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Abstract. We consider two-player games over graphs and give tight bounds on the
memory size of strategies ensuring safety objectives. More specifically, we show that the
minimal number of memory states of a strategy ensuring a safety objective is given by the
size of the maximal antichain of left quotients with respect to language inclusion. This
result holds for all safety objectives without any regularity assumptions. We give several
applications of this general principle. In particular, we characterize the exact memory
requirements for the opponent in generalized reachability games, and we prove the existence
of positional strategies in games with counters.

1. Introduction

Graphs games provide a mathematical framework to model reactive systems (we refer
to [GTW02] for a survey on the topic, and to [FBB+23] for a recent textbook). We focus
here on the Synthesis Problem to motivate the problem we consider, which is to characterize
the amount of memory required in games with safety objectives.

The synthesis problem. The inputs of the synthesis problem are a system and a
specification. The expected output is a controller for the system, that ensures the specification.
We describe here a classical and well-studied approach to solve the synthesis problem through
game theory. We model the system as a graph, whose vertices represent states and edges
represent transitions. Its evolution consists in interactions between a controller and an
environment, which is turned into a game on the graph between two players, Eve and
Adam. If in a given state, the controller can choose the evolution of the system, then the
corresponding vertex is controlled by Eve. If the system evolves in an uncertain way, we
consider the worst-case scenario, where Adam controls those states. A pebble is initially
placed on the vertex representing the initial state of the system, then Eve and Adam move
this pebble along the edges. The sequence built describes a run of the system: Eve tries
to ensure that it satisfies the specification. So, in order to synthesize a controller, we
are interested in whether Eve can ensure this objective and what resources she needs. In
particular, the most salient question is: what is the size of a minimal controller satisfying
the specification? Since a controller is here given by a strategy for Eve, this is equivalent to
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the following question: what is the minimal amount of memory used by a winning strategy?
The following diagram shows the correspondence between the notions from the synthesis
problem (left-hand side) and the game-theoretic notions (right-hand side).

S︸︷︷︸
system

, C︸︷︷︸
controller

|= Φ︸︷︷︸
specification

⇐⇒ A︸︷︷︸
arena (graph)

, σ︸︷︷︸
strategy

|= W︸︷︷︸
objective

Safety specifications. Since we consider non-terminating sequences, a specification is
given by a language of infinite words. Of special interest are the specifications asserting
that “nothing bad” ever happens; such specifications are called safety specifications. A safety
specification is induced by a (possibly infinite and non-regular) set of bad prefixes P , and
the specification is met by a run if no prefixes belong to P . Although quite simple, the
safety specifications proved useful in both theory and practice, and are actively studied (we
refer to [Kup14] for a survey).

Our contribution. In this paper, our goal is to characterize the memory requirements of
(arbitrary) safety winning objectives. The reader with a background in game theory may be
surprised, as it is well known that “safety games are positionally determined”, implying that
the quantity above is constant equal to one. The subtlety is that our setting is (much) more
general than the classical notion of safety games: in a safety game, the goal is to avoid a set
of forbidden edges, while a safety objective defines a set of forbidden prefixes independent of
the arena. We show the following general principle:

For a safety winning objective W , the minimal number of memory states of a winning
strategy is exactly the cardinal of the maximal antichain of left quotients of W .

We refer to Section 4 for the missing definitions. Note that this result holds for all safety
winning objectives, without any regularity assumption. The characterisation above holds for
graphs with finite degree, however we can state and prove a variant lifting this assumption,
but assuming that the set of left quotients is well founded with respect to inclusion. We state
our main results in Section 3, and prove them in Section 4. We give several examples and
applications in Section 5. For instance, it allows to characterize the memory requirements
for the opponent in generalized reachability games, and to prove the existence of positional
strategies in games with counters. This journal version additionally discusses related works
in Section 6, many of them posterior to the publication of the conference version of this
article [CFH14] in 2014.

2. Definitions

The games we consider are played on an arena A = (V, (V∃, V∀), E, c), consisting of a (finite
or infinite) graph (V,E), a partition (V∃, V∀) of the vertex set V : a vertex in V∃ belongs
to Eve and in V∀ to Adam, and a coloring function c : E → A mapping edges to a color
from a finite alphabet A. When drawing arenas, we will use circles for vertices owned by
Eve and squares for those owned by Adam. Throughout this paper, we make the cosmetic
assumption that graphs do not have dead-ends: for every vertex v ∈ V , there exists an edge
(v, v′) ∈ E.

Game. A play π is an infinite word of edges e0 · e1 · · · that are consecutive: for all i,
ei = ( , v) ∈ E and ei+1 = (v, ) ∈ E for some v ∈ V . The prefix of length k of π is denoted
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πk. A play π induces an infinite sequence of colors c(π), obtaining by applying the coloring
function c component-wise. We define winning objectives for a player by giving a set of
infinite sequences of colors W ⊆ Aω. As we are interested in zero-sum games, i.e. where the
winning objectives of the two players are opposite, if the winning objective for Eve is W ,
then the winning objective for Adam is Aω \W . A game is a couple G = (A,W ) where A is
an arena and W a winning objective.

Strategy. A strategy for a player is a function that prescribes, given a finite history of
the play, the next move. Formally, a strategy for Eve is a function σ : E∗ · V∃ → E such
that for all π ∈ E∗ and v ∈ V∃ we have σ(π · v) = (v, ) ∈ E. Strategies for Adam are
defined similarly, and usually denoted τ . Once a game G = (A,W ), a starting vertex v0 and
strategies σ for Eve and τ for Adam are fixed, there is a unique play π(v0, σ, τ), which is
said winning for Eve if its image by c belongs to W .

A strategy σ for Eve is winning if for all strategies τ for Adam, π(q0, σ, τ) is winning.
We say that Eve wins the game G from v0 if she has a winning strategy from v0, and denote
WE(G) the set of vertices from where Eve wins; we often say that v ∈ WE(G) is winning.
We define similarly WA(G) for Adam to be the set of vertices from where Adam wins.

Memory. A memory structure is a deterministic state machine that reads the sequence
of edges and abstracts its relevant informations into a memory state. Formally, a memory
structure M = (M,m0, µ) for an arena consists of a set M of memory states, an initial
memory state m0 ∈ M and an update function µ : M ×E → M . The update function takes
as input the current memory state and the chosen edge to compute the next memory state. It
can be extended to a function µ∗ : E∗ → M by defining µ∗(ε) = m0 and µ∗(π·e) = µ(µ∗(π), e).
Given a memory structure M and a next-move function ν : V∃ ×M → E, we can define a
strategy σ for Eve by σ(π · v) = ν(v, µ∗(π · v)). A strategy with memory structure M has
finite memory if M is a finite set, and we write |M| for the size of M . It is memoryless, or
positional if M is a singleton: it only depends on the current vertex. Hence a memoryless
strategy can be described as a function σ : V∃ → E.

An arena and a memory structure induce an expanded arena where the current memory
state is computed online. Formally, the arena A = (V, (V∃, V∀), E, c), the memory structure
M for A and a new coloring function c′ : E ×M → A induce an expanded arena A×M =
(V ×M, (V∃ ×M,V∀ ×M), E × µ, c′), where E × µ is defined by: ((v,m), (v′,m′)) ∈ E × µ
if (v, v′) ∈ E and µ(m, (v, v′)) = m′.

From a memoryless strategy in A×M, we can build a strategy in A using M as memory
structure, which behaves as the original strategy. This key observation will be used several
times in the paper.

3. Statements of the Results

In this section, we consider a safety objective1 W and compute the following quantity:

mem(W )
.
= sup

G=(A,W ) game
v0 initial vertex

inf
σ winning strategy from v0
with memory structure M

|M| .

1To be defined in this section.
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v0 v1 v2
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b

a

b

Figure 1. Memory is necessary for safety objectives: to avoid seeing both a
and b, Eve must choose the same letter as Adam did in the first move, which
requires two memory states.

In words, mem(W ) is the necessary and sufficient number of memory states for constructing
a winning strategy in games with objective W . Equivalently:

• upper bound: for all games G = (A,W ), if Eve has a winning strategy from an initial
vertex v0, then she has a winning strategy using at most mem(W ) memory states,

• lower bound: there exists a game G = (A,W ) and an initial vertex v0 where Eve has a
winning strategy, but no winning strategy using less than mem(W ) memory states.

Note that we place no restrictions on the size of the games involved: they may be infinite.
We explain now why our study of games with safety objectives is (much) more general than
the classical notion of safety games.

Consider an arena A: a safety condition is given by a subset B ⊆ E of forbidden edges,
inducing the winning condition

{ρ = a0 · a1 · · · ∈ Eω | for all i, ai /∈ B} .

Let A a set of colours. A safety objective is given by a subset P ⊆ A∗ of forbidden
prefixes of colors, inducing the winning objective

Safe(P ) = {ρ = a0 · a1 · · · ∈ Aω | for all i, a0 · a1 · · · ai /∈ P} .

For each arena A equipped with a colouring function c : E → A, this induces the winning
condition

{ρ = a0 · a1 · · · ∈ Eω | c(ρ) = c(a0) · c(a1) · · · ∈ Safe(P )}.

In other words, a condition is defined directly on an arena, while an objective is defined
independently of the arena on the sequence of colours and induces a condition for each arena
equipped with a colouring function. As an example, consider the safety objective Safe(P )
over the colours A = {a, b, c} where P = A∗ · a ·A∗ · b ∪A∗ · b ·A∗ · a: the objective Safe(P )
specifies that a and b cannot be both seen along a play. This cannot be expressed by a
safety condition, and mem(Safe(P )) ≥ 2, as shown in Figure 1.

Lemma 3.1 (Folklore). Let G be a game with a safety condition, and v0 an initial vertex.
If Eve has a winning strategy, then she has a positional winning strategy.

Safety objectives form a very expressive class of objectives, as we will demonstrate in
Section 5. The notion of safety objective originates from topological studies of the set of
infinite words: the safety objectives are the closed sets for the Cantor topology, denoted Σ1

in the corresponding Borel hierarchy.

Let us fix a safety objective W = Safe(P ) induced by P ⊆ A∗. Let w ∈ A∗, define its left
quotient as:

w−1W = {ρ ∈ Aω | w · ρ ∈ W}.
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We denote Res(W ) the set of left quotients of W . We mention some special left quotients:
the initial one, ε−1W (equal to W ), and the empty one, obtained as w−1W for any w ∈ P .
As a small abuse of notations, from now on by “left quotient” we mean “non-empty left
quotient of W”.

From a left quotient w−1W and a letter a ∈ A, we define (w−1W ) · a as (w · a)−1W : it
is easy to check that this is well defined (independent of the representant w chosen). Recall
that Res(W ) is finite if and only if W is regular, and in such case it can be used to describe
the set of states of the minimal deterministic automaton recognizing W .

Before stating our main results, we need some order-theoretic definitions. The width
of a partially ordered set (X,≤) is the cardinal of a maximal antichain of X with respect
to ≤, i.e. the cardinal of a maximal set of pairwise incomparable elements. Recall that an
antichan is a subset of X such that any two distinct elements are incomparable, and a chain
is a subset of X such that any two elements are comparable. We say that (X,≤) is well
founded if every chain contains a minimal element.

We write memfin-deg(W ) for the quantity defined as mem(W ) but restricting to arenas
of finite degree: for every vertex, there are finitely many outgoing edges.

Theorem 3.2. For all safety objectives W ,

• memfin-deg(W ) is the width of (Res(W ),⊆).
• if (Res(W ),⊆) is well-founded (in particular if W is regular), then mem(W ) is the width
of (Res(W ),⊆).

We present in 5 an example, called the outbidding games, showing that the well-founded
assumption is necessary.

An objective W is half-positional if mem(W ) = 1. In the case of safety objectives, we
obtain the following characterization:

Corollary 3.3. For all safety objectives W , W is half-positional over arenas of finite degree
if and only if the inclusion is a linear order over Res(W ).

If furthermore (Res(W ),⊆) is well-founded, then W is half-positional (over all arenas)
if and only if the inclusion is a linear order over Res(W ).

4. Proofs

A First Upper Bound.

Lemma 4.1. For all safety objectives W = Safe(P ), for all games G = (A,W ), if Eve has
a winning strategy from an initial vertex v0, then she has a winning strategy using at most
|Res(W )| memory states.

Consequently,

memfin-deg(W ) ≤ mem(W ) ≤ |Res(W )| .

Proof. We construct a memory structure M, as follows: M = (Res(W ),W, ν), where
ν(w−1W,a) = (w−1W ) · a. At any point in the game, the memory state computed by M
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is the current left quotient. Let A be an arena. We construct the expanded arena A×M
equipped with the coloring function c′ : E × Res(W ) → {0, 1} defined by:

c′( , w−1W ) =

{
0 if w−1W = ∅ (equivalently, w ∈ P ) ,

1 otherwise .

We attach to A×M the safety condition induced by B = {0}, giving rise to the game
G ×M = (A×M, Safe(B)). First observe that by construction, the plays in A×M are of
the form (e0, c(e0)

−1W ) · (e1, c(e0 · e1)−1W ) · · · (ek, c(e0 · e1 · · · ek)−1W ), so by definition of
c′ a play is winning is G ×M if and only if its projection (on the first component) is winning
in G.

It follows that a winning strategy for Eve in G from v0 induces a winning strategy in
G × M from (v0,W ). Now, thanks to Lemma 3.1, since Eve wins in G × M, she has a
positional winning strategy. This induces a winning strategy in G using M as memory
structure, concluding the proof of Lemma 4.1.

The game G ×M defined above will be an important tool in the proofs to follow. We
will also rely on the following remark: assume we want to prove that a strategy σ is winning.
Then it is enough to show that for all plays π consistent with σ, for all k, c(πk)

−1W ≠ ∅,
where πk is the prefix of π of length k. This simple observation follows from the definition
of safety objectives.

A Tighter Upper Bound. The memory structure M is not optimal. A first remark is
that the empty left quotient (which exists if W ̸= Aω) can be removed from the memory
states as the game is lost. This is why by “left quotient” we mean “non-empty left quotient
of W”.

The second remark is the following: let L1 and L2 two left quotients of W , such that
L1 ⊆ L2. With the same notations as above, consider a vertex v in the arena A. If Eve wins
from (v, L1) in G ×M, then she also wins from (v, L2): indeed, she can play as she would
have played from (v, L1). Since this ensures from v that all plays are winning for L1, then a
fortiori they are winning for L2.

This suggests to restrict the memory states only to minimally winning left quotients
with respect to inclusion. Two issues arise:

• which left quotients are winning depends on the current vertex, so the semantics of a
memory state can no longer be one left quotient, but rather a left quotient for each
possible vertex,

• there may not exist minimally winning left quotients.

For the sake of presentation, we first show how to deal with the first issue, assuming the
second issue does not appear. Specifically, in the following lemma, we assume that Res(W )
is finite (i.e. W is regular), implying the existence of minimally winning left quotients. We
will later drop this assumption.

Lemma 4.2 (Upper bound in the regular case). Let W a safety objective, we assume that
Res(W ) is finite.

For all games G = (A,W ), if Eve has a winning strategy from an initial vertex v0,
then she has a winning strategy using at most K memory states, where K is the width of
(Res(W ),⊆).
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The key intuition to have is the following: our goal is to construct a strategy σ such
that for a vertex v, we associate to every memory state i a left quotient Li(v) ensuring that
in a play π consistent with σ, then Li(v) is an under-approximation of c(π)−1W , meaning
Li(v) ⊆ c(π)−1W .

Proof. We use the same notations as for the proof of Lemma 4.1, and construct a smaller
memory structure together with a winning strategy using this memory structure. In this
proof, by winning we mean winning in the game G ×M.

Let K be the cardinal of the maximal antichain of left quotients of W . We construct
a memory structure M∗ = ({1, . . . ,K}, 1, µ), and a strategy σ induced by the next-move
function ν.

Let v be a vertex in A. We consider the set of minimal left quotients L such that
(v, L) is winning. (Here we use the finiteness of Res(W ) to guarantee the existence of such
left quotients.) This is an antichain, so there are at most K of them, we denote them by
L1(v), . . . , Lp(v), for some p ≤ K. The key property is that for every left quotient L such
that (v, L) is winning, there exists i such that Li(v) ⊆ L. Furthermore, we choose L1(v0)
such that L1(v0) ⊆ W . (Indeed, by assumption (v0,W ) is winning.)

We define the update function: µ(i, (v, v′)) is a j such that Lj(v
′) ⊆ Li(v) · c(v, v′). Note

that in general, such a j may not exist; it does exist if (v′, Li(v) · c(v, v′)) is winning, and we
will prove that this will always be the case when playing the strategy σ.

We define the next-move function ν (inducing σ). Let v ∈ V∃, and consider (v, Li(v)):
since Eve wins from there, there exists an edge (v, v′) ∈ E such that (v′, Li(v) · c(v, v′)) is
winning. Define ν(v, i) to be this v′.

We show that the strategy σ is winning. Consider a play π = (v0, v1) · (v1, v2) · · ·
consistent with σ, and i0 · i1 · · · the sequence of memory states assumed along this play.
Denote πk the prefix of π of length k, we prove that for all k, Lik(vk) ⊆ c(πk)

−1W . Note
that by definition, (vk, Lik(vk)) is winning, so Lik(vk) ̸= ∅, implying that c(πk)

−1W ̸= ∅.
We proceed by induction. For k = 0, it follows from L1(v0) ⊆ W . Let k > 0, the

induction hypothesis is Lik−1
(vk−1) ⊆ c(πk−1)

−1W . We distinguish two cases.

• Either vk−1 belongs to Eve, then by construction of σ we have that (vk, Lik−1
(vk−1) ·

c(vk−1, vk)) is winning. It follows that the update function is well defined, and Lik(vk) ⊆
Lik−1

(vk−1) · c(vk−1, vk), which together with the induction hypothesis implies Lik(vk) ⊆
c(πk)

−1W .
• Or vk−1 belongs to Adam. Since Adam cannot escape WE(G × M), we have that
(vk, Lik−1

(vk−1) · c(vk−1, vk)) is winning, and the same reasoning concludes.

It follows that the strategy σ is winning, concluding the proof of Lemma 4.2.

We now get rid of the regularity assumption. This means that for a vertex v, there may
not be a minimal left quotient L such that (v, L) is winning. We present two ways to get
around this difficulty: either an assumption on W , or an assumption on the games.

Lemma 4.3 (Upper bound – well founded assumption). Let W a safety objective, we assume
that (Res(W ),⊆) is well-founded.

For all games G = (A,W ), if Eve has a winning strategy from an initial vertex v0,
then she has a winning strategy using at most K memory states, where K is the width of
(Res(W ),⊆).

Consequently, mem(W ) is smaller than or equal to the width of (Res(W ),⊆).
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Note that if W is regular, then (Res(W ),⊆) is finite, hence well-founded. The proof of
Lemma 4.3 is the same as for Lemma 4.2, once we note that the well founded assumption
implies that for any vertex v, there exists a minimal left quotient L such that (v, L) is
winning.

Lemma 4.4 (Upper bound – finite degree assumption). Let W a safety objective.
For all games G = (A,W ) with finite degree, if Eve has a winning strategy from an

initial vertex v0, then she has a winning strategy using at most K memory states, where K
is the width of (Res(W ),⊆).

Consequently, memfin-deg(W ) is smaller than or equal to the width of (Res(W ),⊆).

The proof of Lemma 4.4 extends the proof of Lemma 4.2, getting rid of the well founded
assumption. To this end, we need an equivalent formulation of the width of an ordered set
(X,≤): recall that it is defined as the cardinal of a maximal antichain of X. Thanks to
Dilworth’s theorem, the width is also the smallest number of maximal chains required to
cover all elements. This point of view will be useful in proving our results, and as we will
discuss in the related works section, in further extending them.

Before going into the technical details, let us highlight the main difficulty of the proof.
Under the previous assumptions, for a vertex v, we could associate to every memory state i
a left quotient Li(v) and ensure that in a play π consistent with the strategy we construct,
Li(v) is an under-approximation of c(π)−1W , meaning Li(v) ⊆ c(π)−1W . In this proof, we
will not be able to associate to every memory state a single left quotient, but rather a chain
of left quotients, and ensure that some left quotient in this chain is an under-approximation.

Proof. We use the same notations as for the proof of Lemma 4.2, and construct a memory
structure together with a winning strategy using this memory structure. Let K be the width
of (Res(W ),⊆). We construct a memory structure M∗ = ({1, . . . ,K}, 1, µ), and a strategy
σ induced by the next-move function ν.

Let v be a vertex in A. We consider the set W(v) of left quotients L such that (v, L) is
winning. Then (W(v),⊆) is an ordered set of width at most K: thanks to the characterisation
above of the width, we can split W(v) into maximal decreasing (finite or infinite) chains of
left quotients, denoted ℓ1(v), . . . , ℓp(v), for some p ≤ K. Note that this decomposition is not
unique. Up to renumbering, let us assume that W ∈ ℓ1(v0): indeed, by assumption (v0,W )
is winning.

We say that (v, ℓ) is winning if for all L ∈ ℓ, we have that (v, L) is winning. For ℓ a
chain of left quotients and a ∈ A, we define ℓ · a component-wise. Note that even if ℓ is
infinite, it may be that ℓ · a is finite.

We define the update function: µ(i, (v, v′)) is a j as follows.

• If ℓi(v) · c(v, v′) is finite, denote L · c(v, v′) its last element. Choose j such that L · c(v, v′) ∈
ℓj(v

′). Note that in general, such a j may not exist; it does exist if (v′, ℓi(v) · c(v, v′)) is
winning, and we will prove that this will always be the case when playing the strategy σ.

• If ℓi(v) · c(v, v′) is infinite, then choose j such that ℓj(v
′) has an infinite intersection with

ℓi(v) · c(v, v′). Such a j exists without any assumption.

We define the next-move function ν (inducing σ). Let v ∈ V∃, and consider (v, ℓi(v)). Let
L ∈ ℓi(v), Eve wins from (v, L), so there exists an edge (v, v′) ∈ E such that (v′, L · c(v, v′))
is winning, we say that (v, v′) ∈ E is good for L. Since W(v′) is upward closed, if (v, v′) ∈ E
is good for L, then it is good for every L′ such that L ⊆ L′. We argue that there exists an
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edge (v, v′) ∈ E that is good for all L ∈ ℓi(v), i.e. such that (v′, ℓi(v) · c(v, v′)) is winning;
define ν(v, i) to be this v′. There are two cases:

• Either ℓi(v) is finite, denote L its last element. Since ℓi(v) is decreasing, an edge good for
L is good for all L′ ∈ ℓi(v).

• Or ℓi(v) is infinite. The vertex v has finite degree, so there exists an edge which is good
for infinitely many L ∈ ℓi(v). Since ℓi(v) is decreasing, it is good for all L′ ∈ ℓi(v).

We show that the strategy σ is winning. Consider a play π = (v0, v1) · (v1, v2) · · ·
consistent with σ, and i0 · i1 · · · the sequence of memory states assumed along this play.
Denote πk the prefix of π of length k, we prove that for all k, there exists L ∈ ℓik(vk) such
that L ⊆ c(πk)

−1W . Note that by definition, (vk, ℓik(vk)) is winning, so c(πk)
−1W ̸= ∅.

We proceed by induction. For k = 0, it follows from W ∈ ℓ1(v0). Let k > 0, the
induction hypothesis implies the existence of L ∈ ℓik−1

(vk−1) such that L ⊆ c(πk−1)
−1W .

We distinguish two cases, and denote ck = c(vk−1, vk).

• Either vk−1 belongs to Eve, then by construction of σ we have that (vk, ℓik−1
(vk−1) · ck) is

winning. It follows that the update function is well defined, and:
(1) If ℓik−1

(vk−1) · ck is finite, denote L′ · ck its last element, we have L′ · ck ∈ ℓik(vk).
Since L′ · ck is the last element of ℓik−1

(vk−1) · ck, it follows that L′ ⊆ L. We have

thus L′ · ck ⊆ L · ck, so L′ ⊆ c(πk)
−1W , and L′ · ck ∈ ℓik(vk).

(2) If ℓik−1
(vk−1) · ck is infinite, ℓik(vk) has an infinite intersection with ℓik−1

(vk−1) · ck.
So there exists L′ ⊆ L with L′ ∈ ℓik−1

(vk−1) such that L′ · ck is in this intersection.

We have L′ · ck ∈ ℓik(vk) and L′ ⊆ c(πk)
−1W .

• Or vk−1 belongs to Adam. Since Adam cannot escape WE(G × M), we have that
(vk, ℓik−1

(vk−1) · ck) is winning, and the same reasoning concludes.

It follows that the strategy σ is winning, concluding the proof of Lemma 4.4.

A Matching Lower Bound.

Lemma 4.5 (Lower bound). For all safety objectives W , there exists a game G = (A,W )
with finite degree and an initial vertex v0 where Eve has a winning strategy, but no winning
strategy using less than K memory states, where K is the width of (Res(W ),⊆).

Consequently, memfin-deg(W ) and mem(W ) are both greater than or equal to the width
of (Res(W ),⊆).

Proof. Let W a safety objective, and K the width of (Res(W ),⊆). Let us consider
{w−1

1 W, . . . , w−1
K W} an antichain of left quotients of W . Note that since there are countably

many finite words, K is either finite or countable infinite, but not larger. For i ̸= j, there
exists ui,j ∈ Aω such that ui,j ∈ w−1

i W and ui,j /∈ w−1
j W .

We describe the game, illustrated in Figure 2. A play consists in three steps:

(1) From v0 to v′0: Adam chooses a word in {w1, . . . , wK};
(2) From v′0, Eve chooses between K options v1, . . . , vK ;
(3) From vi, Adam chooses a word in {ui,j : j ̸= i}.
More formally: the game between v0 and v′0 is a finitely branching and well founded tree
whose branches are labeled with the words w1, . . . , wK , and the leaves are identified with
v′0. Both for the first and third step labeling an edge by a word is only for graphical
representation: formally, we use a sequence of edges labeled by the corresponding sequence
of colours.
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v0 ... v′0

v1 · · ·

vi

vK · · ·

...

w1

w2

wK−1

wK

ui,1

ui,2

ui,K−1

ui,K

Figure 2. The lower bound.

We first show that Eve has a winning strategy from v0, using K memory states. It
consists in choosing the ith option whenever Adam chooses the word wi: whatever Adam
chooses at the third step, wi · ui,j ∈ W .

We now show that there exists no winning strategy using less than K memory states.
Indeed, such a strategy will not comply with the above strategy and for some i ̸= j, choose
the jth option if Adam chooses wi. Then Adam wins by playing uj,i, since wi · uj,i /∈ W .

Theorem 3.2 easily follows from combining the upper bound and lower bound lemmas.

5. Examples and Applications

In this section, we instantiate Theorem 3.2 on different examples. We chose four examples:

• The outbidding objective shows the difference between graphs with finite degree and
graphs with infinite degree; in particular, it gives a counter example to Lemma 4.4 when
dropping the finite degree assumption,

• The energy objective is a non-regular half-positional safety objective,
• The generalized safety objective is a regular safety objective for which the partially ordered
set of left quotients has a nice well-known combinatorial structure,

• The boundedness objective is a central piece in the theory of regular cost functions.

When representing the partial order (Res(W ),⊆) for a given W , we use the following
convention: a black edge from L to L′ means that L ⊆ L′, and a dotted edge labeled a from
L to L′ means that L′ = L · a, so the dotted structure is the minimal (although possibly
infinite) deterministic automaton recognizing W .

Outbidding Games. Let A = {a, b, c} and W = {an · bp · cω | n ≤ p} ∪ {aω} ∪ a∗ · bω. It is
a non-regular safety objective, called the outbidding objective. The figure 3 represents the
partial order (Res(W ),⊆). Its width is three: there are two incomparable infinite increasing
sequences of left quotients, ((an)−1W )n∈N and ((b · an)−1W )n∈N, and c−1W .

Hence thanks to Theorem 3.2, memfin-deg(W ) = 3. However, there exists an outbidding
game where Eve wins but needs infinite memory. This does not contradict Theorem 3.2, as
this game, represented in Figure 4, has a vertex of infinite degree. It goes as follows: first
Adam picks a number n, and then Eve takes over: she has to pick a number p, higher than
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ε a a2 a3 a4 a5 . . .

b ab a2b a3b a4b a5b . . .

c

a a a a a

b b b b b b

b b b b b

c

b

c

Figure 3. The outbidding objective: more b’s than a’s.

v0 v′0

v1

v2

v3

vn

...

...

a

a

b

b2

b3

bn

c

c

c

c

Figure 4. An outbidding game with infinite degree where Eve needs infinite
memory to win.

or equal to n. A finite memory strategy can only choose from finitely many options, hence
cannot win against all strategies of Adam.

Energy Games. The setup for the energy objective is the following: assume we are
monitoring a resource. We denote by A the set of actions on this resource, which is any
monotonic function f : N → N, as for instance:
• consuming one unit of the resource,
• reloading by one unit,
• emptying the resource,
• consuming half of the current energy level.

Define the energy objective by

W = {w = w0w1 · · · | the energy level remains always non-negative} .

It is a non-regular safety objective. Energy games and several variants have been extensively
studied [BFL+08, CD12, CdAHS03]. The Figure 5 represents the partial order (Res(W ),⊆),
with only two actions: a reloads by one unit, and b consumes one unit. In general, if the
actions are monotonic, then the left quotients are totally ordered by inclusion, so thanks to
Theorem 3.2 we have memfin-deg(W ) = 1.

Corollary 5.1 [BFL+08]. The energy games are half-positional.
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ε a a2 a3 a4 a5 . . .

a a a a a

b b b b b

Figure 5. The energy objective: always more a’s than b’s.

Generalized Safety Games. This example originates from the study of generalized
reachability games [FH10, FH13]. A generalized reachability objective is a (finite) conjunction
of reachability objectives. Here we take the opponent’s vantage point: a generalized
safety objective is a (finite) disjunction of (internal) safety objectives. Specifically, let
A = {⊥, 1, . . . , k}: each letter is a color, and ⊥ is uncolored. Let W = {w = w0w1 · · · | ∃i ∈
{1, . . . , k}, ∀n,wn ̸= i}, it is satisfied if at least one color is not seen along the play. It is a
safety objective. The figure 6 represents the partial order (Res(W ),⊆) for k = 3. The left

quotients are all the strict subsets of {1, . . . , k}. The width of this partial order is
(

k
⌊k/2⌋

)
,

according to the well known Sperner’s Lemma from combinatorics.

ε

{1}

{2}

{3}

{1, 2}

{1, 3}

{2, 3}

1

2

3

2

1

3
1

3

2

⊥

⊥, 1

⊥, 2

⊥, 3

⊥, 1, 2

⊥, 1, 3

⊥, 2, 3

Figure 6. The generalized safety objective.

Corollary 5.2 [FH10, FH13]. For all generalized safety games with k colors, if Eve has a

winning strategy, then she has a winning strategy with
(

k
⌊k/2⌋

)
memory states.

Furthermore, for all k, there exists a generalized safety game with k colors where Eve
has a winning strategy using

(
k

⌊k/2⌋
)
memory states, but none using less memory states.

Games with Counters. This example originates from the theory of regular cost func-
tions [Col13]. Let N ∈ N, and define the boundedness objective WN involving a counter as
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follows:

WN = {w | the counter value in w remains bounded by N} .

For the set of actions, we consider any monotonic action (even non-regular), i.e. function
f : N → N such that if i ≤ j then f(i) ≤ f(j), as for instance:

• leaving the counter value unchanged,
• incrementing the counter value by one,
• resetting the counter value to zero,
• dividing the counter value by two, rounded down,
• increasing the counter value to the next power of two.

The objective WN is a regular safety objective.

Corollary 5.3 [Col13]. The boundedness games are half-positional.

6. Related Works

The study of memory requirements in games has a long history.
Before 2014 – the publication of the conference version of this paper. The

first general result in this direction is about Muller objectives: in [DJW97], the authors
show how to compute the exact memory requirements by looking at the so-called Zielonka
tree [Zie98]. This is orthogonal to our results, as the Muller objectives only specify the limit
behaviour (what is seen infinitely often), whereas we consider here only the behaviours in
the finite. Gimbert and Zielonka [GZ05] (see also [Gim07]) gave a characterization of all
payoff functions (extending objectives to a quantitative setting) for which both players have
memoryless optimal strategies over finite games.

Eryk Kopczyński investigated memory requirements for ω-regular objectives [Kop09],
asking the following question: given a ω-regular objective, can we compute its memory
requirement? This fascinating question that we call the Kopczyński programme remains
open to this day. One of the many contributions of Kopczyński in this line of work was
to introduce the notion of chromatic memory : the memory structure only considers the
sequence of colours, and not the sequence of edges. Kopczyński constructed an algorithm to
compute the chromatic memory requirements of an ω-regular objective, and conjectured
that this coincides with general memory requirements.

After 2014. Casares [Cas22] has disproved Kopczyński’s conjecture, and in particular
has shown that chromatic memory requirements are hard to compute: for Muller objectives,
deciding whether there is a memory structure of size k becomes NP-complete and equivalent
to minimizing transition-based deterministic Rabin automata. In this direction, Casares,
Colcombet and Lehtinen [CCL22] showed that computing general memory requirements
for Muller objectives is equivalent to minimizing good-for-games automata. A result by
Bouyer, Randour, and Vandenhove [BRV22] provides a link between the chromatic memory
requirements of all ω-regular objectives (not only Muller objectives) and their representa-
tion as transition-based deterministic parity automata, but with less tight bounds on the
minimal memory structures. Bouyer et al. [BLO+22] extended the results of Gimbert and
Zielonka [GZ05] to chromatic finite memory.

A promising line of work extending the approach initiated in this paper uses the notion of
universal graphs, initially introduced for understanding algorithms solving games [CFGO22],
and later used by Ohlmann for giving a characterisation of all positionally determined
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objectives [Ohl21, Ohl22, Ohl23]. The proof of the characterisation is indeed very close to
the techniques we present here: indeed universal graphs form a generic way of reducing to
safety games. The characterisation has then been extended to finite memory by Casares
and Ohlmann [CO23].

The subsequent works most related to the present results are by Bouyer, Casares,
Randour and Vandenhove [BCRV22], and by Bouyer, Fijalkow, Randour, and Vanden-
hove [BFRV23]. The first give a characterization of half-positional objectives recognized
by deterministic Büchi automata, and the second characterizations of chromatic memory
requirements for open and closed objectives, as well as complexity-theoretic results about
computing these requirements. Both are technically rooted in the very ideas developed in
this paper. In particular, Dilworth’s theorem and the use of covering chains (developed in
Lemma 4.4) is at the heart of the characterization given in [BFRV23].

Technically unrelated but close in spirit, the article [BLT22] establishes the existence of
finite-memory optimal strategies from topological properties of objectives. There are major
differences with our work: their framework is different (they study concurrent games that are
not played on graphs), and their aim is to establish the existence of finite-memory optimal
strategies for many objectives, but not to understand precisely the memory requirements of
some class of objectives.

Conclusion and Perspectives

We considered general safety objectives and characterized their memory requirements. Specif-
ically, the memory requirements of a safety objective W is the width of the partially ordered
set (Res(W ),⊆). This is the first general result characterizing the memory requirements for
some non-regular objectives, based on their topological properties. Back in 2014, we hoped
that this would be a stepping stone for obtaining memory requirements characterizations
for other classes of objectives. As we have discussed in the related works section this hope
has materialised, with many results along this line. We now only hope that there will be
more: the long-term goal is indeed to characterise memory requirements for all ω-regular
objectives, a research programme started by Kopczyński around 2006 [Kop09] and far from
over, and even more active than ever.
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