
Logical Methods in Computer Science

Vol. 8 (1:19) 2012, pp. 1–44

www.lmcs-online.org

Submitted Mar. 9, 2011

Published Mar. 6, 2012

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T

EXTENDING HOWARD’S ASSIGNMENT ∗

GUNNAR WILKEN a AND ANDREAS WEIERMANN b

a Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha,
Onna-son, 904-0412 Okinawa, Japan
e-mail address: wilken@oist.jp

b Department of Mathematics, Ghent University, Building S22, Krijgslaan 281, B 9000 Gent, Bel-
gium
e-mail address: weierman@cage.ugent.be

Abstract. Let T be Gödel’s system of primitive recursive functionals of finite type in the
lambda formulation. We define by constructive means using recursion on nested multisets
a multivalued function I from the set of terms of T into the set of natural numbers such that
if a term A reduces to a term B and if a natural number I(A) is assigned to A then a natural
number I(B) can be assigned to B such that I(A) is greater than I(B). The construction
of I is based on Howard’s 1970 ordinal assignment for T and Weiermann’s 1998 treatment
of T in the combinatory logic version. As a corollary we obtain an optimal derivation
lengths classification for the lambda formulation of T and its fragments. Compared with
Weiermann’s 1998 exposition this article yields solutions to several non-trivial problems
arising from dealing with lambda terms instead of combinatory logic terms. It is expected
that the methods developed here can be applied to other higher order rewrite systems
resulting in new powerful termination orderings since T is a paradigm for such systems.

Introduction

This article is part of a general program of investigations on subrecursive complexity classes
via derivation lengths classifications of term rewriting systems. Quite often, an equation-
ally defined subrecursive complexity class C of number-theoretic functions can be defined
in terms of a corresponding rewrite system RC which computes the functions from C. Ap-
propriate bounds on the RC-derivation lengths then yield intrinsic information on the com-
putational complexity of C. Successful examples of this program have been documented,
for example, in [1, 5]. Having such applications in mind, it seems desirable to have a large
variety of powerful methods for establishing bounds on derivation lengths in general.

1998 ACM Subject Classification: F.4.1, F.1.3.
Key words and phrases: Typed λ-calculus, rewrite system, Gödel’s T, strong normalization, termination.

∗ Complete rewrite of the article by Wilken and Weiermann in the Springer LNCS 5608 proceedings volume
of TLCA 2009. Corresponding author is Wilken.
a This work was partially supported by the Mathematical Biology Unit at OIST.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (1:19) 2012

c© G. Wilken and A. Weiermann
CC© Creative Commons

http://creativecommons.org/about/licenses

2 G. WILKEN AND A. WEIERMANN

A common and very convenient tool for proving termination of a reduction system
consists in defining an interpretation function I from the set of terms in question into the
set of natural numbers such that if a term A rewrites to a term B then I(A) > I(B). A
rewriting sequence of terms A1 → . . .→ An then yields a strictly descending chain of natural
numbers I(A1) > . . . > I(An). The number I(A1) is thus an upper bound for n and hence
the assignment function I provides a termination proof plus a non-trivial upper bound on
resulting lengths of longest possible reductions. In this paper we apply a generalization of
this method – the non-unique assignment technique – to Tλ, the λ-formulation of Gödel’s
T, which is the prototype for a higher order rewrite system. For TCL, the combinatory
logic formulation of T, a corresponding interpretation has already been constructed in [15].
In this article we solve the technically more involved problem of classifying the derivation
lengths for Tλ via a multivalued interpretation function. The extra complications when
compared with the treatment in [15] are due to the need for a variable concept underlying
the assignment technique and to the simultaneous treatment of recursion, β-conversion, and
the ξ-rule.

For a recent and extensive exposition of the history of termination proofs for Gödel’s
T we refer the reader to Section 8.2 in [4]. In fact, [4] covers the history of λ-calculus and
combinatory logic in general. Unlike the present paper, the majority of termination proofs
for Gödel’s T mentioned in [4] does not yield non-trivial upper bounds on the lengths of
reductions.

An alternative approach for proving termination of Gödel’s T which yields non-trivial
upper bounds on the lengths of reductions was suggested in [2]. There the lengths of
derivations were classified by proof-theoretic investigations on head-reduction trees.

The current approach is more direct, and as a possible benefit for future work we ex-
pect the extraction of powerful (syntactic) termination orderings for higher order reduction
systems which generalize the recursive path ordering. We conjecture that such an ordering
for Gödel’s T will have the Bachmann-Howard ordinal as order type.

Preliminary Remarks. Frequent mention of Howard’s work [8] does not mean that we
presuppose its knowledge. In fact, we have intended this paper to become as much self-
contained as possible. Nevertheless, we have adopted much of the notation used in [8] and
[15]. Knowledge of those works together with [3, 13, 14] is certainly useful in order to
understand this article in greater depth, but it is not required.

Section 1 introduces Gödel’s T in the typed λ-calculus version together with several
well-known notions for its analysis. In addition, Subsection 1.4 will prove useful for the
particular purposes of this paper, and Subsection 1.6 gives a heuristic explanation and
motivation of the method of non-unique assignment. We believe that this facilitates the
understanding of the method considerably. Nevertheless, the results of Subsection 1.6 are
not needed later on, hence Subsections 1.6.2 and 1.6.3 can be skipped at first reading.
Subsection 3.3 will clarify how 1.6 relates to our argumentation in the central section of
this paper, Section 3. At that stage we expect the benefits from Subsections 1.6 and 3.3 to
become fully convincing. The ordinal theoretic means applied in Section 3 are introduced
in Section 2. Section 4 provides a thorough analysis of the assignments given in Section 3,
showing that we obtain an exact classification of derivation lengths of T and its fragments.

The paper is organized in a way that allows for linear reading. However, detailed
technical proofs required in our argumentation are given in the appendix in order to increase
readability for an audience less familiar with ordinal theory.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 3

1. Typed λ-Calculus with Recursion

We give a short description of typed λ-calculus extended by recursors and case distinction
functionals for each type. We will call this variant λβR-calculus. The theory Tλ is Gödel’s
T based on λβR-calculus. We are going to slightly deviate from the notation of [8].

1.1. Types and Levels. The set of finite types is defined inductively: it contains the type
0 and the type (στ) whenever στ are finite types. Type 0 is intended to consist of the
natural numbers whereas (στ) for given finite types σ and τ denotes the type of functions
f : σ → τ . We will denote finite types by the letters ρ, σ, τ, etc. In cases where ambiguity
is unlikely, instead of (στ) we will simply write στ , and we identify ρστ with ρ(στ). As in
[8] the level of a finite type is defined recursively by

lv(0) := 0, lv(στ) := max{lv(σ) + 1, lv(τ)}.

1.2. Terms, Subterms, Parse Trees, Substitution, α-Equivalence. Let V be a count-
ably infinite set of variables which we denote by X,Y,Z, etc. Following the Church-style
convention, we choose a type for each of those variables in such a way that V contains
infinitely many variables of each type. This choice is fixed throughout the paper, and we
will sometimes indicate the type, say σ, of a variable X by the notation Xσ .

The set T of typed terms is defined inductively. It contains

• all variables in V,
• a constant 0 of type 0,
• a constant S of type 00,
• case distinction functionals1 Dτ of type 0τττ ,
• primitive recursion functionals Rτ of type 0(0ττ)ττ for each τ ,

and is closed under

• application, that is, (AB) is a term of type τ whenever A is a term of type στ and B is
a term of type σ and

• abstraction, that is, λX.B is a term of type ρσ whenever X is a variable of type ρ, B is
a term of type σ.

We will suppress parentheses whenever ambiguity is unlikely to arise, e.g. we write AB
instead of (AB). We further identify ABC with (AB)C for any terms A,B,C of suitable
types. If a term A is of type τ we communicate this sometimes by writing Aτ . Conversely,
instead of writing Dτ ,Rτ we sometimes simply write D,R, respectively. We continue to
denote terms of T by Roman capital letters with the exception of recursion arguments in
terms of the form Rt, where we sometimes use lower case Roman letters s, t, etc.

The set BV(A) of bound variables of a term A consists of all variables X for which
λX occurs in A, whereas the set FV(A) of free variables of A consists of all variables X
occurring in A outside the scope of λX.

The set of subterms of a given term A is defined as usual by induction on the buildup
of A, including A itself. The direct subterms of terms of a form AB are A and B, the only
direct subterm of λX.A is A, all other terms do not have any direct subterm.

1Case distinction functionals are needed to the full extent in the functional interpretation of the fragments
IΣn+1 of Peano Arithmetic in the fragments Tn of T, cf. [9].

4 G. WILKEN AND A. WEIERMANN

The parse tree of a term A is the labeled tree whose root is labeled with A, and whose
immediate subtrees are the parse trees of the immediate subterms of A (if any). The set
of all labels of nodes of the parse tree of a term A is therefore equal to the set of subterms
of A. The parse tree, however, distinguishes between possibly various occurrences of the
same subterm of A and provides their contexts within A. The set of nodes of the parse tree
of a term A can be identified with the addresses of A, which are finite strings over {1, 2}
according to the following definition, where ǫ denotes the empty string. The subterm of A
at address a, written A|a, is defined inductively by

• A if a = ǫ,
• B|b if A = λX.B and a = 1b,
• B|b if A = BC and a = 1b,
• C|c if A = BC and a = 2c.

Substitution A{X := B} is defined as usual by induction on the buildup of A, replac-
ing any free occurrence of the variable X in A by the term B. The variable condition
BV(λX.A) ∩ FV(B) = ∅ for β-conversion (see below) avoids variable capture. In other
words, it makes sure that none of the free variables in B becomes bound within A{X := B}.
Moreover, the abstraction variable X does not occur in A{X := B}.

A term A is called well-named iff for each subterm B of A we have FV(B)∩BV(B) = ∅,
and furthermore, for each variable X, the binder λX occurs at most once in B.

Let A be a term with subterm λX.B at address a. If Y is a variable of the same type
as X such that Y 6∈ FV(B), then we say that A α-converts to the term resulting from A
by the replacement of A|a by λY.(B{X := Y }). If a term C is obtained from A via a finite
number of α-conversions, then we call A and C α-equivalent, A =α C. Notice that every
term is α-equivalent to some well-named term.

1.3. Equivalence and λβR-Reduction. The equivalence relation is the reflexive, sym-
metric and transitive closure of α-equivalence and the one-step reduction ✄, defined induc-
tively as least binary relation on terms such that

(D0) D0AB ✄A (DS) D(St)AB ✄B

(R0) R0AB ✄B (RS) R(St)AB ✄At(RtAB)

(Appr) A✄B ⇒ AC ✄BC (Appl) B ✄C ⇒ AB ✄AC

(β) (λX.A)B ✄A{X := B} where BV(λX.A) ∩ FV(B) = ∅

(ξ) A✄B ⇒ λX.A✄ λX.B

Clearly, the variable condition for β-conversion is satisfied if the term (λX.A)B is well-
named. Note that ✄ does not preserve well-namedness. However, as mentioned above,
well-namedness can always be restored: if A ✄ B′ then there exists a well-named term B
such that A✄B′ =α B. On well-named terms we define A✄αB iff there exists (the unique)
B′ such that A✄B′ =α B.

The calculus λβR enjoys the Church-Rosser property (confluence) and strong normal-
ization, and every functional of type 0 reduces to a numeral (cf. [7]).

Note that extending λβR by η-contractions would cause loss of the Church-Rosser
property, consider for example the term λX.R0AX.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 5

1.4. Extension to T ′ and λβR′. In order to prepare a separate treatment of R-reductions
and β-reductions, which otherwise would be incompatible within the framework of our
intended non-unique assignment, we introduce the following definitional extension of λβR-
calculus. We extend the clauses in 1.2 defining the terms of T so that

• Rt is a term of type (0ττ)ττ for any Rτ and any term t of type 0.

We call the extended set of terms T ′. The terms Rt are special forms of application terms
and thus allow for a clean way to give two different assignments to terms resulting from the
application of some t to a recursor R. The effect will be that assignments to Rt allow for
a treatment of β-conversion while assignments to Rt allow for a treatment of R-reduction.
This smoothly fits with our treatment of the ξ-rule by the method of non-unique assign-
ment according to [8], which takes advantage from the additional information given by the
reduction history of terms, see Section 1.6.

The subterms of Rt are Rt itself, R, and the subterms of t. The direct subterms are
R and t. Parse trees for the extension are defined accordingly, (Rt)|a is defined by (Rt)|a.
Substitution for the new terms is defined by

R
t{X := A} :≡ R

t{X:=A},

and α-equivalence is expanded to all terms of T ′. The one-step reduction relation is then
modified to include additional rules (R) and (AppR), and (R0) and (RS) are replaced by
(R0) and (RS), respectively, as follows:

(R) Rt✄ Rt (AppR) s✄ t⇒ Rs
✄ Rt

(R0) R0AB ✄B (RS) RStAB ✄At(RtAB).

We denote the modified calculus for the terms of T ′ by λβR′. The properties and definitions
regarding λβR mentioned in the previous subsection are easily seen to carry over to λβR′.

We define the length of a term A, lh(A), as follows:

• lh(A) := 1 if A is a variable or constant,
• lh(BC) := lh(B) + lh(C),
• lh(Rt) := 1 + lh(t), and
• lh(λX.G) := lh(G) + 1.

It is a trivial observation that by identifying any Rt with Rt and omitting all (R)-
reductions we recover the original λβR-calculus where (AppR)-reductions turn into (Appl)-
reductions and (R0), (RS) turn into (R0), (RS), respectively. Clearly, reduction sequences
can only become shorter in this process.

On the other hand, given any reduction sequence in λβR, we obtain a corresponding
reduction sequence in λβR′ (of at most double length) by straightforward insertion of (R)-
reductions as needed, from which we recover the original sequence by the process described
above.

Another trivial observation is that given a reduction sequence in λβR′, starting from a
term A ∈ T ′ we can straightforwardly find a term A′ ∈ T and a reduction sequence which
transforms A′ into A in at most lh(A)-many steps, only using (R)-reduction. It is therefore
sufficient to perform a derivation lengths classification for the class of reduction sequences
in λβR′ which start from T -terms, as the resulting bounds will turn out to be sharp for
λβR.

6 G. WILKEN AND A. WEIERMANN

1.5. Reduction Trees. The rules (Appl), (Appr), (ξ), and (AppR) imply that the one-step
reduction ✄ applied to some term A consists of the reduction of one redex of A. A redex
of A is the occurrence of a subterm of A (corresponding to a unique node in the parse tree
of A) that matches any left-hand side of the reduction clauses for D-, R-, or β-reduction.
Inside A the redex is then replaced by the (properly instantiated) right-hand side of the
corresponding clause. We call the redex chosen for a particular one-step reduction ✄ the
working redex. The reduction tree of a (well-named) term A is then given by the exhaustive
application of ✄α in order to pass from a parent to a child node, starting from A. We do
not need to be any more specific about the arrangement of nodes in reduction trees.

1.6. Assignment of Ordinals to Terms of T ′.

1.6.1. Overview. The aim of the present paper is to give exact bounds on the heights of
reduction trees in the usual sense of derivation lengths classification for term rewriting
systems. This is achieved by the assignment of strictly decreasing natural numbers to the
terms of reduction sequences. The natural numbers assigned to terms are computed along
vectors of ordinal terms (from upper down to lower components) which in turn are built
over variable vectors that correspond to typed variables.

The assignment is not unique for terms because it is dependent on the respective re-
duction history. The main reason for this dependency on reduction histories is the same as
already encountered in [8]. The treatment of β-reduction involves an operator on ordinal
vectors which is not monotone with respect to the ξ-rule. The other reason is the incompat-
ibility of our treatments of R- and β-reduction, as already mentioned in Subsection 1.4. The
solution outlined there is based on the fact that when considering λβR′-reduction sequences
which start from terms in T , we can trace back abstraction subterms in the reduction
history, obtaining corresponding subterms, cf. Definition 1.1, in which the respective ab-
straction variable does not occur in subterms of the form Rt. This observation is crucial for
our simultaneous treatment of β-reductions, the ξ-rule, and arbitrary R-reductions, which
were excluded in [8]. The assignment to such corresponding terms earlier in the reduction
history is then the key to the handling of β-reductions that may occur much later in the
reduction sequence.

Now, given the particular reduction history of a term A occurring in a fixed reduction
sequence, the assignment is determined uniquely (we will introduce the crucial notion of
assignment derivation in our formal argumentation) and built up from the assignments to
the nodes of the parse tree of A and terms occurring earlier in the reduction history of
A. Additionally, the assembly of new assignments along the reduction sequence involves
(iterated) substitutions of variable vectors by already defined assignments, generating terms
which do not occur as subterms of terms in the reduction history of A. For this reason,
besides the obvious reason in the treatment of β-reduction, the assignment method has
to be designed so as to naturally commute with substitution, as was done already in [8].
Another essential property of our assignment method is its invariance under α-equivalence,
as in [8]. This will enable us to treat ✄α-reductions in the same way as ✄-reductions.

Our construction of assignments to terms will start from unique assignments to all
variables and constants, using Howard’s operator ✷ in its refined form of [15] to compute
an assignment to a term BC from assignments to B and C, a specific treatment of terms
Rt as used in [15], where it was used for terms of the form Rt, and a refinement of Howard’s

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 7

operator δ, cf. [8], to be applied in the treatment of abstraction terms, which causes the
non-uniqueness of the assignment method.

1.6.2. Basic Considerations. Given a reduction A ✄ B we begin with describing how the
parse tree for B is obtained from the parse tree for A in a uniform way. This will be crucial
for the construction of our assignment. Focusing on the working redex of the reduction
A✄B we consider the path P from the root, labeled with A, to the working redex at node
r, labeled with F . Clearly, F is a subterm of any term labeling a node of P. Assume
the working redex is reduced (via D-, R-, or β-reduction) to the term G at node s in the
parse tree of B. The subtree with root r of the parse tree of A, that is the parse tree for
F , is replaced with the parse tree for G, and along the path P the labels are modified by
the replacement of the working redex F by the reduct G. If the meaning is clear from
the context we will sometimes denote such a replacement by H[s/r] where H is a label of
a node on P. All remaining nodes of the parse tree of A are preserved in the parse tree
of B with the same labeling term. In other words, the tree structure is modified by the
replacement of the parse tree of F at node r by the parse tree of G with the corresponding
labeling, while the modification of labels additionally involves the labels along P in form of
the replacement [s/r] of the working redex F by G.

In the case of D- and R-reductions the transformation of the parse tree of F to the parse
tree of G is clear, and we can uniquely identify subtrees of redex and reduct, including their
labels. For example in the case where F is a term RStCD and G is the term Ct(RtCD),
we can trace the parse tree of F until we reach the parse trees of t, C, and D, and do the
same with the parse tree of G, identifying the corresponding subtrees. We are going to
use this identification of subtrees in our assignment in order to carry over already defined
assignments.

Now consider the case where the working redex is a β-redex, say F is (λX.C)D and G
is C{X := D}. The immediate subtrees of the parse tree of F are then the parse trees of
λX.C and D, the immediate subtree of the former being the parse tree S of C. Consider
the tree S{X := D} which is obtained as follows. The tree structure is obtained from S
by replacing every leaf with label X by the parse tree of D with the corresponding labels.
The remaining labels are modified by the substitution {X := D}. The subtrees substituted
for the leaves with label X can be identified with the immediate subtree of F which is the
parse tree of D.

Having discussed the transition from the parse tree of A to the parse tree of B, where
A✄B, let us now assume that Y ∈ FV(B) and that C is a term of the same type as Y such
that BV(B)∩FV(C) = ∅. Modulo α-congruence we may assume that also BV(A)∩FV(C) =
∅. We then clearly have Y ∈ FV(A), and A{Y := C} ✄ B{Y := C}. The parse trees of
A{Y := C} and B{Y := C} are obtained from those for A and B, respectively, by replacing
every leaf with label Y by the parse tree of C and by the modification of all remaining
labels by the substitution {Y := C}.

1.6.3. Precise Motivation. Bearing the above preparation in mind we proceed with a precise
explanation of the method of non-unique assignment that was used in Section 4 of [8] in
order to handle the unrestricted ξ-rule. As mentioned above, the approach of non-unique
assignment had to be refined so as to manage arbitrary R-reductions.

8 G. WILKEN AND A. WEIERMANN

Definition 1.1. Let A,B be terms such thatA✄B with working redex and reduct at address
w, respectively. Let b be an address in B such that b = q1 and B|q is an abstraction. We
define a unique address a and say that a corresponds to b w.r.t. the pair (A,B) as follows.

(1) If b and w are incomparable, then we have A|b = B|b and set a := b.
(2) If b is a prefix of w (written as b ⊆ w), then we have A|b ✄B|b and set a := b.
(3) If w is a proper prefix of b, that is, w (b.

(3.1) w 6= ǫ. Then let b′ be such that b = wb′, let a′ be such that a′ corresponds to b′

w.r.t. (A|w, B|w), and set a := wa′.
(3.2) w = ǫ. Then we distinguish between the following cases:

(a) A = (λX.C)D, B = C{X := D}.
(i) If b is of a form cd such that C|c = X then a := 2d,
(ii) otherwise a := 11b.

(b) A = Rt, B = Rt. Then set a := b.
(c) A = R0CB. Set a := 2b.
(d) A = RStCD, B = Ct(RtCD).

(i) If b is of a form 22d, then a := 2d.
(ii) If b is of a form either 11c or 212c, then a := 12c.
(iii) If b is of a form either 12e or 2112e, then a := 1122e.

(e) A = D0BC. Set a := 12b.
(f) A = D(St)CB. Set a := 2b.

In case (2) we call the reduction A|b ✄ B|b the associated reduction w.r.t. (A,B) and b,
otherwise an associated reduction is not defined.

If the working redex is a β-redex, say A|w = (λX.C)D, and w (b, b not of a form
b = wcd with C|c = X, then we call the substitution {X := D} the associated substitution
w.r.t. (A,B) and b, otherwise an associated substitution is not defined.

For well-named terms A,B such that A ✄α B and addresses a, b in A,B, respectively,
let B′ be the unique term such that A ✄ B′ =α B. Then we say that a corresponds to b
w.r.t. the pair (A,B) iff a corresponds to b w.r.t. the pair (A,B′). The associated reduction
(respectively, associated substitution) w.r.t. (A,B) and b is defined iff it is defined for (A,B′)
and b, in which case they are the same. ✸

Note that for any A,B, a, b as in the above Definition, a is of the form p1, and A|p is
an abstraction. Notice further that exactly one of the following holds:

(I) The associated reduction is defined.
(II) The associated substitution is defined.
(III) Neither the associated reduction nor the associated substitution is defined.

Notice that if A✄B, in case (I) we have A|a✄B|b, in case (II) we have A|a{X := D} = B|b

where {X := D} is the associated substitution, and in case (III) we have A|a = B|b.
However, if we have A ✄α B, say A ✄ B′ =α B, in general the terms B|b and B′

|b do

not only differ due to the renaming of bound variables but also due to renaming of free
variables as they might be subterms of abstractions that have undergone α-conversion. In
particular, it does not make sense to keep track of the abstraction variable of B|q. The
following lemma addresses this technical issue.

Lemma 1.2. Let A,B,C be terms such that A✄B =α C and suppose that A,C are well-
named and that the abstraction variables used in order to α-convert B to C do neither occur
free nor bound in A or B. Let b = q1 be an address such that C|q is an abstraction term, say

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 9

λX.H, and let a = p1 be the corresponding address in A. Then there exists a well-named
term A∗ such that

(1) A∗ =α A,
(2) A∗

✄B∗ =α C,
(3) B∗

|q = λX.(B∗
|b) where B

∗
|b =α H, and

(4) exactly one of the following holds:
(a) A∗

|a ✄H,

(b) A∗
|a{Y := D} =α H where {Y := D} is the assoc. substitution w.r.t. (A∗, C),

(c) A∗
|a =α H.

Proof. Notice first of all that (2) follows from (1) and B∗ is determined by (2). Suppose
{v1, . . . , vm} is the set of addresses in B at which α-conversion has to be performed in order
to obtain C (the order of those α-conversions is of course irrelevant), with corresponding
new variables V1, . . . , Vm. Let w be the address of the working redex in A and hence also
the address of the reduct in B. In the case m = 0 we choose A∗ := A and are done.

Now suppose that m > 0 and consider v ∈ {v1, . . . , vm} with corresponding new ab-
straction variable V . We investigate whether an α-conversion in A becomes necessary in
order to satisfy the lemma. The collection of all α-conversions that have to be performed
in A will then determine the term A∗.

If v is not a prefix of q, then the α-conversion at v in B does not cause any change in
C|q and hence does not require any additional α-conversion in A.

Suppose now that v is a prefix of q, that is, v ⊆ q. We then consider 3 cases regarding
the addresses v and w.

Case 1: v and w are incomparable. Then we have p = q, v1 corresponds to v1 w.r.t.
(A,B), and we draw the α-conversion at v in B back to an α-conversion at v in A with the
same new variable V .

Case 2: v (w. Then A|v is of a form λZ.G and A|v ✄ B|v = λZ.G′. Hence C|v =
λV.G′{Z := V }. Again v1 corresponds to v1 w.r.t. (A,B), and we draw the α-conversion
at v in B back to an α-conversion at v in A with the same new variable V . The subterms
of A|v are now subject to the variable substitution {Z := V }, which includes the working
redex and the term A|p.

Case 3: w ⊆ v. Then we have w ⊆ v ⊆ q. Let u be the address in A such that u1
corresponds to v1 w.r.t. (A,B). We have v1 ⊆ b and w (u (abstractions cannot be working
redices). We perform the α-conversion at u in A switching to the abstraction variable V .
The reduction of A to B might generate further copies of A|u in B whose addresses in B,
however, cannot be prefixes of q. In B∗ we will have corresponding copies, differing from
those in B by the abstraction variable V . Hence α-conversions of those modified copies in
B∗ to fit the corresponding abstractions in C are possible and determined by C.

Definition 1.3. Let F0✄. . .✄Fn be a reduction sequence and let p be the address identified
with a node in the parse tree of Fn that is labeled with an abstraction term λX.H. The trace
of p in F0✄ . . .✄Fn is the sequence (b0, . . . , bn) such that bn = p1 and each bi corresponds to
bi+1 w.r.t. (Fi, Fi+1). The associated trace terms H0, . . . ,Hn are the terms F0|b0 , . . . , Fn|bn ,
thus Hn = H. Let a partition IR, IS , IE of the index set {0, . . . , n− 1} be defined as follows

• i ∈ IR if the associated reduction w.r.t. (Fi, Fi+1) and bi+1 is defined,
• i ∈ IS if the associated substitution w.r.t. (Fi, Fi+1) and bi+1 is defined, and
• i ∈ IE otherwise,

10 G. WILKEN AND A. WEIERMANN

according to the remark following Definition 1.1. The index set IS therefore gives rise to
the associated partial substitution list.

For a reduction sequence F0 ✄α . . .✄α Fn we define the same notions, proceeding as in
Definition 1.1, and defining the trace terms Hi by Fi|bi . ✸

Given a reduction sequence F0 ✄α . . .✄α Fn we have unique terms F ′
1, . . . , F

′
n such that

F0 ✄ F ′
1 =α F1 . . . Fn−1 ✄ F ′

n =α Fn.

Assume that each conversion from F ′
i+1 to Fi+1 only uses new variables, i.e. variables that

have not been used earlier in the reduction sequence. Clearly, this requirement on the
reduction sequence can always be obtained via α-equivalence (possibly including renamings
of bound variables in Fn). Given an address p identified with a node in the parse tree of
Fn that is labeled with an abstraction term λX.H, let (b0, . . . , bn) be the trace of p and
IR, IS , IE be the partition of the set of indices {0, . . . , n− 1} according to Definition 1.3.

Let F ∗
n := Fn. Iterated application of Lemma 1.2 starting from Fn−1✄F

′
n =α Fn yields

terms F ∗
n−1, . . . , F

∗
0 such that

(1) Fi =α F
∗
i for each i,

(2) F ∗
0 ✄α . . .✄αF

∗
n with the same trace of p, the same partition IR, IS , IE , and trace terms

Hi := F ∗
i|bi

, and

(3) for each i < n we have:
(a) Hi ✄Hi+1 if i ∈ IR,
(b) Hi{Yi := Di} =α Hi+1 if i ∈ IS where {Yi := Di} is the associated substitution

w.r.t. (F ∗
i , F

∗
i+1), or

(c) Hi =α Hi+1 if i ∈ IE.
(4) The associated partial list of substitutions w.r.t. F ∗

0 ✄α . . .✄αF
∗
n and p is X-free, that is,

none of the terms Di which is defined contains the variable X and none of the defined
variables Yi is identical with X.

(5) Each bi is of a form b′i1 and F ∗
i|b′i

= λX.Hi.

Definition 1.4. For a reduction sequence F0✄α . . .✄αFn with the above specified condition
of freshness of abstraction variables introduced by α-conversions and node p in Fn as above,
we call the sequence F ∗

0 ✄α . . .✄α F
∗
n defined above the p-companion of F0 ✄α . . .✄α Fn. If

F0 ✄α . . . ✄α Fn can be a p-companion of itself, then we call it nice w.r.t. p. ✸

Notice that the crucial property for p-niceness of reduction sequences roots in property
3 of Lemma 1.2: the invariance of the free variables which occur in the trace terms.

Definition 1.5. Let F0✄α . . .✄αFn, n > 0, be a nice reduction sequence w.r.t. a node p in
the parse tree of Fn that is labeled with an abstraction term λX.H. Let further (b0, . . . , bn)
be the trace of p in F0 ✄α . . .✄α Fn with associated trace terms H0, . . . ,Hn and associated
partial list of substitutions ({Yi := Di})i∈IS .

For each i ∈ {0, . . . , n− 1} we define terms {Hj
i }i≤j≤n such that

• H i
i := Hi,

• Hj+1
i =α C

j
i {Yj := Dj} if j ∈ IS , where

− Cj
i =α H

j
i ,

− Hj+1
i and (λYj .C

j
i)Dj are well-named,

using only fresh variables for α-conversion,

• Hj+1
i otherwise.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 11

Let (ij)0≤j≤m be the longest sequence such that

• i0 = 0,
• ij+1 is the least i > ij such that Hi−1 ✄Hi.

We now let Gm := Hn, define Gj := Hn
ij

for each j ∈ {0, . . . ,m − 1}, and call the

sequence G0 ✄α . . . ✄α Gm the associated reduction sequence w.r.t. F0 ✄α . . . ✄α Fn and p.
In the case of the trivial reduction sequence F0 with node p in the parse tree of F0 that

is labeled with λX.H we define G0 := H to be the associated reduction sequence w.r.t. F0

and p. ✸

Notice that in the above definition Hn
im

=α Hn which justifies our choice of Gm. We
have now carefully shown how, making extensive use of α-conversion, abstraction terms can
be traced in reduction sequences. This will be essential in the treatment of the ξ-rule. As
mentioned before, our assignments to terms will be invariant modulo α-congruence.

The inductive definition below introduces a binary relation w originating from t on
p.457 of [8], which assigns weights to terms of T ′ in a non-unique manner. For the purpose
of the present section the assignment of weights serves as a useful illustration, however, the
use of weights will not be required later on.

Definition 1.6. Let w be the minimal binary relation on T ′ × IN+ which satisfies

• w(A, 1) if A is a variable or constant,
• w(BC,n) if w(B,nB), w(C,nC), and n = nB + nC ,
• w(Rt, n+ 1) if w(t, n),
• w(λX.G, n) if there are terms G0 ✄α . . . ✄α Gm = G such that X does not occur in any
subterm of G0 of a form Rt, w(Gi, ni) for i = 0, . . . ,m, and n = 1 + n0 + . . . + nm.

Every relation w(F, nF) for some F ∈ T ′ comes with a witnessing derivation, which is a
tree whose root is labeled with w(F, nF), defined as follows:

• If A is a variable or constant, then the tree consisting only of its root is the derivation of
w(A, 1).

• For derivations R of w(B,nB) and S of w(C,nC), the tree with direct subtrees R and S
is a derivation of w(BC,nB + nC).

• For a derivation R of w(t, n), the tree with direct subtree R is a derivation of w(Rt, n+1).
• For derivations R0, . . . ,Rm of w(G0, n0), . . . ,w(Gm, nm) with G0✄α . . .✄αGm =: G such
that X does not occur in any subterm of G0 of a form Rt, the tree with direct subtrees
R0, . . . ,Rm is a derivation of w(λX.G, 1 + n0 + . . . + nm). ✸

In Section 3, instead of weights we will assign ordinal vectors to terms, resulting in as-
signment derivations, see Definition 3.1. The notion of assignment derivation will be more
restrictive than the notion of derivation here. Reduction sequences G0✄α . . .✄αGm = G as
mentioned above for the treatment of an abstraction λX.G will additionally have to have a
strictly decreasing sequence of assignments, which is crucial in the treatment of the ξ-rule.

We are going to show how weights can be assigned to terms along any reduction sequence
F0 ✄α . . . ✄α Fn, in a way compatible with Definition 1.5, relying on associated reduction
sequences. Recall the observation that given any reduction sequence F0 ✄α . . . ✄α Fn of
terms in T ′, we may prepend a sequence of terms starting with a term in T which reduces
to F0 in at most lh(F0)-many steps and merely involves (R)-redices as working redices. We
may therefore assume that F0 ∈ T .

Lemma 1.7. The relation w is invariant modulo α-congruence.

12 G. WILKEN AND A. WEIERMANN

Proof. Straightforward.

The above lemma justifies to consider nice reduction sequences without loss of gener-
ality. The next definition relates derivations to substitution.

Definition 1.8. Let A,D ∈ T ′ be such that D is substitutable for Y in A, i.e. BV(A) ∩
FV(D) = ∅. For any fixed derivations of w(A,nA) and w(D,nD) we define a canonical
derivation of w(A{Y := D}, n) with suitable n. The definition proceeds by induction along
the inductive definition of derivation of w(A,nA).

(1) A = Y . Then choose n := nD and the derivation of w(D,nD).
(2) Y 6∈ FV(A). Then choose n := nA and the derivation of w(A,nA).
(3) A = BC with derivations of w(B,nB) and w(C,nC), and nA = nB+nC . The canonical

derivation of w((BC){Y := D}, n) is then assembled from the already defined canonical
derivations w(B{Y := D}, n1) and w(C{Y := D}, n2), setting n := n1 + n2.

(4) A = Rt with a derivation of w(t, nt) and nA = 1+nt. We have the canonical derivation
of w(t{Y := D}, n1), from which, setting n := 1+n1, we define the canonical derivation
of w(A{Y := D}, n).

(5) A = λX.B, where X 6= Y , with a sequence B0 ✄α . . .✄αBm = B such that X does not
occur in any subterm of B0 of a form Rt, and derivations of w(Bi, nBi

) for i = 0, . . . ,m,
and nA = 1 + nB0 + . . . + nBm. By the previous lemma we may assume that D is
substitutable for Y in every Bi, i = 0, . . . ,m. We already have the canonical derivation
of each w(Bi{Y := D}, ni). By assumption, X does not occur in D, hence X does not
occur in any subterm of B0{Y := D} of a form Rt. We have

B0{Y := D}✄α . . .✄α Bm{Y := D} = B{Y := D}

and assembly the canonical derivation of w(A{Y := D}, n) for n := 1 + n0 + . . .+ nm.

Definition 1.9. We give an inductive definition of canonical weight assignments along
reduction sequences. Suppose F0 ✄α . . . ✄α Fn is a λβR′-reduction sequence with F0 ∈ T
and let p be a node in Fn with label A. Assume that derivations of w(B,nB) have been
specified for all terms B labeling nodes in the parse trees of Fi for each i < n and to nodes
descending from p in the parse tree of Fn. In case A is a variable or constant we are done
with the unique derivation of w(A, 1), and if A = BC, we have derivations of w(B,nB) and
w(C,nC) for the labels B and C of the direct child nodes of p and accordingly choose the
canonical derivation of w(A,nB + nC). The interesting case is where A = λX.G. Here, let
us assume that F0✄α . . .✄αFn is nice w.r.t. p, justified by Lemma 1.7. Let G0✄α . . .✄αGm,
where Gm = G, be the associated reduction sequence for p in F0 ✄α . . . ✄α Fn according
to Definition 1.5. Definition 1.8 then yields canonical derivations w(Gi, ni) for each i, from
which we assembly the canonical derivation of w(A, 1 + n0 + . . .+ nm). ✸

We now see that we may give a non-unique assignment to terms of T ′ inductively along
a definition similar to Definition 1.6. As illustrated in the case of derivations, our assignment
method will be unique with respect to assignment derivations. We can then conveniently
prove properties of the assignment method by induction along assignment derivations, cf.
Definition 1.8. As illustrated in Definition 1.9 we will have canonical assignment derivations
in the context of reduction sequences. The assignment method will thus easily be seen to
be constructive.

The central result obtained in this paper will be a constructive procedure that, given
terms A,B ∈ T ′ such that A ✄ B and given an assignment in form of a natural number

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 13

a to A together with its derivation, outputs the derivation of an assignment b ∈ IN to B
such that a > b. The uniformity of the procedure then allows for a derivation lengths
classification of λβR′ and hence also of λβR.

2. Ordinal Terms and Vectors

This section provides the theoretical framework of our assignment of ordinal vectors to
terms of T ′. The computational complexity of the calculus λβR poses a challenge regard-
ing the determination of appropriate upper bounds on the lengths of reduction sequences.
Ordinal terms containing exponential towers occur, see Definition 2.10, and require precise
bookkeeping. Due to the presence of recursion with arguments not explicitly known at the
beginning of a reduction sequence, the ordinal ω occurs in our assignments, leading to or-
dinal terms below the ordinal ε0 which is the least fixed point of exponentiation to base ω.
Bookkeeping during the computation of upper bounds will require a sufficiently expressive
term algebra, and using ordinal vectors will help keeping track of exponential (sub-)terms
of a certain height. Vectors allow us to build up ordinal terms from the upper components
down, see Definitions 2.6, 2.9, 2.10, 2.18. The δ-operator will require decomposition of or-
dinal terms, which is facilitated by the concept of ordinal vectors. The starting component
is determined by the type level of the term for which the assignment is being defined, cf.
Subsection 1.1. This approach was designed in [8] and is used here with some modifications.
The innovation, first used by Weiermann in a treatment of the combinatory logic version of
T, cf. [15], concerns the 0-th component. The 0th component of the vectors generated will
in general result from a collapsing operation below ω and save an ω-power when compared
to [8]2, see Definition 2.10, cf. also the difference between [14] and [15]. In order to treat
arbitrary R-reductions, where the recursion argument has not yet been reduced to a numeral
and might even contain variables, we feed collapsed terms back into the process of vector
generation, see Definition 3.1. The 0th component of a vector assigned to such a recursion
argument, say t, turns out to be both an upper bound for the height of the reduction tree
of t as well as the value of t itself, see the proof of Corollary 4.2. Clearly, it is crucial that
during a reduction of t (by means of the ξ-rule) we obtain a strictly descending chain of
ordinal terms below ω in the 0-th component of the respectively assigned ordinal vectors,
while the values of the terms in the reduction sequence remain constant. The information
on the derivation length of t is therefore needed for the assignment to the term Rt, and
comes genuinely as a natural number which in turn is provided by the collapse in the 0-th
component of the vector assigned to t. In summary, collapsing plays the essential role in
the treatment of unrestricted recursion, and a more modular procedure, where collapsing is
applied in a separate step after the assignment of ordinal terms would be at the expense of
sharp upper bounds (cf. [8] and [14]).

We develop an autonomous theory of ordinal terms and vectors and give an interpre-
tation of closed ordinal terms as ordinals below ε0. Due to the presence of variables in T ′

we introduce ordinal variables and a notion of comparison on the ordinal terms containing
variables. We adopt most of the terminology and conventions introduced in Section 2 of
[8], see in particular the Introduction to Section 2 there. However, knowledge of [8] is not

2In [8], the 0-th component introduces another ω-power, whereas our modification (essentially) collapses
the component 1.

14 G. WILKEN AND A. WEIERMANN

a prerequisite. The main new ingredient in this paper is the concept of norm of an ordi-
nal term and Weiermann’s collapsing function ψ which is defined using norms of ordinal
notations, see below.

2.1. Ordinal Terms. The basic expressions of our assignment are ordinal terms as in-
troduced syntactically in the following definition. The interpretation of ordinal terms is
explained in the remainder of this subsection, together with some facts from ordinal theory.
First of all, let us adopt the following convention regarding ordinal variables.
Convention. Let OV be a set of fresh variables, called ordinal variables. We assume the
existence of a function mapping each typed variable Xσ from V to a sequence (x0, . . . , xlv(σ))
of pairwise distinct ordinal variables, in such a way that each ordinal variable belongs to
exactly one such sequence. We will sometimes explicitly indicate the type by writing, e.g.,
xσi for xi in the above setting.

Definition 2.1. The set O of ordinal terms is defined inductively as follows:

• OV ⊆ O.
• 0, 1, ω ∈ O.
• If f, g ∈ O, then f + g, 2f · g, ψ(ω · f + g) ∈ O.

We call h ∈ O closed if it does not contain any variable and x-free if none of the variables
xi occurs in h. The notion of parse tree for ordinal terms is clear from the above inductive
definition, that is, the immediate subterms of f + g, 2f · g, and ψ(ω · f + g) are f and g.
If g in ψ(ω · f + g) is itself a sum, we will sometimes drop parentheses. Also, if h ∈ O and
n ∈ IN we sometimes write nh or n · h in order to denote the n-fold summation of h. ✸

As mentioned above we will interpret closed O-terms as ordinal numbers below the
ordinal ε0, the least fixed point of exponentiation to base ω and hence the proof-theoretic
ordinal of Peano arithmetic, as was shown by Gentzen. The interpretation of O-terms will
make use of the natural sum and product of ordinals, exponentiation to base 2, as well as
the ψ-function which was introduced in [13]. For the readers’ convenience we are going to
recall these ordinal functions, starting with the natural sum ⊕ and the natural product ⊗ of
ordinals, also called Hessenberg sum and product, respectively, as well as the exponentiation
to bases 2 and ω, ω denoting the least infinite ordinal. The natural sum of α and 0 agrees
with ordinal addition, α ⊕ 0 = 0 ⊕ α = α, for the natural product of α and 0 we have
α⊗ 0 = 0⊗ α = 0 in agreement with ordinal multiplication. Now let

α = ωγ0 + . . .+ ωγm > γ0 ≥ . . . ≥ γm, m ≥ 0,

and
β = ωγm+1 + . . .+ ωγn > γm+1 ≥ . . . ≥ γn, n ≥ m+ 1,

be the Cantor normal form representations of non-zero ordinals α, β below ε0, where +
is ordinal addition and ξ 7→ ωξ enumerates the non-zero ordinals which are closed under
ordinal addition, also called additive principal numbers 3. The natural sum of α and β is
then defined by

α⊕ β = ωγπ(0) + . . .+ ωγπ(n)

3Cf. [10] for a comprehensive introduction to the basics of ordinal arithmetic, the proof theory of Peano
arithmetic and further advanced topics of proof theory.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 15

where π is a permutation of {0, . . . , n} such that γπ(0) ≥ . . . ≥ γπ(n). The natural product
of α and β is then defined by

α⊗ β = (ωγ0⊕γm+1 ⊕ . . .⊕ ωγ0⊕γn)⊕ . . .⊕ (ωγm⊕γm+1 ⊕ . . . ⊕ ωγm⊕γn).

Exponentiation to base 2 is characterized by

2α = ωα0 · 2n

where α = ω · α0 + n and n < ω (cf. for example [11]). In other words: If α is the n-th
successor of the α0-th limit ordinal, then 2α is 2n times the α0-th additive principal number.

We define the function ψ : ε0 → ω, which will be used to interpret ψ-terms of O, exactly
as in [13, 14, 15], where the interested reader can find a detailed explanation of the collapsing
mechanism and its relation to the theory of subrecursive functions and ordinal recursion. An
abstract exposition of the underlying concepts can be found in [3], where among other results
a comparison of ψ with the classical Hardy functions is given. The Hardy functions provide
a fine scale that allows for the comparison of provably recursive functions of fragments of
Peano Arithmetic or even the distinction in levels of the Grzegorczyk hierarchy. By directly
assigning ψ-terms to terms of T we can compare the “run-time” of different terms in T ,
varying in the occurrence of, say, R-functionals of various types. The assignment using
ψ resolves nested occurrences of recursion in terms of T into un-nested recursion along
corresponding ordinal lengths.

Let Φ : ω → ω be a sufficiently fast growing number theoretic function, for example
the function x 7→ F5(x+ 100) where F0(x) := 2x and Fn+1(x) := F x+1

n (x). There is leeway
in the choice of Φ, however, it is essential that Φ is bounded by some Fk, k < ω, which
guarantees the primitive recursiveness of Φ. Let further the norm function no : ε0 → ω be
defined by no(0) := 0 and

no(α) := n+ no(α1) + . . .+ no(αn)

for α = ωα1 + . . . + ωαn > α1 ≥ . . . ≥ αn. This definition of a norm has the convenient
property that no(k) = k for any k < ω, and we have that for every m < ω the set

{β | no(β) ≤ m}

is finite. This property of the norm makes the following definition of the collapsing function
ψ by recursion on ε0 possible:

ψ(α) := max({0} ∪ {ψ(β) + 1 | β < α&no(β) ≤ Φ(no(α))}).

This definition can be carried out in PRA+PRWO(ε0), cf. [13, 15]. We now state two basic
propositions concerning the norm and the ψ-function (see [15]).

Proposition 2.2. Let α and β be ordinals less than ε0. Then we have

(1) no(α⊕ β) = no(α) + no(β).
(2) no(α) + no(β)− 1 ≤ no(α⊗ β) ≤ no(α) · no(β) if α 6= 0 6= β.

(3) no(α) ≤ 2 · no(2α) and no(2α) ≤ 2no(α).

Proof. The proof is given in full detail in the appendix.

16 G. WILKEN AND A. WEIERMANN

Proposition 2.3. Let k < ω and ordinals α, β < ε0 be given. Then we have

(1) k = ψ(k), k ≤ ψ(α + k), no(α) ≤ ψ(α), and ψ(β) + k ≤ ψ(β + k).
(2) ψ(α) + ψ(β) ≤ ψ(α ⊕ ψ(β)) ≤ ψ(α ⊕ β).
(3) α < β&no(α) ≤ Φ(no(β)) ⇒ ψ(α) < ψ(β).
(4) α ≥ ω ⇒ Φ(no(α)) < ψ(α).

Proof. The proof is given in full detail in the appendix.

Our preparations now enable us to introduce a canonical interpretation of closed O-
terms as ordinals below ε0. This clarifies the notion of the norm no(h) for closed terms
h ∈ O and how closed O-terms can be compared.

Definition 2.4. Closed terms h ∈ O are interpreted canonically, however, + is interpreted
by ⊕ and · is interpreted by ⊗. ✸

In order to clarify the above definition consider the example of the closed O-term

ψ
(

ω ·
(
2ω+1 · (ω + 0)

)
+ 22

ω+1·ω · 1
)

which is interpreted by the ordinal ψ(ω⊗ (2ω⊕1⊗ (ω⊕ 0))⊕ 22
ω⊕1⊗ω ⊗ 1) = ψ(ωω·2+ω3 · 2).

Convention. When working with (closed) O-terms we will always assume their interpre-
tation by Definition 2.4 and compare them accordingly. Therefore, instead of using the
symbols ⊕ and ⊗ we are going to simply use the ordinary symbols + and · in order to refer
to the natural sum and product, respectively.

2.2. Ordinal Vectors. As in [8], a vector of level n is an n + 1-tuple h = 〈h0, . . . , hn〉
where the hi are ordinal terms, hence h ∈ O<ω. As there is no danger of ambiguity we
write lv(h) = n. For simplicity, we define hi to be 0 if i > lv(h). Thus, the sum h = f + g

of vectors f ,g is a vector of level max{lv(f), lv(g)} where hi = fi + gi.
The comparison of arbitrary O-terms and their norms poses the problem of how to

interpret or substitute variables. We can consider O-terms and their norms as functions
in the variables occurring in them and then define the comparison relation via pointwise
domination of functions. These functions are viewed as intensional objects and are given
by the buildup of the corresponding O-term.

Let X be a variable of type σ. The variable vector associated with X is the vector

x := 〈x0, . . . , xlv(σ)〉

where (x0, . . . , xlv(σ)) is the sequence of ordinal variables associated with X according to
the convention at the beginning of the previous subsection. We will sometimes explicitly
indicate the type by writing, e.g., xσ for x or xσi for a component xi of the vector x

corresponding to Xσ . By convention we write x for the variable vector associated with X,
similarly we write y for the variable vector associated with Y , etc.

We will later introduce operations ✷ and δx (where x ranges over variable vectors) on
vectors that will be applied in our assignment in order to handle application and abstraction,
respectively. Suitable domains for ✷ and δx, namely classes C and Cx, respectively, will be
defined towards the end of this subsection.

Substitution of variable vectors is defined as follows. For a variable vector x of level n
and a vector a of ordinal terms of the same level we define the substitution {x := a} as the
replacement of xi by ai for each i ≤ n. We write {x := 1} for the replacement of xi by 1
for i ≤ n, etc.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 17

The question arises over which domain the substitutions of variable vectors should vary.
The variable vectors involved are those, of which at least one component occurs in one of
the O-terms that are compared or whose norms are compared. We are going to introduce
the notion of bounded norm and the class B of vectors characterizing the restrictions of
Cx and C to closed vectors, i.e. vectors whose components are closed ordinal terms. The
restriction of B to vectors of bounded norm will then serve as the domain of substitutions
considered for the comparison relation. The operators δx will be defined via vectors from
Cx which in general are not of bounded norm, which is the reason for not integrating this
condition into the definitions of B, Cx, C.

Definition 2.5. A closed vector f ∈ O<ω is of bounded norm if

no(fi) ≤ no(f0)

for every i.

Definition 2.6. We define sets Bi ⊆ O for i < ω by simultaneous induction:

• 1 ∈ Bi for all i.
• ω ∈ Bi for i ≥ 1.
• If f, g ∈ Bi, then f + g ∈ Bi for all i.
• If f ∈ Bi+1 and g ∈ Bi, then 2f · g ∈ Bi for i ≥ 1.
• If f ∈ B1 and g ∈ B0 with4 no(f) ≤ F2(g), then ψ(ω · f + g) ∈ B0.
• If h ∈ B0, then h ∈ Bi for i ≥ 1.

The class B ⊆ O<ω consists of all vectors h such that hi ∈ Bi for all i ≤ lv(h). ✸

Notice that 0 does not occur in the parse tree of any term in any Bi. Terms h ∈ B0

cannot be of a shape 2f · g, and they satisfy h < ω, which plays a crucial role in this paper
as the 0-th component of a vector assigned to a term in T ′ is intended to yield an upper
bound on the height of the term’s reduction tree.

Definition 2.7. Let f, g ∈ O. The relation f ≺ g holds if and only if χ(f) < χ(g) for all
substitutions χ satisfying the following conditions:

(1) The domain of χ is the set of elements of all variable vectors x such that at least one
element of x occurs in f or in g,

(2) For each such x the vector χ(x) := 〈χ(x0), . . . , χ(xn)〉, where n = lv(x), is an element
of B of bounded norm.

The relation � on O-terms is defined similarly, as well as (extensional) equality =.
The comparison of no(f) with no(g) or some term h ∈ B0 is defined accordingly, using

the same symbols ≺, �, and =.
We are going to use the relations ≺, �, and = also when comparing expressions con-

taining the functions no and Fi, i < ω. Clearly, for expressions of the form Fi(f) to make
sense we must have f ≺ ω. ✸

Notice that this definition implies that

no(h) = h for every h ∈ O such that h ≺ ω,

0 ≺ no(xi) � x0 ≺ ω, and h ≺ ε0 for every h ∈ O.

Propositions 2.2 and 2.3 now generalize to O-terms and their norms using the above gen-
eralized comparison relations.

4This condition will be useful later; all ψ-terms involved in our assignment will satisfy this condition.

18 G. WILKEN AND A. WEIERMANN

Definition 2.8. Let f ,g ∈ O<ω. We define

f ≺ g :⇔ f0 ≺ g0 & ∀i > 0 fi � gi

and
f � g :⇔ ∀i fi � gi.

Equality is componentwise equality in the sense of the previous definition.

f is of bounded norm, if
no(fi) � no(f0)

for every i. ✸

Note that all comparison relations defined in this subsection are transitive, but in
general not total. We conjecture that there is a way to make the comparison relations
introduced here effective, however, as we do not need such effectiveness in order to achieve
our results, we stay with the above elegant comparison notion.

We now adapt the class C, introduced in [8] as domain of the operators δr. Our version
is variable-specific, depending on the abstraction variable, so we will introduce classes Cx

serving as domains for δx. The classes Ci and C defined here comprise the union of all
Cx
i and Cx, respectively, and will become the general domain of ordinal vectors used in

this article. We will make use of C-vectors which are not of bounded norm, namely when
defining δx in terms of partial operators δxi . However, the vectors we are going to assign
to terms of T ′ will always be C-vectors of bounded norm.

Definition 2.9. For every xσ ∈ O<ω, corresponding to some variable Xσ ∈ V, we define
sets Cx

i ⊆ O for i < ω by simultaneous induction:

• 1 ∈ Cx
i for all i.

• ω ∈ Cx
i for i ≥ 1.

• yρi ∈ Cx
i for i ≤ lv(ρ) where Y ρ ∈ V.

• If f, g ∈ Cx
i , then f + g ∈ Cx

i for all i.
• If f ∈ Cx

i+1 and g ∈ Cx
i , then 2f · g ∈ Cx

i for i ≥ 1.
• If f ∈ Cx

1 and g ∈ Cx
0 with no(f) � F2(g), then ψ(ω · f + g) ∈ Cx

0 .
• If h ∈ Cx

0 is x-free, then h ∈ Cx
i for i ≥ 1.

The class Cx ⊆ O<ω is defined to consist of all h such that hi ∈ Cx
i for all i ≤ lv(h).

Classes Ci and C are defined in the same way as Cx
i and Cx with the only difference that

the condition of being x-free in the last clause defining the classes Cx
i is dropped. ✸

It is easy to see that the sets of closed Cx-vectors, closed C-vectors, and B-vectors
coincide. Notice that if h ∈ Cx

i , then it does not contain any variable xj such that j < i, cf.
Lemma 2.7 of [8]. Notice further that the class Cx is closed under substitution with x-free
Cx-vectors, cf. Lemma 2.9 of [8]. We obviously have Cx

i ⊆ Ci and Cx ⊆ C, and C is closed
under substitution with C-vectors.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 19

2.3. The Operator ✷. We now define the operator ✷ and show its basic properties. The
definition originates from Howard’s [8] and was used by Schütte, see [11], for an analysis of
TCL which in turn later served as starting point for Weiermann’s [15] with a refinement for
vector level 0 that enabled a derivation lengths classification of Gödel’s T in the combinatory
logic variant. The modification of the 0-th level has two important effects: firstly, it saves
one ω-power, and secondly, by using the collapsing function ψ we obtain an assignment of
natural numbers to terms in T ′ instead of ordinal terms below ε0.

Definition 2.10. Let f ,g ∈ O<ω be such that m := lv(f) > lv(g) =: n. We define5

(f ✷ g)i :=

ψ(ω · (f ✷ g)1 + f0 + g0 + n) if i = 0

2(f ✷g)i+1 · (fi + gi) if 1 ≤ i ≤ n

fi if n < i ≤ m

to obtain the vector f ✷ g of level m. For i ≤ m we define f ✷ g ↾i to be the vector of level
i whose components are (f ✷ g)j for j = 0, . . . , i. ✸

Lemma 2.11. Let f ,g ∈ O<ω be such that m := lv(f) > lv(g) =: n and let k ∈ [1,m].
Suppose expressions f, g ≺ ω satisfy no(fi) � f for k ≤ i ≤ m and no(gi) � g for k ≤ i ≤ n
(in the sense explained at the end of Definition 2.7). Then we have

no ((f ✷ g)i) � F2(f + g + n)

for k ≤ i ≤ m.

Proof. The proof is given in the appendix.

By the above lemma it follows that B is closed under ✷, as well as are Cx and C, cf.
Lemma 2.8 of [8]. If f1 + g1 ≻ 0 in the case lv(g) > 0, then due to Proposition 2.3, Part 4,
f ✷ g is of bounded norm. We therefore have the following

Corollary 2.12. The restriction of ✷ to C-vectors maintains bounded norm.

We now provide several lemmas which establish crucial properties of ✷ and are adapted
from [8], extended to work for component 0.

Lemma 2.13. Let a, b ∈ C such that m := lv(a) > lv(b). Then we have

a+ b � a✷ b.

Proof. By induction on m−· i it is easily shown that ai + bi � (a✷ b)i.

Lemma 2.14. Let a, b, c ∈ C.

(1) Suppose m := lv(a) = lv(b) > lv(c) =: n and let i ∈ [1,m].
If aj � bj for i ≤ j ≤ m, then

(a✷ c)i � (b✷ c)i,

where “≺” holds, if additionally ak ≺ bk for some k ∈ [i, n + 1].
If the vectors a, b, and c are of bounded norm and a � b, then we have

a✷ c � b✷ c,

where “≺” holds, if a ≺ b.

5Compared to [8] we have chosen an asymmetric (non-commutative) definition in order to more directly
fit the intended application of ✷ and facilitate the syntactic fit with our version of C, e.g. avoiding occurrences
of 0 in the parse trees of components of f ✷ g for f , g ∈ C.

20 G. WILKEN AND A. WEIERMANN

(2) Suppose lv(a) > lv(b), lv(c) =: n and let i ∈ [1, n].
If bj � cj for i ≤ j ≤ n, then

(a✷ b)i � (a✷ c)i,

where “≺” holds, if additionally bk ≺ ck for some k ∈ [i, n].
If the vectors a, b, and c are of bounded norm and b � c, then we have

a✷ b � a✷ c,

where “≺” holds, if b ≺ c.

Proof. The proof of part 1 is by straightforward induction on m−· i for the claims concerning
components i, 1 ≤ i ≤ m. The claim for component 0 then follows by straightforward
application of Proposition 2.3, part 3, and Lemma 2.11, whose assumptions are satisfied
since we have assumed bounded norms. The proof of part 2 is analogous.

Lemma 2.15. Let a, b, c,d ∈ C be such that m := lv(a) = lv(b) = lv(c) > lv(d) =: n.

(1) If ai + bi � ci for 1 ≤ i ≤ n+ 1, then

(a✷d)i + (b✷d)i ≺ (c✷d)i

for 1 ≤ i ≤ n.
(2) If no(ai) � no(bi) for 1 ≤ i ≤ m, then

no((a✷d)i) � F3 (no((b✷d)i) + n)

for 1 ≤ i ≤ m.
(3) If ai + bi ≺ ci and no(ai),no(bi) � no(ci) for i ≤ m, then

(a✷d)i + (b✷d)i ≺ (c✷d)i

for i ≤ m.

Proof. For the detailed proof the reader is referred to the appendix.

The next lemma is an adaptation of the crucial Lemma 2.6 of [8]. It is the key to
the treatment of the combinatorial complexity of the combinator S, cf. [11, 15], in part of
the recursor R, and, when combined with the operator δ, of β-reduction. Regarding the
latter property which is essential in Howard’s approach, notice the correspondence of the
factor 2 occurring in Definition 2.18 in the case of δxi h where h ≡ 2f · g is not x-free (this
factor is in fact only necessary for the highest vector component), with the factor 2 in the
assumption 2an+1 + bn+1 ≺ cn+1 of the following lemma. We regard this correspondence as
crucial in order to understand why the operators ✷ and δx model β-reduction. Consider
as instructive example β-reduction of terms of the form (λX.AB)D.

Lemma 2.16. Let a, b, c,d ∈ C and n ∈ IN be such that lv(a) = lv(b) = lv(c) = n+ 1 and
lv(d) = n. If ai + bi ≺ ci for 1 ≤ i ≤ n and 2an+1 + bn+1 ≺ cn+1, then setting

e := (a✷d)✷ (b✷d↾n)

we have
2ei ≺ (c✷d)i

for 1 ≤ i ≤ n+ 1.

Proof. See the appendix for a proof in full detail.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 21

For the treatment of R-reductions we will need estimations of norms of the type stated
in the following lemma.

Lemma 2.17. Let a, b, c,d ∈ C be of bounded norm and n ∈ IN such that lv(a) = lv(c) =
n+ 1 > lv(b), lv(d). Setting

e := (a✷ b)✷ (c✷d↾n)

we have
no(ei) ≺ F3(a0 + b0 + c0 + d0 + n)

for 1 ≤ i ≤ n+ 1.

Proof. The proof is given in the appendix.

2.4. The Operators δx. Here we introduce our refinement of the operators δr, see [8],
which provide the key to appropriate assignments of ordinal vectors to abstraction terms in
order to allow for the treatment of β-contraction. Our modification of δ essentially concerns
vector level zero, which ranges over terms for natural numbers instead of ordinals below ε0
as in the original version. This is made possible by application of the collapsing function
ψ. Our refinement is formulated on the basis of the Cx-classes introduced earlier in order
to make the treatment of general R-reductions possible.

Definition 2.18. In order to define δx : Cx → Cx let h ∈ Cx be of level m := lv(h) and
set n := lv(x)+ 1. δxh is then a vector of level l := max{n,m}, defined componentwise by

(δxh)j :=

Sx(h) · (δx0 h0)0 if j = 0
∑m

i=0(δ
x
i hi)j if 0 < j ≤ n

hj if n < j ≤ l

where Sx will be defined below and the δxi : Cx
i → Cx are defined recursively as follows.

Let h ∈ Cx
i . δxi h is a Cx-vector of level n, defined componentwise as follows. If h is x-free

we set

(δxi h)j :=

{
1 if i 6= j ≤ n
h+ 1 if i = j ≤ n.

The following cases apply if h is not x-free.

• h ≡ xσi :

δxi h := 1.

• h ≡ f + g where f, g ∈ Cx
i :

δxi h := δxi f + δxi g + 1.

• h ≡ 2f · g where f ∈ Cx
i+1, g ∈ Cx

i , and i > 0:

δxi h := 2 δxi+1f + δxi g + 1.

• h ≡ ψ(ω · f + g) where f ∈ Cx
1 , g ∈ Cx

0 and i = 0:

(δxi h)j :=

{
ψ(ω · f{x := 1}+ (δx0 g)0) if j = 0

(δx1 f)j + (δx0 g)j if 1 ≤ j ≤ n.

22 G. WILKEN AND A. WEIERMANN

The norm controlling factor Sx(h) ∈ IN is defined by

Sx(h) := 2n ·
m∑

i=0

szx(hi)

where the auxiliary szx(h) for h ∈ O is defined by

• szx(h) := 1 if h is x-free or h ≡ xi for some i.
• szx(h) := szx(f) + szx(g) + 1 if h is not x-free and either of a form f + g or ψ(ω · f + g).
• szx(h) := 2szx(f) + szx(g) + 1 if h is not x-free and of a form 2f · g. ✸

Notice that δxh does not contain any component of x. In order to see that the above
definition is sound, we have to verify that the vectors δxi h are indeed Cx-vectors. We have
the following

Lemma 2.19. For h ∈ Cx
0 we have

h{x := 1} ≺ (δx0 h)0.

Proof. The proof is by induction on the buildup of h. The interesting case is where h is of
the form ψ(ω · f + g) and not x-free. We then use the i.h. for g, obtaining

h{x := 1} ≡ ψ(ω · f{x := 1}+ g{x := 1})

≺ ψ(ω · f{x := 1}+ (δx0 g)0)

≡ (δx0 h)0.

The above lemma shows that for terms h ≡ ψ(ω · f + g) ∈ Cx
0 we have

no(f{x := 1}) � F2((δ
x
0 g)0),

using that no(f{x := 1}) � F2(g{x := 1}). It is then easy to verify that δxi h ∈ Cx for
h ∈ Cx

i and hence δxh ∈ Cx for h ∈ Cx.
We call a substitution {y := g} an x-free substitution if y 6≡ x and g is x-free. This

notion facilitates an elegant statement of the next lemma, which corresponds to Lemma
2.10 and Corollary of [8].

Lemma 2.20. The operator δx is commutes with x-free substitution: for f ,h ∈ Cx, f

x-free, and y 6≡ x we have

(δxh){y := f} = δx(h{y := f}).

Proof. Notice that szx and hence Sx are invariant under x-free substitution. It is then
straightforward to verify the commutativity of the partial operators δxi with x-free substi-
tution and finally conclude the lemma.

Lemma 2.21. For any variable vector x the operator δx preserves bounded norm: for every
h ∈ Cx of bounded norm δxh is of bounded norm.

Proof. The lemma is part 3 of Lemma A.2 which is stated and proved in the appendix.

We conclude this section establishing the interplay of the operators ✷ and δx, corre-
sponding to Lemma 2.11 of [8] and its Corollary.

Lemma 2.22. Let h ∈ Cx. We have

h ≺ δxh✷x.

Proof. The proof is given in the appendix.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 23

3. Assignment of Ordinal Vectors to Terms

3.1. Assignment Derivations. We are now prepared to assign ordinal vectors to terms
of T ′. Recall, for illustrative reasons, Definition 1.6 and the notion of derivation along
an inductive definition. Definition 1.9 provides canonical derivations of w(F, nF) for every
F ∈ T ′ along a given reduction sequence. With the following inductive definition, which
is independent of Subsection 1.6, we refine the notion of derivation towards assignment
derivation, carrying the ordinal vectors assigned to terms as labels.

Definition 3.1. We define assignment derivations inductively for terms Aσ ∈ T ′, which
assign vectors [[A]] of level lv(σ) to A. The notation [[A]] is therefore only determined
uniquely in the context of a fixed assignment derivation.

Assignment to prime terms of T ′: If A is a variable or constant, then it has a
unique assignment [[A]] as defined below, and its assignment derivation is a single-node tree
which is labeled with (A, [[A]]).

[[Xσ]] := xσ.

[[0]] := 〈1〉.

[[S]] := 〈1, 1〉.

[[Dτ]] := 〈1, . . . , 1〉 of level lv(τ) + 1.

[[Rτ]] := 〈2, 1, . . . , 1, ω〉 of level lv(τ) + 2.

Terms formed by application: For assignment derivations R of (Bστ , [[B]]) and S
of (Cσ, [[C]]), the tree with direct subtrees R and S is a derivation of (BC, [[BC]]), where
[[BC]] is defined by

[[BC]] := [[B]]✷ [[C]]↾lv(τ) .

For an assignment derivation R of (t, [[t]]), the tree with direct subtree R is an assign-
ment derivation of (Rt, [[Rt]]) where [[Rt

τ]] of level lv(τ) + 2 is defined by

[[Rt
τ]] := 〈[[t]]0, 1, . . . , 1, [[t]]0〉.

Terms formed by abstraction: For assignment derivations Ri of (Gi, [[Gi]]), i ≤ m,
where G0 ✄α . . . ✄α Gm =: G such that X does not occur in any subterm of G0 of a form
Rt and [[G0]] ≻ . . . ≻ [[Gm]], the tree with direct subtrees R0, . . . ,Rm in this order is an
assignment derivation of (λX.G, [[λX.G]]), the label of its root, where

[[λX.G]] := δx[[G0]] + [[Gm]]{x := 1}.

Whenever a particular assignment derivation is clear from the context of argumentation,
we will use the notation [[·]] as if it were an operator returning a unique ordinal vector.

For a term A ∈ T we define the canonical assignment for A by choosing for every
subterm of a form λX.G the assignment [[λX.G]] := δx[[G]]+ [[G]]{x := 1}. This results in a
unique assignment [[A]] to the term A. We call the vector a resulting from [[A]] by replacing
every variable by 1 the closed canonical assignment for A. ✸

24 G. WILKEN AND A. WEIERMANN

It is easy to verify that all vectors assigned to terms are C-vectors of bounded norm,
cf. Corollary 2.12 and Lemma 2.21. Notice also that in case of an assignment [[λX.G]] :=
δx[[G0]]+[[Gm]]{x := 1} the vector [[G0]] even is a Cx-vector, as is required for the application
of the operator δx. This latter property [[G0]] ∈ Cx is guaranteed by the fact that the
variable X corresponding to x does not occur in any subterm of the form Rt of G0. This
is crucial for the compatibility of the original treatment of β-reductions with unrestricted
R-reductions and is one of the two reasons why we need this form of non-unique ordinal
assignment that depends on the reduction history of terms in a given reduction sequence,
as explained in greater detail in Subsection 1.6. The other reason is the same as in [8]: the
operators δx are in general not monotonically increasing6 (see also [8], p. 456) and therefore
do not allow for a direct treatment of the unrestricted ξ-rule.

Lemma 3.2. Assignment derivations are invariant modulo α-congruence.

Proof. Straightforward.

The following lemma corresponds to Lemma 3.1 of [8], cf. also Definition 1.8.

Lemma 3.3. The assignment [[·]] commutes with substitution. Let F,H ∈ T ′ satisfy
FV(F) ∩ BV(H) = ∅ and let Y be a variable of the same type as F . Given assign-
ment derivations of (H, [[H]]) and (F, [[F]]), there is a canonical assignment derivation of
(H{Y := F}, [[H]]{y := [[F]]}), defined straightforwardly in the proof.

Proof. The proof is by induction along the definition of an assignment derivation of (H, [[H]]).
The interesting case is where H is an abstraction term, say λX.G, whose assignment

[[H]] = δx[[G0]] + [[Gm]]{x := 1}

is based on assignments [[G0]], . . . , [[Gm]] where G0 ✄α . . .✄α Gm = G such that X does not
occur in any subterm of G0 of a form Rt and [[G0]] ≻ . . . ≻ [[Gm]].

Since the case Y = X is trivial, we assume Y 6= X. By assumption we have X 6∈ FV(F),
and according to Lemma 3.2 we may further assume w.l.o.g. that FV(F) ∩ BV(G0) = ∅.
The i.h. yields assignment derivations of (Gi{Y := F}, [[Gi]]{y := [[F]]}) for i ≤ m, and we
have

[[G0]]{y := [[F]]} ≻ . . . ≻ [[Gm]]{y := [[F]]}.

Clearly,
([[Gm]]{x := 1}){y := [[F]]} = ([[Gm]]{y := [[F]]}){x := 1},

and by Lemma 2.20 we have

(δx[[G0]]){y := [[F]]} = δx([[G0]]{y := [[F]]}).

We have
G0{Y := F}✄α . . .✄α Gm{Y := F},

and X does not occur in any subterm of G0{Y := F} of a form Rt. The assignment
derivation of (H{Y := F}, [[H]]{y := [[F]]}) can therefore be assembled from the assignment
derivations of the (Gi{Y := F}, [[Gi]]{y := [[F]]}).

6Consider for example variables x, y of type 00, variables z, u of type 0 and compute the canonical
assignments to λx.((λz.x(yz))u)✄ λx.(x(yu)). Setting e.g. y := λw0.w0 and u := y(yv0) we see that δx is
not even weakly monotonically increasing.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 25

Definition 3.4. By recursion on lh(A) we define an algorithm which, given terms A,B ∈ T ′

such that A✄B and given an assignment derivation for A, returns an assignment derivation
for B.

Reductions:

• (D0), (DS), (R), and (R0) are trivial, proceeding in the same way as in the following
case.

• (RS) RStFG✄ Ft(RtFG) with [[RStFG]] given via assignments [[t]], [[F]], [[G]]. Then

[[Ft(RtFG)]]

is built up from the same assignments [[t]], [[F]], [[G]].
• (β) (λX.G)H✄G{X := H} where BV(λX.G)∩FV(H) = ∅ with [[(λX.G)H]] given via as-
signments [[λX.G]], [[H]] where the former is in turn given via assignments [[G0]], . . . , [[Gm]]
from the assignment derivation of λX.G, whence G0 ✄α . . . ✄α Gm = G. By Lemma 3.3
we obtain an assignment

[[Gm]]{x := [[H]]}

to the term G{X := H} with the canonical assignment derivation.

Rules:

• (Appr), (Appl), and (AppR) are handled in the same straightforward manner, e.g.
in the case where Rs

✄ Rt is derived from s ✄ t and the assignment [[Rs]] given via an
assignment [[s]] to s, we let [[t]] be the assignment provided by the algorithm and build
[[Rt]] up from [[t]].

• (ξ) λX.F ✄ λX.G derived from F ✄ G, with [[λX.F]] given by means of assignments
[[F0]], . . . , [[Fm]] from the assignment derivation of λX.F , whence F0 ✄α . . . ✄α Fm = F .
We then choose the assignment

[[λX.G]] := δx[[F0]] + [[G]]{x := 1},

where [[G]] is the assignment to G provided by the algorithm. ✸

The soundness of the above definition hinges on the verification that in the clause for (ξ)
we indeed have [[Fm]] ≻ [[G]]. This is accomplished by our Main Theorem.

3.2. The Main Theorem.

Theorem 3.5. For A,B ∈ T ′ such that A✄B and a given assignment derivation assigning
[[A]] to A, the assignment [[B]] to B that is provided by the algorithm specified in Definition
3.4 satisfies

[[A]] ≻ [[B]].

Proof. The proof is by induction on lh(A). We use the terminology of Definition 3.4.

(D0), (DS), (R), and (R0) are handled straightforwardly using Lemma 2.13.

26 G. WILKEN AND A. WEIERMANN

(RS) RStFG✄ Ft(RtFG) where R ≡ Rτ and n := lv(τ). Suppose [[RStFG]] is given via
assignments [[t]], [[F]], and [[G]]. We introduce the following abbreviations:

a := [[Ft]]

b := [[RtF]]

c := [[RStF]]

d := [[G]]

e := (a✷d)✷ (b✷d↾n)

f := [[F]]

t := [[t]]

Notice that we have a = f ✷ t and

[[Rt]] = 〈t0, 1, . . . , 1, t0〉

≺ 〈ψ(ω + t0 + 1), 1, . . . , 1, ψ(ω + t0 + 1)〉

= [[RSt]],

hence bi = ([[Rt]]✷f)i ≺ ([[RSt]]✷f)i = ci for i ≤ n+ 1 by Lemma 2.14, part 1. We further
have [[RtFG]] = b✷d↾n, and

[[Ft(RtFG)]] = a✷ (b✷d↾n)↾n≺ e

by part 1 of Lemma 2.14 since a ≺ a✷d by Lemma 2.13. We obtain

2ei ≺ (c✷d)i

for 1 ≤ i ≤ n + 1 by an application of Lemma 2.16 whose assumptions ai + bi ≺ ci for
1 ≤ i ≤ n and 2an+1 + bn+1 ≺ cn+1 are easily verified. As [[RStFG]] = c✷d↾n we obtain

2[[Ft(RtFG)]]i ≺ [[RStFG]]i

for 1 ≤ i ≤ n, and in the case n > 0 by Lemma 2.13 we thus have

[[Ft(RtFG)]]1 + f1 + [[RtFG]]1 ≺ [[RStFG]]1. (3.1)

It remains to prove that
[[Ft(RtFG)]]0 ≺ [[RStFG]]0. (3.2)

We begin with the following estimation

b0 + f0 + t0 = ψ(ω · b1 + t0 + f0 + n+ 1) + f0 + t0

� ψ(ω · b1 + 2t0 + 2f0 + n+ 1)

≺ ψ(ω · c1 + ψ(ω + t0 + 1) + f0 + n+ 1)

= c0,

which follows by Proposition 2.3, part 3, since b1 ≺ c1 and no(b1) � F2(t0 + f0 + n + 1)
using Lemma 2.11. In the case n = 0 it is easy to verify 3.2. Let us therefore assume that

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 27

n > 0. Using parts 2 and 3 of Proposition 2.3, from 3.1 we then obtain

[[Ft(RtFG)]]0 = ψ(ω · [[Ft(RtFG)]]1 + a0 + [[RtFG]]0 + n)

= ψ(ω · [[Ft(RtFG)]]1 + ψ(ω · f1 + f0 + t0) +

ψ(ω · [[RtFG]]1 + b0 + d0 + n) + n)

� ψ(ω · ([[Ft(RtFG)]]1 + f1 + [[RtFG]]1) + b0 + f0 + d0 + t0 + 2n)

≺ ψ(ω · [[RStFG]]1 + c0 + d0 + n)

= [[RStFG]]0,

since using Lemma 2.17 we may estimate

no([[Ft(RtFG)]]1 + f1 + [[RtFG]]1) � F3(f0 + t0 + b0 + d0 + n) +

F2(f0 + t0) + F2(b0 + d0 + n)

≺ Φ(c0 + d0 + n).

(β) (λX.G)H ✄G{X := H}. With the notations of Definition 3.4 the vector assigned
to λX.G is δx[[G0]] + [[G]]{x := 1}. By Lemma 2.22 we have

[[G0]] ≺ δx[[G0]]✷x,

hence

[[λX.G]]✷ [[H]] ≻ δx[[G0]]✷ [[H]] by part 1 of Lemma 2.14

≻ [[G0]]{x := [[H]]}.

We have [[G0]] ≻ . . . ≻ [[Gm]], hence

[[G0]]{x := [[H]]} ≻ . . . ≻ [[Gm]]{x := [[H]]},

and by Lemma 3.3 the [[Gi]]{x := [[H]]} are vectors assigned to Gi{X := H} for i ≤ m.

(Appr) FH ✄GH, derived from F ✄G. By the i.h. we have [[F]] ≻ [[G]], hence part 1
of Lemma 2.14 yields [[FH]] ≻ [[GH]].

(Appl) FG✄ FH, derived from G✄H. By the i.h. we have [[G]] ≻ [[H]], hence part 2
of Lemma 2.14 yields [[FG]] ≻ [[FH]].

(AppR) R
s
✄ Rt, derived from s✄ t. By the i.h. we have [[s]] ≻ [[t]], so we immediately

obtain [[Rs]] ≻ [[Rt]].

(ξ) λX.F ✄ λX.G, derived from F ✄G. Then [[λX.F]] ≻ [[λX.G]] follows directly from
the i.h. which yields [[Fm]] ≻ [[G]].

Corollary 3.6. Let A ∈ T and a be its closed canonical assignment. Then a0 ∈ IN is an
upper bound of the height of the reduction tree of A. We obtain strong normalization for
λβR and λβR′.

Proof. Regarding the relationships between reduction sequences of T -terms in λβR and T ′-
terms in λβR′, recall the remarks stated in Subsection 1.4. The corollary then follows from
Theorem 3.5.

28 G. WILKEN AND A. WEIERMANN

3.3. Tying in with Subsection 1.6. For illustrative reasons we establish the link of our
assignment with Definition 1.9.

Let F0 ✄α . . . ✄α Fn be a λβR′-reduction sequence with F0 ∈ T and let p be a node
in Fn with label A. Suppose that assignment derivations of (B, [[B]]) have been specified
for all terms B labeled to nodes in the parse trees of Fi for i = 0, . . . , n − 1 and to nodes
descending from p in the parse tree of Fn. In case A is a variable or constant we are done
with (A, [[A]]), and if Aτ ≡ BC, we have (B, [[B]]) and (C, [[C]]) for the labels B and C of
the direct child nodes of p and accordingly choose (A, [[B]]✷ [[C]] ↾lv(τ)). The interesting
case is where A = λX.G. We may assume that F0 ✄α . . . ✄α Fn is p-nice, according to
Lemma 3.2. Let (G0, . . . , Gm), where Gm = G, be the associated reduction sequence w.r.t.
F0✄α . . .✄αFn and p according to Definition 1.5, so using Lemma 3.3 we obtain assignment
derivations labeled with (Gi, [[Gi]]) for i ≤ m. If we can show that

[[G0]] ≻ . . . ≻ [[Gm]],

then we obtain an assignment derivation of (A, δx[[G0]] + [[Gm]]{x := 1}). We are going
to show that the assignments [[G1]], . . . , [[Gm]] are obtained by consecutive application of
the algorithm given in Definition 3.4, starting from [[G0]]. Recalling our description of
how the parse tree of Fi+1 is obtained from the parse tree of Fi in 1.6.2, we see that for
corresponding terms A in the parse tree of Fi and B in the parse tree of Fi+1 such that
A✄B, the assignment derivation of [[B]] is obtained from the assignment derivation of [[A]]
by the algorithm given in Definition 3.4. Such terms A and B are either the working redex
itself and its reduct, corresponding to a D-, R-, or β-reduction, or corresponding terms on
the paths leading from the roots of the parse trees of Fi and Fi+1 to the working redex
and its reduct, respectively, corresponding to an App- or ξ-rule. Notice that the claimed
property [[G0]] ≻ . . . ≻ [[Gm]] for the associated reduction sequence mentioned above then
follows after observing that the algorithm in Definition 3.4 commutes with substitution in
the sense of Lemma 3.3 and checking the possible cases as outlined in Definition 1.1.

4. Derivation Lengths Classification

We are going to show that the upper bounds for reduction sequences in Gödel’s T and its
fragments Tn are optimal. The set of terms Tn in the fragment Tn, n ∈ IN, is the restriction
of T to recursors of type level ≤ n+ 2. From our remarks in Subsection 1.4 it follows that
we can discuss term reductions in T using our results regarding reduction sequences in T ′

via the mutual embeddings of reduction sequences in T and T ′.

Definition 4.1. For G ∈ T let L(G) denote the maximum type level of subterms of G, and
let R(G) denote the maximum type level of recursors occurring in G. We further define

DT(m) := max{k | ∃G1, . . . , Gk ∈ T G1 ✄ . . .✄Gk & lh(G1),L(G1) ≤ m}

DTn(m) := max{k | ∃G1, . . . , Gk ∈ Tn G1 ✄ . . .✄Gk & lh(G1),L(G1) ≤ m}. ✸

We are going to use the following common notation for exponential expressions. We set
ω0 := 1 and ωi+1 := ωωi , 20(α) := α, and 2i+1(α) := 22i(α) where α < ε0.

Corollary 4.2. Corollary 3.6 gives rise to the following derivation lengths classifications.

(1) The functions definable in T, i.e. the provably recursive functions of PA, comprise the
<ε0-recursive functions. The derivation lengths function DT is ε0-recursive.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 29

(2) The functions definable in Tn, i.e. the provably recursive functions of IΣn+1, comprise
the <ωn+2-recursive functions. The derivation lengths function DTn is ωn+2-recursive.

Proof. We make use of the well-known fact that PA has a functional interpretation in T
(see [6, 12, 11]) and the fact that the fragments IΣn+1 have functional interpretations in the
Tn (see [9]). By results from [3] the corollary then follows from Corollary 3.6. The detailed
argumentation is given below. It is based on preparations worked out in the appendix, A.4,
which we will use in the form of citations of Lemma A.8, whose purpose it is to extract
bounds on the ordinal vectors [[G]] assigned to terms G of T which are expressed in terms
of maximum type level L(G) and length lh(G) of G. Notice that we only need to consider
the (unique) canonical assignment for the terms of T .

Let C0 ∈ T be closed. There is an m ∈ IN such that

C ✄α . . .✄α m :≡ S
(m)

0.

We define
val(C) := m.

Theorem 3.5 shows that [[C]]0 is an upper bound for val(C) and the length of any reduction
sequence starting from C, since we have

m < [[m]]0.

Note that
[[m]]0 ≤ ψ(ω · (m+ 1) +m+ 2) < ψ(ω2 +m)

using Proposition 2.3, parts 2 and 3.
Let F 00 ∈ Tn be closed. F represents the function

m 7→ val(Fm),

and for any m ∈ IN we have

DF (m), val(Fm) ≤ [[Fm]]0

where
DF (m) := max{k | ∃G1, . . . , Gk ∈ T Fm ≡ G1 ✄ . . .✄Gk}.

We have

[[Fm]]0 = ψ(ω · [[F]]1 + [[F]]0 + [[m]]0) < ψ(ω · ([[F]]1 + ω2) + [[F]]0 +m),

and the function
m 7→ ψ(ω · ([[F]]1 + ω2) + [[F]]0

︸ ︷︷ ︸

<ωn+2 by Lemma A.8

+m)

is <ωn+2-recursive (cf. [3]), implying that also DF and m 7→ val(Fm) are <ωn+2-recursive.
We therefore obtain that the functions definable in Tn are <ωn+2-recursive and the functions
definable in T are <ε0-recursive.

Now let some m ∈ IN and a term Gσ ∈ T with lh(G), L(G) ≤ m and R(G) ≤ n+ 2 be
given. Let g be the closed canonical assignment to the term G. Then according to Lemma
A.8

g0 < ψ(ω · 2n+1(ω · 2m+1(2(m+ 1 + lh(G))))
︸ ︷︷ ︸

<ωn+2

)

< ψ(ωn+2 +m) by Proposition 2.3, part 3.

30 G. WILKEN AND A. WEIERMANN

This implies
DTn(m) < ψ(ωn+2 +m),

and hence DTn is an ωn+2-recursive function. Omitting the restriction concerning R(G) it
similarly follows that DT is an ε0-recursive function.

Acknowledgements

The authors would like to thank Roger Hindley and Jonathan Seldin for informative dis-
cussions as well as Pierre-Louis Curien for constructive assistance in the rewrite process
of the original contribution to TLCA 2009. We are indebted to one of the referees who
pointed out our sloppiness regarding the treatment of bound variables in an ealier version
of the paper and gave many constructive suggestions that have led to an improvement of
the first section of this paper. We wish to thank William Howard for a number of helpful
suggestions and simplifications for the final version of the paper.

References

[1] Beckmann, A., Weiermann,A.: A term rewriting characterization of the polytime functions and related
complexity classes. Archive for Mathematical Logic 36: 11–30, 1996.

[2] Beckmann, A., Weiermann, A.: Analyzing Gödel’s T via Expanded Head Reduction Trees. Mathematical

Logic Quarterly 46: 517–536, 2000.
[3] Buchholz, W., Cichon, E.A., Weiermann, A.: A Uniform Approach to Fundamental Sequences and

Hierarchies. Mathematical Logic Quarterly 40: 273–286, 1994.
[4] Cardone, F., Hindley, J.R.: History of λ-Calculus and Combinatory Logic. To appear in: Gabbay, D.M.,

Woods, J. (eds.) Handbook of the History of Logic, vol. 5, Elsevier.
[5] Cichon, E.A., Weiermann,A.: Term rewriting Theory for the Primitive Recursive Functions. Annals of

Pure and Applied Logic 83(3): 199–223, 1997.

[6] Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12:
280–287, 1958.

[7] Hindley, J.R., Seldin, J.P.: Introduction to Combinators and λ-Calculus. London Mathematical Society.
Cambridge University Press, 1986.

[8] Howard, W.A.: Assignment of Ordinals to Terms For Primitive Recursive Functionals of Finite Type.
Intuitionism and Proof Theory, 443–458. North Holland, Amsterdam, 1970.

[9] Parsons, C.: On n-Quantifier Induction. The Journal of Symbolic Logic 37(3): 466–482, 1972.
[10] Pohlers, W.: Proof Theory. The First Step into Impredicativity. Springer, Berlin, 2009.
[11] Schütte, K.: Proof Theory. Springer, 1977.
[12] Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, New York, 1967.
[13] Weiermann, A.: How to characterize Provably Total Functions by Local Predicativity. The Journal of

Symbolic Logic 61: 52–69, 1996.
[14] Weiermann, A.: A proof of strongly uniform termination for Gödel’s T by methods from local predica-

tivity. Archive for Mathematical Logic 36: 445–460, 1997.
[15] Weiermann, A.: How Is it That Infinitary Methods Can Be Applied to Finitary Mathematics? Gödel’s

T: A Case Study. The Journal of Symbolic Logic 63(4): 1348–1370, 1998.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 31

Appendix A. Proofs omitted in Sections 2 and 4

A.1. Proofs in Subsection 2.1. We give the detailed proofs of the two Propositions
regarding the ψ-function.

Proof of Proposition 2.2.
Ad 1: This is an immediate consequence of the definitions of ⊕ and no.

Ad 2: Suppose

α = ωα1 + . . .+ ωαn > α1 ≥ . . . ≥ αn and

β = ωβ1 + . . . + ωβm > β1 ≥ . . . ≥ βm

where n, m ≥ 1. By definition of ⊗ we have

no(α⊗ β) = nm+m
n∑

i=1

no(αi) + n
m∑

j=1

no(βj)

≤ nm+m

n∑

i=1

no(αi) + n

m∑

j=1

no(βj) +

n∑

i=1

no(αi) ·
m∑

j=1

no(βj)

= no(α) · no(β).

This estimation of the norm of the natural product holds for all α and β. Equality holds if
and only if α < ω or β < ω. We further have

no(α) + no(β)− 1 = n+m− 1 +
n∑

i=1

no(αi) +
m∑

j=1

no(βj)

≤ nm+m

n∑

i=1

no(αi) + n

m∑

j=1

no(βj)

= no(α⊗ β).

Ad 3: Since the case α < ω is trivial we may assume that α ≥ ω, say, α = ω ·α0+m where
0 < α0 ≤ α and m < ω. Let

α0 = ωα1 + . . .+ ωαk + . . .+ ωαn > α1 ≥ . . . ≥ αk ≥ ω > αk+1 ≥ . . . ≥ αn

with 0 ≤ k ≤ n > 0. Then we have

ω · α0 = ωα1 + . . .+ ωαk + ωαk+1+1 + . . .+ ωαn+1,

which implies no(α) = no(α0) + n− k +m. By definition 2α = ωα0 · 2m, hence

no(2α) = (no(α0) + 1) · 2m.

We obtain from these preparations

no(α) ≤ 2no(α0) +m < 2(no(α0) · 2
m + 2m) = 2 · no(2α)

as well as
no(2α) = (no(α0) + 1) · 2m ≤ 2no(α0) · 2m ≤ 2no(α).

This concludes the proof of Proposition 2.2.

32 G. WILKEN AND A. WEIERMANN

Proof of Proposition 2.3. The proof of part 1 is by straightforward induction on k and
follows directly from the definition of ψ. Also part 3 immediately follows from the Definition
of ψ. For part 4 note that Φ(no(α)) = ψ(Φ(no(α))) by part 1, then apply part 3. For α = 0
part 2 follows immediately from part 1. In the case α > 0 the first ≤-relation is immediate
by part 1, for the second ≤-relation we argue by induction on β:

• β = 0: Trivial.
• β > 0: By definition of ψ there exists a γ < β such that no(γ) ≤ Φ(no(β)) and ψ(β) =
ψ(γ) + 1. Therefore

ψ(α + ψ(β)) ≤ ψ(α⊕ γ + 1) ≤ ψ(α⊕ β)

where the first ≤-relation follows from the i.h. for α + 1 and the second ≤-relation is
verified using part 3. If γ+1 = β we are done. Otherwise we have α⊕ γ+1 < α⊕β and

no(α⊕ γ + 1) ≤ no(α) + 1 + Φ(no(β)) ≤ Φ(no(α⊕ β)),

using that α > 0.

A.2. Proofs in Subsection 2.3. We give the detailed proofs of the lemmas regarding the
✷-operator.

Proof of Lemma 2.11. The proof is essentially the same as in [15]. We give the details
for the reader’s convenience, frequently using Proposition 2.2. We first show the following

Claim. For k ≤ i ≤ n we have

no((f ✷ g)i) ≺ F
2(n+1−· i)
0 (f + g + 1) (A.1)

where n−· i := n− i if n ≥ i, and n−· i := 0 otherwise. The claim is shown by induction on
n−· i. For i = n we obtain

no((f ✷ g)n) = no(2fn+1 · (fn + gn))

� 2no(fn+1) · (no(fn) + no(gn))

� 2f · (f + g)

≺ 22
f+g

· (f + g)

≺ 22
f+g+1

= F 2
0 (f + g + 1).

For k ≤ i < n we have

no((f ✷ g)i) = no(2(f ✷g)i+1 · (fi + gi))

� 2F
2(n+1−i)−2
0 (f+g+1) · (f + g)

= F
2(n+1−i)−1
0 (f + g + 1) · (f + g)

≺ F
2(n+1−i)
0 (f + g + 1).

Now we prove the lemma. For k, n+ 1 ≤ i ≤ m we have

no((f ✷ g)i) = no(fi) � f ≺ F2(f + g + n).

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 33

For k ≤ i ≤ n we obtain

no((f ✷ g)i) ≺ F
2(n+1−· i)
0 (f + g + 1) by A.1

� F 2n
0 (f + g + 1)

� F1(f + g + 2n)

≺ F2(f + g + n),

concluding the proof of the lemma.

Proof of Lemma 2.15. Part 1 is adapted from [8], p. 450, and is shown here for the
reader’s convenience.
Ad 1: We argue by induction on n+ 1−· i for 1 ≤ i ≤ n.

(a✷d)i + (b✷d)i

≺ 2(a✷d)i+1 · (ai + bi + di) + 2(b✷d)i+1 · (ai + bi + di)

� 2(a✷d)i+1+(b✷d)i+1 · (ai + bi + di)

� 2(c✷d)i+1 · (ci + di)

= (c✷d)i.

Ad 2: For 1 ≤ i ≤ m we set

Ni :=

m∑

j=i

no(aj), Mi :=

m∑

j=i

no(bj), Li :=

n∑

j=i

no(dj).

Lemma 2.11 yields for 1 ≤ i ≤ m

no((a✷d)i) � F2(Ni + Li + n). (A.2)

Since the case i > n is trivial we assume in the sequel that 1 ≤ i ≤ n. By Proposition 2.2,
part 3, we have

no((b✷d)i+1) � 2no((b✷d)i).

From this we obtain for i ≤ j ≤ n+ 1

no((b✷d)j) � 2n · no((b✷d)i).

Since no(bj) � no((b✷d)j) for every j and no(dj) � no((b✷d)j) for 1 ≤ j ≤ n we get

Mi + Li � (n+ 1) · 2n+1 · no((b✷d)i). (A.3)

A.2 and A.3 together with Ni �Mi yield

no((a✷d)i) � F2(Mi + Li + n)

� F2((n + 1) · 2n+1 · no((b✷d)i) + n)

� F3(no((b✷d)i) + n).

34 G. WILKEN AND A. WEIERMANN

Ad 3: For n < i ≤ m the claim holds by assumption, and for 1 ≤ i ≤ n the claim follows
by part 1. Consider the case i = 0 (the inequalities are explained below):

(a✷d)0 + (b✷d)0

= ψ(ω · (a✷d)1 + a0 + d0 + n) + ψ(ω · (b✷d)1 + b0 + d0 + n)

� ψ(ω · ((a✷d)1 + (b✷d)1) + a0 + b0 + 2d0 + 2n)

≺ ψ(ω · (c✷d)1 + c0 + d0 + n)

= (c✷d)0.

The �-relationship follows by Proposition 2.3, parts 1 and 2. We will now show that the
≺-relationship holds, making use of Proposition 2.3, part 3, and part 2 of the present lemma:

(a✷d)1 + (b✷d)1 ≺ (c✷d)1

holds by assumption if n = 0, and for n > 0 this has already been shown. We obtain

ω · ((a✷d)1 + (b✷d)1) + a0 + b0 + 2d0 + 2n ≺ ω · (c✷d)1 + c0 + d0 + n.

Part 2 yields
no((a✷d)1),no((b✷d)1) � F3(no(c✷d)1 + n).

From this we easily verify the second assumption of Proposition 2.3, part 3.

Proof of Lemma 2.16. We proceed by induction on n+ 1−· i. If i = n+ 1, then

2ei = 2ai ≺ ci = (c✷d)i.

In the case i = n we have

en = 2an+1 · (2an+1 · (an + dn) + 2bn+1 · (bn + dn))

≺ 22an+1 · (an + bn + dn) + 2an+1+bn+1 · (an + bn + dn)

� 22an+1+bn+1 · (an + bn + dn).

This implies
2en ≺ 2cn+1 · (cn + dn) = (c✷d)n.

Now let us assume that 1 ≤ i < n:

ei = 2ei+1 · (2(a✷d)i+1 · (ai + di) + 2(b✷d)i+1 · (bi + di))

≺ 2ei+1+(a✷d)i+1 · (ai + bi + di) + 2ei+1+(b✷d)i+1 · (ai + bi + di)

� 22ei+1 · (ci + di)

where the last �-relation holds since i+ 1 ≤ n and by Lemma 2.13

(a✷d)i+1 + (b✷d)i+1 � ei+1.

Using the i.h., which allows us to estimate 2ei ≺ 22ei+1+1 · (ci + di) � 2(c✷d)i+1 · (ci + di),
we finally obtain

2ei ≺ (c✷d)i.

This concludes the proof of the lemma.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 35

Proof of Lemma 2.17. For convenience we set a := a0, b := b0, c := c0, and d := d0. We
first show the following

Claim. For 1 ≤ i ≤ n, setting e := a+ b+ c+ d+ 2(n+ 1), we have

no(ei) � F
2(n+1−· i)
2 (e). (A.4)

The claim is proved by induction on n−· i. We will make use of the following abbreviations:

α := F2(a+ b+ n),

β := F2(c+ d+ n),

γ := F2(a+ b+ c+ d+ 2n + 1).

If i = n, then we obtain

no(en) = no(2an+1 · ((a✷ b)n + (c✷d)n))

� 2no(an+1) · (no((a✷ b)n) + no((c✷d)n))

� 2a · (α+ β) by Lemma 2.11

� F2(γ + 1)

� F 2
2 (e).

If 1 ≤ i < n, then we have

no(ei) � 2no(ei+1) · (no((a✷ b)i) + no((c✷d)i))

� 2F
2(n+1−· i)−2
2 (e) · (α+ β) by Lemma 2.11 and the i.h.

� F
2(n+1−· i)−1
2 (e) · γ

≺ F
2(n+1−· i)
2 (e).

Now we prove the lemma from the above claim. The case i = n+ 1 is trivial since we then
have en+1 = an+1. For 1 ≤ i ≤ n we finally obtain

no(ei) � F
2(n+1−· i)
2 (e) by A.4

� F 2n
2 (e)

≺ F3(a+ b+ c+ d+ n).

This concludes the proof of Lemma 2.17.

A.3. Proofs in Subsection 2.4. We provide the proofs regarding the operator δ. Our
first goal is to show that the operators δx preserve bounded norms. To this end, and in
preparation of the analysis of our assignment in Section 4, we need to introduce precise
notions of subterms.

Definition A.1. By recursion on the buildup of h ∈ Cx
i we define the set Tx

i,j(h) of maximal

x-free subterms of j-th level of h and the set Subxi,j(h) of those subterms of j-th level of
h which are different from xi, where x-free subterms are considered atomic. We use the
abbreviation

{h}i,j := {h | i = j}.

36 G. WILKEN AND A. WEIERMANN

If h is x-free, then
Tx
i,j(h) := {h}i,j =: Subxi,j(h),

otherwise we distinguish between the following cases:

• If h ≡ xi, then
Tx
i,j(h) := ∅ =: Subxi,j(h).

• If h ≡ f + g, then

Tx
i,j(h) := Tx

i,j(f) ∪ Tx
i,j(g),

Subxi,j(h) := {h}i,j ∪ Subxi,j(f) ∪ Subxi,j(g).

• If h ≡ 2f · g or h ≡ ψ(ω · f + g), then

Tx
i,j(h) := Tx

i+1,j(f) ∪ Tx
i,j(g),

Subxi,j(h) := {h}i,j ∪ Subxi+1,j(f) ∪ Subxi,j(g).

We further define

Tx
i (h) :=

⋃

i≤j

Tx
i,j(h) and Subxi (h) :=

⋃

i≤j

Subxi,j(h).

✸

Notice that for h ∈ Cx
i the set Tx

i,j(h) comprises the x-free terms of Subxi,j(h), that we

have Tx
i,j(h) = Subxi,j(h) = ∅ if i > j, and that for every t ∈ Subxi,i(h) we have t � h.

Lemma A.2. Let x be a variable vector and set k := lv(x), n := k + 1.

(1) For any h ∈ Cx
i and t ∈ Subxi (h) we have

no(t) � 2n−
· i · no(h).

(2) Let h ∈ Cx be of bounded norm, m := lv(h). Then for all t ∈ Tx
i (hi), i ≤ m, we have

no(t) ≺ 2n−
· i · (δx0 h0)0, (A.5)

and for 0 < j ≤ n we have

no((δxi hi)j) � szx(hi) · 2
n · (δx0 h0)0. (A.6)

(3) δx preserves bounded norm: for every h ∈ Cx of bounded norm δxh is of bounded
norm.

Proof. Part 1 is shown by induction on the buildup of h. If i > k, then h is x-free, so t ≡ h
and we are done. Suppose i ≤ k. If h is of a form ψ(ω · f + g), we use Proposition 2.3
to see that no(f), g � h. In the interesting case, where h ≡ 2f · g and t ∈ Subxi+1(f), we

have no(t) � 2n−
· (i+1) · no(f), and by Proposition 2.2 we have no(f) � 2no(2f) � 2no(h).

Therefore, no(t) � 2n−
· i · no(h).

We turn to the proof of part 2. By part 1 we have no(t) � 2n−
· i ·no(hi). Since t is x-free

and h of bounded norm, we even have

no(t) � 2n−
· i · no(hi{x := 1}) � 2n−

· i · h0{x := 1},

which by Lemma 2.19 implies A.5. In order to show A.6, set ν := 2n · (δx0 h0)0. We show
by induction on the buildup of h ∈ Cx

i that if no(t) ≺ ν for all t ∈ Tx
i (h), then

no((δxi h)j) � szx(h) · ν.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 37

If h is x-free, we obtain no((δxi h)j) � no(h) + 1 � ν. Now suppose h is not x-free. The
case h ≡ xi is trivial, the case h ≡ f + g follows directly from the i.h., and in the remaining
cases notice that Tx

i+1(f),T
x
i (g) ⊆ Tx

i (h). For h ≡ 2f · g we obtain

no((δxi h)j) � 2no((δxi+1f)j) + no((δxi g)j) + 1,

which implies the claimed estimate since szx(h) = 2szx(f) + szx(g) + 1. The remaining
situation h ≡ ψ(ω · f + g) is handled similarly.

Part 3 is now easy to see. In the case j > n we apply Lemma 2.19 to obtain

no((δxh)j) = no(hj) � h0{x := 1} ≺ (δx0 h0)0 � (δxh)0.

For 0 < j ≤ n we apply A.6 to obtain

no((δxh)j) =

m∑

i=0

no((δxi hi)j) �

(
m∑

i=0

szx(hi)

)

· 2n · (δx0 h0)0 = (δxh)0.

Thus δxh is of bounded norm.

Proof of Lemma 2.22. For convenience we set k := lv(x), n := k + 1, m := lv(h), and
l := max{m,n}. We first show that the lemma is a consequence of the following

Claim. For h ∈ Cx
i , i ≤ n, we have

h ≺ (δxi h✷x)i. (A.7)

In order to derive the lemma from A.7, let i ≤ m. We distinguish between the following
three cases.

Case 1: n < i ≤ l. Then clearly hi ≡ (δxh✷x)i.

Case 2: 1 ≤ i ≤ n. We have

(δxi hi)j � (δxh)j

for i ≤ j ≤ n. Thus by Lemma 2.14, part 1,

(δxi hi ✷x)i � (δxh✷x)i,

as we may ignore components of δxh above the n-th. By A.7 we have hi ≺ (δxi hi✷x)i.

Case 3: i = 0. Here A.7 applies since we have

(δx0 h0 ✷x)0 = ψ(ω · (δx0 h0 ✷x)1 + (δx0 h0)0 + x0 + k)

≺ ψ(ω · (δxh✷x)1 + (δxh)0 + x0 + k)

= (δxh✷x)0

by Proposition 2.3, part 3, whose assumptions are easily checked: For all j ≤ n we have
(δx0 h0)j ≺ (δxh)j . Lemma 2.14, part 1, yields (δx0 h0 ✷x)1 ≺ (δxh✷x)1. By Lemma 2.15,
part 2, no((δx0 h0 ✷x)1) � F3(no((δ

xh✷x)1) + k).

We now prove Claim A.7 by induction on the definition of δxi . Assume first that h is
x-free. Then clearly h ≺ h+ 1 = (δxi h)i � (δxi h✷x)i. Otherwise we must have i ≤ k and
distinguish between the following four cases:

Case 1: h ≡ xi. h ≺ xi + 1 � (1✷x)i.

38 G. WILKEN AND A. WEIERMANN

Case 2: h ≡ f + g. Then we apply the i.h. and use Lemma 2.15, part 3:

h ≡ f + g ≺ (δxi f ✷x)i + (δxi g✷x)i

≺ (δxi h✷x)i.

Case 3: h ≡ 2f · g. Then i ≥ 1, and after applying the i.h. we use Lemma 2.16:

h ≡ 2f · g ≺ 2(δ
x

i+1f ✷x)i+1 · (δxi g✷x)i

� ((δxi+1f ✷x)✷ (δxi g✷x↾k))i

≺ (δxi h✷x)i.

Case 4: h ≡ ψ(ω · f + g). Then we have i = 0 and obtain

h ≺ ψ(ω · (δx1 f ✷x)1 + (δx0 g✷x)0) (see below)

= ψ(ω · (δx1 f ✷x)1 + ψ(ω · (δx0 g✷x)1 + (δx0 g)0 + x0 + k))

� ψ(ω · ((δx1 f ✷x)1 + (δx0 g✷x)1) + (δx0 g)0 + x0 + k)

� ψ(ω · (δx0 h✷x)1 + (δx0 h)0 + x0 + k) (see below)

= (δx0 h✷x)0.

The strict inequality follows from the i.h., using that

no(f) � F2(g) ≺ F2((δ
x
0 g✷x)0).

The last inequality is easily verified: In the case k > 0 Lemma 2.15, part 1, yields

(δx1 f ✷x)1 + (δx0 g✷x)1 ≺ (δx0 h✷x)1,

and for k = 0 both terms are equal. Using Lemma 2.15, part 2, we obtain

no((δx1 f ✷x)1),no((δ
x
0 g✷x)1) � F3(no((δ

x
0 h✷x)1) + k).

Clearly, we have (δx0 g)0 � (δx0 h)0.

A.4. Preparations for the proof of Corollary 4.2 in Section 4. Here we are going to
show Lemmata A.5 and A.8, where the former will be used in the proof of the latter. As a
preparation for the proof of Lemma A.5, recall the definition of szx in Definition 2.18. We
define the variable independent version sz to serve as another auxiliary function in order to
estimate the term complexity of ordinal terms occurring in our assignment. Note that we
have szx ≤ sz.

Definition A.3. sz(h) for h ∈ O is defined by

• sz(h) := 1 if h is a variable or constant.
• sz(h) := sz(f) + sz(g) + 1 if h is of a form either f + g or ψ(ω · f + g).
• sz(h) := 2sz(f) + sz(g) + 1 if h is of a form 2f · g. ✸

Lemma A.4. Suppose h ∈ Cx
i for some i ∈ IN. We have

sz((δxi h)j) ≤ 4sz(h)

for j ≤ lv(x) + 1.

Proof. The proof is by straightforward induction on the buildup of h, along the Definition
of δxi h.

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 39

Lemma A.5. Let G ∈ T and g := [[G]] be its canonical assignment. Setting m := lv(g) we
have

m∑

i=0

sz(gi) < 22(L(G) + 2lh(G)) =:M(G). (A.8)

Setting n := lv(x) + 1 and Ln(G) := max{n,L(G)} we have

Sx(g) < 22(Ln(G) + 1 + 2lh(G)). (A.9)

Proof. The proof of A.8 is by induction on lh(G). The second claim A.9 then follows from
the first one since n ≤ Ln(G).

Case 1: G is a constant or variable. Then the claim is trivial once we notice that
m ≤ L(G).

Case 2: G ≡ AB. Let a and b be the canonical assignments of A and B, respectively,
and set mA := lv(a), mB := lv(b). The vector c := a✷ b agrees with g up to component
m, and for mB < i ≤ mA we have ci = ai, hence by the i.h.

sz(ci) = sz(ai) < M(A).

By side induction on mB + 1−· i we show

sz(ci) < 22(mB+1−· i)(M(A) +M(B)) (A.10)

The case i = mB + 1 has already been taken care of. Suppose i ≤ mB . If i > 0 we have
sz(ci) = 2sz(ci+1) + sz(ai) + sz(bi) + 2, while sz(ci) = sz(ci+1) + sz(ai) + sz(bi) + 2(mB + 1)
for i = 0. In any case we obtain

sz(ci) < 22(mB−· i)+1(M(A) +M(B)) +M(A) +M(B)

< 22(mB+1−· i)(M(A) +M(B)).

Using A.10 the formula for the geometric series yields
mB∑

i=0

sz(ci) < 4mB+2(M(A) +M(B)),

hence, together with the i.h. applied to A
m∑

i=0

sz(gi) < (4L(G)+1 + 1)(M(A) +M(B))

< 22(L(G) + 2lh(G) − 1) · (22(L(G) + 2lh(A)) + 22(L(G) + 2lh(B)))

≤ (22(L(G) + 2lh(G)− 1))2

= M(G)

showing A.10 for application terms.

Case 3: G ≡ λY.F . Let f be the canonical assignment to F , set k := lv(f), and
l := lv(y) + 1. We have g = δyf + f{y := 1} and m = max{k, l}. Setting

M := 22(L(G) + 2lh(F)),

40 G. WILKEN AND A. WEIERMANN

by the i.h., A.9, applied to F we have

Sy(f) < 22(Ll(F) + 1 + 2lh(F))

≤ 22(L(G) + 1 + 2lh(F))

= M2

since Ll(F) = max{l,L(F)} ≤ L(G), and by the i.h., A.8, we have

k∑

j=0

sz(fj) < M(F) ≤M,

whence using Lemma A.4 we obtain

sz(gi) <

M2(4sz(f0) + 1) if i = 0

4M + k + sz(fi) + 2 if 1 ≤ i ≤ l

2sz(fi) + 2 if l < i ≤ m.

We may now generously estimate the sum of the above terms:
m∑

i=0

sz(gi) < M2(4sz(f0) + 1) + (4L(G) + 2)M + (L(G) + 2)2

< M2(4sz(f0) + 1) + (4L(G) + 3)M

< M2(4sz(f0) + 2)

< M4

= M(G)

which concludes the proof of Lemma A.5.

The following two lemmas will prepare the proof of Lemma A.8. Recall Definition A.1,
and for any h ∈ O let h̄ be the closure of h by replacing every variable in h with 1.

Lemma A.6. Suppose h ∈ Cx
k and i < j where i ≤ n := lv(x) + 1. Then we have

Subyi,j((δ
x
k h)i) ⊆ Subyk,j(h{x := 1}).

Proof. The proof is by induction on the buildup of h along the definition of the partial
operators δxk , k ∈ IN. If h is x-free, then we have (δxi h)i = h+ 1 if k = i while (δxk h)i = 1
if k 6= i, and the claim follows immediately. Now suppose that h is not x-free. We then
distinguish between the following cases.

Case 1: h is a variable or constant. Since i < j we then have Subyi,j((δ
x
k h)i) = ∅, so

there is nothing to show.
Case 2: h ≡ f + g. Then we have (δxk h)i = (δxk f)i + (δxk g)i + 1, and therefore

Subyi,j((δ
x
k h)i) = Subyi,j((δ

x
k f)i) ∪ Subyi,j((δ

x
k g)i)

since i < j. Thus we may directly apply the i.h.
Case 3: h ≡ 2f · g. Then (δxk h)i = 2(δxk+1f)i + (δxk g)i + 1, and we argue as in the

previous case.
Case 4: h ≡ ψ(ω · f + g). Here the case k 6= i is treated as the previous cases, so

assume k = i = 0, whence (δx0 h)0 = ψ(ω · f{x := 1}+ (δx0 g)0). We therefore have

Suby0,j((δ
x
0 h)0) = Suby1,j(f{x := 1}) ∪ Suby0,j((δ

x
k g)i)

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 41

since j > 0, and clearly

Suby1,j(f{x := 1}) ∪ Suby0,j(g{x := 1}) = Suby0,j(h{x := 1}),

applying the i.h. for g if necessary.

Lemma A.7.

(1) Let h ∈ Cx
i , n := lv(x)+1, j ∈ (0, n], and α ∈ (0, ε0) such that t̄ < α for all t ∈ Tx

i,j(h).
Then we have

(δxi h)j ≤ szx(h) · α.

(2) Let h ∈ Cx
0 , m ∈ (0, ω), and α ∈ (0, ε0) such that t̄ < m for all t ∈ Tx

0,0(h) and f̄ < α
for all f ∈ Subx0,1(h). Then we have

(δx0 h)0 < ψ(ω · szx(h) · α+ szx(h) ·m).

Proof. Part 1 is proved by induction on the buildup of h ∈ Cx
i . If h is x-free or h ≡ xi, the

claim follows immediately. Let us assume that h is not x-free. In the case h ≡ f + g the
claim directly follows from the i.h. for f and g. If h ≡ 2f · g or h ≡ ψ(ω · f + g), we have
Tx
i,j(h) = Tx

i+1,j(f) ∪ Tx
i,j(g), and straightforwardly apply the i.h. to f and g.

Part 2 is shown by induction on the buildup of h ∈ Cx
0 along the definition of δx0 h. If

h is x-free, then h ∈ Tx
0,0(h), and we have

(δx0 h)0 = h+ 1 ≤ m < ψ(ω · szx(h) · α+ szx(h) ·m).

Let us now assume that h is not x-free. The case h ≡ xσ0 is trivial. If h ≡ f + g, then using
Proposition 2.3 and the i.h. we may estimate straightforwardly as follows:

(δx0 h)0 = (δx0 f)0 + (δx0 g)0 + 1

< ψ(ω · szx(f) · α+ szx(f) ·m) + ψ(ω · szx(g) · α+ szx(g) ·m)

≤ ψ(ω · (szx(f) + szx(g)) · α+ (szx(f) + szx(g)) ·m)

< ψ(ω · szx(h) · α+ szx(h) ·m).

Finally, suppose h ≡ ψ(ω · f + g). Since f ∈ Subx0,1(h) we have f < α, and since h ∈ Cx
0 we

have no(f) � F2(g). By Lemma 2.19 we obtain

no
(
f
)
≤ F2 (g) < F2

(

(δx0 g)0

)

,

and using the i.h., Proposition 2.3 yields

(δx0 h)0 = ψ
(

ω · f + (δx0 g)0

)

< ψ(ω · α+ ψ(ω · szx(g) · α+ szx(g) ·m))

≤ ψ(ω · (szx(g) + 1) · α+ (szx(g) + 1) ·m)

≤ ψ(ω · szx(h) · α+ szx(h) ·m),

concluding the proof of Lemma A.7.

42 G. WILKEN AND A. WEIERMANN

Lemma A.8. Let G ∈ T , L := L(G), R := R(G), and for every subterm H of G set
MH := 2(L+ 1 + lh(H)) and define a vector αH of level L by

αH
i :=

2L+2−· i(MH −· i) if R < i ≤ L,

2R−· i(ω · 2L+2−· i(MH −· i)) if 1 ≤ i ≤ R,

ψ(ω · 2R−· 1(ω · 2L+1(MH))) if i = 0.

Then for every subterm H of G with canonical assignment h := [[H]] we have

h̄i < αH
i (A.11)

for i ≤ lv(h) =: m. If h ∈ Cy, then for all i ≤ m, all j ≤ L, and every t ∈ Subyi,j(hi) we
have

t̄ < αH
j . (A.12)

Proof. The lemma is proved by induction on lh(H).
Case 1: H is a variable or constant. Then the claims follow immediately. The subcase

H ≡ R is where infinite ordinals enter the picture.
Case 2: H ≡ AστBσ. Then h = a✷ b↾m where a and b are the canonical assignments

to A and B, respectively. Let n := lv(σ). We first show A.11. If i > n we have h̄i ≤ āi, and
the claim follows by the i.h. applied to A. Suppose i ≤ n, whence i < L. We argue by side
induction on n−· i.

• L > i > R: Then 0 < i ≤ n and hence

h̄i ≤ 2h̄i+1 · (āi + b̄i)

< 2L+2−· i(MH −· (i+ 1)) · (2L+2−· i(MA −· i) + 2L+2−· i(MB −· i))

< (2L+2−· i(MH −· (i+ 1)))2

< 2L+2−· i(MH −· i).

• R ≥ i ≥ 1: Suppose first that i = R. Then we have

h̄i < 2L+2−· i(MH −· (i+ 1)) · (ω · 2L+2−· i(MA −· i) + ω · 2L+2−· i(MB −· i))

< 2L+2−· i(MH −· (i+ 1)) · (ω · 2L+2−· i(MH −· (i+ 1)))

< ω · 2L+2−· i(MH −· i).

We now consider the case i < R where we estimate as follows.

h̄i < 2R−· i(ω · 2L+2−· (i+1)(MH −· (i+ 1))) ·

(2R−· i(ω · 2L+2−· i(MA −· i)) + 2R−· i(ω · 2L+2−· i(MB −· i)))

< 2R−· i(ω · 2L+2−· (i+1)(MH −· (i+ 1))) ·

2R−· i(ω · 2L+2−· i(MH −· (i+ 1)))

< 2R−· i(ω · 2L+2−· i(MH −· i)).

• i = 0: In case of R = 0 we obtain using Proposition 2.3

h̄0 < ψ(ω · 2L+1(MH −· 1) + ψ(ω2 · 2L+1(MA)) + ψ(ω2 · 2L+1(MB)) + n)

< ψ(ω2 · 2L+1(MH)).

DERIVATION LENGTHS CLASSIFICATION OF GÖDEL’S T 43

If R > 0 we even have R ≥ 2, and using again Proposition 2.3 we obtain

h̄0 < ψ(ω · 2R−· 1(ω · 2L+1(MH −· 1)) +

ψ(ω · 2R−· 1(ω · 2L+1(MA))) + ψ(ω · 2R−· 1(ω · 2L+1(MB))) + n)

< ψ(ω · 2R−· 1(ω · 2L+1(MH))).

This finishes the verification of A.11, and we proceed with proving A.12. If h ∈ Cy, then
we must also have a, b ∈ Cy and may apply the respective i.h.’s. Suppose t ∈ Subyi,j(hi),

whence i ≤ j, as the set Subyi,j(hi) is empty if i > j. In order to show t̄ < αH
j we employ

an induction on j −· i. If i = j we clearly have t̄ ≤ h̄i < αH
i by A.11. Suppose i < j. In the

case i > n we use the i.h. applied to A. If on the other hand i ≤ n, then we have

t ∈ Subyi+1,j(hi+1) ∪ Subyi,j(ai) ∪ Subyi,j(bi),

and in each case t̄ < αH
j follows using the i.h. since clearly αA

j , α
B
j < αH

j .

Case 3: H ≡ λXσ.F τ . Then h = δxf+f{x := 1} where f := [[f]], andm = max{n, l}
where n := lv(x) + 1 and l = lv(f). We first show A.11, where we distinguish between the
following three cases.

• n < i ≤ m. Then we have hi = 2fi, and the claim follows easily from the i.h. for F .
• 1 ≤ i ≤ n. By part 1 of Lemma A.7 and the i.h. for F we have

(δxk fk)i ≤ szx(fk) · α
F
i

for every k ≤ l, which yields

h̄i ≤

(
l∑

k=0

szx(fk) + 1

)

· αF
i ≤ 22(L+ 2lh(F)) · αF

i

by A.8 of Lemma A.5. In case of i > R we may now estimate

h̄i ≤ 22(L+ 2lh(F)) · 2L+2−· i(MF −· i)

< (2L+2−· i(MF −· i))2

< 2L+2−· i(MH −· i)

= αH
i ,

whereas in case of i ≤ R we estimate

h̄i ≤ 22(L+ 2lh(F)) · 2R−· i(ω · 2L+2−· i(MF −· i))

< 2R−· i(ω · 2L+2−· i(MH −· (i+ 1)))

< αH
i .

• i = 0. Since in the case R = 0 the argumentation is easier, let us assume that R > 0. By
Lemma A.5 we have

szx(f0),S
x(f) < 22(L+ 1 + 2lh(F)) =: K,

and relying on the i.h. for F we obtain using part 2 of Lemma A.7

(δx0 f0)0 < ψ(ω · szx(f0) · α
F
1 + szx(f0) · α

F
0),

44 G. WILKEN AND A. WEIERMANN

which, using Proposition 2.3, allows for the following estimation:

h̄0 = Sx(f) · (δx0 f0)0 + f̄0

< K · ψ(ω ·K · αF
1 +KαF

0)

≤ ψ(ω ·K2 · αF
1 +K2αF

0)

< ψ(ω · 2K2 · 2R−· 1(ω · 2L+1(MF)))

< ψ(ω · 2R−· 1(ω · 2L+1(MH)))

= αH
0 .

In order to verify A.12 suppose t ∈ Subyi,j(hi). In the case i = j we obtain t̄ ≤ h̄i < αH
i

from A.11 by the monotonicity properties of +, ·, and ψ. Assume i < j. Then we either
have t ∈ Subyi,j(fi{x := 1}) where i ≤ l, or i ≤ n and

t ∈ Subyi,j((δ
x
k fk)i)

for some k ≤ l, which is 0 in the case i = 0, and Lemma A.6 yields t ∈ Subyk,j(fk{x := 1}),

hence k ≤ j. If y ≡ x, we must have k = j, t ≡ fj{x := 1}, and therefore t̄ ≤ αF
j by the

i.h. for F . Now assume y 6≡ x. Then we have

Subyk,j(fk{x := 1}) = Subyk,j(fk){x := 1},

and t̄ ≤ αF
j follows from the i.h. for F . The case t ∈ Subyi,j(fi{x := 1}) is treated in the

same way.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	Preliminary Remarks

	1. Typed -Calculus with Recursion
	1.1. Types and Levels
	1.2. Terms, Subterms, Parse Trees, Substitution, -Equivalence
	1.3. Equivalence and R-Reduction
	1.4. Extension to T and R
	1.5. Reduction Trees
	1.6. Assignment of Ordinals to Terms of T

	2. Ordinal Terms and Vectors
	2.1. Ordinal Terms
	2.2. Ordinal Vectors
	2.3. The Operator
	2.4. The Operators x x x x

	3. Assignment of Ordinal Vectors to Terms
	3.1. Assignment Derivations
	3.2. The Main Theorem.
	3.3. Tying in with Subsection 1.6.

	4. Derivation Lengths Classification
	Acknowledgements
	References
	Appendix A. Proofs omitted in Sections 2 and 4
	A.1. Proofs in Subsection 2.1
	A.2. Proofs in Subsection 2.3
	A.3. Proofs in Subsection 2.4
	A.4. Preparations for the proof of Corollary 4.2 in Section 4

