
Logical Methods in Computer Science

Vol. 6 (3:24) 2010, pp. 1–19

www.lmcs-online.org

Submitted Dec. 1, 2009

Published Sep. 17, 2010

WEAK ω-CATEGORIES FROM INTENSIONAL TYPE THEORY

PETER LEFANU LUMSDAINE

Department of Mathematics, Carnegie Mellon Univerisity, Pittsburgh, U.S.A.
e-mail address: plumsdai@andrew.cmu.edu

Abstract. We show that for any type in Martin-Löf Intensional Type Theory, the terms
of that type and its higher identity types form a weak ω-category in the sense of Leinster.
Precisely, we construct a contractible globular operad PMLId of definable “composition
laws”, and give an action of this operad on the terms of any type and its identity types.

Contents

1. Introduction 2
1.1. Overview 2
1.2. Outline of the construction 2
2. Type-theoretic setting 4
2.1. The type theories MLId, MLId[X] 4
2.2. Translations and syntactic categories 5
3. Globular operads and weak ω-categories 6
3.1. Globular sets and operads 7
3.2. Endomorphism operads and more general actions 9
4. The contractible globular operad P

ML
Id 12

4.1. Construction of P
ML

Id 12

4.2. X is initial in MLId[X] 14
4.3. Contractibility of P

ML
Id 17

4.4. Types as weak ω-categories 18
References 19

1998 ACM Subject Classification: F4.1.
Key words and phrases: category theory, higher categories, n-categories, omega-categories, infinity-

categories, operads, intensional type theory, dependent type theory, Martin-Löf, identity types.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (3:24) 2010

c© P. LeF. Lumsdaine
CC© Creative Commons

http://creativecommons.org/about/licenses

2 P. LEF. LUMSDAINE

1. Introduction

1.1. Overview. Starting with the Hofmann-Streicher groupoid model [HS98], higher cate-
gories have emerged as a natural approach to the semantics of intensional Martin-Löf type
theory. In the globular approach to higher categories, a higher category has objects (“0-
cells”), arrows (“1-cells”) between objects, 2-cells between 1-cells, and so on, with various
composition operations and laws depending on the kind of category in question (strict or
weak, n- or ω-, . . .). The paradigm for semantics of type theory is then (very roughly!)
that types (or contexts) are thought of as objects [[A]], terms x : A ⊢ τ(x) : B as arrows
[[τ]] : [[A]] // [[B]], terms of identity type ρ : IdB(τ, τ

′) as 2-cells [[ρ]] : [[τ]] +3 [[τ ′]], terms
χ : Id(ρ, ρ′) as 3-cells, and so on.

This idea has recently been explored by various authors in various directions: see for
instance [GG08], [Gar09], [AW09]. One such direction is investigating the structures formed
by the syntax of type theory. In particular, it has been suggested that (terms of) any type,
considered together with its higher identity types, should carry the structure of a weak
ω-category or -groupoid. We will show that this is indeed the case, using the definition of
weak ω-category given by Tom Leinster in [Lei04] following the approach of Michael Batanin
[Bat98].

(Note that for this construction, based on a specific type A, the dimensions of cells are
always one lower than described above: 0-cells will be terms τ : A, 1-cells will be terms
ρ : IdA(τ, τ

′), and so on. This comes from the general rule that if X, A are objects of an
n-category C, then C(X,A) forms an (n − 1)-category whose 0-cells are 1-cells of C, and so
on.)

While writing this paper, I found that Benno van den Berg had independently dis-
covered a similar proof (proposed in 2006 and completed in unpublished work [vdB]); a
development of this is forthcoming in joint work of van den Berg and Richard Garner
[GvdB08].

Acknowledgements. I would like to thank Steve Awodey, Pierre-Louis Curien, Richard
Garner, Chris Kapulkin, Benno van den Berg, Michael Warren, and the anonymous referees
for helpful conversations, comments, and support in preparing this paper.

1.2. Outline of the construction. (We assume throughout some general familiarity with
the concepts of higher category theory, but not with the particular definition of weak ω-
category used, which we will recall in detail in later sections, and similarly for the type
theory.)

In the globular approach, an ω-category C has a set Cn of “n-cells” for each n > 0. The
0- and 1-cells correspond to the objects and arrows of an ordinary category: each arrow
f has source and target objects a = s(f), b = t(f). Similarly, the source and target of a
2-cell α are a parallel pair of 1-cells f, g : a //// b, and generally the source and target of
an (n+ 1)-cell are a parallel pair of n-cells.

Cells of each dimension can be composed along a common boundary in any lower
dimension, and in a strict ω-category, the composition satisfies various associativity, unit,
and interchange laws, captured by the generalised associativity law: each labelled pasting
diagram has a unique composite. (See illustrations in Fig. 1).

WEAK ω-CATEGORIES FROM ITT 3

•
a

•
a

•
b
//

f
•
a

•
b

f

##

g

;;��
α • •

f

��

g

@@α

�

β

~�

_*4Θ

•
a

•
b

•
cf // g // •

a
•
b

f

��
f ′ //

f ′′

CC

α��

γ��

•
a

•
b

•
c

f
!!

f ′

==

g
!!

g′
==α

��
β

��

g ·0 f γ ·1 α β ·0 α

• • • •
f // g // h // • •

��
//
CC

α��

γ
��

•
��
//
CC

β��

δ��

h ·0 (g ·0 f) =
(h ·0 g) ·0 f

(δ ·0 γ) ·1 (β ·0 α) =
(γ ·1 α) ·0 (δ ·1 β)

Figure 1: Some cells, composites, and associativities in a strict ω-category

In a weak ω-category, we do not expect strict associativity, so may have multiple composites
for a given pasting diagram, but we do demand that these composites agree up to cells of
the next dimension (“up to homotopy”), and that these associativity cells satisfy certain
coherence laws of their own, again up to cells of higher dimension, and so on.

This is exactly the situation we find in intensional type theory. For instance, even in
constructing a term witnessing the transitivity of identity—that is, a composition law for
the pasting diagram (• // • // •), or explicitly a term c such that

x, y, z : X, p : Id(x, y), q : Id(y, z) ⊢ c(q, p) : Id(x, z)

—one finds that there is no single canonical candidate: most obvious are the two equally
natural terms cl, cr obtained by applying (Id-elim) to p or to q respectively. These are not
definitionally equal, but are propositionally equal, i.e. equal up to a 2-cell: there is a term
e with

x, y, z : X, p : Id(x, y), q : Id(y, z) ⊢ e(q, p) : Id(cl(q, p), cr(q, p)).

In Leinster’s definition [Lei04], a system of composition laws of this sort is wrapped
up in the algebraic structure of a globular operad with contraction, and a weak ω-category
is given by a globular set equipped with an action of such an operad. We generalise this
slightly, to define an internal weak ω-category in any suitable category C.

Accordingly, we would like to find an operad-with-contraction P
ML

Id of all such type-
theoretically definable composition laws, acting on terms of any type and its identity types.
In fact, rather than using the full type theory for this, it is more convenient to consider the
composition laws definable using just the Id- rules, hence also obtaining the construction
for a wider class of theories.

The heart of the paper is Sect. 4, where we formalise this idea. We consider MLId[X],
the fragment of intensional Martin-Löf type theory generated just by the structural and
Id-rules plus a single generic base type X. The operad P

ML
Id of definable composition

therein laws may then be formally constructed as an endomorphism operad in its syntactic

4 P. LEF. LUMSDAINE

category C(MLId[X]); and by some analysis of the fragment MLId[X], we show that P
ML

Id

is contractible.
Since X is generic, P

ML
Id acts on all other types, giving our main theorem:

Theorem. Let T be any type theory extending MLId, and A any type of T . Then the system
of types (A, IdA, IdIdA , . . .) is equipped naturally with a P

ML
Id-action, and hence with the

structure of an internal weak ω-category in C(T).

To prepare for this, we first lay out in Sect. 2 our presentation of the type theory MLId,
and in Sect. 3 the relevant background on globular operads and their algebras.

2. Type-theoretic setting

2.1. The type theories MLId, MLId[X]. Our main theories of interest are the various
versions of Intensional Martin-Löf Type Theory, usually given with identity types (Id-types),
dependent sums and products (

∑
- and

∏
-types), units (1-types), and possibly more base

types (natural numbers, Booleans. . .). To cover all these in the main theorem, and for a
self-contained presentation, we will work throughout this paper in the fragment MLId with
only Id-types, and construct our operad from this.

Some care is thus required in our choice of presentation; presentations which are equiv-
alent in the presence of

∑
- or

∏
-types may not be so in their absence. The presentation

we use is taken, up to notation, from that of Jacobs [Jac99]; we list in Table 1 the rules
assumed, referring to [Jac99] for their statements, except for the Id-rules, given in full in
Table 2. A few more of the rules will later be given explicitly, as their precise statements
are required.

Basic judgement forms
Γ ⊢ A type Γ ⊢ A = B type

Γ ⊢ a : A Γ ⊢ a = b : A

Structural groups
Variables (Vble)

Substitution (Subst)
Weakening (Wkg)
Exchange (Exch)
Equality (=)

Id-rules
Id-form
Id-intro
Id-elim

Id-comp (“β” in [Jac99])
compatibility with
substitution and =

Table 1: The type theory MLId

The only features perhaps needing comment are the explicit inclusion of exchange rules,
and of the extra dependent context ∆ in the Id-rules; these are each natural rules, but often
omitted since they are derivable in the presence of Π-types (as discussed on e.g. p.587 of
[Jac99]).

Note that from Exch and this Id-elim rule, we can derive a still slightly more general
elimination rule Id-elim+, as Id-elim but with context

Γ, x : A, ∆, y : A, ∆′, p : IdA(x, y), ∆′′.

WEAK ω-CATEGORIES FROM ITT 5

Γ ⊢ A type

Γ, x, y : A ⊢ IdA(x, y) type
Id-form

Γ ⊢ A type

Γ, x : A ⊢ r(x) : IdA(x, x)
Id-intro

Γ, x, y : A, p : IdA(x, y), ∆(x, y, p) ⊢ C(x, y, p) type
Γ, z : A, ∆(z, z, r(z)) ⊢ d(z) : C(z, z, r(z))

Γ, x, y : A, p : IdA(x, y), ∆(x, y, p) ⊢ Jz.d(x, y, p) : C(x, y, p)
Id-elim

(premises as for Id-elim)

Γ, x : A, ∆(x, x, r(x)) ⊢ Jz.d(x, x, r(x)) = d(x) : C(x, x, r(x))
Id-comp

Table 2: Rules for Id-types

To simplify notation when referring to iterated identity types, we introduce the notation
(following Warren [War08]) An for the nth iterated identity type of a type A; that is, if
Γ ⊢ A type, then Γ ⊢ A0 := A type, and inductively

Γ, x0, y0 : A0, x1, y1 : A1(x0, y0), . . . , xn, yn : An(x0, y0; . . . ;xn−1, yn−1)

⊢ An+1(x0, y0; . . . ;xn, yn) := IdAn(x0,...)(xn, yn) type.

We will often omit the superscripts on these when unambiguous. As usual, we will also
be inconsistent in suppression of free variables, writing usually e.g. ~y : Γ ⊢ A(~y) type for
clarity in simple cases, but sometimes Γ ⊢ A type to avoid unmanageable proliferations of
variables.

Finally, for a finite partial order I = {i1 < . . . < in}, we will write
∧

i∈I xi : Ai (or just∧
i∈I Ai) to denote the context xi1 : Ai1 , . . . , xin : Ain .

2.2. Translations and syntactic categories. For reference on this section (including
proofs not given here), see Cartmell [Car86] and Jacobs [Jac99].

From here on, we will consider type theories extending MLId; formally, by a type theory
we will mean a generalised algebraic theory in the sense of Cartmell [Car86], together with
an interpretation of the Id-rules in T .

Recall that a translation F from such a type theory T into a type theory S consists
of suitable mappings of types, terms, and derivable judgements, taking each judgement
Γ ⊢ A type in T to a judgement F (Γ) ⊢ F (A) type in S, and so on, preserving Id-types
and their term-constructors, considered up to definitional equality. (In other words, it is a
morphism of generalised algebraic theories, preserving the interpretation of the Id-rules.)

Given T , we write T [X] for the result of adjoining to T a fresh base type X

⊢ X type
X-form

with no term formation rules. For any S, a translation F : T [X] // S then consists of a
translation F ′ : T // S together with a closed type of S. Stating this universal property
precisely, in the particular case that we will need:

6 P. LEF. LUMSDAINE

Proposition 2.1. If S is any type theory extending MLId, and A any closed type of S,
then there is a unique translation FS,A : MLId[X] //S preserving Id-types and their term-
constructors and with FS,A(X) = A.

For any type theory T , there is a syntactic category C(T), having as objects the closed
contexts Γ of T , and as arrows f : Γ //∆ suitable strings of terms in context Γ (context
maps), all up to definitional equality. Moreover, a translation F : T //S induces a functor
C(F) : C(T) // C(S); in other words, we have a functor C(−) : Th //Cat.

Context maps are sometimes known as substitutions, since substitution along them is
an important derived rule: if ~y : Γ ⊢ A(~y) type and f : ~x : Γ //∆ is a context map, then
~x : ∆ ⊢ A(f(~x) type. When suppressing free variables, we will write this as ∆ ⊢ f∗(A) type.

We will need a simple proposition on limits in syntactic categories:

Proposition 2.2. Suppose Γ =
∧

i∈I xi : Ai is a context in T , and F ⊆ P(I) a set of
subsets of I, closed under binary intersection and with

⋃
F = I, such that for each J ∈ F ,

ΓJ =
∧

i∈J xi : Ai is also a well-formed context.
Then the ΓJ’s and dependent projections between them give a diagram

Γ− : (F ,⊆)op // C(T),

and the dependent projections Γ // ΓJ express Γ as its limit:

Γ = lim
←−J∈F ΓJ .

Moreover, for a translation F : T // T ′, the functor C(F) preserves such limits.

Here dependent projections are the obvious context morphisms from a context to any
well-formed subcontext, constructed from the Vble, Wkg and Exch rules.

A familiar special case asserts that if Γ ⊢ A type and Γ ⊢ B type, then the following
square of projections is a pullback:

Γ, x : A, y : B //

��

Γ, y : B

��
Γ, x : A // Γ

The proof of the general proposition is essentially the same.
To relativise the constructions of this section to dependent types and contexts over

a (closed) context Γ =
∧

0≤i<n xi : Ai of T , we can consider the slice type theory T /Γ,
given by adjoining to T a “generic term of type Γ”, i.e. n new constant symbols ci and
axioms ⊢ ci : Ai(c0, . . . , ci−1). Closed types (resp. terms, contexts) of T /Γ then correspond
precisely to types (terms, contexts) of T in context Γ.

3. Globular operads and weak ω-categories

As described in the introduction, we want to describe “the globular operad of composition
laws”. Accordingly, we recall briefly in this section what a globular operad is, and how it
formalises the intuition of a set of composition laws for pasting diagrams with structure
specifying how these laws themselves compose. For a slightly (resp. much) fuller treatment,
and background on strict higher categories, see Leinster [Lei02] (resp. [Lei04]).

WEAK ω-CATEGORIES FROM ITT 7

3.1. Globular sets and operads. A globular set A• is a presheaf on the category G

generated by arrows

0
s0 //

t0
// 1

s1 //

t1
// 2 // // . . .

subject to the equations ss = ts, st = tt (omitting subscripts on the arrows, as usual).

We thus have the category Ĝ := [Gop,Sets] of globular sets and natural transformations
between them. More generally, a globular object in a category C is a functor A• : G

op //C.
Explicitly, a globular set A• has a set An of “n-cells” for each n ∈ N, and each (n+1)-

cell x has parallel source and target n-cells s(x), t(x), as illustrated in the first line of
Fig. 1. (Cells x, y of dimension > 0 are parallel if s(x) = s(y) and t(x) = t(y); all 0-cells
are considered parallel.) For parallel x, y ∈ An, we write A(x, y) := {z ∈ An+1 | s(z) =
x, t(z) = y}, the set of (n+ 1)-cells from x to y.

Our notation will vary: we will typically call globular objects A•, B•, . . . when empha-
sising the point of view of the category C, or A,B, . . . when working more in [Gop,C].

Example 3.1. For any topological space X, there is a globular set Πω(X) in which 0-cells
are points of X, 1-cells are paths between points, 2-cells are homotopies between paths
keeping endpoints fixed, and in general, n-cells are suitable maps H : [0, 1]n //X, viewed
as homotopies between (n− 1)-cells.

Example 3.2. For any type A in a type theory T , the contexts

x0, y0 : A, x1, y1 : A1(x0, y0) . . . , z : An(x0, y0 . . . , xn−1, yn−1),

along with their dependent projections, form a globular object A• in C(T).

Any strict ω-category (as sketched in the introduction) has an evident underlying glob-

ular set, and in fact there is an adjunction (moreover monadic) F : Ĝ //oo str-ω-Cat : U ,

giving rise to the “free strict ω-category” monad (T, µ, η) on Ĝ. Cells of TA• are free
(strictly associative) pastings-together of cells from A•, including degenerate pastings from
the identity cells of F (A•) (as shown in figure 2).

•
a a ∈ TA0 •

a 1a ∈ TA1

•
a

•
b

•
ch // g //

g ·0 h ∈ TA1

•
a

•
b

•
c

•
d

h′′

��
h′ //

h

DD

g′

##

g

;;
f //

β′

��

β
��

α
��

1f ·0 α ·0 (β ·1 β
′) ∈ TA2

(for a, b, . . . ∈ A0, f, g, . . . ∈ A1, α, β, . . . ∈ A2)

Figure 2: Some labelled pasting diagrams, elements of a free strict ω-category TA•.

In particular, T1 (where 1 denotes the terminal globular set, with just one cell of each
dimension) consists informally of pastings of this sort, but without labels on the cells. This is
the crucial globular set of pasting diagrams. A peculiarity of T1 is that the source and target
of any pasting diagram are equal; for this ambivalent operation we write ∂π := s(π) = t(π).

Every pasting diagram π ∈ T1n has an associated globular set π̂—intuitively, the set
of cells appearing in π, as shown in our pictures of pasting diagrams throughout. We then

8 P. LEF. LUMSDAINE

have maps of globular sets ŝk, t̂k : ∂̂kπ // π̂, embedding ∂̂kπ as the (n − k)-dimensional
source or target of π̂.

Taking categories of elements then gives categories
∫
π :=

∫
G
π̂, with objects the cells

of π̂ and arrows into each cell c from its sources and targets sk(c), tk(c), and with a functor
dim:

∫
π // G giving the dimension of each cell;

∫
π may be seen as the shape of the

canonical diagram of basic cells whose colimit in Ĝ gives π̂.
For more discussion of these and other various ways of looking at a pasting diagram,

see Street [Str00].
A globular operad is a globular set P with maps a : P // T1 (“arity”), e : 1 // P

(“units”), m : TP ×T1 P // P (“composition”), such that

1 P
e //1

T1

η

��/
//

//
//

//
/ P

T1

a

����
��
��
��
��

TP ×T1 P P
m //TP ×T1 P

TP
����

��
TP ×T1 P

P
��?

??
?

TP

T1

T !
��?

??
? P

T1

a
����

��
TP

T 21

Ta
��
T 21

T1µ ..

P

T1

a

��

commute (i.e. e and m are maps over T1), satisfying the axioms

m · (η · e× 1P) = 1P = m · (η × e) : P // P,

m · (µ×m) = m · (Tm× 1P) : T
2P ×T 21 TP ×T1 P // P.

Considering the fibers of a, we may view P as a family of sets P (π) of “π-ary operations”
for each π ∈ T1: an element p of P (π) is seen as a formal operation symbol, taking π-
shaped labelled pasting diagrams as input and returning n-cells as output. The map e then
gives us an n-cell “identity” operation for each n, while m allows us to compose operations
appropriately.

For readers not familiar with this definition, it may be helpful to first contemplate the
simpler case of plain operads, defined by diagrams as above but with E = Sets and T
the “free monoid” monad. These thus have arities valued in T1 ∼= N, and present certain
finitary, single-sorted equational theories [Lei04, 2.2]. However, “operad” from here on will
always mean “globular operad”; we will not deal further with any other kind.

A map f : P //Q of globular operads is a map of underlying globular sets commuting
with a, e and m.

An action of a globular operad P on a globular set A is a composition map c : TA×T1

P //A, satisfying
c · (η × e) = 1A : A //A,

c · (µ×m) = c · (Tc× 1P) : T
2A×T 21 TP ×T1 P //A.

Informally, this implements the “formal operations” in P as actual composition opera-
tions on A. An element of TA×T1P over some π ∈ T1n is a π-shaped diagram ~x with labels
from A, together with a π-ary operation p of P ; c tells us how to apply p to ~x, yielding a
single n-cell c(~x, p) of A.

A P -algebra is a globular set A together with an action of P on A. A map f : A //B
of P -algebras is a map of globular sets commuting with the P -actions. We denote the
resulting category by P -Alg.

WEAK ω-CATEGORIES FROM ITT 9

Example 3.3. The globular set T1 is itself trivially an operad (indeed, the terminal one),
with a = 1T1, i.e. T1(π) = 1 for every π; a T1-algebra is then exactly a strict ω-category.
This fits with our description above of a strict ω-category having a unique composition for
each pasting diagram.

Weak ω-categories will also be described as algebras for a certain globular operad; to
find a suitable operad, we need to specify a little extra structure.

A contraction on a map d : A //B of globular sets is a choice of liftings for fillers of
parallel pairs: that is, for each parallel pair x, x′ ∈ A (with the convention that all 0-cells
are parallel), a map χx,x′ : B(dx, dx′) //A(x, x′), such that d · χ = 1B . A globular operad
with contraction is a globular operad P with a contraction on the map a : P // T1; this
ensures both that enough composition operations exist in P , and that the operations will be
associative up to cells of the next dimension, themselves satisfying appropriate coherence
laws up to yet higher cells, and so on.

It is shown in [Lei04] that the category of globular operads with contraction has an
initial object L; this gives the key definition:

Definition 3.4. A weak ω-category is an L-algebra, where L is the initial operad-with-
contraction.

A map O //P of operads induces a “restriction of scalars” functor P -Alg //O-Alg;
so if we have an algebra A for any operad P with contraction, restriction along the unique
operad-with-contraction map L // P endows A with the structure of a weak ω-category.

Example 3.5. The terminal operad T1 has a trivial contraction, giving a canonical functor
str-ω-Cat //wk-ω-Cat.

Example 3.6. For any space X, the set Πω(X) of Example 3.1 may be naturally made
into a weak ω-category, the fundamental weak ω-groupoid of X. [Lei04, 9.2.7]

3.2. Endomorphism operads and more general actions.

Definition 3.7. For a globular object A• in a category C, and a pasting diagram π ∈ T1n,
we define

Aπ := lim
←−c∈

∫
π
Adim c,

“the object of diagrams of shape π in A•”, whenever this limit exists in C. The maps

ŝk, t̂k : ∂̂kpi // π̂ induce evident projections sk, tk : Aπ
// A∂kπ.

An illustration may be useful here: the definition of Aπ says, for instance, that if

π = (•
%%
99

�� ��
�� •

%%
99

�� ��
�� •), then

Aπ := lim
←−

A1

A0

s

}}zz
zz

zz
A1

A0

t

!!D
DD

DD
D

A1

A0

s

}}zz
zz

zz
A1

A0

t

!!D
DD

DD
D

A2

A1

s

OO

A2

A1

s

OO

A2

A1

t
��

A2

A1

t
��

A1

A0
s

aaDDDDDD

A1

A0
t

==zzzzzz
A1

A0
s

aaDDDDDD

A1

A0
t

==zzzzzz

∼= A2 ×A0 A2,

10 P. LEF. LUMSDAINE

giving the object of 0-composable pairs of 2-cells in A. Similarly, if π is the basic n-cell,
then Aπ = An.

In the case C = Sets, the sets Aπ are precisely the fibers of the map T ! : TA // T1,
by the description of T as a familially representable functor ([Lei04, 8.1]).

Proposition 3.8. If A• is a globular object in a category C, and the objects Aπ exist,
then there is an operad EndC(A•), the endomorphism globular operad of A•, in which (for
π ∈ T1n) an element of EndC(A•)(π) is a sequence of maps (σ0, τ0;σ1, τ1; . . . , τn−1; ρ),

ρ : Aπ
//An, σi, τi : A∂n−iπ

// Ai,

commuting appropriately with the source and target maps, in the sense that

s · σi = s · τi = σi−1 · s, s · ρ = σn−1 · s,

t · σi = t · τi = τi−1 · t, t · ρ = τn−1 · t.

Moreover, if F : C // D is a functor preserving the limits Aπ, we can also construct
End(FA), and there is a natural map of operads End(A) // End(FA).

In other words, an element of End(A•)(π) is a map ρ composing diagrams of shape π
in A• to basic n-cells of A, extending maps (σi, τi) composing their sources and targets in
each lower dimension.

Such a diagram of maps may be more abstractly seen as a natural transformation
~ρ : A≤π

//A≤n between two evident functors A≤π, A≤n : (G/n)op // C.

Proof. This construction of the endomorphism operad is a straightforward generalisation of
the topological case given in [Lei04, 9.2.7]. The proof requires more technical background
on globular operads from [Lei04] than can be recalled here; readers unfamiliar with this are
encouraged to “black-box” this proof and skip to the last few paragraphs of the section.

Recall from [Lei04, 6.4] that if S is a cartesian monad on a locally cartesian closed
category E , then any object A of E has an endomorphism S-operad EndS(A) given by the
exponential in E/S1 of the objects SA // S1, S1×A // S1; in the internal language of
E this may be written as the dependent sum of exponentials:

EndS(A) =
∑

π:S1[SAπ, A].

Now, in the case of (Ĝ, T), this gives for any globular set A• an endomorphism globular
operad EndT (A•). For π ∈ T1n, an operad element p ∈ EndT (A•)(π) then corresponds to
a commutative triangle

y(n)

EndT (A•)
p 66lllllll

y(n)

T1
π ((RRRRRRRRR

EndT (A•)

T1
��

and hence, by the definition of EndT (A•) as a dependent sum of exponentials, to a map
from the pullback

y(n)×π T (A•)

y(n)
����

�
y(n)×π T (A•)

T (A•)
��?

??

y(n)

T1

π
��?

??
?

T (A•)

T1
�����

�

WEAK ω-CATEGORIES FROM ITT 11

into A•. But this in turn corresponds to a map y(n) ×π T (A•) // y(n) × A• in Ĝ/y(n)

and hence, via the equivalence Ĝ/y(n) ≃ [(G/n)op,Sets], to a map ~ρ : A≤π
// A≤n as

described above.
Now, given any category C, consider the category E = [Cop, Ĝ] ∼= [(C × G)op,Sets] ∼=

[Gop, Ĉ]. Composition with T induces a cartesian monad T ∗ on E . Since E is a presheaf
category, it is locally cartesian closed; so any object Y = Y (−)• of E has an endomorphism
T ∗-operad EndT ∗(Y (−)).

Moreover, there is an adjunction

∆ : E //oo Ĝ : Γ,

where ∆ is the “C-constant functor” functor given by ∆(A•)(C)n = An, and Γ is “G-global
sections”: Γ(F)n = E(∆(y(n)), F).

Using the familial representability of T and the fact that Γ preserves limits, we have

a cartesian lax map of cartesian monads (Γ, κ) : (E , T ∗) // (Ĝ, T), and hence an induced
functor Γ∗ : T

∗-OperadsE
// T -Operads

Ĝ
.

Definition 3.9. Now, any globular object A• : G
op // C gives an object y(A•) of E ; we

define
EndC(A•) := Γ∗EndT ∗(y(A•)).

As in the case E = Ĝ, we wish to show that this agrees with the explicit description of
EndC(A•) given in Proposition 3.8. Again, an element p ∈ EndC(A•)(π) is by definition a

triangle in Ĝ:

y(n)

Γ∗EndT ∗(y(A•))
p 66lllllll

y(n)

Γ∗T
∗1

π ((RRRRRRRR

Γ∗EndT ∗(y(A•))

Γ∗T
∗1

��

which corresponds, by the adjunction ∆ ⊣ Γ and the definition of EndT ∗(C), to a map
∆(y(n)) ×∆(π) T

∗(y(A•)) //∆(y(n)) × y(A•)
Since all limits and colimits are pointwise, this corresponds to a family of maps

y(n) ×π T (C(C,A•)) // y(n)× T ∗(C(C,A•))

natural in C, so (as before) to a natural family of maps

~ρC : C(C,A•)≤π
// C(C,A•)≤n,

i.e. to a map
~ρ(−) : y(A•)≤π

// y(A•)≤n.

But since y is full and faithful and preserves all existing limits, if the objects Aπ exist
in C then this corresponds in turn to a map ~ρ : A≤π

//A≤n, as desired.

12 P. LEF. LUMSDAINE

We can now extend the definitions of the previous subsection. An action of an operad
P on A• is a map of operads P // End(A•). (If C = Sets then this agrees with our
earlier notions of an action on a globular set, by [Lei04, 6.4]). A P -algebra in a category C

is a globular object in C together with a P -action; an internal weak ω-category in C is an
L-algebra in C.

Moreover, an action of P on A• induces an action of P on the globular set C(Y,A•)
for any Y ∈ C, since C(Y,−) : C // Sets preserves all limits, and hence we have maps
P // EndC(A•) // EndSets(C(Y,A•)).

4. The contractible globular operad P
ML

Id

In this section, we construct the promised operad P
ML

Id of all definable composition laws;
we then show that it is contractible, and describe (in the main theorem) how it acts to give
the desired weak-ω-category structures on types.

4.1. Construction of P
ML

Id. We saw above that for a type A in a type theory T extending

MLId, the contexts

x0, y0 : A, x1, y1 : A1(x0, y0) . . . , z : An(x0, y0 . . . , xn−1, yn−1),

and the dependent projections between them form a globular context A• : G
op //C(T). In

particular, the generic typeX gives a globular context X• in C(MLId[X]). Using the machin-
ery of the previous section, it is now easy to describe P

ML
Id : it will be End

C(ML
Id[X])(X•).

However, since C(T) does not have all finite limits in general, to use the description of
EndC(T)(A•) provided by Proposition 3.8 we must construct contexts Γπ exhibiting the
objects Aπ.

Accordingly, suppose we are given π ∈ T1n, with associated globular set π̂. There are
various ways of putting a total order on the i-cells of π̂ for each i ≤ n; pick any such.

(There is in fact a canonical choice of such orderings, using the representation of pasting
diagrams as Batanin trees ([Bat98], [Lei04, 8.1]). This choice has some good compatibility
between the orderings on different pasting diagrams, which will later spare us some use of
Exch rules, so for simplicity we will assume it is the ordering chosen; however, since this is
purely cosmetic, we will not go into the details here.)

Then take Γπ to be the context∧

c∈π̂0

xc :A,
∧

c∈π̂1

xc :A1(xs(c), xt(c)), . . .
∧

c∈π̂n

xc :An(xsn(c), xtn(c); . . . ;xs(c), xt(c)).

For instance, Γ(• // • // •) is the context

x, y, z : A, p : IdA(x, y), q : IdA(y, z)

which we met back in the introduction.
Note that we also have projections src, tgt : Γπ

// Γ∂π.

Lemma 4.1. The context ~x : Γπ, together with the obvious dependent projections, is the
object (A•)π of Definition 3.7; that is, Γπ = lim

←−c∈
∫
π
Adim c. Moreover, if F : T // S is a

translation of type theories, then C(F) : C(T) // C(S) preserves this limit.

Proof. Immediate by Proposition 2.2

WEAK ω-CATEGORIES FROM ITT 13

Thus, by Proposition 3.8, we have:

Theorem 4.2. The globular object A• in C(T) has an endomorphism operad EndC(T)(A•),
as described in Proposition 3.8, and if F : T // S is a translation of type theories, there
is an induced map of operads EndC(T)(A•) // EndC(S)(FA•).

Let us unfold what this operad P := EndC(T)(A•) actually looks like. For π ∈ T1n,
an element of P (π) consists of a map ρ : Γπ

// An in C(T), and for 0 ≤ k < n, maps
σk : Γ∂n−k(π)

//Ak and τk : Γ∂n−k(π)
//An, commuting with the dependent projections.

So, concretely, an element of P (π) (a composition law for π) is a sequence of terms
~ρ = ((σi, τi)0≤i<n; ρ), such that

~x : Γ∂n(π) ⊢ σ0(~x) : A

~x : Γ∂n(π) ⊢ τ0(~x) : A

...

~x : Γ∂n−k(π) ⊢ σk(~x) : Id(σk−1(src ~x), τk−1(tgt ~x)),

~x : Γ∂n−k(π) ⊢ τk(~x) : Id(σk−1(src ~x)), τk−1(tgt ~x)),

...

~x : Γπ ⊢ ρ(~x) : Id(σn−1(src ~x), τn−1(tgt ~x)).

The source of this is then the composition law (σ0, τ0, . . . , σn−1, τn−1;σn) ∈ P (∂(π)),
and its target is (σ0, τ0, . . . , σn−1, τn−1; τn) ∈ P (∂(π)).

We make no attempt to give a formal syntactic description of composition within this
operad, but in specific cases it is “exactly what you would expect”, and is essentially just
substitution.

Definition 4.3. As as special case of the above construction, we take

P
ML

Id := End
C(ML

Id[X])(X•),

the operad of all definable composition laws on the generic type.

For general T , A, we cannot expect EndC(T)(A•) to be contractible: contractibility
implies (at least) that any two elements of EndC(T)(A•)(•) are connected by an element of
EndC(T)(A•)(• // •), or in other words that any two terms x : A ⊢ τ(x), τ ′(x) : A are
propositionally equal, which clearly may fail. However, in the specific case of P

ML
Id , we do

wish to show contractibility, since this is the operad which naturally acts on any type.
What precisely does contractibility mean, here? For every pasting diagram π and

every parallel pair of composition laws ~σ, ~τ ∈ P
ML

Id(∂(π)), we need to find some filler
~ρ ∈ P

ML
Id(π), with s(~ρ) = ~σ, t(~ρ) = ~τ .

Given π, such a parallel pair amounts to terms (σi, τi)0≤i<n as in the definition of a
composition law for π, and a filler is a term ρ completing the definition; that is, we seek to
derive a judgment

~x : Γπ ⊢ ρ(~x) : Id(σn−1(src ~x), τn−1(tgt ~x)).

Playing with small examples (the reader is strongly encouraged to try this—to derive,
for instance, the composition and associativity terms mentioned in the introduction) sug-
gests that we should be able to do this by applying Id-elim (possibly repeatedly, working
bottom-up as usual) to the variables of identity types in Γπ. Id-elim says that to obtain ρ,

14 P. LEF. LUMSDAINE

it’s enough to obtain it in the case where one of the variables is of the form r(−), and its
source and target variables are equal; and by repeated application, it’s enough to obtain ρ
in the case where multiple higher cells have had identities plugged in in this way.

Now, since the terms σi, τi have themselves been built up from just the Id-rules, as
we plug r(−) terms into them and identify the lower variables, they should sooner or later
collapse by Id-comp to be of the form ri(x) themselves. In particular, after applying Id-
elim as far as possible, plugging in reflexivity terms for the higher variables and contracting
all variables of type X to a single x : X, the σi, τi should all reduce to reflexivity terms,
and in particular σn−1 = τn−1 = rn−1(x), so we can take the desired filler to be

x : X ⊢ rn(x) : Id(rn−1(x), rn−1(x)).

Below, we formalise this argument. The crucial lemma is that the context x : X is an initial
object in C(MLId[X]): that is, since any context Γ in MLId[X] is built up just from X and
its higher identity types, there is always a unique way to substitute x and its reflexivity
terms ri(x) for all variables of Γ, and when we subsitute these in to any context morphism
σ : Γ // Γ′, the result must again reduce to terms of this form.

4.2. X is initial in MLId[X].

Lemma 4.4. The context x : X is an initial object in C(MLId[X]); that is, for any closed
context Γ there is a unique context map rΓ : (x : X) // Γ.

Remark 4.5. This lemma does not generally hold in extensions of MLId[X]; in MLI [X],
for instance, it is easily seen to be false, since for instance there is no term x : X ⊢ τ :
Πy:XId(x, y).

Proof. We work by structural induction (as, essentially, we must, since this is a property of
the theory MLId[X] which can fail in extensions).

So, given any derivation δ of a judgement J in MLId[X], we recursively derive various
terms and/or judgments, depending on the form of J , assuming that we have already done
so for all sub-derivations of δ. The form of the terms and judgements we derive will depend
on the form of J as follows:

J term judgement

~y : Γ ⊢ A(~y) type rΓ⊢A(x) x : X ⊢ rΓ⊢A(x) : A(rΓ(x))

~y : Γ ⊢ A(~y) = A′(~y) type − x : X ⊢ rΓ⊢A(x) = rΓ⊢A′
(x) : A(rΓ(x)) (∗)

~y : Γ ⊢ τ(~y) : A(~y) − x : X ⊢ τ(rΓ(x)) = rΓ⊢A(x) : A(rΓ(x)) (∗∗)

~y : Γ ⊢ τ(~y) = τ ′(~y) : A(~y) − −

Here, for a context Γ = y0 : A0, . . . , yn : An(~y<n), we write rΓ for the context map

(x : X) // Γ consisting of the terms r⊢A0(x) : A0, r
A0 ⊢A1(x) : A1(r

⊢A0(x)), . . .
Moreover, applying (*) and (**) above to this definition shows that the maps rΓ respect

definitional equality in Γ, and are preserved by context maps in that for any f : ∆ // Γ,
we have f(r∆(x)) = rΓ(x).

Finally, once the induction is complete, applying this last fact together with the defi-
nition r(x:X)(x) := x will show that for any other context map f : (x : X) // Γ, we have

f(x) = f(r(x:X)) = rΓ(x), and so rΓ is the unique such map, as originally desired.

WEAK ω-CATEGORIES FROM ITT 15

(This last step is an instance of the general categorical fact that given an object X in
a category C and natural maps !Y : X // Y to every other object, such that !X = 1X , it
follows that X is initial.)

As usual, the induction proceeds by cases on the last rule used in the derivation of
J . Most cases are routine; we include here X-form and Wkg-type as examples of these,
together with the less straightforward cases of the Id-rules and Subst-type.

Our definitions for the Subst-type and Wkg-type cases ensure, as usual, that the terms
constructed do not depend on the derivation of the judgement used. As warned earlier, we
will vary for readability between showing dependent variables and leaving them implicit,
and hence also between the notations A(f(~x)) and f∗A for substitution.

(X-form): in the easiest case, our derivation consists of just the axiom X-form

⊢ X type
X-form

and so defining r⊢X(X) := x, we have x : X ⊢ x : X type as needed. 3

(Wkg-type): Given a derivation ending

Γ ⊢ A type Γ ⊢ B type

Γ, y : A ⊢ B type
Wkg-type

we inductively already have x : X ⊢ rΓ⊢B : (rΓ)∗B, and by the Subst rules, x : X ⊢
(rΓ)∗B = (rΓ,y:A)∗B type, so by equality rules we conclude x : X ⊢ rΓ⊢B : (rΓ,y:A)∗B and
hence, by Wkg-term, can set

rΓ,y:A⊢B := rΓ⊢B. 3

(Id-form): Given a derivation ending

Γ ⊢ A type

Γ, y, y′ : A ⊢ IdA(y, y
′) type

Id-form

we need to find a term

x : X ⊢ rΓ,y,y
′:A⊢ IdA(y,y′) : Id(rΓ)∗A(r

Γ⊢A, rΓ,y:A⊢A)

But Γ, y : A ⊢ A type may be derived using weakening, and so by our construction for
Wkg-type above, rΓ,y:A⊢A = rΓ⊢A, so we have

x : X ⊢ r(rΓ⊢A) : Id(rΓ)∗A(r
Γ⊢A, rΓ,y:A⊢A)

and so can set
rΓ,y,y

′:A⊢ IdA(y,y′) := r(rΓ⊢A). 3

(Id-intro): Now we are given a derivation with last step

Γ ⊢ A type

Γ, y : A ⊢ r(y) : IdA(y, y)
Id-intro

and wish to show
x : X ⊢ r(rΓ⊢A) = rΓ,y,y:A⊢ IdA(y,y) : (rΓ)∗A.

But by our construction of rΓ,y,y
′:A⊢ IdA(y,y′) above (our Id-form case), and of rΓ,y:A⊢ IdA(y,y)

from it (our Contr-type case), this is just the definition of rΓ,y,y:A⊢ IdA(y,y). 3

16 P. LEF. LUMSDAINE

(Id-elim): Here, we are given a derivation ending

Γ, y, y′ : A, p : IdA(y, y
′), ∆(y, y′, p) ⊢ C(y, y′, p) type

Γ, z : A, ∆(z, z, r(z)) ⊢ d(z) : C(z, z, r(z))

Γ, y, y′ : A, p : IdA(y, y
′), ∆(y, y′, p) ⊢ Jz.d(y, y

′, p) : C(y, y′, p)
Id-elim

;

for readability, we assume ∆ is empty. We want to derive the judgement

x : X ⊢ (rΓ,y,y
′:A,p:Id(y,y′))∗(Jz.d(y, y

′, p)) = rΓ,y,y
′:A,p:Id(y,y′)⊢C(y,y′,p)

: (rΓ,y,y
′:A,p:Id(y,y′))∗C.

Unwrapping the former term, we have (all in context (x : X)):

(rΓ,y,y
′:A,p:Id(y,y′))∗(Jz.d(y, y

′, p))

= Jz.(rΓ)∗d(r
Γ⊢A, rΓ,y:A⊢A, rΓ,y,y

′:A⊢ Id(y,y′))

= Jz.(rΓ)∗d(r
Γ⊢A, rΓ⊢A, r(rΓ⊢A))

= (rΓ)∗d(rΓ⊢A) (by Id-comp)

= (rΓ,z:A)∗d

= rΓ,z:A⊢C(z,z,r(z)) (by induction)

= rΓ,y,y
′:A,p:Id(y,y′)⊢C(y,y′,p)

(by the definition of rΓ,z:A⊢C(z,z,r(z))

using our Wkg-type and Id-elim cases.)

If ∆ in the application of Id-elim is non-empty, we have a few more lines, relying inductively
on our Subst-rules cases. 3

(Subst-type): For this case we will need one more piece of notation, generalising the context
maps rΓ: for a dependent context ∆ =

∧
i Ai over Γ, we write rΓ⊢∆ : (x : X) // (rΓ)∗∆

for the map built up from terms rΓ,∆<i ⊢Ai in the obvious way.
So, we are given a derivation ending with the rule

Γ, y : A, ∆ ⊢ B type Γ ⊢ f : A

Γ, f∗∆ ⊢ f∗B type
Subst-type

and we wish to derive a judgement

x : X ⊢ rΓ,f
∗∆⊢ f∗B : (fΓ,f∗∆)∗(f∗B).

Unfolding the definition of the desired type, we have

(fΓ,f∗∆)∗(f∗B)

= (rΓ⊢ f∗∆)∗(rΓ)∗(f∗B)

= (rΓ⊢ f∗∆)∗((rΓ)∗f)∗(rΓ)∗B

= (rΓ⊢ f∗∆)∗(rΓ⊢A)∗(rΓ)∗B (by induction)

= (rΓ⊢ f∗∆)∗(rΓ,y:A)∗B

= (rΓ,y:A⊢∆)∗(rΓ,y:A)∗B (by def’n of rΓ⊢ f∗∆, i.e. by previous
applications of this case)

= (rΓ,y:A,∆)∗B

so since by induction x : X ⊢ rΓ,y:A,∆⊢B : (rΓ,y:A,∆)∗B, we take rΓ,f
∗∆⊢ f∗B := rΓ,y:A,∆⊢B .

The cases for the other structural rules and X-form are straightforward, similar to the
Wkg-type case above. 3,

WEAK ω-CATEGORIES FROM ITT 17

4.3. Contractibility of P
ML

Id. We are now ready to show that P
ML

Id is contractible,
arguing along the lines sketched above.

Theorem 4.6. The operad P
ML

Id is contractible.

Proof. As described above, this amounts to the statement: for every n ∈ N and pasting
diagram π ∈ T1n, and every sequence (σi, τi)i<n of terms such that

~x : Γ∂n−i(π) ⊢ σi(~x) : X (σ0(src
i ~x), . . . , τi−1(tgt ~x))

~x : Γ∂n−i(π) ⊢ τi(~x) : X (σ0(src
i ~x), . . . , τi−1(tgt ~x))

(i < n) are derivable in MLId[X], we can find a “filler”, i.e. a term ρ with

~x : Γπ ⊢ ρ(~x) : X (σ0(src
n ~x), . . . , τn−1(tgt ~x))

We show this by induction on the number of cells in π.
Suppose π has more than one cell. Then it must have some cells in dimension > 1.

Let k be the highest dimension in which π has cells, and c be some k-cell of π̂. Now take
π−c ∈ T1n to be the pasting diagram whose globular set is obtained (up to isomorphism)
from that of π by removing c and identifying s(c) and t(c).

Now Γπ−c is exactly (up to renaming of variables, and possibly re-ordering if we do not
assume that we chose compatible orderings of the cells of pasting diagrams) the context

obtained from Γπ by removing the variables xkc and xk−1
t(c)

, and replacing any occurrences of

the latter in subsequent types by xk−1
s(c) , and we have a natural context map h : Γπ−c

//Γπ

given by plugging in xk−1
s(c) for xk−1

t(c) and r(xk−1
s(c)) for x

k
c ; and these are exactly right for

~x : Γπ−c ⊢ ρ−c(~x) : X (σ0(src
n h(~x)), . . . , τn−1(tgt h(~x)))

~x : Γπ ⊢ Jxk−1
s(c)

.ρ−c(x
k−1
s(c) , x

k−1
t(c) , x

k
c) : X (σ0(src

n ~x), . . . , τn−1(tgt ~x))

to be an instance of Id-elim+. So to give the desired filler ρ, it is enough to give ρ−c with

~x : Γπ−c ⊢ ρ−c(~x) : X (σ0(src
n h(~x)), . . . , τn−1(tgt h(~x))).

But now note that

∂n−i(π−c) =

{
∂n−i(π) for n− i < k
(∂n−i(π))−c for n− i ≥ k

;

moreover, we can construct context maps

hsi , h
t
i : Γ∂n−i(π−c)

// Γ∂n−i(π)

(analogous to h if i ≥ k, and just the identity otherwise), and these commute with the maps
src and tgt. So for each i < n, we have

~x : Γ∂n−i(π−c) ⊢ σi(h(~x)) : X (σ0(h(src
i ~x)), . . . , τi−1(h(tgt ~x))),

~x : Γ∂n−i(π−c) ⊢ τi(h(~x)) : X (σ0(h(src
i ~x)), . . . , τi−1(h(tgt ~x))),

i.e. the sequence of terms (h∗(σi), h
∗(τi))i<n are a parallel pair for π−c. So by induction

(since π−c has fewer cells than π), these terms have a filler; but this filler is exactly the
desired term ρ−c.

Thus it is enough to show the existence of fillers in the case where π has just one cell,
i.e. where π = (•). But in this case, Γπ = Γ∂i(π) = Γ∂i(π) = (x : X) for each i < n, and so

by the initiality of (x : X) we must have σi(x) = τi(x) = ri(x) for each i; so now ρ := rn(x)
gives the filler, and we are done.

18 P. LEF. LUMSDAINE

Unwinding this induction, we can see that it exactly formalises the process described
at the start of Subsection 4.2, of repeatedly plugging in higher reflexivity terms for all
variables, knowing that the given composites will themselves eventually compute down to
higher reflexivity terms.

Note that Lemma 4.4 was applied only at the base case of the induction, and only
to show that terms x : X ⊢ σ : Id(rn(x), rn(x)) must be equal to rn+1(x). A sufficiently
strong normalisation result would also imply this, resting on showing that these are the only
appropriate normal forms; this could then extend also to the operad EndMLI [X](X•) of all
composition laws of the full type theory, which cannot be shown contractible by the present
method. However, working with the fragment MLId seems more economical, showing that
Id-types are the only structure required.

4.4. Types as weak ω-categories. Putting the above results together, we obtain our
main goal:

Theorem 4.7. Let T be any type theory extending the fragment MLId, Γ any closed context
of T , A a dependent type over Γ. Then the globular context A• carries the structure of a
P
ML

Id-algebra in C(T /Γ).

Proof. By Proposition 2.1, there is a unique translation FT /Γ,A : MLId[X] // T /Γ taking
X to A, and hence taking X• to A•. By Proposition 3.8, this induces an action of P

ML
Id

on A•, and so, since by Theorem 4.6 P
ML

Id admits a contraction, an action of L (the initial
operad-with-contraction) on A•, as desired.

Corollary 4.8. Let T , Γ, A be as above, and ∆ a dependent context over Γ. Then the
globular set of terms of types A, IdA, IdIdA

, . . . in context Γ,∆ carries the structure of a
P
ML

Id-algebra, and hence of a weak ω-category.

Proof. This is just the globular set of C(T /Γ)(∆, A•) of context maps

f : Γ,∆ // Γ, x0, y0 : A, . . . , xn−1, yn−1 : A(x0, . . . , yn−2), z : A(x0, . . . , yn−1)

and so inherits a P
ML

Id-action, and hence an L-action, from the actions on A•.

Remark 4.9 (Functoriality). The construction of the P
ML

Id-algebra C(T /Γ)(∆, A•) should
be covariantly functorial in T , and contravariantly in Γ and ∆. That is, translations
T // T ′ and context maps Γ′ // Γ, ∆′ // ∆ should induce strict maps of P

ML
Id-

algebras, composing appropriately. A proof of this should be fairly straightforward, by
an extension of the methods of the current paper; essentially, the missing ingredient is a
treatment of maps of internal operad algebras.

More subtly, it should be functorial in A, but only to weak maps: a map of types
A // A′ should induce weak maps of P

ML
Id- or L-algebras—that is, weak ω-functors.

This seems an altogether trickier question, due partly but not only to the lack, until fairly
recently ([Gar08]), of a suitable definition of weak ω-functor.

Remark 4.10 (Comparison with [GvdB08]). As mentioned in the Introduction, Richard
Garner and Benno van den Berg have independently given ([GvdB08]) a proof of essentially
the same result. The core of their approach is the same as that given here: the ω-category
action is induced via contractible operads constructed from endomorphism operads of the
globular contexts of identity types. The main differences between construction of the present
paper and that of [GvdB08] are, roughly, as follows:

WEAK ω-CATEGORIES FROM ITT 19

(1) Garner and van den Berg use Batanin’s presentation [Bat98] of globular operads and
higher categories, while I have used the later presentation of Leinster [Lei04]. This is
essentially a superficial difference; the two presentations are intertranslatable.

(2) Garner and van den Berg work from the categorical structure on syntactic categories
given by the identity types, rather than from the identity types in the syntax directly.

(3) Where I have used the single operad P
ML

Id of definable composition laws on the generic
type, Garner and van den Berg use, for each type, a tailor-made operad of composition
laws on that type, constructed from the endomorphism operad over it in the syntactic
category of the particular theory in question.

(4) As remarked after Definition 4.3, this entire endomorphism operad will not in gen-
eral be contractible; consequently, Garner and van den Berg pass to a sub-operad of
“point-preserving” operations, which is always contractible. From this point of view,
Subsection 4.2 (the initiality of (x : X) in MLId[X]) may be seen as showing that over
the generic type in MLId[X], all composition laws are point-preserving.

(5) Finally, Garner and van den Berg show moreover that the weak ω-categories produced
are in fact weak ω-groupoids, according to the criterion of Cheng [Che07].

References

[AW09] Steve Awodey and Michael A. Warren, Homotopy theoretic models of identity types, Math. Proc.
Cambridge Philos. Soc. 146 (2009), no. 1, 45–55. MR MR2461866

[Bat98] M. A. Batanin, Monoidal globular categories as a natural environment for the theory of weak

n-categories, Adv. Math. 136 (1998), no. 1, 39–103.
[Car86] John Cartmell, Generalised algebraic theories and contextual categories, Ann. Pure Appl. Logic

32 (1986), no. 3, 209–243.
[Che07] Eugenia Cheng, An ω-category with all duals is an ω-groupoid, Appl. Categ. Structures 15 (2007),

no. 4, 439–453.
[Gar08] Richard Garner, Homomorphisms of higher categories, submitted, 2008.
[Gar09] , Two-dimensional models of type theory, Math. Structures Comput. Sci. 19 (2009), no. 4,

687–736. MR MR2525957
[GG08] Nicola Gambino and Richard Garner, The identity type weak factorisation system, Theoret. Com-

put. Sci. 409 (2008), no. 1, 94–109. MR MR2469279
[GvdB08] Richard Garner and Benno van den Berg, Types are weak ω-groupoids, submitted, 2008.
[HS98] Martin Hofmann and Thomas Streicher, The groupoid interpretation of type theory, Twenty-five

years of constructive type theory (Venice, 1995), Oxford Logic Guides, vol. 36, Oxford Univ.
Press, New York, 1998, pp. 83–111.

[Jac99] Bart Jacobs, Categorical logic and type theory, Studies in Logic and the Foundations of Mathe-
matics, vol. 141, North-Holland Publishing Co., Amsterdam, 1999.

[Lei02] Tom Leinster, A survey of definitions of n-category, Theory Appl. Categ. 10 (2002), 1–70 (elec-
tronic).

[Lei04] , Higher operads, higher categories, London Mathematical Society Lecture Note Series, vol.
298, Cambridge University Press, Cambridge, 2004.

[Str00] Ross Street, The petit topos of globular sets, Journal of Pure and Applied Algebra 154 (2000),
299–315.

[vdB] Benno van den Berg, Types as weak ω-categories, Lecture delivered in Uppsala, 2006, and unpub-
lished notes.

[War08] Michael A. Warren, Homotopy theoretic aspects of constructive type theory, Ph.D. thesis, Carnegie
Mellon University, 2008.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. Overview
	1.2. Outline of the construction

	2. Type-theoretic setting
	2.1. The type theories ML_Id, ML_Id[X]
	2.2. Translations and syntactic categories

	3. Globular operads and weak omega-categories
	3.1. Globular sets and operads
	3.2. Endomorphism operads and more general actions

	4. The contractible globular operad P_ML_Id
	4.1. Construction of P_ML_Id
	4.2. X is initial in ML_Id[X]
	4.3. Contractibility of P_ML_Id
	4.4. Types as weak omega-categories

	References

