
Logical Methods in Computer Science
Vol. 6 (3:19) 2010, pp. 1–22
www.lmcs-online.org

Submitted Nov. 15, 2009
Published Sep. 7, 2010

INTERACTIVE LEARNING-BASED REALIZABILITY FOR HEYTING

ARITHMETIC WITH EM1

FEDERICO ASCHIERI a AND STEFANO BERARDI b

a C.S. Department, Università di Torino, Italy, and
School of EECS, Queen Mary, University of London, UK
e-mail address: federico.aschieri@di.unito.it

b C.S. Department, Università di Torino, Italy
e-mail address: berardi@di.unito.it

Abstract. We apply to the semantics of Arithmetic the idea of “finite approximation”
used to provide computational interpretations of Herbrand’s Theorem, and we interpret
classical proofs as constructive proofs (with constructive rules for ∨, ∃) over a suitable
structure N for the language of natural numbers and maps of Gödel’s system T . We
introduce a new Realizability semantics we call “Interactive learning-based Realizability”,
for Heyting Arithmetic plus EM1 (Excluded middle axiom restricted to Σ0

1 formulas). In-
dividuals of N evolve with time, and realizers may “interact” with them, by influencing
their evolution. We build our semantics over Avigad’s fixed point result, but the same
semantics may be defined over different constructive interpretations of classical arithmetic
(Berardi and de’ Liguoro use continuations). Our notion of realizability extends intuition-
istic realizability and differs from it only in the atomic case: we interpret atomic realizers
as “learning agents”.

1. Introduction

From now on, we will call HA Heyting Intuitionistic Arithmetic, with a language in-
cluding one symbol for each primitive recursive predicate or function. We call Σ0

1-formulas
the set of all formulas ∃x.P (x, y) for some primitive recursive predicate P , and EM1 the
Excluded middle axiom restricted to Σ0

1-formulas. For a detailed study of the intuitionistic
consequences of the sub-classical axiom EM1 we refer to [1].

In this paper we give the full version of Aschieri and Berardi [2] and we extend Berardi
and de’ Liguoro ([5], [8]) notion of atomic realizability - originally conceived for quantifier
free primitive recursive Arithmetic plus EM1 - to full predicate logic, namely Heyting Arith-
metic with EM1 (HA+EM1). Our idea is to interpret classical proofs as constructive proofs on
a suitable structure N for natural numbers and maps of Gödel’s system T , by applying to
the semantics of Arithmetic the idea of “finite approximation” used to interpret Herbrand’s
Theorem. We extend intuitionistic realizability to a new notion of realizability, which we

1998 ACM Subject Classification: F.4.1.
Key words and phrases: proof theory, classical arithmetic, classical realizability, learning.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (3:19) 2010
c© F. Aschieri and S. Berardi
CC© Creative Commons

http://creativecommons.org/about/licenses

2 F. ASCHIERI AND S. BERARDI

call “Interactive learning-based Realizability”. We provide a term assignment for the stan-
dard natural deduction system of HA + EM1, which is surprisingly equal in all respects to
that of HA, but for the fact that we have non-trivial realizers for atomic formulas and a new
realizer for EM1.

Our semantics is “local”: we do not introduce a global variable representing the goal,
as in continuation interpretation, in Friedman’s A-translation and in Krivine’s Classical
Realizability. We interpret classical proofs “locally” and step-by-step, in order to solve a
major problem of all computational interpretations: global illegibility, which means that,
even for simple classical proofs, it is extremely difficult to understand how each step of the
extracted program is related to the ideas of the proof, and what it is the particular task
performed by each subprogram of the extracted program. The main sources of inspiration
of this paper are works of Kleene, Hilbert, Coquand, Hayashi, Berardi and de’ Liguoro and
Avigad.

Intuitionistic Realizability revisited. In [20], Kleene introduced the notion of realizabil-
ity, a formal semantics for intuitionistic arithmetic. Later, Kreisel [21] defined modified re-
alizability, the same notion but with respect to a typed lambda calculus instead of Kleene’s
formalism of partial recursive functions. Realizability is nothing but a formal version of
Heyting semantics for intuitionistic logic, translated into the language of arithmetic.

Intuitively, realizing a closed arithmetical formula A means exhibiting a computer pro-
gram - called realizer - able to calculate all relevant information about the truth of A.
Hence, realizing a formula A ∨ B means realizing A or realizing B, after calculating which
one of the two is actually realized; realizing a formula ∃xA(x) means computing a numeral
n - called a witness - and realizing A(n).

These two cases are indeed the only ones in which we have relevant information to
calculate about the truth of the corresponding formula, and there is a decision to be made:
realizing a formula ∀xA means exhibiting an algorithm which takes as input a numeral n
and gives as output realizers of A(n); realizing a formula A ∧ B means realizing A and
realizing B; realizing A → B means providing an algorithm which takes as input realizers
of A and gives realizers of B; in these cases we provide no information about the formula
we realize and we only take the inputs we will use for realizing existential or disjunctive
formulas. Finally, realizing an atomic formula means that the formula is true: in this case,
the realizer does nothing at all.

Hence, intuitionistic realizability closely follows Tarski’s definition of truth - the only
difference being effectiveness: for instance, while Tarski, to assert that ∃xA is true, con-
tented himself to know that there exists some n such that A(n) is true, Kleene asked for a
program that calculates an n such that A(n) is true.

Intuitionistic natural deduction rules are perfectly suited to preserve realizability. In
order to actually build realizers from intuitionistic natural deductions, it suffices to give
realizers for the axioms. Since our goal is to interpret classical connectives using Heyting
and Kleene interpretation of intuitionistic connectives, then a first, quite naive idea would
be the following: if we devised realizers for Excluded Middle, we would be able to extend
realizability to all classical arithmetic.

Unfortunately, from the work of Turing it is well known that not every instance of
Excluded Middle is realizable. If Txyz is Kleene’s predicate, realizing ∀x∀y.∃zTxyz ∨
∀z¬Txyz implies exhibiting an algorithm which for every n,m calculates whether or not
the n-th Turing machine halts on input m: the halting problem would be decidable. Hence,

INTERACTIVE LEARNING-BASED REALIZABILITY FOR HEYTING ARITHMETIC WITH EM1 3

there is no hope of computing with effective programs all the information about the truth
of Excluded Middle.

However, not all is lost. A key observation is the following. Suppose we had a realizer
O of the Excluded Middle and we made a natural deduction of a formula ∃xA actually using
Excluded Middle; then, we would be able to extract from the proof a program u, containing
O as subprogram, able to compute the witness for ∃xA. Given the effectiveness of u, after a
finite number of steps - and more importantly, after a finite number of calls to O - u would
yield the required witness. It is thus clear that u, to perform the calculation, would use
only a finite piece of information about the Excluded Middle. This fundamental fact gives
us hope: maybe there is not always necessity of fully realizing Excluded Middle, since in
finite computations only a finite amount of information is used. If we were able to gain
that finite information during the computation, as it is the case in the proof of Herbrand’s
Theorem, we could adapt intuitionistic realizability to Classical Logic.

Herbrand’s Theorem and the idea of “finite approximation”. (A corollary of) Herbrand’s
Theorem says that if a universal first order theory T , in a suitable language supporting
definition by cases, proves a statement ∃xP (x), then one can extract from any proof a term
t and closed instances A1, . . . , An of some universal formulas of T such that A1∧ . . .∧An →
P (t) is a propositional tautology. So, even using classical logic, one can define witnesses.
The problem is that the functions occurring in t may not be computable, because the
language of T is allowed to contain arbitrary functions. However, given the finiteness of the
information needed about any function used during any finite computation of t, in order
to carry out actual calculations one would only have to find finite approximations of the
non-computable functions involved, thus recovering effectiveness. We choose to follow this
intuition: we will add non-computable functions to our language for realizers and exploit
the existence of these ideal objects in order to find concrete computational solutions.

This general idea dates back to Hilbert’s ǫ-substitution method (for a neat reformulation
of the ǫ-method see for example Avigad [4]). As noted by Ackermann [3], the ǫ- substitution
method may be used to compute witnesses of provable existential statements of first order
Peano Arithmetic. The procedure is simple: introduce Skolem functions (equivalently, ǫ-
terms) and correspondent quantifier free Skolem axioms in order to reduce any axiom to
a quantifier free form; take a PA-proof of a sentence ∃xP (x) and translate it into a proof
using as axioms only universal formulas; then apply Herbrand’s theorem to the resulting
proof, obtaining a quantifier free proof of P (t), for some term t of the extended language;
finally, calculate a suitable finite approximation of the Skolem functions occurring in t and
calculate from t an n such that P (n) holds.

However, while proofs in quantifier free style are very simple combinatorial objects,
they lose the intuitive appeal, the general concepts, the structure of high level proofs.
Hence, it may be an impossible task to understand extracted programs. Moreover we have
a computational syntactic method but no semantics of proofs and logical operators based
on the idea of “finite approximation”, as the realizability interpretations are based on the
idea of “construction”. However, in the ǫ-method, albeit only for quantifier free formulas,
we see in action the method of intelligent learning, driven by the Skolem axioms used in
the proofs. One of the aims of this paper is to extend this “semantics of learning” from
atomic propositions to individuals, maps, logical connectives and quantifiers of full natural
deduction proofs. An important contribution comes from Coquand [12].

Coquand’s Game Semantics for Classical Arithmetic. Computing all relevant infor-
mation about the truth of a given formula A is not always possible. In [12] and in the

4 F. ASCHIERI AND S. BERARDI

context of game semantics, Coquand introduced a new key idea around this problem: the
correspondence between backtracking and “learning”, a refinement of the idea of “finite ap-
proximation”. If we cannot compute all the right information about the truth of a formula,
maybe we could do this if we were allowed to make finitely many mistakes and to learn
from them.

Suppose, for instance, we have the formula ∀x.∃yPxy ∨ ∀y¬Pxy, but we have no algo-
rithm which, for all numeral n given as input, outputs false if ∀y¬Pny holds and outputs
true if ∃yPny holds. Then we may describe a learning algorithm r as follows. Initially,
for all n given as input, r outputs false. Intuitively, r is initially persuaded - following the
principle “if I don’t see, I do not believe” - that for all numeral n there is no numeralm such
that Pnm holds. Hence, when asked for his opinion about the formula ∃yPny ∨ ∀y¬Pny,
r always says: ∃yPny is false. However, if someone - an opponent of r - to show that r
is wrong, comes out with an m such that Pnm holds, r realizes indeed to be mistaken,
and stores the information “Pnm is true”. Then, the next time being asked for an opinion
about ∃yPny ∨ ∀y¬Pny, r will say: true. In other words, such r, after at most one “mind
changing”, would be able to learn the correct answer to any question of the form: “which
one among ∃yPny, ∀y¬Pny does hold?”. This is actually learning by counterexamples and
is the key idea behind Coquand’s semantics.

Our question is now: can we formulate a realizability notion based on learning by
counterexamples in order to extend Kreisel’s interpretation to all individuals, maps and
connectives of the sub-classical Arithmetic HA+EM1? Following Hayashi [19], in our solution
we modify the notion of individual, in such a way that individuals change with time, and
realizers “interact” with them.

Hayashi’s Proof Animation and Realizability. In [19], Hayashi explains a notion of
realizability for a sub-classical arithmetic, called limit computable mathematics. Basing
his analysis on ideas of Gold [15], he defines a Kleene’s style notion of realizability equal
to the original one but for the fact that the notion of individual changes: the witnesses of
existential and disjunctive formulas are calculated by a stream of guesses and “learned in
the limit” (in the sense that the limit of the stream is a correct witness). An individual a is
therefore a computable map a : N → N, with a(t) representing the value of the individual
at time t.

For instance, how would Hayashi realize the formula ∀x.∃yPxy ∨ ∀y¬Pxy? He would
define an algorithm H as follows. Given any numeral n, H would calculate the truth
value of ∀y ≤ nPny. Then the correct answer to the question: “which one among ∃yPny,
∀y¬Pny does hold?” is learned in the limit by computing P (n, 0), P (n, 1), P (n, 2),. . . ,
P (n, k),. . . and thus producing a stream of guesses either of the form false, false, false,. . . ,
true, true,. . . , true,. . . or of the form false, false, false, . . . , false, . . . , the first stabilizing in
the limit to true, the second to false. Hayashi’s idea is to perform a completely blind and
exhaustive search: in such a way, the correct answer is guaranteed to be eventually learned
(classically). Hayashi’s realizers do not learn in an efficient way: in Hayashi’s notion of
realizability the only learning device is to look through all possible cases. Instead, we want
to combine the idea of individual as limit, taken from Hayashi, with notion of learning in
which the stream of guesses is driven by the proof itself, as in Coquand’s game semantics.
For the quantifier-free fragment, this was done by Berardi [5] and Berardi-de’ Liguoro [8].

Realizability Based on Learning: Berardi-de’ Liguoro interpretation. We explain the
paper [8] using Popper’s ideas [22] as a metaphor. According to Popper, a scientific theory

INTERACTIVE LEARNING-BASED REALIZABILITY FOR HEYTING ARITHMETIC WITH EM1 5

relies on a set of unproved - and unprovable - hypotheses and, through logic, makes predic-
tions suitable to be falsified by experiments. If a prediction is falsified, some hypothesis is
incorrect. In front of a counterexample to a theory’s prediction, one must modify the set of
hypotheses and build a better theory, which will be tested by experiments, and so on. Laws
of Nature are universal statements, that cannot be verified, but are suitable to falsification.
We may explain the link between falsifiable hypotheses and EM1. For every n, given an
instance ∃y.Pny∨∀y.¬Pny of EM1 (with P atomic), we may formulate an hypothesis about
which side of the disjunction is true. If we know that Pnm is true for some m, we know
that ∃y.Pny is true. Otherwise we may assume ∀y.¬Pny as hypothesis, because it is a
falsifiable hypothesis.

We formalize the process of making hypotheses about EM1 by a finite state of knowledge,
called S, collecting the instances Pnm which we know to hold, e.g. by direct calculation. If
we have evidence that Pnm holds for some m (that is, Pnm ∈ S) we know that ∃yPny is
true; in the other case, we assume that ∀y¬Pny is true. So S defines a set of hypotheses on
EM1, of the form ∀y¬Pny: universal falsifiable statements. Using S a realizer r may effec-
tively decide which side of a given instance of EM1 is true, at the price of making mistakes:
to decide if ∀y¬Pny is true, r looks for any Pnm in the finite state S and outputs “false”
if the research is successful, “true” otherwise. If and when from an hypothesis ∀y¬Pny we
obtain some false conclusion ¬Pnm, the realizer r returns the additional knowledge: “Pnm
is true”, to be added to S.

Extending Berardi-de’ Liguoro interpretation to HA + EM1. In our paper, we interpret
each classical proof p of A in HA+EM1 by a “learning realizer” r. r returns a “prediction” of
the truth of this formula, based on the information in S, and some additional knowledge in
the case the prediction is effectively falsified. For example, in front of a formula ∃x.A ∧B,
a realizer r predicts that A(n) ∧ B(n) is true for some numeral n (and since n depends on
s, in our model we change the notion of individual, interpreting “numbers” as computable
maps from the set of bases of knowledge to N). Then r predicts, say, that B(n) is true,
and so on, until r arrives at some atomic formula, say ¬Pnm. Either Pnm is actually true,
or r is able to effectively find one or more flawed hypothesis ∀x.¬Q1n1x, . . . ,∀x.¬Qknkx
among the hypotheses used to predict that Pnm is true, and for each flawed hypothesis
one counterexample Q1n1m1, . . . , Qknkmk. In this case, r requires to enlarge our state of
knowledge S by including the information “Q1n1m1 is true”, . . . , “Qknkmk is true”.

Our Interactive Realizability differs from Intuitionistic Realizability in the notion of
individual (the value of an individual may depend on our knowledge state), and in the
realizability relation for the atomic case. In our interpretation, to realize an atomic formula
does not mean that the formula is true, but that the realizer requires to extend our state of
knowledge S if the formula is not true. The realizer is thought as a learning device. Each
extension of S may change the value of the individuals which are parameters of the atomic
formula, and therefore may make the atomic formula false again. Then the realizer requires
to extend S again, and so forth. The convergence of this “interaction” between a realizer
and a group of individuals follows by Avigad’s fixed point thm. [4] (a constructive proof
may be found in [5]), and it is the analogue of the termination of Hilbert’s ǫ-substitution
method.

Why the Arithmetic HA+EM1 instead of considering the full Peano Arithmetic? We have
two main reasons. First, we observe that EM1 enjoys a very good property: the information
about its truth can be computed in the limit, in the sense of Gold [15], as we saw en
passant when discussing Hayashi’s realizability. This implies that witnesses for existential

6 F. ASCHIERI AND S. BERARDI

and disjunctive statements too can be learned in the limit, as shown in Hayashi [19]. In a
forthcoming paper we show that realizers which we will be able to extract from proofs have
a straightforward interpretation as winning strategies in 1-Backtracking games [7], which
are the most natural and simple instances of Coquand’s style games. Secondly, a great deal
of mathematical theorems are proved by using EM1 alone ([1], [6]).

Plan of the Paper. The paper is organized as follows. In §2 we define the term calculus
in which our realizers will be written: a version of Gödel’s system T , extended with some
syntactic sugar, in order to represent bases of knowledge (which we shall call states) and
to manipulate them. Then we prove a convergence property for this calculus (as in Avigad
[4] or in [5]). In §3, we introduce the notion of realizability and prove our Main Theorem,
the Adequacy Theorem: “if a closed arithmetical formula is provable in HA+ EM1, then it is
realizable”. In §4 we conclude the discussion about our notion of realizability by comparing
it with other notions of realizability for classical logic, then we consider some possible future
work.

2. The Term Calculus

In this section we formalize the intuition of “learning realizer” we discussed in the
introduction.

We associate to any instance ∃yPxy ∨ ∀y¬Pxy of EM1 (Excluded Middle restricted to
Σ0
1-formulas) two functions χP and ϕP . The function χP takes a knowledge state S, a

numeral n, and it returns a guess for the truth value of ∃y.Pny. When this guess is “true”
the function ϕP returns a witness m of ∃y.Pny. The guess for the truth value of ∃y.Pny is
computed w.r.t. the knowledge state S, and it may be wrong. For each constant s denoting
some knowledge state S, the function λx : N.χP (s, x) is some “approximation” of an ideal
map λx : N.XP (x), the oracle returning the truth value of ∃y.Pxy. In the same way, the
function λx : N.φP (s, x) is some “approximation” of an ideal map λx : N.ΦP (x), the Skolem
map for ∃y.Pxy, returning some y such that Pxy if any, and 0 otherwise. The Skolem
axioms effectively used by a given proof take the place of a set of experiments testing the
correctness of the predictions made by ϕP (s, x), χP (s, x) about XP (x),ΦP (x) (we do not
check the correctness of ϕP , χP in an exhaustive way, but only on the values required by
the Skolem axioms used by a proof).

Our Term Calculus is an extension of Gödel’s system T . For a complete definition of T
we refer to Girard [14]. T is simply typed λ-calculus, with atomic types N (representing the
set N of natural numbers) and Bool (representing the set B = {True,False} of booleans),
product types T×U and arrows types T → U , and pairs 〈., .〉, projections π0, π1, conditional
ifT and primitive recursion RT in all types, and the usual reduction rules (β), (π), (if), (R)
for λ, 〈., .〉, ifT , RT . From now on, if t, u are terms of T with t = u we denote provable
equality in T . If k ∈ N, the numeral denoting k is the closed normal term k = Sk(0) of type
N. We denote numerals in T by n,m, and natural numbers with i, j, k, h, . . . ∈ N. All closed
normal terms of type N are a numeral. We denote with True, False : Bool the boolean
constants of T . Any closed normal term of type Bool in T is True or False.

We introduce a notation for ternary projections: if T = A× (B×C), with p0, p1, p2 we
respectively denote the terms π0, λx : T.π0(π1(x)), λx : T.π1(π1(x)). If u = 〈u0, 〈u1, u2〉〉 :
T , then piu = ui in T for i = 0, 1, 2. We abbreviate 〈u0, 〈u1, u2〉〉 : T with 〈u0, u1, u2〉 : T .
We formalize the idea of “finite information about EM1” by the notion of state of knowledge.

INTERACTIVE LEARNING-BASED REALIZABILITY FOR HEYTING ARITHMETIC WITH EM1 7

Definition 2.1 (States of Knowledge and Consistent Union).

(1) A k-ary predicate of T is any closed normal term P : Nk → Bool of T .
(2) An atom is any triple 〈P,~n,m〉, where P is a (k+1)-ary predicate, and ~n,m are (k+1)

numerals, and P~nm = True in T .

(3) Two atoms 〈P,~n,m〉, 〈P ′, ~n′,m′〉 are consistent if P = P ′ and ~n = ~n′ in T imply
m = m′.

(4) A state of knowledge, shortly a state, is any finite set S of pairwise consistent atoms.
(5) Two states S1, S2 are consistent if S1 ∪ S2 is a state.
(6) S is the set of all states of knowledge.
(7) The consistent union S1US2 of S1, S2 ∈ S is S1 ∪ S2 ∈ S minus all atoms of S2 which

are inconsistent with some atom of S1.

We think of an atom 〈P,~n,m〉 as the code of a witness for ∃y.P (~n, y). Consistency condition
allows at most one witness for each ∃y.P (~n, y) in each knowledge state S. Two states S1, S2
are consistent if and only if each atom of S1 is consistent with each atom of S2.

S1US2 is an non-commutative operation: whenever an atom of S1 and an atom of S2
are inconsistent, we arbitrarily keep the atom of S1 and we reject the atom of S2, therefore
for some S1, S2 we have S1US2 6= S2US1. U is a “learning strategy”, a way of selecting a
consistent subset of S1 ∪ S2. It is immediate to show that U is an associative operation on
the set of consistent states, with neutral element ∅, with upper bound S1∪S2, and returning
a non-empty state whenever S1 ∪ S2 is non-empty.

Lemma 2.2. Assume i ∈ N and S1, . . . , Si ∈ S.

(1) S1U . . .USi ⊆ S1 ∪ . . . ∪ Si
(2) S1U . . .USi = ∅ implies S1 = . . . = Si = ∅.

In fact, the whole realizability Semantics is a Monad [10]. In [10], it is proved that
our realizability Semantics is parametric with respect to the definition we choose for U .
Any associative operation U , with neutral element ∅ and satisfying the two properties of
Lemma 2.2, defines a different but sound realizability Semantics, corresponding to a different
“learning strategy”. An immediate consequence of Lemma 2.2 is:

Lemma 2.3. Assume S, S1, S2 ∈ S.

(1) If S is consistent with S1, S2, then S is consistent with S1US2.
(2) If S is disjoint with S1, S2, then S is disjoint with S1US2.

For each state of knowledge S we assume having a unique constant s = S denoting
it: for instance, ∅ is a state constant denoting the empty state. We define with TS =
T + S + {S|S ∈ S} the extension of T with one atomic type S denoting S, and a constant
s = S : S for each S ∈ S, and no new reduction rule. We denote states by S, S′, . . . and
state constants by s, s′, Any closed normal form of type N, Bool, S in TS is, respectively,
some numeral n, some boolean True, False, some state constant s. Computation on states
will be defined by some suitable set of algebraic reduction rules we call “functional”.

Definition 2.4. (Functional set of rules) Let C be any set of constants, each one of some
type A1 → . . . → An → A, for some A1, . . . , An, A ∈ {Bool, N, S}. We say that R is a
functional set of reduction rules for C if R consists, for all c ∈ C and all a1 : A1, . . . , an : An

closed normal terms of TS, of exactly one rule ca1 . . . an 7→ a, for some closed normal term
a : A of TS.

8 F. ASCHIERI AND S. BERARDI

Theorem 2.5. Assume that R is a functional set of reduction rules for C (def. 2.4). Then
TS + C + R enjoys strong normalization and weak-Church-Rosser (uniqueness of normal
forms) for all closed terms of atomic types.

Proof. (Sketch) For strong normalization, see [11] (the constants s : S and c ∈ C are
trivially strongly computable). For weak Church-Rosser property, we start from the fact
that there is the canonical set-theoretical model M of TS + C +R. The interpretation of
Bool, N, S in M consists of all closed normal form of these types. Arrows and pairs are
interpreted set-theoretically. Each constant c ∈ C is interpreted by some map fc, defined
by fc(a1, . . . , an) = a for all reduction rules (ca1 . . . an 7→ a) ∈ R. Assume u, v : A are
closed normal term, A = Bool, N, or S is an atomic type, and u, v are equal in TS +C +R,
in order to prove that u, v are the same term. u, v are equal in M because M is a model of
TS + C +R. By induction on w we prove that if w is a closed normal form of atomic type
T + C + R, then w is a numeral, or True, False, or a state constant, and therefore w is
interpreted by itself in M. From u, v equal in M we conclude that u, v are the same term
of TS + C +R.

We define two extensions of TS: an extension TClass with symbols denoting the non-
computable maps XP ,ΦP and no computable reduction rules, another extension TLearn,
with the computable approximations χP , φP of XP ,ΦP , and a computable set of reduction
rules. We use the elements of TClass to represent non-computable realizers, and the elements
of TLearn to represent a computable “approximation” of a realizer. In the next definition,
we denote terms of type S by ρ, ρ′,

Definition 2.6. Assume P : Nk+1 → Bool is a k + 1-ary predicate of T . We introduce the
following constants:

(1) χP : S → N
k → Bool and ϕP : S → N

k → N.
(2) XP : Nk → Bool and ΦP : Nk → N.
(3) ⋒ : S → S → S.
(4) AddP : Nk+1 → S and addP : S → N

k+1 → S.

We denote ⋒ρ1ρ2 with ρ1 ⋒ ρ2.

(1) ΞS is the set of all constants χP , ϕP ,⋒, addP .
(2) Ξ is the set of all constants XP ,ΦP ,⋒,AddP .
(3) TClass = TS +Ξ.
(4) A term t ∈ TClass has state ∅ if it has no state constant different from ∅.

Let ~t = t1 . . . tk. We interpret χP s~t and ϕP s~t respectively as a “guess” for the values
of the oracle and the Skolem map XP and ΦP for ∃y.P~ty, guess computed w.r.t. the
knowledge state denoted by the constant s. There is no set of computable reduction rules
for the constants ΦP ,XP ∈ Ξ, and therefore no set of computable reduction rules for TClass.
If ρ1, ρ2 denotes the states S1, S2 ∈ S, we interpret ρ1 ⋒ ρ2 as denoting the consistent
union S1US2 of S1, S2. AddP denotes the map constantly equal to the empty state ∅.
addPS~nm denotes the empty state ∅ if we cannot add the atom 〈P,~n,m〉 to S, either
because 〈P,~n,m′〉 ∈ S for some numeral m′, or because P~nm = False. addPS~nm denotes
the state {〈P,~n,m〉} otherwise. We define a system TLearn with reduction rules over ΞS by
a functional reduction set RS.

Definition 2.7. (The System TLearn) Let s, s1, s2 be state constants denoting the states
S, S1, S2. Let 〈P,~n,m〉 be an atom. RS is the following functional set of reduction rules for
ΞS:

INTERACTIVE LEARNING-BASED REALIZABILITY FOR HEYTING ARITHMETIC WITH EM1 9

(1) If 〈P,~n,m〉 ∈ S, then χP s~n 7→ True and ϕP s~n 7→ m, else χP s~n 7→ False and ϕP s~n 7→ 0.
(2) s1 ⋒ s2 7→ S1US2
(3) addP s~nm 7→ ∅ if either 〈P,~n,m′〉 ∈ S for some numeral m′ or P~nm = False, and

addP s~nm 7→ {〈P,~n,m〉} otherwise.

We define TLearn = TS +ΞS +RS.

Remark. TLearn is nothing but TS with some “syntactic sugar”. By Theorem 2.5, TLearn

is strongly normalizing and has the weak Church-Rosser property for closed term of atomic
types. TLearn satisfies a Normal Form Property.

Lemma 2.8 (Normal Form Property for TLearn). Assume A is either an atomic type or a
product type. Then any closed normal term t ∈ TLearn of type A is: a numeral n : N, or a
boolean True, False : Bool, or a state constant s : S, or a pair 〈u, v〉 : B × C.

Proof. (Sketch) By induction over t. For some ~v, either t is (λ~x.u)(~v), or t is 〈u,w〉(~v), or t is
x(~v) for some variable x, or t is c(~v) for some constant c, and either c = 0,S, True, False, s,
RT , ifT , πi is some constant of TS, or c ∈ ΞS. If t = (λ~x.u)(~v), then t has an arrow type
if ~v = ∅, while t is not normal if ~v 6= ∅. If t = 〈u,w〉(~v), then ~v = ∅ and we are done. If
t = x(~v) then t is not closed. The only case left is t = c(~u) : A. A is not an arrow type,
therefore all arguments of c are in ~u. If t = 0 we are done, if t = S(u) we apply the induction
hypothesis, if t = True, False : Bool or t = s : S or t = 〈u, v〉 we are done. Otherwise
either t = RT (n, f, a)~t, ifT (b, a1, a2)~t, πi(v)~t, or t = χP (u, ~w) : N, or t = ϕP (u, ~w) : N, or
t = ⋒(u1, u2) : S, or t = addP (u, ~w) : S. The proper subterms n,w1, . . . , wk : N, b : Bool,
v : A×B, u, u1, u2 : S of t have atomic or product type and are closed normal. By induction
hypothesis they are, respectively, a numeral, a boolean, a pair, a state constant. In all cases,
t is not normal.

Let t, t′ ∈ TLearn be two closed terms of type S. We abbreviate “t, t′ denotes two states
which are consistent and disjoint” by: t, t′ are consistent and disjoint. ∅, s are consistent
and disjoint for every state constant s. The maps denoted by ⋒, addP preserve the relation:
“to be consistent and disjoint”.

Lemma 2.9. Assume s, s1, s2 are state constants and 〈P,~n,m〉 is an atom.

(1) s, (addP s~nm) are consistent and disjoint.
(2) Assume s, s1 are consistent and disjoint, and s, s2 are consistent and disjoint. Then

s, s1 ⋒ s2 are consistent and disjoint.

Proof.

(1) Assume s denotes the state S. If addP s~nm denotes the empty state the thesis is
immediate. Otherwise addP s~nm denotes {〈P,~n,m〉} and 〈P,~n,m′〉 6∈ S for all numeral
m′. Then {〈P,~n,m〉} is consistent and disjoint with S.

(2) By Lemma 2.3.

Each (in general, non-computable) term t ∈ TClass is associated to a set {t[s] |s is a
state constant} ⊆ TLearn of computable terms we call its “approximations”, one for each
state constant s.

Definition 2.10. Assume t ∈ TClass and s is a state constant. We call “approximation of t
at state s” the term t[s] of TLearn obtained from t by replacing each constant XP with χP s,
each constant ΦP with ϕP s, each constant AddP with addP s.

10 F. ASCHIERI AND S. BERARDI

We interpret any t[s] ∈ TLearn as a learning process evaluated w.r.t. the information
taken from a state constant s (the same s for the whole term).

Assume t ∈ TClass is closed, t : S and s is a state constant. Then t[s] is a closed term
of TLearn, and its normal form, by the Normal Form Property 2.8, is some state constant s′.
We conclude t[s] = s′ in TLearn. We prove that s, s′ are consistent and disjoint.

Lemma 2.11. Assume s is a state constant, t ∈ TClass, t : S is closed, and all state constants
in t are consistent and disjoint with s.

(1) If t[s] reduces to t′[s], then all state constants in t′ are consistent and disjoint with s.
(2) s, t[s] are consistent and disjoint.
(3) If all state constants in u are ∅, then s, u[s] are consistent and disjoint.

Proof.

(1) It is enough to consider a one-step reduction. Suppose that t[s] reduces to t′[s] by
contraction of a redex r of t[s]. If r is (λxu)t or RTuvS(w) or ifT (b, a1, a2) or πi〈v1, v2〉
or χP s~n, or ϕP s~n, then its contractum r′ does not contain any new state constant; hence,
all state constants in t′ are consistent and disjoint with s. If r is s1 ⋒ s2 or addP s~nm,
then both s, s1 and s, s2 are consistent and disjoint state constants by hypothesis on t;
therefore, by Lemma 2.9, in both cases s and the contraction of r are consistent and
disjoint; so all state constants in t′ are consistent and disjoint with s.

(2) Every reduct of t[s] is t′[s] for some t′ ∈ TClass. If t[s] reduces to a normal form t′[s] ≡ s′,
then the only possibility is t′ ≡ s′. By the previous point 1, we conclude that s′ is
consistent and disjoint with s.

(3) By the previous point 2, and the fact that the only state constant ∅ in u is consistent
and disjoint with any s.

We introduce now a notion of convergence for families of terms {t[si]}i∈N ⊆ TLearn, defined by
some t ∈ TClass and indexed over a set of state constants {si}i∈N. Informally, “t convergent”
means that t[s] eventually stops changing when the knowledge state s increases. If s, s′ are
state constants denoting S, S′ ∈ S, we write s ≤ s′ for S ⊆ S′. We say that a sequence
{si}i∈N of state constants is a weakly increasing chain of states (is w.i. for short), if si ≤ si+1

for all i ∈ N.

Definition 2.12. (Convergence). Assume that {si}i∈N is a w.i. sequence of state constants,
and u, v ∈ TClass.

(1) u converges in {si}i∈N if ∃i ∈ N.∀j ≥ i.u[sj] = u[si] in TLearn.
(2) u converges if u converges in every w.i. sequence of state constants.

Remark that if u is convergent, we do not ask that u is convergent to the same value on
all w.i. chain of states. The value learned by u may depend on the information contained
in the particular chain of state constants by which u gets the knowledge. The chain of
states, in turn, is selected by the particular definition we use for the “learning strategy” U .
Different “learning strategies” may learn different values.

Theorem 2.13 (Stability Theorem). Assume t ∈ TClass is a closed term of atomic type A
(A ∈ {Bool, N, S}). Then t is convergent.

Proof. (Classical). Assume S is any consistent and possibly infinite set of atoms. We define
some (in general, not computable) functional reduction set R(S) for the set Ξ of constants
and for TClass. The reductions for XP ,ΦP ,AddP are those for χP , φP , addP in TLearn:

INTERACTIVE LEARNING-BASED REALIZABILITY FOR HEYTING ARITHMETIC WITH EM1 11

(1) If 〈P,~n,m〉 ∈ S, then (XP~n 7→ True), (ΦP~n 7→ m) ∈ R(S), else
(XP~n 7→ False), (ΦP~n 7→ 0) ∈ R(S)

(2) AddP~nm 7→ ∅ if either 〈P,~n,m′〉 ∈ S for some numeral m′ or P~nm = False, and
AddP~nm 7→ {〈P,~n,m〉} o.w..

and the reduction for ⋒ in R(S) is the reduction for ⋒ in TLearn. By theorem 2.5, TClass +
R(S) is strongly normalizing and weak-CR for all closed terms of atomic type, for any
consistent set of atoms S. For the rest of the proof, let {si}i∈N be a w.i. chain of state
constants. Assume t ∈ TClass is a closed term of atomic type A. Claim. For any state
constant s, the map u 7→ u[s] is a bijection from the reduction tree of t in TClass + R(s)
to the reduction tree of t[s] in TLearn. Proof of the Claim. By induction over the reduction
tree of t[s]. Every reduction β, π, ifT , RT ,⋒ over t[s] may be obtained from the same
reduction over t. All occurrences of χP , ϕP , addP in the reduction tree of t[s] are of the
form χP s, ϕP s, addP s, therefore every reduction over χP , ϕP , addP may be obtained from
the corresponding reduction over XP ,ΦP ,AddP .

Assume a is the (unique, by weak-CR) normal form of t in TClass + R(s). By the
Claim, a[s] is the normal form of t[s] in TLearn. Since a is normal in TClass + R(s), there
is no XP ,ΦP ,AddP in a. Thus a and a[s] are the same term: t and t[s] have the same
normal form respectively in TClass + R(s) and in TLearn. Let {si}i∈N be a given sequence
of state constants. Define Sω = ∪i∈NSi, where Si is the state denoted by si. By strong
normalization, the reduction tree of t in TClass +R(Sω) is finite. Therefore in this reduction
tree are used only finitely many reduction rules from R(Sω), and for some numeral n it is
equal to the reduction tree of t in TClass +R(sn), and in TClass +R(sm) for all m ≥ n. We
deduce that for all m ≥ n the normal forms of t in TClass +R(sm) are the same. Thus, the
normal form in TLearn of all t[sm] with m ≥ n are the same, as we wished to show.

Remark 2.14. The idea of the proof of theorem 2.13 corresponds exactly to the intuition
of the introduction. During any computation, the oracles XP and ΦP are consulted a finite
number of times and hence asked for a finite number of values. When our state of knowledge
is great enough, we can substitute the oracles with their approximation χP s and ϕP s for
some state constant s, and we will obtain the same oracle values and hence the same results.

The proof, though non constructive, is short and well explains why the result is true.
However, provided we replace the notion of convergence used in this paper with the intu-
itionistic notion introduced in [5], we are able to reformulate and prove theorem 2.13 in a
purely intuitionistic way, achieving thus a constructive description of learning in HA + EM1.
Being the intuitionistic proof way more elaborated and less intuitive than the present one
and connected with other foundationally interesting results, it will be the subject of a next
paper.

Our proof of convergence follows the pattern of Avigad’s one in [4]. A closed term
t ∈ TClass of atomic type and in the constant c1, . . . , cn ∈ Ξ, may be seen as a functional Ft

which maps functions f1, . . . , fn of the same type of c1, . . . cn into an object of atomic type:
Ft(f1, . . . , fn) is defined as the normal form of t in TClass + R, where R = {cia1 . . . an 7→
a | fi(a1, . . . , an) = a and i ∈ {1, . . . , n}}. Ft is continuous in the sense of Avigad. Moreover,
since XP and AddP have a set-theoretical definition in terms of ΦP , we may assume Ft

depends only on the functions which define in R the reduction rules for ΦP1
, . . .ΦPn

. Then,
if t is of type S, it is not difficult to see that Ft represents an update procedure with respect
to any of its argument. The fact that Ft is an update procedure implies convergence for t
and the fixed point property of theorem 2.15.

12 F. ASCHIERI AND S. BERARDI

Assume that s is a state constant and t ∈ TClass any closed term of type S of state ∅
(i.e., without state constants different from ∅). Denote by τ the map : S → S interpreting
s 7→ t[s]. τ is defined by τ(S) = S′ if and only if t[S] = S′ in TLearn. By Lemma 2.11,
S, τ(S) are consistent and disjoint. In particular, f(S) = S ∪ τ(S) defines a map f : S → S.
By Theorem 2.13, if {Si}i∈N is any w.i. sequence of states, then ∃i.∀j ≥ i.τ(Sj) = τ(Si).

As last result of this section, we prove that if we start from any state S, and we
repeatedly apply f : S → S, eventually we reach a state S′ = fn(S) such that f(S′) = S′

and τ(S) = ∅. We interpret this result by saying that f is a “learning process” adding the
knowledge computed by the map τ , and f eventually stops extending the knowledge.

Theorem 2.15 (Fixed Point Property). Let t : S be a closed term of TClass of state ∅, and
s = S. Define τ(S) = S′ if t[S] = S′, and f(S) = S ∪ τ(S).

(1) There are h ∈ N, S′ ∈ S such that S′ = fh(S) ⊇ S, f(S′) = S′ and τ(S′) = ∅.
(2) We may effectively find a state constant s′ ≥ s such that t[s′] = ∅.

Proof.

(1) f0(S), f1(S), f2(S), . . . is a w.i. chain of states because f(S′) ⊇ S′ for all S′ ∈ S. By
theorem 2.13, the map τ : S → S, interpreting the map s 7→ t[s], converges over this
chain: there exists k ∈ N such that for every j ≥ k, τ(f j(S)) = τ(fk(s)). By definition
of f and the choice of k:

fk+2(S) = fk+1(S) ∪ τ(fk+1(S)) = (fk(S) ∪ τ(fk(S))) ∪ τ(fk(S)) =

= fk(S) ∪ τ(fk(S)) = fk+1(S)

Choose S′ = fk+1(S). By the line above, we have S′ ≥ S and f(S′) = S′, therefore
τ(S′) ⊆ f(S′) = S′. From S′, τ(S′) disjoint we conclude τ(S′) = ∅.

(2) By the previous point and t[S′] = ∅ if and only if τ(S′) = ∅.

3. An Interactive Learning-Based Notion of Realizability

In this section we introduce the notion of realizability for HA+ EM1, Heyting Arithmetic
plus Excluded Middle on Σ0

1-formulas, then we prove our Main Theorem, the Adequacy
Theorem: “if a closed arithmetical formula is provable in HA+ EM1, then it is realizable”.

We first define the formal system HA+EM1, from now on “Extended EM1 Arithmetic”. We
represent atomic predicates of HA + EM1 with (in general, non-computable) closed terms of
TClass of type Bool. Terms of HA+EM1 may include function symbols XP , ΦP denoting non-
computable functions: oracles and Skolem maps for Σ0

1-formulas ∃x.Px~n, with P predicate
of T . We assume having in T some terms ⇒Bool: Bool, Bool → Bool,¬Bool : Bool →
Bool, . . ., implementing boolean connectives. If t1, . . . , tn, t ∈ T have type Bool and are
made from free variables all of type Bool, using boolean connectives, we say that t is a
tautological consequence of t1, . . . , tn in T (a tautology if n = 0) if all boolean assignments
making t1, . . . , tn equal to True in T also make t equal to True in T .

Definition 3.1. (Extended EM1 Intuitionistic Arithmetic: HA+ EM1) The language LClass of
HA+ EM1 is defined as follows.

(1) The terms of LClass are all t ∈ TClass with state ∅, such that t : N and FV (t) ⊆
{xN1, . . . , x

N

n} for some x1, . . . , xn.
(2) The atomic formulas of LClass are all Qt1 . . . tn ∈ TClass, for some Q : Nn → Bool closed

term of TClass of state ∅, and some terms t1, . . . , tn of LClass.

INTERACTIVE LEARNING-BASED REALIZABILITY FOR HEYTING ARITHMETIC WITH EM1 13

(3) The formulas of LClass are built from atomic formulas of LClass by the connectives
∨,∧,→ ∀,∃ as usual.

A formula of HA is a formula of HA+ EM1 in which all predicates and terms are terms of
T .

Deduction rules for HA + EM1 are as in van Dalen [13], with: (i) an axiom schema for
EM1; (ii) the induction rule; (iii) as Post rules: all axioms of equality and ordering on N, all
equational axioms of T , and one schema for each tautological consequences of T . (iv) the
axiom schemas for oracles: P (~t, t) ⇒Bool XP~t and for Skolem maps: XP~t⇒Bool P (~t, (ΦP~t)),
for any predicate P of T .

We denote with ⊥ the atomic formula False and will sometimes write a generic atomic
formula as P (t1, . . . , tn) rather than in the form Pt1 . . . tn. Finally, since any arithmetical
formula has only variables of type N, we shall freely omit their types, writing for instance
∀x.A in place of ∀xN.A. Post rules cover many rules with atomic assumptions and conclusion
as we find useful, for example, the rule: “if f(z) ≤ 0 then f(z) = 0”.

We defined ⇒Bool: Bool, Bool → Bool as a term implementing implication, therefore,
to be accurate, the axiom P (t1, . . . , tn, t) ⇒Bool XP t1 . . . tn is not an implication between
two atomic formulas, but it is equal to the single atomic formula Qt1 . . . tnt, where

Q = λxN1 . . . λx
N

n+1.⇒Bool (Px1 . . . xnxn+1)(XPx1 . . . xn+1)

Similarly, ¬BoolP (~t, t) will denote a single atomic formula. Any atomic formula A of LClass

is a boolean term of TClass, therefore for any state constant s we may form the “finite
approximation” A[s] : Bool, A[s] ∈ TLearn of A. In A[s] we replace all oracles XP and all
Skolem maps ΦP we have in A by their finite approximation χP s, φP s, computed with
respect to the state constant s. We denote with LLearn the set of all expressions A[s] with
A ∈ LClass and s a state constant. All A[s] ∈ LLearn may be interpreted by first order
arithmetical formulas having all closed atomic subformulas decidable.

Using the metaphor explained in the introduction, we use a set of falsifiable hypotheses
determined by s to predict a computable truth value A[s] : Bool in TLearn for an atomic
formula A ∈ LClass that we cannot effectively evaluate. Our definition of realizability pro-
vides a formal semantics for the Extended Intuitionistic Arithmetic HA+ EM1, and therefore
also for the more usual language of Arithmetic HA, in which all functions represent recursive
maps.

Definition 3.2. (Types for realizers) For each arithmetical formula A we define a type |A|
of T by induction on A: |P (t1, . . . , tn)| = S, |A∧B| = |A|×|B|, |A∨B| = Bool×(|A|×|B|),
|A→ B| = |A| → |B|, |∀xA| = N → |A|, |∃xA| = N× |A|

We define the realizability relation t � A, where t ∈ TClass, A ∈ LClass, t has state ∅
and t : |A|. The realizer denotes a non-computable map t, and is associated to a family
{t[s]|s state constant} of one computable map t[s] for each s, realizing the approximation
A[s] ∈ LLearn of the formula A. We interpret the set of Excluded Middle instances and
Skolem axioms effectively used by a given proof as a set of experiments checking the as-
sumptions we have in s about Skolem maps and oracles. If all experiments succeed, the
realizer provides a “construction” for A; if some experiment fails, the realizer provides some
new knowledge obtained from the failure.

We first define t
s A, the realizability relation for the “approximations” t ∈ TLearn and
A ∈ LLearn, w.r.t. any state constant s, then we define t′ � A′ for t′ ∈ TClass of state ∅

14 F. ASCHIERI AND S. BERARDI

and any closed A′ ∈ LClass. For any types T,U, V , let p0, p1, p2 denote the three projections
from T × (U × V).

Definition 3.3. Let s be the constant denoting a state S ∈ S. Assume t ∈ TLearn and
A ∈ TLearn are of the form t = t′[s], A = A′[s] for some closed t′ ∈ TClass of state ∅ and some
closed A′ ∈ LClass. We define t
s A for any state constant s by induction on A.

(1) t
s P (t1, . . . , tn) if and only if t = ∅ in TLearn implies P (t1, . . . , tn) = True

(2) t
s A ∧B if and only if π0t
s A and π1t
s B
(3) t
s A ∨B if and only if: either p0t = True in TLearn and p1t
s A, or p0t = False and

p2t
s B
(4) t
s A→ B if and only if for all u, if u
s A, then tu
s B
(5) t
s ∀xA if and only if for all numerals n, tn
s A[n/x]
(6) t
s ∃xA if and only if for some numeral n π0t = n in TLearn and π1t
s A[n/x]

Assume t′ ∈ TClass is a closed term of state ∅, A′ ∈ LClass is a closed formula, and t′ : |A′|.
We define

(1) t′ �s A
′ if and only if t′[s]
s A

′[s]
(2) t′ � A′ if and only if t′ �s A

′ for all state constants s.

The realizability relation is compatible with equality in TLearn:

Lemma 3.4. If t1
s A[u1/x], t1 = t2 and u1 = u2 in TLearn, then t2
s A[u2/x]

Proof. By straightforward induction on A.

By unfolding the definition of t �s A, we may obtain a direct characterization of the
realizability relation for terms t of TClass, bypassing the reference to the relation
s over
“approximations” of terms and formulas of LClass. The only clause for t �s A which is
(slightly) different from the clause for t
s A is the clause for atomic formulas. We write
the characterization of � explicitly because we refer to it in the next discussion.

Lemma 3.5 (Realizability). Assume s is a state constant, t ∈ TClass is a closed term,
A ∈ LClass is a closed formula, and t : |A|. Let ~t = t1, . . . , tn : N.

(1) t �s P (~t) if and only if t[s] = ∅ in TLearn implies P (~t)[s] = True

(2) t �s A ∧B if and only if π0t �s A and π1t �s B
(3) t �s A ∨B if and only if either p0t[s] = True in TLearn and p1t �s A, or p0t[s] = False

in TLearn and p2t �s B
(4) t �s A→ B if and only if for all u, if u �s A, then tu �s B
(5) t �s ∀xA if and only if for all numerals n, tn �s A[n/x]
(6) t �s ∃xA if and only for some numeral n, π0t[s] = n in TLearn and π1t �s A[n/x][s]

Proof. By definition unfolding.

The characterizations of � shows that the definition of � formalizes all the idea we
sketched in the introduction. A realizer is a term t of TClass, possibly containing the non-
computable functions XP ,ΦP ; if such functions were computable, t would be an intuitionis-
tic realizer. Since in general t is not computable, we calculate its approximation t[s] at state
s, which is a term of TLearn, and we require it to satisfy the indexed-by-state realizability
clauses. Realizers of disjunctions and existential statements provide a witness, which is an
individual depending on an actual state of knowledge, representing all the hypotheses used
to approximate the non-computable. The actual behavior of a realizer depends upon the
current state of knowledge. The state is used only when there is relevant information about

INTERACTIVE LEARNING-BASED REALIZABILITY FOR HEYTING ARITHMETIC WITH EM1 15

the truth of a given formula to be computed: the truth value P (t1, . . . , tn)[s] of an atomic
formula and the disjunctive witness p0t[s] and the existential witness π0u[s] are computed
w.r.t. the constant state s. A realizer t of A ∨ B uses s to predict which one between A
and B is realizable (if p0t[s] = True then A is realizable, and if p0t[s] = False then B is
realizable). A realizer u of ∃xA uses s to predict that π0u[s] equals an n, some witness for
∃xA (i.e. that A[n/x] is realizable). These predictions need not be always correct; hence,
it is possible that a realized atomic formula is actually false; we may have t �s P and
P [s] = False in TLearn. If an atomic formula, although predicted to be true, is indeed false,
then we have encountered a counterexample and so our theory is wrong, our approximation
still inadequate; in this case, t[s] 6= ∅ by definition of t �s P , and the atomic realizer t takes
s and extends it to a larger state s′, union of s and t[s]. That is to say: if something goes
wrong, we must learn from our mistakes. The point is that after every learning, the actual
state of knowledge grows, and if we ask to the same realizer new predictions, we will obtain
“better” answers.

Indeed, we can say more about this last point. Suppose for instance that t � A ∨ B
and let {si}i∈N be a w.i. sequence. Then, since t ∈ |Bool| × |A| × |B|, then p0t : Bool is a
closed term of TClass, converging in {si}i∈N to a boolean; thus the sequence of predictions
p0t[sn] eventually stabilizes, and hence a witness is eventually learned in the limit.

In the atomic case, in order to have t �s P (t1, . . . , tn), we require that if t[s] = ∅,
then P (t1, . . . , tn)[s] = True in TLearn. That is to say: if t has no new information to add
to s, then t must assure the truth of P (t1, . . . , tn) w.r.t. s. By the Fixed Point Property
(theorem 2.15), when t : S is closed, there is plenty of state constants s such that t[s] = ∅;
hence search for truth will be for us computation of a fixed point, driven by the excluded-
middle instances and the Skolem axioms used by the proof, rather than exhaustive search
for counterexamples.

Example 3.6. The most remarkable feature of our Realizability Semantics is the existence
of a EP realizer for EM1. Assume that P is a predicate of T and define EP as

λ~αN〈XP ~α, 〈ΦP ~α, ∅〉, λn
N AddP ~αn〉〉

Proposition 3.7. (Realizer EP of EM1) EP � ∀~x. ∃y P (~x, y) ∨ ∀y¬BoolP (~x, y).

Proof. Let ~m be a vector of numerals and let s = S be a state constant denoting S ∈ S.
EP ~m[s] is equal to

〈χP s~m, 〈ϕP s~m, ∅〉, λn
N addP s~mn〉

and we want to prove that

EP ~m[s]
s ∃y P (~m, y) ∨ ∀y¬BoolP (~m, y)

We have p0EP ~m[s] = χP s~m in TLearn. Assume χP s~m = True. Then 〈P, ~m, n〉 ∈ S for some
numeral n such that P (~m, n) = True, and we have to prove

p1EPm[s]
s ∃y P (~m, y)

By definition unfolding, p1EPm[s] = 〈ϕP s~m, ∅〉 = (by definition of ϕP (s, ~m)) 〈n, ∅〉, hence,
π0(p1EPm)[s] = π0(〈n, ∅〉) = n and p1(π1EPm)[s]
s P (~m, n) because P (~m, n) = True.
We conclude p1EPm[s]
s ∃y P (~m, y). Now assume p0EP ~m[s] = χP s~m = False. Then
〈P, ~m, n′〉 6∈ S for all numerals n′. We have to prove

p2EP ~m[s] = λn addP s~mn
s ∀y¬BoolP (m, y)

16 F. ASCHIERI AND S. BERARDI

that is that, given any numeral n,

addP s~mn
s ¬BoolP (m,n)

By the definition of realizer in this case, we have to assume that addP s~mn = ∅, in order to
prove that ¬BoolP (~m, n)[s] = True. The substitution (.)[s] has an empty effect over P (~m, n),
therefore we have to prove that ¬BoolP (~m, n) = True, that is, that P (~m, n) = False.
Assume for contradiction that P (~m, n) = True. We already proved that 〈P, ~m, n′〉 6∈ S,
for all numeral n′: from this and P (~m, n) = True we deduce addP s~mn = {〈P, ~m, n〉},
contradiction.

EP works according to the ideas we sketched in the introduction. It uses χP to make
predictions about which one between ∃y P (~m, y) and ∀y¬BoolP (~m, y) is true. χP , in turn,
relies on the constant s denoting the actual state to make its own prediction. If χP sm =
False, given any n, ¬BoolP (m,n) is predicted to be true; if it is not the case, we have a
counterexample and AddP requires to extend the state with 〈P, ~m, n〉. On the contrary,
if χP sm = True, there is unquestionable evidence that ∃yP (~m, y) holds; namely, there is
some numeral n such that 〈P, ~m, n〉 is in s; then ϕP is called, and it returns ϕP s~m = n.

This is the basic mechanism by which we implement learning: every state extension is
linked with an assumption about an instance of EM1 which we used and turned out to be
wrong (this is the only way to come across a counterexample); in next computations, the
actual state will be bigger, the realizer will not do the same error, and hence will be “wiser”.

Example 3.8. (Π0
2 formulas) As usual for a Realizability interpretation, we may extract

from any realizer t � ∀x.∃y.P (x, y), with P ∈ T , some recursive map ψ from the set
of numerals to the set of numerals, such that P (n,ψ(n)) for all numerals n. Indeed, by
unfolding the definition of realizer, for all numerals n, all state constants s, π1(tn)[s]
s

P (n, π0(tn)[s]). π1(tn) has state ∅ because t is a realizer. Let us define τ(S) = S′ if
and only if π1(tn)[S] = S′, and f(S) = S ∪ τ(S), as in the proof of the Fixed Point
Theorem. Set φ(n) = fk(∅) for the first k ∈ N such that fk+1(∅) = fk(∅). Then φ(n) =
f(φ(n)) = φ(n) ∪ τ(φ(n)), and by φ(n), τ(φ(n)) disjoint we deduce τ(φ(n)) = ∅, that is,
π1(tn)[φ(n)] = ∅. By definition of realizer we have P (n, π0(tn)[φ(n)]) = True in TLearn. The

required map ψ is then defined by ψ(n) = π0(tn)[φ(n)] for all numerals n. We may prove
that the map ψ is definable in TLearn, and even in T , provided we replace the notion of
convergence used in this paper with the intuitionistic notion of convergence introduced in
[5], and we use this latter to provide a bound for the first k ∈ N such that fk+1(S) = fk(S).
We postpone this topic to another paper.

Remark 3.9. From the low level computational point of view and in the language of ǫ-
substitution method, our realizers represent convergent procedures to find out a “solving
substitution”, i.e. a state representing an approximation of Skolem functions (i.e., ǫ-terms)
which makes true the Skolem axioms instances used in a proof of an existential statement.
The advantage of our semantics is the possibility of defining such procedures directly from
high level proofs, by means of Curry-Howard correspondence, hence avoiding the round-
about route which forces to use a quantifier free deduction system. In the case of a provable
formula in the language of Peano Arithmetic (that is, one not containing the symbols XP

or ΦP) we do not need at all to modify the language of its proof and to use the Skolem
axioms χ,ϕ.

Now we explain how to turn each proof D of a formula A ∈ LClass in HA + EM1 into
a realizers D∗ of the same A. By induction on D, we define a “decoration with realizers”

INTERACTIVE LEARNING-BASED REALIZABILITY FOR HEYTING ARITHMETIC WITH EM1 17

DReal of D, in which each formula B of D is replaced by a new statement u ⊢ B, for some
u ∈ TClass of state ∅. If t ⊢ A is the conclusion of DReal, we set D∗ = t. Then we will prove
that if D is closed and without assumptions, then D∗ ∈ TClass and D∗

� A. The decoration
DReal of D with realizers is completely standard: we have new realizers only for EM1 and
for atomic formulas. For notation simplicity, if xi is the label for the set of occurrences of
some assumption Ai of D, we use xi also as a name of one free variable in D∗ of type |Ai|.
If T is any type of TS, we denote with dT a dummy term of type T , defined by dN = 0,
dBool = False, dS = ∅, dA→B = λ A.dB (with A any variable of type A), dA×B = 〈dA, dB〉.

Definition 3.10. (Term Assignment Rules for HA+EM1). Assume D is a proof of A ∈ LClass

in HA+ EM1, with free assumptions A1, . . . , An denoted by proof variables xA1

1 , . . . , xAn

n and
free integer variables αN1, . . . , α

N

m. By induction on D, we define a decorated proof-tree DReal,
in which each formula B is replaced by u ⊢ B for some u ∈ TClass, and the conclusion A

with some t ⊢ A, with FV (t) ⊆ {x
|A1|
1 , . . . , x

|A1|
1 , αN1, . . . , α

N

m}. Eventually we set D∗ = t.

(1)
x|A| ⊢ A

if D consists of a single free assumption A ∈ LClass labeled x
A.

(2)
u ⊢ A t ⊢ B
〈u, t〉 ⊢ A ∧B

u ⊢ A ∧B
π0u ⊢ A

u ⊢ A ∧B
π1u ⊢ B

(3)
u ⊢ A→ B t ⊢ A

ut ⊢ B
u ⊢ B

λx|A|u ⊢ A→ B

(4)
u ⊢ A

〈True, u, dB〉 ⊢ A ∨B
u ⊢ B

〈False, dA, u〉 ⊢ A ∨B

u ⊢ A ∨B w1 ⊢ C w2 ⊢ C

if p0u then (λx|A|w1)(p1u) else (λx|B|w2)(p2u) ⊢ C

where dA and dB are dummy closed terms of TClass of type |A| and |B|.

(5)
u ⊢ ∀αA
ut ⊢ A[t/α]

u ⊢ A
λαNu ⊢ ∀αA

where t is a term of LClass and α
N does not occur free in any free assumption B of the

subproof of D of conclusion A.

(6)
u ⊢ A[t/αN]

〈t, u〉 ⊢ ∃αN.A
u ⊢ ∃αN.A t ⊢ C

(λαNλx|A| t)(π0u)(π1u) ⊢ C

where αN is not free in C nor in any free assumption B different from A in the subproof
of D of conclusion C.

(7)
u ⊢ A(0) v ⊢ ∀α.A(α) → A(S(α))

λαNRuvα ⊢ ∀αA

18 F. ASCHIERI AND S. BERARDI

(8)
u1 ⊢ A1 u2 ⊢ A2 · · · un ⊢ An

u1 ⋒ u2 ⋒ · · · ⋒ un ⊢ A

where n > 0 and A1, A2, . . . , An, A are atomic formulas of LClass, and the rule is a Post
rule for equality or ordering, or a tautological consequence.

(9)
∅ ⊢ A

where A is an atomic axiom of HA + EM1 (an axiom of equality or of ordering or a
tautology or an equation of T)

(10)
EP ⊢ ∀~x. ∃y P (~x, y) ∨ ∀y¬BoolP (~x, y)

where P is a predicate of T and EP is defined as λ~αN〈XP ~α, 〈ΦP ~α, ∅〉, λn
N AddP ~αn〉〉

(11)
AddP~t, t ⊢ P (~t, t) ⇒Bool XP~t

(χ-Axiom)

(12)
∅ ⊢ XP~t⇒Bool P (~t, (ΦP~t))

(ϕ-Axiom)

The term decorating the conclusion of a Post rule is of the form u1 ⋒ · · · ⋒ un. In this
case, we have n different realizers, whose learning capabilities are put together through a
sort of union. By Lemma 2.2.2, if u1 ⋒ · · · ⋒ un[s] = ∅, then u1[s] = . . . = un[s] = ∅, i.e.
all ui “have nothing to learn”. In that case, each ui must guarantee Ai to be true, and
therefore the conclusion of the Post rule is true, because true premises A1, . . . , An spell a
true conclusion A.

We now prove our main theorem, that every theorem of HA+ EM1 is realizable.

Theorem 3.11 (Adequacy Theorem). Suppose that D is a proof of A in the system HA+EM1

with free assumptions xA1

1 , . . . , xAn

n and free variables α1 : N, . . . , αk : N. Let w = D∗. For
all state constants s and for all numerals n1, . . . , nk, if

t1[s]
s A1[n1/α1 · · · nk/αk][s], . . . , tn[s]
s An[n1/α1 · · ·nk/αk][s]

then
w[t1/x

|A1|
1 · · · tn/x

|An|
n n1/α1 · · ·nk/αk][s]
s A[n1/α1 · · · nk/αk][s]

Proof. Notation: for any term v and formula B, we denote

v[t1/x
|A1|
1 · · · tn/x

|An|
n n1/α1 · · · nk/αk][s]

with v and B[n1/α1 · · ·nk/αk][s] with B. We have |B| = |B| for all formulas B. We denote
with = the provable equality in TLearn. We proceed by induction on w. Consider the last
rule in the derivation D:

(1) If it is the rule for variables, then w = x
|Ai|
i = x|Ai| and A = Ai. So w = ti
s Ai = A.

(2) If it is the ∧I rule, then w = 〈u, t〉, A = B ∧ C, u ⊢ B and t ⊢ C. Therefore,
w = 〈u, t〉. By induction hypothesis, π0w = u
s B and π1w = t
s C; so, by
definition, w
s B ∧ C = A.

(3) If it is a ∧E rule, say left, then w = π0u and u ⊢ A ∧ B. So w = π0u
s A, because
u
s A ∧B by induction hypothesis.

INTERACTIVE LEARNING-BASED REALIZABILITY FOR HEYTING ARITHMETIC WITH EM1 19

(4) If it is the → E rule, then w = ut, u ⊢ B → A and t ⊢ B. So w = ut
s A, for
u
s B → A and t
s B by induction hypothesis.

(5) If it is the → I rule, then w = λx|B|u, A = B → C and u ⊢ C. Thus, w = λx|B|u.
Suppose now that t
s B; by induction hypothesis on u, wt = u[t/x|B|]
s C.

(6) If it is a ∨I rule, say left, then w = 〈True, u, dC〉, A = B ∨ C and u ⊢ B. So,
w = 〈True, u, dC〉 and hence p0w = True. We indeed verify that p1w = u
s B with
the help of induction hypothesis.

(7) If it is a ∨E rule, then

w = if p0u then (λx|B|w1)p1u else (λy|C|w2)p2u

and u ⊢ B ∨ C,w1 ⊢ D,w2 ⊢ D,A = D. So,

w = if p0u then (λx|B|w1)(p1u) else (λy|C|w2)(p2u)

Assume p0u = True. Then by inductive hypothesis p1u
s B, and again by induction

hypothesis, w = w1[p1u/x
|B|]
s D. Symmetrically, if p0u = False, then w
s D.

(8) If it is the ∀E rule, then w = ut, A = B[t/α] and u ⊢ ∀αB. So, w = ut. For some
numeral n we have n = t. By inductive hypothesis u
s ∀αB, therefore ut = un
s

B[n/α] = B[t/α] = A.
(9) If it is the ∀I rule, then w = λαNu, A = ∀αB and u ⊢ B. So, w = λαNu. Let n be

a numeral; we have to prove that wn = u[n/α]
s B[n/α], which is true, indeed, by
induction hypothesis.

(10) If it is the ∃E rule, then w = (λαNλx|B|t)(π0u)(π1u), t ⊢ A and u ⊢ ∃αN.B.
Assume n = π0u, for some numeral n. Then

t[n/αN, π1u/x
|B[n/αN]|]
s A[n/α] = A

by inductive hypothesis, whose application being justified by the fact, also by induction,
that u
s ∃α

N.B and hence π1u
s B[n/αN]. We thus obtain

w = t[π0u/α
N π1u/x

|B|]
s A[n/α] = A

(11) If it is the ∃I rule, then w = 〈t, u〉, A = ∃αB, u ⊢ B[t/α]. So, w = 〈t, u〉; and, indeed,
π1w = u
s B[π0w/α] = B[t/α] since by induction hypothesis u
s B[t/α].

(12) If it is the induction rule, then w = λαN Ruvα, A = ∀αB, u ⊢ B(0) and v ⊢ ∀α.B(α) →
B(S(α)). So, w = λαNRuvα. Now let n be a numeral. A plain induction on n shows
that wn = Ruvn
s B[n/α], for u
s B(0) and vi
s B(i) → B(S(i)) for all numerals
i by induction hypothesis.

(13) If it is a Post rule, then w = u1 ⋒ u2 ⋒ · · · ⋒ un and ui ⊢ Ai. So, w = u1 ⋒ u2 ⋒ · · · ⋒ un.
Suppose now that w[s] = ∅; then we have to prove that A = True. It suffices to prove
that A1 = A2 = · · · = An = True. By Lemma 2.2 we have u1 = · · · = un = ∅ and by
induction hypothesis A1 = · · · = An = True, since ui
s Ai, for i = 1, . . . , n.

(14) If it is a χ-axiom rule, then w = AddP t1 . . . tnt and

A = P (t1, . . . , tn, t) ⇒ XP t1 . . . tn

Let ~t = t1, . . . , tn. For some numeral m we have m = t. Suppose by contradiction
that w = ∅ and P (~t, t) = P (~t,m) = True and χP s~t = False. From χP s~t = False

we get 〈P,~t,m′〉 6∈ s for all numerals m′. We deduce w = addP s~tm = {〈P,~t,m〉},
contradiction.

(15) w realizes an EM1 axiom: this is Proposition 3.7.

20 F. ASCHIERI AND S. BERARDI

(16) If it is a ϕ-axiom rule, then w = ∅ and

A = XP t1 . . . tn ⇒ P (t1, . . . , tn, (ΦP t1 . . . tn))

We have w = ∅. Let us denote ~t = t1 . . . tn. Suppose that χP s~t = True. Then for some
numeral m we have 〈P,~t,m〉 ∈ s and P~tm = True and ϕP s~t = m. By definition of ϕP

we have
P (~t, (ϕP s~t)) = True

We conclude that A = True.

Corollary 3.12. If A is a closed formula provable in HA+ EM1, then there exists t ∈ TClass

such that t � A.

4. Conclusion and further works

Many notions of realizability for Classical Logic already exists. A notion similar to our
one in spirit and motivations is Goodman’s notion of Relative realizability [16]. However,
there is an intrinsic difference between our solution and Goodman’s solution. Goodman uses
forcing to obtain a “static” description of learning. His “possible worlds” are learning states,
but there is no explicit operation updating a world to a larger word. The dynamic aspect of
learning (which is represented by a winning strategy in Game Semantics) is therefore lost.
Using our realizability model, a realizer of an atomic formula, instead of being a trivial map,
is a map extending worlds, whose fixed points are the worlds in which the atomic formula
is true. Extending a world represents, in our realizability Semantics, the idea of “learning
by trial-and-error” that we have in game semantics, while fixed points represent the final
state of the game.

A second notion related to our realizability Semantics is Avigad’s idea of “update
procedure” [4]. A state s in our paper corresponds to a finite model of skolem maps in
Avigad. An “update procedure” is a construction “steering” the future evolution of a finite
partial model s of skolem maps, to which our individuals belong, in a wanted direction.
The main difference with our work is that we express this idea formally, by interpreting
an “update procedure” as a realizer (in the sense of Kreisel) for a Skolem axiom. Another
important difference is that our realizability relation is defined for all first-order formulas
with Skolem maps, while the theory of “update procedures” is defined only for quantifier-free
formulas with Skolem maps.

Another difference with the other realizability or Kripke models for Classical Logic is
in the notion of individual and in the equality between individuals. Assume that m is the
output of a skolem map for ∃y.P (n, y), with P decidable, and m = {m[s]|s ∈ S} a family of
values depending on the finite partial model s. Then our realizer for Skolem axioms “steers”
the evolution of s towards some universe in which the axiom ∃y.P (n, y) ⇒ P (n,m[s]) is
true. Modifying the evolution of s may modify the value of m[s]. In our realizability Seman-
tics we introduce a notion of individuality which is “dynamical” (depending on a state s)
and “interactive” (the value of the individual depends on what a realizer does). This second
aspect is new. A realizer may “try” to equate an individual a = {a[s]|s ∈ S} with another
individual b = {b[s]|s ∈ S}. Whenever this is possible, the realizer defines a construction
over the evolution of the universe s producing such an effect, while a random evolution of
s (without an “interaction” with the realizer) does not guarantee that eventually we have
a[s] = b[s]. This is why, in our realizability model, even equality among concrete objects is

INTERACTIVE LEARNING-BASED REALIZABILITY FOR HEYTING ARITHMETIC WITH EM1 21

not a “statical” fact, but it is the effect of applying a realizer (which is a construction over
the evolution of the state or “world” s). In the other models either equality is “static”, or,
even when it is “dynamical”, and it changes with time, it is not “interactive”: the final truth
value of an equality is not the effect of the application of the realizer, but it is eventually
the same in all future evolutions of the current world.

Many aspects of our paper will require some further work. The first author is devel-
oping in his ph.d. thesis a constructive proof of the Fixed Point Property 2.15, using the
constructive notion of convergence introduced in [5]. From a foundational viewpoint, this
result will show that the sub-classical Arithmetic HA+EM1 may be subsumed in Intuitionistic
Arithmetic, in a sense.

Another challenging idea is to iterate the construction we had for EM1, in order to provide
a learning model for the entire classical Arithmetic. In this case the leading concepts would
be the game-theoretical notion of “level of backtracking”, introduced in [7] and [9], a notion
related to the more informal notion of non-monotonic learning.

Another aspect deserving further work is comparing the programs extracted from clas-
sical proofs with our method and with other methods, say, with Friedman A-translation.
Our interpretation, explaining in term of learning how the extracted program work, should
allow us to modify and improve the extracted program in a way impossible for the more
formal (but very elegant) A-translation.

We remarked that our interpretation is implicitly parametric with respect to the op-
eration U merging the realizers of two atomic formulas. As explained in [10], by choos-
ing different variant of this operation we may study different evaluation strategies for the
extracted programs: sequential and parallel, left-to-right and right-to-left, confluent and
non-confluent. We would like to study whether by choosing a particular evaluation strategy
we may extract a more efficient program.

References

[1] Y. Akama, S. Berardi, S. Hayashi, U. Kohlenbach, An Arithmetical Hierarchy of the Law of Excluded

Middle and Related Principles, in: LICS 2004, pp. 192-201.
[2] F. Aschieri, S. Berardi, Interactive Learning-Based Realizability Interpretation for Heyting Arithmetic

with EM1, Proceedings of TLCA 2009, Springer Lecture Notes in Computer Science, vol. 5608, 2009
[3] W. Ackermann, Zur Widerspruchsfreiheit der Zahlentheorie, Mathematische Annalen, 117, pp. 162194

(1940)
[4] Jeremy Avigad: Update Procedures and the 1-Consistency of Arithmetic. Math. Log. Q. 48(1): 3-13

(2002).
[5] S. Berardi, Classical Logic as Limit Completion, MSCS, Vol. 15, n.1, 2005, pp.167-200.
[6] S. Berardi, Some intuitionistic equivalents of classical principles for degree 2 formulas, Annals of Pure

and Applied Logic, Vol. 139, n.1-3, 2006, pp.185-200.
[7] S. Berardi, T. Coquand, S. Hayashi, Games with 1-Bactracking, APAL 2010, to appear.
[8] S. Berardi, U. de’ Liguoro, A calculus of realizers for EM1-Arithmetic, Proceedings of Computer Science

Logic 2008, in LNCS 5213, pag 215-229 (2008)
[9] Stefano Berardi and Ugo de’Liguoro, Toward the interpretation of non-constructive reasoning as non-

monotonic learning, Information and Computation, vol. 207, 1, pag. 63-81, (2009).
[10] Stefano Berardi and Ugo de’Liguoro, Interactive Realizers and Monads, Draft, 2010.

http://www.di.unito.it/ deligu/papers/InteractiveRealizers.pdf
[11] U. Berger, Continuous Semantics for Strong Normalization, Lecture Notes in Computer Science 3526,

23–34, 2005

22 F. ASCHIERI AND S. BERARDI

[12] T. Coquand, A Semantic of Evidence for Classical Arithmetic, Journal of Symbolic Logic 60, pag
325-337 (1995)

[13] D. v. Dalen, Logic and Structure, Springer-Verlag, 3rd Ed., Berlin Heidelberg (1994)
[14] J.-Y. Girard, Proofs and Types, Cambridge University Press (1989)
[15] E. M. Gold, Limiting Recursion, Journal of Symbolic Logic 30, pag. 28-48 (1965) Cambridge University

Press (1989)
[16] Nicolas D. Goodman, Relativized Realizability in Intuitionistic Arithmetic of All Finite Types,Journal

of Symbolic Logic 43, 1, pag. 23-44 (1978).
[17] S. Hayashi, R. Sumitomo, K. Shii, Towards Animation of Proofs -Testing Proofs by Examples - , The-

oretical Computer Science (2002)
[18] S. Hayashi, Can Proofs be Animated by Games?, FI 77(4), pag 331-343 (2007)
[19] S. Hayashi, Mathematics based on incremental learning - Excluded Middle and Inductive Inference,

Theoretical Computer Science 350, pag 125-139 (2006)
[20] S. C. Kleene, On the Interpretation of Intuitionistic Number Theory, Journal of Symbolic Logic 10(4),

pag 109-124 (1945)
[21] G. Kreisel, Interpretation of analysis by means of constructive functionals of - nite types, Heyting, A.

(ed.), Constructivity in Mathematics, pp. 101128. North- Holland, Amsterdam (1959).
[22] K. Popper, The Logic of Scientific Discovery, Routledge Classics, Routledge, London and New York

(2002)

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. The Term Calculus
	3. An Interactive Learning-Based Notion of Realizability
	4. Conclusion and further works
	References

