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Abstract. We examine a bidirectional propositional dynamic logic (PDL) for finite and
infinite message sequence charts (MSCs) extending LTL and TLC−. By this kind of
multi-modal logic we can express properties both in the entire future and in the past
of an event. Path expressions strengthen the classical until operator of temporal logic.
For every formula defining an MSC language, we construct a communicating finite-state
machine (CFM) accepting the same language. The CFM obtained has size exponential
in the size of the formula. This synthesis problem is solved in full generality, i.e., also
for MSCs with unbounded channels. The model checking problem for CFMs and HMSCs
turns out to be in PSPACE for existentially bounded MSCs. Finally, we show that, for
PDL with intersection, the semantics of a formula cannot be captured by a CFM anymore.

1. Introduction

To make a system accessible to formal analysis and verification techniques, we require
it to be modeled mathematically. In this regard, automata-based models have been widely
used to describe the behavior of a system under consideration. A natural model for fi-
nite processes that exchange messages via FIFO-channels are communicating finite-state
machines (CFMs) [BZ83]. In a CFM, each process is modeled as a finite automaton that
performs send and receive actions and, in doing so, exchanges messages with other processes
via order-preserving communication channels. One single run of a CFM can be described by
a message sequence chart (MSC). MSCs are an important common notation in telecommu-
nication and are defined by an ITU standard [ITU96]. An MSC has both a formal definition
and a comprehensible visualization.
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Once we have an automata model A of a system defining a set L(A) of possible execu-
tions, the next task might be to check if it satisfies a requirements specification ϕ, which
represents a set L(ϕ) of (desired) behaviors. Verification now amounts to themodel-checking
question: do all possible behaviors of A satisfy ϕ, i.e., do we have L(A) ⊆ L(ϕ)? Many
concrete instances of that problem have been considered in the literature [CGP00]. The
original, and most popular, ones are finite automata, Kripke structures, or Büchi automata
as system model, and temporal logics such as LTL [Pnu77] and CTL [CE81] as specification
language. It is well-known that, for all these choices, the corresponding model-checking
problem is decidable.

When we move to the setting of CFMs, which, due to a priori unbounded channels,
induce infinite-state systems, model checking becomes undecidable. Meenakshi and Ra-
manujam [MR04] showed undecidability even for very restrictive temporal logics (their
results transfer easily from Lamport diagrams to MSCs). One solution is to put a bound
on the channel capacity. In other words, the domain of behaviors is restricted to existen-
tially B-bounded MSCs, which can be executed without exceeding a fixed channel bound B.
In [Pel00, MM01, GMSZ02, GKM06], the model-checking problem was indeed tackled suc-
cessfully for several logics by using this restriction and following the automata-theoretic
approach: (1) a formula ϕ from a temporal logic or monadic second-order logic is trans-
lated into a machine model Aϕ,B that recognizes those models of ϕ that are existentially
B-bounded; (2) it is checked whether every existentially B-bounded behavior of the system
model is contained in the language of Aϕ,B.

But on the other hand, we may apply temporal logic in the early stages of system
development and start with specifying formulas to exemplify the intended interaction of
the system to be. If so, we would like to synthesize a system model from a formula that
captures precisely those behaviors that satisfy the formula. In other words, we ask whether a
temporal-logic formula is realizable, i.e., whether the derived system is consistent and shows
any reasonable behavior at all. Once a system is synthesized directly from its specification,
it can be assumed to be correct a priori, provided the translation preserves the semantics
of the specification.

Though the assumption of bounded channels leads to the decidability of the model
checking problem, it does not seem natural to restrict the channel size of the desired system
in advance, especially when one is interested in the synthesis of a system from a specification.
Despite the complexity of MSCs, we will provide in this paper a linear-time temporal logic
for message-passing systems and solve its realizability problem in its full generality, i.e.,
under the assumption of a priori unbounded channels.

Results from [BL06, BK08] suggest to use an existential fragment of monadic second-
order logic (EMSO) as a specification language. A formula from that fragment can be
translated into a CFM that precisely recognizes the models of the formula. This result
holds without channel restriction. In this paper, we basically follow the approach from
[BL06, BK08], but we propose a new logic: propositional dynamic logic (PDL) for MSCs.
Our logic will prove useful for verification, as it is closed under negation and allows us to
express interesting properties in an easy and intuitive manner. Like EMSO, but unlike full
monadic second-order logic, every PDL formula ϕ can be effectively translated into a CFM
Aϕ whose language is the set of models of ϕ. This synthesis step is independent of any
channel bound B and would not become simpler if we took some B into account. The size
of the resulting CFM is exponential in the size of ϕ and in the number of processes. Note
that, by [BL06, BK08], EMSO is expressively equivalent to CFMs. Moreover, the set of
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CFM languages is not closed under complementation. As, on the other hand, PDL does
not impose any restriction on the use of negation, we obtain that PDL is a proper fragment
of EMSO although this is not obvious.

The model checking problem of CFMs againgst PDL formulas can be decided in poly-
nomial space for existentially B-bounded MSCs, following a standard procedure and using
the translation of ϕ into a CFM Aϕ. Our PSPACE algorithm meets the lower bound that
is imposed by the complexity of LTL model checking for finite-state systems. We also show
PSPACE completeness of the model checking problem of high-level MSCs (HMSCs) against
PDL formulas (where the bound B is given implicitly by the HMSC). HMSCs are more
abstract and restrictive than CFMs, but can likewise be used as a model of a system.

The final technical section considers an enriched logic: iPDL (PDL with intersection).
This extension seems natural to strengthen the expressive power of the formulas. But
adapting a proof technique from colored grids, we show that iPDL is too strong for CFMs,
i.e., there is an iPDL formula ϕ such that no CFM accepts precisely the models of ϕ.

Related Work. For MSCs, there exist a few attempts to define suitable temporal log-
ics. Meenakshi and Ramanujam obtained exponential-time decision procedures for sev-
eral temporal logics over Lamport diagrams (which are similar to MSCs) [MR00, MR04].
Peled [Pel00] considered the fragment TLC− of the temporal logic TLC that was intro-
duced in [APP95]. Like their logics, our logic is interpreted directly over MSCs, not over
linearizations; it combines elements from [MR04] (global next operator, past operators) and
[Pel00] (global next operator, existential interpretation of the until-operator). In particular,
however, it is inspired by dynamic LTL as introduced by Henriksen and Thiagarajan first
for words [HT99]. There, standard LTL is extended by indexing the until operator with
a regular expression to make it more expressive. The same authors applied dynamic LTL
also to Mazurkiewicz traces but reasoned only about the future of an event in the same
process [HT97]. In contrast, we might argue about the whole future of an event rather than
about one single process. Moreover, we provide past operators to judge about events that
have already been executed. We call our logic PDL because it is essentially the original
propositional dynamic logic as first defined by Fischer and Ladner [FL79] but here in the
framework of MSCs. Although PDL can be seen as an extension of Peled’s TLC−, our
decision procedure is rather different. Instead of translating a PDL formula ϕ into a CFM
directly, we use an inductive method inspired by [GK03, GK07, GK10]. As TLC− is a
fragment of PDL, we actually generalize the model checking result from [Pel00].

Outline. In Section 2, we define message sequence charts, the logic PDL, and CFMs. We
continue, in Section 3, with several useful constructions for CFMs. Sections 4 and 5 deal
with the translation of PDL formulas into CFMs. The model checking problem is tackled
in Section 6 before we conclude, in Section 7, with the result that PDL with intersection
(iPDL) cannot be implemented in terms of CFMs.

A preliminary version of this paper appeared as [BKM07].

2. Definitions

The communication framework used in our paper is based on sequential processes that
exchange messages asynchronously over point-to-point, error-free FIFO channels. Let P be
a finite set of process identities which we fix throughout this paper. Furthermore, let Ch =
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{(p, q) ∈ P2 | p 6= q} denote the set of channels. Processes act by either sending a message,
that is denoted by p!q meaning that process p sends to process q, or by receiving a message,
that is denoted by p?q, meaning that process p receives from process q. For any process
p ∈ P, we define a local alphabet (set of event types on p) Σp = {p!q, p?q | q ∈ P \ {p}},
and we set Σ =

⋃

p∈P Σp.

2.1. Message sequence charts. A message sequence chart depicts processes as vertical
lines, which are interpreted as top-down time axes. Moreover, an arrow from one line to
a second corresponds to the communication events of sending and receiving a message.
Formally, message sequence charts are special labeled partial orders. To define them, we
need the following definitions: A Σ-labeled partial order is a triple M = (V,≤, λ) where
(V,≤) is a partially ordered set and λ : V → Σ is a mapping. For v ∈ V with λ(v) = pθq
where θ ∈ {!, ?}, let P (v) = p denote the process that v is located at. We set Vp = P−1(p).
We define two binary relations proc and msg on V :

• (v, v′) ∈ proc iff P (v) = P (v′), v < v′, and, for any u ∈ V with P (v) = P (u) and
v ≤ u < v′, we have v = u. The idea is that (v, v′) ∈ proc whenever v and v′ are two
consecutive events of the same process.

• (v, v′) ∈ msg iff there is a channel (p, q) with λ(v) = p!q, λ(v′) = q?p, and

|{u | λ(u) = p!q, u ≤ v}| = |{u | λ(u) = q?p, u ≤ v′}| .

Here, the idea is that v is a send event and v′ is the matching receive event. Since we
model reliable FIFO-channels, this means that, for some i and some channel (p, q), v is
the ith send and v′ the ith receive event on channel (p, q).

Definition 2.1. A message sequence chart or MSC for short is a Σ-labeled partial order
(V,≤, λ) such that

• ≤ = (proc ∪msg)∗,
• {u ∈ V | u ≤ v} is finite for any v ∈ V ,
• Vp is linearly ordered for any p ∈ P, and
• |λ−1(p!q)| = |λ−1(q?p)| for any (p, q) ∈ Ch.

We refer to the elements of V as events or nodes.

If (V,≤, λ) is an MSC, then proc and msg are even injective partial functions, so v′ =
proc(v) as well as v = proc−1(v′) are equivalent notions for (v, v′) ∈ proc; msg(v) and
msg−1(v) are to be understood similarly.

An example MSC with three processes is pictured as a diagram in Figure 1(b) on page 7.
The processes are visualized as vertical lines going downwards and messages as horizontal
directed edges between process lines.

2.2. Propositional dynamic logic. Path expressions π and local formulas α are defined
by simultaneous induction. This induction is described by the following rules

π ::= proc | msg | {α} | π;π | π + π | π∗

α ::= tt | σ | α ∨ α | ¬α | 〈π〉α | 〈π〉−1 α

where σ ranges over the alphabet Σ.
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Local formulas express properties of single nodes in MSCs. To define the semantics of
local formulas, let therefore M = (V,≤, λ) be an MSC and v a node from M . Then we
define

M,v |= σ ⇐⇒ λ(v) = σ for σ ∈ Σ

M,v |= α1 ∨ α2 ⇐⇒ M,v |= α1 or M,v |= α2

M,v |= ¬α ⇐⇒ M,v 6|= α

The idea of forward-path modalities 〈π〉α indexed by a path expression π is to perform a
program π and then to check whether α is satisfied. Thereby, π is a rational expression
over proc and msg describing paths in a MSC but allows also for tests {α} in following the
paths defined by π. Formally, the semantics of forward-path formulas 〈π〉α is given by

M,v |= 〈proc〉α ⇐⇒ there exists v′ ∈ V with (v, v′) ∈ proc and M,v′ |= α

M, v |= 〈msg〉α ⇐⇒ there exists v′ ∈ V with (v, v′) ∈ msg and M,v′ |= α

M, v |= 〈{α}〉 β ⇐⇒ M,v |= α and M,v |= β

M, v |= 〈π1;π2〉α ⇐⇒ M,v |= 〈π1〉 〈π2〉α

M, v |= 〈π1 + π2〉α ⇐⇒ M,v |= 〈π1〉α ∨ 〈π2〉α

M, v |= 〈π∗〉α ⇐⇒ there exists n ≥ 0 with M,v |= (〈π〉)nα

The semantics of backward-path formulas 〈π〉−1 α is defined similarly:

M,v |= 〈proc〉−1 α ⇐⇒ there exists v′ ∈ V with (v′, v) ∈ proc and M,v′ |= α

M, v |= 〈msg〉−1 α ⇐⇒ there exists v′ ∈ V with (v′, v) ∈ msg and M,v′ |= α

M, v |= 〈{α}〉−1 β ⇐⇒ M,v |= α and M,v |= β

M, v |= 〈π1;π2〉
−1 α ⇐⇒ M,v |= 〈π1〉

−1 〈π2〉
−1 α

M, v |= 〈π1 + π2〉
−1 α ⇐⇒ M,v |= 〈π1〉

−1 α ∨ 〈π2〉
−1 α

M, v |= 〈π∗〉−1 α ⇐⇒ there exists n ≥ 0 with M,v |= (〈π〉−1)nα

Semantically, a local formula of the form 〈({α}; (proc+msg))∗〉β corresponds to the until
construct αUβ in Peled’s TLC− [Pel00]. In TLC−, however, one cannot express properties
such as “there is an even number of messages from p to q”, which is easily expressible in
PDL.

Global properties of an MSC are Boolean combinations of properties of the form “there
exists a node satisfying the local formula α”. These global properties are expressed by global
formulas ϕ whose syntax is given by

ϕ ::= Eα | Aα | ϕ ∨ ϕ | ϕ ∧ ϕ

where α ranges over the set of local formulas. The semantics is defined by

M |= Eα ⇐⇒ there exists a node v with M,v |= α

M |= Aα ⇐⇒ M,v |= α for all nodes v

M |= ϕ1 ∨ ϕ2 ⇐⇒ M |= ϕ1 or M |= ϕ2

M |= ϕ1 ∧ ϕ2 ⇐⇒ M |= ϕ1 and M |= ϕ2
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Note that our syntax of global formulas does not allow explicit negation. But since we
allow existential and universal quantification as well as disjunction and conjunction, the
expressible properties are closed under negation.

Example 2.2. For i ∈ P, we put Pi =
∨

j∈P,j 6=i(i!j ∨ i?j), i.e., M,v |= Pi iff P (v) = i for

every MSC M = (V,≤, λ) and v ∈ V . Now the global formula

ϕ=2
i,j = A

(
Pi −→ (〈proc∗;msg; proc∗;msg〉Pj)

)

states that process j can always be reached from process i with exactly two messages (using
an intermediate process in between).

Definition 2.3. The set of subformulas sub(α) of a local formula α and the set of subfor-
mulas sub(π) of a path expression π are defined by synchronous induction as follows:

sub(proc) = sub(msg) = ∅

sub({α}) = sub(α)

sub(π1;π2) = sub(π1 + π2) = sub(π1) ∪ sub(π2)

sub(π∗) = sub(π)

and

sub(σ) = {σ} for σ ∈ Σ

sub(¬α) = {¬α} ∪ sub(α)

sub(α ∨ β) = {α ∨ β} ∪ sub(α) ∪ sub(β)

sub(〈π〉α) = {〈π〉α} ∪ sub(π) ∪ sub(α)

sub(〈π〉−1 α) = {〈π〉−1 α} ∪ sub(π) ∪ sub(α)

Thus, in addition to the obvious definition, a subformula of a path expression is any of
the local formulas occurring in the path expression as well as any subformula of these local
formulas. In particular, contrary to what one might expect, a rather long local formula like
ϕ = 〈proc; {σ}; proc; {σ}; proc; {σ}; proc; {σ}〉 σ has only two subformulas, namely ϕ itself
and σ. The number of subformulas of α is bounded by the length of α, but the length of α
cannot be bounded in terms of the number of subformulas.

Note that a path expression π is a regular expression over the following alphabet
{proc,msg, {α1}, . . . , {αn}} for some local formulas αi. The size s(π) of π is defined by
s({α}) = s(proc) = s(msg) = 1, s(π1 + π2) = s(π1;π2) = s(π1) + s(π2) and s(π∗) = s(π)
(i.e., it is the number of occurrences of {α}, msg, and proc in the regular expression π).
Note that the size of the path expression {α} is 1, independent from the concrete form of
the local formula α.

2.3. Communicating finite-state machines. One formalism to describe (asynchronous)
communication protocols are communicating finite-state machines (CFM for short) [BZ83].
They form a basic model for distributed algorithms based on asynchronous message passing
between concurrent processes. Thus, the basic actions performed are just sending and
receiving of messages (i.e., letters from Σ).

A CFM A consists of a collection of finite automata Ap, one for each process p ∈ P.
The automaton Ap performs the actions of process p, i.e., the send events p!q and the receive
events p?q for all q 6= p. Moreover, the single automata synchronize by control messages
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s0

s1

s2

s3

t0

t1

q0

1!2, r

1?2, X

1?2, x

1!3, c

1!2, r

2?1, r
2!1, X

2!1, x

3?1, c

AClient AServer AInterface
Client(1) Server(2) Interface(3)

...
...

...

...
...

(a) A CFM over {Client,Server, Interface}. (b) An infinite MSC.

Figure 1: A CFM and an infinite MSC accepted by it.

from some finite set C. Whenever Ap sends a message to Aq, then Ap and Aq share some
common control message c ∈ C. The final states of a CFM are defined globally and the
local components of a final state have either to be repeated infinitely often by the process
or the process terminates in such a local state.

We extend the alphabet Σ for later purposes to Σ × {0, 1}n for some n ∈ N – the
classical model is obtained by setting n = 0 in the below definition (in which case we write
A = (C, (Ap)p∈P , F ).)

Definition 2.4. A communicating finite-state machine (or, simply, CFM ) is a structure
A = (C,n, (Ap)p∈P , F ) with n ∈ N where

• C is a finite set of message contents or control messages,
• Ap = (Sp,→p, ιp) is a finite labeled transition system over the alphabet Σp ×{0, 1}n ×C
for any p ∈ P (i.e., →p ⊆ Sp × (Σp × {0, 1}n × C)× Sp) with initial state ιp ∈ Sp,

• F ⊆
∏

p∈P Sp is a set of global final states.

Now let A be a CFM as above, M = (V,≤, λ) be an MSC, and c : V → {0, 1}n. A run
of A on (M, c) is a pair (ρ, µ) of mappings ρ : V →

⋃

p∈P Sp and µ : V → C such that, for
any v ∈ V ,

(1) µ(v) = µ(msg(v)) if msg(v) is defined,
(2) (ρ(proc−1(v)), λ(v), c(v), µ(v), ρ(v)) ∈ →P (v) if proc

−1(v) is defined, and
(ιp, λ(v), c(v), µ(v), ρ(v)) ∈ →P (v) otherwise.

In order to define when the run (ρ, µ) is accepting, we will use Büchi-conditions on each
process. For this, one is usually interested in the set of states that appear infinitely often.
But since, even in an infinite MSC, some of the processes may execute only finitely many
events, the set of states appearing infinitely often is here generalized to the set of states
that appear cofinally : Let cofinρ(p) = {s ∈ Sp | ∀v ∈ Vp ∃v′ ∈ Vp : v ≤ v′ ∧ ρ(v′) = s}.
Then the run (ρ, µ) is accepting if there is some (sp)p∈P ∈ F such that sp ∈ cofinρ(p) for all
p ∈ P. The language of A is the set L(A) of all pairs (M, c) that admit an accepting run.

Example 2.5. Consider the CFM illustrated in Figure 1(a). A client (process 1) commu-
nicates with a server (process 2) sending requests (message content r) to receive permission
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to send a message to the interface (process 3). If the server refuses permission (message
content x), the request is repeated. But if permission is given (message content X), then the
client sends a message c to the interface. Now the client can start again to send requests to
the server. Here, the only accepting state is (s3, t0, q0). Thus the client can either stop after
sending a message to the interface (and all other processes also stop) or the client has to
send infinitely many messages to the interface, i.e., every request of the client is eventually
followed by a communication with the interface.

The MSC pictured in Figure 1(b) is one possible behavior of the CFM. Moreover, any
MSC M accepted by this CFM satisfies the formula ϕ=2

2,3 from Example 2.2.

3. Constructions of CFMs

In this section, we present some particular CFMs and constructions of CFMs. The
purpose is twofold: the results will be used later, and the reader shall become acquainted
with the computational power of CFMs. Hence, some readers might choose to skip the
details of this section in a first reading.

3.1. Intersection. Here, we show that the intersection of languages accepted by CFMs can
again be accepted by a CFM. Since the acceptance by a CFM is defined in terms of a Büchi-
condition, we can adopt the flag construction [Cho74] from the theory of word automata with
Büchi-acceptance condition (cf. proof of Lemma 1.2 in [Tho90]). The additional problem
we face here is the interplay between different processes.

The basic idea of our construction is as follows (for two CFMs A1 and A2): each local
process guesses an accepting global state f1 = (f1p )p∈P of A1 and f2 = (f2p )p∈P of A2.

Then, locally, process p simulates both CFMs A1 and A2 and checks that f1p and f2p are
visited infinitely often (here, one relies on Choueka’s flag construction). Hence, the set of
local states of process p equals F 1 × F 2 × S1

p × S2
p × {0, 1, 2}. A global state is accepting if

all the guesses locally made coincide and if the local processes accept according to the flag
construction.

Recall that the set of accepting states F 1 is a set of tuples, its maximal size is therefore
∏

p∈P |S1
p |. Thus, the intersection of two CFMs with s local states per process can result in

a CFM with s2|P| · s2 · 3 = sO(|P|) many local states per process.
Now suppose that F 1 and F 2 are direct products, i.e., F 1 =

∏

p∈P F
1
p for some sets

F 1
p ⊆ S1

p and, similarly, F 2 =
∏

p∈P F
2
p for some sets F 2

p ⊆ S2
p . Then, in the above

construction, it is not necessary for the local guesses to coincide – which makes them
superfluous (cf. Proof of Lemma 3.2 below). Thus, in this case, the set of local states of
process p will just be S1

p × S2
p × {0, 1, 2}, in particular, it will not be exponential in the

number of processes.
To use this simplification of the construction, we introduce the following notion.

Definition 3.1. Let F ⊆
∏

p∈P Sp. The index of F is the least number n such that there

are sets F i
p ⊆ Sp for p ∈ P and 1 ≤ i ≤ n with F =

⋃

1≤i≤n

∏

p∈P F
i
p.

The index of a CFM is the index of its set of accepting states.

Clearly, the index of a CFM is bounded by s|P | where s is the maximal size of a set
of local states Sp. To see that it can indeed be quite large, let P = Sp = [n] for all p ∈ P
(where we let [n] = {1, . . . , n}). Furthermore, let F be the set of all tuples (sp)p∈P such that
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{sp | p ∈ P} = [n], i.e., the set of surjections from [n] onto [n]. Hence F contains n! many
elements. Any two of them differ in at least two positions. Hence the index of F equals its
size and is exponential in n and therefore in |P |. Despite this exponential example, we will
encounter only small indices in our constructions.

Lemma 3.2. For 1 ≤ i ≤ m, let Ai = (Ci, n, (Si
p,→

i
p, ι

i
p)p∈P , F

i) be CFMs of index 1. Then
there exists a CFM A of index 1 that accepts (M, c) with M an MSC and c : V → {0, 1}n

iff it is accepted by Ai for all i ∈ [m].
The set of messages of A is

∏

i∈[m]C
i and the set of local states of process p is

{0, 1, . . . ,m} ×
∏

i∈[m] S
i
p.

Proof. Since F i has index 1, there exist sets F i
p ⊆ Si

p with F i =
∏

p∈P F
i
p.

The idea of the proof is that A will simulate all the machines Ai in parallel. In ad-
dition, it checks that, for each p ∈ P and i ∈ [m], some state from F i

p is assumed cofi-
nally (i.e., infinitely often or, if process p executes only finitely many events, at the last

event from p). Formally, we set ιp =

{

(m, ι1p, . . . , ι
m
p ) if (ι1p, . . . , ι

m
p ) ∈

∏

i∈[m] F
i
p

(0, ι1p, . . . , ι
m
p ) otherwise

and

F =
∏

p∈P

(

{m} ×
∏

i∈[m] S
i
p

)

. Furthermore, (a, (si)i∈[m])
σ,c,(bi)i∈[m]
−−−−−−−→p (a′, (s′i)i∈[m]) with

bi ∈ Ci is a transition of A iff

(1) si
σ,c,bi−−−→ i

ps
′
i is a transition of Ai for all i ∈ [m]

(2) a′ =







m if si ∈ F i
p for all i ∈ [m]

0 if a = m and si /∈ F i
p for some i ∈ [m]

a+ 1 if a < m, sa+1 ∈ F a+1
p and si /∈ F i

p for some i ∈ [m]

a otherwise.

Recall the classical flag construction for ω-word automata. There, the value of the counter a
indicates that the composite machine waits for an accepting state of the simulated ma-
chine a+ 1; a value m indicates that all simulated machines went through some accepting
states. Here, we do the same. But, in addition, if all component states of the composite
machine are accepting, then we set the counter value directly to m. This is useful when
process p executes only finitely many events. Then, at its final event v, all the component
machines have to be in some accepting state. For processes executing infinitely many events,
this is of no importance.

Proposition 3.3. For i ∈ [m], let Ai = (Ci, n, (Si
p,→

i
p, ι

i
p)p∈P , F

i) be a CFM of index ℓi.
Then there exists a CFM A of index

∏

1≤i≤m ℓi that accepts (M, c) with M an MSC and

c : V → {0, 1}n iff it is accepted by Ai for all i ∈ [m].
The set of messages of A is

∏

i∈[m]C
i. Moreover, the set of local states of process p is

{ιp} ·∪ ({0, 1, 2, . . . ,m} ×
∏

i∈[m] S
i
p ×

∏

i∈[m][ℓi]).

Proof. Since the index of Ai is ℓi, its language is the union of languages Li
1, . . . , L

i
ℓi

that
can each be accepted by a CFM of index 1. The language in question is therefore given
by

⋃

j∈
∏

i∈[m][ℓi]

⋂

i∈[m] L
i
ji
. By Lemma 3.2, the intersection

⋂

i∈[m] L
i
ji
can be accepted by a

CFM of index 1 with set of local states {0, 1, 2, . . . ,m}×
∏

i∈[m] S
i
p×{j}. The disjoint union

of all these CFMs (together with new local initial states) accepts the language in question;



10 B. BOLLIG, D. KUSKE, AND I. MEINECKE

its set of local states equals {ιp} ·∪ ({0, 1, 2, . . . ,m} ×
∏

i∈[m] S
i
p ×

∏

i∈[m][ℓi]) and its index

is
∏

1≤i≤m ℓi as claimed.

3.2. Infinitely running processes. For an MSC M = (V,≤, λ), let Inf(M) ⊆ Ch denote
the set of those channels (p, q) that are used infinitely often, i.e., Inf(M) = {(p, q) ∈ Ch |
λ−1(p!q) is infinite}. From a set I ⊆ Ch, we want to construct a CFM of index 1 that
checks whether Inf(M) = I.

Lemma 3.4. Let I ⊆ Ch. There exists a CFM A1 of index 1 with three local states per
process and one message that accepts an MSC M iff Inf(M) ⊆ I.

Proof. The sets of local states are given by Sp = {0, 1, 2} for any p ∈ P, the state 0 is locally

initial. The only control message is 1. Then we set a
σ,1
−−→p b iff (a = b and σ uses a channel

from I) or (a < b and σ does not use a channel from I) or a = b = 1. Then state 0 indicates
that no channel of Ch\I has been used, 1 indicates that some channel from Ch\I has been
used and that some channel will be used, and 2 denotes that some channel from Ch \ I has
been used but none will ever be used in the future. Hence, process p uses the channels from
Ch \ I only finitely often iff it can visit 0 or 2 cofinally. Setting F =

∏

p∈P{0, 2} therefore
finishes the construction of the desired CFM.

Lemma 3.5. Let I ⊆ Ch. There exists a CFM B1 of index 1 with 4|P| local states per
process and one message that accepts an MSC M iff I ⊆ Inf(M).

Proof. For p ∈ P let Sp = {0, 1}Σp and set C = {1}. The locally initial state ιp ∈ Sp maps all

τ ∈ Σp to 0. Then we set g
σ,1
−−→ g′ for g, g′ ∈ Sp and σ ∈ Σp iff g

′(τ) =

{

g(τ) if τ 6= σ

1− g(τ) otherwise

for all τ ∈ Σp. Thus, the local process p counts modulo 2 the number of occurrences of any
local action. The channel (p, q) is used infinitely often iff the following two properties hold:

• Process p visits a state gp with gp(p!q) = 0 cofinally.
• Process q visits a state gq with gq(q?p) = 1 cofinally.

Therefore, a global state (gp)p∈P is final (i.e., belongs to F ) iff, for any (p, q) ∈ I, we have
gp(p!q) = 0 and gq(q?p) = 1.

Proposition 3.6. Let I ⊆ Ch. There exists a CFM B of index 1 with 3 · 3 · 4|P| local states
per process and one message that accepts an MSC M iff I = Inf(M).

Proof. Follows immediately from Lemmas 3.4, 3.5, and 3.2.

3.3. The color language. In this section, we build a CFM that accepts some “black/white
colored” MSCs. The aim is that whenever a coloring is accepted, then any infinite path in
the MSC has infinitely many color changes (cf. Cor. 3.9). This language will be the crucial
ingredient in our handling of forward-path formulas of the form 〈π〉α (cf. Section 4.2).

For the time being, we proceed as follows: first, we define a language Col whose elements
are colored MSCs (M, c). Prop. 3.7 shows that this language can be accepted by a CFM.
Cor. 3.9 ensures that any infinite path in (M, c) ∈ Col has infinitely many color changes.
We do not prove the converse (which is actually false), but will see later that sufficiently
many colorings with this property belong to Col (Lemma 4.14).
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Figure 2: The second condition.

Let M be an MSC and c : V → {0, 1}. On V , we define an equivalence relation ∼
setting u ∼ w iff P (u) = P (w) and, for all v ∈ V with (u ≤ v ≤ w or w ≤ v ≤ u)
and P (u) = P (v), we have c(u) = c(v) = c(w) (i.e., a ∼-equivalence class is a maximal
monochromatic interval on a process line).

Let Col be the set of all pairs (M, c) with c : V → {0, 1} such that the following hold

(1) if v is minimal on its process, then c(v) = 1,
(2) if (v, v′) ∈ msg and w′ ≤ v′ with P (w′) = P (v′), then there exists (u, u′) ∈ msg with

λ(u′) = λ(v′), c(u) = c(u′), and u′ ∼ w′ (implying λ(u) = λ(v)),
(3) any equivalence class of ∼ is finite.

Figure 2 visualizes the second condition, on the left, we have the precondition while the right
diagram indicates the conclusion. More precisely, in the precondition, we have a message
(v, v′) ∈ msg from process p to process q and some node w′ preceding v′ on the same
process. Recall that equivalence classes of ∼ are intervals on process lines. The borders
of the equivalence class containing w′ are indicated. Then, by the conclusion, there is a
message (u, u′) ∈ msg from p to q such that u′ belongs to the indicated equivalence class of
∼ (that also contains w′) and the colors of u and u′ are the same (which is not indicated).

In general, there can be messages (u, u′) ∈ msg such that the colors of u and u′ are
different, i.e., c(u) 6= c(u′). The second condition ensures that there are “many” messages
where the send and the receive event carry the same color.

Proposition 3.7. There exists a CFM ACol that accepts the set Col. The CFM ACol has
two messages and its number of local states is in 2O(|P|).

Proof. Since the language Col consists of pairs (M, c), any process p of a CFM with two
messages executes a sequence of events from ((Σp × {0, 1}) × {0, 1})∞ (with Γ∞ the set of
finite and infinite words over Γ) where ((σ, a), b) stands for a (σ, a)-labeled event that sends
or receives b. Our automaton ACol will always send the current value of the mapping c, i.e.,
the set of control messages is {0, 1} and we will only execute events from

Γp = {((p!q, a), a) | q ∈ P \ {p}, a ∈ {0, 1}} ∪ {((p?q, a), b) | q ∈ P \ {p}, a, b ∈ {0, 1}}.
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Having this in mind, consider for p ∈ P, B ⊆ P, and i ∈ {0, 1} the language Lp
B,i ⊆ Γ∗

p with

w ∈ Lp
B,i iff

• if ((p!q, a), a) occurs in w, then a = i,
• if ((p?q, a), b) occurs in w, then a = i and q ∈ B,
• for all q ∈ B, the letter ((p?q, i), i) occurs in w.

Then Lp
B,i is regular and can be accepted by a finite deterministic automaton Bp

B,i with

2|B| many states. We build the p-component Ap of ACol from the disjoint union of all these
automata Bp

B,i – it therefore has
∑

B⊆P

2 · 2|B| ≤ 2 · 4|P|

many states. More precisely, Ap is obtained from this disjoint union by adding ε-transitions
from any accepting state of Ap

B,i to any initial state of Ap
C,j iff B ⊇ C and i 6= j. The initial

states of Ap are the initial states of Bp
B,1. A finite run is accepting if it ends in some final

state of one of the automata Bp
B,i, an infinite run is accepting if it takes infinitely many

ε-transitions.
Note that a word ((pθnqn, an), bn)0≤n<N ∈ Γ∞

p is accepted by Ap iff

• a0 = 1
• if θn = !, then an = bn
• if θn = ? and m ≤ n, then there exists k ∈ N with pθkqk = p?qn, ak = bk, and, for all ℓ
in between m and k, we have am = aℓ = ak.

Hence the CFM consisting of these components accepts the language Col.

The index ind(v) of a node v ∈ Vp is the maximal number of mutually non-equivalent
nodes from Vp below v. Note that c(v) = ind(v) mod 2 for all nodes v if the pair (M, c)
satisfies (1) in the definition of the language Col.

Lemma 3.8. Let (M, c) ∈ Col. Then, for any (v, v′) ∈ msg with ind(v) < ind(v′), we have
c(v) 6= c(v′).

Proof. Suppose there is (v, v′) ∈ msg with ind(v) < ind(v′) but c(v) = c(v′). Since any
element of M dominates a finite set, we can assume v′ to be minimal with this problem. If
ind(v) + 1 = ind(v′), we are done since c(v) = ind(v) mod 2 6= (ind(v) + 1) mod 2 = c(v′).
So let ind(v) + 1 < ind(v′). Since (M, c) ∈ Col and ind(v′) − 1 > ind(v) ≥ 1, there exists
(u, u′) ∈ msg with λ(u′) = λ(v′), c(u) = c(u′), and ind(u′) = ind(v′) − 1. In particular,
u′ < v′ and therefore u < v. But then ind(u) ≤ ind(v). Now we have ind(u) ≤ ind(v) <
ind(v′)−1 = ind(u′), i.e., u′ < v′ is another counterexample to the statement of the lemma.
But this contradicts the choice of v′.

Corollary 3.9. Let (M, c) ∈ Col and let (v1, v2, . . . ) be some infinite path in M . Then
there exist infinitely many i ∈ N with c(vi) 6= c(vi+1).

Proof. Since ind−1(n) is finite for any n ∈ N, there are infinitely many i ∈ N with ind(vi) <
ind(vi+1). If (vi, vi+1) ∈ proc, then ind(vi+1) = ind(vi)+1 and therefore c(vi) 6= c(vi+1). If,
in the other case, (vi, vi+1) ∈ msg, then by Lemma 3.8, we get c(vi) 6= c(vi+1).
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4. Translation of local formulas

Let α be a local formula of PDL. We will construct a “small” CFM that accepts a pair
(M, c) with M an MSC and c : V → {0, 1} iff c is the characteristic function of the set of
positions satisfying α, i.e.,

c(v) =

{

1 if M,v |= α

0 otherwise.

To obtain this CFM, we will first construct another CFM that accepts (M, (cβ)β∈sub(α)) iff,
for all positions v ∈ V and all subformulas β of α, we have M,v |= β iff cβ(v) = 1. This
CFM will consist of several CFMs running in conjunction, one for each subformula. For
instance, if σ ∈ Σ and δ = β ∨ γ are subformulas of α, then we will have sub-CFMs that
check whether, for any position v, we have cσ(v) = 1 iff λ(v) = σ and cδ(v) = cβ(v)∨ cγ(v),
respectively. We first define these sub-CFMs for subformulas of the form σ, β ∨ γ, and ¬β.

Example 4.1. For σ ∈ Σ, we define the CFM Aσ = ({m}, 1, (Ap)p∈P , F ) as follows: For
p ∈ P, let Sp = {ιp} and (ιp, τ, b,m, ιp) ∈ →p iff

• τ = σ and b = 1 or
• τ 6= σ and b = 0.

Furthermore, F = {(ιp)p∈P}. Then it is easily checked that (M, c) is accepted by Aσ iff

∀v ∈ V : λ(v) = σ ⇐⇒ c(v) = 1.

Example 4.2. Next we define a CFM A∨ = ({m}, 3, (Ap)p∈P , F ): For p ∈ P, let Sp = {ιp}
and (ιp, τ, (b1, b2, b3),m, ιp) ∈ →p iff b3 = b1 ∨ b2. Furthermore, F = {(ιp)p∈P}. Then it is
easily checked that (M, c) is accepted by A∨ iff

∀v ∈ V : c3(v) = c1(v) ∨ c2(v).

The CFM A¬ is defined similarly.

Example 4.3. Next we define a CFM AE = ({m}, 1, (Ap)p∈P , F ): For p ∈ P, let Sp =
{ιp, sp} and →p contain precisely (ιp, τ, 0,m, ιp), (ιp, τ, 1,m, sp), and (sp, τ, b,m, sp) for all
τ ∈ Σp and b ∈ {0, 1}. Furthermore, F is the set of tuples (fp)p∈P that contain at least one
occurrence of sp. Hence the index of this CFM is the number of processes |P|.

Then it is easily checked that (M, c) is accepted by AE iff there exists a node v with
c(v) = 1.

The CFM AA = ({m}, 1, (Ap)p∈P , F ) has again just one local state per process (and
is therefore of index 1): For p ∈ P, let Sp = {ιp}, →p = {(ιp, τ, 1,m, ιp)} | τ ∈ Σp}, and
F = {(ιp)p∈P}.

Then it is easily checked that (M, c) admits a run and is therefore accepted by AA iff
c(v) = 1 for all nodes v.

4.1. The backward-path automaton. Let π be a path expression, i.e., a regular expres-
sion over the alphabet {proc,msg, {α1}, . . . , {αn}}. Replacing {αi} by i, we obtain a regular
expression over the alphabet Γ = {proc,msg, 1, 2, . . . , n}. Let Lπ ⊆ Γ∗ be the language of
this regular expression.

A word over Γ together with a node from an MSC describes a path starting in that
node that walks backwards. The letters proc and msg denote the direction of the path, the
letters i denote requirements about the node currently visited (namely, that αi shall hold).
This idea motivates the following definition:
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A1

A2p?q

q!p

A′
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A1

A2p!q

q?p
A′

2

Figure 3: Transitions of the CFM.

Definition 4.4. For an MSC M , functions c1, . . . , cn : V → {0, 1}, a node v ∈ V and a
word W ∈ Γ∗, we define inductively (M, c1, . . . , cn), v |=−1 W :

(M, c1, . . . , cn), v |=−1 ε

(M, c1, . . . , cn), v |=−1 procW ⇐⇒ there is v′ = proc−1(v) with (M, c1, . . . , cn), v
′ |=−1 W

(M, c1, . . . , cn), v |=−1 msgW ⇐⇒ there is v′ = msg−1(v) with (M, c1, . . . , cn), v
′ |=−1 W

(M, c1, . . . , cn), v |=−1 iW ⇐⇒ ci(v) = 1 and (M, c1, . . . , cn), v |=−1 W

We easily verify that M,v |= 〈π〉−1 tt iff there exists W ∈ Lπ such that M,v |=−1 W .
Let C = (Q, ι, T,G) be a finite automaton over Γ recognizing Lπ. Note that we can

assume |Q| ∈ O(s(π)). For q ∈ Q and W ∈ Γ∗, we write q.W ⊆ Q for the set of states
that can be reached from q reading the word W , and we denote by W.q ⊆ Q the set of
states from which one can reach q when reading W . Furthermore, P.L =

⋃

p∈P,W∈L p.W

and L.P =
⋃

W∈L,p∈P W.p for P ⊆ Q and L ⊆ Γ∗ (if L (or P ) is a singleton, then we may

identify it with its unique element).

Lemma 4.5. There exists a CFM A with sets of local states 2Q and set of messages
2Q such that, for any run ρ of A on (M, c1, . . . , cn) and any node v of M , we have
ρ(v) = {q ∈ Q | ∃W ∈ Γ∗ : q ∈W.G and M,v |=−1 W}.

Proof. To define the set of transitions, let A1, A2, A
′
2 ⊆ 2Q, and let a = (σ, b1, . . . , bn) ∈

Σp × {0, 1}n and N = {i ∈ [n] | bi = 1}. Then we set

A1
a,A′

2−−−→p A2

iff the following conditions hold

(1) if σ is a send action, then A2 = A′
2 = N∗.G ∪N∗ proc.A1,

(2) if σ is a receive action, then A2 = N∗.G ∪N∗ proc.A1 ∪N
∗msg.A′

2.

Here, A1 is the local state assumed before the execution of the (labeled) action a, A2 is the
local state assumed afterwards, and A′

2 is the message involved in this transition. Depending
on whether a is a receive or a send action, the message is consumed by a or emitted by a.
These two situations are visualized in Figure 3.

The local initial state is ∅ for any p ∈ P and any tuple of local states is accepting. Now
let (ρ, µ) be a run of this CFM on (M, c1, . . . , cn).
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For v ∈ V setNv = {i ∈ [n] | ci(v) = 1} andM(v) = {W ∈ Γ∗ | (M, c1, . . . , cn), v |=−1 W}.
Then it is easily verified that

M(v) = N∗
v ∪N∗

v procM(proc−1(v))
︸ ︷︷ ︸

if proc−1(v) is defined

∪N∗
v msgM(msg−1(v))

︸ ︷︷ ︸

if msg−1(v) is defined

.

On the other hand,

ρ(v) = N∗
v .G ∪N∗

v .proc.ρ(proc
−1(v))

︸ ︷︷ ︸

if proc−1(v) is defined

∪N∗
v .msg.ρ(msg−1(v))

︸ ︷︷ ︸

if msg−1(v) is defined

.

Hence, by induction on the partial order (V,≤), we have q ∈ ρ(v) iff q ∈M(v).G.

Theorem 4.6. Let 〈π〉−1 α be a local formula such that π is a regular expression over the
alphabet {proc,msg, {α1}, . . . , {αn}}. Then there exists a CFM A〈π〉−1α of index 1 with

the following property: Let M be an MSC and let ci : V → {0, 1} be the characteristic
function of the set of positions satisfying αi (for all i ∈ [n + 1]) where αn+1 = α. Then
(M, c1, . . . , cn, cn+1, c) is accepted iff c is the characteristic function of the set of positions

satisfying 〈π〉−1 α.

The CFM we construct has 2O(s(π)) local states per process, 2O(s(π)) many control mes-
sages, and any tuple of local states is accepting (in particular, the CFM has index 1).

Proof. Again, since M,v |= 〈π〉−1 α iff M,v |= 〈π; {α}〉−1 tt, we will assume α = tt. The
CFM A〈π〉−1α simulates the run (ρ, µ) of the CFM A from Lemma 4.5 and verifies that

c(v) = 1 iff ι ∈ ρ(v) for all nodes v ∈ V . Then we have

c(v) = 1 ⇐⇒ ι ∈ ρ(v)

⇐⇒ ∃W ∈ Γ∗ : ι ∈W.G and M,v |=−1 W

⇐⇒ ∃W ∈ L(C) = Lπ :M,v |=−1 W

⇐⇒ ∃W ∈ Lπ :M,v |=−1 W

⇐⇒ M,v |= 〈π〉−1 tt

This concludes the proof of Theorem 4.6.

4.2. The forward-path automaton. We now turn to a similar CFM corresponding to
subformulas of the form 〈π〉 tt. We will prove the following analog to Theorem 4.6. This
proof will, however, be substantially more difficult.

Theorem 4.7. Let I ⊆ Ch and let 〈π〉α be a local formula such that π is a regular expression
over the alphabet {proc,msg, {α1}, . . . , {αn}}. Then there exists a CFM A〈π〉α of index 1
with the following property: Let M be an MSC with Inf(M) = I and let ci : V → {0, 1}
be the characteristic function of the set of positions satisfying αi (for all i ∈ [n+ 1]) where
αn+1 = α. Then (M, c1, . . . , cn, cn+1, c) is accepted iff c is the characteristic function of

the set of positions satisfying 〈π〉α. The CFM we construct has 2O(s(π)+|P|) local states per

process and 2O(s(π)) many control messages.

The rest of this section is devoted to the proof of this theorem. Since M,v |= 〈π〉α iff
M,v |= 〈π; {α}〉 tt, we will assume α = tt, i.e., α holds true for any node of any MSC.
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Let Γ = {proc,msg, 1, 2, . . . , n}. If, in the regular expression π, we replace any oc-
currence of {αi} by i, we obtain a regular expression over the alphabet Γ. Let Lπ ⊆ Γ∗

be the language denoted by this regular expression. Then there is a finite automaton
C = (Q, ι, T,G) over Γ with set of states Q, initial state ι, set of transitions T , and set of
final states G recognizing Lπ. Note that |Q| ∈ O(s(π)).

A word over Γ together with a node from an MSC describe a path starting in that node
walking forwards. The following is therefore the forward-version of Def. 4.4.

Definition 4.8. For an MSC M , functions c1, . . . , cn : V → {0, 1}, a node v ∈ V and a
word W ∈ Γ∗, we define inductively (M, c1, . . . , cn), v |=W :

(M, c1, . . . , cn), v |= ε

(M, c1, . . . , cn), v |= procW ⇐⇒ there exists v′ = proc(v) with (M, c1, . . . , cn), v
′ |=W

(M, c1, . . . , cn), v |= msgW ⇐⇒ there exists v′ = msg(v) with (M, c1, . . . , cn), v
′ |=W

(M, c1, . . . , cn), v |= iW ⇐⇒ ci(v) = 1 and (M, c1, . . . , cn), v |=W

Now the following is immediate.

Lemma 4.9. Let M be an MSC and, for i ∈ [n], let ci : V → {0, 1} be the characteristic
function of the set of positions satisfying αi. Then M,v |= 〈π〉 tt iff there exists W ∈ Lπ

such that M,v |=W .

Thus, in order to prove Theorem 4.7, it suffices to construct a CFM that accepts
(M, c1, . . . , cn, c) iff

∀v ∈ V : c(v) = 0 =⇒ ∀W ∈ Lπ : (M, c1, . . . , cn), v 6|=W

∧∀v ∈ V : c(v) = 1 =⇒ ∃W ∈ Lπ : (M, c1, . . . , cn), v |=W.

Since the class of languages accepted by CFMs is closed under intersection, we can handle
the two implications separately in the following two subsections.

4.2.1. Any 0 is justified. We construct a CFM that accepts (M, c1, . . . , cn, c) iff, for any
v ∈ V with c(v) = 0, there does not exist W ∈ Lπ with (M, c1, . . . , cn, c), v |= W . The
basic idea is rather simple: whenever the CFM encounters a node v with c(v) = 0, it will
start the automaton C (that accepts Lπ) and check that it cannot reach an accepting state
whatever path we choose starting in v. Since the CFM has to verify more than one 0, the
set of local states Sp equals 2Q\G with initial state ιp = ∅ for any p ∈ P. The set of control

messages C equals 2Q\G, too. Furthermore, any tuple of local states is accepting.
To define the set of transitions, let A1, A2 ∈ Sp and A′

2 ∈ C. Moreover, let a =
(σ, b1, . . . , bn, b) ∈ Σp × {0, 1}n+1 and N = {i ∈ [n] | bi = 1}. Then we have a transition

A1
a,A′

2−−−→p A2

iff the following conditions hold:

(1) if b = 0, then ι.N∗ ⊆ A2,
(2) A1.proc.N

∗ ⊆ A2,
(3) if σ is a receive action, then A′

2.msg.N∗ ⊆ A2,
(4) if σ is a send action, then A′

2 = A2.
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Lemma 4.10. Let (ρ, µ) be a run of the above CFM on (M, c1, . . . , cn, c) and let v0 ∈ V
with c(v0) = 0. Then there does not exist W ∈ Lπ with (M, c1, . . . , cn), v0 |=W .

Proof. Suppose there isW ∈ Lπ with (M, c1, . . . , cn), v0 |=W . WriteW = w0a1w1 . . . anwm

with ak ∈ {proc,msg} and wk ∈ [n]∗ for all appropriate k. Since (M, c1, . . . , cn), v0 |= W ,
there exist nodes vk ∈ V with vk+1 = ak+1(vk) and wk ⊆ N∗

vk
where Nvk = {i ∈ [n] |

ci(vk) = 1}. Since W ∈ Lπ, there are states qi ∈ Q with q0 ∈ ι.w0, qi+1 ∈ qi.ai+1wi+1, and
qm ∈ G.

Since c(v0) = 0, we have ι.N∗
v0

⊆ ρ(v0) by (1) and therefore q0 ∈ ι.w0 ⊆ ρ(v0) by
w0 ∈ N∗

v0
. By induction, assume k < m and qk ∈ ρ(vk). If ak+1 = proc, then by (2)

qk+1 ∈ qk.proc.N
∗
vk+1

⊆ ρ(vk+1). If ak+1 = msg, then vk is a send event. Hence, by (4),

µ(vk) = ρ(vk). Since (vk, vk+1) ∈ msg, this implies µ(vk+1) = ρ(vk). Hence, by (3), qk+1 ∈
ρ(vk).msg.N∗

vk+1
⊆ ρ(vk+1). This finishes the inductive argument. Hence qm ∈ ρ(vn) ∩ G,

contradicting our definition Sp = 2Q\G.

Lemma 4.11. Suppose (M, c1, . . . , cn, c) satisfies

∀v ∈ V : c(v) = 0 =⇒ ∀W ∈ Lπ : (M, c1, . . . , cn), v 6|=W.

Then (M, c1, . . . , cn, c) admits a run of the above CFM.

Proof. For v ∈ V , let Nv = {i ∈ [n] | ci(v) = 1}. Then define ρ(v) to be the union of the
following sets

(a) ι.N∗
v if c(v) = 0,

(b) ρ(proc−1(v)).proc.N∗
v if proc−1(v) is defined (i.e., if v is not minimal on its process),

(c) ρ(msg−1(v)).msg.N∗
v if msg−1(v) is defined (i.e., if λ(v) is a receive action).

Furthermore, let

µ(v) =

{

ρ(v) if λ(v) is a send action

ρ(msg−1(v)) otherwise.

Then, for any v ∈ V , the transition conditions (1-4) are satisfied by the mappings ρ and µ
(recall that the local initial states are ∅).

Now, by contradiction, assume (ρ, µ) is no run, i.e., there is some v0 ∈ V with ρ(v0) /∈
2Q\G. Hence there exists q0 ∈ ρ(v0) ∩G. Setting W0 = ε, we therefore have

(M, c1, . . . , cn, c), vk |=Wk, qk ∈ ρ(vk), and qk.Wk ∩G 6= ∅ (*)
for k = 0. Now assume that (*) holds for some k ≥ 0.

First, assume c(vk) = 0 and qk ∈ ι.N∗
vk

⊆ ρ(vk) because of (a). Hence, there exists
wk ∈ N∗

vk
with qk ∈ ι.wk. But then (M, c1, . . . , cn, c), vk |= wkWk and wkWk ∈ Lπ, a contra-

diction. Hence we have qk ∈ ρ(vk) because of (b) or (c). If qk ∈ ρ(proc−1(vk)).proc.N
∗
vk
, then

set vk+1 = proc−1(vk) and choose qk+1 ∈ ρ(vk+1) and wk ∈ N∗
vk

with qk ∈ qk+1.proc.wk.

Setting Wk+1 = proc.wk.Wk yields (*) for k + 1. If qk ∈ ρ(msg−1(vk)).msg.N∗
vk
, we can

argue similarly.
Hence we find an infinite sequence of nodes v0 > v1 > v2 . . . which is impossible since

v0 dominates only a finite set. Thus, (ρ, µ) is a run.

Proposition 4.12. There exists a CFM A0 of index 1 that accepts (M, c1, . . . , cn, c) iff

∀v ∈ V : c(v) = 0 =⇒ ∀W ∈ Lπ : (M, c1, . . . , cn), v 6|=W.

The number of local states per process as well as the number of messages are in 2O(s(π)).
Furthermore, any run of the CFM is accepting.
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Proof. The proof is immediate by the above two lemmas.

4.2.2. Any 1 is justified. We next construct a CFM that accepts (M, c1, . . . , cn, c) iff, for
any v ∈ V with c(v) = 1, there exists W ∈ Lπ with (M, c1, . . . , cn, c), v |= W . Again, the
basic idea is simple: whenever the CFM encounters a node v with c(v) = 1, it will start the
automaton C (that accepts Lπ) and check that it can reach an accepting state along one
of the possible paths. Thus, before, we had to prevent C from reaching an accepting state.
This time, we have to ensure that any verification of a c(v) = 1 will eventually result in an
accepting state being reached. For sequential Büchi-automata, solutions to this problem are
known: collect some claims to be verified in one set and, only when all of them are verified,
start verifying those claims that have been encountered during the previous verification
phase. The resulting Büchi-automaton accepts iff the verification phase is changed infinitely
often. We will adapt precisely this idea here. But then, the CFM would have to accept
if, along each and every path, the verification phase changes infinitely often. This is the
point where the CFM ACol comes into play since, by Corollary 3.9, it verifies that any path
runs through infinitely many color changes. Thus, we will first construct a CFM that runs
on tuples (M, c0, c1, . . . , cn, c) where we assume that (M, c0) ∈ Col. The actual CFM that
verifies all claims c(v) = 1 will run this newly constructed CFM in conjunction with ACol

(that verifies (M, c0) ∈ Col) and project away the labeling c0.
For any p ∈ P, the set of local states Sp equals 2Q × 2Q × {0, 1} with initial state

ιp = (∅, ∅, 1), the set of control messages C equals 2Q × 2Q × {0, 1}.
To define the set of transitions, let (A1, B1, d1), (A2, B2, d2) ∈ Sp and (A′

2, B
′
2, d

′
2) ∈ C.

Furthermore, let a = (σ, b0, b1, . . . , bn, b) ∈ Σp × {0, 1}n+2. Now we would like to define the
conditions for the existence of a transition

(A1, B1, d1)
a,(A′

2,B
′
2,d

′
2)−−−−−−−−→p (A2, B2, d2) .

We have to distinguish between σ being a send or a receive event, cf. Figure 4. For σ = p!q
the pair (A1, B1) contains the in-going information whereas (A2, B2) and (A′

2, B
′
2) carry the

out-going information propagated along the process and the channel, respectively. On the
other hand, for σ = p?q now both (A1, B1) and (A′

2, B
′
2) contain the in-going information

whereas the out-going information can be propagated along the process line only, hence, it
is enclosed in (A2, B2) only. Therefore, we put

Ain = A1, Aout = A2 ∪A
′
2, Bin = B1, Bout = B2 ∪B

′
2

whenever σ is a send event and

Ain = A1 ∪A
′
2, Aout = A2, Bin = B1 ∪B

′
2, Bout = B2

whenever σ is a receive event.
Now the idea is the following: The CFM saves the actual color within its state and

propagates it via the channel whenever σ is a send. Whenever we stay within the same
color (d2 = d1 and, for σ a receive, also d2 = d′2) we propagate the states (from the finite
automaton C) contained in Ain to Aout and likewise from Bin to Bout. But whenever the
color changes (d2 6= d1 or, for σ a receive, d2 6= d′2), we require the respective part of Ain

to be empty and all the information from the respective Bin is swept to Aout. Moreover,
whenever a new 1 has to be verified we start C and collect the states obtained this way
within Bout. Now we formalize these ideas.
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(A1, B1, d1)

(A2, B2, d2)p!q

q?p

(A′
2, B

′
2, d

′
2)

(A1, B1, d1)

(A2, B2, d2)p?q

q!p

(A′
2, B

′
2, d

′
2)

Figure 4: Transitions of the CFM.

Let N = {i ∈ [n] | bi = 1}. Recall that C = (Q, ι, T,G) is the finite automaton
recognizing Lπ. Then the transition above is defined iff the following conditions hold:

(1) d2 = b0 and, if σ is a send, then also d′2 = b0,
(2) if b = 1, then ι.N∗ ∩ (G ∪Bout) 6= ∅,
(3) ∀q ∈ A1 : q.procN

∗ ∩ (G ∪Aout) 6= ∅, and,
if σ is a receive, then also ∀q ∈ A′

2 : q.msgN∗ ∩ (G ∪Aout) 6= ∅,
(4) if d2 = d1, then ∀q ∈ B1 : q.procN

∗ ∩ (G ∪Bout) 6= ∅,
(5) if d2 6= d1, then A1 = ∅ and ∀q ∈ B1 : q.procN

∗ ∩ (G ∪Aout) 6= ∅,
(6) if d2 = d′2 and σ is a receive, then ∀q ∈ B′

2 : q.msgN∗ ∩ (G ∪Bout) 6= ∅,
(7) if d2 6= d′2 and σ is a receive, then A′

2 = ∅ and ∀q ∈ B′
2 : q.msgN∗ ∩ (G ∪Aout) 6= ∅.

Note that for a color change (cases (5) and (7)) the respective conditions in (3) become
obsolete since A1 = ∅ and/or A′

2 = ∅.
Recall that I is a set of channels and that we are only interested in MSCs that use

precisely these channels infinitely often. Let (fp)p∈P ∈
∏

p∈P Sp be accepting in A iff

fp ∈ {(∅, ∅, 0), (∅, ∅, 1)} for all p ∈ P that are not involved in any of the channels from I,
i.e., that satisfy I ∩ ({p} × P ∪ P × {p}) = ∅ (note that a process p is not involved in any
of the channels from I iff it is not involved in any of the channels used infinitely often iff p
executes only finitely many events). This finishes the construction of the CFM A of index 1.

Lemma 4.13. Let (ρ, µ) be an accepting run of the above CFM A on (M, c0, c1, . . . , cn, c)
and suppose (M, c0) ∈ Col and I ⊆ Inf(M). Then, for any v0 ∈ V with c(v0) = 1, there
exists W ∈ Lπ with (M, c1, . . . , cn), v0 |=W .

Proof. For v ∈ V , let ρ(v) = (Av, Bv, dv), µ(v) = (A′
v, B

′
v , d

′
v), Nv = {i ∈ [n] | ci(v) = 1}.

Similarly as above, whenever λ(v) is a send event, we put

Aout(v) = Av ∪A
′
v, Bout(v) = Bv ∪B

′
v,

and whenever λ(v) is a receive event, we put

Aout(v) = Av, Bout(v) = Bv .

Since c(v0) = 1, (2) implies the existence of w0 ∈ N∗
v0

and q0 ∈ ι.w0 ∩ (G ∪ Bout).
Now we define a finite or infinite sequence (vi, wi, qi)0≤i<N with N ∈ N ∪ {ω}, vi ∈ V ,
wi ∈ {proc,msg}N∗

vi
for i ≥ 1, and qi ∈ Q such that the following hold for all 0 ≤ i < N :

(a) (vi, vi+1) ∈ proc ∪msg,
(b) qi ∈ G ∪Aout(vi) ∪Bout(vi),
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(c) wi+1 ∈ aN∗
vi+1

and qi+1 ∈ qi.wi+1 with a =

{

proc if (vi, vi+1) ∈ proc,

msg otherwise,

(d) if qi ∈ Aout(vi), then qi+1 ∈ G ∪Aout(vi+1),
(e) qi ∈ G ⇐⇒ N = i+ 1 .

Let us assume that the sequence has already been constructed up to index i. Then we
proceed as follows:

(i) If qi ∈ G, then set N = i + 1 which finishes the construction of the sequence and
implies (e) a posteriori for all 0 ≤ i < N .

(ii) Suppose qi ∈ Avi \G. Since Avi 6= ∅ and since the run is accepting, the node vi is not
maximal on its process, so we can set vi+1 = proc(vi). Then, by (3), we can choose
wi+1 ∈ procN∗

vi+1
and qi+1 ∈ qi.wi+1 ∩ (G ∪Aout(vi+1)).

(iii) Suppose qi ∈ Aout(vi) \ (G ∪ Avi). Then vi is a send event. Hence, vi+1 = msg(vi)
is a well-defined receive event. Hence, by (3), there exist wi+1 ∈ msgN∗

vi+1
and

qi+1 ∈ qi.wi+1 ∩ (G ∪Aout(vi+1)) such that (a) – (e) hold.
(iv) Suppose qi ∈ Bvi \ (G ∪ Aout(vi)). Since Bvi 6= ∅ and since the run is accepting, the

node vi cannot be maximal on its process, i.e., vi+1 = proc(vi) is well-defined. Then
(a) if dvi+1 = dvi , by (4), qi.procN

∗
vi+1

∩ (G ∪Bout(vi+1)) 6= ∅, and
(b) if dvi+1 6= dvi , by (5), qi.procN

∗
vi+1

∩ (G ∪Aout(vi+1)) 6= ∅.
Hence we can choose wi+1 ∈ procN∗

vi+1
and qi+1 such that (a) – (e) hold.

(v) Finally, suppose qi ∈ Bout(vi) \ (G ∪ Aout(vi) ∪ Bvi) such that vi is a send event, i.e.,
vi+1 = msg(vi) is a well-defined receive event. Hence
(a) if dvi+1 = d′vi+1

, by (6), qi.msgN∗
vi+1

∩ (G ∪Bout(vi+1)) 6= ∅, and

(b) if dvi+1 6= d′vi+1
, by (7), qi.msgN∗

vi+1
∩ (G ∪Aout(vi+1)) 6= ∅.

Again, we can choose wi+1 and qi+1 such that (a) – (e) hold.

If the construction can be carried out ad infinitum, then set N = ω which, again, ensures
(e) a posteriori for all i < N .

Now suppose N = ω. Then, by Cor. 3.9, there exist 0 ≤ i < k with c0(vi) 6= c0(vi+1)
and c0(vk) 6= c0(vk+1). By (1), this implies dvi 6= dvi+1 whenever (vi, vi+1) ∈ proc or
d′vi+1

6= dvi+1 whenever (vi, vi+1) ∈ msg. Similarly, dvk 6= dvk+1
for (vk, vk+1) ∈ proc and

d′vk+1
6= dvk+1

for (vk, vk+1) ∈ msg. Let us assume (vi, vi+1) ∈ proc and (vk, vk+1) ∈ proc,

i.e., dvi 6= dvi+1 and dvk 6= dvk+1
. Hence, by (5), we get Avi = Avk = ∅. Since, by (e),

qi /∈ G, Avi = ∅, and (vi, vi+1) ∈ proc, we get qi ∈ Bvi and, therefore, by case (iv)(b) of
the construction above qi+1 ∈ Aout(vi+1). Applying (e) and (d) inductively, this results in
qk ∈ Aout(vk). Since (vk, vk+1) ∈ proc, we conclude by the construction (cases (ii) and (iii))
qk ∈ Avk \G. But this contradicts Avk = ∅. For the other cases a contradiction is obtained
similarly. Hence, N is finite.

Certainly, (M, c1, . . . , cn), vN−1 |= ε. From (c), we obtain (M, c1, . . . , cn), vN−2 |= wN−1

and, by induction, (M, c1, . . . , cn), v0 |= W with W = w0w1 . . . wN−1. Since q0 ∈ ι.w0, (c)
implies qN−1 ∈ ι.W and therefore W ∈ Lπ follows from (e).

Lemma 4.14. Suppose (M, c1, . . . , cn, c) satisfies

∀v ∈ V : c(v) = 1 =⇒ ∃W ∈ Lπ : (M, c1, . . . , cn), v |=W

and Inf(M) ⊆ I. Then there exists a mapping c0 : V → {0, 1} such that (M, c0) ∈ Col and
the above CFM A accepts (M, c0, c1, . . . , cn, c).
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Proof. For any v ∈ V with c(v) = 1, there exist 0 ≤ kv ∈ N, wv
0 ∈ [n]∗, wv

i ∈ {proc,msg}[n]∗

for 1 ≤ i ≤ kv, and qvi ∈ Q for 0 ≤ i ≤ kv such that

(a) qv0 ∈ ι.wv
0 , q

v
i+1 ∈ qvi .w

v
i+1 for 1 ≤ i < kv, and qvkv ∈ G

(b) vv0 = v and, for 0 ≤ i < kv, vvi+1 =

{

proc(vvi ) if wv
i+1 ∈ proc[n]∗

msg(vvi ) if wv
i+1 ∈ msg[n]∗

We define inductively a sequence of subsets of V : Let H0 = ∅. Inductively, let Hn+1 ⊆
V \

⋃

0≤i≤nHi be nonempty and finite such that

(A)
⋃

0≤i≤n+1Hi is downwards closed in M ,

(B) for any v ∈ V \
⋃

0≤i≤n+1Hi with λ(v) = p?q,

(B1) there exist infinitely many v′ ∈ V \
⋃

0≤i≤n+1Hi with λ(v) = λ(v′),

(B2) there exist u, u′ ∈ Hn+1 with (u, u′) ∈ msg and λ(u′) = λ(v),
(C) for any v ∈ Hn with c(v) = 1, we have vvkv ∈ Hn ∪Hn+1.

Then V =
⋃

n≥0Hn.
Now set, for v ∈ Hn,

• c0(v) = n mod 2 and dv = c0(v)
• if v is a send event, then

Av = {qvi | v ∈ Hn−1, c(v) = 1, 0 ≤ i < kv such that v = vvi and wv
i+1 ∈ proc[n]∗}

Bv = {qvi | v ∈ Hn, c(v) = 1, 0 ≤ i < kv such that v = vvi and wv
i+1 ∈ proc[n]∗}

A′
v = {qvi | v ∈ Hn−1, c(v) = 1, 0 ≤ i < kv such that v = vvi and wv

i+1 ∈ msg[n]∗}

B′
v = {qvi | v ∈ Hn, c(v) = 1, 0 ≤ i < kv such that v = vvi and wv

i+1 ∈ msg[n]∗}

d′v = c0(v)

• if v is a receive event, then

Av = {qvi | v ∈ Hn−1, c(v) = 1, 0 ≤ i < kv such that v = vvi }

Bv = {qvi | v ∈ Hn, c(v) = 1, 0 ≤ i < kv such that v = vvi }

A′
v = A′

msg−1(v)

B′
v = B′

msg−1(v)

d′v = d′msg−1(v)

Then the pair of mappings (ρ, µ) with ρ(v) = (Av, Bv, dv) and µ(v) = (A′
v, B

′
v, d

′
v) is an

accepting run of the CFM on (M, c0, c1, . . . , cn, c) and (M, c0) ∈ Col.

Proposition 4.15. Let I ⊆ Ch. There is a CFM A1 that accepts (M, c1, . . . , cn, c) with
Inf(M) = I iff

∀v ∈ V : c(v) = 1 =⇒ ∃W ∈ Lπ : (M, c1, . . . , cn), v |=W.

The number of local states per process is in 2O(|P|+s(π)) and the number of messages is
in 2O(s(π)).

Proof. By Lemma 3.2, there exists a CFM B with the given number of states and messages
that accepts (M, c0, c1, . . . , cn, c) iff it is accepted by ACol from Prop. 3.7 and by the above
CFM A, i.e., iff (M, c0) ∈ Col, and (M, c0, c1, . . . , cn, c) is accepted by A. Projecting away
the function c0 gives the CFM A1 by the above two lemmas.
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Proof (of Theorem 4.7). The result follows immediately from Propositions 4.12, 4.15, and
Lemma 3.2.

4.3. The overall construction.

Theorem 4.16. Let I ⊆ Ch and let α be a local formula of PDL. Then one can construct
a CFM B of index 1 such that (M, (cβ)β∈sub(α)) with Inf(M) = I is accepted by B iff
cβ : V → {0, 1} is the characteristic function of the set of positions that satisfy β for all
β ∈ sub(α).

With m the number of subformulas of the form 〈π〉 γ and 〈π〉−1 γ and n ∈ N such that

s(π; γ) ≤ n for all such subformulas, the number of local states per process is in 2O(m(n+|P|))

and the number of control messages is in 2O(mn).

Proof. The CFM B has to accept (M, (cβ)β∈sub(α)) iff

(1) Aσ accepts (M, cσ) for all σ ∈ sub(α) ∩ Σ (cf. Example 4.1),
(2) A∨ accepts (M, cγ , cδ , cγ∨δ) for all γ ∨ δ ∈ sub(α) (cf. Example 4.2),
(3) A¬ accepts (M, cγ , c¬γ) for all ¬γ ∈ sub(α) (cf. Example 4.2),
(4) A〈π〉γ accepts (M, cα1 , . . . , cαn , cγ , c〈π〉γ) for all 〈π〉 γ ∈ sub(α) where α1, . . . , αn are those

local formulas for which {αi} appears in the path expression π (cf. Theorem 4.7), and

(5) A〈π〉−1γ accepts (M, cα1 , . . . , cαn , cγ , c〈π〉−1γ) for all 〈π〉−1 γ ∈ sub(α) where α1, . . . , αn

are those local formulas for which {αi} appears in the path expression π (cf. Theo-
rem 4.6).

Recall that the CFMs from (4) all have index 1, their number of local states per process

is bounded by 2O(n+|P|), and their number of messages is bounded by 2O(n). Hence, by
Lemma 3.2, there exists a CFM of index 1 that checks all the requirements in (4). Its
number of states is in

(m+ 1) ·
∏

〈π〉γ∈sub(α)

2O(n+|P|) ⊆ (m+ 1) · 2O(m(n+|P|))

⊆ 2O(m(n+|P|))

and the number of control messages belongs to
∏

〈π〉γ∈sub(α)

2O(s(π)) ⊆ 2O(mn) .

Any tuple of local states in any of the CFMs from (5) is accepting. Furthermore, any

of them has 2O(n) local states per process and equally many messages. Hence there is a
CFM with 2O(mn) local states per process and equally many messages that checks all the
requirements in (5). Furthermore, all tuples of states of this machine are accepting.

Recall that the CFMs Aσ, A∨, and A¬ have just one local state per process, i.e., they
only restrict the labels (σ, (bβ)β∈sub(α)) allowed in M . Hence, without additional states
or messages, one can change the above two CFMs into a CFM B of index 1 that checks
(1)–(5). Its number of local states per process is in 2O(m(n+|P|)) and its number of messages

in 2O(mn).
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5. Translation of global formulas

A basic global formula is a formula of the form Aα or Eα for α a local formula. Then
global formulas are positive Boolean combinations of basic global formulas.

Proposition 5.1. Let ϕ be a global formula and I ⊆ Ch. Then one can construct a CFM A
that accepts M with Inf(M) = I iff M |= ϕ.

With ℓ the number of basic global subformulas of ϕ, m the number of subformulas of
the form 〈π〉 β and 〈π〉−1 β, and n ∈ N such that s(π;β) ≤ n for all such subformulas, the

number of local states per process is in 2O(m(n+|P|))+|P|ℓ, the number of control messages is
in 2O(ℓ+mn), and the index is at most |Pℓ|.

Proof. Let H be the set of basic global subformulas of ϕ. Let β =
∧
{α | Eα ∈ H or Aα ∈

H}. Using Proposition 3.3, one can construct a CFM that accepts (M, (cγ)γ∈sub(β)) with
Inf(M) = I iff

• cγ is the characteristic function of the set of positions satisfying γ for all γ ∈ sub(β)
(Thm. 4.16)

• M |= Aα for all Aα ∈ H (Example 4.3)
• M |= Eα for all Eα ∈ H (Example 4.3).

Recall that the CFM checking cγ as well as those checking Aα all have index 1 while the
CFM for Eα have index |P|. Hence the number of local states per process of the resulting

CFM belongs to 1 + (|H| + 1) · 2O(m(n+|P|)) · 2|H| · |P||H| ⊆ 2O(m(n+|P|))+|P|ℓ, its number of

messages is in 2O(mn), and its index is at most |PH |. Let AH denote the projection of this
CFM to the set of MSCs (i.e., we project away the labelings cγ). Then AH accepts an MSC
M with Inf(M) = I iff M |= ψ for all ψ ∈ H.

Now the CFM A is the disjoint union of at most 2ℓ many CFMs of the form AH .

Theorem 5.2. Let ϕ be a global formula of PDL. Then one can construct a CFM A that
accepts M iff M |= ϕ.

With ℓ the number of basic global subformulas of ϕ, m the number of subformulas of
the form 〈π〉 β, and n ∈ N such that s(π;β) ≤ n for all such subformulas, the number of

local states per process is in 2O(m(n+|P|)+|P|ℓ+|P|2) and the number of control messages is in

2O(ℓ+mn+|P|2).

Proof. Let, for I ⊆ Ch, AI denote the CFM from Prop. 5.1 and BI that from Prop. 3.6.
Using Prop. 3.3, one can construct a CFM CI accepting L(AI) ∩ L(BI). The number of

local states per process of this CFM is 3 · 2O(|P|) · 2O(m(n+|P|)+|P|ℓ) · |PH |.
Then the disjoint union A of all these CFMs CI for I ⊆ Ch has all the desired properties.

6. Model checking

6.1. CFMs vs. PDL specifications. We aim at an algorithm that decides whether, given
a global formula ϕ and a CFM A, every MSC M ∈ L(A) satisfies ϕ. The undecidability
of this problem can be shown following, e.g., the proof in [MR04] (that paper deals with
Lamport diagrams and a fragment LD0 of PDL, but the proof ideas can be easily transferred
to our setting). To gain decidability, we follow the successful approach of, e.g., [MM01,
GMSZ02, GKM06], and restrict attention to existentially B-bounded MSCs from L(A).
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For a finite or infinite word w ∈ Σ∞ and a ∈ Σ, let |w|a denote the number of occur-
rences of a in w. For 0 ≤ i ≤ j < |w|, the infix w[i, j] is the factor of w starting in position i
and ending in position j, i.e., w = uw[i, j] v with |u| = i and |w[i, j]| = j − i+1. If |w| > i,
then we write w(i) for w[i, i], the letter no. i+1 in w (note that w(0) is the first letter of w).

Let M = (V,≤, λ) be an MSC. A linearization of M is a linear order � ⊇ ≤ on V of
order type at most ω (i.e., also with respect to �, any node v ∈ V dominates a finite set).
Since equally-labeled nodes of M are comparable, we can safely identify a linearization of
M with a word from Σ∞.

A word w ∈ Σ∞ is B-bounded (where B ∈ N) if, for any (p, q) ∈ Ch and any finite
prefix u of w, 0 ≤ |u|p!q − |u|q?p ≤ B. An MSC M is existentially B-bounded if it admits a
B-bounded linearization. Intuitively, this means that the MSC M can be scheduled in such
a way that none of the channels (p, q) ever contains more than B pending messages.

Lemma 6.1. A B-bounded word w ∈ Σ∞ is a linearization of some MSC M iff, for any
(p, q) ∈ Ch, any finite prefix of w can be extended to a finite prefix u of w such that

(1) |u|p!q = |u|q?p or
(2) the last letter of u is p!q.

Proof. First suppose that w is a linearization of some MSC. Then |w|p!q = |w|q?p. If this
number is finite, we can extend any finite prefix to some finite prefix satisfying (1). Oth-
erwise, any suffix contains at least one occurrence of p!q, so any prefix can be extended to
some larger prefix ending with p!q.

Conversely suppose that any finite prefix can be extended to a finite prefix satisfying
(1) or (2). We construct from w an MSC as follows:

• the set of nodes equals V = {v ∈ N | v < |w|},
• for v ∈ V let λ(v) = w(v),
• let (i, j) ∈ proc′ iff 0 ≤ i < j < |w| and there exists a process p ∈ P with λ(i), λ(j) ∈ Σp

and, for all k with i ≤ k < j and λ(k) ∈ Σp, we have i = k,
• let (i, j) ∈ msg′ iff i, j ∈ V and there exists a channel (p, q) ∈ Ch such that w(i) = p!q,
w(j) = q?p, and |w[0, i]|p!q = |w[0, j]|q?p,

• then set � = (msg′ ∪ proc′)∗ ⊆ V 2.

Suppose (i, j) ∈ msg′ and j < i. Then |w[0, j]|p!q −|w[0, j]|q?p < |w[0, i]|p!q −|w[0, j]|q?p = 0,
contradicting the B-boundedness of w. Hence msg′ and proc′ are contained in ≤ proving
that � is a partial order on V . Since � is contained in the natural order ≤ on the set of
natural numbers V , the word w is a linearization of M = (V,�, λ). It therefore remains to
be shown that M is an MSC:

• It is easily verified that msg = msg′ and proc = proc′ implying � = (msg ∪ proc)∗.
• By the definition of proc′, any two nodes i and j with P (i) = P (j) are ordered by �.
• Let (p, q) ∈ Ch be some channel. Since w is B-bounded, we have |w|p!q ≥ |w|q?p. Now
suppose |w|p!q > |w|q?p. Then there are only finitely many occurrences of q?p; let u1 with
|u1|p!q − |u1|q?p > 0 be a finite prefix of w that contains all occurrences of q?p. Then
by our assumption on w, we can extend u1 to a finite prefix u2 of w whose last letter is
p!q. Hence |u2|p!q − |u2|q?p > |u1|p!q − |u1|q?p. Inductively, we find a finite prefix u with
|u|p!q − |u|q?q > B, contradicting the B-boundedness of w. Hence |λ−1(p!q)| = |w|p!q =
|w|q?p = |λ−1(q?p)| which finishes the proof that (V,�, λ) is an MSC.
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We next construct, from a CFM A = (C, (Ap)p∈P , F ) and a bound B ∈ N, a finite
transition system over Σ with multiple Büchi-acceptance conditions that accepts the set of
B-bounded linearizations of MSCs from L(A):

• A configuration is a tuple ((sp)p∈P , χ, (p, q)) with the current local states sp ∈ Sp for all
p ∈ P, the channel contents χ : Ch → C∗ with |χ(p′, q′)| ≤ B for all (p′, q′) ∈ Ch, and the
last active channel (p, q) ∈ Ch.

• The initial configuration is the tuple ((ιp)p∈P , χ, (p, q)) with χ(p
′, q′) = ε for all (p′, q′) ∈

Ch, and where (p, q) ∈ Ch is an arbitrary but fixed channel, i.e., the local machines are
in their initial state and all channels are empty.

• We have a transition

((s1p)p∈P , χ
1, (p1, q1))

a
−→ ((s2p)p∈P , χ

2, (p2, q2))

for an action a ∈ Σp iff there exists a control message c ∈ C such that

(T1) s1p
a,c
−−→p s

2
p is a transition of the local machine Ap and s1q = s2q for q 6= p.

(T2) Send events: if a = p!q, then χ2(p, q) = χ1(p, q) c (i.e., message c is inserted into
the channel from p to q) and χ1(p′, q′) = χ2(p′, q′) for (p′, q′) 6= (p, q) (i.e., all other
channels are unchanged)

(T3) Receive events: if a = p?q, then χ1(q, p) = c χ2(q, p) (i.e., message c is deleted from
the channel from q to p) and χ1(q′, p′) = χ2(q′, p′) for (q′, p′) 6= (q, p) (i.e., all other
channels are unchanged)

(T4) (p2, q2) is the channel that a writes to or reads from.

A finite or infinite path ((sip)p∈P , χ
i, (pi, qi))0≤i<κ (for some κ ∈ N∪ {ω}) in this transition

system is successful if

(S1) there exists a tuple (fp)p∈P ∈ F such that, for all p ∈ P and 0 ≤ i < κ, there exists

i ≤ j < κ with sjp = fp and
(S2) for all (p, q) ∈ Ch and 0 ≤ i < κ, there exists i ≤ j < κ such that χj(p, q) = ε or

(pj , qj) = (p, q).

Lemma 6.2. Let w ∈ Σ∞. Then the following are equivalent:

(i) w is the label of some successful path in the above transition system.
(ii) w is a B-bounded linearization of some MSC from L(A).

Proof. To prove the implication (ii)⇒(i), let M = (V,�, λ) ∈ L(A) be an MSC accepted
by A, let w ∈ Σ∞ be a B-bounded linearization of M , and let (µ, ρ) be a successful run
of A on M . Without loss of generality, we can assume V = {v ∈ N | 0 ≤ v < |w|} and
� ⊆ ≤ such that w is the sequence of labels of (V,≤, λ). For i = 0, let ((sip), χ

i, (pi, qi)) be

the initial configuration of the transition system. Now let i > 0. For p ∈ P, let sip = ιp if

there is no 0 ≤ j < i with w(j) ∈ Σp; otherwise set sip = ρ(j) for j the maximal natural

number with j < i and w(j) ∈ Σp. For (p, q) ∈ Ch, set χi(p, q) = µ(j1)µ(j2) . . . µ(jk) where
0 ≤ j1 < j2 < · · · < jk < i is the sequence of those nodes from V with λ(jℓ) = p!q and
msg(jℓ) ≥ i (since w is B-bounded, we have 0 ≤ k ≤ B). Finally, (pi, qi) is the channel that
the action w(i−1) writes to or reads from. Then it can be checked that the sequence of these
configurations ((sip), χ

i, (pi, qi))0≤i<|w| forms a w-labeled path in the transition system. We
show that it is successful:

(S1) Since (ρ, µ) is successful, there exists (fp)p∈P ∈ F such that for all p ∈ P and all v ∈ V
with λ(v) ∈ Σp, there exists v

′ ∈ V with λ(v′) ∈ Σp, v � v′, and ρ(v′) = fp (or fp = ιp
if no such node v exists). Now let 0 ≤ i < |w| and let v < i denote the maximal
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natural number with w(v) ∈ Σp (the case that no such number exists is left to the
reader). Then there exists v′ ∈ V with λ(v′) ∈ Σp, v � v′, and ρ(v′) = fp. Because of

the maximality of v, we obtain i < v′. Furthermore, sv
′+1

p = ρ(v′) = fp.
(S2) Let 0 ≤ i < |w|. Since w is B-bounded, the previous lemma implies the existence of

i ≤ j < |w| such that |w[0, j]|p!q = |w[0, j]|q?p or the last letter of w[0, j] is p!q. Hence
χj+1(p, q) = ε or (pj+1, qj+1) = (p, q).

Conversely assume (i). Since all the channels in the transition system contain at most
B messages, the word w is B-bounded. Since the w-labeled path satisfies (S2), the word w
is, by the previous lemma, a linearization of some MSC. Now, using (S1) it can be verified
similarly to above that this MSC is accepted by A.

Theorem 6.3. The following problem is PSPACE-complete:
Input: B ∈ N (given in unary), CFM B, and a global formula ϕ ∈ PDL.
Question: Is there an existentially B-bounded MSC M ∈ L(B) with M |= ϕ?

Proof. Theorem 5.2 allows to build a CFM Aϕ that accepts M iff M |= ϕ. From Proposi-
tion 3.3, we then obtain a CFM A with L(A) = L(B)∩L(Aϕ), i.e., M ∈ L(A) iff M ∈ L(B)
and M |= ϕ. To decide the existence of some existentially B-bounded MSC in L(A), it suf-
fices to decide whether the above transition system has some successful path. Recall that
such a path has to simultaneously satisfy b = |P|+ |Ch| many Büchi-conditions. Extending
the configurations of the transition system by a counter that counts up to b+1 allows to have
just one Büchi-condition [Cho74]. Note that any configuration of the resulting transition
system can be stored in space

log(b) + |P| log n+ |Ch|B log |C|+ log |Ch|

where C is the set of message contents of A and n is the maximal number of local states a
process of A has. But due to Theorem 5.2 the size of the CFM Aϕ is exponential in the size
of ϕ. By Proposition 3.3, A stays exponential in the size of the input. Hence, the model
checking problem can be decided in polynomial space.

The hardness result follows from PSPACE-hardness of LTL model checking.

6.2. HMSCs vs. PDL specifications. In [Pel00], Peled provides a PSPACE model check-
ing algorithm for high-level message sequence charts (HMSCs) against formulas of the logic
TLC−. The logic TLC− is a fragment of our logic PDL as can be shown easily. Now, we
aim to model check an HMSC against a global formula of PDL, and, thereby, to generalize
Peled’s result.

Definition 6.4. An HMSC H = (S,→, s0, c,M) is a finite, directed graph (S,→) with
initial node s0 ∈ S, M a finite set of finite MSCs, and a labeling function c : S → M.

For defining the semantics of HMSCs we need a concatenation operation. Let M1 =
(V1,≤1, λ1) and M2 = (V2,≤2, λ2) be two finite MSCs over the same process set P with
disjoint node sets. Then M1M2 = (V,≤, λ) is given by V = V1 ∪ V2, λ = λ1 ∪ λ2, and ≤ is
the least partial order containing ≤1 ∪ ≤2 and {(v1, v2) | v1 ∈ V1, v2 ∈ V2, P (v1) = P (v2)}.
Informally, the events of M2 succeed the events of M1 for each process, respectively.

Let H = (S,→, s0, c,M) be an HMSC. Let η be a maximal path of (S,→) starting in
s0, i.e., either a path η = s0 → s1 → · · · → sn that ends in an sn ∈ S such that there is
no s ∈ S with sn → s or an infinite path η = s0 → s1 → . . . . The labeling function c can
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now be extended to paths by c(η) = c(s0)c(s1) . . . . The MSC language of the HMSC H is
now L(H) = {c(η) | η is a maximal path starting in s0}. Note that for any HMSC H the
language L(H) is existentially B-bounded for some B ∈ N. Indeed, since any finite MSC
M is existentially BM -bounded for some BM ∈ N, there is a B-bounded linearization for
every c(η) when B = max{BM |M ∈ M}.

Theorem 6.5. The following problem is PSPACE-complete:
Input: An HMSC H and a global formula ϕ ∈ PDL.
Question: Is there an MSC M ∈ L(H) with M |= ϕ?

Proof. Let H = (S,→, s0, c,M) be an HMSC. For every s ∈ S we can find a linearization
of the finite MSC c(s). Now, it is easy to construct a finite (Büchi) automaton SH that
accepts a linearization for each and every MSC M ∈ L(H), and, vice versa, each (finite or
infinite) word accepted by SH is a linearization of an M ∈ L(H). Note that the size of SH

is linear in the size of H.
By Theorem 5.2, we can build a CFM Aϕ with M ∈ L(Aϕ) iff M |= ϕ. From Aϕ and

SH (which is implicitly existentially B-bounded for some B ∈ N) we construct stepwise
a transition system S by running Aϕ and SH simultaneously (cf. the construction before
Lemma 6.2). The construction terminates because a run of SH allows for B-bounded lin-
earizations only. A run in S is successful if both projections of the run are successful. Now,
S admits a successful run iff there is an existentially B-bounded linearization wM of some
M ∈ L(H) ∩ L(Aϕ) (where B is implicitly given by H). An analysis similar to the one in
the proof of Theorem 6.3 shows that the existence of a successful path of S can be decided
in polynomial space.

Again, the hardness result is an easy consequence of PSPACE-hardness of LTL model
checking.

7. PDL with intersection

Several extensions of PDL have been considered in the literature that still come with
positive decidability results [HKT00, GLL07]. Though these results were obtained in the
different context of evaluating a formula over a Kripke structure, it is natural to ask if such
extensions can be handled in our setting as well. We will study here PDL with intersection
(iPDL, for short), which is the canonical adaption of the logic IPDL, as defined in [HKT00],
to our setting. In addition to the local formulas of PDL, we allow local formulas 〈π1 ∩ π2〉α
where π1 and π2 are path expressions and α is a local formula. The intended meaning is
that there exist two paths described by π1 and π2 respectively that both lead to the same
node w where α holds.

It is the aim of this section to prove that CFMs are too weak to check all properties
expressed in iPDL. To show this result more easily, we also allow atomic propositions of the
form (a, b) with a, b ∈ {0, 1}; they are evaluated over an MSCM = (V,≤, λ) together with a
mapping c : V → {0, 1}2. Then (M, c), v |= (a, b) iff c(v) = (a, b). Let P = {0, 1} be the set
of processes. For m ≥ 1, we first fix an MSCMm = (Vm,≤, λ) for the remaining arguments:
On process 0, it executes the sequence (0!1)m((0?1)(0!1))ω . The sequence of events on
process 1 is (1?0) ((1?0) (1!0))ω . In other words, process 0 sends m messages to process 1
and then acknowledges any message received from 1 immediately. Differently, process 1 has
a buffer for two messages. After receiving message number k + 1, it acknowledges message
number k.
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Figure 5: MSC M4 and the mapping f .

Let E0!1 denote the set of send-events of process 0. For the kth send-event v on process
0, let f(v) = ((m− k) mod m, (k− 1) divm). Then f maps the set E0!1 bijectively onto the
grid Gm = {0, 1, . . . ,m− 1} × ω; we denote the inverse of f by g. Figure 5 shows MSC M4

together with the mapping f .

Lemma 7.1. There exists a local formula α of iPDL such that, for any m ≥ 1 and any
c : Vm → {0, 1}2 satisfying c(g(i, j)) = (0, 0) iff i = 0, we have (Mm, c) |= Aα iff c(g(i, j)) =
c(g(i, j + i)) for all (i, j) ∈ Gm.

Proof. Let (i, j) ∈ Gm. Then observe the following:

• With π1 denoting the path description (proc; {(0?1)})∗ ; proc; {(0!1)}, we have thatMm, g(i, j) |=
〈π1〉β iff i > 0 and Mm, g(i − 1, j) |= β, or i = 0 and
Mm, g(m− 1, j + 1) |= β.

• With π2 denoting the path description msg; proc;msg; proc, we have Mm, g(i, j) |= 〈π2〉 β
iff Mm, g(i + 1, j + 1) |= β whenever i < m− 1.

As a consequence, we obtain

• if i > 0, then Mm, g(i, j) |= 〈π1;π2〉 β iff Mm, g(i, j + 1) |= β.

Now let c : Vm → {0, 1}2 be a function with c(g(i, j)) = (0, 0) iff i = 0. Then we have

(1) (Mm, c), g(i, j) |= 〈{¬(0, 0)}; (π1;π2)
∗〉β iff i > 0 and there exists k ≥ 0 with (Mm, c), g(i, j+

k) |= β,
(2) (Mm, c), g(i, j) |= 〈({¬(0, 0)};π1)

∗; {(0, 0)}〉 β iff (Mm, c), g(0, j) |= β,
(3) (Mm, c), g(0, j) |= 〈(π2; {¬(0, 0)})

∗〉 β iff there is 0 ≤ k ≤ m − 1 with (Mm, c), g(k, j +
k) |= β.

Now let π3 = ({¬(0, 0)};π1)
∗; {(0, 0)}; (π2 ; {¬(0, 0)})

∗ and π4 = {¬(0, 0)}; (π1 ;π2)
∗. Then,

we have (Mm, c), g(i, j) |= 〈π3 ∩ π4〉β iff i > 0 and (Mm, c), g(i, j + i) |= β. Now let

α = ((0!1) ∧ ¬(0, 0)) →
∧

x∈{0,1}2

x↔ 〈π3 ∩ π4〉x .

Then, for all (i, j) ∈ Gm, we have (Mm, c), g(i, j) |= α iff c(g(i, j)) = c(g(i, j + i)).
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Lemma 7.2. Let A = (C, 2, (Ap)p∈P , F ) be a CFM that accepts all labeled MSCs (Mm, c)
with m ≥ 1 such that

(1) c(g(i, j)) = (0, 0) iff i = 0,
(2) c(g(i, j)) = c(g(i, j + i)) for all (i, j) ∈ Gm.

Then there exist m ≥ 1 and a labeled MSC (Mm, c) accepted by A, satisfying (1), and
violating (2).

Proof. Let Ap = (Sp,→p, ιp) for p = 0, 1, let m ≥ 1 be such that |S0| · |S1| · |C|m−1 <

3
(m−1)(m−2)

2 , and let Mm = (Vm,≤, λ). Let furthermore H denote the set of mappings
c : Vm → {0, 1}2 satisfying (1), (2), and c(v) = (1, 1) for all v /∈ E0!1 (i.e., λ(v) 6= (0!1)).
Then, for any c ∈ H, the pair (Mm, c) is accepted by A – let (ρc, µc) be an accepting run
of A on (Mm, c).

Let v = g(m − 1,m− 2) and W = {w ∈ V | w ≤ v}. Then, for any event w ∈ W with
λ(w) = 1!0, we have msg(w) ∈ W . On the other hand, there are precisely m − 1 events
w1, . . . , wm−1 ∈ W with λ(wi) = 0!1 and msg(wi) /∈ W . Let furthermore u ∈ W be the
maximal event from process 1.

Consider (Mm, c1) and (Mm, c2) with c1, c2 ∈ H and c1(g(i, j)) = c2(g(i, j)) for all
0 ≤ j < i < m. Then c1 = c2 by (2). Hence |H| is the number of mappings from

{(i, j) | 0 ≤ j < i < m} to {0, 1}2 \ {(0, 0)}, i.e., 3
(m−1)(m−2)

2 .
Since this number exceeds |S0| · |S1| · |C|m−1, there exist c1 and c2 with c1 6= c2 in H

with ρc1(v) = ρc2(v), ρc1(u) = ρc2(u), and µc1(wi) = µc2(wi) for all 1 ≤ i ≤ m− 1.
Now define a mapping c : V → {0, 1}2 by c(x) = c1(x) for x ∈ W and c(x) = c2(x) for

x /∈W . Then, c satisfies (1) and violates (2). But (Mm, c) is accepted by A: An accepting
run (ρ, µ) is defined (similarly to c) by

ρ(x) =

{

ρc1(x) for x ∈W

ρc2(x) otherwise
and µ(x) =

{

µc1(x) for x ∈W

µc2(x) otherwise.

Theorem 7.3. There exists a local formula α of iPDL such that the set of MSCs M
satisfying Aα cannot be accepted by a CFM.

Proof. Let α be the local formula from Lemma 7.1. Towards a contradiction, assume A is
a CFM such that, for any pair (M, c), we have (M, c) |= Aα iff (M, c) is accepted by A. In
particular, A accepts all pairs (Mm, c) satisfying (1) and (2) from Lemma 7.2. Hence there
exists some pair (Mm, c) that is accepted by A, satisfies (1), and violates (2). But now, by
Lemma 7.1 again, (Mm, c) |= ¬Aα, contradicting our assumption on A.

Using a new process 2, one can encode the mapping c by additional messages from
processes 0 and 1 to process 2.

8. Open questions

The semantics of every PDL formula ϕ is the behavior of a CFM A. Hence any PDL
formula is equivalent to some formula from existential monadic second order, but a precise
description of the expressive power of PDL is not known. Because of quantification over
paths, it cannot be captured by first-order logic [DG04, Prop. 14]. On the other hand, PDL
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is closed under negation, hence PDL is a proper fragment of existential monadic second order
logic. But it is not even clear that semantical membership of this fragment is decidable.

The decidability of the model checking problem for CFMs against MSO-formulas was
shown in [GKM06] for existentially B-bounded MSCs. For compositional MSCs (a mecha-
nism for the description of sets of MSCs that is similar but more general than HMSCs) and
MSO, the decidability of the model checking problem was established in [MM01]. Since the
logic iPDL, i.e., PDL with intersection, can be translated effectively into an MSO-formula,
the model checking problem is decidable for iPDL. However, the complexity of MSO model
checking is non-elementary. Therefore, we would like to know if we can do any better for
iPDL.

In PDL, we can express properties of the past and of the future of an event by taking
either a backward- or a forward-path in the graph of the MSC. We are not allowed to speak
about a zig-zag-path where e.g. a mixed use of proc and proc−1 would be possible. It is an
open question whether formulas of such a “mixed PDL” could be transformed to CFMs.
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