X,W ) ∈ θ∆〈r, s〉 : ⇐⇒ X ∈ ∆(r) ∧ W = θX(s) ,

(X, B) ∈ ψ̃
∆
〈r, s〉 : ⇐⇒ X ∈ ∆(r) ∧ B ∈ ψ̃X(s) ,

(X,K) ∈ κ∆〈r, s〉 : ⇐⇒ X ∈ ∆(r) ∧ K ∈ κX(s) ,

(X,K) ∈ κ̃∆〈r, s〉 : ⇐⇒ X ∈ ∆(r) ∧ K ∈ κ̃X(s) .

for X ∈ T, x ∈ X, open W⊆X, B⊆X, and compact K⊆X.

Other multi-representations defined in [17] can be generalized accordingly. Notice that

(X, x) ∈ δ(p) ⇐⇒ x = δX(p) ⇐⇒ {x} ∈ ψ̃X(p) ⇐⇒ (X, {x}) ∈ ψ̃(p) , (3.7)

hence δ can be considered as the restriction of ψ̃ to the sets with cardinality 1 (correspond-

ingly for δ∆ and ψ̃
∆
). If K ∈ κ̃X(p), then p is a list of all finite sets {U1, . . . , Un} of base

sets such that K is contained in their union and every Ui ∈ β intersects K. This allows

us to derive κ̃ from κ and ψ̃. For multi-representations γ : Σω
⇒ X and δ : Σω

⇒ Y the
conjunction γ ∧ δ : Σω

⇒ X ∩ Y is defined as follows ([13, 11, 17]:

(γ ∧ δ)〈p, q〉 := γ(p) ∩ δ(q) . (3.8)

The two multi-representations of the compact sets are related by ψ̃ as follows.

Lemma 3.7.

(1) For every effective topological space X, κX ∧ ψ̃X ≤ κ̃X,

for every computable topological space X, κX ∧ ψ̃X ≡ κ̃X,

(2) κ ∧ ψ̃ ≤ κ̃ ,

(3) κ̃∆ ≡ κ∆ ∧ ψ̃
∆
.
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Proof. (2) suppose (X,K) ∈ (κ ∧ ψ̃)〈p1, p2〉. Then K ∈ κX(p1) and K ∈ ψ̃X(p2). From the
list p1 of all finite base-covers of K and the list p2 of all base elements U with U ∩K 6= ∅
we can compute a list s of all minimal finite base-covers of K, hence K ∈ κ̃X(s). Therefore,

(X,K) ∈ κ̃(s), and κ ∧ ψ̃ ≤ κ̃.
(3) Suppose (X,K) ∈ κ̃∆〈r, s〉. Then X ∈ ∆(r) and K ∈ κ̃X(s). From dom(νX), hence

form r, and the list s of all minimal finite base-covers we can compute a list of all finite
base-covers, hence a function p1 such that K ∈ κX(p1), hence (X,K) ∈ κ∆〈r, p1〉. From
s we can compute a list of all base elements U such that K ∩ U 6= ∅, hence a function p2

such that K ∈ ψ̃X(p2), hence (X,K) ∈ ψ̃
∆
〈r, p2〉. Then (X,K) ∈ (κ∆∧ψ̃

∆
)〈〈r, p1〉, 〈r, p2〉〉.

Therefore, κ̃∆ ≤ κ∆ ∧ ψ̃
∆
.

(κ∆ ∧ ψ̃
∆
) ≤ κ̃∆ follows straightforwardly from (2).

(1) The first statement follows from (2) and the second statement from (3).

For translating κ̃X to κX from a list of all minimal finite base-covers we must find a
list of all finite base-covers. But this cannot be done without knowing dom(νX). Therefore,

κ̃X ≤ κX ∧ ψ̃X is false in general and κ̃ ≤ κ ∧ ψ̃ is false. If we replace the class T by the

subclass T ′ of spaces X such that νX is a total function, then κ̃ ≤ κ ∧ ψ̃. We do not know
whether the restriction to T ′ is sufficiently general in future applications.

4. Products of Spaces

We generalize the definitions of the representations [δ1, . . . , δn], [δ]
n and [δ]N of products

and sums for single-valued representations introduced in [13, Definitions 3.3.3, 3.3.14] to
multi-representations. Remember that the disjoint union of a sequence (An)n∈N of sets is
defined by

⊎
nAn := {(n, x) | x ∈ An} =

⋃
n{n} ×An.

Definition 4.1. Let δi : Σ
ω
⇒ Xi (i = 1, 2, . . .) be multi-representations.

(1) Define a multi-representation of the finite product X1 × . . .×Xn by

[δ1, . . . , δn]〈p1, . . . , pn〉 = δ1(p1)× . . .× δn(pn)

(2) Define a multi-representation of
⊎

n≥1Xn by

(δ1 ∨ δ2 ∨ . . . )(1
n0p) := {n} × δn(p) .

(3) Define a multi-representation [δ1, δ2, . . . ]
+ of the disjoint union of finite products⊎

n≥1X1 × . . .×Xn by

[δ1, δ2, . . . ]
+(1n0〈p1, . . . , pn〉) := {n} × δ1(p1)× . . .× δn(pn) .

(4) Define a multi-representation of the infinite product X1 ×X2 × . . . by
(x1, x2, . . . ) ∈ [δ1, δ2, . . . ]〈p1, p2, . . . 〉 ⇐⇒ (∀ i ≥ 1)xi ∈ δi(pi).

Let [δ]n := [δ, . . . , δ] (n-times), [δ]+ := [δ, δ, ... ]+ and [δ]N := [δ, δ, ... ].

The following three characterizations show that the product [δ1, δ2] is very natural.

Theorem 4.2. Let δi : Σ
ω
⇒ Xi (i = 1, 2) be multi-representations. For multi-representations

γ : Σω
⇒ X1 ×X2 of X1 ×X2 define

S(γ) : ⇐⇒ the function (x1, x2) 7→ (x1, x2) is (δ1, δ2, γ)-computable ,

A(γ) : ⇐⇒

{
(x1, x2) 7→ x1 is (γ, δ1)-computable and
(x1, x2) 7→ x2 is (γ, δ2)-computable .



8 R. RETTINGER

Then

[δ1, δ2] ≤ γ ⇐⇒ S(γ) , (4.1)

γ ≤ [δ1, δ2] ⇐⇒ A(γ) , (4.2)

γ ≡ [δ1, δ2] ⇐⇒ S(γ) ∧ A(γ) . (4.3)

Proof. The proofs of (4.1) and (4.2) are straightforward. Remember that for p1, p2 ∈ Σω,
(p1, p2) 7→ 〈p1, p2〉 and 〈p1, p2〉 7→ pi (i = 1, 2) are computable. (4.3) follows from (4.1) and
(4.2).

By (4.1), [δ1, δ2] is (up to equivalence) the least, that is richest, multi-representation of
X1×X2 which can be “synthesized” from δ1 and δ2. By (4.2), [δ1, δ2] is (up to equivalence)
the greatest, that is poorest, multi-representation of X1 × X2 which allows analysis, that
is, allows to compute the components of a pair. In summary, [δ1, δ2] is, up to equivalence,
the only multi-representation that allows both, synthesis and analysis. By Theorem 4.2,
among the set of all computability concepts on the Cartesian product, the one induced
by the multi-representation [δ1, δ2] is the most natural one. The characterizations hold
accordingly for finite and infinite products. Special cases have been considered, for example,
in [13, Lemma 3.3.4].

We define the product of two, of finitely many and of countably many effective topo-
logical spaces as follows. The product of two effective topological spaces has been studied
already in [17, Section 8].

Definition 4.3 (products of effective topological spaces).
Let Xi = (Xi, τi, βi, νi), i = 1, 2, . . . be effective topological spaces.

(1) Define the product X1 ×X2 := (X, τ, β, ν) as follows [17] :
X := X1 × X2, dom(ν) := {〈u1, u2〉 | u1 ∈ dom(ν1), u2 ∈ dom(ν2)}, ν〈u1, u2〉 :=
ν1(u1)× ν2(u2), β := range(ν), τ is the topology generated by the set β.

(2) For n ≥ 1 define X1×X2× . . .×Xn := X′
n := (X ′

n, τ
′
n, β

′
n, ν

′
n) inductively by X′

1 := X1,
X′

n+1 := X′
n ×Xn+1, that is, X

′
n = (. . . (X1 ×X2)× . . . ×Xn).

(3) Define the countable product X1 ×X2 × . . . := Y := (Y, τY, βY, νY) by

Y := X1 ×X2 × . . . ,

dom(νY) := {〈u1, . . . , uk〉 | k ≥ 1, ui ∈ dom(νi) for 1 ≤ i ≤ k} ,

νY〈u1, . . . , uk〉 := ν1(u1)× ν2(u2)× . . .× νk(uk)×Xk+1 ×Xk+2 × . . . ,

βY := range(νY) ,

τY := the topology on Y generated by βY .

In (1), β is a base of the product topology τ on X1 × X2, In (2), β′n is a base of the
product topology τ ′n on X1 × . . . × Xn, and in (3), βY is a base of the product topology
τY on Y [3]. Therefore all the constructed spaces are effective topological spaces. By the
inductive definition in (2),

ν ′n〈. . . 〈u1, u2〉, . . .〉, un〉 = ν1(u1)× . . . × νn(un) (4.4)

Notice that the following functions c and c′ are computable (where ui ∈ Σ∗):

c : 1n0〈. . . 〈u1, u2〉, . . .〉, un〉 7→ 〈u1, . . . , un〉 , (4.5)

c′ : 〈u1, . . . , un〉 7→ 〈. . . 〈u1, u2〉 . . . 〉, un〉 . (4.6)

For each of the products of effective topological spaces we have two representations of
points which turn out to be equivalent.
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Theorem 4.4. For effective topological spaces X1,X2, . . .,

[δX1
, . . . , δXn ] ≡ δX1×...×Xn , (4.7)

[δX1
, δX2

, . . . ]+ ≡ (δX′
1
∨ δX′

2
∨ . . .) , (4.8)

[δX1
, δX2

, . . . ] ≡ δX1×X2×... . (4.9)

There are realizations of the reductions which do no depend on ∆-names of the spaces Xi.

(4.7) generalizes [17, Lemma 27]. By (4.8), [δX1
, . . . , δXn ] ≡ δX1×...×Xn uniformly in n.

Proof. (4.7) Follows from (4.8)

(4.8)[δX1
, δX2

, . . . ]+(q) = (n, x1, . . . , xn) iff for some p1, . . . , pn, q = 1n0〈p1, . . . , pn〉 and
pi is a list of all ui such that xi ∈ νi(ui) (i = 1, . . . , n). On the other hand, (δX′

1
∨ δX′

2
∨

. . .)(r) = (n, x1, . . . , xn) iff for some s, r = 1n0s and s is a list of all 〈. . . 〈u1, u2〉, . . .〉, un〉
such that xi ∈ νi(ui) (i = 1, . . . , n). Therefore, from q we can find some r such that
[δX1

, δX2
, . . . ]+(q) = (δX′

1
∨ δX′

2
∨ . . .)(r) and vice versa.

(4.9) [δX1
, δX2

, . . . ](p) = (x1, x2, . . .) iff there are p1, p2, . . . such that p = 〈p1, p2, . . . 〉
and for all i, pi is a list of all ui such that xi ∈ νi(ui). On the other hand, δX1×X2×... (q) =
(x1, x2, . . . ) iff q is a list of all 〈u1, u2, . . . , uk〉 such that (x1, x2, . . . ) ∈ ν1(u1) × ν2(u2) ×
. . . × νk(uk) × Xk+1 × Xk+2 × . . . . Therefore, from p we can find some q such that
[δX1

, δX2
, . . . ](p) = δX1×X2×... (q) and vice versa.

In both cases the computable functions operate only on names of the points and do not
require ∆-names of the spaces Xi.

Theorem 4.4 can be considered as a justification of the definition of the product space
X1 ×X2. The products on the class T of effective topological spaces are computable.

Theorem 4.5.

(1) The function PD2 : T × T 7→ T , (X1,X2) 7→ X1 ×X2 is (∆,∆,∆)-computable.
(2) The function PD+ :

⊎
n≥1 T

n → T , (n,X1, . . . ,Xn) 7→ X′
n is ([∆]+,∆)-computable.

(3) The function PDN : T N → T , (X1,X2, . . .) 7→ X1 ×X2 × . . . is ([∆]N,∆)-computable.

Proof. Let Xi = (Xi, τi, βi, νi) ∈ ∆(ti), ti = 〈ri, si〉 (i ≥ 1). Then ri enumerates the graph
of the characteristic function of dom(νi) and si enumerates a set Si⊆(dom(νi))

3 such that
νi(u) ∩ νi(v) =

⋃
{νi(w) | (u, v, w) ∈ Si}.

(1) Let S := {(〈u1, u2〉, 〈v1, v2〉, 〈w1, w2〉) | (u1, v1, w1) ∈ S1, (u2, v2, w2) ∈ S2}. A
straightforward calculation shows

ν〈u1, u2〉 ∩ ν〈v1, v2〉 =
⋃
{ν〈w1, w2〉 | (〈u1, u2〉, 〈v1, v2〉, 〈w1, w2〉) ∈ S}.

(An enumeration of the graph of) the characteristic function r of dom(ν) can be computed
from r1 and r2 and an enumeration s of S can be computed from s1 and s2. Therefore, a
word 〈r, s〉 can be computed which is a ∆-name of X1 ×X2.

(2) By (1) there is a computable function h : ⊆Σω × Σω → Σω such that h(t1, t2) is
a ∆-name of (X1 × X2) if t1 is a ∆-name of X1 and t2 is a ∆-name of X2. There is a
computable function g : ⊆Σω → Σω such that g(10t1) = t1, g(1n+10〈t1, . . . , tn, tn+1〉) =
h(g(1n0〈t1, . . . , tn〉), tn+1). Then g(10t1) = t1 is a [∆]+-name of X′

1 = X1. Suppose by
induction that g(1n0〈t1, . . . , tn〉) is a ∆-name of X′

n. Then g(1n+10〈t1, . . . , tn, tn+1〉) =
h(g(1n0〈t1, . . . , tn〉), tn+1) is a ∆-name of X′

n ×Xn+1 = X′
n+1. Therefore, g is a ([∆]+,∆)

realization of the function (X1, . . . ,Xn) 7→ X1 × . . .×Xn.
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(3) Suppose (X1,X2, ... ) ∈ [∆]N(q). Consider Y from Definition 4.3. An enumera-
tion rY of the graph of the characteristic function of dom(νY) can be computed from the
characteristic functions of the dom(νi) which can be computed from q.

First, for given 〈u1, . . . , um〉, 〈v1, . . . , vn〉 ∈ dom(νY) we want to compute
νY〈u1, . . . , um〉 ∩ νY〈v1, . . . , vn〉 as a union of base elements.

Assume 1 ≤ m ≤ n. Let um+1 := vm+1, . . . , un := vn.
By (2) from n and q we can compute a ∆-name qn of X′

n := (X ′
n, τ

′
n, β

′
n, ν

′
n) and hence

an enumeration of a set Sn computing the intersection on β′n according to (3.1). By (4.4),
(4.5) and (4.6),

νY〈u1, . . . , um〉 ∩ νY〈v1, . . . , vn〉

= νY〈u1, . . . , un〉 ∩ νY〈v1, . . . , vn〉

= (ν1(u1)× . . . × νn(un) ∩ ν1(v1)× . . .× νn(vn))×Xn+1 ×Xn+2 × . . .

= (ν ′n ◦ c′〈u1, . . . , un〉 ∩ ν
′
n ◦ c′〈v1, . . . , vn〉)×Xn+1 ×Xn+2 × . . .

=
⋃

{ν ′n(w) | (c
′〈u1, . . . , un〉, c

′〈v1, . . . , vn〉, w) ∈ Sn} ×Xn+1 ×Xn+2 × . . .

=
⋃

{ν ′n ◦ c′〈w1, . . . , wn〉 |

(c′〈u1, . . . , un〉, c
′〈v1, . . . , vn〉, c

′〈w1, . . . , wn〉) ∈ Sn} ×Xn+1 ×Xn+2 × . . .

=
⋃

{νY〈w1, . . . , wn〉 |

(c′〈u1, . . . , un〉, c
′〈v1, . . . , vn〉, c

′〈w1, . . . , wn〉) ∈ Sn} .

Let

Smn := {(〈u1, . . . , um〉, 〈v1, . . . , vn〉, 〈w1, . . . , wn〉) |

ui, vi, wi ∈ dom(νi) and (c′(u), c′(v), c′(w)) ∈ Sn}

where u := 〈u1, . . . , um, vm+1, . . . , vn〉, v := 〈v1, . . . , vn〉 and w := 〈w1, . . . , wn〉. Then

νY〈u1, . . . , um〉 ∩ νY〈v1, . . . , vn〉

=
⋃
νY〈w1, . . . , wn〉 | (〈u1, . . . , um〉, 〈v1, . . . , vn〉, 〈w1, . . . , wn〉) ∈ Smn

An enumeration of the set set Smn can be computed from m,n and Sn, hence form m,n
and q. Correspondingly sets Sm,n for m > n can be computed from m,n and q. Since for
xi, yi ∈ Σ∗, 〈x1, . . . , xm〉 = 〈y1, . . . , yn〉 implies m = n and xi = yi for all i, Skl ∩ Smn = ∅
for (k, l) 6= (m,n). Let S :=

⋃
m,n∈N Smn. Then

νY(u) ∩ νY(v) =
⋃

{νY(w) | (u, v, w) ∈ S} .

An enumeration of S can be computed from q. In summary, the function (X1,X2, . . .) 7→
X1 ×X2 × . . . is ([∆]N,∆)-computable.

Next we study decomposition of products into their components. LetY := (∅, {∅}, {∅}, ν2)
with dom(ν2) = Σ∗, which is a computable topological space. Then for every effective topo-
logical space X1 = (X1, τ1, β1, ν1) with dom(ν) = Σ∗, Z := X1 × Y = (∅, {∅}, {∅}, ν)}
with ν〈u1, u2〉 = ∅ for all u1, u2 ∈ Σ∗. Therefore, the function (X1,X2) 7→ X1 ×X2 is not
injective, hence in general from X1 ×X2 we cannot compute X1 or X2.

Let X1,X2 and X be the spaces from Definition 4.3.1 and assume that X1 and X2 are
not empty. There must be words w1, w2 ∈ X such that ν1(w1) 6= ∅ and ν2(w2) 6= ∅. Then
dom(ν1) = {u1 | 〈u1, w2〉 ∈ dom(ν)} and for every u1 ∈ dom(ν1), ν1(u1) = pr1 ◦ ν〈u1, w2〉.
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Therefore, X1 and (correspondingly) X2 are determined uniquely by their product X1×X2.
However, we do not know whether decomposition of the product is computable for non-
empty effective topological spaces. We prove computable decomposition for a somewhat
smaller class of spaces. Let

T1 = {(X, τ, β, ν) ∈ T | X 6= ∅} ,

T2 = {(X, τ, β, ν) ∈ T | X 6= ∅ and (∀U ∈ β)U 6= ∅} .

Then T2⊆T1⊆T.

Theorem 4.6. For spaces from T2,

(1) the functions (X1 ×X2) 7→ Xi (i = 1, 2) are (∆,∆)-computable,
(2) for i ≤ n, the function (i, (n,X1 × . . .×Xn)) 7→ Xi is (νN, [∆]+,∆)-computable,
(3) the function X1 ×X2 × . . . 7→ X1 is (∆,∆)-computable,
(4) the function X1 ×X2 × . . . 7→ X2 ×X3 × . . . is (∆,∆)-computable.

In (1) for the case i = 1, X1 ∈ T1 is sufficient, in (2) Xi ∈ T1 is sufficient, in (3) X1 ∈ T1

is sufficient, and in (4) Xi ∈ T1 for i ≥ 2 is sufficient.

Proof. Consider the terminology from Definition4.3.

(1) We show that (X1 × X2) 7→ X1 is computable. Let X1 × X2 ∈ ∆〈r, s〉. Then
r enumerates the graph of the characteristic function χ of dom(ν) = 〈dom(ν1),dom(ν2)〉.
Since dom(ν1) 6= ∅ and dom(ν2) 6= ∅, from r we can find words t0, t ∈ Σ∗ such that 〈t0, t〉 ∈
dom(ν), hence t0 ∈ dom(ν1) and t ∈ dom(ν2). Since u ∈ dom(ν1) ⇐⇒ 〈u, t〉 ∈ dom(ν), we
can compute an enumeration r1 of the graph of the characteristic function of dom(ν1) and
also an enumeration of dom(ν1).

The sequence s enumerates a set S of triples (〈u1, u2〉, 〈v1, v2〉, 〈w1, w2〉) for computing
the intersection of base elements (3.1). For u1, v1 ∈ dom(ν1),

(ν1(u1) ∩ ν1(v1))× ν2(t) = ν〈u1, t〉 ∩ ν〈v1, t〉

=
⋃

{ν1(w1)× ν2(w2) | (〈u1, t〉, 〈v1, t〉, 〈w1, w2〉) ∈ S}

=
⋃

{ν1(w1)× ν2(t) | (∃w2) (〈u1, t〉, 〈v1, t〉, 〈w1, w2〉) ∈ S}

=
⋃

{ν1(w1) | (∃w2)(〈u1, t〉, 〈v1, t〉, 〈w1, w2〉) ∈ S} × ν(t)

The third “=” holds since ν2(w2) 6= ∅. Since ν2(t) 6= ∅,

ν1(u1) ∩ ν1(v1) =
⋃

{ν(w1) | (∃w2)(〈u1, t〉, 〈v1, t〉, 〈w1, w2〉) ∈ S} .

Let S1 := {(u1, v1, w1) ∈ (dom(ν1))
3 | (∃w2)(〈u1, t〉, 〈v1, t〉, 〈w1, w2〉) ∈ S}. Then

ν1(u1)∩ ν1(v1) =
⋃
{ν(w1) | (u1, v1, w1) ∈ S1}. Since dom(ν1) and S1 can be computed, a

∆-name of X1 can be computed from 〈r, s〉.
Notice that assuming X1 ∈ T1 is sufficient.

(2) Apply (1) repeatedly, use a Turing machine on represented sets [12]. As an example
we show how to compute (2, (4,X1 × . . . ×X4)) 7→ X2.

X1 × . . .×X4 = X′
3 ×X4 7→ X′

3 = X′
2 ×X3 7→ X′

2 = X1 ×X2 7→ X2

Notice that assuming X2 ∈ T1 is sufficient.

(3) Let Y = X1 ×X2 . . . as in Definition 4.3 and let Y ∈ ∆〈r, s〉. Then r enumerates
the graph of the characteristic function χ of dom(νY).
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Since dom(ν1) 6= ∅ and dom(ν2) 6= ∅, from r we can find words t0, t ∈ Σ∗ such that
〈t0, t〉 ∈ dom(νY), hence t0 ∈ dom(ν1) and t ∈ dom(ν2). Since u ∈ dom(ν1) ⇐⇒ 〈u, t〉 ∈
dom(νY), we can compute an enumeration r1 of the graph of the characteristic function of
dom(ν1) and also an enumeration of dom(ν1). For u1, v1 ∈ dom(ν1),

(ν1(u1) ∩ ν1(v1))× ν2(t)×X3 × . . .

= νY〈u1, t〉 ∩ νY〈u2, t〉

=
⋃

{νY〈w1, w2, . . . , wn〉 | (〈u1, t〉, 〈u2, t〉, 〈w1, w2, . . . , wn〉) ∈ SY}

=
⋃

{νY〈w1〉 | (〈u1, t〉, 〈u2, t〉, 〈w1〉) ∈ SY}

∪
⋃

{νY〈w1, . . . , wn〉 | n ≥ 2 and (〈u1, t〉, 〈u2, t〉, 〈w1, w2, . . . , wn〉) ∈ SY}

=
⋃

{νY〈w1, t〉 | (〈u1, t〉, 〈u2, t〉, 〈w1〉) ∈ SY}

∪
⋃

{νY〈w1, t〉 | (∃n ≥ 2) (∃w2, . . . wn) (〈u1, t〉, 〈u2, t〉, 〈w1, w2, . . . , wn〉) ∈ SY}

=
⋃

{νY〈w1, t〉 | (∃n ≥ 1) (∃w2, . . . wn) (〈u1, t〉, 〈u2, t〉, 〈w1, w2, . . . , wn〉) ∈ SY}

=
⋃

{ν1(w1)× ν2(t)×X3 × . . . |

(∃n ≥ 1) (∃w2, . . . wn) (〈u1, t〉, 〈u2, t〉, 〈w1, w2, . . . , wn〉) ∈ SY}

The fourth “=” holds since νi(wi) 6= ∅ for all i ≥ 2 and Xi 6= ∅ for all i ≥ 3. Since ν2(t) 6= ∅
and Xi 6= ∅ for i ≥ 3,

ν1(u1)∩ν1(v1) =
⋃

{ν1(w1) | (∃n ≥ 1) (∃w2, . . . wn) (〈u1, t〉, 〈u2, t〉, 〈w1, w2, . . . , wn〉) ∈ SY} .

Let
S1 := {(u1, v1, w1) | (∃n ≥ 1) (∃w2, . . . wn) (〈u1, t〉, 〈u2, t〉, 〈w1, w2, . . . , wn〉) ∈ SY} .

Then ν1(u1) ∩ ν1(v1) =
⋃
{ν1(w1) | (u1, v1, w1) ∈ S1}. From s, which enumerates SY, we

can compute an enumeration of s1 ∈ Σω of the set S1. Therefore, we can compute a ∆-name
〈r1, s1〉 of X1. Notice that assuming X1 ∈ T1 is sufficient.

(4) This proof is similar to those of (1) and (3).

By Theorems 4.5 and 4.6 many rearrangements of products of effective topological
spaces from T2 are computable, for example
– X1 ×X2 7→ X2 ×X1,
– (X1 ×X2)×X3 7→ X1 × (X2 ×X3),
– X 7→ X×X, X 7→ X×X× . . .,
– X1 ×Y1 × . . .×Xn ×Yn 7→ X1 × . . .×Xn,
– X1 × . . . ×Xn 7→ Xn × . . .×X1,
– (X1 × . . .×Xm,Y1 × . . . ×Yn) 7→ X1 × . . .Xm ×Y1 × . . .×Yn ),
– X1 ×X2 × . . . 7→ Xh(1) ×Xh(2 × . . . where h : N → N is computable.

We do not know whether Theorem 4.6 remains valid for spaces from T1 where base
elements may be empty. However, rearrangements within products without deleting factors
are possible on the whole space T.

The product (X1,X2) 7→ X1 ×X2 is essentially commutative and associative.

Theorem 4.7.

(1) The function X1 7→ X1 ×X1 is (∆,∆)-computable.
(2) The function X1 ×X2 7→ X2 ×X1 is (∆,∆)-computable.
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(3) The function (X1 ×X2)×X3 7→ X1 × (X2 ×X3) is (∆,∆)-computable.
(4) The function X1 × (X2 ×X3) 7→ (X1 ×X2)×X3 is (∆,∆)-computable.

Proof. For i ≥ 1 let Xi = (Xi, τi, βi, νi).
(1) This follows from computability of (X1,X2) 7→ X1 ×X2 (Theorem 4.5.1).
(2) Let G : ⊆T → T such that dom(H) = {X1 ×X2 | X1,X2 ∈ T} and G(X1 ×X2) =

X2 ×X1. Let G(Y) = Z. Then there are spaces X1,X2 such that

Y = (Y, τY , βY , νY ) = X1 ×X2 ,

Z = (Z, τZ , βZ , νZ) = X2 ×X1 .

where Y = X1 ×X2 and Z = X2 ×X1,

dom(νY ) = {〈u1, u2〉 | (∀1 ≤ i ≤ 2)ui ∈ dom(νi)} ,

dom(νZ) = {〈v2, v1〉 | (∀1 ≤ i ≤ 2) vi ∈ dom(νi)} .

Suppose ∆〈p, q〉 = Y. Then the sequence p enumerates the graph of the characteristic
function of dom(νY ) and the sequence q enumerates some set SY such that νY(u)∩νY(v) =⋃
νY(w) | 〈u, v, w〉 ∈ SY. Since 〈u1, u2〉 ∈ dom(νY) ⇐⇒ 〈u2, u1〉 ∈ dom(νZ), from p we

can compute some s ∈ Σω which enumerates dom(νZ). Define SZ⊆(dom(νZ))
3 by

SZ := {(〈u2, u1〉, 〈v2, v1〉, 〈w2, w1〉) | (〈u1, u2〉, 〈v1, v2〉, 〈w1, w2〉) ∈ SY} .

Then

νZ〈u2, u1〉 ∩ νZ〈v2, v1〉

= ν2(u2)× ν1(u1) ∩ ν2(v2)× ν1(v1)

=
⋃

{ν2(w2)× ν1(w1)

| (〈u1, u2〉, 〈v1, v2〉, 〈w1, w2〉) ∈ SY}

=
⋃

{νZ〈w2, w1〉

| (〈u2, u1〉, 〈v2, v1〉, 〈w2, w1〉) ∈ SZ}

From the enumeration q of SY we can compute an enumeration s of SZ. Therefore, ∆〈r, s〉 =
Z and hence the operator G is computable.

(3) Let H : ⊆ T → T such that dom(H) = {(X1 × X2) × X3 | X1,X2,X3 ∈ T} and
H((X1 ×X2)×X3) = X1 × (X2 ×X3). Let H(Y) = Z. Then there are spaces X1,X2,X3

such that

Y = (Y, τY , βY , νY ) = (X1 ×X2)×X3 ,

Z = (Z, τZ , βZ , νZ) = X1 × (X2 ×X3) .

By Definition 4.3, Y = Z = X1 ×X2 ×X3 and τY = τZ,

dom(νY ) = {〈〈u1, u2〉, u3〉 | (∀1 ≤ i ≤ 3)ui ∈ dom(νi)} ,

dom(νZ) = {〈u1, 〈u2, u3〉〉 | (∀1 ≤ i ≤ 3)ui ∈ dom(νi)} .

Suppose ∆〈p, q〉 = Y. Then the sequence p enumerates the graph of the characteristic
function of dom(νY ) and the sequence q enumerates some set SY such that νY(u)∩νY(v) =⋃
{νY(w) | 〈u, v, w〉 ∈ SY}.
Therefore, from p we can compute an enumeration r of the graph of the characteristic

function of dom(νZ). Define SZ⊆(dom(νZ))
3 by

SZ := {(〈u1, 〈u2, u3〉〉, 〈v1, 〈v2, v3〉〉, 〈w1, 〈w2, w3〉〉)
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| (〈〈u1, u2〉, u3〉, 〈〈v1, v2〉, v3〉, 〈〈w1, w2〉, w3〉) ∈ SY} .

Then

νZ〈u1, 〈u2, u3〉〉 ∩ νZ〈v1, 〈v2, v3〉〉

= ν1(u1)× ν2(u2)× ν3(u3) ∩ ν1(v1)× ν2(v2)× ν3(v3)

= νY 〈〈u1, u2〉, u3〉 ∩ νY 〈〈v1, v2〉, v3〉

=
⋃

{νY〈〈w1, w2〉, w3〉〉 |

(〈〈u1, u2〉, u3〉, 〈〈v1, v2〉, v3〉, 〈〈w1, w2〉, w3〉) ∈ SY}

=
⋃

{νZ〈w1, 〈w2, w3〉〉 |

(〈u1, 〈u2, u3〉〉, 〈v1, 〈v2, v3〉〉, 〈w1, 〈w2, w3〉〉) ∈ SZ}

From the enumeration q of SY we can compute an enumeration s of SZ. Therefore, ∆〈r, s〉 =
Z and hence the operator H is computable.

(4) Analog to (3).

These results can be generalized to longer products. We do not go into further details.

5. Products of subsets, Tychonoff’s theorem

In this section we prove that the various product operations are computable on points,
on arbitrary sets and on compact sets. Some facts about the product of two computable
topological spaces are already proved in [17, Lemma 27] (where the proof of Lemma 27.7
on the product of compact sets is false). Here we prove uniform versions also for finite and
for infinite products. By (3.7), the multi-representation δ of points can be considered as the

restriction of the multi-representation ψ̃ to the sets with cardinality 1. Therefore, we start

with the multi-representation ψ̃ of sets. Remember that (X, B) ∈ ψ̃(p) : ⇐⇒ B ∈ ψ̃X(p).

Theorem 5.1.

(1) The function Πs2 : (TS)2 → TS,
((X1, B1), (X2, B2)) 7→ (X1 ×X2, B1 ×B2),

is ([̃ψ, ψ̃ ], ψ̃))-computable.
(2) The function Πs+ :

⊎
n≥1(TS)

n → TS,
(n, (X1, B1), . . . , (Xn, Bn)) 7→ (X1 × . . .×Xn, B1 × . . .×Bn),

is ([̃ψ ]+, ψ̃)-computable.
(3) The function Πs∞ : (TS)N → TS,

((X1, B1), (X2, B2), . . .) 7→ (X1 ×X2 × . . . , B1 ×B2 × . . .),

is ([̃ψ ]N, ψ̃)-computable.

The three functions are also computable w.r.t. ψ̃
∆

instead of ψ̃.

Proof. (1) Let M be a Type-2 Turing machine that on input 〈p1, p2〉 writes a sequence of
all ι〈u1, u2〉 such that u1 ≪ p1 and u2 ≪ p2 (and from time to time writes 11 in order to
produce an infinite sequence). Since

((X1, B1), (X2, B2)) ∈ [̃ψ, ψ̃ ]〈p1, p2〉 =⇒ B1 ∈ ψ̃X1
(p1) and B2 ∈ ψ̃X2

(p2)

=⇒ B1 ×B2 ∈ ψ̃X1×X2
◦ fM 〈p1, p2〉 =⇒ (X1 ×X2, B1 ×B2) ∈ ψ̃ ◦ fM〈p1, p2〉
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(notice that ν1(u1)∩B1 6= ∅ and ν2(u2)∩B2 6= ∅ iff ν〈u1, u2〉∩B1×B2 6= ∅), the computable
function fM is a realizer of Πs2.

(2) Let fM be the computable realization from Case (1). There is a computable function
H : Σω → Σω such that

H(10〈p1〉) = p1 ,

H(1n+10〈p1, . . . , pn+1〉) = fM(H(1n0〈p1, . . . , pn〉), pn+1) .

We show by induction that the function H realizes the function Πs+. For n = 1 we obtain:

(1, (X1, B1)) ∈ [̃ψ ]+(10〈p1〉) =⇒ (X1, B1) ∈ ψ̃(p1) =⇒ Πs+(1, (X1, B1)) ∈ ψ̃ ◦H(10〈p1〉) .

and for n+ 1 by induction,

(n+ 1, (X1, B1), . . . , (Xn+1, Bn+1)) ∈ [̃ψ ]+(1n+10〈p1, . . . , pn+1〉)

=⇒ (Xi, Bi) ∈ ψ̃(pi) for 1 ≤ i ≤ n+ 1

=⇒ ((X1, B1), . . . , (Xn, Bn)) ∈ [̃ψ ]+(1n0〈p1, . . . , pn〉) ∧ (Xn+1, Bn+1) ∈ ψ̃(pn+1)

=⇒ (X1 × . . . ×Xn, B1 × . . . ×Bn) ∈ ψ̃ ◦H(1n0〈p1, . . . , pn〉)

∧ (Xn+1, Bn+1) ∈ ψ̃(pn+1)

=⇒ (X1 × . . . ×Xn+1, B1 × . . .×Bn+1) ∈ ψ̃ ◦ fM(H(1n0〈p1, . . . , pn〉), pn+1)

=⇒ Πs+(n+ 1, (X1, B1), . . . , (Xn+1, Bn+1) ∈ ψ̃ ◦H(1n+10〈p1, . . . , pn, pn+1〉)

.

(3) Suppose ((X1, B1), (X2, B2), . . .) ∈ [̃ψ ]N〈p1, p2, . . .〉. Then (∀i)(Xi, Bi) ∈ ψ̃(pi).
Therefore, for every i, pi is a list of all ι(ui) such that (ui ∈ dom(νi) and) νi(ui) ∩ Bi 6= ∅.
With the terminology of Definition 4.3(3), from 〈p1, p2, . . .〉 we want to compute a list of
all ι(w) such that w ∈ dom(νY) and B1 × B2 × . . . ∩ νY(w) 6= ∅. By the definition,
w ∈ dom(νY) iff there are some k ≥ 1 and words u1 ∈ dom(ν1), ... , uk ∈ dom(νk) such
that w = 〈u1u2 . . . uk〉 = ι(u1)ι(u2) . . . ι(uk). For every k ≥ 1,

νY(ι(u1), . . . , ι(uk)) ∩B1 ×B2 × . . . 6= ∅

⇐⇒ (∀1 ≤ i ≤ k) ν(ui) ∩Bi 6= ∅

⇐⇒ (∀1 ≤ i ≤ k)ui ≪ pi

There is a computable function h such that h〈p1, p2, . . .〉 is a list of all ι(ι(u1)ι(u2) . . . ι(uk))
such that k ≥ 1 and ui ≪ pi for all 1 ≤ i ≤ k. Then

((X1, B1), (X2, B2), . . .) ∈ [̃ψ ]N〈p1, p2, . . .〉 =⇒ (Y,B1 ×B2 × . . .) ∈ ψ̃ ◦ h〈p1, p2, . . .〉 .

Therefore, Πs∞ is ([̃ψ ]N, ψ̃)-computable.

By Theorem 4.5 the three functions are also computable w.r.t. ψ̃
∆

instead of ψ̃ .

In the proof for the case of ψ̃ for every effective topological space X = (X, τ, β, ν), no
information about intersections ν(u) ∩ ν(v) is needed and the information about dom(ν)

given by the ψ̃-names is sufficient. Therefore the computable realizations of the operators

are independent of the spaces, hence the theorem can be formulated for ψ̃ .
The next theorem considers points.
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Theorem 5.2.

(1) The function Πp2 : (TP)2 → TP,
((X1, x1), (X2, x2)) 7→ (X1 ×X2, (x1, x2)),

is ([δ, δ], δ))-computable. Its inverse is (δ, [δ, δ])-computable.
(2) The function Πp+ :

⊎
n≥1(TP)n → N× TP ,

(n, (X1, x1), . . . , (Xn, xn)) 7→ (n, (X1 × . . .×Xn, (x1, . . . , xn))),
is ([δ]+, [νN, δ])-computable. Its inverse is ([νN, δ], [δ]

+)-computable.
(3) The function Πp∞ : (TP)N → TP,

((X1, x1), (X2, x2), . . .) 7→ (X1 ×X2 × . . . , (x1, x2, . . .)),
is ([δ]N, δ)-computable. Its inverse is (δ, [δ]N)-computable.

The three functions are also computable w.r.t. δ∆ instead of δ. Their inverses restricted to
T2 (the spaces with non-empty base sets) are computable w.r.t. δ∆ instead of δ.

This theorem is an other formulation of Theorem 4.4. By (3.7), computability of Πp2,
Πp+ and Πp∞ follows from Theorem 5.1.

Proof. By (3.7) and Theorem 5.1 the functions Πp2, Πp+ and Πp∞ can be considered as
restrictions of the computable functions Πs2, Πs+ and Πs∞ to singleton sets, hence they are
computable. It remains to show that their inverses are computable.

(1) Suppose (X1 × X2, (x1, x2)) ∈ δ(p). Then (x1, x2) = δX1×X2
(p). By Theorem 4.4

there is a computable function h such that (x1, x2) = [δX1
, δX2

]◦h(p). There are computable
functions h1, h2 such that h(p) = 〈h1(p), h2(p)〉. Then (x1, x2) = (δX1

◦ h1(p), δX2
◦ h2(p)),

hence (X1, x1) ∈ δ ◦ h1(p) and (X2, x2) ∈ δ ◦ h2(p) and finally ((X1, x1), (X2, x2)) ∈
[δ, δ]〈h1(p), h2(p) = [δ, δ] ◦ h(p).

(2) Suppose (n, (X1 × . . . × Xn, (x1, . . . , xn))) ∈ [νN, δ]〈p, q〉. Then νN(p) = n and
(x1, . . . , xn) = δX1×...×Xn(q), hence (n, x1, . . . , xn) = (δX′

1
∨δX′

2
∨. . .)(1n0q). By Theorem 4.4

there is a computable function h such that (n, x1, . . . , xn) = [δX1
, δX2

, . . .]+◦h(1n0q). There
are functions p1, . . . , pn ∈ Σω such that h(1n0q) = 1n0〈p1, . . . , pn〉. Then by Definition 4.1.3,
xi = δXi

(pi), hence (Xi, xi) ∈ δ(pi) for all 1 ≤ i ≤ n. Hence, (n, (X1, x1), . . . , (Xn, xn)) ∈
[δ]+(1n0〈p1, . . . , pn〉) = h(1n0q). Therefore, 〈p, q〉 7→ h(1νN(p)0q) is a computable realization
of (Πp+)−1.

3) Suppose (X1 ×X2 × . . . , (x1, x2, . . .)) ∈ δ(p). Then (x1, x2, . . .) = δX1×X2×...(p). By
Theorem 4.4 there is a computable function h such that δX1×X2×...(p) = [δX1

, δX2
, . . .]◦h(p).

There are unique functions pi ∈ Σω such that h(p) = 〈p1, p2, . . .〉. Then xi = δXi
(pp), hence

(Xi, xi) ∈ δ(pi) for all i. Therefore, ((X1, x1), (X2, x2), . . .) ∈ [δ]N ◦ h(p).

Computability w.r.t. δ∆ instead of δ follows from Theorems 4.5 and 4.6.

Notice that a name p of (X, x) = δ(p) contains no information about the effective
topological space X. Therefore, the theorem does not mean that the components Xi of the
product spaces can be computed in general (cf. Theorem 4.6).

Corollary 5.3 (projections).

(1) The functions (X1 ×X2, (x1, x2)) 7→ (Xi, xi) (i = 1, 2) are (δ, δ)-computable.
(2) The function

(i, n, (X1 × . . .×Xn, (x1, . . . , xn))) 7→ (Xi, xi) (1 ≤ i ≤ n)
is (νN, νN, δ, δ)-computable.
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(3) The function (i, (X1 ×X2 × . . . , (x1, x2, . . .))) 7→ (Xi, xi) is (νN, δ, δ)-computable.

As main results we prove computable versions of Tychonoff’s theorem stating that the
product of compact spaces is compact.

Theorem 5.4 (computable Tychonoff theorem).

(1) The function Πc2 : (TC)2 → TC,
((X1,K1), (X2,K2)) 7→ (X1 ×X2,K1 ×K2)

is ([κ∆, κ∆], κ∆))-computable.
(2) The function Πc+ :

⊎
n≥1(TC)

n → TC ,

(n, (X1,K1), . . . , (Xn,Kn)) 7→ (X1 × . . .×Xn,K1 × . . . ×Kn),
is ([κ∆]+, κ∆)-computable.

(3) The function Πc∞ : (TC)N → TC,
((X1,K1), (X2,K2), . . .) 7→ (X1 ×X2 × . . . ,K1 ×K2 × . . .)

is ([κ∆]N, κ∆)-computable.

Proof. We use the terminology from Definition 4.3.
(1) For compact sets K1⊆X1 and K2⊆X2, K1 ×K2 is compact in X1 ×X2 [3]. First,

we assume that X1 and X2 are computable topological spaces. We want to enumerate all
words w such that K1 × K2⊆

⋃
νfs(w). From w ∈ dom(νfs) we can compute a number n

and pairs (ui, vi) ∈ dom(ν1)×dom(ν2) (1 ≤ i ≤ n) such that
⋃
νfs(w) =

⋃
i∈I ν1(ui)×ν2(vi)

for the index set I := {1, . . . , n}. Then

K1 ×K2⊆
⋃
νfs(w) (5.1)

⇐⇒ K1 ×K2⊆
⋃

i∈I

ν1(ui)× ν2(vi) (5.2)

⇐⇒ (∀x ∈ K1)(∃J⊆I)
(
x ∈

⋂

j∈J

ν1(uj) ∧K2⊆
⋃

j∈J

ν2(vj)
)

(5.3)

⇐⇒ (∃J1, . . . , Jm⊆I)
(
K1⊆

m⋃

l=1

⋂

j∈Jl

ν1(uj) ∧ (∀l)K2⊆
⋃

j∈Jl

ν2(vj)
)

(5.4)

⇐⇒ (∃J1, . . . , Jm⊆I)
(
K1⊆

m⋃

l=1

⋂

j∈Jl

ν1(uj) ∧K2⊆
m⋂

l=1

⋃

j∈Jl

ν2(vj)
)
. (5.5)

By [17, Theorem 11], from w and J1, . . . , Jm (a θX1
-name of) the open set W1 :=⋃m

l=1

⋂
j∈Jl

ν1(uj) and (a θX2
-name of) the open set W2 :=

⋂m
l=1

⋃
j∈Jl

ν2(vj) can be com-

puted. By [17, Theorem 13.5], K⊆W for compact K and open W is (κXi
, θXi

)-r.e. for
i = 1, 2. Therefore, K1 × K2⊆V is (κX1

, κX2
,
⋃
νfs)-r.e. , hence from (a κX1

-name of)
K1 and (a κX2

-name of) K2 we can compute a list of all w such that K1 ×K2⊆
⋃
νfs(w).

Therefore, there is a computable function h : ⊆Σω × Σω → Σω such that

K1 ×K2 ∈ κX1×X2
◦ h(p1, p2) if K1 ∈ κX1

(p1) and K2 ∈ κX2
(p2) , (5.6)

hence (K1,K2) 7→ K1 ×K2 is (κX1
, κX2

, κX1×X2
)-computable.

If we abbreviate (5.6) by Q(h,X1,X2), then by the meta-theorem 3.3, there is a com-
putable function h such that

K1 ×K2 ∈ κX1×X2
◦ h(t1, t2, p1, p2)

if X1 ∈ ∆(t1), X2 ∈ ∆(t2), K1 ∈ κX1
(p1) and K2 ∈ κX2

(p2)



18 R. RETTINGER

By Theorem 4.5 there is a computable function f such that
X1 ×X2 ∈ ∆ ◦ f(t1, t2) if X1 ∈ ∆(t1) and X2 ∈ ∆(t2).

Therefore,

(X1 ×X2,K1 ×K2) ∈ κ∆〈f(t1, t2), h(t1, t2, p1, p2)〉

if (X1,K1) ∈ κ∆〈t1, p1〉 and (X2,K2) ∈ κ∆〈t2, p2〉

Define h′〈〈t1, p1〉, 〈t2, p2〉〉 := 〈f(t1, t2), h(t1, t2, p1, p2)〉. Then

(X1 ×X2,K1 ×K2) ∈ κ∆ ◦ h′〈q1, q2〉 if (X1,K1) ∈ κ
∆(q1) and (X2,K2) ∈ κ∆(q2)

Therefore, the function ((X1,K1), (X2,K2)) 7→ (X1 × X2,K1 × K2) is (κ∆, κ∆, κ∆)-com-
putable.

(2) Let h′ be the realizing computable function from Case (1). There is a computable
function H : Σω → Σω such that

H(10〈p1〉) = p1 ,

H(1n+10〈p1, . . . , pn+1〉) = h′(H(1n0〈p1, . . . , pn〉), pn+1) .

We show by induction that the (computable) function H realizes the function Πc+. For
n = 1 we obtain:

(1, (X1,K1)) ∈ [κ∆]+(10〈p1〉) =⇒ (X1,K1) ∈ κ∆(p1) = κ∆ ◦H(10〈p1〉) .

Suppose (n + 1, (X1,K1), . . . , (Xn+1,Kn+1) ∈ [κ∆]+(p). Then there are pi ∈ Σω such that
p = 1n+10〈p1, . . . , pn+1〉. We obtain

(n+ 1, (X1,K1), . . . , (Xn+1,Kn+1)) ∈ [κ∆]+(1n+10〈p1, . . . , pn+1〉)

=⇒ (n, (X1,K1), . . . , (Xn+1,Kn) ∈ [κ∆]+〈1n0〈p1, . . . , pn〉〉 ∧ (Xn+1,Kn+1) ∈ κ∆(pn+1)

=⇒ (X1 × . . . ×Xn,K1 × . . .×Kn) ∈ κ∆ ◦H(1n0〈p1, . . . , pn〉)

∧ (Xn+1,Kn+1) ∈ κ∆(pn+1)

=⇒ (X1 × . . . ×Xn+1,K1 × . . .×Kn+1) ∈ κ∆ ◦ h′(H(1n0〈p1, . . . , pn〉), pn+1)

=⇒ (n+ 1, (X1 × . . . ×Xn+1,K1 × . . .×Kn+1)) ∈ κ∆ ◦H(1n+10〈p1, . . . , pn, pn+1〉) .

Therefore, H realizes Πc+.

(3) We use the terminology from Definition 4.3. We want to show that the function
((X1,K1), (X2,K2), . . .) 7→ (Y, (K1 × K2 × . . .)), Y =

∏∞
i=1Xi, is ([κ∆, κ∆, . . .], κ∆)-

computable.
By Theorem 4.5, from (X1,X2, . . .) we can compute Y = X1 × X2 × . . .. It remains

to show that from κ∆-names 〈t1, p1〉, 〈t2, p2〉, . . .) of (X1,K1), (X2,K2), . . . we can compute
a κY-name of the set K1 × K2 × . . .⊆Y (which is compact by the classical Tychonoff
theorem [3]), that is, a list of all w ∈ dom(νfs

Y
) such that K1 × K2 × . . .⊆

⋃
νfs
Y
(w). It

suffices to find a Type-2 machine which halts on input (〈〈t1, p1〉, 〈t2, p2〉, . . .〉, w) such that
〈ti, pi〉 ∈ dom(κ∆) and w ∈ dom(νfs

Y
), iff K1 ×K2 × . . .⊆

⋃
νfs
Y
(w).

Suppose, 〈ti, pi〉 ∈ dom(κ∆) for i ∈ N and w ∈ dom(νfs
Y
). From w we can compute some

n and words v1, . . . , vn such that νfs
Y
(w) = {νY(v1), . . . , νY(vn)}. For every 1 ≤ j ≤ n we can

compute some mj and words uj1, . . . , ujmj
such that νY(vj) = ν1(uj1)× . . .× νmj

(ujmj
)×

Xmj+1 × . . .. Let m := max{mj | 1 ≤ j ≤ n}. Then with Formula (4.4)
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νY(vj) =
⋃{

ν1(uj1)× . . .× νmj
(ujmj

)×

νmj+1(uj,mj+1)× . . .× νm(ujm)×Xm+1 × . . .

| uj,mj+1 ∈ dom(νmj+1), . . . , ujm ∈ dom(νm)
}

=
⋃{

ν ′m〈. . . 〈uj1, uj2〉 . . . , ujmj
〉, uj,mj+1〉 . . .〉, ujm〉

| uj,mj+1 ∈ dom(νmj+1), . . . , ujm ∈ dom(νm)
}
×Xm+1 × . . .

From w a list p′ ∈ Σω of all 〈. . . 〈uj1, uj2〉 . . . , ujmj
〉, uj,mj+1〉 . . .〉, ujm〉 such that 1 ≤

j ≤ n and uj,mj+1 ∈ dom(νmj+1), . . . , ujm ∈ dom(νm) can be computed.
Then ⋃

νfsY(w) =
⋃

{ν ′m(w′) | w′ ≪ p′} ×Xm+1 × . . . ,

hence

K1 ×K2 × . . .⊆
⋃
νfsY(w) ⇐⇒ K1 ×K2 × . . .×Km⊆

⋃
{ν ′m(w′) | w′ ≪ p′}

By (2) of this theorem, from m and κ∆-names of (X1,K1), . . . , (Xm,Km) we can compute
a κX′-name q′ of K1 × . . .×Km (see Definition 4.3 and Formula (4.4)), which is a list of all
v ∈ dom((ν ′m)fs) such that

K1 × . . .×Km⊆
⋃

(ν ′m)fs(v)

Since K1 × . . . × Km is compact, finitely many ν ′m(u) with u ≪ p′ suffice to cover it.
Therefore, K1×K2× . . .⊆

⋃
νfs
Y
(w), iff there are u1 ≪ p′, . . . , uk ≪ p′ such that K1×K2×

. . .⊆ν ′m(u1)∪ . . .∪ν
′
m(uk), iff there are u1 ≪ p′, . . . , uk ≪ p′ such that v := ι(u1) . . . ι(uk) ≪

q′. There is a Type 2 machine M that halts on input (p′, q′), iff there are words u1 ≪
p′, . . . , uk ≪ p′ such that the word v := ι(u1) . . . ι(uk) ≪ q′.

Let N be a machine which from a [κ∆]N-name 〈〈t1, p1〉, 〈t2, p2〉, . . .〉 of
((X1,K1), (X2,K2), . . .) and w ∈ dom(νfs

Y
) first computes m and p′, then q′ and then applies

fM to (p′, q′). This computation halts iff K1 ×K2 × . . .⊆
⋃
νfs
Y
(w).

Theorems 5.1 and 5.4 can be combined as follows.

Corollary 5.5. Theorem 5.4 holds accordingly if κ∆ is replaced by κ̃∆.

Proof. By Theorem 5.1 the Cartesian products of sets are computable w.r.t. ψ̃
∆
. By

Theorem 5.4 the Cartesian products of compact sets are computable w.r.t. κ∆. Therefore,

they are computable w.r.t. ψ̃
∆
∧ κ∆. By Lemma 3.7.3, ψ̃

∆
∧ κ∆ ≡ κ̃∆

If X = (X, τ, β, ν) = ∆〈r, s〉, then r supplies information about dom(ν) and s supplies
information about intersection on the base β of the effective topological space.

We observe that the functions Πp2, Πp+ and Πp∞ from Theorem 5.2 on points and
their inverses are computable w.r.t. the multi-representation δ. If (X, x) ∈ δ(p) then
the information about dom(ν) contained in p ∈ dom(δ) is already sufficient to perform
the computations. No additional information from ∆-names about intersection of base
elements is needed. The corresponding remark holds for the functions Πs2, Πs+ and Πs∞

from Theorem 5.1 on sets. However, for computing the products Πc2, Πc+ and Πc∞ of
compact sets the intersection information of the spaces is used.



20 R. RETTINGER

In Corollaries 5.6 -5.8 letX1,X2 be fixed computable topological spaces and let (X1,X2, . . .)
be a (νN,∆)-computable sequence of (computable) topological spaces. As a special case of
Theorem 5.1 for fixed computable spaces we obtain:

Corollary 5.6. For subsets Bi⊆Xi the following holds.

(1) The function (B1, B2) 7→ B1 ×B2 is ([̃ψX1
, ψ̃X2

], ψ̃X1×X2
))-computable.

(2) For every n ≥ 1 let Πn(B1, . . . , Bn) = B1 × . . .×Bn.
There is a computable function f such that for every n ≥ 1, q 7→ f(0n, q) realizes Πn

w.r.t ([̃ψX1
, . . . , ψ̃Xn

], ψ̃X1×...×Xn
).

(3) The function (B1, B2, . . .) 7→ (B1 ×B2 × . . .)

– is ([̃ψX1
, ψ̃X2

, . . .], ψ̃X1×X2
× . . .)-computable.

The next corollary is the special case of Theorems 4.4 and 5.2 for fixed computable
topological spaces.

Corollary 5.7. For points xi⊆Xi the following holds.

(1) [δX1
, δX2

] ≡ δX1×X2
.

(2) For every n ≥ 1 let idn : (x1, . . . , xn) 7→ (x1, . . . , xn) . Then there are computable
functions f, g such that for every n ≥ 1,
– q 7→ f(0n, q) realizes idn w.r.t ([δX1

, . . . , δXn ], δX1×...×Xn) and
– q 7→ g(0n, q) realizes idn w.r.t (δX1×...×Xn , [δX1

, . . . , δXn ]).
(3) [δX1

, δX2
, . . .] ≡ δX1×X2×...

For the weak multi-representations κX of compact sets we obtain from Theorem 5.4
and Corollary 5.5.

Corollary 5.8. For compact subsets Ki⊆Xi the following holds.

(1) The function (K1,K2) 7→ K1 ×K2 is ([κX1
, κX2

], κX1×X2
))-computable.

(2) For every n ≥ 1 let Πn(K1, . . . ,Kn) = (K1× . . .×Kn) . There is a computable function
f such that for every n ≥ 1,
q 7→ f(0n, q) realizes Πn w.r.t ([κX1

, . . . , κXn ], κX1×...×Xn).
(3) The function (K1,K2, . . .) 7→ (K1 ×K2 × . . .)

is ([κX1
, κX2

, . . .], κX1×X2
× . . .)-computable.

All of this holds accordingly for the strong multi-representations κ̃X by minimal covers.

A last sequence of even less uniform results is obtained from the fact that computable
functions map computable points to computable points. For example by Corollary 5.8, if
K1 is κX1

-computable and K2 is κX2
-computable then K1×K2 is κX1×X2

-computable. We
do not list all the other obvious consequences of this kind.

6. Thanks

We thank the unknown referees for reading our submission carefully and giving many useful
comments.
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