
Logical Methods in Computer Science
Vol. 6 (4:5) 2010, pp. 1–50

www.lmcs-online.org
Submitted Nov. 27, 2009
Published Dec. 5, 2010

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS AND THEIR

INTERPRETATION AS PROOF IRRELEVANCE ∗

WILLIAM LOVAS AND FRANK PFENNING

Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail address: {wlovas,fp}@cs.cmu.edu

Abstract. Refinement types sharpen systems of simple and dependent types by offering
expressive means to more precisely classify well-typed terms. We present a system of
refinement types for LF in the style of recent formulations where only canonical forms are
well-typed. Both the usual LF rules and the rules for type refinements are bidirectional,
leading to a straightforward proof of decidability of typechecking even in the presence of
intersection types. Because we insist on canonical forms, structural rules for subtyping
can now be derived rather than being assumed as primitive. We illustrate the expressive
power of our system with examples and validate its design by demonstrating a precise
correspondence with traditional presentations of subtyping.

Proof irrelevance provides a mechanism for selectively hiding the identities of terms
in type theories. We show that LF refinement types can be interpreted as predicates
using proof irrelevance, establishing a uniform relationship between two previously studied
concepts in type theory. The interpretation and its correctness proof are surprisingly
complex, lending support to the claim that refinement types are a fundamental construct
rather than just a convenient surface syntax for certain uses of proof irrelevance.

1. Introduction

LF was created as a framework for defining logics and programming languages [HHP93].
Since its inception, it has been used to represent and formalize reasoning about a number of
deductive systems, which are prevalent in the study of logics and programming languages.1

In its most recent incarnation as the Twelf metalogic [PS99], it has been used to encode
and mechanize the metatheory of programming languages that are prohibitively complex
to reason about on paper [Cra03, LCH07].

It has long been recognized that some LF encodings would benefit from the addition of
a subtyping mechanism to LF [Pfe93, AC01]. In LF encodings, judgments are represented
by type families, and many subsets of data types and judgmental inclusions can be elegantly
represented via subtyping.

1998 ACM Subject Classification: F.3.3, F.4.1.
Key words and phrases: Logical frameworks, refinement types, proof irrelevance.

∗ The work was partially supported by the Fundação para a Ciência e Tecnologia (FCT), Portugal, under a
grant from the Information and Communications Technology Institute (ICTI) at Carnegie Mellon University.

1See [Pfe01b] for an introduction to logical frameworks and further references.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (4:5) 2010

c© W. Lovas and F. Pfennig
CC© Creative Commons

http://creativecommons.org/about/licenses

2 W. LOVAS AND F. PFENNIG

Prior work has explored adding subtyping and intersection types to LF via refinement
types [Pfe93]. Many of that system’s metatheoretic properties were proven indirectly by
translation into other systems, though, giving little insight into notions of adequacy or
implementation strategies. We begin this paper by presenting a refinement type system
for LF based on the modern canonical forms approach [WCPW02, HL07], and by doing so
we obtain direct proofs of important properties like decidability. Moreover, the theory of
canonical forms provides the basis for a study of adequacy theorems exploiting refinement
types.

In canonical forms-based LF, only β-normal η-long terms are well-typed — the syntax
restricts terms to being β-normal, while the typing relation forces them to be η-long. Since
standard substitution might introduce redexes even when substituting a normal term into
a normal term, it is replaced with a notion of hereditary substitution that contracts redexes
along the way, yielding another normal term. Since only canonical forms are admitted, type
equality is just α-equivalence, and typechecking is manifestly decidable.

Canonical forms are exactly the terms one cares about when adequately encoding a
language in LF, so this approach loses no expressivity. Since all terms are normal, there is
no notion of reduction, and thus the metatheory need not directly treat properties related
to reduction, such as subject reduction, Church-Rosser, or strong normalization. All of the
metatheoretic arguments become straightforward structural inductions, once the theorems
are stated properly.

By introducing a layer of refinements distinct from the usual layer of types, we prevent
subtyping from interfering with our extension’s metatheory. We also follow the general
philosophy of prior work on refinement types [FP91, Fre94, Dav05] in only assigning refined
types to terms already well-typed in pure LF, ensuring that our extension is conservative.

As a simple example, we study the representation of natural numbers as well as even
and odd numbers. In normal logical discourse, we might define these with the following
grammar:

Natural numbers n ::= z | s(n)

Even numbers e ::= z | s(o)
Odd numbers o ::= s(e)

The first line can be seen as defining the abstract syntax of natural numbers in unary form,
the second and third lines as defining two subsets of the natural numbers defined in the
first line. We will follow this informal convention, and represent the first as a type with two
constructors.

nat : type.
z : nat.
s : nat→ nat.

The second and third line define even and odd numbers as a subset of the natural numbers,
which we represent as refinements of the type nat.

even ❁ nat. odd ❁ nat.
z :: even.
s :: even→ odd ∧ odd→ even.

In the above, even ❁ nat declares even as a refinement of the type nat, and the declarations
using “::” give more precise sorts for the constructors z and s. Note that since the successor
function satisfies two unrelated properties, we give two refinements for it using an intersec-
tion sort. We can give similar representations of all regular tree grammars as refinements,

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 3

which then represent regular tree types [DZ92]. Our language generalizes this further to
allow binding operators and dependent types, both of which it inherits from LF, thereby
going far beyond what can be recognized with tree automata [CDG+07].

Already in this example we can see that it is natural to use refinements to represent
certain subsets of data types. Conversely, refinements can be interpreted as defining subsets.
In the second part of this paper, we exhibit an interpretation of LF refinement types which
we refer to as the “subset interpretation”, since a sort refining a type is interpreted as a
predicate embodying the refinement, and the set of terms having that sort is simply the
subset of terms of the refined type that also satisfy the predicate. For example, under the
subset interpretation, we translate the refinements even and odd to predicates on natural
numbers. The refinement declarations for z and s turn into constructors for proofs of these
predicates.

even : nat→ type. odd : nat→ type.
ẑ : even z.
ŝ1 :

∏
x:nat. even x→ odd (s x).

ŝ2 :
∏
x:nat. odd x→ even (s x).

The successor function’s two unrelated sorts translate to proof constructors for two different
predicates.

We show that our interpretation is correct by proving, for instance, that a term N has

sort S if and only if its translation N̂ has type Ŝ(N), where Ŝ(−) is the translation of
the sort S into a type family representing a predicate; thus, an adequate encoding using
refinement types remains adequate after translation. The chief complication in proving
correctness is the dependency of types on terms, which forces us to deal with a coherence
problem [BTCGS91, Rey91].

Normally, subset interpretations are not subject to the issue of coherence—that is,
of ensuring that the interpretation of a judgment is independent of its derivation—since
the terms in the target of the translation are the same as the terms in the source, just
with the stipulation that a certain property hold of them. The proofs of these properties
are computationally immaterial, so they may simply be ignored. But the presence of full
dependent types in LF means that the interpretation of a sort might depend on these proofs,
potentially violating the adequacy of representations.

In order to solve the coherence problem we employ proof irrelevance, a technique used in
type theories to selectively hide the identities of terms representing proofs [Pfe01a, AB04].
In the example, the terms whose identity should be irrelevant are those constructing proofs
of odd(n) and even(n), that is, those composed from ẑ, ŝ1, and ŝ2.

The subset interpretation completes our intuitive understanding of refinement types as
representing subsets of types. It turns out that in the presence of variable binding and
dependent types, this understanding is considerably more difficult to attain than it might
seem from the small example above.

In the remainder of the paper, we describe our refinement type system alongside a few
illustrative examples (Section 2). Then we explore its metatheory and sketch proofs of key
results, including decidability (Section 3). We note that our approach leads to subtyping
only being defined at base types, but we show that this is no restriction at all: subtyping at
higher types is intrinsically present due to the use of canonical forms (Section 4). Next, we
take a brief detour to review prior work on proof irrelevance (Section 5), setting the stage

4 W. LOVAS AND F. PFENNIG

for our subset interpretation and proofs of its correctness (Section 6). Finally, we offer some
concluding remarks on the broader implications of our work (Section 7).

This paper represents a combination of the developments in a technical report on the
basic design of LF with refinement types [LP08a, LP08b] and a conference paper sketching
the subset interpretation [LP09].

2. System and Examples

We present our system of LF with Refinements, LFR, through several examples. In what
follows, R refers to atomic terms and N to normal terms. Our atomic and normal terms
are exactly the terms from canonical presentations of LF.

R ::= c | x | R N atomic terms

N,M ::= R | λx.N normal terms

In this style of presentation, typing is defined bidirectionally by two judgments: R ⇒ A,
which says atomic term R synthesizes type A, and N ⇐ A, which says normal term N
checks against type A. Since λ-abstractions are always checked against a given type, they
need not be decorated with their domain types.

Types are similarly stratified into atomic and normal types.

P ::= a | P N atomic type families

A,B ::= P | Πx:A.B normal type families

The operation of hereditary substitution, written [N/x]A , is a partial function which
computes the normal form of the standard capture-avoiding substitution of N for x. It
is indexed by the putative type of x, A, to ensure termination, but neither the variable
x nor the substituted term N are required to bear any relation to this type index for the
operation to be defined. We show in Section 3 that whenN and x do have type A, hereditary
substitution is a total function on well-formed terms.

As a philosophical aside, we note that restricting our attention to normal terms in
this way is similar to the idea of restricting one’s attention to cut-free proofs in a sequent
calculus [Pfe00]. Showing that hereditary substitution can always compute a canonical
form is analogous to showing the cut rule admissible. And just as cut admissibility may
be used to prove a cut elimination theorem, hereditary substitution may be used to prove
a normalization theorem relating the canonical approach to traditional formulations. We
will not explore the relationship any further in the present work: the canonical terms are
the only ones we care about when formalizing deductive systems in a logical framework, so
we simply take the canonical presentation as primary.

Our layer of refinements uses metavariables Q for atomic sorts and S for normal sorts.
These mirror the definition of types above, except for the addition of intersection and “top”
sorts.

Q ::= s | Q N atomic sort families

S, T ::= Q | Πx::S❁A.T | ⊤ | S1 ∧ S2 normal sort families

Sorts are related to types by a refinement relation, S ❁ A (“S refines A”), discussed below.
We only sort-check well-typed terms, and a term of type A can be assigned a sort S only
when S ❁ A. These constraints are collectively referred to as the “refinement restriction”.
We occasionally omit the “❁ A” from function sorts when it is clear from context.

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 5

Deductive systems are encoded in LF using the judgments-as-types principle [HHP93,
HL07]: syntactic categories are represented by simple types, and judgments over syntax
are represented by dependent type families. Derivations of judgments are inhabitants of
those type families, and well-formed derivations correspond to well-typed LF terms. An LF
signature is a collection of kinding declarations a : K and typing declarations c : A that
establishes a set of syntactic categories, a set of judgments, and inhabitants of both. In
LFR, we can represent syntactic subsets or sets of derivations that have certain properties
using sorts. Thus one might say that the methodology of LFR is properties-as-sorts.

2.1. Example: Natural Numbers. For the first running example we will use the natural
numbers in unary notation. In LF, they would be specified as follows

nat : type.
z : nat.
s : nat→ nat.

These declarations establish a syntactic category of natural numbers populated by two
constructors, a constant constructor representing zero and a unary constructor representing
the successor function.

Suppose we would like to distinguish the odd and the even numbers as refinements of
the type of all numbers.

even ❁ nat.
odd ❁ nat.

The form of the declaration is s ❁ a where a is a type family already declared and s is a
new sort family. Sorts headed by s are declared in this way to refine types headed by a.
The relation S ❁ A is extended through the whole sort hierarchy in a compositional way.

Next we declare the sorts of the constructors. For zero, this is easy:

z :: even.

The general form of this declaration is c :: S, where c is a constant already declared in the
form c : A, and where S ❁ A. The declaration for the successor is slightly more difficult,
because it maps even numbers to odd numbers and vice versa. In order to capture both
properties simultaneously we need to use an intersection sort, written as S1 ∧ S2.

2

s :: even→ odd ∧ odd→ even.

In order for an intersection to be well-formed, both components must refine the same type.
The nullary intersection ⊤ can refine any type, and represents the maximal refinement of
that type.3

s ❁ a ∈ Σ

s N1 . . . Nk ❁ a N1 . . . Nk

S ❁ A T ❁ B

Πx::S. T ❁ Πx:A.B

S1 ❁ A S2 ❁ A

S1 ∧ S2 ❁ A ⊤ ❁ A

To show that the declaration for s is well-formed, we establish that even → odd ∧ odd →
even ❁ nat→ nat.

2Intersection has lower precedence than arrow.
3As usual in LF, we use A → B as shorthand for the dependent type Πx:A.B when x does not occur in

B.

6 W. LOVAS AND F. PFENNIG

Canonical LF LF with Refinements

Γ, x:A ⊢ N ⇐ B

Γ ⊢ λx.N ⇐ Πx:A.B

Γ ⊢ R⇒ P ′ P ′ = P

Γ ⊢ R⇐ P

x:A ∈ Γ

Γ ⊢ x⇒ A

c:A ∈ Σ

Γ ⊢ c⇒ A

Γ ⊢ R⇒ Πx:A.B Γ ⊢ N ⇐ A

Γ ⊢ R N ⇒ [N/x]A B

Γ, x::S❁A ⊢ N ⇐ T

Γ ⊢ λx.N ⇐ Πx::S❁A.T
(Π-I)

Γ ⊢ R⇒ Q′ Q′ ≤ Q

Γ ⊢ R⇐ Q
(switch)

x::S❁A ∈ Γ

Γ ⊢ x⇒ S
(var)

c :: S ∈ Σ

Γ ⊢ c⇒ S
(const)

Γ ⊢ R⇒ Πx::S❁A.T Γ ⊢ N ⇐ S

Γ ⊢ R N ⇒ [N/x]A T
(Π-E)

The refinement relation S ❁ A should not be confused with the usual subtyping relation.
Although each is a kind of subset relation4, they are quite different: Subtyping relates two
types, is contravariant in the domains of function types, and is transitive, while refinement
relates a sort to a type, so it does not make sense to consider its variance or whether it is
transitive. We will discuss subtyping below and in Section 4.

Now suppose that we also wish to distinguish the strictly positive natural numbers. We
can do this by introducing a sort pos refining nat and declaring that the successor function
yields a pos when applied to anything, using the maximal sort.

pos ❁ nat.
s :: · · · ∧ ⊤ → pos.

Since we only sort-check well-typed programs and s is declared to have type nat→ nat, the
sort ⊤ here acts as a sort-level reflection of the entire nat type.

We can specify that all odds are positive by declaring odd to be a subsort of pos.

odd ≤ pos.

Although any ground instance of odd is evidently pos, we need the subsorting declaration
to establish that variables of sort odd are also pos.

Putting it all together, we have the following:

even ❁ nat. odd ❁ nat. pos ❁ nat.
odd ≤ pos.
z :: even.
s :: even→ odd ∧ odd→ even ∧ ⊤ → pos.

Now we should be able to verify that, for example, s (s z) ⇐ even. To explain how,
we analogize with pure canonical LF. Recall that atomic types have the form a N1 . . . Nk

for a type family a and are denoted by P . Arbitrary types A are either atomic (P) or
(dependent) function types (Πx:A.B). Canonical terms are then characterized by the rules
shown in the left column above.

4It may help to recall the interpretation of S ❁ A: for a term to be judged to have sort S, it must
already have been judged to have type A for some A such that S ❁ A. Thus, the refinement relation
represents an inclusion “by fiat”: every term with sort S is also a term of type A, by invariant. By contrast,
subsorting S1 ≤ S2 is a more standard sort of inclusion: every term with sort S1 is also a term of sort S2,
by subsumption (see Section 4).

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 7

There are two typing judgments, N ⇐ A which means that N checks against A (both
given) and R⇒ A which means that R synthesizes type A (R given as input, A produced
as output). Both take place in a context Γ assigning types to variables. To force terms to
be η-long, the rule for checking an atomic term R only checks it at an atomic type P . It
does so by synthesizing a type P ′ and comparing it to the given type P . In canonical LF,
all types are already canonical, so this comparison is just α-equality.

On the right-hand side we have shown the corresponding rules for sorts. First, note
that the format of the context Γ is slightly different, because it declares sorts for variables,
not just types. The rules for functions and applications are straightforward analogues to
the rules in ordinary LF. The rule switch for checking atomic terms R at atomic sorts Q
replaces the equality check with a subsorting check and is the only place where we appeal
to subsorting (defined below). For applications, we use the type A that refines the type S
as the index parameter of the hereditary substitution.

Subsorting is exceedingly simple: it only needs to be defined on atomic sorts, and is
just the reflexive and transitive closure of the declared subsorting relationship.

s1≤s2 ∈ Σ

s1 N1 . . . Nk ≤ s2 N1 . . . Nk Q ≤ Q

Q1 ≤ Q′ Q′ ≤ Q2

Q1 ≤ Q2

The sorting rules do not yet treat intersections. In line with the general bidirectional nature
of the system, the introduction rules are part of the checking judgment, and the elimination
rules are part of the synthesis judgment. Binary intersection S1 ∧ S2 has one introduction
and two eliminations, while nullary intersection ⊤ has just one introduction.

Γ ⊢ N ⇐ S1 Γ ⊢ N ⇐ S2

Γ ⊢ N ⇐ S1 ∧ S2
(∧-I)

Γ ⊢ N ⇐ ⊤
(⊤-I)

Γ ⊢ R⇒ S1 ∧ S2

Γ ⊢ R⇒ S1
(∧-E1)

Γ ⊢ R⇒ S1 ∧ S2

Γ ⊢ R⇒ S2
(∧-E2)

Note that although (canonical forms-style) LF type synthesis is unique, LFR sort synthesis
is not, due to the intersection elimination rules.

Now we can see how these rules generate a deduction of s (s z)⇐ even. The context is
always empty and therefore omitted. To save space, we abbreviate even as e, odd as o, and
pos as p, and we omit reflexive uses of subsorting.

⊢ s⇒ e→ o ∧ (o→ e ∧ ⊤ → p)

⊢ s⇒ o→ e ∧ ⊤ → p

⊢ s⇒ o→ e

⊢ s⇒ e→ o ∧ (. . .)

⊢ s⇒ e→ o
⊢ z ⇒ e
⊢ z ⇐ e

⊢ s z ⇒ o
⊢ s z ⇐ o

⊢ s (s z)⇒ e

⊢ s (s z)⇐ e

Using the ∧-I rule, we can check that s z is both odd and positive:

...
⊢ s z ⇐ o

...
⊢ s z ⇐ p

⊢ s z ⇐ o ∧ p

Each remaining subgoal now proceeds similarly to the above example.

8 W. LOVAS AND F. PFENNIG

To illustrate the use of sorts with non-trivial type families, consider the definition of
the double relation in LF. We declare a type family representing the doubling judgment
and populate it with two proof rules.

double : nat→ nat→ type.
dbl/z : double z z.
dbl/s : ΠX:nat.ΠY :nat. double X Y → double (s X) (s (s Y)).

With sorts, we can now directly express the property that the second argument to double
must be even. But to do so, we require a notion analogous to kinds that may contain sort
information. We call these classes and denote them by L.

K ::= type | Πx:A.K kinds

L ::= sort | Πx::S❁A.L | ⊤ | L1 ∧ L2 classes

Classes L mirror kinds K, and they have a refinement relation L ❁ K similar to S ❁ A.
(We elide the rules here, but they are included in Appendix A.) Now, the general form of
the s ❁ a declaration is s ❁ a :: L, where a : K and L ❁ K; this declares sort constant s to
refine type constant a and to have class L.

For now, we reuse the type name double as a sort, as no ambiguity can result. As
before, we use ⊤ to represent a nat with no additional restrictions.

double ❁ double :: ⊤ → even→ sort.
dbl/z :: double z z.
dbl/s :: ΠX::⊤.ΠY ::even. double X Y → double (s X) (s (s Y)).

After these declarations, it would be a static sort error to pose a query such as

“?- double X (s (s (s z))).”

before any search is ever attempted. In LF, queries like this could fail after a long search or
even not terminate, depending on the search strategy. One of the important motivations for
considering sorts for LF is to avoid uncontrolled search in favor of decidable static properties
whenever possible.

The tradeoff for such precision is that now sort checking itself is non-deterministic
and has to perform search because of the choice between the two intersection elimination
rules. As Reynolds has shown, this non-determinism causes intersection type checking to be
PSPACE-hard [Rey96], even for normal terms as we have here [Rey89]. Using techniques
such as focusing, we believe that for practical cases they can be analyzed efficiently for the
purpose of sort checking.5

2.2. A Second Example: The λ-Calculus. As a second example, we use an intrinsi-
cally typed version of the call-by-value simply-typed λ-calculus. This means every object
language expression is indexed by its object language type. We use sorts to distinguish the
set of values from the set of arbitrary computations. While this can be encoded in LF in a
variety of ways, it is significantly more cumbersome.

tp : type. % the type of object language types
Z⇒ : tp→ tp→ tp. % object language function space
%infix right 10 Z⇒ .

exp : tp→ type. % the type of expressions

5The present paper concentrates primarily on decidability, though, not efficiency.

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 9

cmp ❁ exp. % the sort of computations
val ❁ exp. % the sort of values

val ≤ cmp. % every value is a (trivial) computation

lam :: (val A→ cmp B)→ val (A Z⇒ B).
app :: cmp (A Z⇒ B)→ cmp A→ cmp B.

In the last two declarations, we follow Twelf convention and leave the quantification over
A and B implicit, to be inferred by type reconstruction. Also, we did not explicitly declare
a type for lam and app. We posit a front end that can recover this information from the
refinement declarations for val and cmp, avoiding redundancy.

The most interesting declaration is the one for the constant lam. The argument type
(val A → cmp B) indicates that lam binds a variable which stands for a value of type A
and the body is an arbitrary computation of type B. The result type val (A Z⇒ B) indicates
that any λ-abstraction is a value. Now we have, for example (parametrically in A and B):
A::⊤❁tp, B::⊤❁tp ⊢ lam λx. lam λy. x⇐ val (A Z⇒ (B Z⇒ A)).

Now we can express that evaluation must always returns a value. Since the declarations
below are intended to represent a logic program, we follow the logic programming convention
of reversing the arrows in the declaration of ev-app.

eval :: cmp A→ val A→ sort.
ev-lam :: eval (lam λx.E x) (lam λx.E x).
ev-app :: eval (app E1 E2) V

← eval E1 (lam λx.E′
1 x)

← eval E2 V2

← eval (E′
1 V2) V.

Sort checking the above declarations demonstrates that when evaluation returns at all, it
returns a syntactic value. Moreover, if sort reconstruction gives E′

1 the “most general” sort
val A → cmp B, the declarations also ensure that the language is indeed call-by-value: it
would be a sort error to ever substitute a computation for a lam-bound variable, for example,
by evaluating (E′

1 E2) instead of (E′
1 V2) in the ev-app rule. An interesting question for

future work is whether type reconstruction can always find such a “most general” sort for
implicitly quantified metavariables.

A side note: through the use of sort families indexed by object language types, the sort
checking not only guarantees that the language is call-by-value and that evaluation, if it
succeeds, will always return a value, but also that the object language type of the result
remains the same (type preservation).

3. Metatheory

In this section, we present some metatheoretic results about our framework. These follow a
similar pattern as previous work using hereditary substitutions [WCPW02, NPP07, HL07].
We give sketches of all proofs. Technically tricky proofs are available from a companion
technical report [LP08b].

10 W. LOVAS AND F. PFENNIG

Judgment: Substitution into:

[N0/x0]
rr
α0

R = R′ Atomic terms (yielding atomic)
[N0/x0]

rn
α0

R = (N ′, α′) Atomic terms (yielding normal)
[N0/x0]

n
α0

N = N ′ Normal terms

[N0/x0]
p
α0

P = P ′ Atomic types
[N0/x0]

a
α0

A = A′ Normal types

[N0/x0]
q
α0

Q = Q′ Atomic sorts
[N0/x0]

s
α0

S = S′ Normal sorts

[N0/x0]
k
α0

K = K ′ Kinds
[N0/x0]

l
α0

L = L′ Classes

[N0/x0]
γ
α0

Γ = Γ′ Contexts

Table 1: Judgments defining hereditary substitution.

3.1. Hereditary Substitution. Recall that we replace ordinary capture-avoiding substi-
tution with hereditary substitution, [N/x]A , an operation which substitutes a normal term
into a canonical form yielding another canonical form, contracting redexes “in-line”. The
operation is indexed by the putative type of N and x to facilitate a proof of termination.
In fact, the type index on hereditary substitution need only be a simple type to ensure
termination. To that end, we denote simple types by α and define an erasure to simple
types (A)−.

α ::= a | α1 → α2 (a N1 . . . Nk)
− = a (Πx:A.B)− = (A)− → (B)−

For clarity, we also index hereditary substitutions by the syntactic category on which
they operate, so for example we have [N/x]nA M = M ′ and [N/x]sA S = S′; Table 1 lists
all of the judgments defining substitution. We write [N/x]nA M = M ′ as short-hand for
[N/x]n(A)− M = M ′.

Our formulation of hereditary substitution is defined judgmentally by inference rules.
The only place β-redexes might be introduced is when substituting a normal term N into
an atomic term R: N might be a λ-abstraction, and the variable being substituted for may
occur at the head of R. Therefore, the judgments defining substitution into atomic terms
are the most interesting ones.

We denote substitution into atomic terms by two judgments: [N0/x0]
rr
α0

R = R′, for
when the head of R is not x0, and [N0/x0]

rn
α0

R = (N ′, α′), for when the head of R is x0,
where α′ is the simple type of the output N ′. The former is just defined compositionally;
the latter is defined by two rules:

[N0/x0]
rn
α0

x0 = (N0, α0)
(subst-rn-var)

[N0/x0]
rn
α0

R1 = (λx.N1, α2 → α1)
[N0/x0]

n
α0

N2 = N ′
2 [N ′

2/x]
n
α2

N1 = N ′
1

[N0/x0]
rn
α0

R1 N2 = (N ′
1, α1)

(subst-rn-β)

The rule subst-rn-var just returns the substitutend N0 and its putative type index α0.
The rule subst-rn-β applies when the result of substituting into the head of an application

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 11

is a λ-abstraction; it avoids creating a redex by hereditarily substituting into the body of
the abstraction.

A simple lemma establishes that these two judgments are mutually exclusive by exam-
ining the head of the input atomic term.

head(x) = x head(c) = c head(R N) = head(R)
Lemma 3.1.

(1) If [N0/x0]
rr
α0

R = R′, then head(R) 6= x0.
(2) If [N0/x0]

rn
α0

R = (N ′, α′), then head(R) = x0.

Proof. By induction on the given derivation.

Substitution into normal terms has two rules for atomic terms R, one which calls the “rr”
judgment and one which calls the “rn” judgment.

[N0/x0]
rr
α0

R = R′

[N0/x0]
n
α0

R = R′
(subst-n-atom)

[N0/x0]
rn
α0

R = (R′, a′)

[N0/x0]
n
α0

R = R′
(subst-n-atom-norm)

Note that the latter rule requires both the term and the type returned by the “rn” judgment
to be atomic.

Every other syntactic category’s substitution judgment is defined compositionally, tac-
itly renaming bound variables to avoid capture. For example, the remaining rule defining
substitution into normal terms, the rule for substituting into a λ-abstraction, just recurses
on the body of the abstraction.

[N0/x0]
n
α0

N = N ′

[N0/x0]
n
α0

λx.N = λx.N ′

Although we have only defined hereditary substitution relationally, it is easy to show that it
is in fact a partial function by proving that there only ever exists one “output” for a given
set of “inputs”.

Theorem 3.2 (Functionality of Substitution). Hereditary substitution is a functional rela-
tion. In particular:

(1) If [N0/x0]
rr
α0

R = R1 and [N0/x0]
rr
α0

R = R2, then R1 = R2,
(2) If [N0/x0]

rn
α0

R = (N1, α1) and [N0/x0]
rn
α0

R = (N2, α2), then N1 = N2 and α1 = α2,
(3) If [N0/x0]

n
α0

N = N1 and [N0/x0]
n
α0

N = N2, then N1 = N2,

and similarly for other syntactic categories.

Proof. Straightforward induction on the first derivation, applying inversion to the second
derivation. The cases for rules subst-n-atom and subst-n-atom-norm require Lemma 3.1
to show that the second derivation ends with the same rule as the first one.

Additionally, it is worth noting that hereditary substitution behaves just like “ordinary”
substitution on terms that do not contain the distinguished free variable.

Theorem 3.3 (Trivial Substitution). Hereditary substitution for a non-occurring variable
has no effect.

(1) If x0 6∈ FV(R), then [N0/x0]
rr
α0

R = R,
(2) If x0 6∈ FV(N), then [N0/x0]

n
α0

N = N ,

and similarly for other syntactic categories.

Proof. Straightforward induction on term structure.

12 W. LOVAS AND F. PFENNIG

3.2. Decidability. A hallmark of the canonical forms/hereditary substitution approach is
that it allows a decidability proof to be carried out comparatively early, before proving
anything about the behavior of substitution, and without dealing with any complications
introduced by β/η-conversions inside types. Ordinarily in a dependently typed calculus, one
must first prove a substitution theorem before proving typechecking decidable, since type-
checking relies on type equality, type equality relies on β/η-conversion, and β/η-conversions
rely on substitution preserving well-formedness. (See for example [HP05] for a typical non-
canonical forms-style account of LF definitional equality.)

In contrast, if only canonical forms are permitted, then type equality is just α-converti-
bility, so one only needs to show decidability of substitution in order to show decidability of
typechecking. Since LF encodings represent judgments as type families and proof-checking
as typechecking, it is comforting to have a decidability proof that relies on so few assump-
tions.

Lemma 3.4. If [N0/x0]
rn
α0

R = (N ′, α′), then α′ is a subterm of α0.

Proof. By induction on the derivation of [N0/x0]
rn
α0

R = (N ′, α′). In rule subst-rn-var, α′

is the same as α0. In rule subst-rn-β, our inductive hypothesis tells us that α2 → α1 is a
subterm of α0, so α1 is as well.

By working in a constructive metalogic, we are able to prove decidability of a judgment by
proving an instance of the law of the excluded middle; the computational content of the
proof then represents a decision procedure.

Theorem 3.5 (Decidability of Substitution). Hereditary substitution is decidable. In par-
ticular:

(1) Given N0, x0, α0, and R, either ∃R′. [N0/x0]
rr
α0

R = R′, or 6 ∃R′. [N0/x0]
rr
α0

R = R′,
(2) Given N0, x0, α0, and R, either ∃(N ′, α′). [N0/x0]

rn
α0

R = (N ′, α′), or
6 ∃(N ′, α′). [N0/x0]

rn
α0

R = (N ′, α′),
(3) Given N0, x0, α0, and N , either ∃N ′. [N0/x0]

n
α0

N = N ′, or 6 ∃N ′. [N0/x0]
n
α0

N = N ′,

and similarly for other syntactic categories.

Proof. By lexicographic induction on the type subscript α0, the main subject of the sub-
stitution judgment, and the clause number. For each applicable rule defining hereditary
substitution, the premises are at a smaller type subscript, or if the same type subscript,
then a smaller term, or if the same term, then an earlier clause. The case for rule subst-
rn-β relies on Lemma 3.4 to know that α2 is a strict subterm of α0.

Theorem 3.6 (Decidability of Subsorting). Given Q1 and Q2, either Q1 ≤ Q2 or Q1 6≤ Q2.

Proof. Since the subsorting relation Q1 ≤ Q2 is just the reflexive, transitive closure of the
declared subsorting relation s1 ≤ s2, it suffices to compute this closure, check that the
heads of Q1 and Q2 are related by it, and ensure that all of the arguments of Q1 and Q2

are equal.

We prove decidability of typing by exhibiting a deterministic algorithmic system that
is equivalent to the original. Instead of synthesizing a single sort for an atomic term, the
algorithmic system synthesizes an intersection-free list of sorts, ∆.

∆ ::= · | ∆, Q | ∆,Πx::S❁A.T

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 13

(As usual, we freely overload comma to mean list concatenation, as no ambiguity can
result.) One can think of ∆ as the intersection of all its elements. Instead of applying
intersection eliminations, the algorithmic system eagerly breaks down intersections using a
“split” operator, leading to a deterministic “minimal-synthesis” system.

split(Q) = Q split(S1 ∧ S2) = split(S1), split(S2)

split(Πx::S❁A.T) = Πx::S❁A.T split(⊤) = ·

c::S ∈ Σ

Γ ⊢ c ⇛ split(S)

x::S❁A ∈ Γ

Γ ⊢ x ⇛ split(S)

Γ ⊢ R ⇛ ∆ Γ ⊢ ∆ @ N = ∆′

Γ ⊢ R N ⇛ ∆′

The rule for applications uses an auxiliary judgment Γ ⊢ ∆ @ N = ∆′ which computes the
possible types of R N given that R synthesizes to all the sorts in ∆. It has two key rules:

Γ ⊢ · @ N = ·

Γ ⊢ ∆ @ N = ∆′ Γ ⊢ N ⇚ S [N/x]sA T = T ′

Γ ⊢ (∆,Πx::S❁A.T) @ N = ∆′, split(T ′)

The other rules force the judgment to be defined when neither of the above two rules apply.

Γ ⊢ ∆ @ N = ∆′ Γ 6⊢ N ⇚ S

Γ ⊢ (∆,Πx::S❁A.T) @ N = ∆′

Γ ⊢ ∆ @ N = ∆′ 6 ∃T ′. [N/x]sA T = T ′

Γ ⊢ (∆,Πx::S❁A.T) @ N = ∆′

Γ ⊢ ∆ @ N = ∆′

Γ ⊢ (∆, Q) @ N = ∆′

Finally, to tie everything together, we define a new checking judgment Γ ⊢ N ⇚ S that
makes use of the algorithmic synthesis judgment; it looks just like Γ ⊢ N ⇐ S except for
the rule for atomic terms.

Γ ⊢ R ⇛ ∆ Q′ ∈ ∆ Q′ ≤ Q

Γ ⊢ R ⇚ Q

Γ, x::S❁A ⊢ N ⇚ T

Γ ⊢ λx.N ⇚ Πx::S❁A.T

Γ ⊢ N ⇚ ⊤

Γ ⊢ N ⇚ S1 Γ ⊢ N ⇚ S2

Γ ⊢ N ⇚ S1 ∧ S2

This new algorithmic system is manifestly decidable: despite the negative conditions in
some of the premises, the definitions of the judgments are well-founded by the ordering
used in the following proof. (If we wished, we could also explicitly synthesize a definition
of Γ 6⊢ N ⇚ S, but it would not illuminate the algorithm any further.)

Theorem 3.7. Algorithmic sort checking is decidable. In particular:

(1) Given Γ and R, either ∃∆.Γ ⊢ R ⇛ ∆ or 6 ∃∆.Γ ⊢ R ⇛ ∆.
(2) Given Γ, N , and S, either Γ ⊢ N ⇚ S or Γ 6⊢ N ⇚ S.
(3) Given Γ, ∆, and N , ∃∆′.Γ ⊢ ∆ @ N = ∆′.

Proof. By lexicographic induction on the term R or N , the clause number, and the sort S or
the list of sorts ∆. For each applicable rule, the premises are either known to be decidable,
or at a smaller term, or if the same term, then an earlier clause, or if the same clause, then
either a smaller S or a smaller ∆. For clause 3, we must use our inductive hypothesis to
argue that the rules cover all possibilities, and so a derivation always exists.

14 W. LOVAS AND F. PFENNIG

Note that the algorithmic synthesis system sometimes outputs an empty ∆ even when the
given term is ill-typed, since the Γ ⊢ ∆ @ N = ∆′ judgment is always defined.

It is straightforward to show that the algorithm is sound and complete with respect to
the original bidirectional system.

Lemma 3.8. If Γ ⊢ R⇒ S, then for all S′ ∈ split(S), Γ ⊢ R⇒ S′.

Proof. By induction on S, making use of the ∧-E1 and ∧-E2 rules.

Theorem 3.9 (Soundness of Algorithmic Typing).

(1) If Γ ⊢ R ⇛ ∆, then for all S ∈ ∆, Γ ⊢ R⇒ S.
(2) If Γ ⊢ N ⇚ S, then Γ ⊢ N ⇐ S.
(3) If Γ ⊢ ∆ @ N = ∆′, and for all S ∈ ∆, Γ ⊢ R⇒ S, then for all S′ ∈ ∆′, Γ ⊢ R N ⇒ S′.

Proof. By induction on the given derivation, using Lemma 3.8.

For completeness, we use the notation ∆ ⊆ ∆′ to mean that ∆ is a sublist of ∆′.

Lemma 3.10. If Γ ⊢ ∆ @ N = ∆′ and Γ ⊢ R ⇛ ∆ and Πx::S❁A.T ∈ ∆ and Γ ⊢ N ⇚ S
and [N/x]sA T = T ′, then split(T ′) ⊆ ∆′.

Proof. By straightforward induction on the derivation of Γ ⊢ ∆ @ N = ∆′.

Theorem 3.11 (Completeness for Algorithmic Typing).

(1) If Γ ⊢ R⇒ S, then Γ ⊢ R ⇛ ∆ and split(S) ⊆ ∆.
(2) If Γ ⊢ N ⇐ S, then Γ ⊢ N ⇚ S.

Proof. By straightforward induction on the given derivation. In the application case, we
make use of the fact that Γ ⊢ ∆ @ N = ∆′ is always defined and apply Lemma 3.10.

Soundness, completeness, and decidability of the algorithmic system gives us a decision
procedure for the judgment Γ ⊢ N ⇐ S. First, decidability tells us that either Γ ⊢ N ⇚ S
or Γ 6⊢ N ⇚ S. Then soundness tells us that if Γ ⊢ N ⇚ S then Γ ⊢ N ⇐ S, while
completeness tells us that if Γ 6⊢ N ⇚ S then Γ 6⊢ N ⇐ S.

Decidability theorems and proofs for other syntactic categories’ formation judgments
proceed similarly. When all is said and done, we have enough to show that the problem of
sort checking an LFR signature is decidable.

Theorem 3.12 (Decidability of Sort Checking). Sort checking is decidable. In particular:

(1) Given Γ, N , and S, either Γ ⊢ N ⇐ S or Γ 6⊢ N ⇐ S,
(2) Given Γ, S, and A, either Γ ⊢ S ❁ A or Γ 6⊢ S ❁ A, and
(3) Given Σ, either ⊢ Σ sig or 6⊢ Σ sig.

3.3. Identity and Substitution Principles. Since well-typed terms in our framework
must be canonical, that is β-normal and η-long, it is non-trivial to prove S → S for non-
atomic S, or to compose proofs of S1 → S2 and S2 → S3. The Identity and Substitution
principles ensure that our type theory makes logical sense by demonstrating the reflexivity
and transitivity of entailment. Reflexivity is witnessed by η-expansion, while transitivity is
witnessed by hereditary substitution.

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 15

The Identity principle effectively says that synthesizing (atomic) objects can be made
to serve as checking (normal) objects. The Substitution principle dually says that checking
objects may stand in for synthesizing assumptions, that is, variables.

3.3.1. Substitution. The goal of this section is to give a careful proof of the following sub-
stitution theorem. Suppose ΓL ⊢ N0 ⇐ S0 . Then:

(1) If
• ⊢ ΓL, x0::S0❁A0,ΓR ctx , and
• ΓL, x0::S0❁A0,ΓR ⊢ S ❁ A , and
• ΓL, x0::S0❁A0,ΓR ⊢ N ⇐ S ,
then
• [N0/x0]

γ
A0

ΓR = Γ′
R and ⊢ ΓL,Γ

′
R ctx , and

• [N0/x0]
s
A0

S = S′ and [N0/x0]
a
A0

A = A′ and ΓL,Γ
′
R ⊢ S′

❁ A′ , and

• [N0/x0]
n
A0

N = N ′ and ΓL,Γ
′
R ⊢ N ′ ⇐ S′ ,

(2) If
• ⊢ ΓL, x0::S0❁A0,ΓR ctx and
• ΓL, x0::S0❁A0,ΓR ⊢ R⇒ S ,
then
• [N0/x0]

γ
A0

ΓR = Γ′
R and ⊢ ΓL,Γ

′
R ctx , and [N0/x0]

s
A0

S = S′ , and either

− [N0/x0]
rr
A0

R = R′ and ΓL,Γ
′
R ⊢ R′ ⇒ S′ , or

− [N0/x0]
rn
A0

R = (N ′, α′) and ΓL,Γ
′
R ⊢ N ′ ⇐ S′ ,

and similarly for other syntactic categories. (Theorem 3.19 below.)
To prove the substitution theorem, we require a lemma about how substitutions com-

pose. The corresponding property for a ordinary non-hereditary substitution says that
[N0/x0] [N2/x2]N = [[N0/x0]N2/x2] [N0/x0]N . For hereditary substitutions, the situation
is analogous, but we must be clear about which substitution instances we must assume to
be defined and which we may conclude to be defined: If the three “inner” substitutions are
defined, then the two “outer” ones are also defined, and equal. Note that the composition
lemma is something like a diamond property; the notation below is meant to suggest this
connection.

Lemma 3.13 (Composition of Substitutions). Suppose [N0/x0]
n
α0

N2 = N 8
2 and x2 6∈

FV(N0). Then:

(1) If [N0/x0]
n
α0

N = N 8 and [N2/x2]
n
α2

N = N ′, then for some N 8′,
[N 8

2/x2]
n
α2

N 8 = N 8′ and [N0/x0]
n
α0

N ′ = N 8′ ,
(2) If [N0/x0]

rr
α0

R = R8 and [N2/x2]
rr
α2

R = R′, then for some R8′,
[N 8

2/x2]
rr
α2

R8 = R8′ and [N0/x0]
rr
α0

R′ = R8′ ,
(3) If [N0/x0]

rr
α0

R = R8 and [N2/x2]
rn
α2

R = (N ′, β), then for some N 8′,
[N 8

2/x2]
rn
α2

R8 = (N 8′, β) and [N0/x0]
n
α0

N ′ = N 8′ ,
(4) If [N0/x0]

rn
α0

R = (N 8, β) and [N2/x2]
rr
α2

R = R′, then for some N 8′,
[N 8

2/x2]
n
α2

N 8 = N 8′ and [N0/x0]
rn
α0

R′ = (N 8′, β) ,

and similarly for other syntactic categories.

Proof (sketch). By lexicographic induction on the unordered pair of α0 and α2, and on the
first substitution derivation in each clause. The cases for rule subst-rn-β in clauses 3 and
4 appeal to the induction hypothesis at a smaller type using Lemma 3.4. The case in clause
4 swaps the roles of α0 and α2, necessitating the unordered induction metric.

16 W. LOVAS AND F. PFENNIG

We also require a simple lemma about substitution into subsorting derivations:

Lemma 3.14 (Substitution into Subsorting). If Q1 ≤ Q2 and [N0/x0]
q
α0

Q1 = Q′
1 and

[N0/x0]
q
α0

Q2 = Q′
2, then Q′

1 ≤ Q′
2.

Proof. Straightforward induction using Theorem 3.2 (Functionality of Substitution), since
the subsorting rules depend only on term equalities, and not on well-formedness.

Next, we must state the substitution theorem in a form general enough to admit an
inductive proof. Following previous work on canonical forms-based LF [WCPW02, HL07],
we strengthen its statement to one that does not presuppose the well-formedness of the
context or the classifying types, but instead merely presupposes that hereditary substitution
is defined on them. We call this strengthened theorem “proto-substitution” and prove it in
several parts. In order to capture the convention that we only sort-check well-typed terms,
proto-substitution includes hypotheses about well-typedness of terms; these hypotheses use
an erasure Γ∗ that transforms an LFR context into an LF context.

·∗ = · (Γ, x::S❁A)∗ = Γ∗, x:A

The structure of the proof under this convention requires that we interleave the proof of the
core LF proto-substitution theorem. Generally, reasoning related to core LF presuppositions
is analogous to refinement-related reasoning and can be dealt with mostly orthogonally, but
the presuppositions are necessary in certain cases.
Theorem 3.15 (Proto-Substitution, terms).

(1) If
• ΓL ⊢ N0 ⇐ S0 (and Γ∗

L ⊢ N0 ⇐ A0) , and
• ΓL, x0::S0❁A0,ΓR ⊢ N ⇐ S (and Γ∗

L, x0:A0,Γ
∗
R ⊢ N ⇐ A) , and

• [N0/x0]
γ
A0

ΓR = Γ8
R , and

• [N0/x0]
s
A0

S = S8 (and [N0/x0]
a
A0

A = A8) ,
then
• [N0/x0]

n
A0

N = N 8 , and

• ΓL,Γ
8
R ⊢ N 8 ⇐ S8 (and Γ∗

L, (Γ
8
R)

∗ ⊢ N 8 ⇐ A8) .
(2) If
• ΓL ⊢ N0 ⇐ S0 (and Γ∗

L ⊢ N0 ⇐ A0) , and
• ΓL, x0::S0❁A0,ΓR ⊢ R⇒ S (and Γ∗

L, x0:A0,Γ
∗
R ⊢ R⇒ A) , and

• [N0/x0]
γ
A0

ΓR = Γ8
R ,

then
• [N0/x0]

s
A0

S = S8 (and [N0/x0]
a
A0

A = A8), and
• either
− [N0/x0]

rr
A0

R = R8 and

− ΓL,Γ
8
R ⊢ R8 ⇒ S8 (and Γ∗

L, (Γ
8
R)

∗ ⊢ R8 ⇒ A8),
or
− [N0/x0]

rn
A0

R = (N 8, (A8)−) and

− ΓL,Γ
8
R ⊢ N 8 ⇐ S8 (and Γ∗

L, (Γ
8
R)

∗ ⊢ N 8 ⇐ A8) .

Note: We tacitly assume the implicit signature Σ is well-formed. We do not tacitly assume
that any of the contexts, sorts, or types are well-formed. We do tacitly assume that contexts
respect the usual variable conventions in that bound variables are always fresh, both with
respect to other variables bound in the same context and with respect to other free variables
in terms outside the scope of the binding.

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 17

Proof (sketch). By lexicographic induction on (A0)
− and the derivation D hypothesizing

x0::S0❁A0.
The most involved case is that for application R1 N2. When head(R1) = x0 hereditary

substitution carries out a β-reduction, and the proof invokes the induction hypothesis at a
smaller type but not a subderivation. This case also requires Lemma 3.13 (Composition):
since function sorts are dependent, the typing rule for application carries out a substitution,
and we need to compose this substitution with the [N0/x0]

s
α0

substitution.
In the case where we check a term at sort ⊤, we require the core LF assumptions in

order to invoke the core LF proto-substitution theorem.

Next, we can prove analogous proto-substitution theorems for sorts/types and for class-
es/kinds.
Theorem 3.16 (Proto-Substitution, sorts and types).

(1) If
• ΓL ⊢ N0 ⇐ S0 (and Γ∗

L ⊢ N0 ⇐ A0) ,
• ΓL, x0::S0❁A0,ΓR ⊢ S ❁ A (and Γ∗

L, x0:A0,Γ
∗
R ⊢ A⇐ type) , and

• [N0/x0]
γ
A0

ΓR = Γ8
R ,

then
• [N0/x0]

s
A0

S = S8 (and [N0/x0]
a
A0

A = A8) , and
• ΓL,Γ

8
R ⊢ S8

❁ A8 , (and Γ∗
L, (Γ

8
R)

∗ ⊢ A8 ⇐ type) .
(2) If
• ΓL ⊢ N0 ⇐ S0 (and Γ∗

L ⊢ N0 ⇐ A0) ,
• ΓL, x0::S0❁A0,ΓR ⊢ Q ❁ P ⇒ L (and Γ ⊢ P ⇒ K) , and
• [N0/x0]

γ
A0

ΓR = Γ8
R ,

then
• [N0/x0]

q
A0

Q = Q8 (and [N0/x0]
p
A0

P = P 8) , and

• [N0/x0]
l
A0

L = L8 (and [N0/x0]
k
A0

K = K 8) , and

• ΓL,Γ
8
R ⊢ Q8

❁ P 8 ⇒ L8 (and Γ∗
L, (Γ

8
R)

∗ ⊢ P 8 ⇒ K 8) .

Proof. By induction on the derivation hypothesizing x0::S0❁A0, using Theorem 3.15 (Proto-
Substitution, terms). The reasoning is essentially the same as the reasoning for Theo-
rem 3.15.

Theorem 3.17 (Proto-Substitution, classes and kinds).
If

• ΓL ⊢ N0 ⇐ S0 (and Γ∗
L ⊢ N0 ⇐ A0) ,

• ΓL, x0::S0❁A0,ΓR ⊢ L ❁ K (and Γ∗
L, x0:A0,Γ

∗
R ⊢ K ⇐ kind) , and

• [N0/x0]
γ
A0

ΓR = Γ8
R ,

then

• [N0/x0]
l
A0

L = L8 (and [N0/x0]
k
A0

K = K 8) , and

• ΓL,Γ
8
R ⊢ L8

❁ K 8 , (and Γ∗
L, (Γ

8
R)

∗ ⊢ K 8 ⇐ kind) .

Proof. By induction on the derivation hypothesizing x0::S0❁A0, using Theorem 3.16 (Proto-
Substitution, sorts and types).

Then, we can finish proto-substitution by proving a proto-substitution theorem for
contexts.

18 W. LOVAS AND F. PFENNIG

Theorem 3.18 (Proto-Substitution, contexts).
If

• ΓL ⊢ N0 ⇐ S0 (and Γ∗
L ⊢ N0 ⇐ A0) , and

• ⊢ ΓL, x0::S0❁A0 ctx (and ⊢ Γ∗
L, x0:A0,Γ

∗
R ctx) ,

then

• [N0/x0]
γ
A0

ΓR = Γ8
R , and

• ⊢ ΓL,Γ
8
R ctx (and ⊢ Γ∗

L, (Γ
8
R)

∗ ctx) .

Proof. Straightforward induction on ΓR.

Finally, we have enough obtain a proof of the desired substitution theorem.

Theorem 3.19 (Substitution). Suppose ΓL ⊢ N0 ⇐ S0 . Then:

(1) If
• ⊢ ΓL, x0::S0❁A0,ΓR ctx , and
• ΓL, x0::S0❁A0,ΓR ⊢ S ❁ A , and
• ΓL, x0::S0❁A0,ΓR ⊢ N ⇐ S ,
then
• [N0/x0]

γ
A0

ΓR = Γ′
R and ⊢ ΓL,Γ

′
R ctx , and

• [N0/x0]
s
A0

S = S′ and [N0/x0]
a
A0

A = A′ and ΓL,Γ
′
R ⊢ S′

❁ A′ , and

• [N0/x0]
n
A0

N = N ′ and ΓL,Γ
′
R ⊢ N ′ ⇐ S′ ,

(2) If
• ⊢ ΓL, x0::S0❁A0,ΓR ctx and
• ΓL, x0::S0❁A0,ΓR ⊢ R⇒ S ,
then
• [N0/x0]

γ
A0

ΓR = Γ′
R and ⊢ ΓL,Γ

′
R ctx , and [N0/x0]

s
A0

S = S′ , and either

− [N0/x0]
rr
A0

R = R′ and ΓL,Γ
′
R ⊢ R′ ⇒ S′ , or

− [N0/x0]
rn
A0

R = (N ′, α′) and ΓL,Γ
′
R ⊢ N ′ ⇐ S′ ,

and similarly for other syntactic categories.

Proof. Straightforward corollary of Proto-Substitution Theorems 3.15, 3.16, 3.17, and 3.18.

Having proven substitution, we henceforth tacitly assume that all subjects of a judgment
are sufficiently well-formed for the judgment to make sense. In particular, we assume that
all contexts are well-formed, and whenever we assume Γ ⊢ N ⇐ S, we assume that for some
well-formed type A, we have Γ ⊢ S ❁ A and Γ ⊢ N ⇐ A. These assumptions embody our
refinement restriction: we only sort-check a term if it is already well-typed and even then
only at sorts that refine its type.

Similarly, whenever we assume Γ ⊢ S ❁ A, we tacitly assume that Γ ⊢ A ⇐ type, and
whenever we assume Γ ⊢ L ❁ K, we tacitly assume that Γ ⊢ K ⇐ kind.

3.3.2. Identity. Just as we needed a composition lemma to prove the substitution theorem,
in order to prove the identity theorem we need a lemma about how η-expansion commutes
with substitution.6

6The categorically-minded reader might think of this as the right and left unit laws for ◦ while thinking
of the composition lemma above as the associativity of ◦, where ◦ in the category represents substitution,
as usual.

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 19

In stating this lemma, we require a judgment that predicts the simple type output of
“rn” substitution. This judgment just computes the simple type as in “rn” substitution,
but without computing anything having to do with substitution. Since it resembles a sort
of “approximate typing judgment”, we write it x0:α0 ⊢ R : α. As with “rn” substitution, it
is only defined when the head of R is x0.

x0:α0 ⊢ x0 : α0

x0:α0 ⊢ R : α→ β

x0:α0 ⊢ R N : β

Lemma 3.20. If [N0/x0]
rn
α0

R = (N ′, α′) and x0:α0 ⊢ R : α, then α′ = α.

Proof. Straightforward induction.

Lemma 3.21 (Commutativity of Substitution and η-expansion). Substitution commutes
with η-expansion. In particular:

(1) (a) If [ηα(x)/x]
n
α N = N ′, then N = N ′ ,

(b) If [ηα(x)/x]
rr
α R = R′, then R = R′ ,

(c) If [ηα(x)/x]
rn
α R = (N,β), then ηβ(R) = N ,

(2) If [N0/x0]
n
α0

ηα(R) = N ′, then
(a) if head(R) 6= x0, then [N0/x0]

rr
α0

R = R′ and ηα(R
′) = N ′ ,

(b) if head(R) = x0 and x0:α0 ⊢ R : α, then [N0/x0]
rn
α0

R = (N ′, α) ,

and similarly for other syntactic categories.

Proof (sketch). By lexicographic induction on α and the given substitution derivation. The
proofs of clauses 1a, 1b, and 1c analyze the substitution derivation, while the proofs of
clauses 2a and 2b analyze the simple type α at which R is η-expanded.

Note: By considering the variable being substituted for to be a bound variable subject to
α-conversion7, we can see that our commutativity theorem is equivalent to an apparently
more general one where the η-expanded variable is not the same as the substituted-for
variable. For example, in the case of clause (1a), we would have that if [ηα(x)/y]

n
α N = N ′,

then [x/y]N = N ′. We will freely make use of this fact in what follows when convenient.

Theorem 3.22 (Expansion). If Γ ⊢ S ❁ A and Γ ⊢ R⇒ S, then Γ ⊢ ηA(R)⇐ S.

Proof (sketch). By induction on S. The Πx::S1❁A1. S2 case relies on Theorem 3.19 (Sub-
stitution) to show that [ηA1

(x)/x]sA1
S2 is defined and on Lemma 3.21 (Commutativity) to

show that it is equal to S2.

Theorem 3.23 (Identity). If Γ ⊢ S ❁ A, then Γ, x::S❁A ⊢ ηA(x)⇐ S.

Proof. Corollary of Theorem 3.22 (Expansion).

7In other words, by reading [N0/x0]
n
α0

N = N ′ as something like substn
α0

(N0, x0. N) = N ′, where x0 is

bound in N .

20 W. LOVAS AND F. PFENNIG

S1 ≤ S2

S ≤ S
(refl)

S1 ≤ S2 S2 ≤ S3

S1 ≤ S3
(trans)

S2 ≤ S1 T1 ≤ T2

Πx::S1. T1 ≤ Πx::S2. T2
(S-Π)

S ≤ ⊤
(⊤-R)

T ≤ S1 T ≤ S2

T ≤ S1 ∧ S2
(∧-R)

S1 ≤ T

S1 ∧ S2 ≤ T
(∧-L1)

S2 ≤ T

S1 ∧ S2 ≤ T
(∧-L2)

⊤ ≤ Πx::S.⊤
(⊤/Π-dist)

(Πx::S. T1) ∧ (Πx::S. T2) ≤ Πx::S. (T1 ∧ T2)
(∧/Π-dist)

Figure 1: Derived rules for subsorting at higher sorts.

4. Subsorting at Higher Sorts

Our bidirectional typing discipline limits subsorting checks to a single rule, the switch rule
when we switch modes from checking to synthesis. Since we insist on typing only canonical
forms, this rule is limited to checking at atomic sorts Q, and consequently, subsorting need
only be defined on atomic sorts. These observations naturally lead one to ask, what is the
status of higher-sort subsorting in LFR? How do our intuitions about things like structural
rules, variance, and distributivity—in particular, the rules shown in Figure 1—fit into the
LFR picture?

It turns out that despite not explicitly including subsorting at higher sorts, LFR implic-
itly includes an intrinsic notion of higher-sort subsorting through the η-expansion associated
with canonical forms. The simplest way of formulating this intrinsic notion is as a variant of
the identity principle: S is taken to be a subsort of T if Γ, x::S❁A ⊢ ηA(x)⇐ T . This notion
is equivalent to a number of other alternate formulations, including a subsumption-based
formulation and a substitution-based formulation.

Theorem 4.1 (Alternate Formulations of Subsorting). Suppose that for some Γ0, Γ0 ⊢
S1 ❁ A and Γ0 ⊢ S2 ❁ A, and define:

(1) S1 ≤1 S2
def
= for all Γ and R: if Γ ⊢ R⇒ S1, then Γ ⊢ ηA(R)⇐ S2.

(2) S1 ≤2 S2
def
= for all Γ: Γ, x::S1❁A ⊢ ηA(x)⇐ S2.

(3) S1 ≤3 S2
def
= for all Γ and N : if Γ ⊢ N ⇐ S1, then Γ ⊢ N ⇐ S2.

(4) S1 ≤4 S2
def
= for all ΓL, ΓR, N , and S: if ΓL, x::S2❁A,ΓR ⊢ N ⇐ S

then ΓL, x::S1❁A,ΓR ⊢ N ⇐ S

(5) S1 ≤5 S2
def
= for all ΓL, ΓR, N , S, and N1: if ΓL, x::S2❁A,ΓR ⊢ N ⇐ S and

ΓL ⊢ N1 ⇐ S1, then ΓL, [N1/x]
γ
A ΓR ⊢ [N1/x]

n
A N ⇐ [N1/x]

s
A S.

Then, S1 ≤1 S2 ⇐⇒ S1 ≤2 S2 ⇐⇒ · · · ⇐⇒ S1 ≤5 S2.

Proof. Using the identity and substitution principles along with Lemma 3.21, the commu-
tativity of substitution with η-expansion.

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 21

(1) ⇒ (2): By rule, Γ, x::S1❁A ⊢ x⇒ S1. By 1, Γ, x::S1❁A ⊢ ηA(x)⇐ S2.
(2) ⇒ (3): Suppose Γ ⊢ N ⇐ S1. By 2, Γ, x::S1❁A ⊢ ηA(x) ⇐ S2. By Theorem 3.19

(Substitution), Γ ⊢ [N/x]nA ηA(x) ⇐ S2. By Lemma 3.21 (Commutativity),
Γ ⊢ N ⇐ S2.

(3) ⇒ (4): Suppose ΓL, x::S2❁A,ΓR ⊢ N ⇐ S. By weakening, ΓL, y::S1❁A, x::S2❁A,
ΓR ⊢ N ⇐ S. By Theorem 3.23 (Identity), ΓL, y::S1❁A ⊢ ηA(y) ⇐ S1. By
3, ΓL, y::S1❁A ⊢ ηA(y) ⇐ S2. By Theorem 3.19 (Substitution), ΓL, y::S1❁A,
[ηA(y)/x]

γ
A ΓR ⊢ [ηA(y)/x]

n
A N ⇐ [ηA(y)/x]

s
A S. By Lemma 3.21 (Commutativ-

ity) and α-conversion, ΓL, x::S1❁A,ΓR ⊢ N ⇐ S.
4) ⇒ (5): Suppose ΓL, x::S2❁A,ΓR ⊢ N ⇐ S and ΓL ⊢ N1 ⇐ S1. By 4, ΓL, x::S1❁A,

ΓR ⊢ N ⇐ S. By Theorem 3.19 (Substitution), ΓL, [N1/x]
γ
A ΓR ⊢ [N1/x]

n
A N ⇐

[N1/x]
s
A S.

(5) ⇒ (1): Suppose Γ ⊢ R⇒ S1. By Theorem 3.22 (Expansion), Γ ⊢ ηA(R)⇐ S1. By The-
orem 3.23 (Identity), Γ, x::S2❁A ⊢ ηA(x)⇐ S2. By 5, Γ ⊢ [ηA(R)/x]nA ηA(x)⇐
S2. By Lemma 3.21 (Commutativity), Γ ⊢ ηA(R)⇐ S2.

If we take “subsorting as η-expansion” to be our model of subsorting, we can show the
“usual” presentation in Figure 1 to be both sound and complete with respect to this model.
In other words, subsorting as η-expansion really is subsorting (soundness), and it is no more
than subsorting (completeness). Alternatively, we can say that completeness demonstrates
that there are no subsorting rules missing from the usual declarative presentation: Figure 1
accounts for everything covered intrinsically by η-expansion. By the end of this section, we
will have shown both theorems: if S ≤ T , then Γ, x::S❁A ⊢ ηA(x)⇐ T , and vice versa.

Soundness is a straightforward inductive argument.

Theorem 4.2 (Soundness of Declarative Subsorting). If S ≤ T , then Γ, x::S❁A ⊢ ηA(x)⇐
T .

Proof. By induction on the derivation of S ≤ T . The alternate formulations given by
Theorem 4.1 are useful in many cases.

The proof of completeness is considerably more intricate. We demonstrate completeness via
a detour through an algorithmic subsorting system very similar to the algorithmic typing
system from Section 3.2, with judgments ∆ ≦ S and ∆ @ x::∆1❁A1 = ∆2. To show
completeness, we show that intrinsic subsorting implies algorithmic subsorting and that
algorithmic subsorting implies declarative subsorting; the composition of these theorems is
our desired completeness result.

If Γ, x::S❁A ⊢ ηA(x)⇐ T , then split(S) ≦ T . (Theorem 4.15 below.)

If split(S) ≦ T , then S ≤ T . (Theorem 4.7 below.)

The following schematic representation of soundness and completeness may help the reader
to understand the key theorems.

“declarative”
S ≤ T

soundness
✲

“intrinsic”
Γ, x::S❁A ⊢ ηA(x)⇐ T

completeness

“algorithmic”
split(S) ≦ T

✛

✛

22 W. LOVAS AND F. PFENNIG

∆ ≦ S

∆ ≦ ⊤

∆ ≦ S1 ∆ ≦ S2

∆ ≦ S1 ∧ S2

Q′ ∈ ∆ Q′ ≤ Q

∆ ≦ Q

∆ @ x::split(S1)❁A1 = ∆2 ∆2 ≦ S2

∆ ≦ Πx::S1❁A1. S2

∆ @ x::∆1❁A1 = ∆2

· @ x::∆1❁A1 = ·

∆ @ x::∆1❁A1 = ∆2 ∆1 ≦ S1 [ηA1
(x)/y]nA1

S2 = S′
2

(∆,Πy::S1❁A1. S2) @ x::∆1❁A1 = ∆2, split(S
′
2)

∆ @ x::∆1❁A1 = ∆2 ∆1 6≦ S1

(∆,Πy::S1❁A1. S2) @ x::∆1❁A1 = ∆2

∆ @ x::∆1❁A1 = ∆2 6 ∃S′
2. [ηA1

(x)/y]sA1
S2 = S′

2

(∆,Πy::S1❁A1. S2) @ x::∆1❁A1 = ∆2

∆ @ x::∆1❁A1 = ∆2

(∆, Q) @ x::∆1❁A1 = ∆2

Figure 2: Algorithmic subsorting.

As mentioned above, the algorithmic subsorting system system is characterized by two
judgments: ∆ ≦ S and ∆ @ x::∆1❁A1 = ∆2 ; rules defining them are shown in Figure 2.
As in Section 3.2, ∆ represents an intersection-free list of sorts. The interpretation of the
judgment ∆ ≦ S, made precise below, is roughly that the intersection of all the sorts in ∆
is a subsort of the sort S.

The rule for checking whether ∆ is a subsort of a function type makes use of the appli-
cation judgment ∆ @ x::∆1❁A1 = ∆2 to extract all of the applicable function codomains
from the list ∆. As in Section 3.2, care is taken to ensure that this latter judgment is
defined even in seemingly “impossible” scenarios that well-formedness preconditions would
rule out, like ∆ containing atomic sorts or hereditary substitution being undefined.

Our first task is to demonstrate that the algorithm has the interpretation alluded to
above. To that end, we define an operator

∧
(−) that transforms a list ∆ into a sort S by

“folding” ∧ over ∆ with unit ⊤.
∧

(·) =
∧

(∆, S) =
∧

(∆) ∧ S

Now our goal is to demonstrate that if the algorithm says ∆ ≦ S, then declaratively∧
(∆) ≤ S. First, we prove some useful properties of the

∧
(−) operator.

Lemma 4.3.
∧
(∆1) ∧

∧
(∆2) ≤

∧
(∆1,∆2)

Proof. Straightforward induction on ∆2.

Lemma 4.4. S ≤
∧
(split(S)).

Proof. Straightforward induction on S.

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 23

S1 ≤ T1 S2 ≤ T2

S1 ∧ S2 ≤ T1 ∧ T2
(S-∧)

S1 ∧ (S2 ∧ S3) ≤ (S1 ∧ S2) ∧ S3
(∧-assoc)

S ≤ Πx::T1. T2 T1 ≤ S1

S ∧ Πx::S1. S2 ≤ Πx::T1. (T2 ∧ S2)
(∧/Π-dist′)

Figure 3: Useful rules derivable from those in Figure 1.

Lemma 4.5. If Q′ ∈ ∆ and Q′ ≤ Q, then
∧
(∆) ≤ Q.

Proof. Straightforward induction on ∆.
Theorem 4.6 (Generalized Algorithmic ⇒ Declarative).

(1) If D :: ∆ ≦ T , then
∧
(∆) ≤ T .

(2) If D :: ∆ @ x::∆1❁A1 = ∆2, then
∧
(∆) ≤ Πx::

∧
(∆1)❁A1.

∧
(∆2).

Proof (sketch). By induction on D, using Lemmas 4.3, 4.4, and 4.5. The derivable rules
from Figure 3 come in handy in the proof of clause 2.

Theorem 4.6 is sufficient to prove that algorithmic subsorting implies declarative subsorting.

Theorem 4.7 (Algorithmic ⇒ Declarative). If split(S) ≦ T , then S ≤ T .

Proof. Suppose split(S) ≦ T . Then,
∧
(split(S)) ≤ T By Theorem 4.6.

S ≤
∧
(split(S)) By Lemma 4.4.

S ≤ T By rule trans.

Now it remains only to show that intrinsic subsorting implies algorithmic. To do so, we
require some lemmas. First, we extend our notion of a sort S refining a type A to an entire
list of sorts ∆ refining a type A in the obvious way.

Γ ⊢ · ❁ A

Γ ⊢ ∆ ❁ A Γ ⊢ S ❁ A

Γ ⊢ (∆, S) ❁ A

This new notion has the following important properties.

Lemma 4.8. If Γ ⊢ ∆1 ❁ A and Γ ⊢ ∆2 ❁ A, then Γ ⊢ ∆1,∆2 ❁ A.

Proof. Straightforward induction on ∆2.

Lemma 4.9. If Γ ⊢ S ❁ A, then Γ ⊢ split(S) ❁ A.

Proof. Straightforward induction on S.

Lemma 4.10. If D :: Γ ⊢ ∆ ❁ Πx:A1. A2 and E :: Γ ⊢ ∆ @ N = ∆2 and [N/x]aA1
A2 = A′

2,

then Γ ⊢ ∆2 ❁ A′
2.

Proof (sketch). By induction on E , using Theorem 3.9 (Soundness of Algorithmic Typing)
to appeal to Theorem 3.19 (Substitution), along with Lemmas 4.8 and 4.9.

24 W. LOVAS AND F. PFENNIG

We will also require an analogue of subsumption for our algorithmic typing system,
which relies on two lemmas about lists of sorts.

Lemma 4.11. If Γ ⊢ ∆ ❁ A, then for all S ∈ ∆, Γ ⊢ S ❁ A.

Proof. Straightforward induction on ∆.

Lemma 4.12. If for all S ∈ ∆, Γ ⊢ N ⇐ S, then Γ ⊢ N ⇐
∧
(∆).

Proof. Straightforward induction on ∆.

Theorem 4.13 (Algorithmic Subsumption). If Γ ⊢ R ⇛ ∆ and Γ ⊢ ∆ ❁ A and ∆ ≦ S,
then Γ ⊢ ηA(R) ⇚ S.

Proof. Straightforward deduction, using soundness and completeness of algorithmic typing.

∀S′ ∈ ∆.Γ ⊢ R⇒ S′ By Theorem 3.9 (Soundness of Alg. Typing).
∀S′ ∈ ∆.Γ ⊢ S′

❁ A By Lemma 4.11.
∀S′ ∈ ∆.Γ ⊢ ηA(R)⇐ S′ By Theorem 3.22 (Expansion).
Γ ⊢ ηA(R)⇐

∧
(∆) By Lemma 4.12.

∆ ≦ S By assumption.∧
(∆) ≤ S By Theorem 4.6 (Generalized Alg. ⇒ Decl.).

Γ ⊢ ηA(R)⇐ S By Theorem 4.2 (Soundness of Decl. Subsorting) and
Theorem 4.1 (Alternate Formulations of Subsorting).

Γ ⊢ ηA(R) ⇚ S By Theorem 3.11 (Completeness of Alg. Typing).

Now we can prove the following main theorem, which generalizes our desired “Intrinsic ⇒
Algorithmic” theorem:
Theorem 4.14 (Generalized Intrinsic ⇒ Algorithmic).

(1) If Γ ⊢ R ⇛ ∆ and E :: Γ ⊢ ηA(R) ⇚ S and Γ ⊢ ∆ ❁ A and Γ ⊢ S ❁ A, then ∆ ≦ S.
(2) If Γ ⊢ x ⇛ ∆1 and E :: Γ ⊢ ∆ @ ηA1

(x) = ∆2 and Γ ⊢ ∆1 ❁ A1 and Γ ⊢ ∆ ❁

Πx:A1. A2, then ∆ @ x::∆1❁A1 = ∆2.

Proof (sketch). By induction on A, S, and E .
Clause 1 is most easily proved by case analyzing the sort S and applying inversion to

the derivation E . The case when S = Πx::S1❁A1. S2 appeals to the induction hypothesis at
an unrelated derivation but at a smaller type, and Lemmas 4.8 and 4.9 are used to satisfy
the preconditions of the induction hypotheses.

Clause 2 is most easily proved by case analyzing the derivation E . In one case, we require
the contrapositive of Theorem 4.13 (Algorithmic Subsumption) to convert a derivation of
Γ 6⊢ ηA1

(x) ⇚ S1 into a derivation of ∆1 6≦ S1.

Theorem 4.14 along with Theorem 3.11, the Completeness of Algorithmic Typing, gives
us our desired result:

Theorem 4.15 (Intrinsic ⇒ Algorithmic). If Γ, x::S❁A ⊢ ηA(x)⇐ T , then split(S) ≦ T .

Proof. Suppose Γ, x::S❁A ⊢ ηA(x)⇐ T . Then,

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 25

Γ, x::S❁A ⊢ x ⇛ split(S) By rule.
Γ, x::S❁A ⊢ ηA(x) ⇚ T By Theorem 3.11 (Completeness of Alg. Typing).
split(S) ≦ T By Theorem 4.14.

Finally, we have completeness as a simple corollary:

Theorem 4.16 (Completeness of Declarative Subsorting). If Γ, x::S❁A ⊢ ηA(x) ⇐ T ,
then S ≤ T .

Proof. Corollary of Theorems 4.15 and 4.7.

5. Proof Irrelevance

When constructive type theory is used as a foundation for verified functional programming,
we notice that many parts of proofs are computationally irrelevant, that is, their structure
does not affect the returned value we are interested in. The role of these proofs is only
to guarantee that the returned value satisfies the desired specification. For example, from
a proof of ∀x:A.∃y:B.C(x, y) we may choose to extract a function f : A → B such that
C(x, f(x)) holds for every x:A, but ignore the proof that this is the case. The proof must
be present, but its identity is irrelevant. Proof-checking in this scenario has to ascertain
that such a proof is indeed not needed to compute the relevant result.

A similar issue arises when a type theory such as λΠ is used as a logical framework.
For example, assume we would like to have an adequate representation of prime numbers,
that is, to have a bijection between prime numbers p and closed terms M : primenum.
It is relatively easy to define a type family prime : nat → type such that there exists a
closed M : prime N if and only if N is prime. Then primenum = Σn:nat. prime n is a
candidate (with members 〈N,M〉), but it is not actually in bijective correspondence with
prime numbers unless the proof M that a number is prime is always unique. Again, we
need the existence of M , but would like to ignore its identity. This can be achieved with
subset types [C+86, SS88] {x:nat | prime(x)} whose members are just the prime numbers
p, but if the restricting predicate is undecidable then type-checking would be undecidable,
which is not acceptable for a logical framework.

For LF, we further note that Σ is not available as a type constructor, so we instead
introduce a new type primenum with exactly one constructor, primenum/i:

primenum : type.

primenum/i : ΠN:nat. prime N →÷ primenum.

Here the second arrow →÷ represents a function that ignores the identity of its argument.
The inhabitants of primenum, all of the form primenum/i N [M], are now in bijective
correspondence with prime numbers since primenum/i N [M] = primenum/i N [M ′] for all
M and M ′.

In the extension of LF with proof irrelevance [Pfe01a, RP08], or LFI, we have a new
form of hypothesis x÷A (x has type A, but the identity of x should be irrelevant). In
the non-dependent case (the only one important for the purposes of this paper), such an
assumption is introduced by a λ-abstraction:

Γ, x÷A ⊢ M ⇐ B

Γ ⊢ λx.M ⇐ A→÷ B
.

26 W. LOVAS AND F. PFENNIG

We can use such variables only in places where their identity doesn’t matter, e.g., in the
second argument to the constructor primenum/i in the prime number example. More
generally, we can only use it in arguments to constructor functions that do not care about
the identity of their argument:

Γ ⊢ R⇒ A→÷ B Γ⊕ ⊢ N ⇐ A

Γ ⊢ R [N]⇒ B
.

Here, Γ⊕ is the promotion operator which converts any assumption x÷A to x:A, thereby
making x usable in N . Note that there is no direct way to use an assumption x÷A.

The underlying definitional equality “=” (usually just α-conversion on canonical forms)
is extended so that R [N] = R′ [N ′] if R = R′, no matter what N and N ′ are.

The substitution principle (shown here only in its simplest, non-dependent form) cap-
tures the proper typing as well as the irrelevance of assumptions x÷A:

Principle 5.1 (Irrelevant Substitution). If Γ, x÷A ⊢ N ⇐ B and Γ⊕ ⊢ M ⇐ A then
Γ ⊢ [M/x]N ⇐ B and [M/x]N = N (under definitional equality).

One typical use of proof irrelevance in type theory is to render the typechecking of
subset types [C+86, SS88] decidable. A subset type {x:A | B(x)} represents the set of
terms of type A which also satisfy B; typechecking is undecidable because to determine if a
term M has this type, you must search for a proof of B(M). One might attempt to recover
decidability by using a dependent sum Σx:A.B(x), representing the set of terms M of type
A paired with proofs of B(M); typechecking is decidable, since a proof of B(M) is provided,
but equality of terms is overly fine-grained: if there are two proofs of B(M), the two pairs
will be considered unequal. Using proof irrelevance, one can find a middle ground with the
type Σx:A. [B(x)], where [−] represents the proof irrelevance modality. Type checking is
decidable for such terms, since a proof of the property B is always given, but the identity
of that proof is ignored, so all pairs with the same first component will be considered equal.

Our situation with the subset interpretation is similar: we would like to represent proofs
of sort-checking judgments without depending on the identities of those proofs. By carefully
using proof irrelevance to hide the identities of sort-checking proofs, we are able to make a
translation that is sound and complete, preserving the adequacy of representations.

6. Interpretation

6.1. Overview. We interpret LFR into LFI by representing sorts as predicates and deriva-
tions of sorting as proofs of those predicates. In this section, we endeavor to explain our
general translation by way of examples of it in action. The translation is derivation-directed
and compositional: for each judgment Γ ⊢ J , there is a corresponding judgment Γ ⊢ J ❀ X
whose rules mimic the rules of Γ ⊢ J . The syntactic class of X and its precise interpretation
vary from judgment to judgment. For reference, the various forms are listed in Table 2, but
we will explain them in turn as they arise in our examples.

Recall our simplest example of refinement types: the natural numbers, where the even
and odd numbers are isolated as refinements.

nat : type.

z : nat.

s : nat → nat.

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 27

Judgment: Result:

Γ ⊢ L ❁ K
form
❀ L̂f(−) Type of proofs of the formation family

K
pred
❀ K̂p(− , −) Kind of the predicate family

K
≤
❀ K̂s(−,−,−,−,−) Type of coercions between families of kind K

Γ ⊢ S ❁ A ❀ Ŝ(−) Metafunction representing predicate

Γ ⊢ Q ❁ P ⇒ L ❀ Q̂ Proof that Q is well-formed

Γ ⊢ N ⇐ S ❀ N̂ Proof that N has sort S

Γ ⊢ R⇒ S ❀ R̂ Proof that R has sort S

Γ ⊢ Q1 ≤ Q2 ❀ F (− , −) Metacoercion from proofs of Q1 to proofs of Q2

Q1 ≤ Q2 ❀ Q̂1-Q2 Coercion from proofs of Q1 to proofs of Q2

⊢ Γ ctx ❀ Γ̂ Translated context

⊢ Σ sig ❀ Σ̂ Translated signature

Table 2: Judgments of the translation.

even ❁ nat.

odd ❁ nat.

z :: even.

s :: even → odd ∧ odd → even.

As described in the introduction, our translation represents even and odd as predicates
on natural numbers, and the refinement declarations for z and s become declarations for
constants for constructing proofs of those predicates.

even : nat → type.

odd : nat → type.

ẑ : even z.

ŝ1 : Πx:nat. even x → odd (s x).

ŝ2 : Πx:nat. odd x → even (s x).

Starting simple, the proof constructor declaration for ẑ can be read as an assertion that the
constant z satisfies a certain predicate, namely that of being even.

In fact, every sort S will have a representation as a predicate, not just the base sorts like
even and odd. Generally, a predicate is just a type with a hole for a term; conventionally,

we write the predicate representation of S as a meta-level function Ŝ(−), and we say that

a term N satisfies such a predicate if the type Ŝ(N) is inhabited. Predicates will be the

output of the sort translation judgment, Γ ⊢ S ❁ A ❀ Ŝ, which mirrors the sort formation
judgment, adding a translation as an output.

For example, the predicate corresponding to the sort even → odd is the meta-function
(Πx:nat. even x → odd ((−) x)), and we see this predicate applied to the successor constant
s in the type of the proof constructor ŝ1. Thus the proof constructor declaration for ŝ1 can
also be read as an assertion: the constant s satisfies the predicate that, when applied to an
even natural number, it yields an odd one.

28 W. LOVAS AND F. PFENNIG

Our analysis suggests a general strategy for translating a refinement type declaration:
translate its sort into a predicate, and yield a declaration of a proof constructor asserting
that the predicate holds of the original constant.

⊢ Σ sig ❀ Σ̂ c:A ∈ Σ · ⊢Σ S ❁ A ❀ Ŝ

⊢ Σ, c::S sig ❀ Σ̂, ĉ:Ŝ(ηA(c))

As a reflection of the fact that in general these predicates may be applied to arbitrary terms,
not just atomic ones, we fully η-expand the constant before applying the predicate.

How do arrow sorts like even → odd translate in general? Recall that S → T is just
shorthand for the dependent function sort Πx::S. T when x does not occur in T . The general
rule for translating dependent function sorts is:

Γ ⊢ S ❁ A ❀ Ŝ Γ, x::S❁A ⊢ T ❁ B ❀ T̂

Γ ⊢ Πx::S❁A.T ❁ Πx:A.B ❀ λN . Πx:A.Πx̂:Ŝ(ηA(x)). T̂ (N@x)
(Π-F)

There are two points of note in this rule. First, writing predicates as types with holes be-
comes cumbersome, so we instead write metafunctions explicitly using meta-level abstrac-
tion, written as a bold λ; we continue to write meta-level application using bold (parens).
Second, since as we noted above, the term argument of a predicate is in general a canonical
term, and canonical terms may not appear in application position, we appeal to an auxiliary
judgment that applies a canonical term to an atomic one, N@R. It is defined by the single
clause,

(λx.N)@R = [R/x]N,

where the right-hand side is an ordinary non-hereditary substitution. Now we can read the
translation output as the predicate of a term N which holds if there is a function from

objects x : A satisfying predicate Ŝ to proofs that N applied to x satisfies predicate T̂ .
But what about the fact that s only had one declaration in the original signature,

but there are two proof constructor declarations asserting predicates that hold of it? For
compositionality’s sake, we would like to translate the single refinement declaration for s
into a single proof constructor declaration, but one that can effectively serve the roles of
both ŝ1 and ŝ2. To this end, we use a product type.

ŝ : (Πx:nat. even x → odd (s x))

× (Πx:nat. odd x → even (s x)).

Now πi ŝ may be used anywhere ŝi was used before. Generally, an intersection sort will
translate to a conjunction of predicates, represented as a type-theoretic product. Similarly,
the nullary intersection ⊤ will translate to a unit type.8

Γ ⊢ S1 ❁ A ❀ Ŝ1 Γ ⊢ S2 ❁ A ❀ Ŝ2

Γ ⊢ S1 ∧ S2 ❁ A ❀ λN . Ŝ1(N)× Ŝ2(N)
(∧-F)

Γ ⊢ ⊤ ❁ A ❀ λN . 1
(⊤-F)

What kinds of proofs inhabit these predicates? Such proofs are the output of the term

translation judgment Γ ⊢ N ⇐ S ❀ N̂ , which mirrors the sort checking judgment, adding
a translation as an output. Generally, a derivation that a term N has sort S will translate

8Strictly speaking, this means our translation targets an extension of LFI with product and unit types.
Such an extension is orthogonal to the addition of proof irrelevance, and has been studied by many people
over the years, including Schürmann [Sch03] and Sarkar [Sar09]. Alternatively, products may be eliminated
after translation by a simple currying transformation, but that is beyond the scope of this article.

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 29

to a proof N̂ that the predicate Ŝ holds of N (where Ŝ is as usual the interpretation of S as

a predicate), or symbolically, if S ❁ A ❀ Ŝ and N ⇐ S ❀ N̂ , then N̂ ⇐ Ŝ(N)—ignoring
for a moment the question of what happens to the contexts. This expectation begins to
hint at the soundness theorem we will demonstrate below, but for now we will use it just
to guide our intuitions.

For example, since an intersection sort is represented by a product of predicates, we
should expect that a term judged to have an intersection sort should translate to a proof of
a product, or a pair. Similarly, since the sort ⊤ translates to a trivially true unit predicate,
a term judged to have sort ⊤ should translate to a trivial unit element.

Γ ⊢ N ⇐ S1 ❀ N̂1 Γ ⊢ N ⇐ S2 ❀ N̂2

Γ ⊢ N ⇐ S1 ∧ S2 ❀ 〈N̂1, N̂2〉
(∧-I)

Γ ⊢ N ⇐ ⊤❀ 〈〉
(⊤-I)

Intuitively, knowing that a term has an intersection sort S1 ∧ S2 gives us two pieces of in-
formation about it, while knowing that a term has sort ⊤ tells us nothing new. This aspect
of our translation is similar in spirit to Liquori and Ronchi Della Rocca’s Λt

∧ [LRDR07], a
Church-style type system for intersections in which derivations are explicitly represented as
proofs and intersections as products, though in their setting the proofs are viewed as part
of a program rather than the output of a translation.

We can similarly intuit the appropriate proof for an implication predicate by examining
the rule for translating Πx::S. T above. We start from the sort-checking rule Π-I, which
shows that a term λx.N has sort Πx::S. T . To prove that the corresponding Π predicate
holds of λx.N , we will have to produce a function taking an object x of type A and a proof

that x satisfies Ŝ and yielding a proof that (λx.N)@x = [x/x]N = N satisfies T̂ . This is
easily done: the translation of the body N is precisely the proof we require about N , and
we wrap this in two λ-abstractions to get a proof of the Π predicate.

Γ, x::S❁A ⊢ N ⇐ T ❀ N̂

Γ ⊢ λx.N ⇐ Πx::S❁A.T ❀ λx. λx̂. N̂
(Π-I)

Careful examination of the Π-I rule reveals a subtlety: it is clear from our understanding
of the sort-checking part of the rule that the free variables of N and T may include x, but

we seem to have indicated by our λ-abstraction that the proof N̂ may depend not only on
the variable x, but also on a variable x̂. Where did this second variable come from?

The answer—as hinted above—is that we have not yet specified with respect to what
context the translation of a term is to be interpreted. This context should in fact be the
translation of the context Γ associated with the original term N , and by convention we write

it as Γ̂. The judgment translating contexts is an annotated version of the context-formation

judgment, written ⊢ Γ ctx ❀ Γ̂.

⊢ · ctx ❀ ·

⊢ Γ ctx ❀ Γ̂ Γ ⊢ S ❁ A ❀ Ŝ

⊢ Γ, x::S❁A ctx ❀ Γ̂, x:A, x̂:Ŝ(ηA(x))

The second rule is quite similar to the translation rule we have seen for signature declarations
c:A: each declaration x::S❁A splits into a typing declaration x:A and a proof declaration

x̂:Ŝ(ηA(x)). Now it is easily seen why the proof N̂ in the translation rule Π-I may depend

on x̂: our soundness criterion will tell us that Γ̂, x:A, x̂:Ŝ(ηA(x)) ⊢ N̂ ⇐ T̂ (N).
There is just one sort checking rule remaining: the switch rule for checking an atomic

term at a base sort. This rule appeals to subsorting, so we postpone discussion of it until

30 W. LOVAS AND F. PFENNIG

Γ ⊢Σ R+ ⇒ S−
❀ R̂−

c::S ∈ Σ

Γ ⊢ c⇒ S ❀ ĉ
(const)

x::S❁A ∈ Γ

Γ ⊢ x⇒ S ❀ x̂
(var)

Γ ⊢ R1 ⇒ Πx::S2❁A2. S ❀ R̂1 Γ ⊢ N2 ⇐ S2 ❀ N̂2 [N2/x]
s
A2

S = S′

Γ ⊢ R1 N2 ⇒ S′
❀ R̂1 N2 N̂2

(Π-E)

Γ ⊢ R⇒ S1 ∧ S2 ❀ R̂

Γ ⊢ R⇒ S1 ❀ π1 R̂
(∧-E1)

Γ ⊢ R⇒ S1 ∧ S2 ❀ R̂

Γ ⊢ R⇒ S2 ❀ π2 R̂
(∧-E2)

Figure 4: Translation rules for atomic term sort synthesis

we discuss the translation of subsorting judgments in Section 6.3. For now, the reader may
think of the rule as simply returning the result of the sort synthesis translation judgment,

Γ ⊢ R ⇒ S ❀ R̂. At the base cases, this judgment returns the hatted proof constants ĉ
and variables x̂ we have seen in the translations of signature declarations and contexts. The
other rules correspond to elimination forms, and they follow straightforwardly by the same
intuitions we used to derive the introduction rules in the sort checking translation. All the
rules for this judgment are shown in Figure 4.

There is also just one sort formation rule remaining: the rule for translating base sorts
Q. Although this translation seems straightforward in the case of simple sorts like even
and odd, it is rather subtle when it comes to dependent sort families due to a problem of
coherence. To explain, we return to another early example, the doubling relation on natural
numbers.

6.2. Dependent Base Sorts. Recall the double relation defined as a type family in LF:

double : nat → nat → type.

dbl/z : double z z.

dbl/s : ΠN:nat. ΠN2:nat. double N N2 → double (s N) (s (s N2)).

As we saw earlier, we can use LFR refinement kinds, or classes, to express and enforce the
property that the second subject of any doubling relation is always even, no matter what
properties hold of the first subject. To do so we define a sort double* which is isomorphic
to double, but has a more precise class.9

double* ❁ double :: ⊤ → even → sort.

dbl/z :: double* z z.

dbl/s :: ΠN::⊤. ΠN2::even. double* N N2 → double* (s N) (s (s N2)).

Successfully sort-checking the declarations for dbl/z and dbl/s demonstrates that whenever
double* M N is inhabited, the second argument, N, is even.

9Earlier, we used the name double for both the type family and the sort family refining it, but in what
follows it will be important to distinguish the two.

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 31

There is a crucial difference between refinements like even or odd and refinements like
double*: while even and odd denote particular subsets of the natural numbers, the inhabi-
tants of the refinement double* M N are identical to those of the ordinary type double M N.
What is important is not whether a particular instance double* M N is inhabited, but rather
whether it is well-formed at all.

For this reason, we separate the formation of a dependent refinement type family from
its inhabitation. Simple sorts like even and odd are always well-formed, but we would like
a way to explicitly represent the formation of an indexed sort like double* M N. Therefore,

we translate double* into two parts: a formation family, written ̂double*, and a predicate
family, written using the original name of the sort, double*.

There are two declarations involving the formation family. First, the declaration of the
formation family itself:

̂double* : nat → nat → type.

The formation family has the same kind as the original refined type. Intuitively, the forma-

tion family ̂double* M N should be inhabited whenever the sort double* M N would have

been a well-formed sort pre-translation. For example, ̂double* z z will be inhabited, since
double* z z was a well-formed sort.

Next, we have a constructor for the formation family:

̂double*/i : Πx:nat. Πy:nat. even y → ̂double* x y.

The constructor takes all the arguments to double* along with evidence that they have the
appropriate sorts and yields a member of the formation family, i.e. a proof that double*

applied to those arguments was well-formed pre-translation. For example, ̂double*/i z z ẑ is
a proof that double* z z was well-formed, since it contains the necessary evidence: a proof
that the second argument z is even.

Finally, we have a declaration for the predicate family itself:

double* : Πx:nat. Πy:nat. ̂double* x y →÷ double x y → type.

For any M and N , the predicate family will be inhabited by proofs that derivations of
double M N have the refinement double* M N, provided that double* M N is well-formed in
the first place. In our doubling example, all derivations of double M N satisfy the refinement
double* M N, so the predicate family will have one inhabitant for each of them. As before,
these inhabitants come from the translation of the refinement declarations for dbl/z and
dbl/s. Writing arguments in irrelevant position in [square brackets], we get:

d̂bl/z : double* z z

[̂double*/i z z ẑ]

dbl/z.

d̂bl/s : ΠN:nat. ΠN2:nat. ΠN̂2:even N2. ΠD:double N N2.

double* N N2 [̂double*/i N N2 N̂2] D

→ double* (s N) (s (s N2))

[̂double*/i (s N) (s (s N2)) (̂s2 (s N2) (̂s1 N2 N̂2))]

(dbl/s N N2 D).

32 W. LOVAS AND F. PFENNIG

As is evident even from this short and abbreviated example, the interpretation leads to a
significant blowup in the size and complexity of a signature, underscoring the importance
of a primitive understanding of refinement types.

Note that in the declaration of the predicate family double*, the proof of well-formedness
is made irrelevant using a proof-irrelevant function space A →÷ B, representing functions
from A to B that are insensitive to the identity of their argument. Using irrelevance ensures
that a given sort has a unique translation, up to equivalence. We elaborate on this below.

Generalizing from the above example, a sort declaration translates into three declara-
tions: one for the formation family, one for the proof constructor for the formation family,
and one for the predicate family.

⊢ Σ sig ❀ Σ̂ a:K ∈ Σ · ⊢Σ L ❁ K
form
❀ L̂f K

pred
❀ K̂p

⊢ Σ, s❁a::L sig ❀ Σ̂, ŝ:K, ŝ/i:L̂f(ŝ), s:K̂p(ŝ, a)

The class formation judgment Γ ⊢ L ❁ K
form
❀ L̂f yields a metafunction describing the type

of proofs of formation family, while an auxiliary kind translation judgment K
pred
❀ K̂p yields

a metafunction describing the kind of the predicate family. As in the example, the kind of
the formation family is the same as the kind of the refined type, K.

The metafunction L̂f takes as input the formation family so far, initially just ŝ. The
translation of Π classes adds an argument, and the base case returns the formation family
so constructed.

Γ ⊢ S ❁ A ❀ Ŝ Γ, x::S❁A ⊢ L ❁ K
form
❀ L̂

Γ ⊢ Πx::S❁A.L ❁ Πx:A.K
form
❀ λQf. Πx:A.Πx̂:Ŝ(ηA(x)). L̂(Qf ηA(x))

Γ ⊢ sort ❁ type
form
❀ λQf . Qf

Employing a similar trick as we did with intersection sorts, we will translate intersection
and ⊤ classes to unit and product types.

Γ ⊢ L1 ❁ K
form
❀ L̂1 Γ ⊢ L2 ❁ K

form
❀ L̂2

Γ ⊢ L1 ∧ L2 ❁ K
form
❀ λQf . L̂1(Qf)× L̂2(Qf) Γ ⊢ ⊤ ❁ K

form
❀ λQf . 1

Intersection classes give multiple ways for a sort to be well-formed, and a product of for-
mation families gives multiple ways to project out a proof of well-formedness.

The metafunction K̂p takes two arguments: one for the formation family so far (initially
ŝ) and one for the refined type so far (initially a). The rule for Π kinds just adds an argument
to each:

K
pred
❀ K̂

Πx:A.K
pred
❀ λ(Qf, P). Πx:A. K̂(Qf ηA(x), P ηA(x))

while the translation is really characterized by its behavior on the base kind, type:

type
pred
❀ λ(Qf , P). Qf →÷ P → type

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 33

Γ ⊢Σ Q+
❁ P− ⇒ L−

❀ Q̂−

s❁a::L ∈ Σ

Γ ⊢ s ❁ a⇒ L ❀ ŝ/i

Γ ⊢ Q ❁ P ⇒ Πx::S❁A.L ❀ Q̂ Γ ⊢ N ⇐ S ❀ N̂ [N/x]lA L = L′

Γ ⊢ Q N ❁ P N ⇒ L′
❀ Q̂ N N̂

Γ ⊢ Q ❁ P ⇒ L1 ∧ L2 ❀ Q̂

Γ ⊢ Q ❁ P ⇒ L1 ❀ π1 Q̂

Γ ⊢ Q ❁ P ⇒ L1 ∧ L2 ❀ Q̂

Γ ⊢ Q ❁ P ⇒ L2 ❀ π2 Q̂

Figure 5: Translation rules for base sort class synthesis

The kind of the predicate family for a base sort Q refining P is essentially a one-place
judgment on terms of type P , along with an irrelevant argument belonging to the formation
family of Q.

Finally, we are able to make sense of the rule for translating base sorts:

Γ ⊢ Q ❁ P ′ ⇒ L ❀ Q̂ P ′ = P L = sort

Γ ⊢ Q ❁ P ❀ λN . Q [Q̂] N
(Q-F)

The class synthesis translation judgment Γ ⊢ Q ❁ P ⇒ L ❀ Q̂ (similar to the sort synthesis
judgment; see Figure 5) yields a proof of Q’s formation family; thus the predicate for a base
sort Q, given an argument N , is simply the predicate family Q applied to an irrelevant

proof Q̂ that Q is well-formed and the argument itself, N .
What if we hadn’t made the proofs of formation irrelevant? Then if there were more

than one proof that Q were well-formed, a soundness problem would arise. To see how, let
us return to the doubling example. Imagine extending our encoding of natural numbers
with a sort distinguishing zero as a refinement.

zero ❁ nat.

z :: even ∧ zero.

As with even and odd, the sort zero turns into a predicate. Now that z has two sorts, it
translates to two proof constructors.10

zero : nat → type.

ẑ1 : even z.

ẑ2 : zero z.

Next, we can observe that zero always doubles to itself and augment the declaration of
double* using an intersection class:

10For the sake of simplicity, we will continue our example with the slightly unfaithful assumptions we’ve
been making all along. Strictly speaking, zero should also have a formation family with a single trivial
member, and the two declarations ẑ1 and ẑ2 should be one declaration of product type. The point we wish
to make will be the same nonetheless.

34 W. LOVAS AND F. PFENNIG

double* ❁ double :: ⊤ → even → sort

∧ zero → zero → sort.

After translation, since there are potentially two ways for double* x y to be well-formed,
there are two introduction constants for the formation family.

̂double*/i1 : Πx:nat. Πy:nat. even y → ̂double* x y.

̂double*/i2 : Πx:nat. zero x → Πy:nat. zero y → ̂double* x y.

The declarations for ̂double* and double* remain the same.
Now recall the refinement declaration for doubling zero,

dbl/z :: double* z z ,

and observe that it is valid for two reasons, since double* z z is well-formed for two reasons.
Consequently, after translation, there will be two proofs inhabiting the formation family
̂double* z z, but only one of them will be used in the translation of the dbl/z declaration.
Supposing it is the first one, we’ll have

d̂bl/z : double* z z [̂double*/i1 z z ẑ1] dbl/z ,

but our soundness criterion will still require that the constant d̂bl/z check at the type

double* z z [̂double*/i2 z ẑ2 z ẑ2] dbl/z, the other possibility. The apparent mismatch is
resolved by the fact that the formation proofs are irrelevant, and so the two types are
considered equal. Without proof irrelevance, the two types would be distinct and we would
have a counterexample to the soundness theorem (Theorem 6.1) we prove below.

6.3. Subsorting. We now return to the question of how the translation handles subsorting.
Recall that an LFR signature can include subsorting declarations between sort family con-
stants, s1≤s2. For instance, continuing with our running example of the natural numbers,
we might note that any nat that is zero is even by declaring:

zero ≤ even.

Such a declaration may seem redundant, since the only thing declared to have sort zero
has already been declared to have sort even, but it may be necessary given the inherently
open-ended nature of an LF signature. We may find ourselves later in a situation where we
have a new hypothesis x : zero, and without the inclusion, we would not be able to conclude
that x : even. For example the derivation of · ⊢ λx. x⇐ zero→ even requires the inclusion
to satisfy the second premise of the switch rule.

x:zero ⊢ x⇒ zero
var

zero≤even ∈ Σ
zero ≤ even

x:zero ⊢ x⇐ even
switch

· ⊢ λx. x⇐ zero→ even
Π-I

How should we translate that derivation into a proof? As we saw earlier, the representation
of zero → even as a predicate is λN . Πx:nat. zero x → even (N @ x), and applying this
predicate to λx. x yields the type we need the proof to have: Πx:nat. zero x → even x. It is
not much of a leap of the imagination to see that one solution is simply to posit a constant
of the appropriate type:

zero-even : Πx:nat. zero x → even x.

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 35

Now the translation of λx. x⇐ zero→ even can be simply the η-expansion of this constant:
λx. λx̂. zero-even x x̂. This makes intuitive sense: the constant zero-even witnesses the
meaning of the declaration zero ≤ even under the subset interpretation.

Our example leads us to a rule: a subsorting declaration s1≤s2 will will translate into
a declaration for a coercion constant s1-s2.

⊢ Σ sig ❀ Σ̂ s1❁a::L ∈ Σ s2❁a::L ∈ Σ a:K ∈ Σ K
≤
❀ K̂s

⊢ Σ, s1≤s2 sig ❀ Σ̂, s1-s2:K̂s(a, ŝ1, s1, ŝ2, s2)

The auxiliary judgment K
≤
❀ K̂s yields a metafunction describing the type of proof coer-

cions between sorts that refine a type family of kind K. The metafunction K̂s takes five
arguments: the refined type, the formation family and predicate family for the domain
of the coercion, and the formation family and predicate family for the codomain of the
coercion. As before, the Π translation adds an argument to each of the meta-arguments.

K
≤
❀ K̂

Πx:A.K
≤
❀ λ(P ,Q1f ,Q1,Q2f ,Q2). Πx:A. K̂(P ′,Q1

′
f ,Q

′
1,Q2

′
f ,Q

′
2)

(where, for each P , P ′ = P ηA(x))

At the base kind type, the rule outputs the type of the coercion:

type
≤
❀ λ(P ,Q1f ,Q1,Q2f ,Q2). Πf1:Q1f .Πf2:Q2f .Πx:P.Q1 [f1] x→ Q2 [f2] x

Essentially, this is the type of coercions, given x, from proofs of Q1 x to proofs of Q2 x,
but in the general case, we must pass the predicates Q1 and Q2 evidence that they are
well-formed, so the coercion requires formation proofs as inputs as well.

How do these coercions work? Recall that subsorting need only be defined at base
sorts Q, and there, it is simply the application-compatible, reflexive, transitive closure
of the declared relation. For the purposes of the translation, we employ an equivalent
algorithmic formulation of subsorting. Following the inspiration of bidirectional typing,
there are two judgments: a checking judgment that takes two base sorts as inputs and a
synthesis judgment that takes one base sort as input and outputs another base sort that is
one step higher in the subsort hierarchy.

The synthesis judgment constructs a coercion from the new coercion constants in the
signature.

s1≤s2 ∈ Σ

s1 ≤ s2 ❀ s1-s2

Q1 ≤ Q2 ❀ Q̂1-Q2

Q1 N ≤ Q2 N ❀ Q̂1-Q2 N

The checking judgment, on the other hand, constructs a meta-level coercion between proofs
of the two sorts. It is defined by two rules: a rule of reflexivity and a rule to climb the
subsort hierarchy.

Q1 = Q2

Γ ⊢ Q1 ≤ Q2 ❀ λ(R,R1). R1
(refl)

Q1 ≤ Q′
❀ Q̂1-Q′ Γ ⊢ Q1 ❁ P ⇒ sort ❀ Q̂1

Γ ⊢ Q′ ≤ Q2 ❀ F Γ ⊢ Q′
❁ P ⇒ sort ❀ Q̂′

Γ ⊢ Q1 ≤ Q2 ❀ λ(R,R1). F (R, Q̂1-Q′ Q̂1 Q̂′ R R1)
(climb)

36 W. LOVAS AND F. PFENNIG

The reflexivity rule’s metacoercion simply returns the proof it is given, while the climb rule

composes the actual coercion Q̂1-Q′ with the metacoercion F . Two extra premises generate
the necessary formation proofs.

Finally, we have described enough of the translation to explain the rule most central to
the design of LFR, the switch rule.

Γ ⊢ R⇒ Q′
❀ R̂ Γ ⊢ Q′ ≤ Q ❀ F

Γ ⊢ R⇐ Q ❀ F (R, R̂)
(switch)

The first premise produces a proof R̂ that R satisfies property Q′, and the second premise
generates the meta-level proof coercion that transforms such a proof into a proof that R
satisfies property Q.

Having sketched the translation and the role of proof irrelevance, we now review some
metatheoretic results.

6.4. Correctness. Our translation is both sound and complete with respect to the original
system of LF with refinement types, and so our correctness criteria will come in two flavors.

Soundness theorems tell us that the result of a translation is well-formed. But even
more importantly than telling us that our translation is on some level correct, they serve as
an independent means of understanding the translation. In a sense, a soundness theorem
can be read as the meta-level type of a translation judgment—a specification of its intended
behavior—and just as types serve as an organizing principle for the practicing programmer,
so too do soundness theorems serve the thoughtful theoretician. We explain our soundness
theorems, then, not only to demonstrate the sensibility of our translation, but also to aid
the reader in understanding its purpose.

In what follows, form(Q) represents the formation family for a base sort Q.

form(s) = ŝ form(Q N) = form(Q) N

Theorem 6.1 (Soundness). Suppose ⊢ Γ ctx ❀ Γ̂ and ⊢ Σ sig ❀ Σ̂. Then:

(1) If Γ ⊢ S ❁ A ❀ Ŝ and Γ ⊢ N ⇐ S ❀ N̂ , then Γ̂ ⊢
Σ̂
N̂ ⇐ Ŝ(N).

(2) If Γ ⊢ R⇒ S ❀ R̂, then Γ ⊢ S ❁ A ❀ Ŝ and Γ̂ ⊢Σ̂ R̂⇒ Ŝ(ηA(R))

(for some A and Ŝ).

(3) If Γ ⊢ S ❁ A ❀ Ŝ and Γ ⊢ N ⇐ A, then Γ̂ ⊢Σ̂ Ŝ(N)⇐ type.

(4) If Γ ⊢ Q ❁ P ⇒ L ❀ Q̂, then for some K, L̂f , and K̂p,

• Γ ⊢ L ❁ K
form
❀ L̂f and Γ̂ ⊢Σ̂ Q̂⇒ L̂f(form(Q)), and

• K
pred
❀ K̂p and Γ̂ ⊢Σ̂ Q⇒ K̂p(form(Q), P).

(5) If Γ ⊢ L ❁ K
form
❀ L̂f and Γ ⊢ P ⇒ K, then Γ̂ ⊢

Σ̂
L̂f(P)⇐ type.

(6) If K
pred
❀ K̂p, Γ ⊢ Qf ⇒ K, and Γ ⊢ P ⇒ K, then Γ̂ ⊢Σ̂ K̂p(Qf ,P)⇐ kind.

(7) If Q1 ≤ Q2 ❀ Q̂1-Q2, Γ ⊢ Q1 ❁ P ⇒ L, Γ ⊢ P ⇒ K, and K
≤
❀ K̂s, then

Γ ⊢ Q2 ❁ P ⇒ L and Γ̂ ⊢ Q̂1-Q2 ⇒ K̂s(P , form(Q1),Q1, form(Q2),Q2).

(8) If Γ ⊢ R ⇒ P , Γ ⊢ Qi ❁ P ❀ Q̂i, Γ ⊢ Q1 ≤ Q2 ❀ F , and Γ̂ ⊢ R1 ⇒ Q̂1(R), then

Γ̂ ⊢ F (R,R1)⇒ Q̂2(R).

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 37

(9) If K
≤
❀ K̂s, K

pred
❀ K̂p, Γ ⊢ P ⇒ K, Γ ⊢ Qif ⇒ K, and Γ̂ ⊢ Qi ⇒ K̂p(Qif ,P), then

Γ̂ ⊢ K̂s(P ,Q1f ,Q1,Q2f ,Q2)⇐ type.

Proof. By induction on each clause’s main input derivation. Several clauses must be proved
mutually; for instance, clauses 1, 2, 8, and 4 are all mutual, since the rules for translating
terms refer to the translation of subsorting, the rules for translating subsorting refer to the
class synthesis translation, and since sorts may be dependent, the rules for class synthesis
translation refer back to the term translation.

The proofs use entirely standard syntactic methods, but they appeal to several key lemmas
about the structure of the translation.

Lemma 6.2 (Erasure). If Γ ⊢ J ❀ X, then Γ ⊢ J .

Proof. Straightforward induction on the structure of the translation derivation. The trans-
lation rules are premise-wise strictly more restrictive than the original LFR rules, except
for the subsorting rules, which are also more restrictive in the sense that they force rules to
be applied in a certain order.

Lemma 6.3 (Reconstruction). If Γ ⊢ J , then for some X, Γ ⊢ J ❀ X.

Proof. By induction on the structure of the LFR derivation. The cases for the subsorting
rules require us to demonstrate that an LFR subsorting derivation can be put into “algo-
rithmic form”, with all uses of reflexivity and transitivity outermost and right-nested, like
the algorithmic translation rules refl and climb. We also make use of the tacit assumption
that the judgment Γ ⊢ J itself is well-formed, e.g. if J = N ⇐ S, then Γ ⊢ S ❁ A,
which ensures that we will have the necessary formation premises when we need to apply
the climb rule.

Erasure and reconstruction substantiate the claim that our translation is derivation-directed
by allowing us to move freely between translation judgments and ordinary ones. Using
erasure and reconstruction, we can leverage all of the LFR metatheory without reproving
it for translation judgments. For example, several cases require us to substitute into a
translation derivation: we can apply erasure, appeal to LFR’s substitution theorem, and
invoke reconstruction to get the output we require.

But since reconstruction only gives us some output X, we may not know that it is the
one that suits our needs. Therefore, we usually require another lemma, compositionality,
to tell us that the translation commutes with substitution. There are several such lemmas;
we show here the one for sort translation.

Lemma 6.4 (Compositionality). Let σ denote [M/x]A .

(1) If ΓL, x:: ,ΓR ⊢ S ❁ A ❀ Ŝ and ΓL, σΓR ⊢ σS ❁ σA ❀ Ŝ′, then σŜ(N) = Ŝ′(σN),

(2) If ΓL, x:: ,ΓR ⊢ L ❁ K
form
❀ L̂ and Γ, σΓR ⊢ σL ❁ σK

form
❀ L̂′, then σL̂(P) = L̂′(σP),

and similarly for K
≤
❀ K̂s and K

pred
❀ K̂p.

Proof. Straightforward induction using functionality of hereditary substitution. The base
case of the first clause leverages the irrelevance introduced in the Q-F translation rule: both
sort formation derivations will have a premise outputting evidence for the well-formedness
of the sort, and there is no guarantee they will output the same evidence, but since the
evidence is relegated to an irrelevant position, its identity is ignored. The second clause’s
Π case appeals to the first clause, since Π classes contain sorts.

38 W. LOVAS AND F. PFENNIG

Finally, there is a lemma demonstrating that proof variables only ever occur irrelevantly,
so substituting for them cannot change the identity of a sort or class meta-function output
by the translation.

Lemma 6.5 (Proof Variable Substitution).

(1) If ΓL, x::S0❁A0,ΓR ⊢ S ❁ A ❀ Ŝ then [M/x̂]aA0
Ŝ(N) = Ŝ([M/x̂]nA0

N).

(2) If ΓL, x::S0❁A0,ΓR ⊢ L ❁ K
form
❀ L̂ then [M/x̂]aA0

L̂(P) = L̂([M/x̂]pA0
P).

Proof. Straightforward induction, noting in the base case, the Q-F rule, the only term that
could depend on x̂ is in an irrelevant position.

Completeness theorems tell us that our target is not too rich: that everything we find
evidence of in the codomain of the translation actually holds true in its domain. While
important for establishing general correctness, completeness theorems are not as informative
as soundness theorems, so we give here only the cases for terms—and in any case, those are
the only cases we require to fulfill our goal of preserving adequacy.

In stating completeness, we syntactically isolate the set of terms that could represent

proofs using metavariables R̂ and N̂ .

R̂ ::= ĉ | x̂ | R̂ N N̂ | π1 R̂ | π2 R̂

N̂ ::= F̂ | λx. λx̂. N̂ | 〈N̂1, N̂2〉 | 〈〉

F̂ ::= R̂ | Q̂1-Q2 Q̂1 Q̂2 R F

Q̂1-Q2 ::= s1-s2 | Q̂1-Q2 N

Q̂ ::= ŝ/i | Q̂ N N̂ | π1 Q̂ | π2 Q̂

Theorem 6.6 (Completeness). Suppose ⊢ Γ ctx ❀ Γ̂ and ⊢ Σ sig ❀ Σ̂. Then:

(1) If Γ ⊢ S ❁ A ❀ Ŝ and Γ̂ ⊢Σ̂ N̂ ⇐ Ŝ(N), then Γ ⊢ N ⇐ S.

(2) If Γ̂ ⊢
Σ̂
R̂⇒ B, then Γ ⊢ S ❁ A ❀ Ŝ, B = Ŝ(ηA(R)), and Γ ⊢ R⇒ S (for some S, A,

Ŝ, and R).

(3) If Γ̂ ⊢ F̂ ⇒ Q [Q̂] R, then Γ̂ ⊢ R̂⇐ Q.

(4) If Γ̂ ⊢ Q̂1-Q2 ⇒ B, then K
≤
❀ K̂s, B = K̂s(P , form(Q1),Q1, form(Q2),Q2), and

Q1 ≤ Q2 (for some K, K̂s, P , Q1, and Q2).

(5) If Γ̂ ⊢ Q̂⇒ B, then Γ ⊢ L ❁ K
form
❀ L̂f , B = L̂f(form(Q)), and Γ ⊢ Q ❁ P ⇒ L (for

some L, K, L̂f , and Q).

Proof. By induction over the structure of the proof term.

Adequacy of a representation is generally shown by exhibiting a compositional bijection be-
tween informal entities and terms of certain LFR sorts. Since we have undertaken a subset
interpretation, the set of terms of any LFR sort are unchanged by translation, and so any
bijective correspondence between those terms and informal entities remains after transla-
tion. Furthermore, soundness and completeness tell us that our interpretation preserves
and reflects the derivability of any refinement type judgments over those terms. Thus, we
have achieved our main goal: any adequate LFR representation can be translated to an
adequate LFI representation.

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 39

7. Conclusion

Logical frameworks are metalanguages specifically designed so that common concepts and
notations in logic and the theory of programming languages can be represented elegantly
and concisely. LF [HHP93] intrinsically supports α-conversion, capture-avoiding substitu-
tion, and hypothetical and parametric judgments, but as with any such enterprise, certain
patterns fall out of its scope and must be encoded indirectly. SPACE One pattern is the
ability to form regular subsets of types already defined. We address this by extending LF
with type refinements, leveraging the modern view of LF as a calculus of canonical forms to
obtain a metatheoretically simple yet expressive system, LFR. Another pattern is to ignore
the identities of proofs, relying only on their existence. This is addressed in LF extended
with proof irrelevance, LFI [Pfe01a, RP08]. We have shown that our system of refinement
types can be mapped into LFI in a bijective manner, preserving adequacy theorems for LFR
representations in LFI.

In the methodology of logical frameworks research, it is important to understand the
cost of such a translation: how much more complicated are encodings in the target frame-
work, and how much more difficult is it to work with them? We cannot measure this cost
precisely, but we hope it is evident from the definition of the translation and the examples
that the price is considerable. Even if in special cases more direct encodings are possible,
we believe our general translation could not be simplified much, given the explicit goal to
preserve the adequacy of representations. Other translations from programming languages,
such as coercion interpretations where sorts are translated to distinct types and subsorting
to coercions, appear even more complex because adequacy depends on certain functional
equalities between coercions. Our preliminary conclusion is that refinement types in logical
frameworks provide elegant and immediate representations that are not easy to simulate
without them, providing a solid argument for their inclusion in the next generation of
frameworks.

Of course, much work remains to be done before refinement types can be considered a
practical addition. First, it will be necessary to develop a sufficiently complete algorithm
for reconstructing the sorts of implicitly Π-quantified metavariables in order to allow the
elegant encodings we imagine without burdensome redundancy. Furthermore, it would be
useful to have a logic programming interpretation of LFR declarations and the ability to
perform analyses like coverage and termination checking on declarations qua programs; to
enable such an interpretation, we will have to develop an algorithm for sorted unification,
generalizing existing work on pattern unification in the context of logical frameworks. It
may also be a worthwhile endeavor to formalize the metatheory of LFR and its subset
interpretation in a metalogical framework or proof assistant; although we have avoided
doing so due to the high cost of working around current technological limitations in proof
assistants, the present work has been carried out in sufficient detail that formalization should
not be particularly difficult beyond the technical challenge of representing a dependently
typed calculus.

Refinement types have been also been proposed for functional programming [Fre94,
DP04, Dav05], most recently in conjunction with a limited form of dependent types [Dun07].
Proof irrelevance is already integrated in this setting, and also available in general type
theories such as NuPrl or Coq. One can ask the same question here: Can we simply
eliminate refinement types and just work with dependent types and proof irrelevance? The
results in this paper lend support to the conjecture that this can be accomplished by a

40 W. LOVAS AND F. PFENNIG

uniform translation. On the other hand, just as here, it seems there would likely be a high
cost in terms of brevity in order to maintain a bijection between well-sorted data in the
source and dependently well-typed data in the target of the translation.

Acknowledgements. Thanks to Jason Reed for many fruitful discussions on the topic of
proof irrelevance. Thanks to the anonymous referees for offering insightful commentary on
how to clarify our presentation.

References

[AB04] Steven Awodey and Andrej Bauer. Propositions as [types]. Journal of Logic and Computation,
14(4):447–471, 2004.

[AC01] David Aspinall and Adriana B. Compagnoni. Subtyping dependent types. Theoretical Computer
Science, 266(1-2):273–309, 2001.

[BTCGS91] Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. Inheritance as
implicit coercion. Information and Computation, 93(1):172–221, July 1991.

[C+86] Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof Development Sys-
tem. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata , 2007. release October, 12th 2007.

[Cra03] Karl Crary. Toward a foundational typed assembly language. In G. Morrisett, editor, Proceedings
of the 30th Annual Symposium on Principles of Programming Languages (POPL ’03), pages
198–212, New Orleans, Louisiana, January 2003. ACM Press.

[Dav05] Rowan Davies. Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon University,
May 2005. Available as Technical Report CMU-CS-05-110.

[DP04] Joshua Dunfield and Frank Pfenning. Tridirectional typechecking. In Xavier Leroy, editor, ACM
Symp. Principles of Programming Languages (POPL ’04), pages 281–292, Venice, Italy, January
2004.

[Dun07] Joshua Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie Mellon Univer-
sity, August 2007. Available as Technical Report CMU-CS-07-129.

[DZ92] Philip W. Dart and Justin Zobel. A regular type language for logic programs. In Frank Pfenning,
editor, Types in Logic Programming, pages 157–187. MIT Press, Cambridge, Massachusetts,
1992.

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceedings of the SIGPLAN
’91 Symposium on Language Design and Implementation, pages 268–277, Toronto, Ontario,
June 1991. ACM Press.

[Fre94] Tim Freeman. Refinement Types for ML. PhD thesis, Carnegie Mellon University, March 1994.
Available as Technical Report CMU-CS-94-110.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of
the Association for Computing Machinery, 40(1):143–184, January 1993.

[HL07] Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical framework. Journal
of Functional Programming, 17(4–5):613–673, July 2007.

[HP05] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory.
Transactions on Computational Logic, 6:61–101, January 2005.

[LCH07] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized metatheory of Standard
ML. In Matthias Felleisen, editor, Proceedings of the 34th Annual Symposium on Principles of
Programming Languages (POPL ’07), pages 173–184, Nice, France, January 2007. ACM Press.

[LP08a] William Lovas and Frank Pfenning. A bidirectional refinement type system for LF. Electronic
Notes in Theoretical Computer Science, 196:113–128, January 2008.

[LP08b] William Lovas and Frank Pfenning. A bidirectional refinement type system for LF. Technical
Report CMU-CS-08-129, Department of Computer Science, Carnegie Mellon University, 2008.

http://www.grappa.univ-lille3.fr/tata

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 41

[LP09] William Lovas and Frank Pfenning. Refinement types as proof irrelevance. In Pierre-Louis
Curien, editor, Proceedings of 9th International Conference on Typed Lambda Calculi and Ap-
plications (TLCA 2009), number 5608 in Lecture Notes in Computer Science, pages 157–171.
Springer, 2009.

[LRDR07] Luigi Liquori and Simona Ronchi Della Rocca. Intersection-types à la Church. Information and
Computation, 205(9):1371–1386, 2007.

[NPP07] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
Transactions on Computational Logic, 2007. To appear.

[Pfe93] Frank Pfenning. Refinement types for logical frameworks. In Herman Geuvers, editor, Informal
Proceedings of the Workshop on Types for Proofs and Programs, pages 285–299, Nijmegen, The
Netherlands, May 1993.

[Pfe00] Frank Pfenning. Structural cut elimination: I. intuitionistic and classical logic. Information and
Computation, 157(1-2):84–141, 2000.

[Pfe01a] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory. In
J. Halpern, editor, Proceedings of the 16th Annual Symposium on Logic in Computer Science
(LICS’01), pages 221–230, Boston, Massachusetts, June 2001. IEEE Computer Society Press.

[Pfe01b] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, chapter 17, pages 1063–1147. Elsevier Science and MIT Press, 2001.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical framework
for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International Conference
on Automated Deduction (CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-Verlag
LNAI 1632.

[Rey89] John C. Reynolds. Even normal forms can be hard to type. Unpublished, marked Carnegie
Mellon University, December 1, 1989.

[Rey91] John C. Reynolds. The coherence of languages with intersection types. In Takayasu Ito and
Albert R. Meyer, editors, Theoretical Aspects of Computer Software, volume 526 of Lecture
Notes in Computer Science, pages 675–700, Berlin, 1991. Springer-Verlag.

[Rey96] John C. Reynolds. Design of the programming language Forsythe. Report CMU–CS–96–146,
Carnegie Mellon University, Pittsburgh, Pennsylvania, June 28, 1996.

[RP08] Jason Reed and Frank Pfenning. Proof irrelevance in a logical framework. Unpublished draft,
July 2008.

[Sar09] Susmit Sarkar. A Dependently Typed Programming Language, with Applications to Founda-
tional Certified Code Systems. PhD thesis, Carnegie Mellon University, May 2009. Available as
Technical Report CMU-CS-09-128.

[Sch03] Carsten Schürmann. Towards practical functional programming with logical frameworks. Un-
published, available at http://cs-www.cs.yale.edu/homes/carsten/delphin/, July 2003.

[SS88] Anne Salvesen and Jan M. Smith. The strength of the subset type in Martin-Löf’s type theory.
In Proceedings of LICS’88, pages 384–391. IEEE Computer Society Press, 1988.

[WCPW02] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent logical
framework I: Judgments and properties. Technical Report CMU-CS-02-101, Department of
Computer Science, Carnegie Mellon University, 2002. Revised May 2003.

http://cs-www.cs.yale.edu/homes/carsten/delphin/

42 W. LOVAS AND F. PFENNIG

Appendix A. Complete LFR Rules

In the judgment forms below, superscript + and − indicate a judgment’s “inputs” and
“outputs”, respectively.

A.1. Grammar.

Kind level

K ::= type | Πx:A.K kinds

L ::= sort | Πx::S❁A.L | ⊤ | L1 ∧ L2 classes

Type level

P ::= a | P N atomic type families

A ::= P | Πx:A1. A2 canonical type families

Q ::= s | Q N atomic sort families

S ::= Q | Πx::S1❁A1. S2 | ⊤ | S1 ∧ S2 canonical sort families

Term level

R ::= c | x | R N atomic terms

N ::= R | λx.N canonical terms

Signatures and contexts

Σ ::= · | Σ,D signatures

D ::= a:K | c:A | s❁a::L | s1≤s2 | c::S declarations

Γ ::= · | Γ, x::S❁A contexts

A.2. Expansion and Substitution. All bound variables are tacitly assumed to be suffi-
ciently fresh.

(A)− = α

α, β ::= a | α1 → α2

(a)− = a

(P N)− = (P)−

(Πx:A.B)− = (A)− → (B)−

ηα(R) = N

ηa(R) = R

ηα→β(R) = λx. ηβ(R ηα(x))

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 43

[N0/x0]
n
α0

N = N ′

[N0/x0]
rn
α0

R = (N, a)

[N0/x0]
n
α0

R = N

[N0/x0]
rr
α0

R = R′

[N0/x0]
n
α0

R = R′

[N0/x0]
n
α0

N = N ′

[N0/x0]
n
α0

λx.N = λx.N ′

[N0/x0]
rr
α0

R = R′

x 6= x0

[N0/x0]
rr
α0

x = x [N0/x0]
rr
α0

c = c

[N0/x0]
rr
α0

R1 = R′
1 [N0/x0]

n
α0

N2 = N ′
2

[N0/x0]
rr
α0

R1 N2 = R′
1 N ′

2

[N0/x0]
rn
α0

R = (N ′, α′)

[N0/x0]
rn
α0

x0 = (N0, α0)
(subst-rn-var)

[N0/x0]
rn
α0

R1 = (λx.N1, α2 → α1)
[N0/x0]

n
α0

N2 = N ′
2 [N ′

2/x]
n
α2

N1 = N ′
1

[N0/x0]
rn
α0

R1 N2 = (N ′
1, α1)

(subst-rn-β)

(Substitution for other syntactic categories (q, p, s, a, l, k, γ) is compositional.)

44 W. LOVAS AND F. PFENNIG

A.3. Kinding.

Γ ⊢Σ L+
❁ K+

Γ ⊢ sort ❁ type

Γ ⊢ S ❁ A Γ, x::S❁A ⊢ L ❁ K

Γ ⊢ Πx::S❁A.L ❁ Πx:A.K

Γ ⊢ ⊤ ❁ K

Γ ⊢ L1 ❁ K Γ ⊢ L2 ❁ K

Γ ⊢ L1 ∧ L2 ❁ K

Γ ⊢Σ Q+
❁ P− ⇒ L−

s❁a::L ∈ Σ

Γ ⊢ s ❁ a⇒ L

Γ ⊢ Q ❁ P ⇒ Πx::S❁A.L Γ ⊢ N ⇐ S [N/x]lA L = L′

Γ ⊢ Q N ❁ P N ⇒ L′

Γ ⊢ Q ❁ P ⇒ L1 ∧ L2

Γ ⊢ Q ❁ P ⇒ L1

Γ ⊢ Q ❁ P ⇒ L1 ∧ L2

Γ ⊢ Q ❁ P ⇒ L2

Γ ⊢Σ S+
❁ A+

Γ ⊢ Q ❁ P ′ ⇒ L P ′ = P L = sort

Γ ⊢ Q ❁ P
(Q-F)

Γ ⊢ S ❁ A Γ, x::S❁A ⊢ S′
❁ A′

Γ ⊢ Πx::S❁A.S′
❁ Πx:A.A′

(Π-F)

Γ ⊢ ⊤ ❁ A
(⊤-F)

Γ ⊢ S1 ❁ A Γ ⊢ S2 ❁ A

Γ ⊢ S1 ∧ S2 ❁ A
(∧-F)

Note: no intro rules for classes ⊤ and L1 ∧ L2.

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 45

A.4. Typing.

Γ ⊢Σ R+ ⇒ S−

c::S ∈ Σ

Γ ⊢ c⇒ S
(const)

x::S❁A ∈ Γ

Γ ⊢ x⇒ S
(var)

Γ ⊢ R1 ⇒ Πx::S2❁A2. S Γ ⊢ N2 ⇐ S2 [N2/x]
s
A2

S = S′

Γ ⊢ R1 N2 ⇒ S′
(Π-E)

Γ ⊢ R⇒ S1 ∧ S2

Γ ⊢ R⇒ S1
(∧-E1)

Γ ⊢ R⇒ S1 ∧ S2

Γ ⊢ R⇒ S2
(∧-E2)

Γ ⊢Σ N+ ⇐ S+

Γ ⊢ R⇒ Q′ Q′ ≤ Q

Γ ⊢ R⇐ Q
(switch)

Γ, x::S❁A ⊢ N ⇐ S′

Γ ⊢ λx.N ⇐ Πx::S❁A.S′
(Π-I)

Γ ⊢ N ⇐ ⊤
(⊤-I)

Γ ⊢ N ⇐ S1 Γ ⊢ N ⇐ S2

Γ ⊢ N ⇐ S1 ∧ S2
(∧-I)

Q+
1 ≤ Q+

2

Q1 = Q2

Q1 ≤ Q2

Q1 ≤ Q′ Q′ ≤ Q2

Q1 ≤ Q2

s1≤s2 ∈ Σ

s1 ≤ s2

Q1 ≤ Q2

Q1 N ≤ Q2 N

46 W. LOVAS AND F. PFENNIG

A.5. Signatures and Contexts.

⊢ Σ sig

⊢ · sig

⊢ Σ sig · ⊢Σ∗ K ⇐ kind a:K ′ 6∈ Σ

⊢ Σ, a:K sig

⊢ Σ sig · ⊢Σ∗ A⇐ type c:A′ 6∈ Σ

⊢ Σ, c:A sig

⊢ Σ sig a:K ∈ Σ · ⊢Σ L ❁ K s❁a′::L′ 6∈ Σ

⊢ Σ, s❁a::L sig

⊢ Σ sig c:A ∈ Σ · ⊢Σ S ❁ A c::S′ 6∈ Σ

⊢ Σ, c::S sig

⊢ Σ sig s1❁a::L ∈ Σ s2❁a::L ∈ Σ

⊢ Σ, s1≤s2 sig

⊢Σ Γ ctx

⊢ · ctx

⊢ Γ ctx Γ ⊢ S ❁ A

⊢ Γ, x::S❁A ctx

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 47

Appendix B. Complete Translation Rules

In the judgment forms below, superscript + and − indicate a judgment’s “inputs” and
“outputs”, respectively.

B.1. Kinding.

Γ ⊢Σ L+
❁ K+ form

❀ L̂−

Γ ⊢ sort ❁ type
form
❀ λQf . Qf

Γ ⊢ S ❁ A ❀ Ŝ Γ, x::S❁A ⊢ L ❁ K
form
❀ L̂

Γ ⊢ Πx::S❁A.L ❁ Πx:A.K
form
❀ λQf. Πx:A.Πx̂:Ŝ(ηA(x)). L̂(Qf ηA(x))

Γ ⊢ ⊤ ❁ K
form
❀ λQf . 1

Γ ⊢ L1 ❁ K
form
❀ L̂1 Γ ⊢ L2 ❁ K

form
❀ L̂2

Γ ⊢ L1 ∧ L2 ❁ K
form
❀ λQf . L̂1(Qf)× L̂2(Qf)

Γ ⊢Σ Q+
❁ P− ⇒ L−

❀ Q̂−

s❁a::L ∈ Σ

Γ ⊢ s ❁ a⇒ L ❀ ŝ/i

Γ ⊢ Q ❁ P ⇒ Πx::S❁A.L ❀ Q̂ Γ ⊢ N ⇐ S ❀ N̂ [N/x]lA L = L′

Γ ⊢ Q N ❁ P N ⇒ L′
❀ Q̂ N N̂

Γ ⊢ Q ❁ P ⇒ L1 ∧ L2 ❀ Q̂

Γ ⊢ Q ❁ P ⇒ L1 ❀ π1 Q̂

Γ ⊢ Q ❁ P ⇒ L1 ∧ L2 ❀ Q̂

Γ ⊢ Q ❁ P ⇒ L2 ❀ π2 Q̂

Γ ⊢Σ S+
❁ A+

❀ Ŝ−

Γ ⊢ Q ❁ P ′ ⇒ L ❀ Q̂ P ′ = P L = sort

Γ ⊢ Q ❁ P ❀ λN . Q [Q̂] N
(Q-F)

Γ ⊢ S ❁ A ❀ Ŝ Γ, x::S❁A ⊢ S′
❁ A′

❀ Ŝ′

Γ ⊢ Πx::S❁A.S′
❁ Πx:A.A′

❀ λN . Πx:A.Πx̂:Ŝ(ηA(x)). Ŝ′(N@x)
(Π-F)

Γ ⊢ ⊤ ❁ A ❀ λN . 1
(⊤-F)

Γ ⊢ S1 ❁ A ❀ Ŝ1 Γ ⊢ S2 ❁ A ❀ Ŝ2

Γ ⊢ S1 ∧ S2 ❁ A ❀ λN . Ŝ1(N)× Ŝ2(N)
(∧-F)

Note: no intro rules for classes ⊤ and L1 ∧ L2.

48 W. LOVAS AND F. PFENNIG

K+ pred
❀ K̂−

type
pred
❀ λ(Qf , P). Qf →÷ P → type

K
pred
❀ K̂

Πx:A.K
pred
❀ λ(Qf, P). Πx:A. K̂(Qf ηA(x), P ηA(x))

K+ ≤
❀ K̂−

type
≤
❀ λ(P ,Q1f ,Q1,Q2f ,Q2). Πf1:Q1f .Πf2:Q2f .Πx:P.Q1 [f1] x→ Q2 [f2] x

K
≤
❀ K̂

Πx:A.K
≤
❀ λ(P ,Q1f ,Q1,Q2f ,Q2). Πx:A. K̂(P ′,Q1

′
f ,Q

′
1,Q2

′
f ,Q

′
2)

(where, for each P , P ′ = P ηA(x))

REFINEMENT TYPES FOR LOGICAL FRAMEWORKS 49

B.2. Typing.

Γ ⊢Σ R+ ⇒ S−
❀ R̂−

c::S ∈ Σ

Γ ⊢ c⇒ S ❀ ĉ
(const)

x::S❁A ∈ Γ

Γ ⊢ x⇒ S ❀ x̂
(var)

Γ ⊢ R1 ⇒ Πx::S2❁A2. S ❀ R̂1 Γ ⊢ N2 ⇐ S2 ❀ N̂2 [N2/x]
s
A2

S = S′

Γ ⊢ R1 N2 ⇒ S′
❀ R̂1 N2 N̂2

(Π-E)

Γ ⊢ R⇒ S1 ∧ S2 ❀ R̂

Γ ⊢ R⇒ S1 ❀ π1 R̂
(∧-E1)

Γ ⊢ R⇒ S1 ∧ S2 ❀ R̂

Γ ⊢ R⇒ S2 ❀ π2 R̂
(∧-E2)

Γ ⊢Σ N+ ⇐ S+
❀ N̂−

Γ ⊢ R⇒ Q′
❀ R̂ Γ ⊢ Q′ ≤ Q ❀ F

Γ ⊢ R⇐ Q ❀ F (R, R̂)
(switch)

Γ, x::S❁A ⊢ N ⇐ S′
❀ N̂

Γ ⊢ λx.N ⇐ Πx::S❁A.S′
❀ λx. λx̂. N̂

(Π-I)

Γ ⊢ N ⇐ ⊤❀ 〈〉
(⊤-I)

Γ ⊢ N ⇐ S1 ❀ N̂1 Γ ⊢ N ⇐ S2 ❀ N̂2

Γ ⊢ N ⇐ S1 ∧ S2 ❀ 〈N̂1, N̂2〉
(∧-I)

Γ ⊢ Q+
1 ≤ Q+

2 ❀ F−

Q1 = Q2

Γ ⊢ Q1 ≤ Q2 ❀ λ(R,R1). R1
(refl)

Q1 ≤ Q′
❀ Q̂1-Q′ Γ ⊢ Q1 ❁ P ⇒ sort ❀ Q̂1

Γ ⊢ Q′ ≤ Q2 ❀ F Γ ⊢ Q′
❁ P ⇒ sort ❀ Q̂′

Γ ⊢ Q1 ≤ Q2 ❀ λ(R,R1). F (R, Q̂1-Q′ Q̂1 Q̂′ R R1)
(climb)

Q+
1 ≤ Q−

2 ❀ Q̂1-Q2
−

s1≤s2 ∈ Σ

s1 ≤ s2 ❀ s1-s2

Q1 ≤ Q2 ❀ Q̂1-Q2

Q1 N ≤ Q2 N ❀ Q̂1-Q2 N

50 W. LOVAS AND F. PFENNIG

B.3. Signatures and Contexts.

⊢ Σ+ sig ❀ Σ̂−

⊢ · sig ❀ ·

⊢ Σ sig ❀ Σ̂ · ⊢Σ∗ K ⇐ kind a:K ′ 6∈ Σ

⊢ Σ, a:K sig ❀ Σ̂, a:K

⊢ Σ sig ❀ Σ̂ · ⊢Σ∗ A⇐ type c:A′ 6∈ Σ

⊢ Σ, c:A sig ❀ Σ̂, c:A

⊢ Σ sig ❀ Σ̂ a:K ∈ Σ · ⊢Σ L ❁ K
form
❀ L̂f K

pred
❀ K̂p s❁a′::L′ 6∈ Σ

⊢ Σ, s❁a::L sig ❀ Σ̂, ŝ:K, ŝ/i:L̂f(ŝ), s:K̂p(ŝ, a)

⊢ Σ sig ❀ Σ̂ c:A ∈ Σ · ⊢Σ S ❁ A ❀ Ŝ c::S′ 6∈ Σ

⊢ Σ, c::S sig ❀ Σ̂, ĉ:Ŝ(ηA(c))

⊢ Σ sig ❀ Σ̂ s1❁a::L ∈ Σ s2❁a::L ∈ Σ a:K ∈ Σ K
≤
❀ K̂

⊢ Σ, s1≤s2 sig ❀ Σ̂, s1-s2:K̂(a, ŝ1, s1, ŝ2, s2)

⊢Σ Γ+ ctx ❀ Γ̂−

⊢ · ctx ❀ ·

⊢ Γ ctx ❀ Γ̂ Γ ⊢ S ❁ A ❀ Ŝ

⊢ Γ, x::S❁A ctx ❀ Γ̂, x:A, x̂:Ŝ(ηA(x))

This work is licensed under the Creative Commons Attribution-NoDerivs License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or
send a letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA
94105, USA, or Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. System and Examples
	2.1. Example: Natural Numbers
	2.2. A Second Example: The lambda-Calculus

	3. Metatheory
	3.1. Hereditary Substitution
	3.2. Decidability
	3.3. Identity and Substitution Principles

	4. Subsorting at Higher Sorts
	5. Proof Irrelevance
	6. Interpretation
	6.1. Overview
	6.2. Dependent Base Sorts
	6.3. Subsorting
	6.4. Correctness

	7. Conclusion
	References
	Appendix A. Complete LFR Rules
	A.1. Grammar
	A.2. Expansion and Substitution
	A.3. Kinding
	A.4. Typing
	A.5. Signatures and Contexts

	Appendix B. Complete Translation Rules
	B.1. Kinding
	B.2. Typing
	B.3. Signatures and Contexts

