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Abstract. We present QBAL, an extension of Girard, Scedrov and Scott’s bounded linear
logic. The main novelty of the system is the possibility of quantifying over resource vari-
ables. This generalization makes bounded linear logic considerably more flexible, while
preserving soundness and completeness for polynomial time. In particular, we provide
compositional embeddings of Leivant’s RRW and Hofmann’s LFPL into QBAL.

1. Introduction

After two decades from the pioneering works that started it [3, 12, 13], implicit computa-
tional complexity is now an active research area at the intersection of mathematical logic
and computer science. Its aim is the study of machine-free characterizations of complexity
classes. The correspondence between an ICC system and a complexity class holds only ex-
tensionally, i.e., the class of functions (or problems) which are representable in the system
equals the complexity class. Usually, the system is a fragment or subsystem of a larger
programming language or logical system, the base system, in which other functions besides
the ones in the complexity class can be represented. Sometimes, one of the two inclusions
is shown by proving that any program (or proof) can be reduced with a bounded amount
of resources; in this case, we say that the system is intensionally sound. On the other hand,
ICC systems are very far from being intensionally complete: there are many programs (or
proofs) in the base system which are not in the ICC system, even if they can be evaluated
with the prescribed complexity bounds. Observe that this does not contradict extensional
completeness, since many different programs or proofs compute the same function.

Of course, a system that captures all and only the programs of the base system running
within a prescribed complexity bound will in all but trivial cases (e.g., empty base system)
fail to be recursively enumerable. Thus, in practice, one strives to improve intensional
expressivity by capturing important classes of examples and patterns.
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An obstacle towards applying ICC characterizations of complexity classes to program-
ming language theory is their poor intensional expressive power: most ICC systems do not
capture natural programs and therefore are not useful in practice. This problem has been
already considered in the literature. Some papers try to address the poor intensional ex-
pressive power of ICC systems by defining new languages or logics allowing to program in
ways which are not allowed in existing ICC systems. This includes quasi-interpretations [14]
and LFPL, by the second author [9]. Other papers analyze the intensional expressive power
of existing systems either by studying necessary conditions on captured programs or, more
frequently, by studying relations between existing ICC systems. One nice example is Mu-
rawski and Ong’s paper [15], in which the authors prove that a subsystem BC− of Bellantoni
and Cook’s function algebra BC [3] can be embedded into light affine logic [1] and that the
embedding cannot be extended to the whole BC. In this work, we somehow combine the
two approaches, by showing that:

• A new logical system, called Quantified Bounded Affine Logic (QBAL for short) can be
defined as a generalization of Girard, Scedrov and Scott’s bounded linear logic (BLL, [7]),
itself the first characterization of polynomial time computable functions as a fragment of
Girard’s linear logic [5].
• QBAL is intensionally at least as expressive as two heterogeneous, existing systems,
namely Leivant’s RRW [13] and LFPL.
Bounded linear logic has received relatively little attention in the past [10, 16]. This

is mainly due to its syntax, which is more involved than the one of other complexity-
related fragments of linear logic appeared more recently [6, 11, 4]. In bounded linear logic,
polynomials are part of the syntax and, as a consequence, computation time is controlled
explicitly ; in other words, BLL cannot be claimed to be a truly implicit characterization
of polynomial time. Moreover, it seems that BLL is not expressive enough to embed any
existing ICC system corresponding to polynomial time (except Lafont’s SLL [11], which
anyway was conceived as a very small fragment of BLL).

QBAL is obtained by endowing BLL with bounded quantification on resource vari-
ables. In other words, formulas of QBAL includes the ones of BLL, plus formulas like
∃x : {x ≤ y2}.A or ∀x, y : {x ≤ z, y ≤ z3}.B. Rules governing bounded quantification can
be easily added to BLL, preserving its good properties: QBAL is still a characterization of
the polytime functions in an extensional sense. Bounded quantification on resource vari-
ables, on the other hand, has tremendous consequences from an intensional point of view:
both RRW and LFPL can be compositionally embedded into QBAL. This means, arguably,
that programs in either RRW or LFPL can be rewritten in QBAL without major changes,
i.e., by mimicking their syntactic structure. Similar results are unlikely to hold for BLL, as
argued in sections 6 and 7 below.

Logical systems like QBAL or BLL cannot be considered as practical programming lan-
guages, although proofs can be interpreted as programs in the sense of Curry and Howard:
the syntax is too complicated and the potential programmer would have to provide quanti-
tative information in the form of polynomials while writing programs. On the other hand,
considering BLL or QBAL as type systems for the (linear) lambda calculus is interesting,
although type inference would be undecidable in general. In this paper, we advocate the
usefulness of QBAL as an intermediate language in which to prove soundness results about
other ICC systems.
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For all these reasons, QBAL is not just another system capturing polynomial time
computable functions.

The rest of this paper is organized as follows:

• In Section 2 the syntax of QBAL is introduced, and some interesting properties of the
system are proved, together with some examples on how to write programs as proofs of
QBAL.
• Section 3 introduces a set-theoretic semantics for QBAL, which is exploited in Section 4
to show polytime soundness of the system.
• Section 5 contains some informal discussion about compositional embeddings.
• Section 6 and 7 present compositional embeddings of LFPL and RRW into QBAL, respec-
tively.

2. Syntax

In this section, we present the syntax of QBAL, together with some of its main properties.
In the following, we adhere to the notation adopted in the relevant literature on BLL [7, 10].

2.1. Resource Polynomials and Constraints. Polynomials appears explicitly in the
formulas of QBAL, exactly as in BLL. A specific notation for polynomials was introduced in
[7], and will be adopted here. In the following, N is the set of natural numbers. Sometimes,
we use the vector notation x, which stands for the sequence x1, . . . , xn, where n is assumed
to be known from the context.

Definition 2.1.

• Given a set X of resource variables, a resource monomial over X is any finite product of
binomial coefficients

m∏

i=1

(
xi
ni

)

where the resource variables x1, . . . , xm are pairwise distinct and n1, . . . , nm are natural
numbers.
• A resource polynomial over X is any finite sum of monomials over X. FV (p) denotes the
set of resource variables in a resource polynomial p.

Resource polynomials are notations for polynomials with rational coefficients. However, by
construction, every resource polynomial maps natural numbers to natural numbers. An
example of a resource polynomial on {x} (actually a monomial) is

(
x

2

)

=
x · (x− 1)

2!
=

1

2
· x · (x− 1).

Resource polynomials satisfy some nice closure properties:

Lemma 2.2. All constant functions and the identity are resource polynomials. More-
over, resource polynomials are closed under binary sums, binary products, composition,
and bounded sums.
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Proof. Every constant function n is simply the resource polynomial

1 + . . .+ 1
︸ ︷︷ ︸

n times

=

(
x

0

)

+ . . .+

(
x

0

)

︸ ︷︷ ︸

n times

.

The identity is the resource polynomial
(
x

1

)

.

Closure under binary sums is trivial. To prove closure under products, it suffices to show
that the product of two monomials (on the same variable) is a resource polynomial, but
this boils down to show that the product of two binomial coefficients

(x
n

)
and

(x
m

)
can be

expressed itself as a resource polynomial. Actually, if m ≤ n, then
(
x

m

)

·

(
x

n

)

=

m∑

k=0

(
m+ n− k

k,m− k, n− k

)

·

(
x

m+ n− k

)

where (
m+ n− k

k,m− k, n− k

)

is a multinomial coefficient. The bounded sum
∑

x<y

p

where p is a resource polynomial not mentioning the variable y (but possibly mentioning
x) can be formed by observing that

n∑

k=0

(
j

k

)

=

(
n+ 1

k + 1

)

.

Closure by composition can be proved similarly.

As a consequence, every polynomial with natural number coefficients is a resource
polynomial. The main reason why resource polynomials were originally chosen as a notation
for polynomials in BLL [7] was closure under bounded sums, a property which is not true
in more traditional notation schemes. We follow the original paper here.

Already in BLL, an order relation on resource polynomials is an essential ingredient in
defining the syntax of formulas and proof. In QBAL, the notion is even more important:
two polynomials can be compared unconditionally or with an implicit assumption in the
form of a set of constraints.

Definition 2.3 (Constraints).

• A constraint is an inequality in the form p ≤ q, where p and q are resource polynomials.
A constraint p ≤ q holds (and we write |= p ≤ q) if it is true in the standard model. The
expression p < q stands for the constraint p + 1 ≤ q. Variables in p appear negatively,
while those in q appear positively in every constraint p ≤ q.
• A constraint set is a finite set of constraints. Constraint sets are denoted with letters
like C , D or E . A constraint p ≤ q is a consequence of a constraint set C (and we write
C |= p ≤ q) if p ≤ q is logical consequence of C . For every constraint sets C and D ,
C |= D iff C |= p ≤ q for every constraint p ≤ q in D .
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• For each constraint set C , we define an order ⊑C on resource polynomials by imposing
p ⊑C q iff C |= p ≤ q.

Resource polynomials are ordered extensionally: p ≤ q holds if p is smaller than q in the
standard model of arithmetic. This definition is different from the one from [7] which is
weaker but syntactical, defining p to be smaller or equal to q if and only if q − p is itself a
resource polynomial. This choice is motivated by the necessity of reasoning about resource
polynomials under some assumptions in a constraint set. On the other hand, it has some
consequences for the decidability of type checking, discussed in Section 2.4.

The following is a useful technical result about constraints:

Lemma 2.4. If x1, . . . , xn occur positively (negatively, respectively) in C , pi ⊑D qi for every
i and x /∈ FV (D), then C {p/x} ∪D |= C {q/x} (C {q/x} ∪D |= C {p/x}, respectively).

Proof. Take any constraint r ≤ t in C and suppose x1, . . . , xn occur positively in C . Then
x1, . . . , xn can occur in t but they cannot occur in r. So:

(r ≤ t){p/x} = r ≤ (t{p/x})

(r ≤ t){q/x} = r ≤ (t{q/x})

Now, since pi ⊑D qi for every i, t{p/x} ⊑D t{q/x}. As a consequence, C {p/x} ∪ D |=
C {q/x}. Analogously if x1, . . . , xn occur only negatively in C .

2.2. Formulas. Resource polynomials, constraints and constraint sets are the essential
ingredients in the definition of QBAL formulas:

Definition 2.5. Formulas of QBAL are defined as follows:

A ::= α(p1, . . . , pn) | A⊗A | A⊸ A | ∀α.A | !x<pA |

∀(x1, . . . , xn) : C .A | ∃(x1, . . . , xn) : C .A

where x /∈ FV (p), α ranges over a countable class of atoms (each with an arity n). We
will restrict ourselves to bounded first order quantification. In other words, whenever we
write ∀(x1, . . . , xn) : C .A or ∃(x1, . . . , xn) : C .A we implicitly assume that for every i there
is a resource polynomial pi not containing the variables x1, . . . , xn such that C |= {x1 ≤
p1, . . . , xn ≤ pn}.

Checking the boundedness condition on formulas is undecidable in general (see Sec-
tion 2.4 for further discussion). The notions of a free atom or a free resource variable in
a formula are defined as usual, keeping in mind that ∀x, ∃x and !x<p act as binders for
resource variables, while ∀α acts as a binder for atoms.

Notice that resource polynomials and the variables in them can occur inside constraints,
constraint sets and formulas. The following definition becomes natural:

Definition 2.6 (Positive and Negative Occurrences). The definition of a positive (or neg-
ative) free occurrence of a variable in a formula A proceeds by induction on A:

• All the variables in FV (p1) ∪ . . . ∪ FV (pn) occur positively in α(p1, . . . , pn).
• Polarities are propagated through compound formulas by noting that ⊸ is negative in
the first slot, !x<p is negative in p and ∀x:C is negative in C . All other slots are positive.
We omit the detailed definition.
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For example, the first occurrence of x in ∀y:{y≤x}.β(z) ⊸ α(x, y) is negative while the
second one is positive; the only occurrence of z is negative; all occurrences of y are bound.

When resource variables occur positively in a formula, one can substitute the formula
for an atom in another formula:

Definition 2.7 (Substitution). Let B be a formula where the free variables x1, . . . , xn occur
only positively. Then A{B/α(x1, . . . , xn)} denotes the formula obtained by replacing every
free occurrence of α(p1, . . . , pn) with B{p1/x1, . . . , pn/xn} inside A.

As an example , if A is α(p) ⊸ α(p + 1) and B is ∃x : {x ≤ y}.β(y), then A{B/α(y)}
is

(∃x : {x ≤ p}.β(p)) ⊸ (∃x : {x ≤ p+ 1}.β(p + 1)).

Formulas can be compared with respect to assumptions in the form of a constraint set:

Definition 2.8 (Ordering Formulas). The order ⊑C on resource polynomials can be ex-
tended to an order on formulas as follows:

α(p1, . . . , pn) ⊑C α(q1, . . . qn) iff ∀i.pi ⊑C qi

A⊗B ⊑C C ⊗D iff A ⊑C C ∧B ⊑C D

A⊸ B ⊑C C ⊸ D iff C ⊑C A ∧B ⊑C D

∀α.A ⊑C ∀α.B iff A ⊑C B

!x<pA ⊑C !x<qB iff q ⊑C p ∧ x /∈ FV (C ) ∧A ⊑C∪{x<q} B

∀x : D .A ⊑C ∀x : E .B iff C ∪ E |= D ∧ x /∈ FV (C ) ∧A ⊑C∪E B

∃x : D .A ⊑C ∃x : E .B iff C ∪D |= E ∧ x /∈ FV (C ) ∧A ⊑C∪D B

Please observe that if A ⊑C B, then A and B have the same “logical skeleton” and only
differ in the corresponding resource polynomials and constraint sets. Resource polynomials
in positive position are smaller in A, while those in negative position are smaller in B.
Moreover, constraint sets in positive position are stronger in A, while those in negative
position are stronger in B. Consider, as an example, the constraint set C = {x ≤ y + 1}.
It is easy to check that

∀z : {z ≤ y + 2}.α(y + 1) ⊸ α(z) ⊑C ∀z : {z ≤ x}.α(z) ⊸ α(y + 2).

Indeed C ∪ {z ≤ x} |= {z ≤ y + 1} |= {z ≤ y + 2} = D , z ⊑C∪D y + 2 and z ⊑C∪D y + 1.
Intuitively, ⊑C can be seen as a subtyping relation such that subtypes of a formula A
are those formulas which are “smaller” than A whenever the constraints in C hold. This
is in accordance to, e.g., the way ⊑C is defined on implicational formulas, which is very
reminiscent of the usual rule defining subtyping for arrow types.

The order relations ⊑C satisfy some basic properties:

Lemma 2.9 (Strengthening and Transitivity). If A ⊑C B and D |= C , then A ⊑D B.
Moreover, if A ⊑C B and B ⊑C C, then A ⊑C C.

Proof. Strengthening can be proved by an induction on A. Some cases:

• If !x<pA ⊑C !x<qB and D |= C , then q ⊑C p, x /∈ FV (C ), and A ⊑C∪{x<q} B. By
induction hypothesis, A ⊑D∪{x<q} B. We can assume that x /∈ FV (D). Finally, q ⊑D p.
The thesis easily follows.
• If ∀x : D .A ⊑C ∀x : E .B and F |= C , then C ∪ E |= D , x /∈ FV (C ) and A ⊑C∪E B.
Again, we can assume that x /∈ FV (C ). Since F ∪E |= C ∪E , we can apply the induction
hypothesis, obtaining A ⊑F∪E B, from which the thesis easily follows.
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Transitivity can be handled itself by induction on the structure of A. Some cases:

• If !x<pA ⊑C !x<qB and !x<qB ⊑C !x<rC, then q ⊑C p, r ⊑C q, x /∈ FV (C ), A ⊑C∪{x<q} B
and B ⊑C∪{x<r} C. From A ⊑C∪{x<q} B and r ⊑C q, it follows by strengthening that
A ⊑C∪{x<r} B. By the induction hypothesis, A ⊑C∪{x<r} C. The thesis follows, once we
observe that r ⊑C p by transitivity.
• If ∀x : D .A ⊑C ∀x : E .B and ∀x : E .B ⊑C ∀x : F .C, then C ∪ E |= D , C ∪F |= E ,
x /∈ FV (C ), A ⊑C∪E B and B ⊑C∪F C. Since C ∪ F |= C ∪ E , A ⊑C∪F B by
strengthening. By the induction hypothesis, A ⊑C∪F C. The thesis follows observing
that C ∪F |= D .
• If ∃x : D .A ⊑C ∃x : E .B and ∃x : E .B ⊑C ∃x : F .C, then C ∪ D |= E , C ∪ E |= F ,
x /∈ FV (C ), A ⊑C∪D B and B ⊑C∪E C. Since C ∪ D |= C ∪ E , B ⊑C∪D C by
strengthening. By the induction hypothesis, A ⊑C∪D C. The thesis follows observing
that C ∪D |= F .

This concludes the proof.

Some other auxiliary results about the relations ⊑C will be useful in the following.
We give them here. First of all, we can perform substitution of resource polynomials for
resource variables in formulas being sure that the underlying order is preserved:

Lemma 2.10 (Monotonicity, I). If A is a formula where the variables x1, . . . , xn occur only
positively (negatively, respectively), pi ⊑C qi for every i and x /∈ FV (C ), then A{p/x} ⊑C

A{q/x} (A{q/x} ⊑C A{p/x}, respectively).

Proof. By induction on A. Let’s just check the most interesting cases:

• If A = ∃y : D .B, then the variables in y can be assumed to be distinct from x1 . . . , xn.
Moreover:

A{p/x} = ∃y : D{p/x}.B{p/x}

A{q/x} = ∃y : D{q/x}.B{q/x}

Now, suppose that x1, . . . , xn occur only positively in A. Then, by induction hypothesis,
B{p/x} ⊑C B{q/x}. Moreover, by Lemma 2.4, D{p/x} ∪ C |= D{q/x}. By definition,
this implies A{p/x} ⊑C A{q/x}. Similarly if x1, . . . , xn occur only negatively in A.
• If A = ∀y : D .B, then we can proceed exactly in the same way.

This concludes the proof.

On the other hand, the same polynomial can be substituted in formulas, again preserv-
ing the underlying order:

Lemma 2.11 (Monotonicity, II). If A ⊑C B then A{p/x} ⊑C {p/x} B{p/x}.

Proof. By induction on A. Some interesting cases:

• If A =!x<qC, then B =!x<rD, r ⊑C q, x /∈ FV (C ), C ⊑C∪{x<r} D and x can be assumed
not to appear among the variables in x nor the ones in p. Then:

A{p/x} =!x<q{p/x}C{p/x}

B{p/x} =!x<r{p/x}D{p/x}

By induction hypothesis, C{p/x} ⊑C {p/x}∪{x<r{p/x}} D{p/x}. Moreover, r{p/x} ⊑C {p/x}

q{p/x}. The thesis follows.
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• If A = ∃y : D .C, then B = ∃y : E .D, C ∪ D |= E , y /∈ FV (C ), C ⊑C∪E D and, again,
variables in y can be assumed not to appear among the variables in x nor in the ones in
p. Then:

A{p/x} = ∃y : D{p/x}.C{p/x}

B{p/x} = ∃y : E {p/x}.D{p/x}

Clearly, C {p/x} ∪D{p/x} |= E {p/x}. By the assumptions above, y /∈ FV (C {p/x}). By
the induction hypothesis, C{p/x} ⊑C {p/x}∪E {p/x} D{p/x}. The thesis follows.

This concludes the proof.

Finally, substitution of formulas for atoms preserves itself the order ⊑C :

Lemma 2.12 (Monotonicity, III). If C is a formula where the free variables x1, . . . , xn
occur only positively, α is an atom with arity n and A ⊑C B, then A{C/α} ⊑C B{C/α}.

Proof. By induction on A. Some cases:

• If A = α(p), then B = α(q) where pi ⊑C qi, A{C/α} = C{p/x} and B{C/α} = C{q/x}.
The thesis easily follows from Lemma 2.10.
• If A = ∀β.D, then B = ∀β.E and we can assume that β 6= α and that β does not appear
free in C. Then A{C/α} = ∀β.(D{C/α}) and B{C/α} = ∀β.(E{C/α}). From A ⊑C B,
it follows that D ⊑C E and, by induction hypothesis, that D{C/α} ⊑C E{C/α}. The
thesis easily follows.

This concludes the proof.

2.3. Rules. A QBAL judgement is an expression in the form Γ ⊢C A, where C is a con-
straint set, Γ is a multiset of formulas and A is a formula. The meaning of such an expression
is the following: A is a consequence of the formulas in Γ, provided the constraints in C

hold.
Rules of inference for QBAL are in Figure 1. All rules except first order ones are the

natural generalizations of BLL rules. In particular, observe that the only rules modifying the
underlying constraint set(s) are P!, R∀x, L∀x, R∃x and L∃x. The multiplicative connectives
are governed by the usual rules from intuitionistic linear logic. The modality !, on the other
hand, is a functor governed by the following axioms, which come from BLL:

!x<1A ⊸ A{1/x};

!x<p+qA ⊸!x<pA⊗!y<qA{p+ y/x};

!x<
∑

w<p qA ⊸!y<p!z<q{y/w}A{(z +
∑

w<y q)/x}.

Moreover, given a constraint set C , it holds that !pA ⊸!qA whenever q ⊑C p. Weakening
holds for every formula, contrary to what happens in BLL; as is usual in systems derived
from linear logic, this does not break good quantitative properties like polynomial time
soundness. Rules W , X, P!, D! and N! capture the just described behaviour. Observe how
rule P! allows to take advantage of the inequality x < q in the premise.

First order quantification on resource variables, on the other hand, is governed by the
four inference rules R∀x, L∀x, R∃x and L∃x. Let us consider, as an example, rule R∀x, which
can be read as follows: if A can be inferred from Γ provided C ∪D hold and the variables
x do not appear in Γ nor in C , then A holds for every value of x satisfying C .
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Axiom and Cut

A ⊑C B

A ⊢C B
A

Γ ⊢C A ∆, A ⊢C B

Γ,∆ ⊢C B
U

Structural Rules

Γ ⊢C B

Γ, A ⊢C B
W

Γ, !x<pA, !y<qA{p + y/x} ⊢C B p+ q ⊑C r

Γ, !x<rA ⊢C B
X

Multiplicative Logical Rules

Γ, A ⊢C B

Γ ⊢C A⊸ B
R⊸

Γ ⊢C A ∆, B ⊢C C

Γ,∆, A⊸ B ⊢C C
L⊸

Γ ⊢C A ∆ ⊢C B

Γ,∆ ⊢C A⊗B
R⊗

Γ, A,B ⊢C C

Γ, A⊗B ⊢C C
L⊗

Exponential Rules

A1, . . . , An ⊢C B D ∪ {x < p} |= C x /∈ FV (D) p ⊑D qi
!x<q1A1, . . . , !x<qnAn ⊢D !x<pB

P!

A{1/x},Γ ⊢C B 1 ⊑C p

!x<pA,Γ ⊢C B
D!

!y<p!z<q{y/w}A{(z +
∑

w<y q)/x},Γ ⊢C B
∑

w<p q ⊑C r

!x<rA,Γ ⊢C B
N!

Second Order Rules

Γ ⊢C A α 6∈ FV (Γ)

Γ ⊢C ∀α.A
R∀α

Γ, A{B/α(x1, . . . , xn)} ⊢C C

Γ,∀α.A ⊢C C
L∀α

First Order Rules

Γ ⊢C∪D A x 6∈ FV (Γ) ∪ FV (C )

Γ ⊢C ∀x : D .A
R∀x

Γ, A{p/x} ⊢C C C |= D{p/x}

Γ,∀x : D .A ⊢C C
L∀x

Γ ⊢C A{p/x} C |= D{p/x}

Γ ⊢C ∃x : D .A
R∃x

Γ, A ⊢C∪D C x 6∈ FV (Γ) ∪ FV (C) ∪ FV (C )

Γ,∃x : D .A ⊢C C
L∃x

Figure 1: A sequent calculus for QBAL

Notice that BLL can be embedded into QBAL: for every BLL proof π : Γ ⊢ A, there is
a QBAL proof 〈π〉 : Γ ⊢∅ A: this can be proved by an easy induction on π.

If π is a proof of QBAL, then |π| is the number of rule instances in π.

2.4. On Decidability of Proof Checking. The problem of checking the correctness of
a proof is undecidable in QBAL, since the correctness of a formula is itself an undecidable
problem: remember that a formula like ∃x : C .A is correct only if an inequality x ≤ p can
be deduced from C for some polynomial p. Moreover, the relation |= between constraint
sets is undecidable. This is in contrast to what happens in more implicit ICC systems or in
BLL itself, where conditional equality ⊑C is replaced by unconditional inequality and p ≤ q
iff q − p is a resource polynomial.
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We do not see undecidability of proof checking as a fundamental problem of QBAL for
at least two reasons:

• On the one hand, the main role of QBAL is the one of a metasystem in which to prove
quantitative properties of other systems. As a consequence, it is crucial to keep the system
as expressive as possible.
• On the other hand, simple, decidable fragments of QBAL can possibly be built by con-
sidering decidable, although necessarily incomplete, formal systems for assertions in the
form C ⊢ p ≤ q (or, more generally, C ⊢ D) and by imposing that bounds on quanti-
fied variables are given explicitly when forming existential or universal formulas. This,
however, is a topic outside the scope of this paper, which we leave for future work.

The way we define QBAL is, in other words, similar to the one Xi adopts when he introduces
Dependent ML [19].

2.5. QBAL and Second Order Logic. Second order intuitionistic logic can be presented
as a context-independent sequent calculus with explicit structural rules [17], LJ. Rules of LJ
are in Figure 2. There is a forgetful map [·] from the space of QBAL proofs to the space of
LJ proofs. In particular ⊸ corresponds to → and ⊗ corresponds to ∧. Essentially, [π] has
the same structure as π, except for exponential and first order rules, which have no formal
correspondence in LJ. From our point of view, if [π] = [ρ], then π and ρ correspond to the
same program, i.e. QBAL can be seen as a proper decoration of second order logic proofs
with additional information which is not necessary to perform the underlying computation.

Axiom, Cut and Structural Rules

A ⊢ A
A

Γ ⊢ A ∆, A ⊢ B

Γ,∆ ⊢ B
U

Γ ⊢ B
Γ, A ⊢ B

W
Γ, A,A ⊢ B

Γ, A ⊢ B
X

Logical Rules

Γ, A ⊢ B

Γ ⊢ A→ B
R→

Γ ⊢ A ∆, B ⊢ C

Γ,∆, A→ B ⊢ C
L→

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A×B

R×
Γ, A,B ⊢ C

Γ, A×B ⊢ C
L×

Second Order Rules

Γ ⊢ A α 6∈ FV (Γ)

Γ ⊢ ∀α.A
R∀

Γ, A{B/α} ⊢ C

Γ,∀α.A ⊢ C
L∀

Figure 2: A sequent calculus for LJ

2.6. Properties. QBAL inherits some nice properties from BLL. In particular, proofs can be
manipulated in a uniform way by altering their conclusion without changing their structure,
i.e., without changing the underlying second order logic proof.

First of all, a useful transformation is the strengthening of the underlying constraint
set C :

Proposition 2.13 (Strengthening). If π : Γ ⊢C B is a proof and D |= C , then there is a
proof ρ : Γ ⊢D B such that [ρ] = [π] and |ρ| ≤ |π| .
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Proof. An easy induction on π. As an example, if π consists of an instance of rule A, then
the thesis follows from Lemma 2.9. As another example, take a proof π : Γ ⊢C ∀x : D .A
obtained from ρ : Γ ⊢C∪E A applying rule R∀x. We can assume without losing generality
that x /∈ FV (D). From D |= C , it follows that D ∪E |= C ∪E , from which the thesis easily
follows.

QBAL is monotone with respect to the relation ⊑C on formulas.

Proposition 2.14 (Monotonicity). If π : A1, . . . , An ⊢C B, B ⊑C D and Ci ⊑C Ai for
every 1 ≤ i ≤ n, then there is ρ : C1, . . . , Cn ⊢C D such that [ρ] = [π].

Proof. By induction on |π|. Some interesting cases are the following ones:

• Suppose that π is simply
A ⊑C B

A ⊢C B

and that C ⊑C A and B ⊑C D. Then, by transitivity of ⊑C (see Lemma 2.9), C ⊑C D
and ρ is

C ⊑C D

C ⊢C D .

• Suppose that π is

A1, . . . , An ⊢C B D ∪ {x < p} |= C x /∈ FV (D) p ⊑D qi
!x<q1A1, . . . , !x<qnAn ⊢D !x<pB

and that !x<riCi ⊑D !x<qiAi (for every i) and !x<pB ⊑D !x<sD. By definition, qi ⊑D ri for
every i and s ⊑D p. By the side condition to the premise of π (and by transitivity of
⊑D), we obtain s ⊑D ri for every i. Moreover, we have Ci ⊑D∪{x<qi} Ai for every i and
B ⊑D∪{x<s} D. This implies Ci ⊑D∪{x<s} Ai for every i, because

D ∪ {x < s} |= D ∪ {x < p} |= D ∪ {x < qi}

and by Lemma 2.9. Now, since D ∪ {x < s} |= D ∪ {x < p} |= C , we can obtain, by
Proposition 2.13, a proof σ of A1, . . . , An ⊢D∪{x<s} B such that |σ| < |π|. Then, we can
easily apply the induction hypothesis on σ and conclude.

This concludes the proof.

Another useful transformation on proofs is the substitution of resource polynomials for
free variables.

Proposition 2.15 (Substitution for Variables). If π : A1, . . . , An ⊢C B is a proof and
p1, . . . , pn are resource polynomials, then there is a proof

π{p/x} : A1{p/x}, . . . , An{p/x} ⊢C {p/x} B{p/x}

such that [π{p/x}] = [π].

Proof. By induction on π. An interesting case is the following one:

• Suppose that π is simply
A ⊑C B

A ⊢C B .

Now, if A ⊑C B then A{p/x} ⊑C {p/x} B{p/x}, by Lemma 2.11. As a consequence,

A{p/x} ⊑C {p/x} B{p/x}

A{p/x} ⊢C {p/x} B{p/x} .



12 U. DAL LAGO AND M. HOFMANN

• Suppose that π is
ρ : Γ ⊢C C{q/y} C |= D{q/y}

Γ ⊢C ∃y : D .C
R∃x

where, without losing generality, y can be chosen as fresh variables not appearing among
the ones in x, nor in the ones in p. Applying the induction hypothesis to ρ, we obtain a
proof of Γ{p/x} ⊢C {p/x} C{q/y}{p/x}. But, by the assumptions above,

C{q/y}{p/x} = C{p/x}{(q{p/x})/y}.

Analogously, from C |= D{q/y}, it follows that C {p/x} |= D{q/y}{p/x} and

D{q/y}{p/x} = D{p/x}{(q{p/x})/y}.

The thesis follows.
• Suppose that π is

ρ : Γ, C ⊢C∪D D y 6∈ FV (Γ) ∪ FV (D) ∪ FV (C )

Γ,∃y : D .C ⊢C D
L∃x

where, as usual, y can be chosen as fresh variables not appearing among the ones in x,
nor in p. Applying the induction hypothesis to ρ, we obtain a proof of

Γ{p/x}, C{p/x} ⊢C {p/x}∪D{p/x} D{p/x}.

By the assumptions above, variables in y do not appear free in Γ{p/x} nor in D{p/x}
nor in C {p/x}. The thesis follows.

This concludes the proof.

But formulas themselves can be substituted (for atoms) into a proof:

Proposition 2.16 (Substitution for Atoms). If π : A1, . . . , An ⊢C B is a proof, C is a
formula where the free variables x1, . . . , xm occur only positively and α is an atom with
arity m, then there is a proof π{C/α} : A1{C/α}, . . . , An{C/α} ⊢C B{C/α} such that
[π{C/α}] = [π].

Proof. By induction on π. Some interesting cases are the following ones:

• Suppose, again, that π is simply
A ⊑C B

A ⊢C B

Now, if A ⊑C B then A{C/α} ⊑C B{C/α} by Lemma 2.12. As a consequence:

A{C/α} ⊑C B{C/α}

A{C/α} ⊢C B{C/α}

• Suppose that π is
ρ : Γ ⊢C D{q/y} C |= D{q/y}

Γ ⊢C ∃y : D .D
R∃x

where, without losing generality, y can be chosen as fresh variables not appearing among
the ones in x nor in C. Applying the induction hypothesis to ρ, we obtain a proof of
Γ{C/α} ⊢C D{q/y}{C/α}. But, by the assumptions above,

D{q/y}{C/α} = D{C/α}{q/y}.

The thesis follows.
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• Suppose that π is

ρ : Γ,D ⊢C∪D E y 6∈ FV (Γ) ∪ FV (E) ∪ FV (C )

Γ,∃y : D .D ⊢C E
L∃x

where, as usual, y can be chosen as fresh variables not appearing among the ones in x,
nor in C. Applying the induction hypothesis to ρ, we obtain a proof of

Γ{C/α},D{C/α} ⊢C∪D E{C/α}.

By the assumptions above, variables in y do not appear free in Γ{C/α} nor in E{C/α}
nor in C {C/α}: they are either in Γ, E, C or in C. The thesis follows.

This concludes the proof.

2.7. Cut-Elimination. A nice application of the results we have just given is cut-elimi-
nation. Indeed, the new rules R∀x, L∀x, R∃x and L∃x do not cause any problem in the
cut-elimination process. For example, the cut

π : Γ ⊢C∪D A x /∈ FV (Γ) ∪ FV (C )

Γ ⊢C ∀x : D .A
R∀x

∆, A{p/x} ⊢C C C |= D{p/x}

∆,∀x : D .A ⊢C C
L∀x

Γ,∆ ⊢C C
U

can be eliminated as follows:

σ : Γ ⊢C A{p/x} ρ : ∆, A{p/x} ⊢C C

Γ,∆ ⊢C C
U

where σ is obtained by applying Proposition 2.13 to

π{p/x} : Γ ⊢C∪D{p/x} A{p/x},

itself obtained from π applying Proposition 2.15. In this paper, we will not study cut-
elimination. And polynomial time soundness will be itself proved semantically.

2.8. Programming in QBAL. The Curry-Howard correspondence allows to see BLL and
QBAL as programming languages endowed with rich type systems. In particular, follow-
ing the usual impredicative encoding of data into second order intuitionistic logic, natural
numbers can be represented as cut-free proofs of the formula

Np = ∀α.!y<p(α(y) ⊸ α(y + 1)) ⊸ α(0) ⊸ α(p).

However, only natural numbers less or equal to p are representable this way.
This can be generalized to any word algebra. Given a word algebra W, we will denote

by εW the only 0-ary constructor of W and by c1
W
, . . . , cw

W
the 1-ary constructors of the

same algebra. Notice that these objects can be thought of both as term formers and as
(0-ary or unary) functions on terms. Terms of a free algebra W of length at most p can be
represented as cut-free proofs of the formula

Wp = ∀α.!y<p(α(y) ⊸ α(y + 1)) ⊸ . . . ⊸!y<p(α(y) ⊸ α(y + 1))
︸ ︷︷ ︸

w times

⊸ α(0) ⊸ α(p).

Functions on natural numbers can be represented by proofs with conclusion Nx ⊢ Np,
where p is a resource polynomial depending on x, only. More generally, functions on the
word algebra W can be represented by proofs with conclusion Wx ⊢ Wp. For example,
all constructors c1

W
, . . . , cw

W
correspond to proofs with conclusion Wx ⊢ Wx+1, while εW
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corresponds to a proof of ⊢W0. More generally, the polynomial p gives a bound on the size
of the result, as a function of the size of the input. QBAL supports iteration on any word
algebra (including natural numbers). As an example, for every p and for every A where x
only appears positively, there is a proof πAp of

Np, !y<p(A{y/x}⊸ A{y + 1/x}), A{0/x} ⊢ A{p/x}.

namely:

!y<p(A{y/x}⊸ A{y + 1/x}) ⊢!y<p(A{y/x}⊸ A{y + 1/x}
A

A{0/x} ⊢ A{0/x}
A

A{p/x} ⊢ A{p/x}
A

!y<p(A{y/x}⊸ A{y + 1/x}) ⊸ A{0/x}⊸ A{p/x}, !y<p(A{y/x}⊸ A{y + 1/x}), A{0/x} ⊢ A{p/x}
L⊸

Np, !y<p(A{y/x}⊸ A{y + 1/x}), A{0/x} ⊢ A{p/x}
L∀α

This will be essential to prove Lemma 7.1.

2.9. Unbounded First Order Quantification is Unsound. One may wonder why
quantification on numerical variables is restricted to be bounded (see Definition 2.5). The
reason is very simple: in presence of unbounded quantification, QBAL would immediately
become unsound. To see that, define N∞ to be the formula ∃(x) : ∅.Nx. The composition
of the successor with itself yields a proof with conclusion Nx ⊢ Nx+2 which, by rules R∃x
and L∃x, becomes a proof with conclusion N∞ ⊢ N∞. Iterating it, we obtain a proof of
Nx ⊢ N∞ which represents the function n 7→ 2n. But by rule L∃x, it can be turned into
a proof of N∞ ⊢ N∞, and iterating it again we obtain a proof representing the exponen-
tial function. The boundedness assumption will be indeed critical in Section 4, where we
establish that any functions which is representable in QBAL is polynomial time computable.

It is not clear whether unbounded existential quantification would be sufficient to embed
the whole of second order intuitionistic logic into QBAL.

3. Set-Theoretic Semantics

In this Section, we give a set-theoretic semantics for QBAL. We assume that our ambient set-
theory is constructive. This way we have a set of sets U which contains the natural numbers,
closed under binary products, function spaces and U -indexed products. An alternative to
assuming a constructive ambient set theory consists of replacing plain sets with PERs
(partial equivalence relations) or domains or similar structures. See [10] for a more detailed
discussion on this issue.

Formulas of QBAL can be interpreted as sets as follows, where ρ is an environment
mapping atoms to sets:

α(p) ρ = ρ(α);

A⊗B ρ = A ρ × B ρ;

A⊸ B ρ = A ρ ⇒ B ρ;

∀α.A ρ =
∏

C∈U

A ρ[α7→C];

!x<pA ρ = ∀x : C .A ρ = ∃x : C .A ρ = A ρ.

Please observe that the interpretation of any formula A is completely independent from the
resource polynomials appearing in A.
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To any QBAL proof π of A1, . . . , An ⊢C B we can associate a set-theoretic function
π ρ : A1 ⊗ . . .⊗An ρ → B ρ by induction on π, in the obvious way. π ρ is equal to
the set-theoretic semantics of [π] as a proof of second order intuitionistic logic. Set-theoretic
semantics of proofs is preserved by cut-elimination: if π reduces to σ by cut-elimination,
then π ρ = σ ρ.

Observe that A ρ only depends on the values of ρ on atoms appearing free in A. So,
in particular,

Nq ρ =
∏

C∈U

(C ⇒ C)⇒ (C ⇒ C)

is independent on ρ and on q, since Nq is a closed formula. Similarly for Wq ρ. Actually,

there are functions ϕN : N → Np and ψN : Np → N such that ψN ◦ ϕN is the identity

on natural numbers. They are defined as follows:

(ϕN(n))C(f, z) = fn(z);

ψN(x) = xN(x 7→ x+ 1)(0);

where AC is the projection of A on the component C whenever A is some product
∏

D∈U B.
So, given a proof π : Nx ⊢ Np, the numeric function represented by π is simply

ψN ◦ π ◦ ϕN. Similar arguments hold for functions with conclusion Wx ⊢Wp.

4. QBAL and Polynomial Time

In this section we show that all functions on natural numbers definable in QBAL are poly-
nomial time computable. To this end, we follow the semantic approach in [10] which we
now summarizes.

4.1. Realizability Sets. Let X be a finite set of resource variables. We write V(X) for
N
X — the elements of V(X) are called valuations (over X). If η ∈ V(X) and c ∈ N then

η[x 7→ c] denotes the valuation which maps x to c and acts like η otherwise. We assume
some reasonable encoding of valuations as natural numbers allowing them to be passed as
arguments to algorithms.

If C is a constraint set involving at most the variables in X (over X) then VC (X) (or
simply VC ) is the set of valuations in V(X) satisfying all the constraints in C .

We write P(X) for the set of resource polynomials over X. If p ∈ P(X) and η ∈ V(X)
we write p(η) for the number obtained by evaluating p with x 7→ η(x) for each x ∈ X. A
substitution σ : X → Y is a function mapping any variable in Y to a polynomial in P(X).
Given a substitution σ : X → Y and a valuation η ∈ V(X), the valuation σ[η] ∈ V(Y )
assigns to every variable y ∈ Y the natural number σ(y)(η).

We assume known the untyped lambda calculus as defined e.g. in [2]. A lambda term
is affine linear if each variable (free or bound) appears at most once (up to α-congruence).
For example, λx.λy.yx and λx.λy.y and λx.xy are affine linear while the term λx.xx is not.
Notice that every affine linear term t is strongly normalisable in less than |t| steps where |t|
is the size of the term. Moreover, the size |s| of any reduct of t is at most |t|. The runtime
of the computation leading to the normal form is therefore O(|t|2). We will henceforth use
the expression affine linear term for an affine linear lambda term which is in normal form.
If s, t are affine linear terms, then their application st is defined as the normal form of the
lambda term st. Notice that the application st can be computed in time O((|s|+ |t|)2).
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If s, t are affine linear terms we write s⊗t for the affine linear term λf.fst. If t is
an affine linear term possibly containing the free variables x, y then we write λx⊗y.t for
λu.u(λxλy.t). Notice that (λx⊗y.t)(u⊗v) = t{u/x, v/y}.

More generally, if (ti)i<n is a family of affine linear terms, we write
⊗

i<n ti and
λ
⊗

i<n xi.t for λf.ft0t1 . . . tn−1, respectively, λu.u(λx0λx1 . . . λxn−1.t). Again,

(λ
⊗

i<n

xi.t)(
⊗

i<n

ti) = t{t0/x0, . . . , tn−1/xn−1}.

We write Λa for the set of closed affine linear terms.
There is a canonical way of representing terms of any word algebra W as affine linear

terms, which is attributed to Dana Scott [18]. If the unary constructors of the word algebra
W are c1

W
, . . . , cw

W
and εW is the only 0-ary constructor of W, the terms of W are mapped

to affine linear terms as follows:

pεWq = λx1. . . . λxw.λy.y;

∀i ∈ {1, . . . , w}.pciWsq = λx1. . . . λxw.λy.xipsq.

As an example, the natural number 2 seen as a term of the word algebra N becomes

p2q = λx.λy.x(λx.λy.x(λx.λy.y))

Definition 4.1 (Realizability Set). LetX be a finite set of resource variables. A realizability
set over X is a pair A = (|A|,
A) where |A| is a set and 
A⊆ V(X)×Λa× |A| is a ternary
relation between valuations over X, affine lambda terms, and the set |A|. We write η, t 
A a
for (η, t, a) ∈
A. Given a substitution σ from X to Y and a realizability set A over Y , then
a new realizability set A[σ] over X is defined by |A[σ]| = |A| and η, t 
A[σ] a iff σ[η], t 
A a.

The intuition behind η, t 
A a is that a is an abstract semantic value, η measures
the abstract size of a, and the affine linear term t encodes the abstract value a. This is
a generalization of what normally happens in realizability models, where 
A is a binary
relation between realizers and denotations.

Example 4.2.

• The realizability set Nx over {x} of tally natural numbers (“of size at most x”) is defined
by: |Nx| = N and η, t 
Nx n if t = pnq and η(x) ≥ n;
• The realizability set Wx over {x} of free terms of W (“of length at most x”) is defined
by: |Wx| = W and η, t 
Wx w if t = pwq and η(x) ≥ |w|.

These realizability sets Nx and Wx turn out to be retracts of the denotations of the epony-
mous BLL formulas from Section 2.8.

Definition 4.3 (Positive and Negative Variables). Let A be a realizability set over X. We
say that x ∈ X is positive (negative, respectively) in A, if for all η, µ ∈ V(X), t ∈ Λa, a ∈ |A|
where η and µ agree on X \ {x} and η(x) ≤ µ(x) (η(x) ≥ µ(x), respectively), η, t 
A a
implies µ, t 
A a.

We notice that x is positive in Nx and Wx. Indeed, if e.g. η, t 
Nx n and η(x) ≤ µ(x),
then µ(x) ≥ η(x) ≥ n and µ, t 
Nx n by definition.

Realizability sets can be thought of as the object of a category whose arrows are func-
tions, themselves realized by affine linear terms, one for every possible valuation of the
underlying resource variables:
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Definition 4.4 (Morphisms). Let A,B be realizability sets over some set X. A morphism
from A to B is a function f : |A| → |B| satisfying the following conditions:

• there exist a function e : V(X) → Λa, an algorithm A and a resource polynomial q such
that for every η ∈ V(X), A computes e(η) in time bounded by q(η);
• for each η ∈ V(X), t ∈ Λa, a ∈ |A|, we have

η, t 
A a implies η, e(η)t 
B f(a).

In this case we say that e witnesses f and write A→f
e B where in the notation the algorithm

A computing e is presumed to exist.

Noticeably, morphisms compose.
The following definitions summarises the interpretation of formulas according to [10].

First of all, multiplicative connectives ⊗ and ⊸ correspond to constructions on realizability
sets:

Definition 4.5 (Multiplicatives). Let A,B be realizability sets over X. Then the following
are realizability sets over X:

• A⊗B as given by |A ⊗B| = |A| × |B| and η, t 
A⊗B (a, b) iff t = u⊗v, where η, u 
A a
and η, v 
B b.
• A⊸ B is given by |A⊸ B| = |A| ⇒ |B| and η, t 
A⊸B f iff whenever η, u 
A a it holds
that η, t u 
B f(a).

Another logical connective needs to be justified, namely the exponential modality:

Definition 4.6 (Modality). If C is a realizability set over X ∪ {x} and p ∈ P(X) then a
realizability set !x<pC over X is defined by |!x<pC| = |C| and η, t 
!x<pC a if

• t =
⊗

i<p(η) ti for some family (ti)i<p(η);

• η[x 7→ i], ti 
C a for each i < p(η).

Lastly, a semantical counterpart of second order universal quantification must be de-
fined. The following are essential preliminary definitions.

Definition 4.7 (Second Order Environments). Let X be a set of resource variables. A
second-order environment over X is a partial function ρ which assigns to a second-order
variable α of arity n a pair (l, C) such that:

• l = (y1, . . . , yn) is an n-tuple of pairwise different resource variables not occurring in X;
• C is a realizability set over X ∪ {y1, . . . , yn} in which the yi are positive.

For a second-order environment ρ we write |ρ| for the mapping α 7→ |C| when ρ(α) = (l, C).
If σ : X → Y is a substitution and ρ is a second-order environment over Y we define a
second-order environment ρ[σ] over X by ρ[σ](α) = (l, C[σ]) when ρ(α) = (l, C). We assume
here that the variables in l are not contained in Y . Otherwise, the substitution cannot be
defined.

Using these semantic constructions one defines for each formula A with free resource
variables contained in X and second-order environment ρ over X, a realizability set A B

ρ

over X in such a way that | A B
ρ | = A |ρ| (where |ρ| is the assignment of sets to atoms

obtained from ρ in the obvious way), that is to say, the underlying set of the realizability
set interpreting a formula A coincides with the set-theoretic meaning of A (see Section 3):

α(p1, . . . , pn)
B
ρ = C[σ],
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where ρ(α) = ((y1, . . . , yn), C) and σ(yi) = pi;

A⊗B B
ρ = A B

ρ ⊗ B B
ρ ;

A⊸ B B
ρ = A B

ρ ⊸ B B
ρ ;

∀α.A B
ρ =

(
∏

C∈U A |ρ|[α7→C],
 ∀α.A B
ρ

)

;

where η, t 
 ∀α.A B
ρ
f iff η, t 
 A B

ρ[α7→(l,C)]
fC for all (l, C);

!x<pA
B
ρ =!x<p A B

ρ[ξx]
,

where ξx : X ∪ {x} → X is the substitution mapping any variable in X into the same
variable as an element of P(X ∪ {x}).

The main result of [10] then asserts that if π is a proof (in BLL) of a sequent Γ ⊢ B
then the function π |ρ| is a morphism from Γ B

ρ to B B
ρ (where we interpret a context

Γ as a ⊗-product over its components as usual). From this, polynomial time soundness is a
direct corollary since polynomial time computability is built into the notion of a morphism.

It thus only remains to extend the realizability model to cover the constructs of QBAL
which we do in the next section.

4.2. Extending the Realizability Model to QBAL. The notion of a realizability set
above is adequate to model formulas of QBAL. The notion of a morphism, however, should
be slightly generalized in order to capture constraints:

Definition 4.8 (C -Morphisms). Let A,B be realizability sets over some set X and C a
constraint set over X. A function f : |A| → |B| is a C -morphism from A to B iff the
following conditions hold:

• there exist a function e : VC (X) → Λa and an algorithm A such that A computes e(η)
from η in time bounded by q(η) for some resource polynomial q;
• for each η ∈ VC (X), t ∈ Λa, a ∈ |A|, we have that η, t 
A a implies η, e(η)t 
B f(a).

In order to define realizability sets ∀y:C .A and ∃y:C .A, we fix some encoding of environ-
ments η as affine lambda terms using the p·q encoding of natural numbers. As an example,
the environment η on {x0, . . . , xn−1} could be encoded as

⊗

i<npη(xi)q; this clearly relies
on a total order on resource variables. We do not notationally distinguish environments
from their encodings.

Definition 4.9 (First-order Quantification). Let X,Y be disjoint sets of variables. Let
A be a realizability set over X ∪ Y and C a constraint set over X ∪ Y where we put
Y = {y1, . . . , yn} and y = (y1, . . . , yn). Furthermore, for each i = 1, . . . , n let pi ∈ P(X) be
such that C |= {y ≤ p}.

• |∀y:C .A| = |∃y:C .A| = |A|,
• η, t 
∀y:C .A a ⇐⇒ ∀µ ∈ V(Y ).η∪µ ∈ VC ⇒ η∪µ, tµ 
A a.
• η, µ ⊗ t 
∃y:C .A a ⇐⇒ µ ∈ V(Y ) ∧ η∪µ ∈ VC ∧ η∪µ, t 
A a

Recall that ∀y:C .A and ∃y:C .A are well-formed only if there are resource polynomials
p such that C |= y < p. Therefore, the set {µ | η∪µ ∈ VC } is finite and in fact computable
in polynomial time from η. Indeed, its cardinality at most

n∏

i=1

pi(η),
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and the size of any of its elements is at most

|η|+
n∏

i=1

pi(η).

We are now able to prove the main result of this Section:

Theorem 4.10. Let π be a proof of a sequent Γ ⊢C B and ρ a mapping of atoms to
realizability sets. Then π |ρ| is a C -morphism from Γ B

ρ to B B
ρ .

Proof. The proof is by induction on derivations. We only show the cases that differ signifi-
cantly from the development in [10].
Case P!. For simplicity, suppose that n = 1, q1 = p and A1 = A. The induction hypothesis
shows that π |ρ| is a C -morphism from A B

ρ to B B
ρ witnessed by e. As in the proof of

the main result in [10], we define

d(η) = λ
⊗

i<p(η)

xi.
⊗

i<p(η)

e(η[x 7→ i])xi.

Now, if η ∈ VD , then η[x 7→ i] ∈ VC whenever i < p(η) by the side condition from rule P!.
We obtain that π is a D-morphism from !x<pA

B
ρ to !x<pB

B
ρ witnessed by d.

The remaining cases are the four rules for first order quantifiers. In each case, we assume
by the induction hypothesis that π is a morphism realizing the premise of the rule and
let e be its witness. We have to show that π is a morphism realizing the conclusion of
the rule. Note that the set-theoretic meaning of a proof does not change upon application
of any of the quantifier rules.
Case R∀x. Suppose that η ∈ VC and η, tγ 
 Γ B

ρ
γ. Now suppose η ∪ µ ∈ VD . By the

induction hypothesis η∪µ, e(η∪µ)tγ 
 A B
ρ

π (γ). We thus define d by d(η) = u where

u ∈ Λa is such that utµ = e(η ∪ µ)t whenever η ∪ µ ∈ VC . Recall that for a given η there
are only q(η) such µ (for a fixed resource polynomial q), so that t can be constructed as a
big case distinction over all those µ. It is then clear that d is polynomial time computable
and realizes the conclusion of the rule.
Case L∀x. Assume η ∈ VC and η, tγ 
 Γ B

ρ
γ and η, ta 
 ∀x:D.A B

ρ
a. Define µη ∈ V(X) by

µη(xi) = pi(η) so that η ∪ µη ∈ VD by the side condition to the rule. Now, η∪µη, taµη 
A a
by Definition 4.9. Hence, η, taµη 
A{p/x} a. By the induction hypothesis, e(η)(tγ⊗taµη) 
C

π (γ, a), so d(η) = λxγ ⊗ xa.e(η)(xγ ⊗ xa(µη)) does the job. The remaining two cases are
essentially dual to the previous two. We merely define the witnesses.
Case R∃x. Define µ(η) as in L∀x. We can then put d(η) = λtγ .µ(η) ⊗ e(η)tγ .
Case L∃x. We define d(η) to be such that d(η)tγ(µ ⊗ t) = e(η ∪ µ)tγt. This is possible by
hard-wiring separate cases for each of the polynomially in η many µ like in case R∀x.

Corollary 4.11. Every function on word algebras representable in QBAL is polynomial
time computable.

5. On Compositional Embeddings

In this Section, we justify our emphasis on compositional embeddings. An embedding of
a logical system or programming language L into QBAL is a function 〈·〉 from the space of
proofs (or programs) of L into the space of proofs for QBAL. Clearly, for an embedding to
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be relevant from a computational point of view, any proof π of L should be mapped to an
equivalent proof 〈π〉, e.g., 〈π〉 = π . The existence of an embedding of L into QBAL
implicitly proves that QBAL is extensionally at least as powerful as L. Such an embedding
〈·〉 is not necessarily computable nor natural. But whenever L is a sound and complete
ICC characterization of polynomial time, a large class of proofs or programs of L can be
mapped to QBAL, since the classes of definable first order functions are exactly the same in
L and QBAL. Indeed, QBAL is both extensionally sound (see Section 4) and extensionally
complete (since BLL can be compositionally embedded into it).

Typically, one would like to go beyond extensionality and prove that QBAL is inten-
sionally as powerful as L. And if this is the goal, 〈·〉 should be easily computable. Ideally,
we would like 〈·〉 to act homeomorphically on the space of proofs of L. In other words,
whenever a proof π of L is obtained applying a proof-forming rule R to ρ1, . . . , ρn, then
〈π〉 should be obtainable from 〈ρ1〉, . . . , 〈ρn〉 in a uniform way, i.e., dependently on R but
independently on 〈ρ1〉, . . . , 〈ρn〉. An embedding satisfying the above constraint is said to be
strongly compositional. The embeddings we will present in the following two sections are
only weakly compositional: [〈π〉] can be uniformly built from [〈ρ1〉], . . . , [〈ρn〉] whenever π is
obtained applying R to ρ1, . . . , ρn. We believe that the existence of a weakly compositional
embedding of L into QBAL is sufficient to guarantee that QBAL is intensionally as powerful
as L because, as we pointed out in Section 2.5, [π] can be thought as the program hidden
in the proof π.

6. Embedding LFPL

LFPL is a calculus for non-size-increasing computation introduced by the second author [9].
It allows to capture natural algorithms computing functions such that the size of the result
is smaller or equal to the size of the arguments. This way, polynomial time soundness is
guaranteed despite the possibility of arbitrarily nested recursive definitions.

We here show that a core subset of LFPL can be compositionally embedded into QBAL.
LFPL types are generated by the following grammar:

A ::= ⋄ | N | A⊗A | A⊸ A.

Rules for LFPL in natural-deduction style are in Figure 3. We omit terms, since the com-
putational content of type derivations is implicit in their skeleton. The set-theoretic se-

Axiom, Base Types and Weakening

A ⊢ A
A

⋄,N ⊢ N
S

⋄ ⊢ A⊸ A ⊢ A
⊢ N ⊸ A

T
Γ ⊢ A

Γ, B ⊢ A
W

Multiplicative Rules

Γ, A ⊢ B

Γ ⊢ A⊸ B
I⊸

Γ ⊢ A⊸ B ∆ ⊢ A
Γ,∆ ⊢ B

E⊸

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A⊗B

I⊗
Γ ⊢ A⊗B ∆, A,B ⊢ C

Γ,∆ ⊢ C
E⊗

Figure 3: LFPL

mantics A of an LFPL formula A can be defined very easily: ⋄ =
∏

C∈U C ⇒ C,
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N =
∏

C∈U(C ⇒ C) ⇒ (C ⇒ C), while the operators ⊗ and ⊸ are interpreted as
usual. Notice that the interpretation of an LFPL formula does not depend on any en-
vironment ρ. This way, any LFPL proof π : A1, . . . , An ⊢ B can be given a semantics
π : A1 ⊗ . . . ⊗An → B , itself independent on any ρ. For example, rule T corre-
sponds to iteration, while rule E⊸ corresponds to function application.

LFPL types can be translated to QBAL formulas in the following way:

〈⋄〉qp = ∃ε : {1 ≤ p}.∀α.α ⊸ α

〈N〉qp = Np

〈A⊗B〉qp = ∃(x, y) : {x+ y ≤ p}.〈A〉qx ⊗ 〈B〉
q
y

〈A⊸ B〉qp = ∀(x) : {x+ p ≤ q}.〈A〉qx ⊸ 〈B〉qp+x

Please observe that the interpretation of any LFPL formulas is parametrized by two resource
polynomials p and q. If a variable x occurs in p, but not in q, then x occurs only positively
in 〈A〉qp: this can be proved by an easy induction on the structure of A.

The correspondence scales from types to proofs:

Theorem 6.1. LFPL can be embedded into QBAL. In other words, for every LFPL proof
π : A1, . . . , An ⊢ B, there exists a QBAL proof

〈π〉 : 〈A1〉
b
x1
, . . . , 〈An〉

b
xn
⊢{

∑
i xi≤b,1≤b} 〈B〉

b∑
i xi

such that π = 〈π〉 .

Proof. As expected, the proof goes by induction on π.

• If the only rule in π is A, then 〈π〉 is simply the axiom

〈A〉bx ⊢{x≤b,1≤b} 〈A〉
b
x

A

• If the only rule in π is S, then 〈π〉 is

ρ : 〈N〉by ⊢{x+y≤b,1≤b,1≤x} 〈N〉
b
x+y

∀α.α⊸ α, 〈N〉by ⊢{x+y≤b,1≤b,1≤x} 〈N〉
b
x+y

W

〈⋄〉bx, 〈N〉
b
y ⊢{x+y≤b,1≤b} 〈N〉

b
x+y

L∃x

where σ : 〈N〉by ⊢ 〈N〉
b
y+1 is the QBAL proof for the successor on natural numbers inherited

from BLL and ρ is obtained by first strengthening σ into a proof of 〈N〉by ⊢{x+y≤b,1≤b,1≤x}

〈N〉by+1 (by Proposition 2.13) and then applying to it Proposition 2.14, after observing

that 〈N〉by+1 ⊑{x+y≤b,1≤b,1≤x} 〈N〉
b
y+x.

• If the last rule in π is W and the immediate premise of π is ρ, then 〈π〉 is

σ : 〈Γ〉bx ⊢{
∑

i xi+y≤b,1≤b} 〈B〉
b∑

i xi+y

〈Γ〉bx, 〈A〉
b
y ⊢{

∑
i xi+y≤b,1≤b} 〈B〉

b∑
i xi+y

W

where σ can be obtained from 〈ρ〉 by Proposition 2.13 and Proposition 2.14, because
{
∑

i xi + y ≤ b, 1 ≤ b} |= {
∑

i xi ≤ b, 1 ≤ b} and 〈B〉
b∑

i xi
⊑ 〈B〉b∑

i xi+y
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• If the last rule in π is E⊸ and the immediate premises of π are ρ and σ, then 〈π〉 is

θ : 〈Γ〉bx ⊢{
∑

i xi+
∑

i yi≤b,1≤b} 〈A ⊸ B〉b∑
i xi

〈Γ〉bx ⊢{
∑

i xi+
∑

i yi≤b,1≤b} 〈A〉
b∑

i yi
⊸ 〈B〉b∑

i xi+
∑

i yi

L∀x, A, U
ξ : 〈∆〉by ⊢{

∑
i xi+

∑
i yi≤b,1≤b} 〈A〉

b∑
i yi

〈Γ〉bx, 〈∆〉
b
y ⊢{

∑
i xi+

∑
i yi≤b,1≤b} 〈B〉

b∑
i xi+

∑
i yi

L⊸, A, U

where θ and ξ can be obtained from 〈ρ〉 and 〈σ〉, respectively, by applying Proposi-
tion 2.13.
• If the last rule in π is I⊸ and the immediate premise of π is ρ, then 〈π〉 is

σ : 〈Γ〉bx, 〈A〉
b
y ⊢{

∑
i xi≤b,

∑
i xi+y≤b,1≤b} 〈B〉

b∑
i xi+y

〈Γ〉bx ⊢{
∑

i xi≤b,
∑

i xi+y≤b,1≤b} 〈A〉
b
y ⊸ 〈B〉b∑

i xi+y

R⊸

〈Γ〉bx ⊢{
∑

i xi≤b,1≤b} 〈A⊸ B〉b∑
i xi

R∀x

where σ can be obtained from 〈ρ〉 by applying Proposition 2.13.
• If the last rule in π is I⊗ and the immediate premises of π are ρ and σ, then 〈π〉 is

θ : 〈Γ〉bx ⊢{
∑

i xi≤b,
∑

i yi≤b,1≤b}
〈A〉b∑

i xi
ξ : 〈∆〉by ⊢{

∑
i xi≤b,

∑
i yi≤b,1≤b}

〈B〉b∑
i yi

〈Γ〉bx, 〈∆〉
b
y ⊢{

∑
i xi≤b,

∑
i yi≤b,1≤b}

〈A〉b∑
i xi
⊗ 〈B〉b∑

i yi

R⊗

〈Γ〉bx, 〈∆〉
b
y ⊢{

∑
i xi≤b,

∑
i yi≤b,1≤b}

〈A⊗B〉b∑
i xi+

∑
i yi

R∃x

where θ and ξ can be obtained from 〈ρ〉 and 〈σ〉, respectively, by Proposition 2.13.
• If the last rule in π is E⊗ and the immediate premises of π are ρ and σ, then 〈π〉 is

θ

ξ : 〈Γ〉bx, 〈A〉bw, 〈B〉bz ⊢{
∑

i xi+
∑

i yi≤b,1≤b,w+z≤
∑

i yi} 〈C〉b∑
i xi+

∑
i yi

〈Γ〉bx, 〈A〉bw ⊗ 〈B〉bz ⊢{
∑

i xi+
∑

i yi≤b,1≤b,w+z≤
∑

i yi} 〈C〉b∑
i xi+

∑
i yi

L⊗

〈Γ〉bx, 〈A⊗B〉b∑
i yi

⊢{
∑

i xi+
∑

i yi≤b,1≤b} 〈C〉b∑
i xi+

∑
i yi

L∃x

〈Γ〉bx, 〈∆〉by ⊢{
∑

i xi+
∑

i yi≤b,1≤b} 〈C〉b∑
i xi+

∑
i yi

U

where ξ can be obtained from 〈ρ〉 by Proposition 2.13 and Proposition 2.14 and

θ : 〈∆〉by ⊢{
∑

i xi+
∑

i yi≤b,1≤b}
〈A⊗B〉b∑

i yi

can be obtained from 〈σ〉 by Proposition 2.13.
• If the last rule in π is T and the immediate premises of π are ρ and σ, then 〈π〉 is

σ :⊢{y+1≤b,1≤b} 〈⋄〉
b
1 θ : 〈⋄〉b1 ⊢{y+1≤b,1≤b} 〈A⊸ A〉b1

⊢{y+1≤b,1≤b} 〈A⊸ A〉b1
U

⊢{y+1≤b,1≤b} 〈A〉
b
y ⊸ 〈A〉by+1

L∀x, A, U

⊢{x≤b,1≤b}!y<x(〈A〉
b
y ⊸ 〈A〉by+1)

P!
ξ :⊢{x≤b,1≤b} 〈A〉

b
0 πAx

〈N〉bx ⊢{x≤b,1≤b} 〈A〉
b
x

U

where θ and ξ can be obtained from 〈ρ〉 and 〈σ〉, respectively, by Proposition 2.13 and σ
can be easily built.

This concludes the proof.
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Proposition 6.2. The correspondence 〈·〉 is weakly compositional.

Proof. A quick inspection on the proof of Theorem 6.1 shows that 〈π〉 cannot be obtained
uniformly from 〈ρ1〉, . . . , 〈ρ1〉 (where ρ1, . . . , ρn are the immediate sub-proofs of π), because
results like Proposition 2.13 or Proposition 2.14 are often applied to 〈ρ1〉, . . . , 〈ρn〉 before
they are plugged together (in a uniform way) to obtain 〈π〉. All the results in Section 2.6,
however, transform proofs to proofs preserving the underlying LJ proof. As a consequence
the embedding is weakly compositional.

One may ask whether such an embedding might work for BLL proper. We believe this
to be unlikely for several reasons. In particular, it seems that BLL lacks a mechanism for
turning the information about the size of the manipulated objects from being global to
being local. In QBAL, this rôle is played by first order quantifiers. As an example, consider
the split function for lists of natural numbers that splits a list into two lists, one containing
the even entries and one containing the odd entries. The type of that function in LFPL is
L(N) ⊸ L(N) ⊗ L(N) where L(·) denotes the type of lists that we have elided from our
formal treatment for the sake of simplicity. In QBAL this function gets the type

Lx(Ny) ⊸ ∃(u, v) : {u+ v ≤ x}.Lu(Ny)⊗ Lv(Ny).

The only conceivable BLL formula for this function is Lx(Ny) ⊸ Lx(Ny) ⊗ Lx(Ny). In
LFPL and in QBAL we can compose the split function with “append” yielding a function
of type Lx(Ny) ⊸ Lx(Ny) that can be iterated. In BLL this composition receives the type
Lx(Ny) ⊸ L2x(Ny) which of course is not allowed in an iteration. But a hypothetical com-
positional embedding of LFPL into BLL would have to be able to mimic this construction.

7. Embedding RRW

Ramified recurrence on words (RRW) is a function algebra extensionally corresponding to
polynomial time functions introduced by Leivant in the early nineties [13]. Bellantoni and
Cook’s algebra BC can be easily embedded into RRW.

Let W be a word algebra, let c1
W
, . . . , cw

W
be the unary constructors of W and let εW be

the only 0-ary constructor of W. id denotes the identity function on W. If m is a natural
number and 1 ≤ i ≤ m, πmi denotes the i-th projection on m arguments in W. Given a
n-ary function g on W and n m-ary functions f1, . . . , fn on W, we can define the m-ary
composition of g and f1, . . . , fn, denoted comp(g, f1, . . . , fn), as follows:

comp(g, f1, . . . , fn)(t1, . . . , tm) = g(f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)).

Given an n-ary function fεW on W and n+2-ary functions fc1
W

, . . . , fcw
W
on W, we can define

an n+ 1-ary function g, denoted rec(fc1
W

, . . . , fcw
W
, fεW), by primitive recursion as follows:

g(t1, . . . , tn, εW) = fεW(t1, . . . , tn)

g(t1, . . . , tn, c
i
W(t)) = fci

W

(t1, . . . , tn, g(t1, . . . , tn, t), t)

Given an n-ary function fεW on W and n+1-ary functions fc1
W

, . . . , fcw
W
on W, we can define

an n+ 1-ary function g, denoted cond(fc1
W

, . . . , fcw
W
, fεW), as a conditional as follows:

g(t1, . . . , tn, εW) = fεW(t1, . . . , tn)

g(t1, . . . , tn, c
i
W(t)) = fci

W

(t1, . . . , tn, t)
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We can generate functions starting from id, πmi , εW and cW by freely applying composition,
primitive recursion and conditional.

Not every function obtained this way is in RRW: indeed, they correspond to primitive
recursive functions on W. In Figure 4, a formal system for judgements in the form ⊢
f : Wi1 × . . . × W

in → W
i (where i1, . . . , in, i are natural numbers) is defined. If such

a judgement can be derived from the rules in Figure 4, then f is said to be an RRW
function (the definition of RRW given here is slightly different but essentially equivalent
to the original one [13]). Leivant [13] proved that RRW functions are exactly the polytime
computable functions on W. But RRW can be compositionally embedded into QBAL, at
least in a weak sense. Before embarking in the proof of that, however, we need a preliminary

⊢ id : Wi →W
i ⊢ εW : Wi ⊢ cW : Wi →W

i

ji = j

⊢ πmi : Wj1 × . . . ×W
jm →W

j

⊢ g : Wi1 × . . .×W
in →W

i

∀k ∈ {1, . . . , w}. ⊢ fk : Wj1 × . . .×W
jm →W

ik

⊢ comp(g, f1, . . . , fn) : W
j1 × . . .Wjm →W

i

∀k ∈ {1, . . . , w}. ⊢ fck
W

: Wi1 × . . .×W
in ×W

i ×W
j →W

i

⊢ fε : W
i1 × . . .×W

in →W
i i < j

⊢ rec(fc1
W

, . . . , fcw
W
, fεW) : W

i1 × . . . ×W
in ×W

j →W
i

∀k ∈ {1, . . . , w}. ⊢ fck
W

: Wi1 × . . .×W
in ×W

j →W
i

⊢ fε : W
i1 × . . .×W

in →W
i

⊢ cond(fc1
W

, . . . , fcw
W
, fεW) : W

i1 × . . . ×W
in ×W

j →W
i

Figure 4: RRW as a formal system.

result.

Lemma 7.1 (Contraction Lemma). Every word algebra is duplicable, i.e., for every word
algebra W there is a proof πW of Wx ⊢Wx ⊗Wx such that JπWK(x) = (x, x).

Proof. For simplicity, consider the algebra N of natural numbers. The proof we are looking
for is the following:

σ : Ny ⊢ Ny+1 σ : Ny ⊢ Ny+1

⊢ Ny ⊗Ny ⊸ Ny+1 ⊗Ny+1
R⊗, L⊗, R⊸

⊢!y<x(Ny ⊗Ny ⊸ Ny+1 ⊗Ny+1)
P!

ρ :⊢ N0 ρ :⊢ N0

⊢ N0 ⊗N0
R⊗ πNx⊗Nx

x

Nx ⊢ Nx ⊗Nx
U

where σ are ρ are the proofs corresponding to 0 and the successor coming from BLL. This
concludes the proof.

The following is the main result of this section:

Theorem 7.2. RRW can be embedded into QBAL. Suppose, in other words, that

π :⊢ f : Wi1 × . . .×W
in →W

i
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and that i < ij1 , . . . , ijm , while i = ik1 , . . . , ikh . Then, there exist a QBAL proof π and a
resource polynomial q such that

〈π〉 : Wx1 , . . . ,Wxn ⊢{xk1
≤x,...,xkh

≤x}Wq(xj1
,...,xjm)+x.

where (
∏n

i=1 ψW) ◦ π ◦ ϕW = f .

Proof. By induction on the proof of

⊢ f : Wi1 × . . .×W
in →W

i.

Some interesting cases:

• Consider the identity function id. Clearly:

Wx1 ⊢{x1≤x}Wx

• Suppose f = comp(g, f1, . . . , fn) and

⊢ g : Wi1 × . . .×W
in →W

i ⊢ fk : Wj1 × . . .×W
jm →W

ik

⊢ comp(g, f1, . . . , fn) : W
j1 × . . .Wjm →W

i

We partition the sequence i1, . . . , in into three sequences containing elements which are
equal to i, strictly greater than i and strictly smaller than i, respectively:

ik1 , . . . , ikh
iu1 , . . . , iuv

ia1 , . . . , iab

Clearly, n = h+ v + b. Similarly for the sequence j1, . . . , jm:

jt1 , . . . , jte
jc1 , . . . , jcl
jz1 , . . . , jzd

Again, m = e+ d+ l. By induction hypothesis, there are proofs πg, πf1 , . . . , πfn with the
appropriate conclusions. Now, consider the proofs πfk1 , . . . , πfkh : they are the ones such

that i = ik1 , . . . , ikh . By Proposition 2.14, we can assume that their conclusion is exactly
the same, i.e., the polynomials rk1 , . . . , rkh in the rhs are indeed the same polynomial r.
In other words, we have proofs

ρfk1 : Wx1 , . . . ,Wxm ⊢xt1≤x,...,xte≤x Wqk1(x1,...,xm,x)

...

ρfkh : Wx1 , . . . ,Wxm ⊢xt1≤x,...,xte≤x Wqkh(x1,...,xm,x)

where qk0(x1, . . . , xm, x) = r(xz1 , . . . , xzd) + x for each o. The proofs πfu1 , . . . , πfuv are
the ones such that i < iu1 , . . . , iuv . Observe that xt1 , . . . , xte do not appear in the right
hand side of their conclusions. By Proposition 2.15 and Proposition 2.13, we can obtain
proofs:

ρfu1 : Wx1 , . . . ,Wxm ⊢xt1≤x,...,xte≤x Wqu1(x1,...,xm,x)

...

ρfuv : Wx1 , . . . ,Wxm ⊢xt1≤x,...,xte≤x Wquv (x1,...,xm,x)
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where qu1 , . . . , quv only depend on xz1 , . . . , xzd . Similarly, we can obtain proofs

ρfa1 : Wx1 , . . . ,Wxm ⊢xt1≤x,...,xte≤x Wqa1(x1,...,xm,x)

...

ρfab : Wx1 , . . . ,Wxm ⊢xt1≤x,...,xte≤x Wqab(x1,...,xm,x)

corresponding to πfa1 , . . . , πfab . Consider the proof πg. By induction hypothesis it is a
proof of

Wy1 , . . . ,Wyn ⊢yk1≤y,...,ykh≤y Wp(yu1 ,...,yuv )+y

Now, define a substitution mapping yi to qi(x1, . . . , xm, x) and y to r(xz1 , . . . , xzd) + x.
By Proposition 2.15, we can obtain a proof

Wq1(x1,...,xm,x), . . . ,Wqn(x1,...,xm,x) ⊢C Ws(yu1 ,...,yuv )+y

where

C = {qk1(x1, . . . , xm, x) ≤ r(xz1 , . . . , xzd) + x, . . . , qkh(x1, . . . , xm, x) ≤ r(xz1 , . . . , xzd) + x}.

But C is always true, and as a consequence

{xt1 ≤ x, . . . , xte ≤ x} |= C .

By Proposition 2.13, we can obtain a proof

ρg : Wq1(x1,...,xm,x), . . . ,Wqn(x1,...,xm,x) ⊢xt1≤x,...,xte≤x Ws(xz1 ,...,xzd
)+x

Plugging the obtained proofs and remembering that base types are duplicable, we can
construct a proof corresponding to f = comp(g, f1, . . . , fn):

ρg ρf1 . . . ρfn

Wx1 , . . . ,Wxm ⊢xt1≤x,...,xte≤x Wp(xz1 ,...,xzd
)+x

• Suppose f = rec(fc1
W

, . . . , fcw
W
, fεW) and

⊢ fck
W

: Wi1 × . . .×Win ×Wi ×Wj →Wi ⊢ fε : Wi1 × . . .×Win →Wi i < j

⊢ rec(fc1
W

, . . . , fcw
W
, fεW) : W

i1 × . . . ×W
in ×W

j →W
i

By induction hypothesis, there are proofs πε and π1
W
, . . . , πw

W
with the appropriate con-

clusions. By Proposition 2.14 we can assume that:

πε : Wx1 , . . . ,Wxn ⊢C Wq(xj1
,...,xjm ,0)+x

π1 : Wx1 , . . . ,Wxn+2 ⊢C∪{xn+1≤x}Wq(xj1
,...,xjm ,xn+2)+x

...

πw : Wx1 , . . . ,Wxn+2 ⊢C∪{xn+1≤x}Wq(xj1
,...,xjm ,xn+2)+x

where C = {xk1 ≤ x, . . . , xkh ≤ x} and q is a fixed resource polynomial. Applying the
substitution µ defined as

x 7→ (y + 1)q(xj1 , . . . , xjm , y + 1) + x

xn+1 7→ (y + 1)q(xj1 , . . . , xjm , y) + x

xn+2 7→ y
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to π1, . . . , πw and by using Proposition 2.14, we obtain

ρ1 : Wx1 , . . . ,Wxn ,W(y+1)q(xj1
,...,xjm ,y)+x,Wy ⊢D W(y+2)q(xj1

,...,xjm ,y+1)+x

...

ρw : Wx1 , . . . ,Wxn ,W(y+1)q(xj1
,...,xjm ,y)+x,Wy ⊢D W(y+2)q(xj1

,...,xjm ,y+1)+x

where D = C [σ]∪{(y+1)q(xj1 , . . . , xjm , y)+x ≤ (y+1)q(xj1 , . . . , xjm , y+1)+x}. Now,
notice that

(y + 1)q(xj1 , . . . , xjm , y) + x ≤ (y + 1)q(xj1 , . . . , xjm , y + 1) + x

always holds because q is monotone. Moreover, C |= C [σ]. By Proposition 2.13, we can
then replace D with C in ρ1 . . . , ρw. For simplicity, we use the following abbreviations:

A = Wx1 ⊗ . . . ⊗Wxn

B = Wx1 ⊸ . . .⊸ Wxn ⊸ (A⊗W(y+1)q(xj1
,...,xjm ,y)+x ⊗Wy)

∆ = Wx1 , . . . ,Wxn

Now, from πε and from a proof corresponding to εW (with conclusion ⊢C W0), we con-
struct σε as follows:

Wx1
⊢C Wx1

· · · Wxn ⊢C Wxn πε : ∆ ⊢C Wq(xj1
,...,xjm

,0)+x ⊢C W0

∆,∆ ⊢C A⊗Wq(xj1
,...,xjm

,0)+x ⊗W0
R⊗

∆ ⊢C A⊗Wq(xj1
,...,xjm

,0)+x ⊗W0
Lemma 7.1

⊢C B[y ← 0]
R⊸

where we have used several times Lemma 7.1. Similarly, from ρi and from a proof
corresponding to ci

W
(with conclusion Wy ⊢C Wy+1), we construct σi as follows:

A ⊢C A ρi : ∆,W(y+1)q(xj1
,...,xjm

,y)+x,Wy ⊢C W(y+2)q(xj1
,...,xjm

,y+1)+x Wy ⊢C Wy+1

A,W(y+1)q(xj1
,...,xjm

,y)+x,Wy,Wy,∆ ⊢C A⊗W(y+2)q(xj1
,...,xjm

,y+1)+x ⊗Wy+1
R⊗

B,∆,∆ ⊢C A⊗W(y+2)q(xj1
,...,xjm

,y+1)+x ⊗Wy+1
L⊗,Lemma 7.1

B,∆ ⊢C A⊗W(y+2)q(xj1
,...,xjm

,y+1)+x ⊗Wy+1
Lemma 7.1

⊢C B ⊸ B[y ← y + 1]
R⊸

where, again, we have used several times Lemma 7.1. And now we are ready to iterate
over the step functions:

σε σ1 . . . σw

Wxn+1
⊢C B[y ← xn+1]

L⊸, A, U
∆, B[y ← xn+1] ⊢C W(xn+1+1)q(xj1

,...,xjm
,xn+1)+x

A,R⊗, L⊸

∆,Wxn+1
⊢C W(xn+1+1)q(xj1

,...,xjm
,xn+1)+x

U

• Suppose f = cond(fc1
W

, . . . , fcw
W
, fεW) and

⊢ fcW : Wi1 × . . . ×W
in ×W

j →W
i ⊢ fε : W

i1 × . . .×W
in →W

i

⊢ cond(fc1
W

, . . . , fcw
W
, fεW) : W

i1 × . . . ×W
in ×W

j →W
i

We can distinguish three subcases:
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• If i < j, there are proofs πε and π1
W
, . . . , πw

W
with the appropriate conclusions. By

Proposition 2.14 we can assume that:

πε : Wx1 , . . . ,Wxn ⊢C Wq(xj1
,...,xjm ,0)+x

π1 : Wx1 , . . . ,Wxn+1 ⊢C Wq(xj1
,...,xjm ,xn+1)+x

...

πw : Wx1 , . . . ,Wxn+1 ⊢C Wq(xj1
,...,xjm ,xn+1)+x

where C = {xk1 ≤ x, . . . , xkh ≤ x}. Applying the substitution xn+1 7→ y to π1, . . . , πw
and by using Proposition 2.14 and Proposition 2.13, we obtain

ρ1 : Wx1 , . . . ,Wxn ,Wy ⊢C Wq(xj1
,...,xjm ,y+1)+x

...

ρw : Wx1 , . . . ,Wxn ,Wy ⊢C Wq(xj1
,...,xjm ,y+1)+x

For simplicity, wee use the following abbreviations:

A = Wx1 ⊗ . . .⊗Wxn

B = Wx1 ⊸ . . .⊸ Wxn ⊸ (A⊗Wq(xj1
,...,xjm ,y)+x ⊗Wy)

∆ = Wx1 , . . . ,Wxn

Now, from πε and from a proof corresponding to εW (with conclusion ⊢C W0), we
construct σε as follows:

Wx1
⊢C Wx1

· · · Wxn ⊢C Wxn πε : ∆ ⊢C Wq(xj1
,...,xjm

,1)+x ⊢C W0

∆,∆ ⊢C A⊗Wq(xj1
,...,xjm

,1)+x ⊗W0
R⊗

∆ ⊢C A⊗Wq(xj1
,...,xjm

,1)+x ⊗W0
Lemma 7.1

⊢C B[y ← 0]
R⊸

Similarly, from ρi and from a proof corresponding to ci
W

(with conclusion Wy ⊢C

Wy+1), we construct σi as follows:

A ⊢C A ρi : ∆,Wy ⊢C Wq(xj1
,...,xjm

,y+1)+x Wy ⊢C Wy+1

A,Wq(xj1
,...,xjm

,y)+x,∆,Wy,Wy ⊢C A⊗Wq(xj1
,...,xjm

,y+1)+x ⊗Wy+1
R⊗,W

B,∆,∆ ⊢C A⊗Wq(xj1
,...,xjm

,y+1)+x ⊗Wy+1
L⊸, A, U

B,∆ ⊢C A⊗Wq(xj1
,...,xjm

,y+1)+x ⊗Wy+1
Lemma 7.1

⊢C B ⊸ B[y ← y + 1]
R⊸

And now we are ready to iterate over the step functions:
σε σ1 . . . σw

Wxn+1 ⊢C B[y ← xn+1]
L⊸, A, U

∆, B[y ← xn+1] ⊢C Wq(xj1
,...,xjm ,xn+1)+x

∆,Wxn+1 ⊢C Wq(xj1
,...,xjm ,xn+1)+x

U
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• If i = j, there are proofs πε and π1
W
, . . . , πw

W
with the appropriate conclusions. By

Proposition 2.14 we can assume that:

πε : Wx1 , . . . ,Wxn ⊢C Wq(xj1
,...,xjm ,0)+x

π1 : Wx1 , . . . ,Wxn+1 ⊢D Wq(xj1
,...,xjm)+x

...

πw : Wx1 , . . . ,Wxn+1 ⊢D Wq(xj1
,...,xjm)+x

where C = {xk1 ≤ x, . . . , xkh ≤ x} and D = C ∪{xn+1 ≤ x}. Applying the substitution
xn+1 7→ y to π1, . . . , πw and by using Proposition 2.15, we obtain

ρ1 : Wx1 , . . . ,Wxn ,Wy ⊢E Wq(xj1
,...,xjm)+x

...

ρw : Wx1 , . . . ,Wxn ,Wy ⊢E Wq(xj1
,...,xjm)+x

where E = C ∪ {y ≤ x} For simplicity, we use the following abbreviations:

A = Wx1 ⊗ . . .⊗Wxn

B = Wx1 ⊸ . . . ⊸ Wxn ⊸ (A⊗Wq(xj1
,...,xjm )+x ⊗Wy)

∆ = Wx1 , . . . ,Wxn

Now, from πε and from a proof corresponding to εW (with conclusion ⊢E W0), we
construct σε as follows:

Wx1
⊢E Wx1

· · · Wxn ⊢E Wxn πε : ∆ ⊢E Wq(xj1
,...,xjm

)+x ⊢E W0

∆,∆ ⊢E A⊗Wq(xj1
,...,xjm

)+x ⊗W0
R⊗

∆ ⊢E A⊗Wq(xj1
,...,xjm

)+x ⊗W0
Lemma 7.1

⊢E B[y ← 0]
R⊸

Similarly, from ρi and from a proof corresponding to ci
W

(with conclusion Wy ⊢E

Wy+1), we construct σi as follows:

A ⊢E A ρi : ∆,Wy ⊢E Wq(xj1
,...,xjm

)+x Wy ⊢E Wy+1

A,Wq(xj1
,...,xjm

)+x,Wy ,Wy,∆ ⊢E A⊗Wq(xj1
,...,xjm

)+x ⊗Wy+1
R⊗

B,∆,∆ ⊢E A⊗Wq(xj1
,...,xjm

)+x ⊗Wy+1
Lemma 7.1

B,∆ ⊢E A⊗Wq(xj1
,...,xjm

)+x ⊗Wy+1
Lemma 7.1

⊢E B ⊸ B[y ← y + 1]
R⊸

And now we are ready to iterate over the step functions:

σε :⊢D B[y ← 0]

σi :⊢E B ⊸ B[y ← y + 1]

⊢D !y<xn+1
(B ⊸ B[y ← y + 1])

Wxn+1
⊢D B[y ← xn+1] ∆, B[y ← xn+1] ⊢D Wq(xj1

,...,xjm
)+x

∆,Wxn+1
⊢D Wq(xj1

,...,xjm
)+x

U

• If i > j, the proof is similar to the case i < j.
Observe how, in all the three cases, the proof corresponding to f is structurally the same.

This concludes the proof.
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Quite interestingly, the proof of Theorem 7.2 is very similar in structure to the proof of
polynomial time soundness for BC given in [3], which is based on the following observation:
the size of the output of a BC function is bounded by a polynomial on the sizes of normal
arguments plus the maximum of sizes of safe arguments. This cannot be formalized in BLL,
because the resource polynomials do not include any function computing the maximum of
its arguments. On the other hand, this can be captured in QBAL by way of constraints.

Proposition 7.3. The correspondence 〈·〉 is weakly compositional.

Proof. The proof is essentially identical to the one of Proposition 6.2.

8. Conclusions

We presented QBAL, a new ICC system embedding two distinct and unrelated systems
for impredicative recursion in the sense of [8], namely ramified recurrence and non-size
increasing computation. QBAL allows to overcome the main weakness of BLL, namely
that all resource variables are global. In the authors’ view, this constitutes the first step
towards unifying ICC systems into a single framework. The next step consists in defining
an embedding of light linear logic into QBAL and the authors are currently investigating
on that.

References

[1] Andrea Asperti and Luca Roversi. Intuitionistic light affine logic. ACM Transactions on Computational

Logic, 3(1):137–175, 2002.
[2] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and the Founda-

tions of Mathematics. North Holland, 1984.
[3] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the polytime func-

tions. Computational Complexity, 2:97–110, 1992.
[4] Vincent Danos and Jean-Baptiste Joinet. Linear logic and elementary time. Information and Compu-

tation, 183(1):123–137, 2003.
[5] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[6] Jean-Yves Girard. Light linear logic. Information and Computation, 143(2):175–204, 1998.
[7] Jean-Yves Girard, Andre Scedrov, and Philip Scott. Bounded linear logic: A modular approach to

polynomial-time computability. Theoretical Computer Science, 97(1):1–66, 1992.
[8] Martin Hofmann. Programming languages capturing complexity classes. SIGACT News Logic Column,

9, 2000. 12 pp.
[9] Martin Hofmann. Linear types and non-size-increasing polynomial time computation. Information and

Computation, 183(1):57–85, 2003.
[10] Martin Hofmann and Philip Scott. Realizability models for BLL-like languages. Theoretical Computer

Science, 318(1-2):121–137, 2004.
[11] Yves Lafont. Soft linear logic and polynomial time. Theoretical Computer Science, 318(1-2):163–180,

2004.
[12] Daniel Leivant. A foundational delineation of computational feasiblity. In Sixth IEEE Symposium on

Logic in Computer Science, Proceedings, pages 2–11, 1991.
[13] Daniel Leivant. Stratified functional programs and computational complexity. In 20th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Proceedings, pages 325–333,
1993.

[14] Jean-Yves Marion and Jean-Yves Moyen. Efficient first order functional program interpreter with time
bound certifications. In Logic for Programming and Automated Reasoning, 7th International Conference,

Proceedings, pages 25–42, 2000.
[15] Andrzej Murawski and Luke Ong. On an interpretation of safe recursion in light affine logic. Theoretical

Computer Science, 318(1-2):197–223, 2004.



BOUNDED LINEAR LOGIC, REVISITED 31
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