
Logical Methods in Computer Science

Vol. 6 (4:11) 2010, pp. 1–35

www.lmcs-online.org

Submitted Nov. 22, 2009

Published Dec. 22, 2010

ON THE MEANING OF LOGICAL COMPLETENESS

MICHELE BASALDELLA a AND KAZUSHIGE TERUI b

a,b Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-
ku, Kyoto 606-8502, Japan.
e-mail address: {mbasalde,terui}@kurims.kyoto-u.ac.jp

Abstract. Gödel’s completeness theorem is concerned with provability, while Girard’s
theorem in ludics (as well as full completeness theorems in game semantics) are concerned
with proofs. Our purpose is to look for a connection between these two disciplines. Follow-
ing a previous work [3], we consider an extension of the original ludics with contraction and
universal nondeterminism, which play dual roles, in order to capture a polarized fragment
of linear logic and thus a constructive variant of classical propositional logic.

We then prove a completeness theorem for proofs in this extended setting: for any
behaviour (formula) A and any design (proof attempt) P , either P is a proof of A or
there is a model M of A⊥ which defeats P . Compared with proofs of full completeness in
game semantics, ours exhibits a striking similarity with proofs of Gödel’s completeness, in
that it explicitly constructs a countermodel essentially using König’s lemma, proceeds by
induction on formulas, and implies an analogue of Löwenheim-Skolem theorem.

Introduction

Gödel’s completeness theorem (for first-order classical logic) is one of the most important
theorems in logic. It is concerned with a duality (in a naive sense) between proofs and
models: For every proposition A,

either ∃P (P ⊢ A) or ∃M(M |= ¬A).

Here P ranges over the set of proofs, M over the class of models, and P ⊢ A reads “P is a
proof of A.” One can imagine a debate on a general proposition A, where Player tries to
justify A by giving a proof and Opponent tries to refute it by giving a countermodel. The
completeness theorem states that exactly one of them wins. Actually, the theorem gives us
far more insights than stated.

Finite proofs vs infinite models: A very crucial point is that proofs are always finite,
while models can be of arbitrary cardinality. Completeness thus implies compactness and
Löwenheim-Skolem theorems, leading to constructions of various nonstandard models.

1998 ACM Subject Classification: F.3.2, F.4.1.
Key words and phrases: Ludics, Linear Logic, Completeness.

a Supported by JSPS Postdoctoral Fellowship Program for Foreign Researchers grant 2008803.
a,b This work was supported by JSPS KAKENHI 21700041.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (4:11) 2010

c© M. Basaldella and K. Terui
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. BASALDELLA AND K. TERUI

Nondeterministic principles: Any proof of Gödel’s completeness theorem relies on a
strong nondeterministic principle such as König’s or Zorn’s lemma, in contrast to the
trivial completeness theorem with respect to the class of boolean algebras.

Matching of two inductions: Provability is defined by induction on proofs, while truth
by induction on formulas. The two inductions are somehow ascribed to the essence of
syntax and semantics, respectively, and the completeness theorem states that they do
match.

Unlike the real debate, however, there is no interaction between proofs and models in Gödel’s
theorem. A more interactive account of completeness is given by Girard’s ludics ([19, 21];
see [16, 8] for good expositions). Ludics is a variant of game semantics, which has the
following prominent features.

Monism: Proofs and models are not distinguished by their ontological status, but by their
structural properties. The common objects are called designs.

Existentialism: Behaviours (semantic types) are built from designs, in contrast to the
ordinary game semantics (e.g., Hyland-Ong [22]) where one begins with the definition of
arenas (types) and then proceeds to strategies (proofs).

Normalization as interaction: Designs (hence proofs and models) interact together via
normalization. It induces an orthogonality relation between designs in such a way that
P⊥M holds if the normalization of P applied to M converges. A behaviour A is defined
to be a set of designs which is equivalent to its biorthogonal (A = A⊥⊥).

In this setting, Girard shows a completeness theorem for proofs [21], which roughly claims
that any “winning” design in a behaviour is a proof of it. In view of the interactive definition
of behaviour, it can be rephrased as follows: For every (logical) behaviour A and every
(proof-like) design P ,

either P ⊢ A or ∃M(M |= A⊥ and M defeats P).

Here, “M |= A⊥” means M ∈ A⊥, and “M defeats P” means P 6⊥M . Hence the right
disjunct is equivalent to P 6∈ A⊥⊥ = A. Namely, P ∈ A if and only if P ⊢ A, that
is a typical full completeness statement. Notice that M |= A⊥ no more entails absolute
unprovability of A (it is rather relativized to each P), and there is a real interaction between
proofs and models.

Actually, Girard’s original ludics is so limited that it corresponds to a polarized fragment
of multiplicative additive linear logic, which is too weak to be a stand-alone logical system.
As a consequence, one does not really observe an opposition between finite proofs and
infinite models, since one can always assume that the countermodel M is finite (related
to the finite model property for MALL [23]). Indeed, proving the above completeness is
easy once internal completeness (a form of completeness which does not refer to any proof
system [21]) for each logical connective has been established.

In this paper, we employ a term syntax for designs introduced in [30], and extend Gi-
rard’s ludics with duplication (contraction) and its dual: universal nondeterminism (see [3]
and references therein). Although our term approach disregards some interesting locativity-
related phenomena (e.g., normalization as merging of orders and different sorts of tensors
[21]), our calculus is easier to manipulate and closer to the tradition of λ, λµ, λµµ̃, π-calculi
and other more recent syntaxes for focalized classical logic (e.g., [11]). Our resulting frame-
work is as strong as a polarized fragment of linear logic with exponentials ([8]; see also [25]),
which is in turn as strong as a constructive version of classical propositional logic.

ON THE MEANING OF LOGICAL COMPLETENESS 3

We then prove the completeness theorem above in this extended setting. Here, universal
nondeterminism is needed on the model side to well interact with duplicative designs on
the proof side. This is comparable to the need of “noninnocent” (and sometimes even
nondeterministic) Opponents to have full completeness with respect to deterministic, but
nonlinear Player’s strategies. Unlike before, we cannot anymore assume the finiteness of
models, since they are not sufficient to refute infinite proof attempts. As a result, our proof
is nontrivial, even after the internal completeness theorem has been proved. Indeed, our
proof exhibits a striking similarity with Schütte’s proof of Gödel’s completeness theorem
[29]. Given a (proof-like) design P which is not a proof of A, we explicitly construct a
countermodel M in A⊥ which defeats P , essentially using König’s lemma. Soundness is
proved by induction on proofs, while completeness is by induction on types. Thus our
theorem gives matching of two inductions. Finally, it implies an analogue of Löwenheim-
Skolem theorem, (and also the finite model property for the linear fragment), which well
illustrates the opposition between finite proofs and infinite models with arbitrary cardinality.

In game semantics, one finds a number of similar full completeness results. However, the
connection with Gödel’s completeness seems less conspicuous than ours. Typically, innocent
strategies in Hyland-Ong games most naturally correspond to Böhm trees, which can be
infinite (cf. [9]). Thus, in contrast to our result, one has to impose finiteness/compactness
on strategies in an external way, in order to have a correspondence with finite λ-terms.
Although this is also the case in [3], we show that such a finiteness assumption is not
needed in ludics: infinitary proof attempts are always defeated by infinitary models.

The paper is organized as follows. In Section 1 we describe the syntax of (untyped)
designs; in Section 2 we move to a typed setting and introduce behaviours (semantic types).
In Section 3 we introduce our proof system and prove completeness for proofs. Finally,
Section 4 concludes the paper.

1. Designs

1.1. Syntax. In this paper, we employ a process calculus notation for designs, inspired by
the close relationship between ludics and linear π-calculus [17]. Precisely, we extend the
syntax introduced by the second author [30] adding a (universal) nondeterministic choice
operator

∧
.

Although [30] mainly deals with linear designs, its syntax is designed to deal with
nonlinear ones without any difficulty. However, in order to obtain completeness, we also
need to incorporate the dual of nonlinearity, that is universal nondeterminism [3]. It is
reminiscent of differential linear logic [14], which has nondeterministic sum as the dual
of contraction; the duality is essential for the separation property [27] (see also [12] for
separation of Böhm trees). A similar situation also arises in Hyland-Ong game semantics
[22], where nonlinear strategies for Player may contain a play in which Opponent behaves
noninnocently; Opponent’s noninnocence is again essential for full completeness.

Designs are built over a given signature A = (A, ar), where A is a set of names a, b, c, . . .
and ar : A −→ N is a function which assigns to each name a its arity ar(a). Let V be a
countable set of variables V = {x, y, z, . . .}.

Over a fixed signature A, a positive action is a with a ∈ A, and a negative action is
a(x1, . . . , xn) where variables x1, . . . , xn are distinct and ar(a) = n. We often abbreviate a
sequence of variables x1, . . . , xn by ~x. In the sequel, we always assume that an expression

4 M. BASALDELLA AND K. TERUI

of the form a(~x) stands for a negative action, i.e., ar(a) = n and ~x is a sequence consisting
of n distinct variables. If a is a nullary name we simply write a for the negative action on
name a.

Definition 1.1 (Designs). For a fixed signature A, the class of positive designs P,Q, . . . ,
that of predesigns S, T, . . . , and that of negative designs N,M, . . . are coinductively
defined as follows:

P ::= Ω (divergence),
∣
∣

∧
{Si : i ∈ I} (conjunction),

S ::= N0|a〈N1, . . . , Nn〉 (predesign),
N ::= x (variable),

∣
∣

∑
a(~x).Pa (abstraction),

where:

• ar(a) = n;
• ~x = x1, . . . , xn and the formal sum

∑
a(~x).Pa has |A|-many components {a(~x).Pa}a∈A;

•
∧
{Si : i ∈ I} is built from a set {Si : i ∈ I} of predesigns with I an arbitrary index set.

We denote arbitrary designs by D,E, The set of designs, consisting of all positive,
negative and predesigns, is denoted by D. Any subterm E of D is equivalently called a
subdesign of D.

Notice that designs are coinductively defined objects. In particular, infinitary designs are
included in our syntax, just as in the original ludics [21]. It is strictly necessary, since we
want to express both proof attempts and countermodels as designs, both of which tend to
be infinite.

Informally, designs may be regarded as infinitary λ-terms with named applications,
named and superimposed abstractions and a universal nondeterministic choice operator

∧
.

More specifically, a predesignN0|a〈N1, . . . , Nn〉 can be thought of as iterated application
N0N1 · · ·Nn = (· · · ((N0N1)N2) · · ·Nn) of an n-ary name a ∈ A. In the sequel, we may

abbreviate N0|a〈N1, . . . , Nn〉 by N0|a〈 ~N〉. If a is a nullary name we simply write N0|a.
On the other hand, a negative design of the form a(~x).Pa can be thought of as iter-

ated abstraction λ~x.Pa = λx1.(λx2.(· · · (λxn.Pa) · · ·)) of an n-ary name a ∈ A. A family
{a(~x).Pa}a∈A of abstractions indexed by A is then superimposed to form a negative de-
sign

∑
a(~x).Pa. Since

∑
a(~x).Pa is built from a family indexed by A, there cannot be any

overlapping of name in the sum. Each a(~x).Pa is called an (additive) component.
A predesign is called a cut if it is of the form (

∑
a(~x).Pa)|b〈N1, . . . , Nn〉. Otherwise,

it is of the form x|a〈N1, . . . , Nn〉 and called a head normal form.
As we shall see in detail in Subsection 1.2, cuts have substantial computational sig-

nificance in our setting: in fact a cut (
∑

a(~x).Pa)|b〈 ~N〉 can be reduced to another design

Pb[~N/~y]. Namely, when the application is of name b, one picks up the component b(~y).Pb

from the family {a(~x).Pa}a∈A. Notice that the arities of ~y and ~N always agree. Then, one

applies a simultaneous “β-reduction” (λ~y.Pb) ~N −→ Pb[~N/~y].
The head variable x in an head normal form x|a〈N1, . . . , Nn〉 plays the same role as

a pointer in a strategy does in Hyland-Ong games and an address (or locus) in Girard’s
ludics. On the other hand, a variable x occurring in a bracket as in N0|a〈N1, . . . , Ni−1, x,
Ni+1, . . . , Nn〉 does not correspond to a pointer nor address. Rather, it corresponds to an
identity axiom (initial sequent) in sequent calculus, and for this reason is called an identity.
If a negative design N simply consists of a variable x, then N is itself an identity.

ON THE MEANING OF LOGICAL COMPLETENESS 5

The positive design Ω denotes divergence (or partiality) of the computation, in the sense
we will make more precise in the next subsection. We also use Ω to encode partial sums.
Given a set α = {a(~x), b(~y), c(~z), . . . } of negative actions with distinct names {a, b, c, . . .} ⊆
A, we write

∑

α a(~x).Pa to denote the negative design
∑

a(~x).Ra, whereRa = Pa if a(~x) ∈ α,
and Ra = Ω otherwise. We also use an informal notation a(~x).Pa + b(~y).Pb + c(~z).Pc + · · ·
to denote

∑

α a(~x).Pa.
So far, the syntax we are describing is essentially the same as the one introduced in

[30]. A novelty of this paper is the nondeterministic conjunction operator
∧
, which allows

us to build a positive design
∧
{Si : i ∈ I} from a set {Si : i ∈ I} of predesigns with I an

arbitrary index set. Each Si is called a conjunct of P . We write z (daimon) for the empty
conjunction

∧
∅. This design plays an essential role in ludics, since it is used to define the

concept of orthogonality. Although z is usually given as a primitive (see e.g., [21, 8, 30]),
we have found it convenient and natural to identify (or rather encode) z with the empty
conjunction. As we shall see, its computational meaning exactly corresponds to the usual
one: z marks the termination of a computation. Put in another way, our nondeterministic
conjunction can be seen as a generalization of the termination mark.

A design D may contain free and bound variables. An occurrence of subterm a(~x).Pa

binds the free variables ~x in Pa. Variables which are not under the scope of the binder
a(~x) are free. We denote by fv(D) the set of free variables occurring in D. As in λ-
calculus, we would like to identify two designs which are α-equivalent i.e., up to renaming
of bound variables. But it is more subtle than usual, since we also would like to identify,
e.g.,

∧
{S, T} with

∧
{S} whenever S and T are α-equivalent. To enforce these requirements

simultaneously and hereditarily, we define an equivalence relation by coinduction.
By renaming we mean a function ρ : V −→ V. We write id for the identity renaming,

and ρ[z/x] for the renaming that agrees with ρ except that ρ[z/x](x) = z. The set of
renamings is denoted by RN .

Definition 1.2 (Design equivalence). A binary relation R ⊆ (D×RN)2 is called a design

equivalence if for any D,E, ρ, τ such that (D, ρ) R (E, τ), one of the following holds:

(1) D = Ω = E;
(2) D =

∧
{Si : i ∈ I}, E =

∧
{Tj : j ∈ J} and we have:

(i) for any i ∈ I there is j ∈ J such that (Si, ρ) R (Tj , τ),
(ii) for any j ∈ J there is i ∈ I such that (Si, ρ) R (Tj , τ);

(3) D = N0|a〈N1, . . . , Nn〉, E = M0|a〈M1, . . . ,Mn〉 and (Nk, ρ) R (Mk, τ) for every 0 ≤
k ≤ n;

(4) D = x, E = y and ρ(x) = τ(y);
(5) D =

∑
a(~xa).Pa, E =

∑
a(~ya).Qa and (Pa, ρ[~za/~xa]) R (Qa, ρ[~za/~ya]) for every a ∈ A

and some vector ~za of fresh variables.

We say that two designs D and E are equivalent if there is a design equivalence R such
that (D, id) R (E, id). See [30] for further details.

Henceforth we always identify two designs D and E, and write D = E by abuse of
notation, if they are equivalent in the above sense. The following lemma is a straightforward
extension of Lemma 2.6 of [30]. It makes it easier to prove equivalence of two designs
(just as the “bisimulation up-to” technique in concurrency theory makes it easier to prove
bisimilarity of two processes).

Lemma 1.3. Let R be a binary relation on designs such that if D R E then one of the
following holds:

6 M. BASALDELLA AND K. TERUI

(1) D = Ω = E;
(2) D =

∧
{Si : i ∈ I}, E =

∧
{Tj : j ∈ J}, and we have:

(i) for any i ∈ I there is j ∈ J such that Si R Tj ,
(ii) for any j ∈ J there is i ∈ I such that Si R Tj ;

(3) D = N0|a〈N1, . . . , Nn〉, E = M0|a〈M1, . . . ,Mn〉 and Nk R Mk for every 0 ≤ k ≤ n;
(4) D = x = E;
(5) D =

∑
a(~x).Pa, E =

∑
a(~x).Qa and Pa R Qa for every a ∈ A.

If D R E, then D and E are equivalent.

As a notational convention, a unary conjunction
∧
{S} is simply written as S. This allows

us to treat a predesign as a positive design. We also write:

• S ∈ P if P is a conjunction and S is a conjunct of P ;
• P ≤ Q if either P = Ω, or both P and Q are conjunctions and for all S ∈ Q, S ∈ P .

Thus P ≤ Q indicates that P has more conjuncts than Q unless P = Ω. We also extend
the conjunction operator to positive designs and abstractions as follows.

Definition 1.4 (∧ operation).

(1) As for positive designs, we set
∧
{Si : i ∈ I} ∧

∧
{Sj : j ∈ J} :=

∧
{Sk : k ∈ I ∪ J}, Ω ∧ P := Ω.

(2) As for abstractions, i.e., negative designs of the form
∑

a(~x).Pa, observe that since we
are working up to renaming of bound variables, it is no loss of generality to assume that
in any pair

∑
a(~x).Pa,

∑
a(~y).Qa, one has ~x = ~y for every a ∈ A. We set:

∑
a(~x).Pa ∧

∑
a(~x).Qa :=

∑
a(~x).(Pa ∧Qa).

Observe the following:

• The set of positive designs forms a semilattice with respect to ≤ and ∧.
• Ω ≤ P ≤ z for any positive design P .

The previous definition can be naturally generalized to arbitrary sets as follows:

Definition 1.5 (
∧

operation).

(1) Given a set X of positive designs, we define the positive design
∧

X as follows:
• If X = ∅, we set

∧
X := z.

• If Ω ∈ X, we set
∧

X := Ω.
• Otherwise, X is a nonempty set of conjunctions and we set:

∧
X :=

∧
{S : S ∈ P for some P ∈ X}.

(2) Given a set X of abstractions, we define the abstraction
∧

X as:
∧

X :=
∑

a(~x).
∧
{Pa :

∑
a(~x).Pa ∈ X}.

In particular, if X = ∅ then
∧

X =
∑

a(~x).z.

Notice that
∧
{D} = D, as long as D ranges over positive designs or abstractions.

A design D is said:

• total, if D 6= Ω;
• closed, if D has no occurrence of free variable;
• linear (or affine, more precisely), if for any subdesign of the form N0|a〈N1, . . . , Nn〉, the
sets fv(N0), . . . , fv(Nn) are pairwise disjoint;

ON THE MEANING OF LOGICAL COMPLETENESS 7

• deterministic, if in any occurrence of subdesign
∧
{Si : i ∈ I}, I is either empty (i.e.,

we have z) or a singleton (i.e., we have a predesign).
• cut-free, if it does not contain a cut as a subdesign;
• identity-free, if it does not contain an identity as subdesign.

We remark that the notion of design introduced in [30] exactly corresponds in our
terminology to that of deterministic design. Furthermore, considering the specific signature
G given below, we can also express in our setting Girard’s original notion of design:

Example 1.6 (Girard’s syntax). Let us consider the signature G = (Pf (N), | |) where:

• Pf (N) consists of finite subsets of N;
• | | : Pf (N) −→ N is the function that maps a finite subset I ⊆f N to its cardinality
|I| ∈ N.

Girard’s designs correspond to total, linear, deterministic, cut-free and identity-free designs
which have a finite number of free variables over the signature G. See [30] for more details.

1.2. Normalization. Ludics is an interactive theory. This means that designs, which sub-
sume both proofs and models, interact together via normalization, and types (behaviours)
are defined by the induced orthogonality relation (Section 2). Several ways to normalize
designs have been considered in the literature: abstract machines [7, 15, 10, 3], abstract
merging of orders [21, 18], and terms reduction [10, 30]. Here we extend the last solution
[30]. As in untyped λ-calculus, normalization is not necessarily terminating, but in our
setting a new difficulty arises through the presence of the operator

∧
.

We define the normal forms in two steps, first giving a nondeterministic reduction rule
which finds head normal forms whenever possible, and then expanding it corecursively.

As usual, let D[~N/~x] denote the design obtained by the simultaneous and capture-free

substitution of negative designs ~N = N1, . . . , Nn for ~x = x1, . . . , xn in D.

Definition 1.7 (Reduction relation −⇀). Given positive designs P,Q, we write P−⇀ Q if

(
∑

a(~x).Pa) | b〈 ~N 〉 ∈ P and Q = Pb[~N/~x]. We denote by −⇀+ the transitive closure, and
by −⇀∗ the reflexive transitive closure of −⇀.

Given two binary relations R1,R2 on designs, we write R1R2 to denote the relation
given by their composition i.e.,

D R1R2 F ⇐⇒ there exists a design E such that D R1 E and E R2 F.

For instance, we write P−⇀∗∋ S if there exists Q such that P−⇀∗ Q and Q ∋ S.

Examples 1.8. We now give examples of reductions and some remarks.

(1) a(x).z | a〈K〉 −⇀ z.
(2) b(x).z | a〈K〉 −⇀ Ω (recall that b(x).z stands for b(x).z + a(y).Ω + c(~z).Ω + · · · by

our conventions on partial sums).
(3) Let P = a(x).z | a〈K〉 ∧ b(x).z | a〈K〉. We have P −⇀ z and P −⇀ Ω.
(4) For N = a(x).x|a〈x〉, let us consider P = N | a〈N〉. We then have an infinite reduction

sequence
P −⇀ P −⇀ P −⇀ · · ·

since P = N | a〈N〉 = (a(x).x|a〈x〉) | a〈N〉 and the latter design reduces to x|a〈x〉[N/x] =
N | a〈N〉 = P .

8 M. BASALDELLA AND K. TERUI

(5) Let P = a(y).(y|b〈w〉 ∧ z|c〈M〉) | a〈b(t).Q〉. We have the following reduction:

P −⇀ (y|b〈w〉 ∧ z|c〈M〉)[b(t).Q/y] = b(t).Q | b〈w〉 ∧ z|c〈M [b(t).Q/y]〉.

We therefore have P−⇀∋ b(t).Q | b〈w〉 and P−⇀∋ z|c〈M [b(t).Q/y]〉. Since b(t).Q | b〈w〉
is a cut, we have:

b(t).Q | b〈w〉 ∧ z|c〈M [b(t).Q/y]〉 −⇀ Q[w/t].

(6) The special designs z and Ω do not reduce to anything (as we will see, they are normal
forms).

(7) By its definition, our reduction is not “closed under context” i.e., if P−⇀ Q and P (resp.
Q) occurs as a subdesign of D (resp. E), nothing ensures that D−⇀ E. For instance
a negative design (or an head normal form) having an occurrence of cut as subdesign
does not reduces to anything. To expand the reduction “under context” we will use
Definition 1.9.

Notice that any closed positive design P has one of the following forms: z, Ω and
∧
{Si :

i ∈ I}, where Si are cuts. The conjunction then reduces to another closed positive design.
Hence any sequence of reductions starting from P either terminates with z or Ω or it
diverges. By stipulating that the normal form of P in case of divergence is Ω, we obtain a
dichotomy between z and Ω: the normal form of a closed positive design is either z or Ω.

This leads us to the following definition of normal form:

Definition 1.9 (Normal form). The normal form function J K : D −→ D is defined by
corecursion as follows:

JP K = Ω if there is an infinite reduction
sequence or a reduction sequence
ending with Ω starting from P ;

=
∧
{x|a〈J ~NK〉 : P−⇀∗∋ x|a〈 ~N 〉} otherwise;

J
∑

a(~x).PaK =
∑

a(~x).JPaK;
JxK = x.

We observe that when P is a closed positive design, we have JP K = z precisely when all
reduction sequences from P are finite and terminate with z; thus our nondeterminism is
universal rather than existential. This, however, does not mean that the set {Q : P−⇀∗ Q}
is finite; even when it is infinite, it may happen that JP K = z.

The following facts are easily observed:

Lemma 1.10.

(1) If P 6= Ω, P ≤ Q and Q−⇀ R, then P−⇀ R.
(2) P−⇀ Q implies JP K ≤ JQK. Furthermore, if P is a predesign, then P−⇀ Q implies

JP K = JQK.
(3) J

∧
XK =

∧
{JP K : P ∈ X}, for any set X of positive designs.

Notice that the first statement means that the composed relation ≤ −⇀ is equivalent to −⇀
as far as total designs are concerned.

Example 1.11 (Acceptance of finite trees). In [30], it is illustrated how words and de-
terministic finite automata are represented by (deterministic) designs in ludics. We may
extend the idea to trees and finite tree automata in presence of nondeterminism. Rather

ON THE MEANING OF LOGICAL COMPLETENESS 9

than describing it in full detail, we will only give an example which illustrates the power of
nondeterminism to express (topdown) finite tree automata.

We consider the set of finite trees labelled with a, b which are at most binary branching.
It is defined by the following grammar:

t ::= ǫ | a(t1, t2) | b(t1, t2).

Here, a(t1, t2) represents a tree with the root labelled by a and with two subtrees t1, t2. In
particular, a(ǫ, ǫ) represents a leaf labelled by a. We simply write a in this case.

Suppose that the signature A contains a unary name ↑, binary names a, b and a nullary

name ǫ. We write ↓ for the positive action ↑. We abbreviate ↑(x).x|a〈 ~N〉 by ↑a〈 ~N 〉, so that
we have

(↑a〈 ~N 〉) | ↓〈a(~x).P 〉 −⇀ (a(~x).P) | a〈 ~N〉 −⇀ P [~N/~x].

Each tree is then represented by a deterministic linear negative design as follows:

ǫ⋆ := ↑ǫ,

a(t1, t2)
⋆ := ↑a〈t⋆1, t

⋆
2〉,

b(t1, t2)
⋆ := ↑b〈t⋆1, t

⋆
2〉.

Now consider the positive design Q = Q0[x0] defined by the following equations:

Q0[x] := x|↓〈a(x, y).Q1[x] ∧Q0[y] + b(x, y).Q2[x] ∧Q2[y]〉,

Q1[x] := x|↓〈b(x, y).Q2[x] ∧Q2[y]〉,

Q2[x] := x|↓〈ǫ.z〉.

This design Q works as an automata accepting all trees of the form a(b, a(b, · · · a(b, b) · · ·)).
Indeed, given a(b, a(b, b)), it works nondeterministically as follows:

Q0[a(b, a(b, b))
⋆]−⇀

∗∋ −⇀ ∗∋
Q1[b

⋆] Q0[a(b, b)
⋆]−⇀

∗∋

−⇀
∗∋ −⇀ ∗∋

Q2[ǫ
⋆] Q1[b

⋆] Q0[b
⋆]

−⇀
∗

−⇀
∗∋

−⇀
∗∋

z Q2[ǫ
⋆] Q2[ǫ

⋆]−⇀
∗

−⇀
∗

z z

Hence we conclude [[Q0[a(b, a(b, b))
⋆]]] = z, i.e., Q “accepts” the tree a(b, a(b, b)).

1.3. Associativity. In this subsection, we prove one of the fundamental properties of de-
signs which we will need later:

Theorem 1.12 (Associativity). Let D be a design and N1, . . . , Nn be negative designs. We
have:

JD[N1/y1, . . . , Nn/yn]K = JJDK[JN1K/y1, . . . , JNnK/yn]K.

10 M. BASALDELLA AND K. TERUI

Associativity corresponds to a weak form of the Church-Rosser property: the normal
form is the same even if we do not follow the head reduction strategy. In this paper we are
not concerned with the full Church-Rosser property, and leave it as an open question.

The proof consists of several stages and it can be skipped at first reading.
To prove associativity, first notice that a simultaneous substitutionD[N1/y1, . . . , Nn/yn]

can be turned into a sequential one of the form D′[N1/z1] · · · [Nn/zn] by renaming y1, . . . , yn
by fresh variables z1, . . . , zn as follows:

D[N1/y1, . . . , Nn/yn] = D[z1/y1, . . . , zn/yn][N1/z1] · · · [Nn/zn].

Moreover, we have:

[[D]][[[N1]]/y1, . . . , [[Nn]]/yn] = [[D[z1/y1, . . . , zn/yn]]][[[N1]]/z1] · · · [[[Nn]]/zn].

This allows us to work with sequential substitutions rather than simultaneous ones.
We define a binary relation ≫ on designs by:

• D ≫ E if D = D0[N1/y1] · · · [Nn/yn] and E = [[D0]][[[N1]]/y1] · · · [[[Nn]]/yn] for some
D0, N1, . . . , Nn such that yi 6∈ fv(Nj) for 1 ≤ i ≤ j ≤ n.

Lemma 1.13. Suppose that P = P0[N1/y1] · · · [Nn/yn] and Q = [[P0]][[[N1]]/y1] · · · [[[Nn]]/yn]
so that P ≫ Q. When P−⇀ P ′, two cases can be distinguished.

(1) If P0−⇀ P1 and P ′ = P1[N1/y1] · · · [Nn/yn], then there exists Q′ such that Q ≤ Q′ and
P ′ ≫ Q′.

(2) Otherwise, there exists Q′ such that Q−⇀ Q′ and P ′ ≫ Q′.

Proof.

(1) By Lemma 1.10 (2), we have [[P0]] ≤ [[P1]] that implies Q ≤ [[P1]][[[N1]]/y1] · · · [[[Nn]]/yn].
Hence by letting Q′ = [[P1]][[[N1]]/y1] · · · [[[Nn]]/yn], we have Q ≤ Q′ and P ′ ≫ Q′.

(2) If (1) is not the case, a cut must be created by substitution of some Nj for a head

variable of P0. Hence P0 must contain a head normal form yj|a〈 ~M 〉 as conjunct for
some 1 ≤ j ≤ n and Nj =

∑
a(~x).Ra, so that P contains a cut

yj|a〈 ~M〉[N1/y1] · · · [Nn/yn] = Nj |a〈 ~M 〉[N1/y1] · · · [Nn/yn]

(the equality due to yi 6∈ fv(Nj) for 1 ≤ i ≤ j) and P−⇀ Ra[~M/~x][N1/y1] · · · [Nn/yn]

= P ′. In this case, [[P0]] contains yj|a〈[[~M]]〉 so that Q contains

yj|a〈[[~M]]〉[[[N1]]/y1] · · · [[[Nn]]/yn] = [[Nj]]|a〈[[~M]]〉[[[N1]]/y1] · · · [[[Nn]]/yn].

Since [[Nj]] =
∑

a(~x).[[Ra]], we have Q−⇀ [[Ra]][~[[M]]/~x][[[N1]]/y1] · · · [[[Nn]]/yn]. Let Q′

be the latter design. Since the simultaneous substitutions [~M/~x] and [~[[M]]/~x] can be
made sequential, we have P ′ ≫ Q′.

Lemma 1.14. If P ≫ Q and Q−⇀ Q′, then there exists some P ′ such that P ′ ≫ Q′ and
P−⇀+ P ′.

Proof. Suppose that P = P0[N1/y1] · · · [Nn/yn], Q = [[P0]][[[N1]]/y1] · · · [[[Nn]]/yn] and Q−⇀

Q′. Then [[P0]] must contain yj|a〈[[~M]]〉 for some ~M and 1 ≤ j ≤ n. Thus, P0−⇀
∗∋ yj|a〈 ~M〉.

Suppose also Nj =
∑

a(~x).Ra so that [[Nj]] =
∑

a(~x).[[Ra]].
Now the situation is as follows: Q contains

yj|a〈[[~M]]〉[[[N1]]/y1] · · · [[[Nn]]/yn] = [[Nj]]|a〈[[~M]]〉[[[N1]]/y1] · · · [[[Nn]]/yn],

ON THE MEANING OF LOGICAL COMPLETENESS 11

so we have
Q−⇀ [[Ra]][~[[M]]/~x][[[N1]]/y1] · · · [[[Nn]]/yn] = Q′.

On the other hand,

P −⇀∗∋ yj|a〈 ~M〉[N1/y1] · · · [Nn/yn]

= Nj |a〈 ~M〉[N1/y1] · · · [Nn/yn]

−⇀ Ra[~M/~xa][N1/y1] · · · [Nn/yn] = P ′,

which implies P−⇀+ P ′. Since the simultaneous substitutions [~M/~x] and [~[[M]]/~x] can be
made sequential, we have P ′ ≫ Q′.

Lemma 1.15. Suppose that P ≫ Q. Then [[P]] = Ω if and only if [[Q]] = Ω.

Proof.

• For the ‘if’ direction, we distinguish two cases.
− If there is an infinite reduction sequence from Q, then there is also an infinite sequence

from P by Lemma 1.14.
− If Q−⇀∗ Ω, then there is P ′ such that P−⇀∗ P ′ and P ′ ≫ Ω. Namely, P ′ can be written

as P0[N1/y1] · · · [Nn/yn] and Ω = [[P0]][[[N1]]/y1] · · · [[[Nn]]/yn]. The latter means that
[[P0]] = Ω, which implies [[P ′]] = Ω. From this and P−⇀∗ P ′, we conclude [[P]] = Ω.

• For the ‘only-if’ direction, if P−⇀∗ Ω, we easily obtain [[Q]] = Ω. Otherwise, there is
an infinite reduction sequence P = P 0−⇀ P 1−⇀ P 2−⇀ · · · . Suppose that P = P 0 =
P0[N1/y1] · · · [Nn/yn] and Q = [[P0]][[[N1]]/y1] · · · [[[Nn]]/yn]. Our purpose is to build either
a finite reduction sequence Q−⇀∗ Ω or an infinite reduction sequence Q = Q0−⇀ Q1−⇀
Q2−⇀ · · · . Two cases arise:
− The reductions take place inside P0 and independently of N1, . . . , Nn. Namely, there is

an infinite reduction sequence P0−⇀ P1−⇀ P2−⇀ · · · such that P i = Pi[N1/y1] · · · [Nn/yn]
for every i ≥ 0. Then [[P0]] = Ω, which implies Q = Ω. So we have [[Q]] = Ω.

− Otherwise, there is at most a finite sequence P0−⇀ P1−⇀ · · · −⇀ Pm such that P i =
Pi[N1/y1] · · · [Nn/yn] for 0 ≤ i ≤ m and Pm contains a head normal form that is
responsible for the reduction Pm−⇀ Pm+1. By repeatedly applying Lemma 1.13 (1),
we obtain Q′ such that Q ≤ Q′ and Pm ≫ Q′. Since Pm−⇀ Pm+1, there exists Q1

such that Q′−⇀ Q1 and Pm+1 ≫ Q1 by Lemma 1.13 (2). Hence by Lemma 1.10 (1),
we obtain Q = Q0−⇀ Q1.

In the former case, we are already done. In the latter case, we still have an infinite
reduction sequence Pm+1−⇀ Pm+2−⇀ · · · and Pm+1 ≫ Q1. Hence we may repeat the
same argument to prolong the reduction sequence Q0−⇀ Q1. Hence we eventually obtain
[[Q]] = Ω.

Lemma 1.16. Suppose that P ≫ Q.

• If P−⇀∗∋ x|a〈M1, . . . ,Mm〉, then there exist L1, . . . , Lm such that Q−⇀∗∋ x|a〈L1, . . . , Lm〉
and M1 ≫ L1, . . . , Mm ≫ Lm.

• Conversely, if Q−⇀∗∋ x|a〈L1, . . . , Lm〉, then there exist M1, . . . ,Mm such that P−⇀∗∋
x|a〈M1, . . . ,Mm〉 and M1 ≫ L1, . . . , Mm ≫ Lm.

Proof. Suppose that P−⇀∗ P ′ ∋ x|a〈M1, . . . ,Mm〉. By Lemmas 1.13 and 1.10 (1) (which
states that the composed relation ≤ −⇀ is identical with −⇀), there is Q′ such that Q−⇀∗≤ Q′

and P ′ ≫ Q′. Since P ′ ∋ x|a〈 ~M 〉, we may write

x|a〈 ~M〉 = x|a〈 ~K〉[N1/y1] · · · [Nn/yn] = x|a〈 ~K[N1/y1] · · · [Nn/yn]〉

12 M. BASALDELLA AND K. TERUI

for some ~K = K1, . . . ,Km, where x 6∈ {y1, . . . , yn}, and Q′ contains

[[x|a〈 ~K〉]][[[N1]]/y1] · · · [[[Nn]]/yn] = x|a〈 ~[[K]][[[N1]]/y1] · · · [[[Nn]]/yn]〉.

Hence by letting Li = [[Ki]][[[N1]]/y1] · · · [[[Nn]]/yn] we obtain Mi ≫ Li for every 1 ≤ i ≤ m.

Since Q−⇀∗≤ Q′ ∋ x|a〈~L〉, namely Q−⇀∗∋ x|a〈~L〉, the claim holds.
Conversely, suppose that Q−⇀∗ Q′ ∋ x|a〈L1, . . . , Lm〉. By Lemma 1.14, there is P ′ such

that P−⇀∗ P ′ and P ′ ≫ Q′. The rest is similar to the above.

Lemma 1.17. If M ≫ N , then either M = y = N for a variable y, or M =
∑

a(~xa).Pa,
N =

∑
a(~xa).Qa and Pa ≫ Qa for every a ∈ A.

Proof. Immediate.

The following lemma completes the proof of Theorem 1.12.

Lemma 1.18. If D0 ≫ E0, then [[D0]] = [[E0]].

Proof. Define a binary relation R on designs as follows:

• For positive (resp. negative) designs D,E, we have D R E if D = [[D0]], E = [[E0]], and
D0 ≫ E0 for some D0 and E0.

• For predesigns S, T , we have S R T if S = x|a〈[[M1]], . . . , [[Mm]]〉, T = x|a〈[[L1]], . . . ,
[[Lm]]〉, and Mi ≫ Li for every 1 ≤ i ≤ m.

We now verify that this R satisfies the conditions of Lemma 1.3.
First, let P,Q be positive designs such that P R Q, i.e., P = [[P0]], Q = [[Q0]], and

P0 ≫ Q0 for some P0 and Q0.

• If [[P0]] = Ω, then [[Q0]] = Ω too by Lemma 1.15. Hence (1) holds.
• If [[P0]] is a conjunction, then [[Q0]] is not Ω by Lemma 1.15, so is a conjunction. If [[P0]]

contains x|a〈[[M1]], . . . , [[Mm]]〉, then P0−⇀
∗∋ x|a〈 ~M〉. Since P0 ≫ Q0, Lemma 1.16 yields

Q0−⇀
∗∋ x|a〈~L〉 for some ~L = L1, . . . , Lm. Namely, [[Q0]] contains x|a〈[[~L]]〉. Moreover,

we have Mi ≫ Li for every 1 ≤ i ≤ m. Similarly, one can show that if [[Q0]] contains

x|a〈[[~L]]〉, then [[P0]] contains x|a〈[[~M]]〉 and Mi ≫ Li for every 1 ≤ i ≤ m. Hence (2)
holds.

Let S, T be predesigns such that S R T , i.e., S = x|a〈[[M1]], . . . , [[Mm]]〉, T = x|a〈[[L1]], . . . ,
[[Lm]]〉, and Mi ≫ Li for every 1 ≤ i ≤ m. It immediately follows that [[Mi]] R [[Li]] for
every 1 ≤ i ≤ m. Also, x R x. Hence (3) holds.

Finally, let N,M be negative designs such that N = [[N0]], M = [[M0]], and N0 ≫ M0

for some N0 and M0.

• If N = x, then N0 = M0 = M = x. Hence (4) holds.
• Otherwise, N must be of the form

∑
a(~xa).[[Pa]] and N0 =

∑
a(~xa).Pa. Since N0 ≫ M0,

M0 is of the form
∑

a(~xa).Qa and Pa ≫ Qa for every a ∈ A by Lemma 1.17. So
M = [[M0]] =

∑
a(~xa).[[Qa]] and [[Pa]] R [[Qa]]. Hence (5) holds.

Therefore, if D0 ≫ E0, we have [[D0]] = [[E0]] by Lemma 1.3.

ON THE MEANING OF LOGICAL COMPLETENESS 13

2. Behaviours

This section is concerned with the type structure of ludics. We describe orthogonality and
behaviours in 2.1, logical connectives in 2.2 and finally explain (the failure of) internal
completeness of logical connectives in 2.3.

2.1. Orthogonality. In the rest of this paper, we mainly restrict ourselves to a special
subclass of designs: we only consider designs which are total, cut-free, and identity-free.
Generalizing the terminology in [30], we call them standard designs. In other words:

Definition 2.1 (Standard design). A design D is said standard if it satisfies the following
two conditions:

(i) Cut-freeness and identity-freeness: D can be coinductively generated by the following
restricted version of the grammar given in Definition 1.1:

P ::= Ω
∣
∣
∧
{Si : i ∈ I},

S ::= x|a〈N1, . . . , Nn〉,
N ::=

∑
a(~x).Pa.

(ii) Totality: D 6= Ω.

The totality condition is due to the original work [21]. It has a pleasant consequence that
behaviours (see below) are never empty. We also remark that the lack of identities can be
somehow compensated by considering their infinitary η expansions, called faxes in [21]. In
our setting, the infinitary η expansion of an identity x is expressed by the negative standard
design η(x) defined by the equation:

η(x) =
∑

a(y1, . . . , yn).x|a〈η(y1), . . . , η(yn)〉.

We refer to [30] for more details.
We are now ready to define orthogonality and behaviours.

Definition 2.2 (Orthogonality). A positive design P is said atomic if it is standard and
fv(P) ⊆ {x0} for a certain fixed variable x0.

1

A negative design N is said atomic if it is standard and fv(N) = ∅.
Two atomic designs P,N of opposite polarities are said orthogonal and written P⊥N

(or equivalently N⊥P) when JP [N/x0]K = z.
If X is a set of atomic designs of the same polarity, then its orthogonal set, denoted

by X⊥, is defined by X⊥ := {E : ∀D ∈ X, D⊥E}.

The meaning of
∧

and the associated partial order ≤ can be clarified in terms of orthogonal-
ity. For atomic designsD,E of the same polarity, defineD � E if and only if {D}⊥ ⊆ {E}⊥.
D � E means that E has more chances of convergence than D when interacting with other
atomic designs. The following is easy to observe.

Proposition 2.3.

(1) � is a preorder.
(2) P ≤ Q implies P � Q for any pair of atomic positive designs P,Q.
(3) Let X and Y be sets of atomic designs of the same polarity. Then X ⊆ Y implies

∧
Y �

∧
X.

1 The variable x0 here plays the same role as the empty address “〈〉” does in [21] : x0 may be thought of
as a fixed and predetermined “location.”

14 M. BASALDELLA AND K. TERUI

In particular, Ω � P � z for any atomic positive design P .2 This justifies our identifi-
cation of z with the empty conjunction

∧
∅.

Remark 2.4. Designs in [21] satisfy the separation property : for any designs D,E of the
same polarity, we have D = E if and only if {D}⊥ = {E}⊥. But when the constraint of
linearity is removed, this property no more holds, as observed in [26] (see also [10]).

In our setting, separation does not hold, even when D and E are deterministic (atomic)
designs. For instance, consider the following two designs [26]:

P := x0|↓〈↑(y).z〉,

Q := x0|↓〈↑(y).P 〉 = x0|↓〈 ↑(y). x0|↓〈↑(y).z〉 〉.

It is easy to see that in our setting P⊥N holds if and only if N has an additive component of
the form ↑(z).

∧
{z|↓〈Mi〉 : i ∈ I} for arbitrary index set I and arbitrary standard negative

designs Mi with fv(Mi) ⊆ {z}.
The same holds for Q, as can be observed from the following reduction sequence (for

readability, we only consider the case in which N has a component of the form ↑(z).z|↓〈M〉,
the general case easily follows):

Q[N/x0] = N | ↓〈↑(y).P [N/x0]〉

−⇀ (↑(y).P [N/x0]) | ↓〈M [↑(y).P [N/x0]/z]〉

−⇀ P [N/x0] −⇀
∗

z.

(If N does not have a component of the form discussed above, we have Q[N/x0]−⇀
∗ Ω.)

We therefore conclude {P}⊥ = {Q}⊥, even though P 6= Q.

Although possible, we do not define orthogonality for nonatomic designs. Accordingly, we
only consider atomic behaviours which consist of atomic designs.

Definition 2.5 (Behaviour). A behaviour X is a set of atomic standard designs of the
same polarity such that X⊥⊥ = X.

A behaviour is positive or negative according to the polarity of its designs. We denote
positive behaviours by P,Q,R, . . . and negative behaviours by N,M,K

Orthogonality satisfies the following standard properties:

Proposition 2.6. Let X,Y be sets of atomic designs of the same polarity. We have:

(1) X ⊆ X⊥⊥.
(2) X ⊆ Y =⇒ Y⊥ ⊆ X⊥.
(3) X ⊆ Y⊥⊥ =⇒ X⊥⊥ ⊆ Y⊥⊥.
(4) X⊥ = X⊥⊥⊥. In particular, any orthogonal set is a behaviour.
(5) (X∪Y)⊥ = X⊥∩Y⊥. In particular, the intersection of two behaviours is a behaviour.

2 Here we are tentatively considering the nontotal design Ω, which does not officially belong to the
universe of atomic designs.

ON THE MEANING OF LOGICAL COMPLETENESS 15

We also observe that D � E and D ∈ X implies E ∈ X when X is a behaviour.
Among all positive (resp. negative) behaviours, there exist the least and the greatest

behaviours with respect to set inclusion:

0+ := {z}⊥⊥ = {z}, ⊤− := (0+)⊥ = { atomic negative designs } ,
0− := {z−}⊥⊥ = {z−}, ⊤+ := (0−)⊥ = { atomic positive designs } ,

where z
− :=

∑
a(~x).z plays the role of the design called negative daimon in [21]. Notice

that behaviours are always nonempty due to the totality condition: any positive (resp.
negative) behaviour contains z (resp. z−).

Now that we have given behaviours, we can define contexts of behaviours and then the
semantical entailment |= in order to relate designs to contexts of behaviours. These con-
structs play the role of typing environments in type systems. They correspond to sequents
of behaviours, in the terminology of [21].

Definition 2.7 (Contexts of behaviours and semantical entailment |=).

(a) A positive context Γ is of the form x1 : P1, . . . , xn : Pn, where x1, . . . , xn are distinct
variables and P1, . . . ,Pn are (atomic) positive behaviours. We denote by fv(Γ) the set
{x1, . . . , xn}.

A negative context Γ,N is a positive context Γ enriched with an (atomic) negative
behaviour N, to which no variable is associated.

(b) The semantical entailment is the binary relation |= between designs and contexts of
behaviours of the same polarity defined as follows:
P |= x1 : P1, . . . , xn : Pn if and only if:
• P is standard;
• fv(P) ⊆ {x1, . . . , xn};
• JP [K1/x1, . . . ,Kn/xn]K = z for any K1 ∈ P⊥

1 , . . . , Kn ∈ P⊥
n .

N |= x1 : P1, . . . , xn : Pn,N if and only if:
• N is standard;
• fv(N) ⊆ {x1, . . . , xn};
• JQ[N [K1/x1, . . . ,Kn/xn]/x0]K = z for any K1 ∈ P⊥

1 , . . . , Kn ∈ P⊥
n , Q ∈ N⊥.

Clearly, N |= N if and only if N ∈ N, and P |= y : P if and only if P [x0/y] ∈ P.
Furthermore, associativity (Theorem 1.12) implies the following quite useful principle:

Lemma 2.8 (Closure principle).

(1) P |= Γ, z : P if and only if JP [M/z]K |= Γ for any M ∈ P⊥;
(2) N |= Γ,N if and only if JQ[N/x0]K |= Γ for any Q ∈ N⊥;
(3) N |= Γ, z : P,N if and only if JN [M/z]K |= Γ,N for any M ∈ P⊥.

Proof.

(1) Let P be a standard design with fv(P) ⊆ {x1, . . . , xn, z} and Γ a context x1 : P1, . . . , xn :
Pn.

First, we claim that JP [M/z]K is a standard design when P |= Γ, z : P and M ∈ P⊥.
Indeed, it is obviously cut-free. It is also identity-free because so are P,M and neither
substitution P [M/z] nor normalization JP [M/z]K introduces identities. Totality will be
shown below. We also note that fv(JP [M/z]K) ⊆ {x1, . . . , xn}, since M is an atomic
negative design that is always closed.

16 M. BASALDELLA AND K. TERUI

Next, we observe that JP [~K/~x,M/z]K = J JP [M/z]K [~K/~x]K for any list ~K =

K1, . . . ,Kn of standard negative designs. Indeed, notice that P [~K/~x,M/z] = P [M/z][~K/~x]
since M is closed, and [[Ki]] = Ki since Ki is cut-free. Hence by associativity, we obtain:

JP [~K/~x,M/z]K = JP [M/z][~K/~x]K = J JP [M/z]K [J ~KK/~x]K = J JP [M/z]K [~K/~x]K.

In particular, JP [~K/~x,M/z]K = z implies the totality of JP [M/z]K.

We are now ready to prove the first claim. Writing ~K ∈ Γ⊥ for K1 ∈ P⊥
1 , . . . ,

Kn ∈ P⊥
n , we have:

P |= Γ, z : P ⇐⇒ JP [~K/~x,M/z]K = z for every ~K ∈ Γ⊥ and M ∈ P⊥,

⇐⇒ J JP [M/z]K [~K/~x]K = z for every ~K ∈ Γ⊥ and M ∈ P⊥,

⇐⇒ JP [M/z]K |= Γ for every M ∈ P⊥.

(2) and (3) are proven in a similar way. We just mention that the crucial equalities

JQ[N [~K/~x]/x0]K = J JQ[N/x0]K [~K/~x]K,

JQ[N [~K/~x,M/z]/x0]K = JQ[JN [M/z]K [~K/~x]/x0]K,

which are needed to show (2) and (3) respectively, can be straightforwardly derived
from associativity.

2.2. Logical connectives. We next describe how to build behaviours by means of logical
connectives in ludics.

Definition 2.9 (Logical connectives). An n-ary logical connective α is a pair α = (~z, α0)
where:

• ~z = z1, . . . , zn is a sequence of distinct variables;
• α0 = {a1(~x1), . . . , ak(~xk)} is a finite set of negative actions such that:
− the names a1, . . . , ak are distinct;
− {~xi} ⊆ {z1, . . . , zn} for each 1 ≤ i ≤ k.

Two logical connectives are identified if one is obtained from another by renaming of vari-
ables.

We can intuitively explain the structure of logical connectives in terms of standard
connectives of linear logic as follows.

The variables z1, . . . , zn play the role of placeholders for (immediate) subformulas, while
α0 determines the logical structure of α. An action a(x1, . . . , xm) ∈ α0 can be seen as a
kind of m-ary “tensor product” x1 ⊗ · · · ⊗ xm indexed by the name a. The whole set α0

can be thought of as k-ary “additive sum” of its elements:

k components
︷ ︸︸ ︷

· · · ⊕ (x1 ⊗ · · · ⊗ xm)
︸ ︷︷ ︸

a

⊕ · · · .

In Appendix A we give a more precise correspondence between logical connective in
our sense and connectives of polarized linear logic [25].

ON THE MEANING OF LOGICAL COMPLETENESS 17

Example 2.10. Consider the logical connective α = (x, y, z, t, {a(x, y, t), b(t, x), c(y, x)}).
By the previous discussion, we can intuitively think of it as

(x⊗ y ⊗ t)
︸ ︷︷ ︸

a

⊕ (t⊗ x)
︸ ︷︷ ︸

b

⊕ (y ⊗ x)
︸ ︷︷ ︸

c

.

When α is applied to N,M,K, L, it gives the formula

(N⊗M⊗ L)
︸ ︷︷ ︸

a

⊕ (L⊗ N)
︸ ︷︷ ︸

b

⊕ (M⊗ N)
︸ ︷︷ ︸

c

.

We now define behaviours built by logical connectives.

Definition 2.11 (Behaviours defined by logical connectives). Given anm-ary name a, an n-
ary logical connective α = (~z, α0) with ~z = z1, . . . , zn and behavioursN1, . . . ,Nn,P1, . . . ,Pn

we define:

• a〈N1, . . . ,Nm〉 := {x0|a〈N1, . . . , Nm〉 : N1 ∈ N1, . . . , Nm ∈ Nm},

• α〈N1, . . . ,Nn〉 :=
(
⋃

a(~x)∈α0
a〈Ni1 , . . . ,Nim〉

)⊥⊥
,

• α(P1, . . . ,Pn) := α〈P⊥
1 , . . . ,P

⊥
n 〉

⊥,

where the indices i1, . . . , im ∈ {1, . . . , n} vary for each a(~x) ∈ α0 and are determined by the
variables ~x = zi1 , . . . , zim . We call the set

αeth〈N1, . . . ,Nn〉 :=
⋃

a(~x)∈α0

a〈Ni1 , . . . ,Nim〉

the ethics of α〈N1, . . . ,Nn〉.

Remark 2.12. An ethics is a set of atomic predesigns which are by construction linear
in x0. It can be seen as a “generator” of a behaviour defined by logical connectives in the
following sense. For positives, we have by definition α〈N1, . . . ,Nn〉 = αeth〈N1, . . . ,Nn〉

⊥⊥.
For negatives, we have by Proposition 2.6 (3):

α(P1, . . . ,Pn) = α〈P⊥
1 , . . . ,P

⊥
n 〉

⊥

= αeth〈P
⊥
1 , . . . ,P

⊥
n 〉

⊥⊥⊥

= αeth〈P
⊥
1 , . . . ,P

⊥
n 〉

⊥.

Example 2.13. Let α be the logical connective as given in Example 2.10 and N,M,K,L
negative behaviours. We have αeth〈N,M,K,L〉 = a〈N,M,L〉 ∪ b〈L,N〉 ∪ c〈M,N〉.

Example 2.14 (Linear logic connectives). Logical connectives

&

,&, ↑,⊥,⊤ can be defined
if the signature A contains a nullary name ∗, unary names ↑, π1, π2 and a binary name ℘.
We also give notations to their duals for readability.

`̀̀ := (x1, x2, {℘(x1, x2)}), ⊗⊗⊗ := `̀̀, • := ℘,

&&& := (x1, x2, {π1(x1), π2(x2)}), ⊕⊕⊕ := &&&, ιi := πi,

↑↑↑ := (x, {↑(x)}), ↓↓↓ := ↑↑↑, ↓ := ↑,
⊥⊥⊥ := (ǫ, {∗}), 1 := ⊥⊥⊥,

⊤⊤⊤ := (ǫ, ∅), 0 := ⊤⊤⊤,

where ǫ denotes the empty sequence. We do not have exponentials here, because we are
working in a nonlinear setting so that they are already incorporated into the connectives.

18 M. BASALDELLA AND K. TERUI

With these logical connectives we can build behaviours corresponding to usual linear logic
types (we use infix notations such as N⊗⊗⊗M rather than the prefix ones ⊗⊗⊗〈N,M〉).

N⊗⊗⊗M = •〈N,M〉⊥⊥, P `̀̀ Q = •〈P⊥,Q⊥〉⊥,
N⊕⊕⊕M = (ι1〈N〉 ∪ ι2〈M〉)⊥⊥, P&&&Q = ι1〈P

⊥〉⊥ ∩ ι2〈Q
⊥〉⊥,

↓↓↓N = ↓〈N〉⊥⊥, ↑↑↑P = ↓〈P⊥〉⊥,
1 = {x0|∗}

⊥⊥, ⊥⊥⊥ = {x0|∗}
⊥,

0 = ∅⊥⊥, ⊤⊤⊤ = ∅⊥.

The next theorem illustrates a special feature of behaviours defined by logical connec-
tives. It also suggests that nonlinearity and universal nondeterminism play dual roles.

Theorem 2.15. Let P be an arbitrary positive behaviour.

(1) P |= x1 : P, x2 : P =⇒ P [x0/x1, x0/x2] ∈ P.
(2)

∧
X ∈ P⊥ =⇒ X ⊆ P⊥.

Moreover, if P is obtained by applying a logical connective, that is P = α〈N1, . . . ,Nn〉 for
some α, N1, . . . ,Nn, then:

(3) the converse of (1) (duplicability) and
(4) the converse of (2) (closure under

∧
) hold.

Proof.

(1) For any N ∈ P⊥, we have JP [N/x1, N/x2]K = z. Hence, JP [x0/x1, x0/x2][N/x0]K = z,
and so P [x0/x1, x0/x2] ∈ P⊥⊥ = P.

(2) By Proposition 2.3 (3), we have
∧

X �
∧
{N} = N for any N ∈ X. Since P⊥ is a

behaviour, it is upward closed with respect to �. Hence the claim holds.
(4) For the sake of readability, we consider the binary case and show that N,M |= P⊥

implies N ∧M |= P⊥. The general case can be proven using the same argument.
Let P⊥ = α〈N1, . . . ,Nn〉

⊥ = α(N⊥
1 , . . . ,N

⊥
n). To prove N ∧ M ∈ P⊥, by Remark

2.12, it is sufficient to show thatN∧M is orthogonal to any x0|a〈 ~K〉 ∈ αeth〈N1, . . . ,Nn〉.

Since by construction x0 occurs only once at the head position of x0|a〈 ~K〉, we only have

to show that JN ∧M | a〈 ~K〉K = z.
Let N =

∑
a(~x).Pa and M =

∑
a(~x).Qa so that N ∧M =

∑
a(~x).(Pa ∧Qa). Since

N ∧M | a〈 ~K〉 is a predesign, we have by Lemma 1.10 (2), (3):

JN ∧M | a〈 ~K〉K = JPa ∧Qa[~K/~x]K = JPa[~K/~x]K ∧ JQa[~K/~x]K = JN | a〈 ~K〉K ∧ JM | a〈 ~K〉K.

Since N,M ∈ P⊥, we have JN | a〈 ~K〉K = z and JM | a〈 ~K〉K = z. Our claim then
immediately follows.

(3) Let P [x0/x1, x0/x2] ∈ P = α〈N1, . . . ,Nn〉. It suffices to show that JP [N/x1,M/x2]K =
z holds for any N,M ∈ P⊥. But we have just proven that N ∧ M ∈ P⊥, and so
JP [x0/x1, x0/x2][N ∧M/x0]K = JP [N ∧M/x1, N ∧M/x2]K = z. Since N ∧M � N,M
by Proposition 2.3 (3), we have JP [N/x1,M/x2]K = z.

Remark 2.16. Theorem 2.15 can be considered as an internal, monistic form of sound-
ness and completeness for the contraction rule: soundness corresponds to point (1) while
completeness to its converse (3), duplicability.

However, in the sequel we only use point (1) (in Theorem 3.5) and point (4) (in Lemma
3.10) of Theorem 2.15.

ON THE MEANING OF LOGICAL COMPLETENESS 19

2.3. Internal completeness. In [21], Girard proposes a purely monistic, local notion of
completeness, called internal completeness. It means that we can give a precise and direct
description to the elements of behaviours (built by logical connectives) without using the
orthogonality and without referring to any proof system. It is easy to see that negative
logical connectives enjoy internal completeness:

Theorem 2.17 (Internal completeness (negative case)). Let α = (~z, α0) be a logical con-
nective with ~z = z1, . . . , zn and N =

∑
a(~x).Pa an atomic negative design. We have:

N ∈ α(P1, . . . ,Pn) ⇐⇒ Pa |= zi1 : Pi1 , . . . , zim : Pim , for every a(~x) ∈ α0,

where the indices i1, . . . , im ∈ {1, . . . , n} are determined by the variables ~x = zi1 , . . . , zim .

Proof. Let N =
∑

a(~x).Pa be an atomic negative design and P = x0|a〈N1, . . . , Nm〉 ∈
αeth〈P

⊥
1 , . . . ,P

⊥
n 〉 =

⋃

a(~x)∈α0
a〈P⊥

i1
, . . . ,P⊥

im
〉. Since P [N/x0] is a predesign and x0 occurs

only at the head position of P , we have by Lemma 1.10 (2):

JP [N/x0]K = J
∑

a(~x).Pa | a〈N1, . . . , Nm〉K = JPa[N1/zi1 , . . . , Nm/zim]K.

This means that N ∈ αeth〈P
⊥
1 , . . . ,P

⊥
n 〉

⊥ = α(P1, . . . ,Pn) (see Remark 2.12) if and only if
for every a(~x) ∈ α0 and for every N1 ∈ P⊥

i1
, . . . , Nm ∈ P⊥

im
, JPa[N1/zi1 , . . . , Nm/zim]K = z

if and only if for every a(~x) ∈ α0, Pa |= zi1 : Pi1 , . . . , zim : Pim (see Definition 2.7 (b)).

Notice that in the above, Pb can be arbitrary when b(~y) /∈ α0. Thus our approach
is “immaterial” in that we do not consider material designs (see e.g., [21, 8, 30] for the
definition of material design). The original “material” version of internal completeness [21]
can be easily derived from our immaterial one.

Remark 2.18. A remarkable example of internal completeness for negative behaviours is
provided for the logical connective &&& = (x1, x2, {π1(x1), π2(x2)}):

N ∈ P&&&Q ⇐⇒ N = π1(x1).P + π2(x2).Q+ · · · , for some P |= x1 : P and Q |= x2 : Q
⇐⇒ N = π1(x0).P + π2(x0).Q+ · · · , for some P ∈ P and Q ∈ Q.

Above, the irrelevant components of the sum are suppressed by “· · · .” Up to materiality
(i.e., removal of irrelevant additive components), P&&&Q, which has been defined by inter-
section, is isomorphic to the cartesian product of P and Q. This isomorphism is called “the
mystery of incarnation” in [21].

As to positive connectives, [21] proves internal completeness theorems for additive and
multiplicative ones separately in the linear and deterministic setting. They are integrated
in [30] as follows:

Theorem 2.19 (Internal completeness (linear, positive case)). When the universe of stan-
dard designs is restricted to linear and deterministic ones, we have

α〈N1, . . . ,Nn〉 = αeth〈N1, . . . ,Nn〉 ∪ {z}.

20 M. BASALDELLA AND K. TERUI

However, this is no more true with nonlinear designs. A counterexample is given below.

Example 2.20. Let us consider the behaviour P := ↓↓↓〈↑↑↑(0)〉 = ↓↓↓eth〈↑↑↑(0)〉
⊥⊥ and the designs

P = x0|↓〈↑(y).z〉 and Q = x0|↓〈↑(y).P 〉 of Remark 2.4. By construction, P belongs to P.
Since P � Q, Q also belongs to P. However, Q 6∈ ↓↓↓eth〈↑↑↑(0)〉, since ↑(y).P is not atomic and
so cannot belong to ↑↑↑(0).

This motivates us to directly prove completeness for proofs, rather than deriving it from
internal completeness as in the original work [21].

In [3] a weaker form of internal completeness is proved, which is enough to derive a
weaker form of full completeness: all finite “winning” designs are interpretations of proofs.
While such a finiteness assumption is quite common in game semantics, we will show that
it can be avoided in ludics.

We end this section with the following remark.

Remark 2.21. The main linear logic isomorphism, namely the exponential one !A⊗ !B ∼=
!(A&B) can be expressed in our notation as ↑↑↑P⊗⊗⊗↑↑↑Q ∼= ↓↓↓(P&&&Q).

In our setting it is possible to prove that those behaviours are “morally” isomorphic,
in the sense that they are isomorphic if we consider designs equal up to materiality3.

We can in fact define a pair of maps (f, g) on designs such that:

• f : ↑↑↑P⊗⊗⊗↑↑↑Q −→ ↓↓↓(P&&&Q) and g : ↓↓↓(P&&&Q) −→ ↑↑↑P⊗⊗⊗↑↑↑Q;
• if P and Q are equal up to materiality in ↑↑↑P⊗⊗⊗↑↑↑Q, then f(P) and f(Q) are equal up to
materiality in ↓↓↓(P&&&Q), and similarly for g;

• for any P ∈ ↑↑↑P⊗⊗⊗↑↑↑Q, we have that g(f(P)) and P are equal up to materiality in ↑↑↑P⊗⊗⊗↑↑↑Q,
and similarly for the other direction.

We postpone a detailed study of isomorphisms of types and related issues to a subsequent
work.

3. Proof system and completeness for proofs

Having set up the framework, we now address the main problem: an interactive form of
Gödel completeness. We first introduce the proof system in 3.1, then examine its soundness
in 3.2, and finally prove completeness in 3.3, in a way quite analogous to the proof of Gödel’s
theorem based on proof search (often attributed to Schütte [29]).

3.1. Proof system. We will now introduce a proof system. In our system, logical rules are
automatically generated by logical connectives. Since the names which constitute the logical
connectives are chosen among the names of a signature A, the set of logical connectives vary
for each signature A. Thus, our proof system is parameterized by A.

If one chooses A rich enough, the constant-only fragment of polarized linear logic ([25];
see also [8]) can be embedded, as we will show in Appendix A.

In the sequel, we focus on logical behaviours, which are composed by using logical
connectives only.

3Informally, two designs D and E are equal up to materiality in a behaviour G if they only differ in
occurrences of positive subdesign which are irrelevant for the normalization against designs of G⊥.

ON THE MEANING OF LOGICAL COMPLETENESS 21

Definition 3.1 (Logical behaviours). A behaviour is logical if it is inductively built as
follows (α denotes an arbitrary logical connective):

P := α〈N1, . . . ,Nn〉, N := α(P1, . . . ,Pn).

Notice that the orthogonal of a logical behaviour is again logical.
As advocated in the introduction, our monistic framework renders both proofs and

models as homogeneous objects: designs.

Definition 3.2 (Proofs, Models). A proof is a standard design (Definition 2.1) in which
all the conjunctions are unary. In other words, a proof is a total, deterministic and z-
free design without cuts and identities. A model is a linear standard design (in which
conjunctions of arbitrary cardinality may occur).

We will use proofs as proof-terms for syntactic derivations in the proof system to be
introduced below. In that perspective, it is reasonable to exclude designs with non-unary
conjunctions from proofs, because they do not have natural counterparts in logical reasoning.
For instance, the nullary conjunction (daimon) and the binary one would correspond to the
following “inference rules” respectively:

⊢ Γ
⊢ Γ ⊢ Γ

⊢ Γ

with ⊢ Γ an arbitrary sequent. Notice that we have not specified yet what a proof actually
proves. Hence it might be better called “proof attempt” or “untyped proof” or “para-proof.”

On the other hand, we restrict models to linear designs just to emphasize the remarkable
fact that linear designs do suffice for defeating any failed proof attempt that is possibly
nonlinear.

Given a design D, let ac+(D) be the set of occurrences of positive actions a in D.
The cardinality of D is defined to be the cardinality of ac+(D). For instance, the fax
η(x) =

∑
a(y1, . . . , yn).x|a〈η(y1), . . . , η(yn)〉 (see Section 2.1) is an infinite design in this

sense. Also, both proofs and models can be infinite.
A positive (resp. negative) sequent is a pair of the form P ⊢ Γ (resp. N ⊢ Γ,N) where

P is a positive proof (resp. N is a negative proof) and Γ is a positive context of logical
behaviours (Definition 2.7 (a)) such that fv(P) ⊆ fv(Γ) (resp. fv(N) ⊆ fv(Γ)).

We write D ⊢ Λ for a generic sequent. Intuitively, a sequent D ⊢ Λ should be under-
stood as a claim that “D is a proof of ⊢ Λ” or “D is of type ⊢ Λ.”

Our proof system consists of two sorts of inference rules:

• A positive rule (α, a):

M1 ⊢ Γ,Ni1 . . . Mm ⊢ Γ,Nim (z : α〈N1, . . . ,Nn〉 ∈ Γ)

z|a〈M1, . . . ,Mm〉 ⊢ Γ
(α, a)

where α = (~z, α0), ~z = z1, . . . , zn and a(~x) ∈ α0 so that the indices i1, . . . , im ∈ {1, . . . , n}
are determined by the variables ~x = zi1 , . . . , zim .

• A negative rule (α):

{Pa ⊢ Γ, zi1 : Pi1 , . . . , zim : Pim}a(~x)∈α0

∑
a(~x).Pa ⊢ Γ, α(P1, . . . ,Pn)

(α)

where, as in the positive rule, the indices i1, . . . , im are determined by the variables
~x = zi1 , . . . , zim for each a(~x) ∈ α0.

22 M. BASALDELLA AND K. TERUI

We assume that ~x are fresh, i.e., do not occur in Γ. This does not cause a loss of
generality since variables in α can be renamed (see Definition 2.9).

Notice that a component b(~y).Pb of
∑

a(~x).Pa can be arbitrary when b(~y) 6∈ α0. Hence
we again take an “immaterial” approach (cf. Theorem 2.17).

Observe that the positive rule (α, a) involves implicit uses of the contraction rule on positive
behaviours. The weakening rule for positive behaviours is implicit too; in the bottom up
reading of a proof derivation, unused formulas are always propagated to the premises of any
instance of rule. It should also be noted that proof search in our system is deterministic.
In particular, given a positive sequent z|a〈M1, . . . ,Mm〉 ⊢ Γ, the head variable z and the
first positive action a completely determine the next positive rule to be applied bottom-up
(if there is any).

It is also possible to adopt a “material” approach in the proof system by simply requiring
Pb = Ω when b(~y) 6∈ α0 in the rule (α). Then a proof D is finite (i.e., ac+(D) is a finite set)
whenever D ⊢ Λ is derivable for some Λ. Thus, as in ordinary sequent calculi, our proof
system accepts only essentially finite proofs for derivable sequents (i.e., finite up to removal
of irrelevant parts).

Remark 3.3. To clarify the last point, we observe that for any (possibly infinite) negative
proof N with fv(N) ⊆ fv(Γ), the sequent N ⊢ Γ,⊤⊤⊤ is derivable by the instance of the
negative rule with α = ⊤⊤⊤ = (ǫ, ∅). In fact, this corresponds to the usual top-rule of linear
logic (see also Example 3.4):

(⊤⊤⊤)
N ⊢ Γ,⊤⊤⊤

This means that for a (possibly infinite) negative proof N there is a finite derivation of
N ⊢ Γ,⊤⊤⊤. By contrast, in the “material” approach we only have

(⊤⊤⊤)∑
a(~x).Ω ⊢ Γ,⊤⊤⊤

where
∑

a(~x).Ω is the unique negative proof which has cardinality 0.

Example 3.4. For linear logic connectives (Example 2.14), the positive and negative rules
specialize to the following (taking here the “material” approach):

M1 ⊢ Γ,N1 M2 ⊢ Γ,N2 (z : N1 ⊗⊗⊗N2 ∈ Γ)

z| • 〈M1,M2〉 ⊢ Γ
(⊗⊗⊗, •)

P ⊢ Γ, x1 : P1, x2 : P2

℘(x1, x2).P ⊢ Γ,P1

&&&

P2

&&&

M ⊢ Γ,Ni (z : N1 ⊕⊕⊕N2 ∈ Γ)

z|ιi〈M〉 ⊢ Γ
(⊕⊕⊕, ιi)

P1 ⊢ Γ, x1 : P1 P2 ⊢ Γ, x2 : P2

π1(x1).P1 + π2(x2).P2 ⊢ Γ,P1 &&&P2
&&&

N ⊢ Γ,N (z : ↓↓↓N ∈ Γ)

z|↓〈N〉 ⊢ Γ
(↓↓↓, ↓)

P ⊢ Γ, x : P

↑(x).P ⊢ Γ,↑↑↑P
↑↑↑

(z : 1 ∈ Γ)

z|∗ ⊢ Γ
(1, ∗) P ⊢ Γ

∗.P ⊢ Γ,⊥⊥⊥
(⊥⊥⊥) ∑

a(~x).Ω ⊢ Γ,⊤⊤⊤
(⊤⊤⊤)

ON THE MEANING OF LOGICAL COMPLETENESS 23

3.2. Soundness. The inference rules given above are all sound. Namely we have:

Theorem 3.5 (Soundness). If D ⊢ Λ is derivable in the proof system, then D |= Λ.

Proof. By induction on the length of the derivation of D ⊢ Λ. We have two cases, one for
each sort of rule.

(1) Suppose that the last inference rule is

M1 ⊢ Γ,Ni1 . . . Mm ⊢ Γ,Nim (z : α〈N1, . . . ,Nn〉 ∈ Γ)

z|a〈M1, . . . ,Mm〉 ⊢ Γ
(α, a)

where Γ = x1 : P1, . . . , xl : Pl and z : α〈N1, . . . ,Nn〉 = xk : Pk for some 1 ≤ k ≤ l.
The induction hypothesis gives us Mj |= Γ,Nij for every 1 ≤ j ≤ m. By Lemma 2.8

(3), M ′
j := JMj[N1/x1, . . . , Nl/xl]K ∈ Nij for every N1 ∈ P⊥

1 , . . . , Nl ∈ P⊥
l and by Defi-

nition 2.9, we have that x0|a〈M ′
1, . . . ,M

′
m〉 ∈ α〈N1, . . . ,Nn〉, that is x0|a〈M ′

1, . . . ,M
′
m〉 |=

x0 : α〈N1, . . . ,Nn〉.
Applying Lemma 2.8 (1), we get x0|a〈M1, . . . ,Mm〉 |= Γ, x0 : α〈N1, . . . ,Nn〉 and by

Theorem 2.15 (1) we conclude z|a〈M1, . . . ,Mm〉 |= Γ.
(2) Suppose now that the last inference rule is

{Pa ⊢ Γ, ~x : ~Pa}a(~x)∈α0

∑
a(~x).Pa ⊢ Γ, α(P1, . . . ,Pn)

(α)

where Γ = y1 : Q1, . . . , yl : Ql and ~x : ~Pa stands for zi1 : Pi1 , . . . , zim : Pim . We assume
that the variables y1, . . . , yl and ~x are disjoint in any premise.

The induction hypothesis gives us Pa |= Γ, ~x : ~Pa for every a(x) ∈ α0. By Lemma

2.8 (1), for every N1 ∈ Q⊥
1 , . . . , Nl ∈ Q⊥

l , P
′
a := JPa[N1/x1, . . . , Nl/xl]K |= ~x : ~Pa.

Then, we can apply Theorem 2.17 to obtain
∑

a(~x).P ′
a ∈ α(P1, . . . ,Pn), that is

∑
a(~x).P ′

a |= α(P1, . . . ,Pn). Notice that in
∑

a(~x).P ′
a the components b(~y).Pb for

b(~y) /∈ α0 can be arbitrary.
We finally apply Lemma 2.8 (3) and conclude

∑
a(~x).Pa |= Γ, α(P1, . . . ,Pn).

Although our proof system does not include a cut rule officially, the semantics validates it
as follows.

Proposition 3.6.

(1) If P |= Γ, z : P and M |= Γ,P⊥, then JP [M/z]K |= Γ.
(2) If N |= N,Γ, z : P and M |= Γ,P⊥, then JN [M/z]K |= N,Γ.

Proof. Let Γ be x1 : P1, . . . , xn : Pn, let K1 ∈ P⊥
1 , . . . ,Kn ∈ P⊥

n and write ~K/~x for
K1/x1, . . . ,Kn/xn.

(1) By Lemma 2.8, we have P ′ := JP [~K/~x]K |= z : P and M ′ := JM [~K/~x]K |= P⊥, so that
P ′[x0/z] ∈ P and and M ′ ∈ P⊥. Hence, JP ′[x0/z][M

′/x0]K = JP ′[M ′/z]K = z. From

this fact and associativity (Theorem 1.12), we can derive JJP [M/z]K[~K/~x]K = z, which
proves JP [M/z]K |= Γ.

(2) LetQ be an arbitrary design inN⊥. By Lemma 2.8, we obtain JQ[N/x0]K |= Γ, z : P and

Q′ = JJQ[N/x0]K[~K/~x]K |= z : P. On the other side, we have M ′ := JM [~K/~x]K |= P⊥.
From Q′[x0/z] ∈ P and and M ′ ∈ P⊥, we obtain JQ′[x0/z][M

′/x0]K = JQ′[M ′/z]K = z.

From this fact and associativity, we can derive JQ[JN [M/z]K[~K/~x] /x0]K = z, which
proves JN [M/z]K |= N,Γ.

24 M. BASALDELLA AND K. TERUI

Thanks to the previous proposition, we can naturally strengthen our proof system as follows.
First, we consider sequents of the form D ⊢ Λ where D is a “proof with cuts” (i.e., a proof
in the sense of Definition 3.2 except that the cut-freeness condition is not imposed). Second,
we add the following cut rule:

D ⊢ Ξ,Γ, z : P N ⊢ Γ,P⊥

D[N/z] ⊢ Ξ,Γ
(cut)

where Ξ is either empty or it consists of a negative logical behaviour N.
The soundness theorem can be naturally generalized as follows:

Theorem 3.7 (Soundness (with cut rule)). If D ⊢ Λ is derivable in the proof system with
the cut rule above, then JDK |= Λ.

3.3. Completeness for proofs. Let us finally establish the other direction of Theorem
3.5, namely:

Theorem 3.8 (Completeness for proofs). A sequent D ⊢ Λ is derivable in the proof system
if and only if D |= Λ.

In particular, for any positive logical behaviour P and a proof P , P ⊢ x0 : P is derivable
if and only if P ∈ P. Similarly for the negative case.

Before proving the theorem, let us recall a well-established method for proving Gödel com-
pleteness based on proof search (often attributed to Schütte [29]). It proceeds as follows:

(1) Given an unprovable sequent ⊢ Γ, find an open branch in the cut-free proof search tree.
(2) From the open branch, build a countermodel M in which ⊢ Γ is false.

The proof below follows the same line of argument. We can naturally adapt (1) to our
setting, since the bottom-up cut-free proof search in our proof system is deterministic in
the sense that at most one rule applies at each step. Moreover, it never gets stuck at the
negative sequent, since a negative rule is always applicable bottom-up. Adapting (2) is
more delicate.

For simplicity, we assume that the sequent D ⊢ Λ is positive; the argument below can
be easily adapted to the negative case. So, suppose that a positive sequent P0 ⊢ Θ0 with
Θ0 = x1 : P1, . . . , xn : Pn does not have a derivation. By König’s Lemma, there exists a
branch ob in the cut-free proof search tree,

ob =

....
N1 ⊢ Ψ1

P1 ⊢ Θ1

N0 ⊢ Ψ0

P0 ⊢ Θ0 ,

which is either finite and has the topmost sequent Pmax ⊢ Θmax with max ∈ N to which
no rule applies anymore, or infinite. In the latter case, we set max = ∞.

Our goal is to build models M(x1) ∈ P⊥
1 , . . .M(xn) ∈ P⊥

n such that

[[P0[M(x1)/x1, . . . ,M(xn)/xn]]] = Ω.

More generally, we define negative designs

• M(i) for every i ≥ 0 (0 ≤ i ≤ max if max ∈ N);
• M(x) for every variable x occurring in the branch.

ON THE MEANING OF LOGICAL COMPLETENESS 25

Below, α and β stand for logical connectives: α = (~z, α0), β = (~u, β0).
To define M(i) we distinguish three cases:

(i) When i = max and Pmax = Ω, let M(max) := z
−(=

∑
a(~x).z).

(ii) When i = max and Pmax 6= Ω, suppose that Pmax ⊢ Θmax is of the form z|c〈 ~M〉 ⊢

Γ, z : α〈~N〉 but c(~w) /∈ α0 so that the proof search gets stuck. Then let M(max) :=
∑

a(~x)∈α0
a(~x).z. Recall that the partial sum M(max) has c(~w).Ω as component by our

convention.
(iii) For i < max, suppose that the relevant part of the branch ob is of the form:

ob =

....
Pi+1 ⊢ Θi+1

Ni ⊢ Ψi

Pi ⊢ Θi....

=

....
Pi+1 ⊢ Θi, y1 : Q1, . . . , yl : Ql

∑
b(~y).Pi+1 ⊢ Θi,Nik

(β)

z|a〈M1, . . . ,Mk−1,
∑

b(~y).Pi+1,Mk+1, . . . ,Mm〉 ⊢ Θi
(α, a)

.... ,

where Θi contains z : α〈N1, . . . ,Nn〉, a(~x) ∈ α0 with ~x = zi1 , . . . , zim , and Nik = β(Q1, . . . ,
Qs), b(~y) ∈ β0 with ~y = y1, . . . , yl. Namely, the situation is as follows (to be read bottom-
up):

• The head variable of Pi is z, so z : α〈N1, . . . ,Nn〉 is chosen from the context Θi and the
rule (α, a) is applied. Among m upper sequents, the kth one is taken in the branch.

• Ni =
∑

b(~y).Pi+1 is negative, and the unique negative behaviour inΨi isNik = β(Q1, . . . ,
Qs), so the rule (β) is applied. Among the upper sequents (recall that there is one sequent
for each action in β0), the one corresponding to b(~y) ∈ β0 is taken in the branch.

In this case, we define

M(i) := a(~x).zik |b〈M(y1), . . . ,M(yl)〉+
∑

α0\{a(~x)}
c(~w).z.

Here, the main additive component ofM(i) begins with a(~x).zik |b because (1) Pi begins with
the positive action a, (2) the kth upper sequent is taken in the branch, and (3) the upper
sequent corresponding to b(~y) is taken. The other additive components

∑

α0\{a(~x)}
c(~w).z

are needed to ensure that our countermodel belongs to the behaviour α〈N1, . . . ,Nn〉
⊥ (see

Lemma 3.10 (1)).
The subdesigns M(y1), . . . ,M(yl) are given by

M(y) :=
∧
{M(j) : Pj has head variable y}.

Notice that each M(j) is a negative design, so the above conjunction is a defined operation
(in the sense of Definition 1.5 (2)).

We claim that M(i) is well-defined, because variables ~y are chosen fresh, so do not
appear freely below Ni ⊢ Ψi. Hence subdesigns M(y1), . . . ,M(yl) do not have M(k) with
k ≤ i as conjunct. Namely, M(i) depends only on M(j) with j > i. This gives rise to a
recursive procedure and M(i) arises in the limit of the procedure.

Notice also that the set {M(j) : Pj has head variable y} can be empty and in such a
case, we have that M(y) = z

−.

Remark 3.9. The above is an instance of corecursive definition. It is possible to formally
justify it by employing design generators developed in [30] (see in particular Theorem
2.12 of [30]). An alternative way is to define M(i) (and M(y)) as the limit of its finite
approximations. Here we briefly outline this latter approach.

26 M. BASALDELLA AND K. TERUI

We assume that max = ∞. The idea is to chop off the branch ob at height K, where
K is an arbitrary natural number, and define finite approximations MK(i) and MK(y).
Then M(i) and M(y) arise as the limit when K → ∞.

More concretely, given a natural number K, we define MK(i) by downward induction
from i = K to i = 0 as follows:

• When i = K, the sequent PK ⊢ ΘK is of the form z|a〈 ~M 〉 ⊢ Γ, z : α〈~N〉. We let
MK(K) :=

∑

a(~x)∈α0
a(~x).z.

• When i < K, we proceed as in the case (iii) above. Namely,

MK(i) := a(~x).zik |b〈M
K(y1), . . . ,M

K(yl)〉+
∑

α0\{a(~x)}
c(~w).z,

MK(y) :=
∧
{MK(j) : i < j ≤ K and Pj has head variable y},

where actions a(~x), b and the index ik are determined as before.

Now observe that the sequence {MK(y)}K∈N is “monotone increasing” in the sense that
MK2(y) has more conjuncts than MK1(y) whenever K1 < K2. The same for MK(i) with
i ≤ K. Hence we can naturally obtain the “limits”

M(i) = lim
K→∞

MK(i), M(y) = lim
K→∞

MK(y).

This construction ends up with the same as the previous recursive one.

Observe that each M(i) and M(x) thus constructed are surely models, i.e., atomic
linear designs. Theorem 3.8 is a direct consequence of the following two lemmas.

The first lemma crucially rests on induction on logical behaviours, that is an analogue
of induction on formulas, which lies at the core of logical completeness in many cases.

Lemma 3.10. For Pi ⊢ Θi appearing in the branch ob above, suppose that Pi has a head
variable z and z : R ∈ Θi. Then:

(1) M(i) ∈ R⊥;
(2) M(z) ∈ R⊥.

Proof. By induction on the construction of R.

(1) Suppose that i = max. Since Ω does not have a head variable, the case (i) does not
apply. Hence we are in the case (ii), namely R = α〈N1, . . . ,Nn〉, for some logical
connective α and logical behaviours N1, . . . ,Nn. Thus, R⊥ = α(N⊥

1 , . . . ,N
⊥
n), and

M(max) :=
∑

a(~x)∈α0
a(~x).z.

By internal completeness for negative connectives (Theorem 2.17), we have
∑

a(~x).Pa ∈ α(N⊥
1 , . . . ,N

⊥
n) ⇐⇒ Pa |= ~x : ~N⊥

a , for every a(~x) ∈ α0,

where ~x = zi1 , . . . , zim and the expression ~x : ~N⊥
a abbreviates the positive context

zi1 : N⊥
i1
, . . . , zim : N⊥

im
. Since z |= ~x : ~N⊥

a trivially holds for every a(~x) ∈ α0, we have

M(max) ∈ α(N⊥
1 , . . . ,N

⊥
n) = R⊥.

When i < max, the case (iii) applies. In the same notation, we have that R =
α〈N1, . . . ,Nn〉, Nik = β(Q1, . . . , Qs), and

M(i) = a(~x).zik |b〈M(y1), . . . ,M(yl)〉+
∑

α0\{a(~x)}
c(~w).z,

where actions a(~x), b, the index ik and the variables y1, . . . , yl are determined by the
relevant part of the branch ob as described above.

ON THE MEANING OF LOGICAL COMPLETENESS 27

By induction hypothesis on (2), we have that M(y1) ∈ Q⊥
1 , . . . ,M(yl) ∈ Q⊥

l . Hence,

x0|b〈M(y1), . . . ,M(yl)〉 ∈ β〈Q⊥
1 , . . . ,Q

⊥
s 〉 = N⊥

ik
. Since M(y1), . . . ,M(yl) are atomic

(i.e., closed), we may derive zik |b〈M(y1), . . . ,M(yl)〉 |= ~x : ~N⊥
a . We also have z |=

~w : ~N⊥
c for every c(~w) ∈ α0 \ {a(~x)}. Hence, by internal completeness again, M(i) ∈

α(N⊥
1 , . . . ,N

⊥
n) = R⊥.

(2) It follows from (1) since R⊥ is a negative logical behaviour and so closed under
∧

(Theorem 2.15 (4)).

The proof of the next lemma suggests a similarity between the construction of our counter-
models and the Böhm-out technique (see, e.g., [2]), that constructs a suitable term context
in order to visit a specific position in the Böhm tree of a given λ-term.

Recall that the initial sequent of our open branch ob is P0 ⊢ Θ0 with Θ0 = x1 :
P1, . . . , xn : Pn, so that fv(P0) ⊆ {x1, . . . , xn}. We have:

Lemma 3.11.

[[P0[M(x1)/x1, . . . ,M(xn)/xn]]] = Ω.

Proof. We first prove that there is a reduction sequence

Pi[M(v1)/v1, . . . ,M(vs)/vs]−⇀
∗ Pi+1[M(w1)/w1, . . . ,M(wt)/wt]

for any i < max, where v1, . . . , vs and w1, . . . , wt are the free variables of Pi and Pi+1, respec-
tively. Suppose that Pi is as in the case (iii) above, so has the head variable z ∈ {v1, . . . , vs}.
By writing [θ] for [M(v1)/v1, . . . ,M(vs)/vs] and noting that M(z) is a (defined) conjunc-
tion that contains M(i) = a(~x).zik |b〈M(y1), . . . ,M(yl)〉 +

∑

α0\{a(~x)}
c(~w).z as conjunct,

we have:

Pi[θ] = M(z) | a〈M1[θ], . . . ,Mk−1[θ],
∑

b(~y).Pi+1[θ],Mk+1[θ], . . . ,Mm[θ]〉
−⇀ (

∑
b(~y).Pi+1[θ]) | b〈M(y1), . . . ,M(yl)〉 ∧ · · ·

−⇀ Pi+1[θ,M(y1)/y1, . . . ,M(yl)/yl],

as desired. When max = ∞, we have obtained an infinite reduction sequence from
P0[M(x1)/x1, . . . ,M(xn)/xn]. Otherwise, P0[M(x1)/x1, . . . ,M(xn)/xn]−⇀

∗ Pmax[θ], for
some substitution [θ].

In case (i), we have Pmax = Pmax[θ] = Ω, while in case (ii), we have Pmax = z|c〈 ~M〉.
So,

Pmax[θ] = z|c〈 ~M〉[θ] = M(z)|c〈 ~M [θ]〉−⇀ Ω,

because M(z) contains M(max) as conjunct, and M(max) =
∑

a(~x)∈α0
a(~x).z has c(~w).Ω

as component.

Theorem 3.8 now follows easily. Suppose that P0 ⊢ x1 : P1, . . . , xn : Pn is not
derivable. Then we obtain models M(x1) ∈ P⊥

1 , . . . , M(xn) ∈ P⊥
n by Lemma 3.10

and [[P0[M(x1)/x1, . . . ,M(xn)/xn]]] = Ω by Lemma 3.11. This means that P0 6|= x1 :
P1, . . . , xn : Pn.

Our explicit construction of the countermodels yields a by-product:

Corollary 3.12 (Downward Löwenheim-Skolem, Finite model property).

(1) Let P be a proof and P a logical behaviour. If P 6∈ P, then there is a countable model
M ∈ P⊥ (i.e., ac+(M) is a countable set) such that P 6⊥M .

(2) Furthermore, when P is linear, there is a finite and deterministic model M ∈ P⊥ such
that P 6⊥M .

28 M. BASALDELLA AND K. TERUI

The second statement is due to the observation that when P is linear the positive rule (α, a)
can be replaced with a linear variant:

M1 ⊢ Γ1,Ni1 . . . Mm ⊢ Γm,Nim

z|a〈M1, . . . ,Mm〉 ⊢ Γ, z : α〈N1, . . . ,Nn〉
(α, a)lin

,

where Γ1, . . . ,Γm are disjoint subsets of Γ. We then immediately see that the proof search
tree is always finite, and so is the model M(x). It is deterministic, since each variable
occurs at most once as head variable in a branch so that all conjunctions are at most unary.

4. Conclusion and related work

We have presented a Gödel-like completeness theorem for proofs in the framework of ludics,
aiming at linking completeness theorems for provability with those for proofs. We have
explicitly constructed a countermodel against any failed proof attempt, following Schütte’s
idea based on cut-free proof search. Our proof employs König’s lemma and reveals a
sharp opposition between finite proofs and infinite models, leading to a clear analogy with
Löwenhein-Skolem theorem. Our proof also employs an analogue of the Böhm-out technique
[4, 2] (see the proof of Lemma 3.11), though it does not lead to the separation property
(Remark 2.4).

In Hyland-Ong game semantics, Player’s innocent strategies most naturally correspond
to possibly infinite Böhm trees (see, e.g., [9]). One could of course impose finiteness (or
compactness) on them to have correspondence with finite proofs. But it would not lead to an
explicit construction of Opponent’s strategies defeating infinite proof attempts. Although
finiteness is imposed in [3] too, our current work shows that it is not necessary in ludics.

Our work also highlights the duality:

proof ⇋ model

deterministic, nonlinear nondeterministic, linear

The principle is that when proofs admit contraction, models have to be nondeterministic
(whereas they do not have to be nonlinear).

A similar situation arises in some variants of λ-calculus and linear logic, when one
proves the separation property.

We mention [12], where the authors add a nondeterministic choice operator and a
numeral system to the pure λ-calculus in order to internally (interactively) discriminate
two pure λ-terms that have different Böhm trees. However, in contrast to our work, the
nondeterminism needed for their purpose is of existential nature: a term converges if at
least one of the possible reduction sequences starting from it terminates.

In [27], the separation property for differential interaction nets [14] is proven. A key
point is that the exponential modalities in differential interaction nets are more “symmet-
rical” than in linear logic. In our setting, the symmetry shows up between nonlinearity
and nondeterministic conjunctions (i.e., nonuniform elements). It is typically found in
Theorem 2.15, which reveals a tight connection between duplicability of positive logical
behaviours and closure under nondeterministic conjunctions of negative logical behaviours.
Similar nonuniform structures naturally arise in various semantical models based on coher-
ence spaces and games, such as finiteness spaces [13], indexed linear logic and nonuniform
coherence spaces [6], nonuniform hypercoherences [5], and asynchronous games [28] (see
also [3]).

ON THE MEANING OF LOGICAL COMPLETENESS 29

For future work, we plan to extend our setting by enriching the proof system with
propositional variables, second order quantifiers and nonlogical axioms. By moving to the
second order setting, we hope to give an interactive account to Gödel’s incompleteness
theorems as well.

Acknowledgement

We are deeply indebted to Pierre-Louis Curien, who gave us a lot of useful comments. Our
thanks are also due to the anonymous referees.

References

[1] Andreoli, J.-M.: Logic Programming with Focusing Proofs in Linear Logic. J. Log. Comput. 2(3) (1992)
297–347.

[2] Barendregt, H. P.: The lambda calculus: its syntax and semantics. North-Holland (1981).
[3] Basaldella, M., Faggian, C.: Ludics with repetition (exponentials, interactive types and completeness).

In: LICS. (2009) 375–384.
[4] Böhm, C.: Alcune proprietà delle forme β − η-normali nel λ−K-calcolo. Publicazioni dell’Istituto per

le Applicazioni del Calcolo 696 (1968).
[5] Boudes, P.: Non-Uniform Hypercoherences. Electr. Notes Theor. Comput. Sci. 69 (2002) 62–82.
[6] Bucciarelli, A., Ehrhard, T.: On phase semantics and denotational semantics: the exponentials. Ann.

Pure Appl. Logic 109(3) (2001) : 205–241.
[7] Curien, P.-L.: Abstract Böhm trees. Math. Struct. in Comp. Sci. 8(6) (1998) 559–591.
[8] Curien, P.-L.: Introduction to linear logic and ludics, part II. Advances in Mathematics (China) 35(1)

(2006) 1–44.
[9] Curien, P.-L.: Notes on game semantics. Manuscript (2006).

[10] Curien, P.-L., Herbelin, H.: Abstract machines for dialogue games. Panoramas et Synthèses 27 (2009)
231–275.

[11] Curien, P.-L., Munch-Maccagnoni, G.: The duality of computation under focus. In : Proc. of IFIP TCS.
(2010).

[12] Dezani-Ciancaglini, M., Intrigila, B., Venturini-Zilli, M.: Böhm’s theorem for Böhm trees. In: ICTCS’98.
(1998) 1–23.

[13] Ehrhard, T.: Finiteness spaces. Math. Struct. in Comp. Sci. 15(4) (2005) 615–646.
[14] Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci. 364(2) (2006) 166–195.
[15] Faggian, C.: Travelling on designs. In: CSL. (2002) 427–441.
[16] Faggian, C.: Interactive observability in ludics: The geometry of tests. Theor. Comput. Sci. 350(2)

(2006) 213–233.
[17] Faggian, C., Piccolo, M.: Ludics is a model for the finitary linear pi-calculus. In: TLCA. (2007) 148–162.
[18] Faggian, C., Piccolo, M.: Partial Orders, Event Structures, and Linear Strategies. In: TLCA. (2009)

95–111.
[19] Girard, J.-Y.: On the meaning of logical rules I: syntax vs. semantics. In Berger, U., Schwichtenberg,

H., eds.: Computational Logic. Heidelberg Springer-Verlag (1999) 215–272.
[20] Girard, J.-Y.: On the meaning of logical rules II: multiplicatives and additives. Foundation of Secure

Computation, Berger and Schwichtenberg edts (2000) 183–212.
[21] Girard, J.-Y.: Locus solum: From the rules of logic to the logic of rules. Math. Struct. in Comp. Sci.

11(3) (2001) 301–506.
[22] Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I, II, and III. Inf. Comput. 163(2) (2000)

285–408.
[23] Lafont, Y.: The finite model property for various fragments of linear logic. J. Symb. Log. 62(4) (1997)

1202–1208.
[24] Laurent, O.: Étude de la polarization en logique. PhD thesis, Univ. Aix-Marseille II (2002).
[25] Laurent, O.: Polarized games. Ann. Pure Appl. Logic 130(1-3) (2004) 79–123.
[26] Maurel, F.: Un cadre quantitatif pour la Ludique. PhD Thesis, Univ. Paris VII (2004).

30 M. BASALDELLA AND K. TERUI

[27] Mazza, D., Pagani, M.: The separation theorem for differential interaction nets. In: LPAR. (2007)
393–407.

[28] Melliès, P.-A.: Asynchronous games 2: The true concurrency of innocence. Theor. Comput. Sci. 358(2-
3) (2006) 200–228.

[29] Schütte, K.: Ein System des Verknüpfenden Schliessens. Archiv. Math. Logic Grundlagenf. 2 (1956)
55–67.

[30] Terui, K.: Computational ludics. (2008) To appear in Theor. Comput. Sci.

Appendix A. Correspondence with polarized linear logic

In this appendix, we show a correspondence between the proof system for ludics introduced
in 3.1 and the constant-only propositional fragment of polarized linear logic LLP [25].
This will ensure that our proof system is rich enough to capture a constructive variant of
constant-only propositional classical logic.

A.1. Syntax of LLP. We recall the syntax of the constant-only propositional fragment of
LLP. The formulas are split into positive and negative ones and generated by the following
grammar:

P ::= 0 | 1 | P⊗ P | P⊕ P | !N,
N ::= ⊤ | ⊥ | N` N | N& N | ?P.

The linear negation is defined in the usual way. A sequent is of the form ⊢ Γ with Γ a
multiset of formulas. The inference rules of LLP are given below:

⊢ Γ,⊤ ⊢ 1
⊢ Γ

⊢ Γ,⊥
⊢ Γ,P ⊢ ∆,Q

⊢ Γ,∆,P⊗ Q

⊢ Γ,Pi

⊢ Γ,P1 ⊕ P2

⊢ Γ,N,M

⊢ Γ,N`M

⊢ Γ,N ⊢ Γ,M

⊢ Γ,N&M

⊢ N ,N

⊢ N , !N

⊢ Γ,P

⊢ Γ, ?P
⊢ Γ

⊢ Γ,N
⊢ Γ,N,N

⊢ Γ,N
⊢ Γ,N ⊢ ∆,N⊥

⊢ Γ,∆

where:

• in the ⊤-rule above Γ contains at most one positive formula;
• N denotes a context consisting of negative formulas only.

In [24] it is proven that if ⊢ Γ is provable in LLP, then Γ contains at most one positive
formula. Notice that it is strictly opposite to the ludics discipline [21]; in the latter, any
sequent contains at most one negative behaviour. To resolve this mismatch, we modify LLP

in several steps, making it closer to the ludics discipline.
Precisely, in Section A.2 we introduce the concept of strict sequent which leads us to

the formulation of syntectic connectives in LLP (Section A.3). In Section A.4, we give an
embedding of LLP with synthetic connectives into the proof system of ludics we gave in
Section 3.1. Finally, in Section A.5 we give a converse embedding of the ludics proof system
into LLP.

ON THE MEANING OF LOGICAL COMPLETENESS 31

A.2. Restriction to strict derivations. We call a sequent of LLP strict if it is of the
form ⊢ ?Γ,D, where D is an arbitrary formula. In particular, ⊢ ?Γ is strict. We modify the
inference rules as follows:

• Structural rules are made implicit by absorbing weakening and contraction into logical
inference rules.

• The rules for positive connectives and the ?-dereliction rule are restricted to strict se-
quents.

• The cut rule is omitted.

We thus obtain the following inference rules:

⊢ Γ,⊤ ⊢ ?Γ, 1
⊢ Γ

⊢ Γ,⊥
⊢ ?Γ,P ⊢ ?Γ,Q

⊢ ?Γ,P⊗ Q

⊢ ?Γ,Pi

⊢ ?Γ,P1 ⊕ P2

⊢ Γ,N,M

⊢ Γ,N`M

⊢ Γ,N ⊢ Γ,M

⊢ Γ,N &M

⊢ ?Γ,N

⊢ ?Γ, !N

⊢ ?Γ,P (?P ∈ ?Γ)

⊢ ?Γ

We call the resulting proof system LLPstr.
Notice that a derivation of a strict sequent in LLPstr may involve sequents which are

not strict. For instance, consider:

⊢ ?Γ,⊤

⊢ ?Γ,⊤,⊥

⊢ ?Γ,⊤`⊥

The following property can be easily verified by taking into account the invertibility of
negative rules and the focalization property of positive rules [1].

Lemma A.1. A strict sequent is provable in LLP if and only if it is provable in LLPstr.

Strict sequents will play a crucial role for the correspondence between LLP and the proof
system for ludics (Theorem A.4). The intuition, which we will formalize later, is that a
strict sequent ⊢ ?P1, . . . , ?Pn,D can be thought of as a sequent of the proof system of ludics
(omitting the information about designs) of the form ⊢ P1, . . . ,Pn,D.

On the other hand, strict derivations serve as intermediate step to define synthetic
connectives and the proof system LLPsyn we give in the next section.

A.3. Synthetic connectives. Any derivation of a strict sequent in LLPstr can be decom-
posed into subderivations of the following forms:

(i) Positive subderivation:

⊢ ?Γ,Ni1 · · · ⊢ ?Γ,Nim....
⊢ ?Γ,P(N1, . . . ,Nn)

that consists of positive inference rules only, where P(N1, . . . ,Nn) is a positive formula
obtained from N1, . . . ,Nn by applying positive connectives, and i1, . . . , im ∈ {1, . . . , n}.

32 M. BASALDELLA AND K. TERUI

For instance, if P(N1, . . . ,Nn) is of the form 1⊗ (!N⊗ (!M⊕ !L)), there are two positive
subderivations with conclusion ⊢ ?Γ, 1⊗ (!N⊗ (!M⊕ !L)):

⊢ ?Γ, 1

⊢ ?Γ,N

⊢ ?Γ, !N

⊢ ?Γ,M

⊢ ?Γ, !M

⊢ ?Γ, !M ⊕ !L

⊢ ?Γ, !N ⊗ (!M⊕ !L)

⊢ ?Γ, 1 ⊗ (!N ⊗ (!M⊕ !L))

⊢ ?Γ, 1

⊢ ?Γ,N

⊢ ?Γ, !N

⊢ ?Γ, L

⊢ ?Γ, !L

⊢ ?Γ, !M ⊕ !L

⊢ ?Γ, !N⊗ (!M⊕ !L)

⊢ ?Γ, 1⊗ (!N⊗ (!M⊕ !L))

(ii) Negative subderivation:

⊢ ?Γ, ?~P1 · · · ⊢ ?Γ, ?~Pk....
⊢ ?Γ,N(P1, . . . ,Pn)

that consists of negative inference rules only, where N(P1, . . . ,Pn) is a negative formula

obtained from P1, . . . ,Pn by applying negative connectives, and ~P1, . . . , ~Pk consist of
formulas in {P1, . . . ,Pn}. For instance, if N(P1, . . . ,Pn) is of the form ⊥ ` (?P `
(?Q & ?R)), then there is (essentially) one negative subderivation with conclusion
⊢ ?Γ,⊥` (?P` (?Q& ?R)):

⊢ ?Γ, ?P, ?Q ⊢ ?Γ, ?P, ?R

⊢ ?Γ, ?P, ?Q& ?R

⊢ ?Γ, ?P` (?Q& ?R)

⊢ ?Γ,⊥, ?P` (?Q& ?R)

⊢ ?Γ,⊥ ` (?P` (?Q& ?R))

(iii) ?-dereliction:
⊢ ?Γ,P (?P ∈ ?Γ)

⊢ ?Γ

Notice that the premises and conclusion of each subderivation are assumed to be strict
sequents; one can easily check that it is always the case in any derivation of a strict sequent
in LLPstr.

The above decomposition motivates us to cluster the logical connectives of the same
polarity into synthetic connectives (cf. [20]). Consider the expressions finitely generated
by:

p ::= 0 | 1 | p⊗ p | p⊕ p | !x,
n ::= ⊤ | ⊥ | n` n | n& n | ?x,

where x ranges over the set of variables.
We write var(p) (resp. var(n)) to denote the set of variables occurring in p (resp. n). p

is a positive synthetic connective if for every subexpression of p of the form p1 ⊗ p2, var(p1)
and var(p2) are disjoint. For instance, !x⊗ (!y ⊕ !y) is a positive synthetic connective while
!x⊕ (!y⊗ !y) is not. Likewise, n is a negative synthetic connective if for every subexpression
of n of the form n1` n2, var(n1) and var(n2) are disjoint. This condition is needed when we
translate synthetic connectives to logical connectives of ludics.

We indicate the variables occurring in p by writing p = p(x1, . . . , xn), and similarly for
n. Given a negative synthetic connective n, its dual nd is obtained by replacing ⊤ with 0,
⊥ with 1, ` with ⊗, & with ⊕, and ? with ! respectively, in each occurrence of symbol. pd

ON THE MEANING OF LOGICAL COMPLETENESS 33

is similarly defined.

The formulas of LLP are then redefined inductively as follows:

P ::= p(N1, . . . ,Nn),

N ::= n(P1, . . . ,Pn),

where p(N1, . . . ,Nn) is obtained from p = p(x1, . . . , xn) by substituting Ni for xi (1 ≤ i ≤ n).
Notice that when n = 0, P can be any combination of 0 and 1 using ⊗ and ⊕.

To each positive synthetic connective p(x1, . . . , xn), we can naturally associate a set
of inference rules as follows. Consider all possible positive subderivations with conclusion
⊢ ?Γ, p(N1, . . . ,Nn) in the sense of (i) above. To each such derivation

⊢ ?Γ,Ni1 · · · ⊢ ?Γ,Nim....
⊢ ?Γ,P(N1, . . . ,Nn)

we associate an inference rule:
⊢ ?Γ,Ni1 . . . ⊢ ?Γ,Nim

⊢ ?Γ,P(N1, . . . ,Nn)

For instance, to p(x, y, z) = 1⊗ (!x⊗ (!y ⊕ !z)), we associate two inference rules:

⊢ ?Γ,N ⊢ ?Γ,M

⊢ ?Γ, p(N,M, L)

⊢ ?Γ,N ⊢ ?Γ, L

⊢ ?Γ, p(N,M, L)

Likewise, each negative synthetic connective n(x1, . . . , xn) comes equipped with a unique
inference rule derived from the negative subderivation with conclusion ⊢ ?Γ, n(P1, . . . ,Pn)
(see (ii) above). For instance, n(x, y, z) = ⊥` (?x` (?y & ?z)) is equipped with:

⊢ ?Γ, ?P, ?Q ⊢ ?Γ, ?P, ?R

⊢ ?Γ, n(P,Q,R)

Observe the asymmetry between the positive and negative cases here; in the negative
case, we leave the ?-formulas ?P, ?Q, ?R in the premises. These formulas are to be dealt
with by the ?-dereliction rule.

We thus consider proof system LLPsyn that consists of three types of inference rules:

⊢ ?Γ,Ni1 . . . ⊢ ?Γ,Nim

⊢ ?Γ, p(N1, . . . ,Nn)

⊢ ?Γ, ?~P1 . . . ⊢ ?Γ, ?~Pk

⊢ ?Γ, n(P1, . . . ,Pn)

⊢ ?Γ,P (?P ∈ ?Γ)

⊢ ?Γ

In view of the decomposition of LLPstr derivations, we obviously have:

Lemma A.2. A strict sequent is provable in LLPstr if and only if it is provable in LLPsyn.

A.4. Relating to the ludics proof system. Let us now move on to the proof system for
ludics described in 3.1. We assume that the signature A is rich enough to interpret LLP:

• A contains a nullary name ∗ and a unary name ↑.
• If A contains an n-ary name a and an m-ary name b, it also contains n-ary names π1a,
π2a and an (n+m)-ary name a℘b (cf. Example 2.14).

34 M. BASALDELLA AND K. TERUI

Given a negative synthetic connective n, we inductively associate a set n•0 of negative actions
of ludics as follows:

⊤•
0 = ∅,

⊥•
0 = {∗},

?x•0 = {↑(x)},

(n`m)•0 = {a℘b(~x, ~y) : a(~x) ∈ n•0, b(~y) ∈ m•
0},

(n&m)•0 = {π1a(~x) : a(~x) ∈ n•0} ∪ {π2b(~y) : b(~y) ∈ m•
0}.

Notice that when a(~x) ∈ n•0, the variables ~x occur in n. Hence a℘b(~x, ~y) above is certainly
a negative action, since ~x and ~y are disjoint sequences due to the definition of negative
synthetic connective. We finally let n• = (~z, n•0), where ~z lists the variables occurring in n.
A positive synthetic connective p is interpreted by p• = pd•.

For instance, when p(x, y, z) = 1⊗ (!x⊗ (!y⊕ !z)) and n(x, y, z) = ⊥` (?x` (?y&?z)),
we have p• = n• = (x, y, z, n•0) with

n•0 = {∗℘(↑℘(π1↑))(x, y), ∗℘(↑℘(π2↑))(x, z)}.

This induces a polarity-preserving translation from the formulas of LLP to the logical
behaviours of ludics:

n(P1, . . . ,Pn)
• := n•(P•

1, . . . ,P
•
n),

p(N1, . . . ,Nn)
• := p•〈N•

1, . . . ,N
•
n〉.

To establish a connection with LLP, we simplify the proof system of 3.1 by taking its
skeleton, namely by omitting all information about designs. The resulting proof system,
which we call L, consists of two sorts of inference rules:

⊢ Γ,Ni1 . . . ⊢ Γ,Nim (α〈N1, . . . ,Nn〉 ∈ Γ)

⊢ Γ
(α, a)

{⊢ Γ,Pi1 , . . . ,Pim}a(~x)∈α0

⊢ Γ, α(P1, . . . ,Pn)
(α)

where α = (~z, α0), ~z = z1, . . . , zn, a(~x) ∈ α0 and the indices i1, . . . , im ∈ {1, . . . , n} are
determined by the variables ~x = zi1 , . . . , zim .

For instance, when p(x, y, z) = 1⊗ (!x⊗ (!y⊕ !z)) and n(x, y, z) = ⊥` (?x` (?y&?z)),
we have the following inference rules for p• and n•:

⊢ Γ,N ⊢ Γ,M (p•〈N,M,L〉 ∈ Γ)

⊢ Γ

⊢ Γ,N ⊢ Γ,L (p•〈N,M,L〉 ∈ Γ)

⊢ Γ

⊢ Γ,P,Q ⊢ Γ,P,R

⊢ Γ, n•(P,Q,R)

It is now straightforward to verify:

Lemma A.3. A strict sequent ⊢ ?Γ,D is derivable in LLPsyn if and only if ⊢ Γ•,D• is
derivable in L.

We therefore obtain:

Theorem A.4. A strict sequent ⊢ ?Γ,D is derivable in LLP if and only if ⊢ Γ•,D• is
derivable in L.

ON THE MEANING OF LOGICAL COMPLETENESS 35

One can annotate derivations in L with designs as in Section 3.1. Therefore the above
theorem means that ludics designs can be used as term syntax for LLP, as far as strict
sequents and derivations are concerned (although we have to verify carefully that the trans-
lation preserves the reduction relation).

A.5. From ludics to LLP. It is also possible to give a converse translation from the logical
behaviours of ludics to the formulas of LLP. To do so, we proceed as follows (cf. Example
2.10):

• to each action a(x1, . . . , xm), we associate the synthetic connective a(x1, . . . , xm)◦ :=
?x1 ` · · · ` ?xm (a()◦ := ⊥, if a is nullary);

• to each logical connective α = (~z, {a1(~x1), . . . , ak(~xk)}), we associate the synthetic con-
nective α◦ := a1(~x1)

◦ & · · ·& ak(~xk)
◦ (α◦ := ⊤, if k = 0);

• to each logical behaviour, we associate the formula of LLP

α(P1, . . . ,Pn)
◦ := α◦(P◦

1, . . . ,P
◦
n),

α〈N1, . . . ,Nn〉
◦ := α◦d(N◦

1, . . . ,N
◦
n);

• to each positive context Γ = P1, . . . ,Pn of system L, we associate the multiset Γ◦ :=
?P◦

1, . . . , ?P
◦
n of formulas of LLP;

• to each negative context Γ,N of system L, we associate the multiset of formulas (Γ,N)◦ :=
Γ◦,N◦.

It is routine to define an isomorphism between D and D•◦ (resp. between D and D◦•) in
some natural sense. Moreover, the translation of a sequent of system L always results in a
strict sequent of LLP. We therefore conclude by Theorem A.4:

Theorem A.5. A sequent ⊢ Λ is derivable in proof system L if and only if ⊢ Λ◦ is derivable
in LLP.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	1. Designs
	1.1. Syntax
	1.2. Normalization
	1.3. Associativity

	2. Behaviours
	2.1. Orthogonality
	2.2. Logical connectives
	2.3. Internal completeness

	3. Proof system and completeness for proofs
	3.1. Proof system
	3.2. Soundness
	3.3. Completeness for proofs

	4. Conclusion and related work
	Acknowledgement
	References
	Appendix A. Correspondence with polarized linear logic
	A.1. Syntax of LLP
	A.2. Restriction to strict derivations.
	A.3. Synthetic connectives.
	A.4. Relating to the ludics proof system.
	A.5. From ludics to LLP

