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Abstract. We present a Curry-style second-order type system with union and inter-
section types for the lambda-calculus with constructors of Arbiser, Miquel and Rios, an
extension of lambda-calculus with a pattern matching mechanism for variadic constructors.
We then prove the strong normalisation and the absence of match failure for a restriction
of this system, by adapting the standard reducibility method.

Introduction

Pattern matching is a crucial feature in modern programming languages. It appeared
in the late 60’s [11], first as a simple detection of rigidly specified values. Although it still
has this basic form in most imperative languages (as the case of Pascal or the switch of C),
it now comes with more elaborated features in main functional programming languages [17,
12, 16] and proof assistants (especially those based on type theory [6, 1]). In particular, the
pattern matching “à la ML” is able to decompose complex data-structures.

From the theoretical point of view, many approaches have been proposed to extend
lambda-calculus [4] with pattern matching facilities, such as the Rho-calculus [8], the Pure
pattern calculus [15] and the Lambda calculus with constructors [2]. Typed versions have
also been presented for such calculi [5, 13, 19, 14].

The lambda-calculus with constructors [3] decomposes the pattern matching à la ML
using a case construct

{|c1 7→ u1; . . . ; cn 7→ un|} · t

performing case analysis on constant constructors, in the spirit of the case of Pascal. Com-
posite data structures consist of constructor applied to one or many arguments. Their
destruction is achieved using a commutation rule between case and application1:

(CaseApp) {|θ|} · (tu) = ({|θ|} · t)u

1998 ACM Subject Classification: F.3.2, F.4.3.
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ducibility candidates.
1Which differs from the commutative conversion rules [10] coming from logic.
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Thanks to this rule, one can encode the whole ML-style pattern matching in the calculus,
and write destruction functions on more complex data types, such as for instance the pre-
decessor function: pred = λx.{|0 7→ 0; S 7→ λz.z|} · x,
which satisfies: pred (S n) = {|0 7→ 0; S 7→ λz.z|} · (S n)

= ({|0 7→ 0; S 7→ λz.z|} · S) n
= (λz.z) n
= n

Actually, one can even encode pattern matching for variadic constructors. The λ-
calculus with constructors enjoys many good properties, such as confluence and separation
(in the spirit of Böhm’s theorem). It comprises nine rules, among which we can distinguish
essential rules —such as β-reduction, case analysis and CaseApp— that are necessary to
reduce terms to values, and unessential rules —like η-reduction— whose main role is to
guarantee confluence and separation properties.

A polymorphic type system has been proposed for this calculus in [19], thus addressing
the problem of typing the case construct in presence of the CaseApp commutation rule.
This paper is an extended version of [19] with major changes, since some results appear to
be incorrect (cf. Part 3). Indeed, typed lambda-calculus with constructors supports some
non-terminating reductions, and also match failure can occur. This is due to one of the
unessential rule: the composition between case constructions.

In this paper we drop out this composition rule from the calculus2, and then justify this
with realisability arguments. A semantic analysis using reducibility candidates ensures the
strong normalisation of this restricted calculus. The main difficulty is to design a good
notion of reducibility candidates which is able to cope with the commutation rule attached
to the case. For that we introduce the notion of case commutation normal form, and
we consider the usual reducibility candidates [10] up to case commutation. From this
construction we deduce the main property of the typed calculus, including the absence of
match failure for well typed terms.

Outline: Parts 1 and 2 respectively present the λC-calculus and the type system. Part 3
is a discussion about the type system and the different reduction rules, and Part 4 the
reducibility candidates model. Finally, Part 5 concludes with the main properties of the
typed λC-calculus.

1. The lambda-calculus with constructors

1.1. Its syntax. The syntax of the λ-calculus with constructors [3] is defined from two
disjoint sets of symbols: variables (notation: x, y, z, etc.) and constructors (notation: c,
d, etc. in typewriter font). It consists of two syntactic categories defined by mutual induction
in Fig. 1: terms (notation: s, t, u, etc.) and case bindings (notation: θ, φ).

Terms include all the syntactic constructs of the λ-calculus, plus constructors (as con-
stants) with a case construct (similar to the case construct of Pascal) to analyse them.
There is also a constant z (the Daimon, inherited from ludics [9]) representing immediate
termination. It cannot appear in a term during reduction, but we keep it in the calculus for

2Losing thereby the separation property.
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Terms : s, t, u , x | λx.t | tu (λ-calculus)
| c (Constructor)
| {|θ|} · t (Case Construct)
| z (Daimon)

CaseBindings : θ, φ , {c1 7→ u1; . . . ; cn 7→ un} (Case Binding)
ci 6= cj for i 6= j

Figure 1: λC-terms and case bindings.

technical reasons (explained in Section 4.2). Case bindings are finite functions from con-
structors to terms. In order to ease the reading, we may write {|c1 7→ u1 ; . . . ; cn 7→ un|} · t
for {|{c1 7→ u1; . . . ; cn 7→ un}|} · t.

Free and bound (occurrences of) variables are defined as usual, taking care that con-
structors are not variables and thus not subject to α-conversion. The set of free variables
(denoted by FV(−)) is defined for the new constructs by

FV(c) = ∅ FV({|θ|} · t) = FV(θ) ∪ FV(t) FV(θ) = ∪(c7→u)∈θFV(u)

A term is closed when it has no free variable, and we write Λ0 for the set of closed λC-terms.
The usual operation of substitution on terms (notation: t[x := u]) is defined as expected,

taking care of renaming bound variables when needed in order to prevent variable capture.
Substitution on case bindings (notation: θ[x := u]) is defined component-wise.

1.2. Its operational semantics. The reduction of λC-calculus is based on the nine re-
duction rules given in Fig. 2 among which one can find the β and η reduction rules of the
λ-calculus, now called AppLam and LamApp

3, respectively. We write → the contextual
closure of these rules, and →= (resp. →+, resp. →∗) denotes its reflexive (resp. transitive,
resp. reflexive and transitive) closure.

Case bindings behave like functions with finite domain. Therefore we may use the
usual functional vocabulary: if θ = {ci 7→ ui / 1 ≤ i ≤ n}, then the domain of θ is the set
dom(θ) = {c1, . . . cn}; also θc denotes u when c 7→ u ∈ θ. Case constructs are propagated
through terms via the CaseApp, CaseLam and CaseCase commutation rules, and ultimately
destructed with CaseCons reduction. For an explanation of the role and expressiveness of
these rules, see [3].

The confluence or non confluence is known for every combination of the 9 reduction
rules ([3] Theorem 1), and the full calculus is confluent. In this paper, we shall only consider
the following sub-calculi, which are all confluent:

• λ−
C denotes λC-calculus with all the rules except CaseCase. In this paper we show that

types ensure the strong normalisation of this calculus.
• λcom is the calculus of case commutation (whose only rules are CaseApp and CaseLam).
For technical reasons (cf. Part 4) we sometimes consider terms up to case commutation
equivalence.

3In λC-calculus, the name of each reduction rule consists of the names of the two constructions interacting
for the reduction.
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Beta-reduction

AppLam (AL) (λx.t)u → t[x := u]
AppDai (AD) zu → z

Eta-reduction

LamApp (LA) λx.tx → t (x /∈ FV(t))
LamDai (LD) λx.z → z

Case propagation

CaseCons (CO) {|θ|} · c → t ((c 7→ t) ∈ θ)
CaseDai (CD) {|θ|} ·z → z
CaseApp (CA) {|θ|} · (tu) → ({|θ|} · t)u
CaseLam (CL) {|θ|} · λx.t → λx.{|θ|} · t (x /∈ FV(θ))

Case composition

CaseCase (CC) {|θ|} · {|φ|} · t → {|θ ◦ φ|} · t
with θ ◦ {c1 7→ t1; ...; cn 7→ tn} ≡ {c1 7→ {|θ|} · t1; ...; cn 7→ {|θ|} · tn}

Figure 2: Reduction rules for λC .

• λB is the complement calculus of λcom in λ−
C : it is composed of rules AppLam, AppDai and

LamApp, LamDai, CaseCons and CaseDai.

A term with no infinite reduction is said to be strongly normalising. By extension, a
calculus is strongly normalising when all its terms are. It is also known that the whole
calculus without AppLam is strongly normalising ([3], Proposition 2).

1.3. Values in lambda-calculus with constructors. In pure lambda-calculus, a value
is a function (i.e. a λ-abstraction). In λC we call data structure a term of the form c t1 . . . tk
where c is a constructor and t1, . . . , tk (k ≥ 0) are arbitrary terms. We then call a value a
term which is a λ-abstraction or a data structure. The set of values is written V .

We say that a term is defined when it has no sub-term of the form {|θ|} · c, with
c /∈ dom(θ), and that it is hereditarily defined when all its reducts (in any number of steps)
are defined. (Intuitively, non-defined terms contain pattern matching failures and therefore
will be rejected by the type system.)

Proposition 1.1. Every defined closed normal term is either z or a value.

Proof. Let t be a closed defined term in normal form. By induction on the structure of t,
we show that t is either z or λx.t0 or ct1 . . . tk for some constructor c, and some terms ti.
Since t is closed it is not a variable. If it is a constructor, the Daimon or an abstraction,
the result holds.

If it is an application, write h t1 . . . tk = t, where h is not an application. Then h is
necessarily closed, defined and normal. It is not an abstraction, nor the Daimon (otherwise t
would be reducible with AppLam or AppDai). Hence it is a data-structure by induction
hypothesis, and so is t.
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Now assume t = {|θ|} · h. Then h also is closed, defined and normal. It cannot be
the Daimon, nor an abstraction, nor an application, otherwise t would be reducible with
CaseDai, CaseLam or CaseApp. So h is a constructor. If it is in the domain of θ, then t is
reducible with CaseCons, and if it is not in the domain, t is not defined. Finally t cannot
be a case construct.

Notice that the proof does not use rule CaseCase (and rules LamApp, LamDai neither),
so the proposition holds for normal forms w.r.t. λ−

C .
Finally, a term which is both strongly normalising and hereditarily defined is said to be

perfectly normalising. Perfect normalisation satisfies this usual lemma of lambda-calculus:

Lemma 1.2. If t[x := u] is perfectly normalising, so is t.

Proof. First recall that t → t′ implies t[x := u] → t′[x := u] ([3] Lemma 9). Thus, if
t[x := u] is strongly normalising, so is t. Then, if t[x := u] is defined, it has no sub-term
of the form {|θ|} · c with c /∈ dom(θ), and this property is kept by replacing some sub-terms
by x. So t also is defined. By induction on the reduction of t, we can easily conclude that
if t[x := u] is hereditarily defined, so is t.

2. Type system

2.1. An informal presentation. The type system we want to define includes the simply-
typed λ-calculus: the main type construct is the arrow type T → U , coming with its usual
introduction and elimination rules. To achieve polymorphism, we introduce type variables
(written X, Y etc.) and universal type quantification (notation: ∀X.T ). Instantiation is
performed via a sub-typing judgement containing all the rules of system F with sub-typing
such as presented in [18].

To type-check data structures, we associate to every constructor c a type constant c

—written with bold font. We introduce a type application DT for applied structures, so

that we can derive c
−→
t : c

−→
T from

−→
t :
−→
T (see 2.2 for more details on vectorial notations).

Nevertheless, the formation of application types has to be restricted. Indeed, with a typing
rule such as

t : T u : U

tu : TU

if t is a term of type bool → U , and u a term of type nat , we would be able to type term tu
with type (bool → U)nat , which may be a nonsense if t implements a function expecting
only booleans. Furthermore, it would also enable typing non normalising terms like δδ, as
δ = λx.xx is typable in system F .

For that reason we distinguish a sub-class of data types (notation: D, E). They will be
the only types on the left-hand side of a type application. In practice this sub-class excludes
arrow types and type variables (which could be instantiated by arbitrary types). To still
keep the ability to quantify over data types, we introduce data type variables (notation: α,
β etc.) and data type quantification.

To encode algebraic types, we add union types. For example, we could define a type of
natural numbers with the equation nat ≡ 0 ∪ S (nat) (where 0 and S are constructors)4.

4This would require a fixpoint operator, or a double sub-typing rule.
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To distribute arrow among union, we also need intersection types:

(0 ∪ S(nat))→ T ≡ (0→ T ) ∩ (S(nat)→ T ).

By symmetry, we add the existential quantifier.

Types : T,U := X (Ordinary type variable)
| α | c | DT (Data type)
| T → U (Arrow type)
| T ∪ U (Union type)
| T ∩ U (Intersection type)
| ∀α.T | ∀X.T (Universal type)
| ∃α.T | ∃X.T (Existential type)

Data Types : D,E := α (Data type variable)
| c | DT (Data structure)
| D ∪ E (Union data type)
| D ∩ E (Intersection data type)
| ∀α.D | ∀X.D (Universal data type)
| ∃α.D | ∃X.D (Existential data type)

Figure 3: Types of λC .

2.2. The formal system. We define a polymorphic type system with union and intersec-
tion for both terms and case bindings of λC (Fig. 3). It uses two spaces of type variables:
ordinary type variables and data type variables. There are also two kinds of types: ordinary
types, and their syntactic sub-class of data types.

In the following, ν denotes a variable which can be an ordinary type variable or a data
type variable. The set TV(T ) denotes the set of all free type variables of a type T :

TV(X) = {X} TV(α) = {α} TV(c) = ∅
TV(T → U) = TV(T ) ∪ TV(U) TV(DT ) = TV(D) ∪ TV(T )
TV(T ∩ U) = TV(T ) ∪ TV(U) TV(T ∪ U) = TV(T ) ∪ TV(U)
TV(∀ν.T ) = TV(T ) \ {ν} TV(∃ν.T ) = TV(T ) \ {ν}

We also use a vectorial notation for type application and arrow types:
−→
T := [ ] |

−→
T ;T

c[ ] = c c(
−→
T ;T ) = (c

−→
T )T

[ ]→ U = U (
−→
T ;T )→ U =

−→
T → (T → U)

Typing rules (Fig. 4) include the usual introduction and elimination rules of typed λ-calculus
for each type operator. Some of them —like the elimination of universal quantifier— are
indeed sub-typing rules (Fig. 5).
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Case Binding: If θ = {ci 7→ ui / 1 ≤ i ≤ n} with n ≥ 0.

Cb

(

Γ ⊢ ui :
−→
Ui → Ti

)n

i=1

Γ ⊢ θ : ci0
−→
Ui0 → Ti0

(1≤i0≤n) Cb⊥

(

Γ ⊢ ui : Ti

)n

i=1

Γ ⊢ θ : ∀α.α→ ∀X.X

Terms:

Init

−

Γ ⊢ x : T
(x : T ∈ Γ) False

−

Γ ⊢ z : T
Constr

−

Γ ⊢ c : c

→intro

Γ, x : T ⊢ t : U

Γ ⊢ λx.t : T → U
→elim

Γ ⊢ t : T → U Γ ⊢ u : T

Γ ⊢ tu : U

case

Γ ⊢ t :
−→
U → T Γ ⊢ θ : T → T ′

Γ ⊢ {|θ|} · t :
−→
U → T ′

Shared rules: M is either a term t or a case binding θ.

Univ

Γ ⊢M : T

Γ ⊢M : ∀ν.T
ν /∈ TV(Γ) Inter

Γ ⊢M : T Γ ⊢M : U

Γ ⊢M : T ∩ U

Exist

Γ, x : T ⊢M : U

Γ, x : ∃ν.T ⊢M : U
ν /∈ TV(U) Union

Γ, x : T1 ⊢M : U Γ, x : T2 ⊢M : U

Γ, x : T1 ∪ T2 ⊢M : U

Subs

Γ ⊢M : T T 4 U

Γ ⊢M : U

Figure 4: Typing rules

Type application takes precedence over all the other operators and is left associative.
Sub-typing rule Data allows typing constructors with non-fixed arity:

cT1 . . . Tk 4 Tk+1 → cT1 . . . TkTk+1,

implies that if ct1 . . . tk has type cT1 . . . Tk, and if tk+1 has type Tk+1, then ct1 . . . tk+1 has
type cT1 . . . Tk+1. By iterating, we immediately get

(Γ ⊢ ti : Ti)
n
i=1 =⇒ Γ ⊢ ct1 . . . tn : cT1 . . . Tn

Having such variadic constructors allows for example to add or remove an element in an
array locally (Example 2.1).

2.3. Typing case bindings. Types for case bindings are the same as the ones for terms. A
case binding is typed (with rule Cb) like a function waiting for a constructor of its domain
as argument, up to a possible conversion of arrow type into application type: from a typing
judgement Γ ⊢ u : T → U , both following derivations are valid.

Γ ⊢ u : T → U

Γ ⊢ {c 7→ u} : c→ T → U

Γ ⊢ u : T → U

Γ ⊢ {c 7→ u} : cT → U
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Refl
−

T 4 T
Trans

T 4 T0 T0 4 T ′

T 4 T ′

Arrow
T ′ 4 T U 4 U ′

T → U 4 T ′ → U ′
App

D 4 D′ T 4 T ′

DT 4 D′T ′

∪introL
−

U1 4 U1 ∪ U2
∪introR

−

U2 4 U1 ∪ U2
∪elim

T1 4 U T2 4 U

T1 ∪ T2 4 U

∩intro
T 4 U1 T 4 U2

T 4 U1 ∩ U2
∩elimL

−

U1 ∩ U2 4 U1
∩elimR

−

U1 ∩ U2 4 U2

∀intro
T 4 U

T 4 ∀ν.U
ν /∈TV(T ) ∀elim

−

∀X.T 4 T{X ← U}
∀elimD

−

∀α.T 4 T{α← D}

∃intro
−

T{X← U} 4 ∃X.T
∃introD

−

T{α← D} 4 ∃α.T
∃elim

U 4 T

∃ν.U 4 T
ν /∈TV(T )

Data
−

D 4 T → DT
Constr

−

c1
−→
T ∩ c2

−→
U 4 ∀α.α

c1 6=c2

App/∩
−

⋂

i DiTi 4 (
⋂

iDi)(
⋂

i Ti)
App/∀

−

∀ν.(DT ) 4 (∀ν.D)(∀ν.T )

→/∩
−

⋂

i Ti → Ui 4 (
⋂

i Ti)→ (
⋂

i Ui)
→/∀

−

∀ν.(T → U) 4 (∀ν.T )→ (∀ν.U)

→/∪
−

⋂

i Ti → Ui 4 (
⋃

i Ti)→ (
⋃

i Ui)
→/∃

−

∀ν.(T → U) 4 (∃ν.T )→ (∃ν.U)

∪/AppR
−

D(
⋃

i Ti) 4
⋃

i DTi
∪/AppL

−

(
⋃

iDi)T 4
⋃

i(DiT )

∃/AppR
−

D(∃ν.T ) 4 ∃ν.DT
ν /∈TV(D) ∃/AppL

−

(∃ν.D)T 4 ∃ν.DT
ν /∈TV(T )

∪/∀
−

∀ν.(T ∪ U) 4 (∀ν.T ) ∪ U
ν /∈TV(U) ∃/∩

−

(∃ν.T ) ∩ U 4 ∃ν.(T ∩ U)
ν /∈TV(U)

Figure 5: Sub-typing rules.
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This is the point that allows CaseApp commutation rule to be well typed.

Example 2.1. Consider the constructor c⋄ that initialises arrays. Then the case binding
θ = {c⋄ 7→ λxy.c⋄x} removes the second element of any array:

{|θ|} · (c⋄t1t2t3) →
3
CA ({|θ|} · c⋄)t1t2t3 → (λxy.c⋄x)t1t2t3 →

3 c⋄t1t3

From ⊢ t1 : T1, ⊢ t2 : T2 and ⊢ t3 : T3 we can derive ⊢ {|θ|} · (c⋄t1t2t3) : c⋄T1T3:

⊢ λxy.c⋄x : T1→ T2→ c⋄T1

c⋄T1 4 T3 → c⋄T1T3

T1→ T2→ c⋄T1 4 T1→ T2→ T3→ c⋄T1T3

⊢ λxy.c⋄x : T1 → T2 → T3 → c⋄T1T3

⊢ θ : c⋄T1T2T3 → c⋄T1T3

⊢ θ : c⋄T1T2T3 → c⋄T1T3

⊢ t1 : T1

⊢ t2 : T2

⊢ t3 : T3

⊢ c⋄t1t2t3 : c⋄T1T2T3

⊢ {|θ|} · (c⋄t1t2t3) : c⋄T1T3

We can also give the same type to ({|θ|} · c⋄)t1t2t3 by choosing another possible type for θ

(we write
−→
T = T1;T2;T3):

⊢ λxy.c⋄x :
−→
T → c⋄T1T3

⊢ θ : c⋄ →
−→
T → c⋄T1T3 ⊢ c⋄ : c⋄

⊢ {|θ|} · c⋄ :
−→
T → c⋄T1T3

⊢ t1 : T1

⊢ t2 : T2

⊢ t3 : T3

⊢ ({|θ|} · c⋄)t1t2t3 : c⋄T1T3

In the same way, the typing rule (case) for a case construct {|θ|} · t allows t to be a
function that waits for an arbitrary numbers of arguments. This make CaseLam well typed.
Indeed, if a case binding θ has type T → U , then both terms {|θ|} · λx.x and λx.({|θ|} · x)
are typable with the same type:

x : T ⊢ x : T x : T ⊢ θ : T → U

x : T ⊢ {|θ|} · x : U

⊢ λx.({|θ|} · x) : T → U

⊢ λx.x : T → T ⊢ θ : T → U

⊢ {|θ|} · λx.x : T → U

If the case binding includes many branches, we can either chose one of them, or give to
it an intersection type, and then commute intersection with arrow.

Example 2.2. Assume nat is a type satisfying nat ≡ 0 ∪ Snat . The predecessor case
bindings θ = {0 7→ 0 ; S 7→ λx.x} has both types 0 → nat and S nat → nat . Hence we can
derive

⊢ θ : (0→nat) ∩ (Snat→nat) (0→nat) ∩ (S nat→nat) 4 (0 ∪ S nat)→nat

⊢ θ : (0 ∪ S nat)→ nat

and thus θ has type nat → nat .
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The rule Cb⊥ is a kind of generalisation of this typing derivation: indeed, if

θ = {ci 7→ ui / 1 ≤ i ≤ n}, with ⊢ ui :
−→
Ui → Ti, then for any J ⊆ [1..n], the judge-

ment ⊢ θ :
⋃

i∈J ci
−→
Ui →

⋃

i∈J Ti is derivable. Taking J = ∅, this would be written
⊢ θ : ∀α.α → ∀X.X, as ∀α.α is the lower bound of data-types, and ∀X.X the lower
bound of types. In particular, Cb⊥ enables typing the empty case binding. Notice that the
only way to type a term {|∅|} · t is that t has type ∀α.α, and this means that t is (or reduces
on) the Daimon (we will see that this is a consequence of Proposition 1.1 and Remark 5.8).

3. Restricted lambda calculus with constructor

The type system described in the previous section is the one presented in [19]. It
appears that the final result (Proposition 15) of that paper is wrong5. Here we present a
simple counterexample, and we explain how we cope with the problem.

3.1. The problem of case-composition. Typed λC-calculus does not prevent match fail-
ure. Indeed, the CaseCase rule can create sub-terms whose typing is not checked in the “dead
branches” of a case-binding. For instance, if

then
φ = {d 7→ d’} and θ = {c 7→ d ; c’ 7→ c’},
⊢ φ : d→ d’ and ⊢ θ : c→ d.

So we can derive ⊢ {|θ|} ·c : d and then ⊢ {|φ|} · {|θ|} ·c : d’. This makes sense because we
can obtain {|φ|} · {|θ|} ·c →∗ d’ by applying twice the rule CaseCons. In θ, c’ 7→ c’ is a dead
branch and is forgotten by the typing (once we know that c’ itself is typable). However,
we can also apply the rule CaseCase and get {|φ ◦ θ|} · c. Hence, the second branch of the
case-binding is c’ 7→ {|φ|} · c’, which raises a match failure and is hardly typable.

The point is that, while typing a case binding, a choice can implicitly be made concern-
ing the branches that will be taken in consideration (if we had chosen type c’ → c’ for θ,
we would not have been able to type {|φ|} · {|θ|} · c’, that reduces on the same match-failing
term {|φ|} · c’). But yet the CaseCase rule can create redices in branches that have been
dropped by the typing.

Actually, the situation is even worse. Rule CaseCase, together with the other rules,
makes some typable terms non-terminating:

Let φ = {d 7→ δ} and θ = {c 7→ d ; c’ 7→ dδ}, where δ = λx.xx. Then we can
derive

Γ ⊢ φ : d→ ∆

Γ ⊢ d : d Γ ⊢ dδ : d∆
Γ ⊢ θ : c→ d Γ ⊢ x : c

Γ ⊢ {|θ|} · x : d

Γ ⊢ {|φ|} · {|θ|} · x : ∆

with Γ = x : c, and ∆ = (∀X.X → X)→ (∀X.X → X). It appears that {|φ|} · {|θ|} · x is in
normal form without CaseCase rule, but with it we can reduce

{|φ|} · {|θ|} · x→ {|φ ◦ θ|} · x =

{∣

∣

∣

∣

c 7→ {|φ|} · d
c’ 7→ {|φ|} · dδ

∣

∣

∣

∣

}

· x→∗

{∣

∣

∣

∣

c 7→ δ
c’ 7→ δδ

∣

∣

∣

∣

}

· x

Hence {|φ|} · {|θ|} · x is not normalising since the sub-term δδ necessarily appears.

5In [19] the proof fails at Lemma 10. There is a counterexample to the converse of equivalence (13),
surprisingly due to the notion of modified substitution used there.
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3.2. Restriction of the calculus. Remember that λ−
C , i.e., the λC-calculus without the

rule CaseCase, is confluent (cf. Part 1). We will see in Part 5 that typed λ−
C -calculus enjoys

the perfect normalisation property.
Actually, rule CaseCase was introduced in the lambda calculus with constructors in

order to satisfy the separation property ([3], Theorem 2) —and same as for the rule LamApp,
the usual eta-reduction. But it is unessential for computing in the lambda calculus with
constructors (cf. the discussion in Section 5.3).

Also from now on we remove the case composition from the calculus, and we consider
the λ−

C -calculus. In particular, we now use notation → for →λ−
C
.

The set of terms is kept unchanged, so we use the same definition of defined term and
of value as in λC-calculus. Note that Proposition 1.1 still holds in λ−

C . The set of closed

terms that are perfectly normalising for λ−
C rules is denoted by PN0. By extension we say

that a case binding θ is in PN0 when it is composed of closed and perfectly normalising
terms for λ−

C .
In the following, we prove the perfect normalisation (i.e. strong normalisation without

match failure) of typed λ−
C -calculus.

4. Reducibility Candidates

Reducibility candidates [10] are sets of closed and perfectly normalising terms. They
will later be used to interpret types. In this paper we complete their usual meaning with
the notion of data candidates. In the following, we denote by Redn(t) the set of terms to
which t reduces in n steps, by Red∗(t) the union of all these sets for n in N, and by Red+(t)
the union for n ≥ 1.

Because of their “ill-behaviour” w.r.t. typing, commutation rules will be treated with a
special attention. Remember that we write −→c the union of CaseApp and CaseLam, and λcom
denotes the calculus containing only these two rules. Conversely, the calculus consisting of
all reduction rules of λ−

C except CaseApp and CaseLam is written λB (and, as expected, →B

denotes the union of AppLam, AppDai, LamApp, LamDai, CaseCons and CaseDai).
In this section, we first give some properties of λcom-normal forms. Next we give a

definition of reducibility candidates and a method to construct them using closure operator.
Then we emphasise the connection between reducibility candidates and values. Finally we
define some operations on reducibility candidates.

4.1. Case-commutation normal form. The reduction system λcom is strongly normalis-
ing. Indeed, reducing a term in λcom decreases its structural measure s, introduced in [3] as
follows:

s(x) = s(c) = s(z) = 1
s(λx.t) = s(t) + 1
s(tu) = s(t) + s(u)

s({|θ|} · t) = s(t)× (s(θ) + 2)
s({ci 7→ ui / 1 ≤ i ≤ n}) =

∑n
i=1 s(ui)

In the following, we will often need to consider terms up to case-commutation rules.
The normal form of a term t for −→c is written ↓ t. It is characterised by the following
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equations:

↓x = x ↓{|θ|} · x = {| ↓θ|} · x
↓c = c ↓{|θ|} · c = {| ↓θ|} · c
↓z = z ↓{|θ|} ·z = {| ↓θ|} ·z
↓λx.t = λx. ↓t ↓{|θ|} · λx.t = λx. ↓({|θ|} · t)
↓(tu) = ↓t ↓u ↓{|θ|} · (tu) = ↓({|θ|} · t) ↓u

↓{ci 7→ ui / 1≤i≤n} = {ci 7→↓ui / 1≤i≤n} ↓
(

{|θ|} · {|φ|} · t
)

= ↓({|θ|}· ↓{|φ|} · t)

and by ↓
(

{|θ|} · {|φ|} · t
)

= {| ↓θ|} · {|φ|} · t if ↓{|φ|} · t = {|φ|} · t.
To deal with perfect normalisation, we can consider terms up to case commutation,

since both well-definition and strong normalisation are preserved by λcom-reduction and
expansion. That is what Corollary 4.3 expresses.

Lemma 4.1. If ↓t is defined, so is t.

Lemma 4.2. t→B t′ implies ↓t →+↓t′

Proof. By induction on t.

• If t = x, z or c, then t is not reducible.
• If t = λx.t0, then t′ = λx.t′0 with t0→Bt

′
0 and we conclude by induction.

• If t = t1t2, three different cases can occur:
− t′ = t1t

′
2 or t′1t2 with ti→Bt

′
i. Hence we conclude by induction

− t1 = z and t′ = z. In that case ↓t = (z ↓t2) reduces to z = ↓t′ .
− t1 = λx.t0 and t′ = t0[x := t2]. Then ↓ t = (λx. ↓ t0) ↓ t2 , and it reduces to

(↓ t0)[x :=↓ t2 ], that has case normal form (and therefore reduces in 0 or more steps
on) ↓(t0[x := t2]).

• If t = {|θ|} · t0, either t
′ = {|θ′|} · t0 or {|θ|} · t′0 with θ→Bθ

′ or t0→Bt
′
0 and we conclude by

induction, or t′ = u with t0 = c and c 7→ u ∈ θ, or t′ = z and t0 = z. In both last cases,
↓t = {| ↓θ|} · t0 →↓t

′ .

Corollary 4.3. If ↓t ∈ PN0, then t ∈ PN0.

Proof. First u ∈ Red∗(t) implies ↓u ∈ Red∗(↓t) by Lemma 4.2. So Lemma 4.1 entails that
all reducts of t are defined as soon as all reducts of ↓t are.
Now assume there is an infinite reduction t = t0 → t1 → t2 . . . Since −→c is strongly

normalising, this reduction chain contains an infinity of →B reduction steps: t = t0
∗
−→c

ti1 →B tj1
∗
−→c ti2 →B tj2 . . . So ↓ tjk = ↓ tik+1

and ↓ tik →
+↓ tjk by Lemma 4.2. Hence

there is an infinite reduction

↓t = ↓ti1 →
+ ↓tj1 = ↓ti2 →

+ ↓tj2 = ↓ti3 →
+ ↓tj3 . . .

This is absurd if ↓ t is strongly normalising. So finally if ↓ t is perfectly normalising then t
also is.

4.2. Definition of reducibility candidates. The definition of reducibility candidates is
founded on the notion of values and neutral terms. Recall that the set V of values includes
all data structures and lambda-abstractions. We then call neutral the terms which are not
values. The set of defined closed neutral terms is written ND. In particular, z is neutral.

Remark 4.4. Since t ∈ V implies ↓t ∈ V , Lemma 4.1 leads to

↓t ∈ ND =⇒ t ∈ ND
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A set S of closed terms is a reducibility candidate when it satisfies:

(CR1): Perfect normalisation: S ⊆ PN0

(CR2): Stability by reduction: t ∈ S ⇒ Red1(t) ⊆ S
(CR3): Stability by neutral expansion: if t ∈ ND, then Red1(t) ⊆ S ⇒ t ∈ S
(CR4): Stability by case-commutation: if t −→c t

′, and t′ ∈ S then t ∈ S

We denote by CR the set of all reducibility candidates, and by (CR) the conjunction of all
four conditions. The usual stability properties for reducibility candidates are (CR1), (CR2)
and (CR3). Property (CR4) is specific to this type system, and will be necessary in order
to prove the validity of the Cb rule.

Note that every reducibility candidate is non empty (it contains z as neutral term with
no reduct). This will be important when interpreting arrow types. Moreover PN0 is in CR
(resulting from Corollary 4.3, PN0 is stable by (CR4)).

In some of the proofs of this paper we need to use another definition of reducibility
candidates, that is equivalent.

Lemma 4.5. Given S ⊆ Λ0, we define two new stability properties:

(CR2′): t ∈ S ⇒ Red∗(t) ⊆ S
(CR4′): ↓t ∈ S ⇒ t ∈ S

Then a reducibility candidate can be characterised by (CR1), (CR2′), (CR3) and (CR4′)
since

(CR2) ⇔ (CR2′) (4.1)

(CR2) ∧ (CR4) ⇔ (CR2′) ∧ (CR4′) (4.2)

Proof.

(4.1) (CR2′) obviously implies (CR2). Conversely, if S satisfies (CR2) and t ∈ S, then
we can prove by induction on n that t→n u implies u ∈ S.

(4.2) Assume S satisfies (CR4). If t is a term such that ↓t ∈ S, we can see by induction

on the reduction t
∗
−→c↓ t that t ∈ S. Conversely, if S satisfies (CR2′) and (CR4′),

then for any t′ ∈ S and any t −→c t′, we have ↓ t = ↓ t′ is in S by (CR2′) (since
t′ →∗↓t′), thus t ∈ S by (CR4′).

4.3. Closure properties. A non-expansed candidate is a set of terms that satisfies (CR1)
and (CR2). Sets that satisfy (CR4) in addition (or equivalently (CR4′)) are called pre-
candidates of reducibility. We write PCR for the family of pre-candidates. For instance
{c} is a pre-candidate for any constructor c. We will see that such a pre-candidates can be
closed by (CR3) to obtain a reducibility candidate.

Definition 4.6. For X ⊆ Λ0, we note X its closure by (CR3). It is defined inductively by

t ∈ X

t ∈ X

t ∈ ND Red1(t) ⊆ X

t ∈ X

Lemma 4.7. If P ∈PCR, then P is the smallest reducibility candidate containing P .

Proof. P satisfies (CR3) by definition. Using the inductive definition, it is immediate to
check (by induction) that it satisfies (CR1) and (CR2′). Now we prove by induction that
it satisfies (CR4′). Let t ∈ Λ0 such that ↓t ∈ P .

• If ↓t ∈ P then t ∈ P since P ∈ PCR and thus satisfies (CR4′).
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• Else ↓ t ∈ ND and Red1(↓ t) ⊆ P . In that case, t also is in ND (Remark 4.4) and for
all u ∈ Red1(t), ↓ u ∈ Red∗(↓ t) (by Lemma 4.2). Moreover, Red∗(↓ t) ⊆ P by (CR2′),
thus ↓ u ∈ P . By induction hypothesis, it implies that u ∈ P . Hence Red1(t) ⊆ P , so
t ∈ P for being neutral.

Finally P is a reducibility candidate. Moreover, if S in CR contains P , it also contains P
by (CR3).

In the previous lemma it would not be sufficient to assume that P is a non-expansed
candidate, to conclude P ∈ CR (see example below). We later (in Lemma 4.15) charac-
terise more precisely when a non-expansed candidate can be closed to obtain a reducibility
candidate.

Example 4.8. Let t = λy.{|c 7→ c|} · y and u = {|c 7→ c|} · λy.y. Then u −→c t.
The set S = {λx.t} satisfies (CR1) and (CR2) but S does not satisfy (CR4) since λx.u /∈ S.
So S is not a reducibility candidate.

Stability under (CR3) also entails that every reducibility candidate is infinite: if A is
a reducibility candidate containing a term t, it also contains {|c 7→ t|} · c as a neutral term
whose all reducts (by induction on the reduction of t) are in A. So we can construct an
infinite increasing family of terms of A.

A data candidate is a reducibility candidate whose all values are data structures. The
sub-class of data candidates, written DC, will be helpful to interpret data types.

Remark 4.9. Since the closure by (CR3) only adds neutral terms, if P is a pre-candidate

whose all values are data-structures, then P ∈ DC. In particular {c} is a data candidate
for any constructor c.

4.4. Reducibility Candidates and values. A reducibility candidate is stable under re-
duction and under expansion for neutral terms. As a consequence, it is entirely determined
by its values. We call values of a term t (or of a set of terms S), and we write Val(t) (resp.
Val(S)), the set of values to which t (resp. a term of S) reduces:

Val(t) = Red∗(t) ∩ V

Note that,V being closed by reduction, Val(S) is a non-expansed candidate for any
set S of perfectly normalising terms. However, it is not necessarily a pre-candidate. Indeed,
even if A ∈ CR it does not insure Val(A) ∈ PCR.

Example 4.10. Consider the reducibility candidate S, with

S = { λx.{|c 7→ c|} · x ; {|c 7→ c|} · λx.x } .

Val(S) is not stable under (CR4) since it does not contain {|c 7→ c|} · λx.x whereas
{|c 7→ c|} · λx.x −→c λx.{|c 7→ c|} · x and λx.{|c 7→ c|} · x ∈ Val(S) .

Also it is generally not possible to use the closure operator on a set of values Val(S) to
construct a reducibility candidate. However, the values of a reducibility candidate are, in
some extent, sufficient to define it (Corollary 4.12).

Lemma 4.11. If t ∈ PN0 and A ∈ CR, then t ∈ A ⇔ Val(t) ⊆ A .
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Proof. The implication is obvious using (CR2′).
We prove the converse by induction on the reduction of t (that is well-founded for strongly
normalising terms). Assume Val(t) ⊆ A and prove that t ∈ A. If t is a value it is clear
since t ∈ Val(t). Otherwise t ∈ ND, and for all u in Red1(t), u ∈ A by induction hypothesis
(since Val(u) ⊆ Val(t) ⊆ A). So t ∈ A by (CR3).

Corollary 4.12. Let A,B ∈ CR. Then Val(A) = Val(B) iff A = B.

Proof. We show the implication, the converse is obviously true. Let A,B ⊆ CR, such that
Val(A) = Val(B). By Lemma 4.11,

t ∈ A iff Val(t) ⊆ A
iff Val(t) ⊆ Val(A)
iff Val(t) ⊆ Val(B)
iff Val(t) ⊆ B
iff t ∈ B

This characterisation of a reducibility candidate by its values will be used in the next
section to prove that our class CR is stable under union. For that, we also use a sufficient
condition described in [20]: the principal reduct property.

Lemma 4.13. Every t ∈ ND has a reduct (in one step) u ∈ Λ0 such that

t→∗ v ∧ v ∈ V ⇒ u→∗ v

A term u that satisfies such a property is called a principal reduct of t.

Proof. We define inductively, for every t ∈ ND that can reduce on a value, a term p(t):
p((λx.t0)t1 . . . tk) = t0[x := t1] t2 . . . tk
p(({|θ|} · t0)t1 . . . tk) = p({|θ|} · t0)t1 . . . tk

p({|θ|} · c) = u if c 7→ u ∈ θ
p({|θ|} · λx.t′) = λx.{|θ|} · t′

p({|θ|} · t1t2) = ({|θ|} · t1)t2
p({|θ|} · {|φ|} · t′) = {|θ|} · p({|φ|} · t′)

The point is that when a neutral term reduces on a value, it is necessarily by a reduction step
performed at the root of the term (a so-called head reduction). The term p(t) is obtained
from t by reducing in head position. Every reduction chain leading from t to a value v
begins eventually with reductions in sub-terms, and then the head-reduction is performed
and gives a term u′, that reduces on (or is) v. So to go from t to u′ we can first reduce in
head position and get p(t), and then perform the same reductions in the sub-terms to get
u′.

4.5. Candidates operators. Since we aim to interpret types by reducibility candidates,
we need to define all type operations in CR. The definition of arrow is standard [10]. Here
we also define the set application: for A,B ⊆ Λ0,

A → B , {t ∈ Λ0 / ∀u ∈ A, tu ∈ B}
AB , {tu / t ∈ A, u ∈ B}

It is standard that CR is stable under arrow (we prove it in Lemma 4.16), as soon as
candidates are not empty (that is the case here, since they all contain z). On the other
hand, there is no reason for CR to be closed under application. Indeed, none of (CR1),
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(CR2), (CR3) and (CR4) is preserved by application. In Lemma 4.16 (4.6) we see a way
to construct a reducibility candidate by applying candidate to an other one. The family CR
is naturally closed by intersection. We use the same method as in [20, Corollary 4.12] to
deduce its stability under union (4.4).

Lemma 4.14. For any family (Pi ∈ PCR)i∈I ,
⋃

Pi ⊆
⋃

P i.

Proof. By induction on t ∈
⋃

Pi, we show that t ∈ P j for some j ∈ I.

• If t ∈
⋃

Pi, then there is j ∈ I such that t ∈ Pj ⊆ Pj

• If t ∈ ND and Red1(t) ⊆
⋃

Pi, let u be a principal reduct of t. Then Val(t) = Val(u)
(Lemma 4.13). Since u ∈ Red1(t), u ∈ Pj for some j by induction hypothesis. So

Val(u) ⊆ Pj by (CR2), and using Lemma 4.11 we get t ∈ Pj .

Lemma 4.15. Let S be a non-expansed candidate. Then S is a reducibility candidate if,
for any t, t′ ∈ Λ0,

t −→c t
′

t′ ∈ S

}

=⇒ t ∈ S

Proof. By definition S satisfies (CR3). The closure operator · preserves (CR1) and (CR2),
so these two properties also hold in S. Now, we need to prove (CR4′). Let ↓ t ∈ S. By
Corollary 4.3, ↓ t ∈ PN0 implies t ∈ PN0. We prove by induction on its reduction that

t ∈ S. If t =↓ t it is clear; else let t′ such that t −→c t′
∗
−→c↓ t. By induction hypothesis,

t′ ∈ S.

• If t′ ∈ S then by hypothesis t ∈ S.
• Otherwise t′ ∈ ND and Red1(t

′) ∈ S (by definition of the closure operator). Hence t also
is in ND (same as Remark 4.4). Moreover, for any u ∈ Red1(t), ↓t →

∗↓u by Lemma 4.2.
So ↓u ∈ S by (CR2), and u ∈ S by induction hypothesis. Thus Red1(t) ⊆ S and t ∈ S.

So S also satisfies (CR4′), it is then a reducibility candidate.

Lemma 4.16. Given (Ai) and (Di) families (possibly infinite) of CR and DC respectively,
A ∈ CR, D ∈ DC, and S a non-expansed candidate that is non-empty,

⋂

Ai ∈ CR and
⋂

Di ∈ DC (4.3)
⋃

Ai ∈ CR and
⋃

Di ∈ DC (4.4)

S → A ∈ CR (4.5)

DA ∈ DC (4.6)

Proof.

(4.3) (CR1), (CR2), (CR3) and (CR4) are each preserved by intersection, so
⋂

Ai and
⋂

Di are reducibility candidates. Since values of
⋂

Di are values of data-candidates,
⋂

Di ∈ DC.
(4.4) All candidates Ai satisfy (CR3), thus Ai = Ai for any i. So Lemma 4.14 says

that
⋃

Ai ⊆
⋃

Ai. The converse inclusion also holds by definition, so
⋃

Ai =
⋃

Ai.
Moreover,

⋃

Ai is pre-candidate since (CR1), (CR2) and (CR4) are preserved by

union. thus
⋃

Ai is a reducibility candidate (by Lemma 4.7), and so is
⋃

Ai.

In the same way,
⋃

Di is a reducibility candidate. By Remark 4.9,
⋃

Di ∈ DC.
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(4.5) We prove that S → A satisfy all conditions of (CR):
CR1. Let t ∈ S → A. There exists u ∈ S, and tu ∈ A ⊆ PN0. So t ∈ PN0.
CR2. Let t ∈ S → A and t′ ∈ Red1(t). For any u ∈ S, tu→ t′u. So tu ∈ A implies

t′u ∈ A since A is closed under reduction. Hence t′ ∈ S → A.
CR3. For any t ∈ ND such that Red1(t) ⊆ S → A, we prove that u ∈ S implies

tu ∈ A by induction on the reduction of u. Since t ∈ ND, tu is not a data-
structure so tu ∈ ND. Furthermore t is not an abstraction so every reduct
of tu is either z (if t = z), or t′u with t′ ∈ Red1(t), or tu′ with u → u′. In
any case it belongs to A: z by (CR3), t′u because t′ ∈ S → A, and tu′ by
induction hypothesis. So tu ∈ A by (CR3), thus t ∈ S → A.

CR4. Let t −→c t
′ such that t′ ∈ S → A. For any u ∈ S, tu −→c t

′u and t′u ∈ A. So
tu ∈ A by (CR4) in A.

Finally S → A is a reducibility candidate.
(4.6) First notice that DA = DA∪z (since z is neutral with no reduct, it is in the

closure of any set). We call S the set DA ∪ z, and we will first prove that it is a
non-expansed candidate. Then we will prove that t′ ∈ S and t −→c t′ imply t ∈ S.
Also S ∈ CR will result from Lemma 4.15.
− Let t ∈ S. If t is the Daimon, it is perfectly normalising and it has no reduct.

Otherwise, t = t1t2 with t1 ∈ D and t2 ∈ A. We show by induction on their
reduction that t ∈ PN0 and Red1(t) ⊆ S. Term t1 is not an abstraction since it is
in a data candidate, so every reduct of t is either z (if t1 = z), or a term on the
form t′1t2 or t1t

′
2 with ti → t′i. All this reducts are in S, and they are perfectly

normalising (possibly by induction hypothesis). So Red1(t) ⊆ S and t ∈ PN0.
Hence S satisfy (CR1) and (CR2).

− Let t −→c t′ such that t′ ∈ S. Then t′ = t1t2 with t1 ∈ D and t2 ∈ A. Either
t = t′1t2 or t1t

′
2 with t′i −→c ti (in that case t ∈ DA since D and A are closed by

expansion for −→c), or t = {|θ|} · (t0t2) and t1 = {|θ|} · t0. In the last case, t ∈ ND:
both {|θ|} · t0 and t2 are defined (they are in reducibility candidates) so {|θ|} · (t0t2)
also is defined, and it is not a value. We show that all its reducts are in S. Note
that t0 is not an abstraction (if t0 = λx.t′0 then t1 → λx.{|θ|} · t′0 /∈ D), so a
reduct u of t may have three different forms:
• u = t′. Hence u ∈ S ⊆ S.
• u = {|θ|} ·z (if t0 = z). In that case u ∈ ND and all its reducts in any number
of steps until z are in ND, so u is in S.
• u = {|θ′|} · (t′0t

′
2) with θ → θ′ and ti = t′i, or θ = θ′ and ti → t′i.

In that case, u −→c u′ = ({|θ′|} · t′0)t
′
2, and t′ → u′ so u′ ∈ S by (CR2). Thus

u ∈ S by induction hypothesis.
Hence any reduct of t is in S, and thus t ∈ S by (CR3).

By Lemma 4.15, DA = S ∈ CR. What is more, all values of DA are in DA, thus
they are applications, so they are data-structures. Finally, DA ∈ DC.

In (4.6) we consider the closure of set application for a data-candidate and a candidate.
In general, the closure of the application of two reducibility candidates would not form a
reducibility candidate, as shown in the following example. This is intuitively due to the
same reason why we do not consider general type application, but we restrict it to data-
types: good properties (among which the perfect normalisation property) are insured to be
preserved by applying a term u to t if t is not (and does not reduce on) an abstraction.
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Example 4.17. Consider the reducibility candidate A = {I}, where I = λx.x
Then II ∈ AA, but II → I and I /∈ AA. Thus AA is not closed under (CR2) and thereby
is not a reducibility candidate.

5. Reducibility model

In this section we associate to every type T a reducibility candidate that contains all
the terms which are typable by T . Seeing typed terms as terms of a reducibility candidate
or a data-candidate will then enable a finer analysis of their properties.

5.1. Modelling types. To achieve the definition of type interpretation, we need to give the
interpretation for type variables. For that, we use valuations, i.e. functions matching every
data-type variable to a data-candidate, and every type variable to a reducibility candidate.

Given a valuation ρ, the interpretation of a type T in ρ, written [T ]ρ, is defined induc-
tively in Fig. 6. We also associate to T (seen as a type for case bindings) and ρ the set of
case bindings JT Kρ. Lemma 4.16 ensures that for every valuation ρ, [T ]ρ ∈ CR for any type
T , and [D]ρ ∈ DC for any data type D.

Type interpretation by reducibility candidates:

[α]ρ = ρ(α) [T ∩ U ]ρ = [T ]ρ ∩ [U ]ρ

[X]ρ = ρ(X) [∀α.U ]ρ =
⋂

A∈DC [U ]ρ,α7→A

[c]ρ = {c} [∀X.U ]ρ =
⋂

A∈CR [U ]ρ,X 7→A

[DT ]ρ = [D]ρ [T ]ρ [T ∪ U ]ρ = [T ]ρ ∪ [U ]ρ

[T → U ]ρ = [T ]ρ → [U ]ρ [∃α.U ]ρ =
⋃

A∈DC [U ]ρ,α7→A

[∃X.U ]ρ =
⋃

A∈CR [U ]ρ,X 7→A

Interpretation of types for case bindings:

JT Kρ = { θ /λx. {|θ|} · x ∈ [T ]ρ}

Figure 6: Interpretation of types

Note that we need to use the closure operator to interpret data types. Indeed, for
D ∈ DC and T ∈ CR, the set DT does not satisfy (CR3): if t ∈ D and u ∈ T , with
both terms in normal form, then the only reduct (assuming t 6= z) of the term {|c 7→ tu|} · c
is tu ∈ DT , but {|c 7→ tu|}·c itself is not an application, and thus is not in DT . However, this
interpretation of types gives a very precise notion of data-types, considering their values.

Proposition 5.1. If t is a value of [cT1 . . . Tk]ρ then t = ct1 . . . tk with ti ∈ [Ti]ρ.

In particular, Proposition 1.1 ensures that t ∈ [cT1 . . . Tk]ρ implies t →∗ ct1 . . . tn for
some ti ∈ [Ti]ρ (i ≤ n), or t→∗ z.
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Proof. We proceed by induction on k.
If k = 0, it is straightforward from the definition of [c]ρ.

Else [cT1 . . . Tk]ρ = [cT1 . . . Tk−1]ρ[Tk]ρ, so

Val([cT1 . . . Tk]ρ) = Val([cT1 . . . Tk−1]ρ[Tk]ρ)

So, if t is a value of [cT1 . . . Tk]ρ it is on the form uu′ with u ∈ [cT1 . . . Tk−1]ρ and u′ ∈ [Tk]ρ.
Moreover, if uu′ is a value, it is necessarily a data structure, and u also is a data structure.
Hence u is a value of [cT1 . . . Tk−1]ρ. By induction hypothesis u = ct1 . . . tk−1 with ti ∈ [Ti]ρ,
and we conclude with tk = u′ ∈ [Tk]ρ.

Corollary 5.2. For any constructor c and any types T1, . . . , Tk,

[cT1 . . . Tk]ρ = c[T1]ρ . . . [Tk]ρ

Proof. By Proposition 5.1, Val([cT1 . . . Tk]ρ) = c[T1]ρ . . . [Tk]ρ.

Since Val(c[T1]ρ . . . [Tk]ρ) also is c[T1]ρ . . . [Tk]ρ, Corollary 4.12 entails the equality.

The following lemma expresses that type interpretation is sound w.r.t. sub-typing.

Lemma 5.3. If T1 4 T2 then for any valuation ρ, [T1]ρ ⊆ [T2]ρ .

Proof. By induction on the derivation of T1 4 T2. Rules Refl and Trans are straightforward
from the definition. So are union and intersection rules. Introduction and elimination rules
for quantifiers ∀ and ∃ use the equality [T ]ρ,ν 7→[U ]ρ = [T{ν ← U}]ρ.

Arrow is standard, and Constr comes from Proposition 5.1: [c1
−→
T ]∩[c2

−→
U ]ρ has no value if

c1 6= c2 and thus is smallest than any candidate.
We detail rules App and Data, other rules are easy to check (we actually introduced them
in the calculus because they were valid in the model).

App:
D 4 D′ T 4 T ′

DT 4 D′T ′

Remark that D ⊆ D′ and T ⊆ T ′ implies DT ⊆ D′T ′, and notice that the closure
operator is monotone on sets of terms.

Data: D 4 T → DT

Let ρ a valuation and t ∈ [D]ρ. Now choose u ∈ [T ]ρ. Then tu ∈ [D]ρ[T ]ρ, and this set is

included in [D]ρ[T ]ρ = [DT ]ρ. Hence tu ∈ [DT ]ρ for all u in [T ]ρ, so t ∈ [T → DT ]ρ.

5.2. Adequacy lemma. In this part we prove adequacy for the model: if a λC-term has
type T , then it belongs to the interpretation of T (and thus is perfectly normalising).

Reducibility candidates model deals with closed terms, whereas proving the adequacy
lemma by induction requires the use of open terms — with some assumptions on their free
variables, that will be guaranteed by a context. Therefore we use substitutions σ, τ to close
terms and case bindings:

σ := ∅ | x 7→ u;σ M∅ = M ; Mx 7→u;σ = M [x := u]σ,

We complete the interpretation of types with the one of judgements: given a context Γ, we
say that a substitution σ satisfies Γ for the valuation ρ (notation σ ∈ [Γ]ρ) when (x : T ) ∈ Γ
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implies σ(x) ∈ [T ]ρ. A typing judgement Γ ⊢ t : T (or Γ ⊢ θ : T ) is said to be valid (notation:
Γ � t : T or Γ � θ : T respectively) if for every valuation ρ and every substitution σ ∈ [Γ]ρ,

tσ ∈ [T ]ρ (resp. θσ ∈ JT Kρ)

The proof of adequacy requires a kind of inversion lemma for CR. Recall that Red∗(t)
denotes the set of all reducts (in any number of steps) of a term t.

Lemma 5.4. For any A ∈ CR, any terms t, u, λx.t0, and every non-empty non-expansed
candidate S,

tu ∈ A ⇔ t ∈ Red∗(u)→ A (5.1)

λx.t0 ∈ S → A ⇔ for all s ∈ S, t0[x := s] ∈ A (5.2)

Proof.

(5.1) If tu ∈ A then for any u′ ∈ Red∗(u), tu →∗ tu′ hence tu′ ∈ A by (CR2′). So
t ∈ Red∗(u)→ A. Conversely, if t ∈ Red∗(u)→ A then tu ∈ A since u ∈ Red∗(u).

(5.2) If λx.t0 ∈ S → A, then for any s ∈ S, (λx.t0)s ∈ A, so (λx.t0)s→ t0[x := s] implies
t0[x := s] ∈ A by (CR2). Now, if t0[x := s] ∈ A for some s ∈ S, then t0 ∈ PN0

by Lemma 1.2. Moreover, For any s′ ∈ S, we can easily check by induction on the
reduction of t0 and s′ that (λx.t0)s

′ ∈ A; indeed, it is in ND, and all its reducts are
in A.

Remark 5.5. If u ∈ PN0, then Red∗(u) is a non-expansed candidate, and so
Red∗(u)→ A ∈ CR by (4.5). Also, if ui ∈ PN0 for 1 ≤ i ≤ k, then

t u1 . . . uk ∈ A ⇔ t ∈ Red∗(u1)→ · · · → Red∗(uk)→ A

directly results from (5.1) and an induction on k.

Lemma 5.6. Let A1, . . . ,Ak,B ∈ CR and θ ∈ PN0 Assume c 7→ u ∈ θ, with u ∈
−→
A → B

(where
−→
A = A1; . . . ;Ak). Then

t ∈ cA1 . . .Ak =⇒ {|θ|} · t ∈ B

Proof. We prove that for all θ ∈ PN0 with c 7→ u ∈ θ and u ∈
−→
A → B, and for all

t ∈ cA1 . . .Ak, the term {|θ|} · t is in B.
If t is a value then t = ct1 . . . tk with ti ∈ Ai, so

{|θ|} · t ∈ B iff ({|θ|} · c)t1 . . . tk ∈ B (CR2′), (CR4′)
iff {|θ|} · c ∈ Red∗(t1)→ · · · → Red∗(tk)→ B (Remark 5.5)

But Red∗(ti) ⊆ Ai, so A1 → · · · → Ak → B ⊆ Red∗(t1)→ · · · → Red∗(tk) → B. Moreover

an immediate induction on the reduction of θ ensures that {|θ|} · c is in
−→
A → B: this term

is in ND and its reducts are either {|θ′|} · c with θ → θ′ (that is in
−→
A → B by induction

hypothesis), or u (that is in
−→
A → B by hypothesis). So {|θ|} ·c is in

−→
A → B by (CR3), thus

it belongs to Red∗(t1)→ · · · → Red∗(tk)→ B and so {|θ|} · t ∈ B.
Now assume t is neutral. It has the form ht1 . . . tn with h = z or {|φ|} · h0 and n ≥ 0,

or h = λx.h0 and n ≥ 1. We prove that {|θ|} · t is in B by induction on the reductions of θ
and h.

• First consider cases h = z or {|φ|} · h0, and n ≥ 0:
{|θ|} · t ∈ B iff ({|θ|} · h)t1 . . . tk ∈ B (CR2′), (CR4′)

iff {|θ|} · h ∈ Red∗(t1)→ ··· → Red∗(tk)→ B (5.1)
Note that {|θ|} · h ∈ ND and Red∗(t1) → · · · → Red∗(tk) → B is a reducibility candidate



SEMANTICS OF TYPED LAMBDA-CALCULUS WITH CONSTRUCTORS 21

by (4.5). So it is sufficient to show that it contains all reducts of {|θ|} · h. They are either
z, or {|θ′|} · h′ with θ → θ′ and h = h′ or h → h′ and θ = θ′. The Daimon is in every
reducibility candidate, and {|θ′|} · h′ ∈ Red∗(t1) → · · · → Red∗(tk) → B by induction
hypothesis. So {|θ|} · h ∈ Red∗(t1)→ · · · → Red∗(tk)→ B by (CR3), and {|θ|} · t ∈ B.
• Now consider case h = λx.h0 (with x /∈ FV(θ)), and n ≥ 1.
{|θ|} · t∈ B iff (λx.{|θ|} · h0)t1 . . . tk ∈ B (CR2′), (CR4′)

iff λx.{|θ|} · h0 ∈ Red∗(t1)→· · ·→Red∗(tk)→B (5.1)
iff for all s ∈ Red∗(t1),
{|θ|} ·h0[x := s]∈Red∗(t2)→···→Red∗(tk)→B (5.2)

For any s ∈ Red∗(t1), t →∗ (λx.h0) s t2 . . . tn → h0[x := s] t2 . . . tn, so that
{|θ|} · (h0[x := s]t2 . . . tn) ∈ B by induction hypothesis.
Hence, ({|θ|} ·h0[x := v])t2 . . . tn ∈ B by (CR2′), and thus by (5.1), {|θ|} ·h0[x := v] belongs
to Red∗(t2)→ · · · → Red∗(tk)→ B. Also {|θ|} · t ∈ B.

Finally, {|θ|} · t always belongs to B.

Proposition 5.7. Given a term t, a case binding θ, a context Γ and a type T ,

Γ ⊢ t : T ⇒ Γ � t : T (5.3)

Γ ⊢ θ : T ⇒ Γ � θ : T (5.4)

Proof. The proof is made by induction on the derivation of Γ ⊢ t : T or Γ ⊢ θ : T . If the
judgement is introduced by the rule Init,False (remember that z is in every reducibility
candidate) or Constr it is obvious. If it comes from → elim it is a direct consequence of
the definition of arrow in CR, and the case → intro is a consequence of (5.2).
If it comes from Inter, Union, or Univ it is straightforward from induction hypothesis.
If it comes from Subs, it is a consequence of Lemma 5.3. We detail the proof in case the
derivation comes from rule CB or Exist (Inter is similar to this last one).

Cb:
(Γ ⊢ uj :

−→
U j → Tj)

n
j=1

Γ ⊢ θ : ci
−→
Ui → Ti

with θ = {cj 7→ uj / 1 ≤ j ≤ n}

Remember that the interpretation of a type T , seen as a type for case bindings is

JT K = {θ / λx.{|θ|} · x ∈ [T ]}. Note (Ui1 . . . Uik) =
−→
Ui, choose ρ a valuation and σ ∈ [Γ]ρ,

and show that λx.{|θσ|}·x ∈ [ci
−→
U i → Ti]ρ. Let t ∈ [ci

−→
U i]ρ. By induction on the reduction

of θσ and t, we show that (λx.{|θσ |} · x)t ∈ [Ti]ρ. This is a neutral term, so it is sufficient
to show that all its reducts are in [Ti]ρ. Thanks to induction hypothesis we just have to
consider the reduct {|θσ|} · t.

By Corollary 5.2, t ∈ ci[Ui1]ρ . . . [Uik]ρ, and ui ∈ [Ui1]ρ → · · · → [Uik]ρ → [Ti]ρ by induc-
tion hypothesis. All terms in θσ are perfectly normalising, so we can use Lemma 5.6 to
get {|θσ|} · t ∈ [Ti]ρ.

Exist:
Γ, x : T ⊢ t : U

Γ, x : ∃ν.T ⊢ t : U
ν /∈TV(U)

Choose a valuation ρ, and a substitution σ ∈ [Γ, x : ∃ν.T ]ρ.
Then σ(x) ∈

⋃

A∈CR[T ]ρ,ν 7→A. Let A ∈ CR. Then σ(x) ∈ [T ]ρ,ν 7→A,
so σ ∈ [Γ, x : T ]ρ,ν 7→A. By induction hypothesis, (Γ, x : T ) � t : U , so tσ ∈ [U ]ρ,ν 7→A.
Since ν /∈ TV(U), it means that tσ ∈ [U ]ρ.
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Remark 5.8. For a closed term t and a closed type T we immediately get

[T ] ∈ CR and ⊢ t : T ⇒ t ∈ [T ] (5.5)

5.3. Results from the model. Remembering that reducibility candidates are included
in PN0, an immediate consequence of Remark 5.8 is the perfect normalisation of typed
λ−
C -calculus.

Theorem 5.9. Every well typed term is perfectly normalising for λ−
C .

Furthermore, every closed and defined normal form is a value or the Daimon (Proposi-
tion 1.1). Since the Daimon is never created by a reduction step, typing a term ensures that
it reduces strongly —and without case composition— on a value. We can even be more
precise when using data types: if a term (written without z) has type cT1 . . . Tk, then it
reduces on a data structure ct1 . . . tk (Proposition 5.1).

Now we call pure value a data structure whose all sub-terms are data structures (such
as cons 0 (cons (S(S0)) nil) for instance) and pure data type a data type whose all
sub-terms are data types.

A pure value is trivially typable by a pure data type (just replace every constructor c
in the term by the corresponding type constructor c to obtain the type, and use Constr

and Data to derive the typing judgement). Conversely, every closed defined normal term
without z in a pure data type is a pure value (by induction on the structure of the term,
using Proposition 5.1).

Hence, if t is a term written without the Daimon, and D is a pure data type,

⊢ t : D =⇒ t reduces strongly in λ−
C on a pure value of D

(where a pure value of cD1 . . . Dk has form cv1 . . . vk with vi a pure value of Di).
In that sense, we can say that case composition is unessential in this calculus: it is not

necessary to reach pure values.

Conclusion

Typed lambda calculus with constructors provides a powerful polymorphic type system,
with a notion of data types and type application. The difficulty of typing the commutation
rule between case and application is overcome with a sub-typing system. In this paper
we have shown that this type system ensures strong normalisation without match failure
if we remove the composition of case analysers from the calculus. We can safely do so,
since the case composition rule is not computationally necessary. However, we thus lose the
separation property for the lambda calculus with constructors.

Related works. The first presentation of the pattern calculus [13] comes with a ML-style
type system. This type system is less expressive than ours and does not prevent match
failure during reduction, but it is decidable.

A more elaborated calculus, the extension calculus, was recently developed in [14]. It is
typed with an extension of System F à la Church, that provides type application and also a
pattern matching mechanism on types. A proof of strong normalisation, using the method
based on reducibility candidates, is done for a restriction of this system. Although no type
inference algorithm exists for this calculus, it has been implemented in bondi [7].
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Several Church-style type systems have been proposed for the ρ-calculus, including a
family of type systems organised in a cube similar to Barendregt’s. As far as we know, no
Curry-style type system has been proposed for the ρ-calculus.

Future works. This paper has raised many questions, mainly concerning a possible imple-
mentation of lambda calculus with constructors. The first one is about recursively defined
data types, such as

nat ≡ 0 ∪ succ(nat) ; list T ≡ nil ∪ cons T (list T )

Adding a double sub-typing judgement for each data type is a way to do it, but it requires
checking the correctness of each rule. A fixpoint operator would probably be a better way,
since it would allow to add recursive data types “on the fly”.

Still with the view to implementing λC-calculus, we need to isolate a decidable fragment
of our type system. This is a real challenge when it comes to type case bindings (remind
the example of Section 2.3 page 7) and to use union types.

Last, it could be interesting to develop a denotational semantic for the lambda calcu-
lus with constructors. Since the literature about denotational semantics for pure lambda
calculus (based on domain theory for instance) is abundant, we could try to adapt it to
our calculus. An idea to do that, is to first traduce λC-calculus into pure λ-calculus (in the
spirit of CPS translations).
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