
Logical Methods in Computer Science

Vol. 9(1:14)2013, pp. 1–38

www.lmcs-online.org

Submitted Jul. 2, 2010

Published Mar. 28, 2013

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH

INDUCTIVE AND COINDUCTIVE TYPES ∗

DAISUKE KIMURA AND MAKOTO TATSUTA

National Institute of Informatics, 2-1-2 Hitotsubashi, Tokyo 101-8430, Japan

e-mail address: {kmr, tatsuta}@nii.ac.jp

Abstract. This paper extends the dual calculus with inductive types and coinductive types. The paper

first introduces a non-deterministic dual calculus with inductive and coinductive types. Besides the

same duality of the original dual calculus, it has the duality of inductive and coinductive types, that is,

the duality of terms and coterms for inductive and coinductive types, and the duality of their reduction

rules. Its strong normalization is also proved, which is shown by translating it into a second-order dual

calculus. The strong normalization of the second-order dual calculus is proved by translating it into

the second-order symmetric lambda calculus. This paper then introduces a call-by-value system and a

call-by-name system of the dual calculus with inductive and coinductive types, and shows the duality

of call-by-value and call-by-name, their Church-Rosser properties, and their strong normalization.

Their strong normalization is proved by translating them into the non-deterministic dual calculus

with inductive and coinductive types.

1. Introduction

Dual Calculus DC given by Wadler [27, 28] is a type system which corresponds to the classical

sequent calculus LK (see, for example, [7]). It represents computation induced by cut elimination

in LK by using its expressions and their reduction. The dual calculus has two nice properties:

computation in classical logic, and duality.

The computation of classical logic has been intensively studied, for example, [2, 4, 8, 9, 20,

21, 23, 27, 28]. They all studied the Curry-Howard correspondence between classical logic and

functional programming languages with sophisticated control structures like catch/throw and first-

class continuations. This correspondence is an extension of the Curry-Howard correspondence

between intuitionistic logic and the typed λ-calculus, which is well established.

The classical sequent calculus LK has nice duality. We have an involution that maps conjunc-

tion and disjunction to each other, and maps the left and right rules of conjunction to the right

and left rules of disjunction and vice versa. This involution can be extended to the cut elimination

procedure for LK.

The system DC inherits the duality of the classical sequent calculus LK. Moreover, its proof

terms called terms, coterms, and statements also have duality, since they correspond to proofs in

2012 ACM CCS: [Theory of computation]: Models of computation—Computability—Lambda calculus.

Key words and phrases: Curry-Howard isomorphism, Classical logic, Dual Calculus, Inductive definitions, Coinduc-

tive definitions.
∗ The conference version of this paper has appeared in [13].

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(1:14)2013

c© D. Kimura and M. Tatsuta
CC© Creative Commons

http://creativecommons.org/about/licenses

2 D. KIMURA AND M. TATSUTA

LK. This implies that its reduction relation can have duality since the reduction relation is induced

by the cut elimination procedure in LK. In this framework, Wadler gave the call-by-value and call-

by-name strategies in DC, and showed the duality of them [27]. He also showed that the equational

correspondence between DC and Parigot’s λµ-calculus [19], and showed the duality between call-

by-value and call-by-name of the λµ-calculus using the duality of the dual calculus [28]. Since then,

the dual calculus has been actively studied [26, 12, 13].

Inductive definitions are important in both mathematical logic and computer science. Inductive

definitions strengthen expressiveness of logical systems (for example, See [3]). They are central in

programming and program verification [22, 18, 14] for handling recursive data structures such as

lists and trees, and specification of recursive programs. Coinductive definitions are also important

since they can represent streams, infinite trees, and bisimulation, for example, in [24].

This paper presents Dual Calculus DCµν with inductive types and coinductive types. Our cal-

culus extends the duality of DC to inductive types and coinductive types. The involution in DC is

extended so that it maps inductive types and coinductive types to each other. It also maps the left

and right rules of inductive types to the right and left rules of coinductive types and vice versa. Be-

cause of the duality of the proof rules, we will have cut elimination procedure that keeps the duality

of inductive types and coinductive types. This induces the duality of the reduction relations of proof

terms for inductive types and coinductive types.

Our main results are: (1) the duality between inductive types and coinductive types with reduc-

tion, (2) strong normalization in DCµν, (3) strong normalization in the second-order Dual Calculus

DC2, (4) the duality between the call-by-value and call-by-name DCµν, and (5) the Church-Rosser

property and strong normalization of the call-by-value and call-by-name DCµν.

We will show strong normalization of DCµν. In order for proving the strong normalization, we

will first show the strong normalization of the second-order Dual Calculus DC2 given by [26] by

interpreting it in second-order symmetric lambda-calculus given in [21]. Then strong normalization

of DCµν is proved by interpreting it in DC2 by using second-order coding of inductive and coinductive

types.

We first introduce the system DCµν that does not have reduction strategies, since it is designed

by the Curry-Howard correspondence for a standard cut elimination procedure in LK. The system

can discuss non-deterministic aspects of computation in classical logic, since the execution of pro-

grams in DCµν is non-deterministic. It also works as a base framework for other variants of DCµν

with specific reduction strategies such as call-by-value and call-by-name that will be given later.

The duality between call-by-value and call-by-name is first suggested by Filinski [5]. The dual

calculus gives a clear explanation for this duality by using the logical duality of classical logic. We

will show the duality of call-by-value and call-by-name in the dual calculus extended with inductive

types and coinductive types. We extend the call-by-value DC and the call-by-name DC given in [27]

with inductive types and coinductive types, and introduce the systems CBV DCµν and CBN DCµν. They

are obtained from DCµν by restricting its non-deterministic reduction to the call-by-value or call-by-

name strategies, and also by adding some strategy-specific reduction rules. In the same way as [27],

we show the duality of call-by-value and call-by-name in the dual calculus with inductive types

and coinductive types. We will show the Church-Rosser property as well as strong normalization

for CBV DCµν and CBN DCµν. The strong normalization will be shown by translating CBV DCµν and

CBN DCµν into DCµν.

In [1], the duality between inductive types and coinductive types in linear logic is studied. Our

system DCµν shows the duality in ordinary sequent calculus LK.

Momigliano and Tiu [16, 17] discussed an intuitionistic sequent calculus with inductive def-

initions and coinductive definitions and showed its cut elimination theorem. Our system DCµν is

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 3

a classical system and our strong normalization shows the cut elimination theorem of the classical

sequent calculus. Our cut elimination procedure is not closed in an intuitionistic fragment because

it keeps the duality and we have the corresponding proof rule that manipulates a succedent if we

have some proof rule that manipulates an antecedent. So we cannot directly compare our method

and their method.

In category theory, inductive definitions are represented by initial algebras and coinductive

definitions are represented by final coalgebras [6], and their duality in category theory is known.

Our system DCµν enables us to show the duality in a clear syntactic way by using a type system.

Several papers for dual calculus investigated the duality of computation. Wadler showed the

duality between values and continuations, and the duality between call-by-value computation and

call-by-name computation by using the explicit duality of DC [27, 28]. The first author of this pa-

per showed the duality between the call-by-name fixed point operator and the call-by-value loop

operator by extending DC [11]. The first author also showed the duality of reduction between call-

by-value computation and call-by-name computation in λµ-calculus by using DC [12] to answer the

open question presented in Wadler’s invited talk at RTA2005 [28], which asked whether the dual-

ity between call-by-value and call-by-name in his equation systems would be refined in reduction

systems. Tzevelekos [26] investigated the dual calculus given in [27]. He assumed some additional

conditions on reductions, and showed both Church-Rosser property and strong normalization hold

under his conditions. He also investigated the relationship between DC and the symmetric λ-calculus

by Barbanera and Berardi [2]. A second-order extension of DC is also considered in [26].

The system µ̄µ̃ in [4] is a system with implication and subtraction, and also has duality. Their

calculus with negation, conjunction, and disjunction is called µµ̃∧a∨a¬ and the correspondence be-

tween it and the dual calculus is discussed in [9].

A semantical approach to the duality between call-by-value and call-by-name was studied by

Selinger [23]. He gave a categorical semantics of the λµ-calculus, and explained the duality by using

the categorical duality. This approach is extended to the duality between the fixed point operator

and the loop operator by Kakutani [10].

Section 2 gives a definition of DC and states its duality. Section 3 introduces DCµν and shows

its duality. Section 4 gives examples. In section 5, we give DC2 and show its strong normalization.

Section 6 proves strong normalization for DCµν. Section 7 introduces CBV DCµν and CBN DCµν and

shows their Church-Rosser properties and strong normalization.

2. The Dual Calculus DC

This section defines Dual Calculus DC and states its duality. This system is obtained from the original

Dual Calculus given in [27] by removing reduction strategies in reduction rules. This system gives

us a base framework for several variants of dual calculi.

Definition 2.1 (Types and Expressions of DC). Let X, Y, Z, . . . range over type variables, A, B, . . .

range over types, The symbols x, y, z, . . . range over variables, and α, β, γ, . . . range over covariables.

We assume an involution (−)′ between variables and covariables, which satisfies x′′ = x and α′′ = α.

An expression (denoted by D, E, . . .) is either a term (denoted by M,N, . . .), a coterm (denoted by

K, L, . . .), or a statement (denoted by S , T, . . .). We define them as follows:

Types A F X | A ∧ A | A ∨ A | ¬A,

Expressions D F M | K | S ,

Terms M F x | 〈M,M〉 | 〈M〉inl | 〈M〉inr | [K]not | (S).α,

Coterms K F α | [K,K] | fst[K] | snd[K] | not〈M〉 | x.(S),

Statements S F M • K.

4 D. KIMURA AND M. TATSUTA

The term (S).α binds the covariable α in S . The coterm x.(S) binds the variable x in S . We write

FV(D) for the set of free variables in D. We also write FCV(D) for the set of free covariables in

D. We will use [/] for substitution. For example, the substitution S [M/x] denotes the statement

obtained from S by replacing x by M.

The type A∧ B denotes a conjunction, A∨ B denotes a disjunction, and ¬A denotes a negation.

A variable means an ordinary variable. A covariable means an output port and gets some value after

computation. A term represents an ordinary computation which becomes a value or puts values at

output ports after computation. The term 〈M,N〉 means a pair. The terms 〈M〉inl and 〈M〉inr

mean the left injection and the right injection to a disjoint sum, respectively. When [K]not gets

its input, it gives the input to K and computes K. The term (S).α is an abstraction of S by α. It

computes S and its value is the value at the output port α. A coterm represents continuation which

puts values at output ports after computation when it gets its input. The coterm [K, L] gets an input

of a disjoint sum. If the input is 〈M〉inl, it gives M to K and computes K. If the input is 〈M〉inr,

it gives M to L and computes L. The coterm fst[K] gets an input of a pair. If the input is 〈M,N〉,

then it gives M to K and computes K. The coterm snd[K] also gets an input of a pair. If the input is

〈M,N〉, then it gives N to K and computes K. The coterm not〈M〉 gets a continuation as its input.

It gives M to the continuation and computes the continuation. The coterm x.(S) is an abstraction of

S by x. If it gets an input, it puts the input in x and computes S . The statement M • K means the

computation of K with the input M that may put values at output ports.

A typing judgment (denoted by J) of DC takes either the form Γ ⊢ ∆ M : A, the form K : A

Γ ⊢ ∆, or the form Γ S ⊢ ∆, where Γ denotes a context x1 : A1, . . . , xn : An that is a set of variable

declarations, and ∆ denotes a cocontext α1 : B1, . . . , αm : Bm that is a set of covariable declarations.

We will call M, K, and S a principal expression in those judgments. The domain of Γ (denoted by

dom(Γ)) is the set of variables {x1, . . . , xn} if Γ is x1 : A1, . . . , xn : An. The domain of ∆ (denoted by

dom(∆)) is the set of covariables {α1, . . . , αm} if ∆ is α1 : B1, . . . , αm : Bm.

We intuitively explain the typing judgments. There can be other ways of intuitive explanation,

for example, [26]. In order to give an intuitive idea in general, we assume an evaluation strategy

for expressions, and a notion of values for the strategy. For example, when we take call-by-name,

the values will be canonical form, and the computation will be lazy evaluation. The focus | is used

only for denoting which part contains a term, a coterm, or a statement in a judgment, and when we

think the corresponding sequent in ordinary sequent calculus, we will erase it. The typing judgment

x1 : A1, . . . , xn : An ⊢ α1 : B1, . . . , αm : Bm M : A means that when each xi has a value of type

Ai, and M is computed, then M returns a value of type A or some αi gets a value of type Bi. The

judgment K : A x1 : A1, . . . , xn : An ⊢ α1 : B1, . . . , αm : Bm means that when each xi has a value of

type Ai, an input of type A is given to K, and K is computed, then some αi gets a value of type Bi.

The judgment x1 : A1, . . . , xn : An S ⊢ α1 : B1, . . . , αm : Bm means that when each xi has a value of

type Ai and S is computed, then some αi gets a value of type Bi. We sometimes use the symbol ⊢DC
instead of the symbol ⊢ that appears in a judgment in order to explicitly show it is a judgment of DC.

That is, we write Γ ⊢DC ∆ M : A for the judgment Γ ⊢ ∆ M : A. Similarly, we write K : A Γ ⊢DC ∆

and Γ S ⊢DC ∆.

The typing rules are given in Figure 1. If we erase terms, coterms, statements, and the symbol

|, the system becomes logically equivalent to a fragment of classical sequent calculus LK, whose

definition is given in, for example, [7].

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 5

Γ, x : A ⊢ ∆ x : A
(AxR)

α : A Γ ⊢ ∆, α : A
(AxL)

Γ ⊢ ∆ M : A Γ ⊢ ∆ N : B

Γ ⊢ ∆ 〈M,N〉 : A ∧ B
(∧R)

K : A Γ ⊢ ∆ L : B Γ ⊢ ∆

[K, L] : A ∨ B Γ ⊢ ∆
(∨L)

Γ ⊢ ∆ M : A

Γ ⊢ ∆ 〈M〉inl : A ∨ B
(∨R1)

K : A Γ ⊢ ∆

fst[K] : A ∧ B Γ ⊢ ∆
(∧L1)

Γ ⊢ ∆ M : B

Γ ⊢ ∆ 〈M〉inr : A ∨ B
(∨R2)

K : B Γ ⊢ ∆

snd[K] : A ∧ B Γ ⊢ ∆
(∧L2)

K : A Γ ⊢ ∆

Γ ⊢ ∆ [K]not : ¬A
(¬R)

Γ ⊢ ∆ M : A

not〈M〉 : ¬A Γ ⊢ ∆
(¬L)

Γ S ⊢ ∆, α : A

Γ ⊢ ∆ (S).α : A
(IR)

Γ, x : A S ⊢ ∆

x.(S) : A Γ ⊢ ∆
(IL)

Γ ⊢ ∆ M : A K : A Γ ⊢ ∆

Γ M • K ⊢ ∆
(Cut)

Figure 1: Typing rules of DC

Definition 2.2 (Reduction). The reduction relation −→DC is defined as the compatible closure of the

following reduction rules:

(β∧1) 〈M,N〉 • fst[K] −→DC M • K,

(β∧2) 〈M,N〉 • snd[K] −→DC N • K,

(β∨1) 〈M〉inl • [K, L] −→DC M • K,

(β∨2) 〈M〉inr • [K, L] −→DC M • L,

(β¬) [K]not • not〈M〉 −→DC M • K,

(βR) (S).α • K −→DC S [K/α],

(βL) M • x.(S) −→DC S [M/x],

(ηR) (M • α).α −→DC M,

(ηL) x.(x • K) −→DC K,

where x and α are fresh in (ηL) and (ηR), respectively.

The rules (ηR) and (ηL) are necessary to get the results of computation of terms and coterms

from computation of statements inside them. We do not include the η-rules for logical connectives

that are given in [28], since these break the confluence property for call-by-value and call-by-name

systems, which we will study in Section 7. In order to study a base framework, we first consider a

non-deterministic rewriting system that does not commit to either the call-by-name or call-by-value

theory.

The system DC we consider first is obtained from the original dual calculus given in [27] by

omitting evaluation strategies, dropping (ς)-rules that provide strong evaluation under call-by-value

and call-by-name strategies, and replacing (ηL) and (ηR)-expansion rules by (ηL) and (ηR)-reduction

rules.

The role of (ηL) and (ηR)-reduction rules are to simplify logical proofs without changing any

proof structure. In the last section, we also give the call-by-value and call-by-name variants of DCµν.

The role of these rules become clearer in that section since they are necessary to obtain a value as

the result of a computation under some strategy.

6 D. KIMURA AND M. TATSUTA

The type of an expression is preserved by reduction.

Proposition 2.3 (Subject reduction of DC). The following claims hold.

(1) If Γ ⊢DC ∆ M : A and M −→DC N, then Γ ⊢DC ∆ N : A holds.

(2) If K : A Γ ⊢DC ∆ and K −→DC L, then L : A Γ ⊢DC ∆ holds.

(3) If Γ S ⊢DC ∆ and S −→DC T, then Γ T ⊢DC ∆ holds.

This proposition is shown by induction on reduction using the following substitution lemma.

Lemma 2.4 (Substitution lemma). The following claims hold.

(1) Suppose Γ ⊢DC ∆ N : A is derivable. Then we have the following.

(1a) If Γ, x : A ⊢DC ∆ M : B, then Γ ⊢DC ∆ M[N/x] : B,

(1b) if K : B Γ, x : A ⊢DC ∆, then K[N/x] : B Γ ⊢DC ∆, and

(1c) if Γ, x : A S ⊢DC ∆, then Γ S [N/x] ⊢DC ∆.

(2) Suppose L : A Γ ⊢DC ∆ is derivable. Then we have the following.

(2a) If Γ ⊢DC ∆, α : A M : B, then Γ ⊢DC ∆ M[L/α] : B,

(2b) if K : B Γ ⊢DC ∆, α : A, then K[L/α] : B Γ ⊢DC ∆, and

(2c) if Γ S ⊢DC ∆, α : A, then Γ S [L/α] ⊢DC ∆.

Proof. The claims (1a),(1b), and (1c) are shown simultaneously by induction on M, K, and S . The

claims (2a),(2b), and (2c) are also shown simultaneously by induction on M, K, and S .

The following duality transformation extends the duality in the sequent calculus LK to terms,

coterms, and statements.

Definition 2.5 (Duality Transformation). The duality transformation (−)◦ from DC into itself is

defined for types and expressions as follows:

(X)◦ = X, (¬A)◦ = ¬(A)◦, (A ∧ B)◦ = (A)◦ ∨ (B)◦, (A ∨ B)◦ = (A)◦ ∧ (B)◦,

(x)◦ = x′, (α)◦ = α′,

(〈M,N〉)◦ = [(M)◦, (N)◦], ([K, L])◦ = 〈(K)◦, (L)◦〉,

(〈M〉inl)◦ = fst[(M)◦], (fst[K])◦ = 〈(K)◦〉inl,

(〈M〉inr)◦ = snd[(M)◦], (snd[K])◦ = 〈(K)◦〉inr,

([K]not)◦ = not〈(K)◦〉, (not〈M〉)◦ = [(M)◦]not,

((S).α)◦ = α′.((S)◦), (x.(S))◦ = ((S)◦).x′,

(M • K)◦ = (K)◦ • (M)◦.

Note that a type and a statement are mapped to themselves. A term and a coterm are mapped to

each other.

We also define transformation for judgments. If Γ is x1 : A1, . . . , xn : An, then (Γ)◦ is de-

fined as (x1)◦ : (A1)◦, . . . , (xn)◦ : (An)◦. If ∆ is α1 : B1, . . . , αm : Bm, then (∆)◦ is defined as

(α1)◦ : (B1)◦, . . . , (αm)◦ : (Bm)◦. The judgment (Γ ⊢ ∆ M : A)◦ is defined as (M)◦ : (A)◦ (∆)◦ ⊢ (Γ)◦.

The judgment (K : A Γ ⊢ ∆)◦ is defined as (∆)◦ ⊢ (Γ)◦ (K)◦ : (A)◦. The judgment (Γ S ⊢ ∆)◦ is

defined as (∆)◦ (S)◦ ⊢ (Γ)◦.

We also define transformation for inference rule names as follows: (AxR)◦ = (AxL), (AxL)◦ =

(AxR), (∨R1)◦ = (∧L1), (∧L1)◦ = (∨R1), (∧R)◦ = (∨L), (∨L)◦ = (∧R), (∨L2)◦ = (∧R2), (∨R2)◦ =

(∧L2), (¬L)◦ = (¬R), (¬R)◦ = (¬L), (IR)◦ = (IL), (IL)◦ = (IR), and (Cut)◦ = (Cut).

This duality transformation preserves substitution of terms and coterms.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 7

Lemma 2.6. The following claims hold.

(1) (D[M/x])◦ = (D)◦[(M)◦/x′].

(2) (D[K/α])◦ = (D)◦[(K)◦/α′].

Proof. The claims (1) and (2) are shown by induction on D. We treat the first case of (1): the case

of D is x. (x[M/x])◦ = (M)◦ = x′[(M)◦/x′] = (x)◦[(M)◦/x′]. The other cases are straightforwardly

proved by the induction hypothesis.

This duality transformation is shown to preserve typing and reduction, and to be an involution.

This transformation is a homomorphism for this system in the sense that it preserves typing and

reduction. An important feature of DC is its duality by this transformation. A term is dual to a

coterm by this homomorphism.

Proposition 2.7 (Duality of DC). The followings hold.

(1) If J is derived from J1, . . . , Jn (n = 1 or 2) by an inference rule R, then (J)◦ is derived from

(Jn)◦, . . . , (J1)◦ by the inference rule (R)◦.

(2) D −→DC E implies (D)◦ −→DC (E)◦.

(3) ((A)◦)◦ = A, ((D)◦)◦ = D, and ((J)◦)◦ = J hold.

Proof. The claim (1) is proved by case analysis of the inference rules. The claim (2) is proved by

induction on the generation of −→DC using Lemma 2.6. The claim (3) is proved by induction on

types and expressions.

Remark 2.8. The (−)◦ transformation maps dual reduction rules to each other. That is, if D −→DC E

is the reduction rules (β∧1), (β∧2), (β∨1), (β∨2), (β¬), (βR), (βL), (ηR), and (ηL), then (D)◦ −→DC
(E)◦ is the reduction rules (β∨1), (β∨2), (β∧1), (β∧2), (β¬), (βL), (βR), (ηL), and (ηR), respectively.

Implication ⊃ can be defined by ¬ and ∨ in the same way as [27].

Definition 2.9. We write A ⊃ B for ¬A∨B. We also write λx.M for (〈[x.(〈M〉inr•γ)]not〉inl•γ).γ.

We also write N@K for [not〈N〉,K].

The constructor @ simulates the application in λ-calculus together with •. The following holds

from the definition.

Proposition 2.10. The following typing inference rules and reduction rule are derivable.

Γ, x : A ⊢ ∆ M : B

Γ ⊢ ∆ λx.M : A ⊃ B
(⊃ R)

Γ ⊢ ∆ M : A K : B Γ ⊢ ∆

M@K : A ⊃ B Γ ⊢ ∆
(⊃ L)

(β ⊃) λx.M • (N@K) −→DC M[N/x] • K

3. The Dual Calculus DCµν with Inductive and Coinductive Types

In this section, we present DCµν, which is an extension of DC with inductive types and coinductive

types. We first extend the definition of types of DC to inductive types µX.A and coinductive types

νX.A, and then extend expressions and reduction.

In Section 5, we will introduce the second-order system DC2. The system DCµν is worth to be

studied as well as DC2, since DCµν is within a first-order logic.

We first define types, their positive type variables, and their negative type variables. A positive

type variable in a type does not occur negatively in the type in the usual sense. A negative type

variable in a type does not occur positively in the type.

8 D. KIMURA AND M. TATSUTA

Definition 3.1. The set of type variables is written by TyVars. We define the types of DCµν (denoted

by A, B, . . .) and the set Pos(A) of positive type variables in the type A and the set Neg(A) of negative

type variables in the type A as follows:

A F X | A ∧ A | A ∨ A | ¬A | µX.A | νX.A

where µX.A and νX.A are defined when the type variable X is in Pos(A).

Pos(X) = TyVars,

Neg(X) = TyVars \ {X},

Pos(A1 ∧ A2) = Pos(A1 ∨ A2) = Pos(A1) ∩ Pos(A2),

Neg(A1 ∧ A2) = Neg(A1 ∨ A2) = Neg(A1) ∩ Neg(A2),

Pos(¬B) = Neg(B),

Neg(¬B) = Pos(B),

Pos(µX.B) = Pos(νX.B) = Pos(B) ∪ {X},

Neg(µX.B) = Neg(νX.B) = Neg(B) ∪ {X}.

The types µX.A and νX.A bind X in A.

When we think standard semantics of the propositional logic with inductive and coinductive

definitions, µX.A and νX.A are interpreted by the least fixed point and the greatest fixed point of the

monotone function P respectively, where P is the function which maps a set U to the set A[U/X].

Let µ be µX.A and ν be νX.A. They will have the following properties: (a) A[µ/X] ⊆ µ, (b) A[B/X] ⊆

B implies µ ⊆ B, (c) ν ⊆ A[ν/X], and (d) B ⊆ A[B/X] implies B ⊆ ν. Based on this meaning, we

will introduce terms, coterms, and their reduction for inductive and coinductive types in the same

way as [15].

Definition 3.2. The terms, coterms, and statements of DCµν are defined as follows:

M F x | 〈M,M〉 | 〈M〉inl | 〈M〉inr | [K]not | (S).α | inµX.A〈M〉 | coitrA
x 〈M,M〉,

K F α | [K,K] | fst[K] | snd[K] | not〈M〉 | x.(S) | outνX.A[K] | itrA
α[K,K],

S F M • K.

The term itrA
α[K, L] binds α in K. The coterm coitrA

x 〈M,N〉 binds x in M.

The expressions inµX.A〈M〉 and itrA
α[K, L] are the expressions for inductive types. The con-

structor inµX.A maps a term of type A[µX.A/X] to that of µX.A. The coterm itrB
α[K, L] is an iterator

having an input of type µX.A where L is a postprocessor after iteration. When it gets the input of

type µX.A, first a value of type A[µX.A/X] is computed according to the input, next a value of type

A[B/X] is computed by recursive invocation of the iterator, then it is given to K and K is computed

to get a value of type B, and finally the value is given to L and L is computed. Dually, outνX.A[K]

and coitrA
x 〈M,N〉 are defined for coinductive types. The constructor outνX.A maps a coterm of

type νX.A to that of A[νX.A/X]. When the coterm outνX.A[K] gets the input of type νX.A, first the

input is transformed into a value of type A[νX.A/X], then the value is given to K, and finally K is

computed. The term coitrB
x 〈M,N〉 is a coiterator of type νX.A. It transforms N of type B into a

value of νX.A according to M. Type annotations will be necessary for defining reduction rules.

Definition 3.3. The typing rules of DCµν are defined by those of DC and the following rules:

Γ ⊢ ∆ M : A[µX.A/X]

Γ ⊢ ∆ inµX.A〈M〉 : µX.A
(µR)

K : A[B/X] Γ ⊢ ∆, α : B L : B Γ ⊢ ∆

itrB
α[K, L] : µX.A Γ ⊢ ∆

(µL)

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 9

K : A[νX.A/X] Γ ⊢ ∆

outνX.A[K] : νX.A Γ ⊢ ∆
(νL)

Γ, x : B ⊢ ∆ M : A[B/X] Γ ⊢ ∆ N : B

Γ ⊢ ∆ coitrB
x 〈M,N〉 : νX.A

(νR)

We sometimes use the symbol ⊢DCµν instead of the symbol ⊢ in a judgment in order to explicitly

show it is a judgment of DCµν. That is, we write Γ ⊢DCµν ∆ M : A for the judgment Γ ⊢ ∆ M : A.

Similarly, we write K : A Γ ⊢DCµν ∆ and Γ S ⊢DCµν ∆.

The system DCµν satisfies the following basic lemmas.

Lemma 3.4 (Weakening lemma of DCµν). Let Γ ⊆ Γ′ and ∆ ⊆ ∆′. Then

(1) if Γ ⊢DCµν ∆ M : A is provable, then Γ′ ⊢DCµν ∆
′ M : A holds,

(2) if K : A Γ ⊢DCµν ∆ is provable, then K : A Γ′ ⊢DCµν ∆
′ holds, and

(3) if Γ S ⊢DCµν ∆ is provable, then Γ′ S ⊢DCµν ∆
′ holds.

Proof. They are shown simultaneously by induction on M, K, and S .

Lemma 3.5. Let Γ′ ⊆ Γ and ∆′ ⊆ ∆. Then the following claims hold in DCµν.

(1) If FV(M) ⊆ dom(Γ′) and FCV(M) ⊆ dom(∆′), then Γ ⊢ ∆ M : A implies Γ′ ⊢ ∆′ M : A.

(2) If FV(K) ⊆ dom(Γ′) and FCV(K) ⊆ dom(∆′), then K : A Γ ⊢ ∆ implies K : A Γ′ ⊢ ∆′.

(3) If FV(S) ⊆ dom(Γ′) and FCV(S) ⊆ dom(∆′), then Γ | S ⊢ ∆ implies Γ′ | S ⊢ ∆′.

Proof. They are shown simultaneously by induction on M, K, and S .

Lemma 3.6 (Substitution lemma of DCµν). The following claims hold.

(1) Suppose Γ ⊢DCµν ∆ N : A is derivable. Then the following hold.

(1a) If Γ, x : A ⊢DCµν ∆ M : B, then Γ ⊢DCµν ∆ M[N/x] : B,

(1b) if K : B Γ, x : A ⊢DCµν ∆, then K[N/x] : B Γ ⊢DCµν ∆, and

(1c) if Γ, x : A S ⊢DCµν ∆, then Γ S [N/x] ⊢DCµν ∆.

(2) Suppose L : A Γ ⊢DCµν ∆ is derivable. Then the following hold.

(2a) If Γ ⊢DCµν ∆, α : A M : B, then Γ ⊢DCµν ∆ M[L/α] : B,

(2b) if K : B Γ ⊢DCµν ∆, α : A, then K[L/α] : B Γ ⊢DCµν ∆, and

(2c) if Γ S ⊢DCµν ∆, α : A, then Γ S [L/α] ⊢DCµν ∆.

Proof. The claims (1a), (1b), and (1c) are shown simultaneously by induction on M, K, and S . The

claims (2a), (2b), and (2c) are also shown simultaneously by induction on M, K, and S .

The duality transformation can be extended from DC to DCµν.

Definition 3.7 (Duality Transformation). The duality transformation for types, terms, coterms,

statements, and inference rule names of DCµν is defined by those of DC and the following equa-

tions:

(µX.A)◦ = νX.(A)◦, (νX.A)◦ = µX.(A)◦.

(inµX.A〈M〉)◦ = outνX.(A)◦[(M)◦],

(outνX.A[K])◦ = inµX.(A)◦〈(K)◦〉,

(itrA
α[K, L])◦ = coitr

(A)◦

α′
〈(K)◦, (L)◦〉,

(coitrA
x 〈M,N〉)

◦ = itr
(A)◦

x′
[(M)◦, (N)◦].

(µR)◦ = (νL), (νL)◦ = (µR), (µL)◦ = (νR), (νR)◦ = (µL).

The above duality transformation is well-defined.

10 D. KIMURA AND M. TATSUTA

Lemma 3.8. The type (A)◦ is defined, and Pos(A) = Pos((A)◦) and Neg(A) = Neg((A)◦) hold.

Proof. These claims are shown by induction on A. We consider the cases of µX.B and νX.B. The

other cases are straightforwardly proved by the induction hypothesis.

The case of µX.B: Suppose that µX.B is defined. Then we have X is in Pos(B). By the induction

hypothesis, (B)◦ is defined and X occurs positively in (B)◦. Therefore νX.(B)◦ is defined, and we

have Pos(µX.B) = Pos(νX.(B)◦) and Neg(µX.B) = Neg(νX.(B)◦) by the induction hypothesis.

The case of νX.B can be shown in the similar way to the case of µX.B.

This duality transformation alternates free variables and free covariables that occur in terms

and coterms. Let V be a set of variables, and C be a set of covariables. Then a set of covariables

(V)◦ is defined by {x′ | x ∈ V}. A set of variables (C)◦ is also defined by {α′ | α ∈ C}.

Lemma 3.9. Let D be an expression of DCµν. Then FV((D)◦) = (FCV(D))◦ and FCV((D)◦) =

(FV(D))◦ hold.

Proof. The claims are shown by induction on D.

This duality transformation preserves substitution of types, terms, and coterms.

Lemma 3.10. Let A and B be types, D be an expression, M be a term, and K be a coterm of DCµν.

Then the following hold.

(1) (A[B/X])◦ = (A)◦[(B)◦/X].

(2) (D[M/x])◦ = (D)◦[(M)◦/x′].

(3) (D[K/α])◦ = (D)◦[(K)◦/α′].

Proof. The claim (1) is shown by induction on A. The claims (2) and (3) are shown by induction on

D.

The extended duality transformation preserves typing, and is an involution in DCµν.

Proposition 3.11. The following claims hold.

(1) If J is derived from J1, . . . , Jn (n = 1 or 2) by an inference rule R, then (J)◦ is derived from

(Jn)◦, . . . , (J1)◦ by the inference rule (R)◦.

(2) ((A)◦)◦ = A, ((D)◦)◦ = D, and ((J)◦)◦ = J hold for any type A, expression D, and judgment J of

DCµν.

Proof. The claim (1) is shown by case analysis of the inference rules of DCµν using Lemma 3.10

(1). The claim (2) is shown by induction on types and expressions.

Our reduction rules for inductive and coinductive types will be defined so that they correspond

to cut elimination procedures in the classical sequent calculus LK extended with inductive defini-

tions and coinductive definitions. In the following proof figures, we will write µ, ν, and A[B] for

µX.A, νX.A, and A[B/X] respectively. In the logical system, when the cut formula is an inductive

type, the cut elimination procedure reduces the proof
....

Γ ⊢ ∆, A[µ]

Γ ⊢ ∆, µ
(µR)

....
A[B], Γ ⊢ ∆, B

....
B, Γ ⊢ ∆

µ, Γ ⊢ ∆
(µL)

Γ ⊢ ∆
(Cut)

to the proof

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 11

....
Γ ⊢ ∆, A[µ]

Γ ⊢ ∆, B, A[µ]
(Wk)

....
A[B], Γ ⊢ ∆, B B, Γ ⊢ ∆, B

µ, Γ ⊢ ∆, B
(µL)

....
A[B], Γ ⊢ ∆, B

A[µ], Γ ⊢ ∆, B
(mono)

Γ ⊢ ∆, B
(Cut)

....
B, Γ ⊢ ∆

Γ ⊢ ∆
(Cut)

We can intuitively understand the rule (mono) as follows: µ ⊢ B implies A[µ] ⊢ A[B], so we have

A[µ] ⊢ B by combining it with A[B] ⊢ B. This rule will be formally shown in Lemma 3.14 (2a).

This reduction changes the cut formula from µ to A[µ]. We do not have to count the cut formula B,

since that cut is auxiliary. When the cut formula is a coinductive type, the cut elimination procedure

reduces a proof in a dual way to the above reduction.

When we have a function λx.M from A to B and the variable X is in Pos(C), we can define

the function from C[A/X] to C[B/X] by extending λx.M. We will use monoX.C
A,B,x.M

{N} so that this

function maps z to monoX.C
A,B,x.M

{z}. We will define monoX.C
A,B,x.M

{N} by induction on the measure ||C||X
for a type C and a type variable X, which is defined by induction on C as follows: If X is not free in

A, then ||A||X = 0. In the other cases, we assume that some X occurs in A and we define

||X||X = 1,

||A ∧ B||X = ||A ∨ B||X = ||A||X + ||B||X + 1,

||¬A||X = ||A||X + 1,

||µY.A||X = ||νY.A||X = ||A||X + ||A||Y + 1.

Note that if X is not free in B and we have X , Y , then ‖A ‖X = ‖A[B/Y] ‖X .

The number ||A||X will also be used for evaluating the size of monoX.C
A,B,x.M

{N} by using M, N,

and C (see Lemma 6.2). If we replaced ||A||X + ||A||Y + 1 by ||A||X + 1 in the definition of ||µY.A||X
and ||νY.A||X, it would not work for this purpose.

Definition 3.12. Assume a type variable X and types A, B,C are given and X is not free in A and B.

For a variable x and terms M and N, we define the term monoX.C
A,B,x.M

{N} by induction on ‖C ‖X as

follows:

monoX.X
A,B,x.M{N} = (N • x.(M • α)).α,

monoX.C
A,B,x.M{N} = N (X does not occur in C),

monoX.C∧D
A,B,x.M{N} = 〈 mono

X.C
A,B,x.M{(N • fst[α]).α}, monoX.D

A,B,x.M{(N • snd[β]).β} 〉,

monoX.C∨D
A,B,x.M{N} = (N • [y.(〈monoX.C

A,B,x.M{y} 〉inl • γ), z.(〈mono
X.D
A,B,x.M{z} 〉inr • γ)]).γ,

monoX.¬C
A,B,x.M{N} = [z.(N • not〈 monoX.C

B,A,x.M{z} 〉)]not,

mono
X.µY.C

A,B,x.M
{N} = (N • itr

µY.C[B/X]
α [z.(inµY.C[B/X]〈 mono

X.C[µY.C[B/X]/Y]

A,B,x.M
{ z } 〉 • α), β]).β,

monoX.νY.C
A,B,x.M{N} = coitr

νY.C[A/X]
z 〈 mono

X.C[νY.C[A/X]/Y]
A,B,x.M

{ (z • outνY.C[A/X][α]).α }, N 〉.

For a covariable α and coterms K and L, we also define

monoX.C
A,B,α.K

{L} = (mono
X.(C)◦

(B)◦,(A)◦,α′.(K)◦
{(L)◦})◦.

Note that ||µY.C||X > ||C[µY.C[B/X]/Y]||X and ||νY.C||X > ||C[νY.C[A/X]/Y]||X hold since X is

not free in µY.C[B/X] and νY.C[A/X]. We cannot replace C[µY.C[B/X]/Y] by C in the defini-

tion of mono
X.µY.C

A,B,x.M
{N} because of the type annotation for in. For readability, we sometimes write

monoX.C
A,B,x
{M,N} and monoX.C

A,B,α
{K, L} for monoX.C

A,B,x.M
{N} and monoX.C

A,B,α.K
{L}, respectively.

12 D. KIMURA AND M. TATSUTA

The paper [17] studied an intuitionistic logical system with strictly-positive inductive defini-

tions, and on the other hand we study a classical logical system with positive inductive definitions.

Our cut elimination for inductive types is the same as theirs, and on the other hand our cut elimi-

nation for coinductive types is different from theirs. They can avoid the use of mono. However, we

cannot straightforwardly compare our method and their method, since our system is strictly larger

than their system.

Our method works only for classical logic and does not work for an intuitionistic logic. This

is because our cut elimination procedure keeps the duality and we have the corresponding proof

rule that manipulates a succedent if we have some proof rule that manipulates an antecedent. In

particular, we define the operator mono for coterms as the dual of the operator mono for terms.

Roughly speaking, in the proof of the next lemma, when we show the properties of mono for negation

by using the derivation

A ⊢ B
A,¬B ⊢

¬B ⊢ ¬A,

we need the following derivation in order to show the properties of its dual:

B ⊢ A
⊢ A,¬B

¬A ⊢ ¬B

which uses a non-intuitionistic sequent.

Lemma 3.13. The following claims hold.

(1a) FV(monoX.C
A,B,x
{M,N}) ⊆ (FV(M) \ {x}) ∪ FV(N).

(1b) FCV(monoX.C
A,B,x
{M,N}) ⊆ FCV(M) ∪ FCV(N).

(2a) FV(monoX.C
A,B,α
{K, L}) ⊆ FV(K) ∪ FV(L).

(2b) FCV(monoX.C
A,B,α
{K, L}) ⊆ (FCV(K) \ {α}) ∪ FCV(L).

Proof. The claims (1a) and (1b) are shown by induction on ‖C ‖X . The claims (2a) and (2b) are

shown by using (1a), (2b), and Lemma 3.9.

Lemma 3.14. Assume X is in Pos(C) and Neg(D). Then the following hold:

(1a) Γ, x : A ⊢ ∆ | M : B and Γ ⊢ ∆ | N : C[A] implies Γ ⊢ ∆ | monoX.C
A,B,x.M

{N} : C[B],

(1b) Γ, x : B ⊢ ∆ M : A and Γ ⊢ ∆ N : D[A] implies Γ ⊢ ∆ monoX.D
A,B,x.M

{N} : D[B],

(2a) K : A Γ ⊢ ∆, α : B and L : C[B] Γ ⊢ ∆ implies monoX.C
A,B,α.K

{L} : C[A] Γ ⊢ ∆,

(2b) K : B Γ ⊢ ∆, α : A and L : D[B] Γ ⊢ ∆, implies monoX.D
A,B,α.K

{L} : C[A] Γ ⊢ ∆,

where C[A] and D[A] are abbreviations of C[A/X] and D[A/X], respectively.

Proof. The claims (1a) and (1b) are shown simultaneously by induction on ||C||X and ||D||X . The

claims (2a) and (2b) are shown by using (1a), (1b), and Proposition 3.11.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 13

The following proposition is obtained as a special case of the above lemma.

Proposition 3.15. Assume X is in Pos(C). The following are derivable:

Γ, x : A ⊢ ∆ | M : B

Γ, z : C[A] ⊢ ∆ | monoX.C
A,B,x.M

{z} : C[B]

K : A Γ ⊢ ∆, α : B

monoX.C
A,B,α.K

{β} : C[A] Γ ⊢ ∆, β : C[B]

Definition 3.16. We define the one-step reduction relation −→DCµν of DCµν as the compatible closure

of the reduction rules of DC and the following reduction rules:

(βµ) inµX.C〈M〉 • itrA
α[K, L] −→DCµν (M • monoX.C

µX.C,A,β
{ itrA

α[K, β], K }).α • L,

(βν) coitrA
x 〈M,N〉 • out

νX.C[K] −→DCµν N • x.(monoX.C
A,νX.C,z

{ coitrA
x 〈M, z〉, M } • K).

This system has subject reduction.

Proposition 3.17 (Subject reduction of DCµν). The following claims hold.

(1) If Γ ⊢DCµν ∆ M : A and M −→DCµν N, then Γ ⊢DCµν ∆ N : A holds.

(2) If K : A Γ ⊢DCµν ∆ and K −→DCµν L, then L : A Γ ⊢DCµν ∆ holds.

(3) If Γ S ⊢DCµν ∆ and S −→DCµν T, then Γ T ⊢DCµν ∆ holds.

Proof. They are shown simultaneously by induction on the generation of −→DCµν using Lemma 3.4,

3.5, 3.6, and 3.14. We consider the cases of (βµ) and (βν).

Case of (βµ). Assume Γ inµX.C〈M〉 • itrA
α[K, L] ⊢ ∆ is derivable in DCµν. We use µ and C[A]

as abbreviations of µX.C and C[A/X], respectively. The last rule of the derivation must be (Cut)

rule. Then Γ ⊢ ∆ inµX.C〈M〉 : D and itrA
α[K, L] : D Γ ⊢ ∆ are derivable for some type D. Since

the last rules of these derivations must be (µR) and (µL), we obtain D is µX.C, and the derivations

of Γ ⊢ ∆ M : C[µ], the judgment K : C[A] Γ ⊢ ∆, α : B, and L : A Γ ⊢ ∆, α : B. Hence we have

itrA
α[K, β] : µ Γ ⊢ ∆, β : A by (AxL) and (µL) rules, and then monoX.C

µ,A,β
{ itrA

α[K, β], K } : C[µ] Γ ⊢

∆, α : A is derivable by Lemma 3.14. Therefore we have Γ (M•monoX.C
µ,A,β
{ itrA

α[K, β], K }).α•L ⊢ ∆

by using (IR), (Cut) rules.

The case of (βν) is shown similarly to the case of (βµ).

The other cases are straightforwardly proved by the induction hypothesis.

The duality transformation (−)◦ preserves reduction.

Theorem 3.18 (Duality of DCµν). D −→DCµν E implies (D)◦ −→DCµν (E)◦ for any expressions D

and E.

Proof. This is proved by induction on the generation of −→DCµν.

Proposition 3.19. If D −→DCµν E is the rules (βµ) and (βν), then (D)◦ −→DCµν (E)◦ is (βν) and (βµ)

respectively.

We have shown the duality of inductive types and coinductive types. Proposition 3.11 and

Theorem 3.18 show that the duality transformation is a homomorphic involution. The description

of a type can be defined as the set of the type itself, its terms, its coterms, and their reduction. The

duality transformation maps the description of an inductive type and that of a coinductive type to

each other. That is, we have the following. (1) Definition 3.7 shows that the inductive type µX.A is

mapped to the coinductive type νX.(A)◦, the term constructed by in for the inductive type is mapped

to the coterm constructed by out for the coinductive type, and the coterm constructed by itr for the

inductive type is mapped to the term constructed by coitr for the coinductive type. (2) Proposition

3.19 shows that the cut elimination procedure of the inductive type is mapped to the cut elimination

procedure of the coinductive type. (3) the coinductive type is mapped to the inductive type in a

similar way to (1) and (2).

14 D. KIMURA AND M. TATSUTA

Remark 3.20. We cannot define our typing system by using

K : C[A/X] Γ ⊢ ∆, α : A

itrA
α[K, β] : µX.C Γ ⊢ ∆, β : A

(µL′)

instead of the typing rule (µL). If we used (µL′), the set of terms would not be closed under sub-

stitution, because itrA
α[K, L] would not have typing rules for it and hence it would not be a term,

though it is obtained from itrA
α[K, β] by substituting L for β.

4. Examples

In this section we show some examples of inductive and coinductive types in DCµν. Let X0 be a

distinguished type variable. We use the following abbreviations:

⊤ = ¬X0 ∨ X0, ⊥ = ¬X0 ∧ X0, and ∗ = λx.x.

The type Nat of natural numbers can be represented by:

Nat = µX.(⊤ ∨ X),

0 = inNat〈 〈∗〉inl 〉,

succ〈M〉 = inNat〈 〈M〉inr 〉,

where 0 is the zero and succ is the successor. We can prove Γ ⊢ ∆ 0 : Nat. We can also

prove Γ ⊢ ∆ succ〈M〉 : Nat from Γ ⊢ ∆ M : Nat. The n-th natural number ñ is rep-

resented by succ〈succ〈. . . succ〈0〉 . . .〉〉 (n times of succ). We will write M[/x]n(N) for

M[M[. . . [M[N/x]/x] . . . /x]/x] (n times of M). We define a coterm ItrB[F,N,K] of type Nat by

itrB
α

[

[y.(N •α), x.(F • (x@α))],K
]

, where y is not free in N, the term F has type B ⊃ B, and N and

K are of type B. When the coterm ItrB[F,N,K] gets ñ as its input, it computes n-time iterations

of applying the function F to N, and passes the output to K. This reduces ñ • ItrB[λx.M,N,K] to

M[/x]n(N) • K.

The type List(A) of lists of elements of type A is represented by:

List(A) = µX.(⊤ ∨ (A ∧ X)),

nil = inList(A)〈 〈∗〉inl 〉,

M :: Nl = inList(A)〈 〈 〈M,Nl〉 〉inr 〉.

The term nil is the empty list and (::) is the list constructor. In DCµν, the judgment Γ ⊢

∆ nil : List(A) is provable. The judgment Γ ⊢ ∆ M :: Nl : List(A) is also provable from

Γ ⊢ ∆ M : A and Γ ⊢ ∆ Nl : List(A).

We note that the above examples can be considered under the call-by-value setting (section 7)

if we restrict terms in the above examples to values.

We can also define the type Stream(A) of streams of elements of type A by:

Stream(A) = νX.(A ∧ X),

cons〈M,Ns〉 = coitr
A∧Stream(A)
x 〈 〈π1(x), (π2(x) • outStream(A)[α]).α〉, 〈M,Ns〉 〉,

hd[K] = outStream(A)[fst[K]],

tl[L] = outStream(A)[snd[L]],

where π1(M) is the first projection of M defined by (M • fst[α]).α, and π2(M) is the second pro-

jection of M defined by (M • snd[α]).α. The term cons〈M,Ns〉 constructs a new stream from a

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 15

given element M and a given stream Ns. The coterm hd[K] receives the first element from a given

stream and gives it to K. The coterm tl[L] removes the first element from a given stream and gives

the resulting stream to L. We can prove Γ ⊢ ∆ cons〈M,Ns〉 : Stream(A) from Γ ⊢ ∆ M : A and

Γ ⊢ ∆ Ns : Stream(A). We can also prove hd[K] : Stream(A) Γ ⊢ ∆ from K : A Γ ⊢ ∆. We can

also prove tl[L] : Stream(A) Γ ⊢ ∆ from L : Stream(A) Γ ⊢ ∆. This reduces cons〈M,Ns〉•hd[K]

to M • K. We also reduce cons〈M,Ns〉 • tln+1[hd[K]] to Ns • tln[hd[K]], where tln[hd[K]] is

defined by tl[tl[. . . tl[hd[K]] . . .]] (n times of tl). Hence the coterm tln[hd[K]] receives the

n-th element of a given stream and gives it to K. Let M be a term of type A. The stream of infi-

nite number of M is represented by coitr⊤x 〈〈M, x〉, ∗〉, where x is a fresh variable. We will write

stream(M) for coitr⊤x 〈〈M, x〉, ∗〉. Indeed, the statement stream(M) • tln[hd[K]] is reduced to M

for any n. This means that any n-th element of stream(M) is M.

We note that this stream example can be considered under the call-by-name setting (section 7)

if we restrict coterms in the above example to covalues.

Proposition 4.1. Nat is dual to Stream(⊥), that is, (Nat)◦ = Stream(⊥), (0)◦ = hd[(∗)◦], and

(succ〈M〉)◦ = tl[(M)◦] hold.

If Stream(⊥) is considered under the call-by-name setting and Nat is considered under the call-

by-value setting, then the duality of the above proposition can be understood as follows. The type ⊤

means the singleton set {∗}. The type ⊥ means the type of a program that returns some answer after

computation with the input ∗ since ⊥ is equivalent to ¬⊤. The type Nat means the infinite disjoint

sum ⊤+⊤+⊤+ The type Stream(⊥) means the infinite cartesian product ⊥×⊥×⊥× Since

a term in Stream(⊥) is equivalent to a coterm in Nat, when the term gets some natural number and

is computed, it returns some answer. When the term gets the natural number ñ, since ñ is ∗ in the

n-th ⊤ in ⊤+⊤+ . . ., the term in the n-th ⊥ in ⊥×⊥× . . . is given the input ∗ and it is computed to

give some answer.

Here we can also consider examples that include non-deterministic choices. Let M and N

be terms of same type, x be a fresh variable, α and β be fresh covariables. We define the non-

deterministic choice 〈M | N〉 by

〈M | N〉 = ((M • α).β • x.(N • α)).α,

where α and β are fresh covariables. This term has both (βL) and (βR)-redexes. It is reduced to

M if the (βR)-redex is chosen, and is reduced to N if the (βL)-redex is chosen. Thus, 〈M | N〉

can be considered as a non-deterministic choice of either M or N. This non-deterministic choice

〈M | N〉 is forced to choose M under the call-by-value strategy, and is forced to choose N under the

call-by-name strategy.

An example of non-deterministic computation is the list insertion function. This function gets a

list as its input data, and non-deterministically chooses one arbitrary place in the list. Then it returns

a new list that is obtained by inserting a given element at the place.

Let M be a term of type A, and K′ be a coterm of type List(A) ∧ List(A). Then we define

insM[K′] of type List(A) by

insM[K′] = itr
List(A)∧List(A)
α [[L1(α), L2(α)],K′],

L1(α) = x.(〈M :: nil, nil〉 • α),

L2(α) = z.(〈 〈π1(z) :: π1π2(z), π1(z) :: π2π2(z)〉 | 〈M :: π1(z) :: π2π2(z), π1(z) :: π1π2(z)〉 〉 • α)

where x occurs in L1(α) is a fresh variable of type ⊤, and z occurs in L2(α) is a fresh variable of

type A ∧ (List(A) ∧ List(A)). Then if Nl is a list and Nl′ is a list obtained by inserting M in some

place of Nl, then the statement Nl • insM[K′] can be reduced to 〈Nl′,Nl〉 • K′. We can show this

by induction on the length of Nl. If Nl is nil, then Nl′ is M :: nil. The statement nil • insM[K′]

16 D. KIMURA AND M. TATSUTA

is reduced to 〈M :: nil, nil〉 • K′. If Nl is N :: Nl0, then Nl′ is either N :: Nl′
0

or M :: N :: Nl0,

where Nl′
0

is an inserted list obtained from Nl0. The statement (N :: Nl0) • insM[K′] is reduced to

(〈N, (Nl0•insM[γ]).γ〉•L2(α)).α•K′. Then this statement is reduced to (〈N, 〈Nl0,Nl′
0
〉〉•L2(α)).α•

K′ by the induction hypothesis. We have 〈 〈N :: Nl′
0
,Nl〉 | 〈M :: N :: Nl0,Nl〉 〉 • K′. Hence we can

obtain 〈M :: N :: Nl0,Nl〉 • K′ or 〈M :: N :: Nl0,Nl〉 • K′.

Let K be a coterm of type List(A). Here we define

insertM[K] = insM[fst[K]].

Then the statement Nl • insertM[K] is reduced to Nl′ • K for any inserted list Nl′ obtained from

Nl.

5. The Second-Order Dual Calculus DC2

We consider the second-order extension DC2 of DC given by Tzevelekos [26]. He showed the basic

properties of DC2, such as the substitution lemma and subject reduction. Without formal discussion,

he also mentioned that his translation from DC into the symmetric λ-calculus can be extended to

the second-order case. In this section, we give a formal definition of the second-order translation

from DC2 into the second-order symmetric λ-calculus, and show the strong normalization of DC2 by

using this translation. For this purpose we will use the strong normalization result of the second-

order symmetric λ-calculus given in [21].

Definition 5.1. An expression is defined to be strongly normalizing if there does not exist any

infinite reduction sequence starting from the expression.

First, we define a second-order extension DC2 of DC.

Definition 5.2 (DC2). The types, terms, coterms, and statements of DC2 are defined by:

Types AF X | A ∧ A | A ∨ A | ¬A | ∀X.A | ∃X.A,

Terms MF x | 〈M,M〉 | 〈M〉inl | 〈M〉inr | [K]not | (S).α | 〈M〉a | 〈M〉e,

Coterms K F α | [K,K] | fst[K] | snd[K] | not〈M〉 | x.(S) | a[K] | e[K],

Statements S F M • K.

The typing rules and reduction rules (denoted by −→DC2) of DC2 are defined by extending the rules

of DC with the following rules:

Γ ⊢ ∆ M : A

Γ ⊢ ∆ 〈M〉a : ∀Z.A
(∀R)

K : A[B/X] Γ ⊢ ∆

a[K] : ∀X.A Γ ⊢ ∆
(∀L)

Γ ⊢ ∆ M : A[B/X]

Γ ⊢ ∆ 〈M〉e : ∃X.A
(∃R)

K : A Γ ⊢ ∆

e[K] : ∃Z.A Γ ⊢ ∆
(∃L)

(β∀) 〈M〉a • a[K] −→DC2 M • K,

(β∃) 〈M〉e • e[K] −→DC2 M • K,

where Z is not free in Γ and ∆ in (∀R) and (∃L). We write −→+
DC2

to denote the transitive closure of

−→DC2.

We have the new constructors a and e, which are trivial witnesses for the quantifiers at the

level of expressions, so that the system has subject reduction. We choose our DC2 so that it does

not contain type information in expressions, since our purpose is to show strong normalization of

the second-order dual calculus, and in general the strong normalization of the system with type

information is implied by the strong normalization of the system without type information.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 17

We sometimes use the symbol ⊢DC2 instead of the symbol ⊢ that appears in a judgment in order

to explicitly show it is a judgment of DC2. That is, we write Γ ⊢DC2 ∆ M : A for the judgment

Γ ⊢ ∆ M : A. Similarly, we write K : A Γ ⊢DC2 ∆ and Γ S ⊢DC2 ∆.

We write Γ[B/X] for x1 : C1[B/X], . . . , xn : Cn[B/X] if Γ is x1 : C1, . . . , xn : Cn. We also write

∆[B/X]] for α1 : D1[B/X], . . . , αm : Dm[B/X] if ∆ is α1 : D1, . . . , αm : Dn.

Lemma 5.3. The following claims hold.

(1) If Γ ⊢DC2 ∆ M : A, then Γ[B/X] ⊢DC2 ∆[B/X] M : A[B/X] holds.

(2) If K : A Γ ⊢DC2 ∆, then K : A Γ[B/X] ⊢DC2 ∆[B/X] holds.

(3) If Γ S ⊢DC2 ∆, then Γ[B/X] S ⊢DC2 ∆[B/X] holds.

Proof. They are shown simultaneously by induction on expressions.

The basic lemmas for DC and DCµν are also shown in DC2. We use Lemma 5.3 to show weak-

ening lemma.

Lemma 5.4 (Weakening lemma). Let Γ ⊆ Γ′ and ∆ ⊆ ∆′. Then the following hold in DC2.

(1) If Γ ⊢ ∆ M : A is provable, then Γ′ ⊢ ∆′ M : A holds.

(2) If K : A Γ ⊢ ∆ is provable, then K : A Γ′ ⊢ ∆′ holds.

(3) If Γ S ⊢ ∆ is provable, then Γ′ S ⊢ ∆′ holds.

Proof. They are shown simultaneously by induction on M, K, and S . We use Lemma 5.3 when we

show the cases of 〈M〉a and e[K]. We consider these cases.

The case of 〈M〉a. Assume Γ ⊆ Γ′, ∆ ⊆ ∆′, and Γ ⊢ ∆ 〈M〉a : A is derivable. Since the last

rule of the derivation must be (∀R), we have A is ∀X.B for some B, the variable X is not free in Γ

and ∆, and Γ ⊢ ∆ M : B is derivable. Then we have Γ ⊢ ∆ M : B[Z/X] for a fresh type variable Z

by using Lemma 5.3. By the induction hypothesis, Γ′ ⊢ ∆′ M : B[Z/X] holds. Therefore we obtain

Γ′ ⊢ ∆′ 〈M〉a : ∀Z.(B[Z/X]) by (∀R) rule, since Z is not free in Γ′ and ∆′.

The case of e[K] is shown similar to the case of 〈M〉a.

The other cases are straightforwardly proved by the induction hypothesis.

Lemma 5.5. Let Γ′ ⊆ Γ and ∆′ ⊆ ∆. Then the following hold in DC2.

(1) If FV(M) ⊆ dom(Γ′) and FCV(M) ⊆ dom(∆′), then Γ ⊢ ∆ M : A implies Γ′ ⊢ ∆′ M : A.

(2) If FV(K) ⊆ dom(Γ′) and FCV(K) ⊆ dom(∆′), then K : A Γ ⊢ ∆ implies K : A Γ′ ⊢ ∆′.

(3) If FV(S) ⊆ dom(Γ′) and FCV(S) ⊆ dom(∆′), then Γ | S ⊢ ∆ implies Γ′ | S ⊢ ∆′.

Proof. They are shown simultaneously by induction on M, K, and S .

Lemma 5.6 (Substitution lemma). The following claims hold.

(1) Suppose Γ ⊢DC2 ∆ N : A is derivable. Then the following hold.

(1a) If Γ, x : A ⊢DC2 ∆ M : B, then Γ ⊢DC2 ∆ M[N/x] : B.

(1b) If K : B Γ, x : A ⊢DC2 ∆, then K[N/x] : B Γ ⊢DC2 ∆.

(1c) If Γ, x : A S ⊢DC2 ∆, then Γ S [N/x] ⊢DC2 ∆.

(2) Suppose L : A Γ ⊢DC2 ∆ is derivable. Then the following hold.

(2a) If Γ ⊢DC2 ∆, α : A M : B, then Γ ⊢DC2 ∆ M[L/α] : B.

(2b) If K : B Γ ⊢DC2 ∆, α : A, then K[L/α] : B Γ ⊢DC2 ∆.

(2c) If Γ S ⊢DC2 ∆, α : A, then Γ S [L/α] ⊢DC2 ∆.

Proof. The claims (1a),(1b), and (1c) are shown simultaneously by induction on M, K, and S . The

claims (2a),(2b), and (2c) are also shown simultaneously by induction on M, K, and S .

18 D. KIMURA AND M. TATSUTA

This system has subject reduction.

Proposition 5.7 (Subject reduction of DC2). The following claims hold.

(1) If Γ ⊢DC2 ∆ M : A and M −→DC2 N, then Γ ⊢DC2 ∆ N : A holds.

(2) If K : A Γ ⊢DC2 ∆ and K −→DC2 L, then L : A Γ ⊢DC2 ∆ holds.

(3) If Γ S ⊢DC2 ∆ and S −→DC2 T, then Γ T ⊢DC2 ∆ holds.

Proof. They are shown simultaneously by induction on the generation of −→DC2 using Lemma 5.3,

5.4, 5.5, and 5.6. We show the cases of (β∀) and (β∃).

The case of (β∀). Suppose Γ 〈M〉a • a[K] ⊢ ∆ is derivable. Then Γ ⊢ ∆ 〈M〉a : C and

a[K] : C Γ ⊢ ∆ are derivable for some type C. Since the last rules of these derivation must be (∀R)

and (∀L), we have C is ∀X.A for some A, X is not free in both Γ and ∆, and Γ ⊢ ∆ M : A and

K : A[B/X] Γ ⊢ ∆ are derivable for some B. Then we can obtain Γ ⊢ ∆ M : A[B/X] by Lemma 5.3.

Therefore Γ M • K ⊢ ∆ can be derived by (Cut) rule.

The case of (β∃) is shown similar to the case of (β∀).

The other cases are straightforwardly proved by the induction hypothesis.

Remark 5.8. The trivial witnesses a and e are necessary for the subject reduction. If we did not

have these constructors, the subject reduction would fail. If we chose the following (∀R′) and (∀L′)

instead of (∀R) and (∀L),

Γ ⊢ ∆ M : A

Γ ⊢ ∆ M : ∀Z.A
(∀R′)

K : A[B/X] Γ ⊢ ∆

K : ∀X.A Γ ⊢ ∆
(∀L′)

then the following would be a counter-example: we would have Γ (x • fst[α]).α • β ⊢ ∆ where Γ

is x : X ∧ Y , the sequence ∆ is β : ∀Z.X, and Z , X, Y , but would not have Γ x • fst[β] ⊢ ∆, though

(x • fst[α]).α • β is reduced to x • fst[β].

In λ-calculus the constructor a is not necessary for subject reduction while the constructor e is

necessary for it [25]. In our system, since ∀ and ∃ are dual, the constructor a is also needed.

The duality transformation can be extended from DC to DC2.

Definition 5.9 (Duality Transformation). The duality transformation for types, expressions, and

inference rule names of DC2 is defined by those of DC and the following equations:

(∀X.A)◦ = ∃X.(A)◦, (∃X.A)◦ = ∀X.(A)◦,

(〈M〉a)◦ = e[(M)◦], (e[K])◦ = 〈(K)◦〉a,

(〈M〉e)◦ = a[(M)◦], (a[K])◦ = 〈(K)◦〉e,

(∀R)◦ = (∃L), (∃L)◦ = (∀R), (∀L)◦ = (∃R), (∃R)◦ = (∀L).

This duality transformation preserves substitution of types, terms, and coterms.

Lemma 5.10. Let A and B be types, D be an expression, M be a term, and K be a coterm of DC2.

Then the following hold.

(1) (A[B/X])◦ = (A)◦[(B)◦/X].

(2) (D[M/x])◦ = (D)◦[(M)◦/x′].

(3) (D[K/α])◦ = (D)◦[(K)◦/α′].

Proof. The claim (1) is shown by induction on A. The claims (2) and (3) are shown by induction on

D.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 19

The extended duality transformation preserves typing and reduction. It is an involution in DC2.

Proposition 5.11 (Duality of DC2). The following claims hold.

(1) If J is derived from J1, . . . , Jn (n = 1 or 2) by an inference rule R, then (J)◦ is derived from

(Jn)◦, . . . , (J1)◦ by the inference rule (R)◦.

(2) D −→DC2 E implies (D)◦ −→DC2 (E)◦.

(3) ((A)◦)◦ = A, ((D)◦)◦ = D, and ((J)◦)◦ = J hold.

Proof. The claim (1) is proved by case analysis of the inference rules of DC2. The claim (2) is

proved by induction of the generation of −→DC2 using Lemma 5.10. The claim (3) is proved by

induction on types and expressions.

Next we give a definition of the second-order symmetric λ-calculus Sλ2. The symmetric λ-

calculus is introduced by Barbanera and Berardi [2] as a classical extension of the λ-calculus. The

strong normalization of its second-order extension Sλ2 is proved by Parigot [21] using the reducibil-

ity method. The particular system we consider here is an extension of Parigot’s system with two

additional rules (ηr and ηl). As discussed in ibid., Parigot’s proof works with this variant without

problem.

Definition 5.12 (Sλ2). We define the second-order symmetric λ-calculus Sλ2. The types of Sλ2 are

either the special type ⊥ or m-types (denoted by τ, σ, . . .) given by:

τF X | X⊥ | τ × τ | τ + τ | ∀X.τ | ∃X.τ

where X, Y, . . . range over type variables. The types ∀X.τ and ∃X.τ bind X in τ. The negation (τ)⊥

of τ is defined by:

(X)⊥ = X⊥, (X⊥)⊥ = X,

(τ × σ)⊥ = (τ)⊥ + (σ)⊥, (τ + σ)⊥ = (τ)⊥ × (σ)⊥,

(∀X.τ)⊥ = ∃X.(τ)⊥, (∃X.τ)⊥ = ∀X.(τ)⊥.

The symbols x, y, . . ., α, β, . . . range over variables. The terms of Sλ2, denoted by t, u, . . ., are defined

by

tF x | inj1(t) | inj2(t) | 〈t, t〉 | t ∗ t | λx.t | a(t) | e(t).

The one-step reduction relation −→Sλ2 of Sλ2 is defined as the compatible closure of the fol-

lowing rules:

(βr) (λx.t) ∗ u −→Sλ2 t[u/x], (βl) u ∗ (λx.t) −→Sλ2 t[u/x],

(β×+1) 〈t1, t2〉 ∗ inj1(u) −→Sλ2 t1 ∗ u, (β+×1) inj1(u) ∗ 〈t1, t2〉 −→Sλ2 u ∗ t1,

(β×+2) 〈t1, t2〉 ∗ inj2(u) −→Sλ2 t2 ∗ u, (β+×2) inj2(u) ∗ 〈t1, t2〉 −→Sλ2 u ∗ t2,

(β∀∃) a(t) ∗ e(u) −→Sλ2 t ∗ u, (β∃∀) e(u) ∗ a(t) −→Sλ2 u ∗ t,

(ηr) λy.(y ∗ t) −→Sλ2 t, (ηl) λy.(t ∗ y) −→Sλ2 t,

where y is not free in t in (ηl) and (ηr).

20 D. KIMURA AND M. TATSUTA

A typing context (denoted by Γ, ∆) is a finite set and of the form x1 : τ1, . . . , xn : τn. A judgment

of Sλ2 takes either the form Γ ⊢ t : τ or Γ ⊢ t : ⊥. The typing rules of Sλ2 are defined as follows:

Γ, x : τ ⊢ x : τ
(Ax)

Γ, x : τ ⊢ t : ⊥

Γ ⊢ λx.t : (τ)⊥
(abs)

Γ ⊢ t : (τ)⊥ Γ ⊢ u : τ

Γ ⊢ t ∗ u : ⊥
(app)

Γ ⊢ t : τi
Γ ⊢ inji(t) : τ1 + τ2

(+i) (i = 1, 2)
Γ ⊢ t : τ Γ ⊢ u : σ
Γ ⊢ 〈t, u〉 : τ × σ

(×)

Γ ⊢ t : τ
Γ ⊢ a(t) : ∀X.τ

(∀)
(X is not free in Γ)

Γ ⊢ t : τ[σ/X]

Γ ⊢ e(t) : ∃X.τ
(∃)

Theorem 5.13 (Strong normalization of Sλ2 [21]). Every typable term is strongly normalizing in

Sλ2.

We will give a reduction-preserving and type-preserving translation from DC2 into Sλ2. Our

translation is a second-order extension of the translation from DC into the symmetric λ-calculus

given by Tzevelekos [26].

Definition 5.14. Let A be a type of DC2. The type (A)† of Sλ2 is defined as follows:

(X)† = X, (A ∧ B)† = (A)† × (B)†, (A ∨ B)† = (A)† + (B)†,

(¬A)† = ((A)†)⊥, (∀X.A)† = ∀X.(A)†, (∃X.A)† = ∃X.(A)†.

Let D be an expression of DC2. The term (D)† of Sλ2 is defined by:

(x)† = x, (α)† = α,

((S).α)† = λα.(S)†, (x.(S))† = λx.(S)†,

(〈M〉a)† = a((M)†), (〈M〉e)† = e((M)†),

(e[K])† = a((K)†), (a[K])† = e((K)†),

(〈M〉inl)† = inj1((M)†), (fst[K])† = inj1((K)†),

(〈M〉inr)† = inj2((M)†), (snd[K])† = inj2((K)†),

(〈M,N〉)† = 〈(M)†, (N)†〉, ([K, L])† = 〈(K)†, (L)†〉,

([K]not)† = λx.(x ∗ (K)†), (not〈M〉)† = (M)†,

(M • K)† = (M)† ∗ (K)†.

We define the translation of [K]not by using η-expansion, so that all reductions in DC2 are strictly

simulated in Sλ2.

(Γ)† and ((∆)†)⊥ are defined as x1 : (A1)†, . . . , xn : (An)† and α1 : ((B1)†)⊥, . . . , αm : ((Bm)†)⊥

respectively if Γ is x1 : A1, . . . , xn : An, and ∆ is α1 : B1, . . . , αm : Bm. For a judgment J of DC2,

the judgment (J)† of Sλ2 is defined as follows: The judgment (Γ ⊢ ∆ M : A)† is defined

as (Γ)†, ((∆)†)⊥ ⊢ (M)† : (A)†. The judgment (K : A Γ ⊢ ∆)† is defined as (Γ)†, ((∆)†)⊥ ⊢

(K)† : ((A)†)⊥. The judgment (Γ S ⊢ ∆)† is defined as (Γ)†, ((∆)†)⊥ ⊢ (S)† : ⊥.

This translation preserves provability and one-step reductions.

Proposition 5.15. The following claims hold.

(1) If J is provable in DC2, then (J)† is provable in Sλ2.

(2) D −→DC2 E implies (D)† −→Sλ2 (E)†.

Proof. The claim (1) is shown by induction on the proof of J. The claim (2) is shown by induction

on the definition of −→DC2.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 21

We can obtain strong normalization of DC2 from the above proposition.

Theorem 5.16 (Strong normalization of DC2). Every typable expression is strongly normalizing in

DC2.

Proof. Assume there is an infinite reduction sequence

D = D0 −→DC2 D1 −→DC2 . . .

starting from D. From Proposition 5.15, the expression (D)† is typable in Sλ2, and

(D)† −→Sλ2 (D1)† −→Sλ2 . . .

is an infinite reduction sequence. This contradicts Theorem 5.13.

Remark 5.17. Tzevelekos [26] also gave a back translation (−)p from the symmetric λ-calculus

into DC. As noted in his paper (Section 3, Note 3.5), this translation cannot extend to the second-

order case since it does not preserve typing judgments for existential quantification. This is because

the translation (−)p does not preserve type substitution: (A[B/X])p
, (A)p[(B)p/X]. The same

argument applies to ours.

6. Strong Normalization of DCµν

In this section, we prove strong normalization in DCµν. We will give a translation from DCµν into

DC2 that is based on the second-order encoding of inductive and coinductive types. Our proof of

strong normalization will be done by showing the fact that one-step reduction in DCµν is translated

to one or more steps reduction in DC2.

We use the following degree of expressions in DCµν for defining the second-order coding of

inductive and coinductive types.

When we try to prove some properties of expressions by induction on expressions, that induc-

tion sometimes does not work, since the expression contains mono
X,C
A,B,x.M

{N} that is defined by using

induction on ||C||X. In order for solving this, we will introduce the pair of the summation of ||C||X
and the size of an expression as a measure.

Definition 6.1. Let D be an expression in DCµν. The number ||D|| is defined by:

||x|| = ||α|| = 0,

||〈M,N〉|| = ||coitrA
x 〈M,N〉|| = max(||M||, ||N||),

||M • K|| = max(||M||, ||K||),

||[K, L]|| = ||itrA
α[K, L]|| = max(||K||, ||L||),

||(S).α|| = ||x.(S)|| = ||S ||,

||〈M〉inl|| = ||〈M〉inr|| = ||not〈M〉|| = ||M||,

||inµX.A〈M〉|| = ||M|| + ||A||X + 1,

||fst[K]|| = ||snd[K]|| = ||[K]not|| = ||K||,

||outνX.A[K]|| = ||K|| + ||A||X + 1.

22 D. KIMURA AND M. TATSUTA

The number |D| is defined by:

|x| = |α| = 0,

|〈M,N〉| = |coitrA
x 〈M,N〉| = |M| + |N| + 1,

|M • K| = |M| + |K| + 1,

|[K, L]| = |itrA
α[K, L]| = |K| + |L| + 1,

|(S).α| = |x.(S)| = |S | + 1,

|〈M〉inl| = |〈M〉inr| = |not〈M〉| = |inµX.A〈M〉| = |M| + 1,

|fst[K]| = |snd[K]| = |[K]not| = |outνX.A[K]| = |K| + 1.

The degree deg(D) of the expression D is defined as the pair (||D||, |D|). We also define the order of

the degrees by the lexicographic order.

The number |D| is the number of constructors in the expression D. The number ||D|| is the

maximum summation of (||A||X + 1) for inµX.A〈M〉 and outνX.A[K] in paths in D. For example,

deg(inµX.¬X∨X〈(〈[x.(〈x〉inr • γ)]not〉inl • γ).γ〉) = (4, 7). We have ||E|| ≤ ||D|| and |E| < |D| when

the expression E is a proper subexpression of D. The degree satisfies the following properties.

Lemma 6.2. The following claims hold.

(1) ||D|| = ||(D)◦|| and |D| = |(D)◦| hold.

(2) || monoX.A
B,C,x
{M,N} || ≤ ||M|| + ||N|| + ||A||X holds.

(3) deg(inµX.A〈M〉) > deg(monoX.A
µX.A,Y,α

{ x.(y • (x@α)), β }) holds.

Proof. The claims of (1) are shown by induction on D. The claim (2) is shown by induction on

||A||X . The claim (3) is proved by using (2).

We present the second-order encoding for DCµν. We will write λ(x, α).S for λx.((S).α). Then

(λ(x, α).S) • (N@K) is reduced to S [N/x][K/α].

Definition 6.3 (Translation (−) from DCµν into DC2). Let A be a type of DCµν. The type A of DC2 is

defined as follows:

X = X, A ∧ B = A ∧ B, ¬A = ¬A, A ∨ B = A ∨ B,

µX.A = ∀X.((A ⊃ X) ⊃ X), νX.A = ∃X.(¬(¬A ∧ X) ∧ X),

where ⊃ is defined in Definition 2.9. For an expression D of DCµν, the expression D of DC2 is defined

by induction on deg(D) as follows. For the expressions D of the same degree, we first define D for

D such that D is not of the form outνX.A[K] or coitrA
x 〈M,N〉, and we next define D for D such that

D is of the form outνX.A[K] or coitrA
x 〈M,N〉.

x = x, α = α,

(S).α = (S).α, x.(S) = x.(S),

〈M,N〉 = 〈M,N〉, [K, L] = [K, L],

〈M〉inl = 〈M〉inl, fst[K] = fst[K],

〈M〉inr = 〈M〉inr, snd[K] = snd[K],

[K]not = [K]not, not〈M〉 = not〈M〉,

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 23

M • K = M • K,

itrA
α[K, L] = a[(λ(x, α).(x • K))@L],

outνX.A[K] = (inµX.(A)◦〈(K)◦〉)◦,

inµX.A〈M〉 = 〈 λ(y, β).(y • ((QY[X.A] • RM{y, γ}).γ@β)) 〉a,

coitrA
x 〈M,N〉 = (itr

(A)◦

x′
[(M)◦, (N)◦])◦,

where QY[X.A] is defined as λy.λ(z, β).(z•monoX.A
µX.A,Y,α

{ x.(y • (x@α)), β }), and RM{N,K} is defined

as (λ(x, α).(x • a[N@α]))@(M@K).

We also define the translation of judgments. The context Γ is defined as x1 : A1, . . . , xn : An if Γ

is x1 : A1, . . . , xn : An. The cocontext ∆ is defined as α1 : B1, . . . , αm : Bm if ∆ is α1 : B1, . . . , αm : Bm.

The judgment Γ ⊢ ∆ M : A is defined as Γ ⊢ ∆ M : A. The judgment K : A Γ ⊢ ∆ is defined as

K : A Γ ⊢ ∆. The judgment Γ S ⊢ ∆ is defined as Γ S ⊢ ∆.

The next lemma shows that this translation commutes with (−)◦.

Lemma 6.4. (A)◦ = (A)◦, (D)◦ = (D)◦, and (J)◦ = (J)◦ hold.

Proof. The claim for A is proved by induction on A.

The claim for D is proved by induction on D. The cases of inµX.A〈M〉, outνX.A[K], itrA
α[K, L],

and coitrA
x 〈M,N〉 are shown by the definition of the translation and the dualities of DCµν and

DC2. The case of inµX.A〈M〉 is shown as follows: (inµX.A〈M〉)◦ = (inµX.((A)◦)◦〈((M)◦)◦〉)◦ =

outνX.(A)◦[(M)◦] = (inµX.A〈M〉)◦ . We can show the cases outνX.A[K], itrA
α[K, L], and

coitrA
x 〈M,N〉 similarly. The other cases are straightforwardly proved by the induction hypothe-

sis.

The claim for J is proved by using the claims for A and D.

The translation (−) preserves substitution.

Lemma 6.5. A[B/X] = A[B/X], D[N/x] = D[N/x], and D[L/α] = D[L/α] hold.

Proof. The first claim is shown by induction on A. The second and the third claims are shown

simultaneously by induction on deg(D). For the expressions D of the same degree, we first show

the claims for D such that D is not of the form outνX.A[K] or coitrA
x 〈M,N〉, and we next show the

claims for D such that D is of the form outνX.A[K] or coitrA
x 〈M,N〉.

We consider the cases of inµX.A〈M〉, itrA
α[K, L], outνX.A[K] and coitrA

x 〈M,N〉. The other

cases are straightforwardly proved by the induction hypothesis.

The second claim of the case inµX.A〈M〉 is shown in the following way. By the induction

hypothesis, we have monoX.A
µX.A,Y,α

{ x.(y • (x@α)), β }[N/x] = monoX.A
µX.A,Y,α

{ x.(y • (x@α)), β }[N/x]

since deg(monoX.A
µX.A,Y,α

{ x.(y • (x@α)), β }) < deg(inµX.A〈M〉) by Lemma 6.2 (3). By

Lemma 3.13 (2a), monoX.A
µX.A,Y,α

{ x.(y • (x@α)), β }[N/x] = monoX.A
µX.A,Y,α

{ x.(y • (x@α)), β }. Hence

we have (QY[X.A])[N/x] = QY[X.A]. By the induction hypothesis, we have RM{y, γ}[N/x] =

RM[N/x]{y, γ} since deg(M) < deg(inµX.A〈M〉). Therefore, inµX.A〈M〉[N/x] is equal to 〈 λ(y, β).(y •

(((QY [X.A])[N/x] • (RM{y, γ})[N/x]).γ@β)) 〉a. Then it is equal to 〈 λ(y, β).(y • ((QY[X.A] •

RM[N/x]{y, γ}.γ@β)) 〉a. The last term is equal to (inµX.A〈M〉)[N/x] by the definition of (−).

24 D. KIMURA AND M. TATSUTA

The second claim of the case itrA
α[K, L] is shown in the following way. The coterm

itrA
α[K, L][N/x] is equal to a[(λ(y, α).(y • K[N/x]))@L[N/x]]. By the induction hypothesis,

it is equal to a[(λ(y, α).(y • K[N/x]))@L[N/x]]. Hence it is equal to (itrA
α[K, L])[N/x] by the

definition of (−).

The second claim of the case outνX.A[K] is shown in the following way. Since ||K|| = ||(K)◦||

and |K| = |(K)◦| by Lemma 6.2 (1), we have deg(outνX.A[K]) = deg(inµX.(A)◦〈(K)◦〉). Hence

inµX.(A)◦〈(K[N/x])◦〉 = inµX.(A)◦〈(K)◦〉[(N)◦/x′] holds by Lemma 3.10, since the third claim for

inµX.(A)◦〈(K)◦〉 is already shown before this case. Then we can obtain the claim of this case as

follows:

(outνX.A[K])[N/x] = (inµX.(A)◦〈(K[N/x])◦〉)◦ = (inµX.(A)◦〈(K)◦〉[(N)◦/x′])◦ =

(inµX.(A)◦〈(K)◦〉)◦[((N)◦)◦/x] = outνX.A[K][((N)◦)◦/x] = outνX.A[K][N/x].

The third claim of this case is shown similarly.

The second and third claims of the case coitrA
x 〈M,N〉 is shown in the similar way to the case

of outνX.A[K].

Note that the second and third claims of the above lemma cannot be proved straightforwardly

by induction on D. For example, for proving the case of inµX.A〈M〉 in the second claim, we need

induction hypothesis for monoX.A
µX.A,Y,α

{ x.(y • (x@α)), β } but it is not a subterm of inµX.A〈M〉.

The next proposition says the translation (−) preserves provability.

Proposition 6.6. If J is provable in DCµν, then J is provable in DC2.

Proof. This is shown by induction on the degree of the principal expression in J. We show the cases

of inµX.A〈M〉, outνX.A[K], itrA
α[K, L], and coitrA

x 〈M,N〉.

The case of itrA
α[K, L] is shown by the induction hypothesis and Lemma 6.5. The cases of

coitrA
x 〈M,N〉 and outνX.A[K] are shown by the induction hypothesis and the dualities of DCµν and

DC2.

We prove the case of inµ〈M〉. We write µ, A[B], and A[C] as abbreviations of µX.A,

A[B/X], and A[C/X] respectively. This case is shown by the following three steps: (a) we show

RM{y, γ} : (µ ⊃ Y) ⊃ A[µ] ⊃ A[Y] Γ, y : A[Y] ⊃ Y ⊢ ∆, γ : A[Y] is derivable, where RM{y, γ} is

(λ(x, α).(x • a[y@α]))@(M@γ). Next, (b) we show ⊢ QY[X.A] : (µ ⊃ Y) ⊃ A[µ] ⊃ A[Y]

is derivable, where QY[X.A] is λy.λ(z, β).(z • monoX.A
µX.A,Y,α

{ x.(y • (x@α)), β }). Finally, (c) we can

easily show Γ ⊢ ∆ inµ〈M〉 : µ from (a) and (b).

The claim (a) is shown in the following way. Suppose Γ ⊢ ∆ inµ〈M〉 : µ is derivable. Then

we have the derivation of Γ ⊢ ∆ M : A[µ]. By the induction hypothesis and Lemma 6.5, we obtain

Γ ⊢ ∆ M : A[µ]. Then we have a derivation of M@γ : A[µ] ⊃ A[Y] Γ ⊢ ∆, γ : A[Y] by (⊃ L) rule.

On the other hand, we can show y : A[Y] ⊃ Y ⊢ λ(x, α).(x • a[y@α]) : µ ⊃ Y . Then we have

RM{y, γ} : (µ ⊃ Y) ⊃ A[µ] ⊃ A[Y] Γ, y : A[Y] ⊃ Y ⊢ ∆, γ : A[Y].

The claim (b) is shown as follows. We can show monoX.A
µ,Y,α
{ x.(y • (x@α)), β } : A[µ] y : µ ⊃

Y ⊢ β : A[Y] in DCµν by using Lemma 3.14, the judgment x.(y • (x@α)) : µ y : µ ⊃ Y ⊢

α : Y, β : A[Y], and β : A[µ] y : µ ⊃ Y ⊢ β : A[Y]. By Lemma 6.2 (3), we have deg(inµX.A〈M〉) >

deg(monoX.A
µ,Y,α
{ x.(y • (x@α)), β }). Hence monoX.A

µ,Y,α
{ x.(y • (x@α)), β } : A[µ] y : µ ⊃ Y ⊢ β : A[Y] is

derivable by induction hypothesis and Lemma 6.5. Therefore we obtain ⊢ QY[X.A] : (µ ⊃ Y) ⊃

A[µ] ⊃ A[Y].

The other cases are straightforwardly proved by the induction hypothesis.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 25

The translation (−) maps one-step reduction to one or more steps of reduction.

Proposition 6.7. For expressions D and E of DCµν, the relation D −→DCµν E implies D −→+
DC2

E.

Proof. First we show the claim without (βµ) nor (βν) by induction on −→DCµν with Lemma 6.5.

Next, by using this and Lemma 6.5, we show the claim of this proposition by induction on −→DCµν.

We consider cases according to the reduction rule.

The case of (βµ) is shown as follows: Suppose we have inµX.A〈M〉 • itrB
α[K, L]. This is

equal to 〈λ(y, β).(y • ((QY [X.A] • RM{y, γ}).γ@β))〉a • a[(λ(x.α).(x • K))@L]. It is reduced to

(λ(y, β).(y • ((QY [X.A] • RM{y, γ}).γ@β))) • ((λ(x.α).(x • K))@L), and then we have (λ(x.α).(x •

K))• ((QY [X.A]•RM{λ(x.α).(x•K), γ}).γ@L) by more than one step reduction. Since λ(x.α).(x•K)

equals λx.((x • K).α), we have ((QY[X.A] • RM{λ(x.α).(x • K), γ}).γ • K).α • L by (β ⊃). This is

reduced to ((QY[X.A] •RM{λ(x.α).(x •K),K}).α • L by (βR). Here RM{λ(x.α).(x •K),K} is equal to

(λ(y, β).(y • itrB
α[K, β])@(M@K)). Hence we can reduce QY[X.A] • RM{λ(x.α).(x • K),K} to M •

monoX.A
µ,Y,α
{itrB

α[K, β],K} by using Lemma 6.5 and the first claim. Therefore the previously obtained

expression ((QY [X.A]•RM{λ(x.α).(x•K),K}).α•L is reduced to (M•monoX.A
µX.A,Y,α

{itrB
α[K, β],K}).α•

L. This is equal to (M • monoX.A
µX.A,Y,β

{itrB
α[K, β],K}).α • L.

The case of (βν) is shown by using the duality of (βν) and (βµ), the duality of DC2, and

Lemma 6.4.

Other cases are shown straightforwardly.

Finally, we complete a proof of strong normalization of DCµν.

Theorem 6.8 (Strong normalization of DCµν). Every typable expression of DCµν is strongly normal-

izing.

Proof. Assume that D is typable in DCµν and there is an infinite reduction sequence

D −→DCµν D1 −→DCµν . . .

starting from D. Then D is typable in DC2 by Proposition 6.6 and

D −→+
DC2

D1 −→
+
DC2
. . .

is an infinite reduction sequence starting from D by Proposition 6.7. This contradicts Theorem 5.16.

7. The call-by-value and call-by-name DCµν

The motivation for introducing the dual calculus in [27] was to show the duality between call-

by-value and call-by-name. In this section, we follow this motivation. That is, we will extend

the duality to inductive and coinductive types by introducing the call-by-value and call-by-name

variants of DCµν. These variants also satisfy the important properties such as strong normalization

and the Church-Rosser property.

We recall the definition of the call-by-value and call-by-name DC. The call-by-value and call-

by-name dual calculus use the notion of values and covalues. They are defined as follows.

26 D. KIMURA AND M. TATSUTA

Definition 7.1 (Values and covalues of DC [27]). The values (denoted by V,W, . . .) and covalues

(denoted by P,Q, . . .) of DC are defined by the following grammar:

V ::= x | 〈V,V〉 | 〈V〉inl | 〈V〉inr | [K]not,

P ::= α | [P, P] | fst[P] | snd[P] | not〈M〉,

where M is a term and K is a coterm of DC.

The types, expressions, and typing rules of the call-by-value and call-by-name DC are the same

as them of DC. The call-by-value reduction relation of DC is defined as follows.

Definition 7.2 (Call-by-value reduction rules of DC). The call-by-value reduction relation −→v
DC

of

DC is defined from the following rules.

(β∧1)v 〈V,W〉 • fst[K] −→v
DC

V • K,

(β∧2)v 〈V,W〉 • snd[K] −→v
DC

W • K,

(β∨1)v 〈V〉inl • [K, L] −→v
DC

V • K,

(β∨2)v 〈W〉inr • [K, L] −→v
DC

W • L,

(β¬)v [K]not • not〈M〉 −→v
DC

M • K,

(βR)v (S).α • K −→v
DC

S [K/α],

(βL)v V • x.(S) −→v
DC

S [V/x],

(ς∧1)v 〈M,N〉 −→v
DC

(M• x.(〈x,N〉 • α)).α,

(ς∧2)v 〈V,M〉 −→v
DC

(M• x.(〈V, x〉 • α)).α,

(ς∨1)v 〈M〉inl −→v
DC

(M• x.(〈x〉inl • α)).α,

(ς∨2)v 〈M〉inr −→v
DC

(M• x.(〈x〉inr • α)).α,

(ηR)+v M −→v
DC

(M • α).α, and

(ηL)+v K −→v
DC

x.(x • K),

whereM is not a value, and x and α in (ς∧1)v, (ς∧2)v, (ς∨1)v, (ς∨2)v, (ηL)+v and (ηR)+v are fresh.

An example of use of ς-rules is

〈(S).α〉inl −→v
DC

((S).α • x.(〈x〉inl • β)).β −→v
DC

(S [x.(〈x〉inl • β)/α]).β.

This system is obtained from the call-by-value dual calculus given in [27] by removing the implica-

tion.

We note that the original system in [27] includes implication types, values for implication, and

a call-by-value β-rule for implication. However, as mentioned in [27], an implication A ⊃ B can be

defined as ¬(A∧¬B) under call-by-value. Hence each value for implication can be replaced a value

in terms of other connectives, and the reduction rule for implication can be simulated by the other

β-rules.

The rules (ς∧1)v, (ς∧2)v, (ς∨1)v, and (ς∨2)v are the separated forms of the rule (ς) given in

[27], and our rules are equivalent to his rule. However, we prefer this separated form since this form

is easy to add ς-rules for inductive and coinductive types later.

The symbol + used in (ηL)+v and (ηR)+v means η-expansion rules. When we extend call-by-

value and call-by-name calculi with inductive and coinductive types later in this section, we will

use the reduction (ηR) and (ηL) instead of the above expansion (ηR)+v and (ηL)+v for the following

reasons. In [27], η-rules requires side conditions to avoid infinite reduction sequence: “expansions

(ηL) and (ηR) should be applied only to a term M or coterm K that is not the immediate subject

of a cut”. However, two problems still remain about η-expansion rules. One problem is that a

value becomes non-value by the η-expansion: For example, a value x is expanded to a non-value

(x • α).α by (ηR)+v -rule. The second problem is that infinite reduction sequences occur with ς-rule:

For example, 〈x〉inl • β is reduced to 〈(x • α).α〉inl • β by (ηR)+v . Since (x • α).α is not a value,

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 27

it can be reduced to ((x • α).α • y.(〈y〉inl • γ)).γ • β by (ς∨1)v. Then, we have 〈x〉inl • β again

by (βL)v and (βR)v-rules. Tzevelekos [26] assumed additional conditions on η-expansion rules, and

showed strong normalization and the Church-Rosser properties of the call-by-value and call-by-

name DC under his conditions. However, his approach does not solve the first problem. One simple

solution for the both problems is to replace η-expansion by η-reduction. For this reason, we will

adopt η-reduction in our call-by-value and call-by-name systems.

The dual calculus considered in [28] has η-rules for conjunction, disjunction, and negation.

These rules could be defined naturally because the system in [28] was based on equations. However,

we cannot define these η-rules naively in the call-by-value and call-by-name reduction systems of

DC since these rules break the Church-Rosser property: The call-by-value (η∨)-rule defined in [28]

is [x.(〈x〉inl • K), y.(〈y〉inr • K)] = K, where K has type A ∨ B. Suppose that we add (η∨)-

reduction rule [x1.(〈x1〉inl•K), x2.(〈x2〉inr•K)]→v
DC

K to the call-by-value DC. Then the statement

[x1.(〈x1〉inl • y.(z • α)), x2.(〈x2〉inr • y.(z • α))] has two normal forms [x1.(z • α), x2.(z • α)] and

y.(z • α). Suppose that we add (η∨)-expansion rule K →v
DC

[x1.(〈x1〉inl • K), x2.(〈x2〉inr • K)] to

the call-by-value DC. The statement x • y.(z • α) (the variable z and the covariable α have type X,

and the variables x and y have type A∨B) is reduced to z•α by (βL)-rule. The statement x•y.(z•α)

is also expanded to x • [x1.(〈x1〉inl • y.(z • α)), x2.(〈x2〉inr • y.(z • α))] by (η∨)-rule, and then it

is reduced to x • [x1.(z • α), x2.(z • α)] by (βL)v-rule. These two results are never confluent since

the first one z • α cannot produce a coterm of the form [K, L], and the bracket [..] in the second one

x • [x1.(z • α), x2.(z • α)] cannot be eliminated.

The call-by-name reduction relation of DC is defined as follows.

Definition 7.3 (Call-by-name reduction rules of DC). The call-by-name reduction relation −→n
DC

of

DC is defined from the following rules.

(β∧1)n 〈M,N〉 • fst[P] −→n
DC

M • P,

(β∧2)n 〈M,N〉 • snd[P] −→n
DC

N • P,

(β∨1)n 〈M〉inl • [P,Q] −→n
DC

M • P,

(β∨2)n 〈M〉inr • [P,Q] −→n
DC

M • Q,

(β¬)n [K]not • not〈M〉 −→n
DC

M • K,

(βR)n (S).α • P −→n
DC

S [P/α],

(βL)n M • x.(S) −→n
DC

S [M/x],

(ς∧1)n fst[K] −→n
DC

x.((x • fst[α]).α • K),

(ς∧2)n snd[K] −→n
DC

x.((x • snd[α]).α • K),

(ς∨1)n [K , L] −→n
DC

x.((x • [α, L]).α • K),

(ς∨2)n [P,K] −→n
DC

x.((x • [P, α]).α • K),

(ηR)+n M −→n
DC

(M • α).α, and

(ηL)+n K −→n
DC

x.(x • K),

where K is not a covalue, and x and α in (ς∧1)n, (ς∧2)n, (ς∨1)n, (ς∨2)n, (ηL)+n and (ηR)+n are fresh.

This system is obtained from the call-by-name dual calculus given in [27] by removing the

implication.

As mentioned in [27], an implication A ⊃ B can be defined as ¬A ∨ B under call-by-name.

Hence, covalues for implication, and a call-by-name reduction rules for implication given in the

original system can be replaced in terms of other connectives.

The call-by-value reduction and the call-by-name reduction are dual strategies in DC.

28 D. KIMURA AND M. TATSUTA

Proposition 7.4 (Duality between call-by-value and call-by-name in DC [27]). Let D and E be

expressions of DC. Then, D −→v
DC

E iff (D)◦ −→n
DC

(E)◦, where (−)◦ is the duality transformation

defined in the section 2.

Now we will introduce the call-by-value and call-by-name variants of DCµν. We first consider

a call-by-value restriction of DCµν (called weak call-by-value DCµν) which is given by simply re-

stricting the reduction rules of DCµν. This restricted system satisfies both strong normalization and

the Church-Rosser properties. However, this system is rather weak since it lacks the ς-rules. The

call-by-value DCµν (denoted by CBV DCµν) is obtained by adding the ς-rules to the weak call-by-

value DCµν. The weak call-by-name DCµν and the call-by-name DCµν (denoted by CBN DCµν) are

also considered. The call-by-name DCµν is the dual system of the call-by-value DCµν.

We first define the notion of values and covalues in DCµν.

Definition 7.5 (Values and covalues of DCµν). The values (denoted by V,W, . . .) and the covalues

(denoted by P,Q, . . .) of DCµν are defined by the following grammar:

V ::= x | 〈V,V〉 | 〈V〉inl | 〈V〉inr | [K]not | inµX.A〈V〉 | coitrA
x 〈M,V〉,

P ::= α | [P, P] | fst[P] | snd[P] | not〈M〉 | outνX.A[P] | itrA
α[K, P],

where M is a term and K is a coterm of DCµν.

The set of values of DCµν is a subset of terms of DCµν. The set of covalues of DCµν is a subset

of coterms of DCµν. Note that the above definition is a straightforward extension of the definition of

values and covalues in DC.

The set of values and covalues are closed under substitution of values and covalues, respec-

tively.

Lemma 7.6. Let V and W be values, and P and Q be covalues of DCµν. The following claims hold.

(1) V[W/x] is a value of DCµν.

(2) P[Q/α] is a covalue of DCµν.

Proof. They are straightforwardly proved by induction on V and P.

The types, expressions, and typing rules of the weak call-by-value and the weak call-by-name

DCµν are the same as them of DCµν. The reduction relation of the weak call-by-value DCµν is given

as follows.

Definition 7.7 (Reduction rules of the weak call-by-value DCµν). The reduction relation −→wCBV
of the weak call-by-value DCµν is defined as the compatible closure of the reduction rules (β∧1)v,

(β∧2)v, (β∨1)v, (β∨2)v, (β¬)v, (βR)v, (βL)v, and the following reduction rules:

(βµ)v inµX.C〈V〉 • itrA
α[K, L] −→wCBV (V • monoX.C

µX.C,A,β
{ itrA

α[K, β], K }).α • L,

(βν)v coitrA
x 〈M,V〉 • out

νX.C[K] −→wCBV V • x.(monoX.C
A,νX.C,z

{ coitrA
x 〈M, z〉, M } • K),

(ηR)v (M • α).α −→wCBV M,

(ηL)v x.(x • K) −→wCBV K,

where x and α are fresh in (ηL)v and (ηR)v, respectively.

The reduction relation of the weak call-by-name DCµν is given as follows.

Definition 7.8 (Reduction rules of the weak call-by-name DCµν). The reduction relation −→wCBN
of the weak call-by-name DCµν is defined as the compatible closure of the reduction rules (β∧1)n,

(β∧2)n, (β∨1)n, (β∨2)n, (β¬)n, (βR)n, (βL)n, and the following reduction rules:

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 29

(βµ)n inµX.C〈M〉 • itrA
α[K, P] −→wCBN (M • monoX.C

µX.C,A,β
{ itrA

α[K, β], K }).α • P,

(βν)n coitrA
x 〈M,N〉 • out

νX.C[P] −→wCBN M • x.(monoX.C
A,νX.C,z

{ coitrA
x 〈M, z〉, M } • P),

(ηR)n (M • α).α −→wCBN M,

(ηL)n x.(x • K) −→wCBN K,

where x and α are fresh in (ηL)n and (ηR)n, respectively.

The weak call-by-value reduction and the weak call-by-name reduction are dual strategies.

Proposition 7.9 (Duality between weak call-by-value and weak call-by-name in DCµν). Let D and

E be expressions of DCµν. Then, D −→wCBV E iff (D)◦ −→wCBN (E)◦, where (−)◦ is the duality

transformation of DCµν defined in the section 3.

The rules (β¬)v, (βR)v, (ηL)v, and (ηR)v are the same as (β¬), (βR), (ηL), and (ηR)-rules of DCµν,

respectively. The rules (β∧1)v, (β∧2)v, (β∨1)v, (β∨2)v, (βL)v, (βµ)v, and (βν)v are just restrictions

of the rules (β∧1), (β∧2), (β∨1), (β∨2), (βL), (βµ), and (βν), respectively. The situation of the

call-by-name case is similar to the call-by-value case. Hence, we can easily obtain the following

proposition.

Proposition 7.10. Let D and E be expressions in DCµν. Then the following claims hold.

(1) If D −→wCBV E, then D −→DCµν E.

(2) If D −→wCBN E, then D −→DCµν E.

From the above proposition and the strong normalization result of DCµν (Theorem 6.8), we have

the strong normalization of the weak call-by-value and the weak call-by-name reduction relations.

Proposition 7.11 (Strong normalization of the weak CBV and CBN DCµν). We have the following.

(1) Every typable expression is strongly normalizing in the weak call-by-value DCµν.

(2) Every typable expression is strongly normalizing in the weak call-by-name DCµν.

The reduction relations −→wCBV and −→wCBN of DCµν satisfy the Church-Rosser property. We

first recall the definition of the Church-Rosser property.

Definition 7.12 (Church-Rosser property). Let A be a set and→ be a reduction relation on A. We

write b← a→ c if both a→ b and a→ c hold. We also write b→ a← c if both b→ a and c→ a

hold.

(1) The reduction relation → satisfies the diamond property if, for all a, b, c ∈ A, the relation

b← a→ c implies that there exists d ∈ A such that b→ d ← c.

(2) The reduction relation→ satisfies the Church-Rosser property if→∗ satisfies the diamond prop-

erty, where→∗ is the reflexive transitive closure of→.

From now on, we concentrate to show the Church-Rosser property of −→wCBV. The Church-

Rosser property of −→wCBN can be obtained from the result of −→wCBV and the duality (Proposi-

tion 7.9). In order to show the Church-Rosser property of −→wCBV, we will use the parallel reduction

technique. The definition of the parallel reduction relation is given as follows.

Definition 7.13 (Parallel reduction of the weak call-by-value DCµν). The parallel reduction relation

(denoted by⇒) of the weak call-by-value DCµν is defined inductively from the following rules.

x⇒ x and α⇒ α for any variable x and covariable α.

〈M,N〉 ⇒ 〈M′,N′〉 if M ⇒ M′ and N ⇒ N′.

[K, L]⇒ [K′, L′] if K ⇒ K′ and L ⇒ L′.

〈M〉inl⇒ 〈M′〉inl, 〈M〉inr⇒ 〈M′〉inr, and not〈M〉 ⇒ not〈M′〉 if M ⇒ M′.

30 D. KIMURA AND M. TATSUTA

fst[K]⇒ fst[K′], snd[K]⇒ snd[K′], and [K]not⇒ [K′]not if K ⇒ K′.

inµX.A〈M〉 ⇒ inµX.A〈M′〉 if M ⇒ M′.

outνX.A[K]⇒ outνX.A[K′] if K ⇒ K′.

coitrA
x 〈M,N〉 ⇒ coitr

A
x 〈M

′,N′〉 if M ⇒ M′ and N ⇒ N′.

itrA
α[K, L]⇒ itrA

α[K′, L′] if K ⇒ K′ and L⇒ L′.

M • K ⇒ M′ • K′ if M ⇒ M′ and K ⇒ K′.

(S).α⇒ (S ′).α and x.(S)⇒ x.(S ′) if S ⇒ S ′.

M • x.(S)⇒ S ′[V/x] if M ⇒ V and S ⇒ S ′.

(S).α • K ⇒ S ′[K′/α] if K ⇒ K′ and S ⇒ S ′.

〈M,N〉 • fst[K]⇒ V • K′ if M ⇒ V , N ⇒ W , and K ⇒ K′.

〈M,N〉 • snd[K]⇒ W • K′ if M ⇒ V , N ⇒ W , and K ⇒ K′.

〈M〉inl • [K, L]⇒ V • K′ if M ⇒ V , K ⇒ K′.

〈M〉inl • [K, L]⇒ V • L′ if M ⇒ V , L⇒ L′.

[K]not • not〈M〉 ⇒ M′ • K′ if M ⇒ M′ and K ⇒ K′.

inµX.C〈M〉 • itrA
α[K, L] ⇒ (V • monoX.C

µX.C,A,β
{ itrA

α[K′, β], K′ }).α • L′ if M ⇒ V , K ⇒ K′,

and L⇒ L′.

coitrA
x 〈M,N〉 • out

νX.C[K] ⇒ V • x.(monoX.C
A,νX.C,z

{ coitrA
x 〈M

′, z〉, M′ } • K′) if M ⇒ M′,

N ⇒ V , and K ⇒ K′.

(M • α).α⇒ M′ if M ⇒ M′ and α is not free in M.

x.(x • K)⇒ K′ if K ⇒ K′ and x is not free in K.

The parallel reduction of the weak call-by-value DCµν satisfies the following basic properties.

Lemma 7.14. Let M be a term, V and V ′ be values, K and K′ be coterms, and D and D′ be

expressions of DCµν. Then the following hold.

(1) Suppose D ⇒ E. If D is a term, then E is also a term. If D is a coterm, then E is also a coterm.

If D is a statement, then E is also a statement. If D is a value, then E is also a value.

(2) D⇒ D.

(3) If M ⇒ V and D⇒ D′, then D[M/x]⇒ D′[V/x].

(4) If K ⇒ K′ and D⇒ D′, then D[K/α]⇒ D′[K′/α].

Proof. The claim (1) is shown by induction on the definition of ⇒. The claim (2) is shown by

induction on D.

The claim (3) is shown by induction on D ⇒ D′ with Lemma 7.6. We show the case that

N0 • y.(T0) ⇒ T1[W/y] is derived from N0 ⇒ W and T0 ⇒ T1. By the induction hypothesis, we

have N0[M/x] ⇒ W[V/x] and T0[M/x] ⇒ T1[V/x]. By Lemma 7.6, W[V/x] is a value. Hence we

have (N0 • y.(T0))[M/x] = (N0[M/x]) • y.(T0[M/x]) ⇒ T1[V/x][W[V/x]/y] = T1[W/y][V/x]. The

other cases are straightforwardly proved by the induction hypothesis.

The claim (4) is shown by induction on D⇒ D′.

Lemma 7.15. Let D and D′ be expressions of DCµν. Then the following claims hold.

(1) If D −→wCBV E, then D⇒ E.

(2) If D⇒ E, then D −→∗
wCBV

E.

(3) The parallel reduction relation ⇒ satisfies the diamond property, that is, if the relation D1 ⇐

D⇒ D2 holds, then there exists E such that D1 ⇒ E ⇐ D2.

Proof. The claim (1) is shown by induction on the definition of −→wCBV. The claim (2) is shown by

induction on the definition of⇒.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 31

The claim (3) is shown by induction on D. We show the case that D is the shape of (S).α•x.(T),

D1 is S ′[L/α], and D2 is T ′[V/x] with the conditions S ⇒ S ′, T ⇒ T ′, x.T ⇒ L, and (S).α ⇒ V .

Recall that a critical pair in DCµν occurs in this shape. This case is most important to see that this

critical pair is avoided in the weak call-by-value DCµν .

From the definition of the parallel reduction and (S).α⇒ V , we have S = M • α, M ⇒ V , and

α is not free in M. Then, from M • α = S ⇒ S ′, we have the following two cases: (i) S ′ = M′ • α

and M ⇒ M′ for some M′, or (ii) M = (S 0).β, S ′ = S 0
′[α/β], and S 0 ⇒ S 0

′ for some S 0 and S 0
′.

From the condition x.(T) ⇒ L, we also have the following two cases: (a) T = x • K, x is not free

in K, and K ⇒ L for some K and L, or (b) L = x.(T ′′) and T ⇒ T ′′ for some T ′′.

The case of (i). We have D1 = (S ′)[L/α] = (M′•α)[L/α] = M′•L. By the induction hypothesis

and V ⇐ M ⇒ M′, there exists a term W such that V ⇒ W ⇐ M′. From Lemma 7.14 (1), W is a

value. We then consider the subcases (a) and (b).

The subcase of (a). From the condition K ⇒ L and T = x • K, we have (x • L)⇐ T ⇒ T ′. By

the induction hypothesis, there exists a statement T̃ such that (x • L) ⇒ T̃ ⇐ T ′. Hence we have

D1 = (x • L)[M′/x]⇒ T̃ [W/x]⇐ T ′[V/x] = D2 from M′ ⇒ W ⇐ V and Lemma 7.14 (3).

The subcase of (b). By the induction hypothesis and T ′ ⇐ T ⇒ T ′′, there exists T̃ such

that T ′ ⇒ T̃ ⇐ T ′′. Hence we have D2 = T ′[V/x] ⇒ T̃ [W/x] by Lemma 7.14 (3) and V ⇒ W .

We also have D1 = M′ • L = M′ • x.(T ′′) ⇒ T̃ [W/x] from M′ ⇒ W and T ′′ ⇒ T̃ . Therefore

D1 ⇒ T̃ [W/x]⇐ D2 holds.

The case of (ii). We first claim that, for any S and V , if (S).α⇒ V , then there is some M such

that S = M • α, M ⇒ V , and α is not free in M. This claim is easily obtained from the definition

of the parallel reduction. In this case, we have V ⇐ M = (S 0).β ⇒ (S 0
′).β. By the induction

hypothesis and Lemma 7.14 (1), there is a value W such that V ⇒ W ⇐ (S 0
′).β. Then, there exists

a N such that S 0
′ = N • β, N ⇒ W , and β is not free in N from the above claim. Hence we have

D1 = S ′[L/α] = S 0
′[α/β][L/α] = S 0

′[L/β] = (N • β)[L/β] = N • L. We then consider the subcases

(a) and (b).

The subcase of (a). By the induction hypothesis, there exists a statement T̃ such that (x • L)⇒

T̃ ⇐ T ′. Hence we have D1 = (x • L)[N/x] ⇒ T̃ [W/x] ⇐ T ′[V/x] = D2 from N ⇒ W ⇐ V and

Lemma 7.14 (3).

The subcase of (b). By the induction hypothesis and T ′ ⇐ T ⇒ T ′′, there exists T̃ such

that T ′ ⇒ T̃ ⇐ T ′′. Hence we have D2 = T ′[V/x] ⇒ T̃ [W/x] by Lemma 7.14 (3) and V ⇒ W .

We also have D1 = N • L = N • x.(T ′′) ⇒ T̃ [W/x] from N ⇒ W and T ′′ ⇒ T̃ . Therefore

D1 ⇒ T̃ [W/x]⇐ D2 holds.

The other cases are also proved by the induction hypothesis.

From Lemma 7.15, we can obtain the Church-Rosser property of the weak call-by-value DCµν.

Proposition 7.16. The reduction relations −→wCBV and −→wCBN of DCµνcbv satisfy the Church-Rosser

property.

Proof. We first show the Church-Rosser property of −→wCBV. Suppose that D −→∗
wCBV

D′ and

D −→∗
wCBV

D′′ hold. We will show that there exists some E such that D′ −→∗
wCBV

E and D′′ −→∗
wCBV

E. We have D = D00 −→wCBV D01 −→wCBV . . . −→wCBV D0n = D′ and D −→wCBV D10 −→wCBV
. . . −→wCBV D1m = D′′ for some n,m ≥ 0. By Lemma 7.15 (1), D ⇒ D01 ⇒ . . . ⇒ D0n = D′ and

D ⇒ D′′
10
⇒ . . . ⇒ D′′

1m
= D′′ hold. By the diamond property of ⇒, there exists D(i+1)(j+1) such

that Di(j+1) ⇒ D(i+1)(j+1) ⇐ D(i+1) j for each 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1. Hence we have

D′ = D0n ⇒ D1n ⇒ . . .⇒ Dmn and D′′ = Dm0 ⇒ Dm1 ⇒ . . .⇒ Dmn. By Lemma 7.15 (2), we can

replace⇒ by −→∗
wCBV

. Therefore, we have D′ −→∗
wCBV

Dmn and D′′ −→∗
wCBV

Dmn.

32 D. KIMURA AND M. TATSUTA

The Church-Rosser property of −→wCBN is shown by the former result and the duality between

−→wCBV and −→wCBN (Proposition 7.9).

We will next define the call-by-value and the call-by-name DCµν, which we call CBV DCµν and

CBN DCµν. The types, expressions, and typing rules of CBV DCµν and CBN DCµν are the same as them

of DCµν.

The reduction relation of CBV DCµν is obtained by adding ς-rules to the weak call-by-value

DCµν.

Definition 7.17 (Reduction relation of CBV DCµν). The reduction relation −→CBV of CBV DCµν is

defined by the compatible closure of the reduction rules of the weak call-by-value DCµν and (ς∧1)v,

(ς∧2)v, (ς∨1)v, (ς∨2)v, and the following reduction rules:

(ςµ)v in
µX.C〈M〉 −→CBV (M• x.(inµX.C〈x〉 • α)).α,

(ςν)v coitrA
y 〈M,M〉 −→CBV (M• x.(coitrA

y 〈M, x〉 • α)).α,

whereM is not a value of DCµν, and the variable x and the covariable α in (ςµ)v, (ςν)v are fresh.

We sometimes write (β)v to mean (β∧1)v, (β∧2)v, (β∨1)v, (β∨2)v, (β¬)v, (βµ)v, (βν)v, (βL)v, or

(βR)v-rule. We write (η)v to mean (ηL)v or (ηL)v-rule. We also write (ς)v to mean (ς∧1)v, (ς∧2)v,

(ς∨1)v, (ς∨2)v, (ςµ)v, or (ςν)v-rule.

The reduction relation of CBN DCµν is obtained by adding ς-rules to the weak call-by-name

DCµν.

Definition 7.18 (Reduction relation of CBN DCµν). The reduction relation −→CBN of CBN DCµν is

defined by the compatible closure of the reduction rules of the weak call-by-name DCµν and (ς∧1)n,

(ς∧2)n, (ς∨1)n, (ς∨2)n, and the following reduction rules:

(ςµ)n itrA
β [K,K] −→CBN x.((x • itrA

β [K, α]).α • K),

(ςν)n outνX.C[K] −→CBN x.((x • outνX.C[α]).α • K),

where K is not a covalue of DCµν, and the variable x and the covariable α in (ςµ)n, (ςν)n are fresh.

From the above definitions, CBV DCµν includes the weak call-by-value DCµν, and CBN DCµν

includes the weak call-by-name DCµν. That is, the following lemma holds.

Lemma 7.19. Let D and E be expressions of DCµν. Then, the following claims hold.

(1) If D −→wCBV E, then D −→CBV E.

(2) If D −→wCBN E, then D −→CBN E.

The call-by-value DCµν is dual to the call-by-name DCµν.

Proposition 7.20 (Duality between call-by-value and call-by-name in DCµν). Let D and E be ex-

pressions of DCµν. Then, D −→CBV E iff (D)◦ −→CBN (E)◦, where (−)◦ is the duality transformation

of DCµν defined in the section 3.

The call-by-value and call-by-name DCµν satisfy both the Church-Rosser and strong normal-

ization properties. We will concentrate to show these properties of CBV DCµν. The proof will be

performed by giving a transformation from CBV DCµν into the weak call-by-value DCµν. The trans-

formation (−)⊛ given as follows.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 33

Definition 7.21. Let D be a expression of DCµν. The expression (D)⊛ of DCµν is defined inductively

as follows.

(x)⊛ = x,

(〈V,W〉)⊛ = 〈(V)⊛, (W)⊛〉,

(〈V,N〉)⊛ = ((N)⊛ • y.(〈(V)⊛, y〉 • α)).α,

(〈M,W〉)⊛ = ((M)⊛ • x.(〈x, (W)⊛〉 • α)).α,

(〈M,N〉)⊛ =
(

(M)⊛ • x.
(

((N)⊛ • y.(〈x, y〉 • β)).β • α
)

)

.α,

(〈V〉inl)⊛ = 〈(V)⊛〉inl,

(〈M〉inl)⊛ = ((M)⊛ • x.(〈x〉inl • α)).α,

(〈V〉inr)⊛ = 〈(V)⊛〉inr,

(〈M〉inr)⊛ = ((M)⊛ • x.(〈x〉inr • α)).α,

([K]not)⊛ = [(K)⊛]not,

(inµX.A〈M〉)⊛ = ((M)⊛ • x.(inµX.A〈x〉 • α)).α,

(inµX.A〈V〉)⊛ = inµX.A〈(V)⊛〉,

(coitrA
z 〈M,V〉)

⊛ = coitrA
z 〈(M)⊛, (V)⊛〉,

(coitrA
z 〈M,N〉)

⊛ = ((N)⊛ • y.(coitrA
z 〈(M)⊛, y〉 • α)).α,

((S).α)⊛ = ((S)⊛).α,

(α)⊛ = α,

([K, L])⊛ = [(K)⊛, (L)⊛],

(fst[K])⊛ = fst[(K)⊛],

(snd[K])⊛ = snd[(K)⊛],

(not〈M〉)⊛ = not〈(M)⊛〉,

(outνX.A[K])⊛ = outνX.A[(K)⊛],

(itrA
γ [K, L])⊛ = itrA

γ [(K)⊛, (L)⊛],

(x.(S))⊛ = x.((S)⊛), and

(M • K)⊛ = (M)⊛ • (K)⊛,

where V and W are values,M and N are not values, and x, y, α, β are fresh.

We need the redundant definition of (〈M,N〉)⊛ for a technical reason, and it is necessary in

order to show Proposition 7.25.

The transformation (−)⊛ preserves typing.

Proposition 7.22. Let M be a term, K be a coterm, and S be a statement of DCµν. The following

claims hold.

(1) If Γ ⊢DCµν ∆ | M : A is provable, then Γ ⊢DCµν ∆ | (M)⊛ : A holds.

(2) If K : A | Γ ⊢DCµν ∆ is provable, then (K)⊛ : A | Γ ⊢DCµν ∆ holds.

(3) If Γ | S ⊢DCµν ∆ is provable, then Γ | (S)⊛ ⊢DCµν ∆ holds.

Proof. They are shown simultaneously by induction on M, K, and S .

The transformation (−)⊛ satisfies the following basic properties.

Lemma 7.23. Let V be a value, M and N be terms, D be an expression of DCµν. Then the following

claims hold.

(1) M is a value iff (M)⊛ is a value.

(2a) 〈(M)⊛, (N)⊛〉 −→∗
wCBV

(〈M,N〉)⊛.

(2b) 〈(M)⊛〉inl −→∗
wCBV

(〈M〉inl)⊛, and 〈(M)⊛〉inr −→∗
wCBV

(〈M〉inr)⊛.

(2c) inµX.A〈(M)⊛〉 −→∗
wCBV

(inµX.A〈M〉)⊛.

34 D. KIMURA AND M. TATSUTA

(2d) coitrA
z 〈(M)⊛, (N)⊛〉 −→wCBV (coitrA

z 〈M,N〉)
⊛.

(3a) monoX.A
B,C,x
{(M)⊛, (N)⊛} −→∗

wCBV
(monoX.A

B,C,x
{M,N})⊛.

(3b) monoX.A
B,C,α
{(K)⊛, (L)⊛} −→∗

wCBV
(monoX.A

B,C,α
{K, L})⊛.

(4) D −→∗
CBV

(D)⊛.

Proof. The claim (1) is shown by the definition of (−)⊛. The claims (2a), (2b), (2c), and (2d) are

shown by (1) and ς-rules. The claims (3a) and (3b) are shown by induction on ||C||X using (2a),

(2b), (2c), and (2d). The claim (4) is shown by induction on D.

The transformation (−)⊛ preserves substitution of a value for a variable, and of a coterm for a

covariable.

Lemma 7.24. (D[V/x])⊛ = (D)⊛[(V)⊛/x] and (D[K/α])⊛ = (D)⊛[(K)⊛/α].

Proof. The former claim is shown by induction on D using Lemma 7.23 (1). The latter one is shown

by induction on D.

The transformation (−)⊛ translates one step reduction of −→CBV into zero or more steps reduc-

tion of −→wCBV.

Proposition 7.25. D −→CBV E implies (D)⊛ −→∗
wCBV

(E)⊛. In particular, if D −→CBV E by (β)v or

(η)v, then (D)⊛ −→+
wCBV

(E)⊛ holds.

Proof. The claim is shown by induction on the definition of −→CBV. We show the cases of (βL)v,

(βµ)v, and (ς∧1)v.

The case of (βL)v is proved by Lemma 7.24. We have (V • x.(S))⊛ = (V)⊛ • x.((S)⊛) −→wCBV
(S)⊛[(V)⊛/x]. By Lemma 7.24, the last statement is (S [V/x])⊛.

The case of (βµ)v is proved by Lemma 7.23 (3b). We have (inµX.C〈V〉 • itrA
α[K, L])⊛ =

inµX.C〈(V)⊛〉 • itrA
α[(K)⊛, (L)⊛] −→wCBV ((V)⊛ • monoX.C

µX.C,A,β
{ itrA

α[(K)⊛, β], (K)⊛ }).α • (L)⊛ =

((V)⊛ • monoX.C
µX.C,A,β

{ (itrA
α[K, β])⊛, (K)⊛ }).α • (L)⊛. By Lemma 7.23 (3b), the last statement is

reduced to ((V)⊛ • (monoX.C
µX.C,A,β

{ itrA
α[K, β], K })⊛).α • (L)⊛ by −→∗

wCBV
. Therefore this statement is

((V • monoX.C
µX.C,A,β

{ itrA
α[K, β], K }).α • L)⊛.

The case of (ς∧1)v is proved by the definition of (−)⊛. We consider the subcase of

〈M,N〉 −→CBV (M• x.(〈x,N〉•α)).α, whereM andN are not values. Hence we have (〈M,N〉)⊛ =
(

(M)⊛ • x.
(

((N)⊛ •y.(〈x, y〉 •β)).β•α
)

)

.α =
(

(M)⊛ • x.
(

(〈x,N〉)⊛ •α
))

.α =
(

M• x.
(

〈x,N〉•α
))

.α
)⊛

.

The other subcase of (ς∧1)v for 〈N ,V〉 with a non-value N is shown in the similar way.

The other cases are also shown by the induction hypothesis.

Then we can show the Church-Rosser property of −→CBV and −→CBN.

Theorem 7.26. The reduction relations −→CBV of CBV DCµν and −→CBN of CBN DCµν satisfy the

Church-Rosser property.

Proof. We first show the Church-Rosser property of −→CBV.

Assume that D −→∗
CBV

D′ and D −→∗
CBV

D′′ hold. By Proposition 7.25, we have (D)⊛ −→∗
wCBV

(D′)⊛ and (D)⊛ −→∗
wCBV

(D′′)⊛. By the Church-Rosser property of −→wCBV, there exists E such that

(D′)⊛ −→∗
wCBV

E and (D′′)⊛ −→∗
wCBV

E. Therefore, by Lemma 7.19 (1) and Lemma 7.23 (4), we

have D′ −→∗
CBV

(D′)⊛ −→∗
CBV

E and D′′ −→∗
CBV

(D′′)⊛ −→∗
CBV

E.

The Church-Rosser property of −→CBN is shown by the former result and the duality between

−→CBV and −→CBN (Prop 7.20).

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 35

We will prove strong normalization of CBV DCµν and CBN DCµν. This property is shown by

using the strong normalization result of the weak call-by-value and the weak call-by-name DCµν

(Proposition 7.11).

We define the following rank of expressions in DCµν. This rank is used to show that there is no

infinite sequence of ς-rules.

Definition 7.27. Let D be an expression in DCµν. The rank r(D) of D is defined by:

r(x) = r(α) = 0,

r([K]not) = r(fst[K]) = r(snd[K]) = r(outνX.A[K]) = r(K),

r([K, L]) = r(itrA
α[K, L]) = r(K) + r(L),

r(not〈M〉) = r(M),

r(〈M,N〉) = r(M) + r(N) + 2,

r(〈M,V〉) = r(〈V,M〉) = r(M) + r(V) + 1,

r(〈V,W〉) = r(V) + r(W),

r(〈M〉inl) = r(〈M〉inr) = r(inµX.A〈M〉) = r(M) + 1,

r(〈V〉inl) = r(〈V〉inr) = r(inµX.A〈V〉) = r(V),

r(coitrA
x 〈M,N〉) = r(M) + r(N) + 1,

r(coitrA
x 〈M,V〉) = r(M) + r(V),

r(x.(S)) = r((S).α) = r(S), and

r(M • K) = r(M) + r(K),

where V and W are values, andM and N are not values.

The rank r(D) counts the number of redexes of (ς∧1)v, (ς∧2)v, (ς∨1)v, (ς∨2)v, (ςµ)v, and (ςν)v-

rules. We write D −→ςv E when D is reduced to E by one step (ς)v-reduction.

Lemma 7.28. Let D and E be expressions of DCµν. Then, the following claims hold.

(1) If D −→ςv E, then r(D) > r(E).

(2) There is no infinite sequence of (ς)v-reduction.

Proof. The claim (1) is shown by induction on D. The claim (2) is shown by (1).

We then show strong normalization of CBV DCµν and CBN DCµν.

Theorem 7.29 (Strong normalization of CBV DCµν and CBN DCµν). The following claims hold.

(1) Every typable expression is strongly normalizing in CBV DCµν.

(2) Every typable expression is strongly normalizing in CBN DCµν.

Proof. We first show the call-by-value case. Assume that D is typable in DCµν and there is an infinite

reduction sequence

D −→CBV D1 −→CBV . . .

starting from D. Then (D)⊛ is typable by Proposition 7.22, and we have

(D)⊛ −→∗
wCBV

(D1)⊛ −→∗
wCBV
. . .

by Proposition 7.25. From the strong normalization result of the weak call-by-value DCµν (Proposi-

tion 7.11), there is some Dk such that

(Dk)⊛ = (Dk+1)⊛ =

By the latter part of Proposition 7.25, we have the following infinite sequence of (ς)v-reduction:

Dk −→ςv Dk+1 −→ςv

36 D. KIMURA AND M. TATSUTA

This contradicts Lemma 7.28 (2).

The call-by-name case is proved by strong normalization of CBV DCµν and the duality between

CBV DCµν and CBN DCµν (Proposition 7.20).

8. Conclusion

We have introduced the non-deterministic system DCµν by extending the dual calculus given in [27]

with inductive types and coinductive types. Besides the same duality of the original dual calculus,

we have shown the duality of inductive and coinductive types, by giving the involution that maps

terms and coterms for inductive types to coterms and terms of coinductive types respectively and

vice versa, and maps their reduction rules to each other. We have proved its strong normalization

by translating it into the second-order dual calculus DC2.

The second-order dual calculus DC2 also have been introduced. Its strong normalization have

been shown by translating it into the second-order symmetric lambda calculus.

We have finally introduced the call-by-value system CBV DCµν and the call-by-name system

CBN DCµν of the dual calculus with inductive and coinductive types. We have shown the duality of

call-by-value and call-by-name with inductive and coinductive types, their Church-Rosser property,

and their strong normalization. Their strong normalization have been shown by translating them

into DCµν.

The first author introduced the call-by-value and call-by-name dual calculi with recursive

types [11, section 4.2]. In these systems, a recursive type rec X.A can be defined for any type

A. If we assume that rec X.A can be defined only if every X positively occurs in A, then we can

define two provability-preserving transformations from the dual calculi with recursive types into

DCµν. The one translates a recursive type to an inductive type, and the other translates a recursive

type to a coinductive type. We could not straightforwardly show that these transformations preserve

reductions (or equations) since some additional rules such as η-rules for connectives seem to be

required. This problem would be future work.

The duality of call-by-value and call-by-name in λµ-calculus is shown by using the dual calculi

in [28]. Since our systems CBV DCµν and CBN DCµν are extensions of his dual calculi, we could

show the duality of call-by-value and call-by-name in λµ-calculus with inductive and coinductive

definitions, by using our systems CBV DCµν and CBN DCµν. It would be future work.

A reduction-based duality between call-by-value and call-by-name in the λµ-calculi was pre-

sented in [12], by refining Wadler’s result [28]. Extending the result given in [12] with inductive

and coinductive types would be future work.

Our systems use the iteration for inductive types. An extension of the iteration to primitive

recursion would be future work.

A CPS translation from the dual calculus to λ-calculus was given in [27]. Extending this CPS

translation to the systems with inductive and coinductive types would be future work.

Acknowledgment

We would like to thank Professor Philip Wadler for discussions and suggestions. We would also

like to thank Dr. Alwen Tiu, and Professor Dieter Spreen for discussions. We would also like to

thank anonymous referees for valuable comments.

CALL-BY-VALUE AND CALL-BY-NAME DUAL CALCULI WITH INDUCTIVE AND COINDUCTIVE TYPES 37

References

[1] D. Baelde. Least and greatest fixed points in linear logic. ACM Transactions on Computational Logic, 13 (1): Article

2, 2012.

[2] F. Barbanera and S. Berardi. A symmetric lambda calculus for classical program extraction. Information and Com-

putation, 125 (2): 103–117, 1996.

[3] W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg. Iterated inductive definitions and subsystems of analysis:

Recent proof-theoretical studies. Lecture Notes in Mathematics, 897, Springer, 1981.

[4] P.-L. Curien and H. Herbelin. The duality of computation. In Proceedings of the 5th ACM SIGPLAN International

Conference on Functional Programming (ICFP), 233–243, 2000.

[5] A. Filinski. Declarative continuations and categorical duality. Master’s thesis, Computer Science Department, Uni-

versity of Copenhagen, DIKU Report 89/11, 1989.

[6] H. Geuvers. Inductive and coinductive types with iteration and recursion. In Proceedings of the 1992 workshop on

Types for Proofs and Programs (TYPES), 183–207, 1992.

[7] J-Y. Girard. Proof theory and logical complexity, Bibliopolis, 1987.

[8] T.G. Griffin. A formulae-as-types notion of control. In Proceedings of the 17th ACM SIGPLAN-SIGACT sympo-

sium on Principles of programming languages, 47–58, 1990.

[9] H. Herbelin. C’est maintenant qu’on calcule au cœur de la dualité Hablitiation à deriger les recherches, L’Universitê

Paris 11, 2005.

[10] Y. Kakutani. Duality between call-by-name recursion and call-by-value iteration. In Proceedings of the 16th Inter-

national Workshop on Computer Science Logic, CSL, Lecture Notes in Computer Science 2471: 506–521, 2002.

[11] D. Kimura. Call-by-value is dual to call-by-name, extended. In Proceedings of Programming Languages and Sys-

tems, 5th Asian Symposium (APLAS), Lecture Notes in Computer Science, 4807: 415–430, 2007.

[12] D. Kimura. Duality between call-by-value reductions and call-by-name reductions. IPSJ Journal, 48(4): 1721–1757,

2007.

[13] D. Kimura and M. Tatsuta. Dual calculus with inductive and coinductive types. In Proceedings of 20th International

Conference on Rewriting Techniques and Applications (RTA), Lecture Notes in Computer Science, 5595: 224–238,

2009.

[14] R. McDowell and D. Miller. Cut-elimination for a logic with definitions and induction. Theoretical Computer Sci-

ence, 232 (1-2): 91–119, 2000.

[15] N. P. Mendler. Inductive types and type constraints in the second-order lambda calculus. Annals of Pure and Applied

Logic, 51 (1-2): 159–172, 1991.

[16] A. Momigliano and A. Tiu. Induction and co-induction in sequent calculus. Types for Proofs and Programs Interna-

tional Workshop (TYPES), Revised Selected Papers, Lecture Notes in Computer Science, 3085: 293–308, 2004.

[17] A. Tiu and Momigliano. Cut elimination for a logic with induction and co-induction. manuscript, available at

arxiv.org, 2010.

[18] Nordström, B., Petersson, K. and Smith, J.M. Programming in Martin-Löf’s type theory. Oxford University Press,

1990.

[19] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction. In Proceedings of International

Conference on Logic Programming and Automated Deduction (LPAR), Lecture Notes in Computer Science, 624:

190–201, 1992.

[20] M. Parigot. Strong normalization for second order classical natural deduction. In Journal of Symbolic Logic, 62(4):

1461–1479, 1997.

[21] M. Parigot. Strong normalization of second order symmetric lambda-calculus. In Proceedings of Foundations of

Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science, 1974: 442–453,

2000.

[22] C. Paulin-Mohring. Inductive definitions in the system Coq — Rules and properties. In Proceedings of Typed

Lambda Calculi and Applications (TLCA), Lecture Notes in Computer Science, 664: 328–345, 1993.

[23] P. Selinger. Control categories and duality: on the categorical semantics of the lambda-mu calculus. Mathematical

Structures in Computer Science, 207–260, 2001.

[24] M. Tatsuta. Realizability interpretation of coinductive definitions and program synthesis with streams. Theoretical

Computer Science, 122(1–2): 119–136, 1994.

38 D. KIMURA AND M. TATSUTA

[25] M. Tatsuta. Simple saturated sets for disjunction and second-order existential quantification. In Proceedings of 8th

International Conference on Typed Lambda Calculi and Applications (TLCA), Lecture Notes in Computer Science,

4583: 366–380, 2007.

[26] N. Tzevelekos. Investigations on the dual calculus. Theoretical Computer Science, 360: 289–326, 2006.

[27] P. Wadler. Call-by-value is dual to call-by-name. In Proceedings of International Conference on Functional Pro-

gramming (ICFP), 189–201, 2003.

[28] P. Wadler. Call-by-value is dual to call-by-name, reloaded, In Proceedings of Rewriting Techniques and Applications

(RTA), Lecture Notes in Computer Science, 3467: 185–203, 2005.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy

of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to

Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher

Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. The Dual Calculus
	3. The Dual Calculus with Inductive and Coinductive Types
	4. Examples
	5. The Second-Order Dual Calculus
	6. Strong Normalization
	7. The call-by-value and call-by-name Dual Calculus with inductive and coinductive types
	8. Conclusion
	Acknowledgment
	References

