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Abstract. In 2009, Hancock, Pattinson and Ghani gave a coalgebraic characterisation
of stream processors AN → BN drawing on ideas of Brouwerian constructivism. Their
stream processors have an intensional character; in this paper, we give a corresponding
coalgebraic characterisation of extensional stream processors, i.e., the set of continuous
functions AN → BN. Our account sites both our result and that of op. cit. within the
apparatus of comodels for algebraic effects originating with Power–Shkaravska. Within
this apparatus, the distinction between intensional and extensional equivalence for stream
processors arises in the same way as the the distinction between bisimulation and trace
equivalence for labelled transition systems and probabilistic generative systems.

1. Introduction

As is well known, the type of infinite streams of elements of some type A may be defined to
be the final coalgebra νX.A×X. If types are mere sets, then this coalgebra is manifested
as the set AN of infinite lists of A-elements, with the structure map

α : ~a 7→ (a0, ∂~a) where ∂(a0, a1, a2, . . . , ) = (a1, a2, . . . ) . (1.1)

Of course, the coalgebra structure describes the corecursive nature of streams, but also
captures their sequentiality: an A-stream is first an A-value, and then an A-stream.

If A and B are types, then an A-B-stream processor is a way of turning an A-stream
into a B-stream. If types are sets, then the crudest kind of stream processor would simply
be a function f : AN → BN; however, it is more computationally reasonable to restrict to
those f which are productive, in the sense that determining each B-token of the output
should require examining only a finite number of A-tokens of the input.

The productive functions f : AN → BN are in fact precisely the continuous ones for
the prodiscrete (= Baire) topologies on AN and BN. While this representation of stream
processors is mathematically smooth, it fails to make explicit their sequentiality: we should
like to see the fact that determining each successive token of the output B-stream requires
examining successive finite segments of the input A-stream. Much as for streams themselves,
this can be done by presenting stream processors as a final coalgebra.
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Such a presentation was given in [HPG09]. Therein, the type of A-B-stream processors
was taken to be the final coalgebra νX. TA(B ×X), where TA(V ) = µX. V + XA; and it
was explained how each element of this type encodes a continuous function AN → BN, and
how, conversely, each such continuous function yields an element of this type. An interesting
aspect of the story is that these assignments are not mutually inverse: distinct elements of
νX. TA(B ×X) may represent the same continuous function, so that elements of this type
are really intensional representations of stream-processing algorithms.

While there are many perspectives from which this is a good thing, it leaves open the
question of whether there is a coalgebraic representation for extensional stream processors,
i.e., for the set of continuous functions AN → BN. In this paper, we show that there is:

Theorem 1.1. Let A and B be sets. The set of continuous functions AN → BN is the
underlying set of the terminal B-ary comagma in the category of A-ary magmas.

In this result, an A-ary magma is a set X with an operation ξ : XA → X satisfying
no further axioms. More generally, we can speak of A-ary magmas in any category C with
products; while, if C is a category with coproducts, we can define an A-ary comagma in
C to be an A-ary magma in Cop. Explicitly, this involves an object X ∈ C and a map
X → X + · · ·+X into the coproduct of A copies of X, subject to no further conditions.

On the face of it, our Theorem 1.1 has no obvious relation to [HPG09], nor to anything
resembling computation. Thus, the broader contribution of this paper is to site both the ideas
of [HPG09] and our Theorem 1.1 within the well-established machinery of comodels [PS04,
PP08], as we now explain.

The category-theoretic approach to computational effects originates in [Mog91]: given a
monad T on a category of types and programs, we view elements of T (V ) as computations
with side-effects from T returning values in V . This idea was refined in [PP02]; rather
than considering monads simpliciter, we generate them from algebraic theories whose basic
operations are the computational primitives for the effects at issue. A key example, for us,
is the theory TA of input from an alphabet A, which is freely generated by a single A-ary
operation read.

The approach via algebraic theories has the virtue of giving a good notion of model in
any category with finite powers. In particular, one has comodels, which are models in the
opposite of the category of sets, and a key insight of [PS04] is that comodels of a theory
T can be seen as coalgebraic objects for evaluating T-computations to values. We recall
these developments in detail in Section 2, and in particular, we see that a TA-comodel is an
A× (–)-coalgebra, and that the final comodel is the set of A-streams.

A range of authors [PP08, MS14, PS15, PS16, Uus15, KRU20, AB20, GMS20, UV20,
Gar21] have taken this attractive perspective on operational semantics further. Particularly
salient for us is the concept, due to [AB20, KRU20, UV20] of a residual comodel. Given
theories T and R, an R-residual T-comodel is, formally speaking, a comodel of T in the Kleisli
category of R but is, practically speaking, a coalgebraic entity for evaluating or compiling T-
computations into R-computations. In particular, we have TA-residual TB-comodels, which
translate requests for B-input into requests for A-input, and a little thought shows that this
is exactly the rôle filled by an A-B-stream processor. In fact, the final coalgebra of [HPG09]
turns out to be precisely the final TA-residual TB-comodel ; in Sections 3 and 4, we explain
this, and show how other aspects of [HPG09] such as the composition of intensional stream
processors flow naturally.
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To get from here to our Theorem 1.1 requires a new import from category-theoretic
universal algebra: the notion of a bimodel [Fre66, TW70, BH96]. An R-T-bimodel is a
comodel of T in the category of Set-models of R. Since this latter category has the Kleisli
category as a full subcategory, bimodels are a generalisation of residual comodels—one
which, roughly speaking, allows additional quotients to be taken. These quotients are just
what one needs to collapse the intensional stream processors of [HPG09] to their underlying
continuous functions. We develop this theory in Section 5, culminating in our Theorem 1.1
which we now recognise as describing the final TA-TB-bimodel.

An obvious question at this point is whether we have similar characterisations of the
final bimodel on replacing TA and TB by more elaborate algebraic theories. One step in
this direction is given in [Yos22], which characterises the final R-T-bimodel whenever R and
T are free algebraic theories, i.e., theories generated by operations subject to no equations.

A different direction of generalisation points towards labelled transition systems and
generative probabilistic systems [vGSST90]. Indeed, (non-terminating, finitely branching)
labelled transition systems with alphabet A are precisely P+

f -residual TA-comodels, for
P+
f the theory of binary non-deterministic choice; while (finitely supported) generative

probabilistic systems with alphabet A are D-residual TA-comodels, for D the theory of binary
probabilistic choice. As is well known, in these examples, the final residual TA-comodel
captures states up to bisimulation equivalence. What is perhaps less well known is that the
final bimodel captures states up to trace equivalence; indeed, as shown in [Gar18, §7], the
final P+

f -TA-bimodel is the set of closed subsets of AN; while the final D-TA-bimodel is the
set of probability measures on AN. This fact provides an alternative perspective on the trace
semantics of [HJS07] (which itself builds on [PT99]) in which an object of traces is found as
a final object among not all bimodels, but among all free bimodels; in future work, we will
give a more careful comparison of the two notions of trace.

From this perspective, then, the continuous function encoded by an intensional stream
processor can be seen as its “trace”, and with this in mind, the final contribution of this paper
in Section 6 is to explain from a comodel-theoretic perspective the fact that intensional stream
processors admit a procedure of “normalisation-by-trace-evaluation”, which normalises each
intensional stream processor to a maximally lazy stream processor with the same trace; this
is a particular instantiation of a more general schema which is explored further in [Gar18].

2. Streams as a final comodel

In this background section, we recall how algebraic theories present notions of effectful
computation, how comodels of a theory furnish environments appropriate for evaluating
such computations, and how the type of streams arises as a final comodel.

Definition 2.1 (Algebraic theory). A signature comprises a set Σ of function symbols, and
for each σ ∈ Σ a set |σ|, its arity. Given a signature Σ and a set V , we define the set Σ(V )
of Σ-terms with variables in V by the inductive clauses

v ∈ V =⇒ v ∈ Σ(V ) and σ ∈ Σ, t ∈ Σ(V )|σ| =⇒ σ(t) ∈ Σ(V ) .

An equation over a signature Σ is a formal equality t = u between terms in the same set of
free variables. A (algebraic) theory T comprises a signature and a set E of equations over it.
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Definition 2.2 (T-terms). Given a signature Σ and terms t ∈ Σ(V ) and u ∈ Σ(W )V , we
define the substitution t(u) ∈ Σ(W ) by recursion on t:

v ∈ V =⇒ v(u) = uv and σ ∈ Σ, t ∈ Σ(V )|σ| =⇒ (σ(t))(u) = σ(λi. ti(u)) . (2.1)

Given a theory T with signature Σ, we define T-equivalence as the smallest family of
substitution-congruences ≡T on the sets Σ(V ) such that t ≡T u for all equations t = u of T.
The set T (V ) of T-terms with variables in V is Σ(V )/≡T.

When a theory T is seen as specifying a computational effect, T (V ) describes the set of
computations with effects from T returning a value in V .

Example 2.3 (Non-deterministic choice). The theory P+
f of non-deterministic choice com-

prises a single binary function symbol ∨ (written in infix notation) together with the
equations

x ∨ y = y ∨ x x ∨ x = x (x ∨ y) ∨ z = x ∨ (y ∨ z) .

The set of terms P+
f (V ) can be identified with the set of non-empty finite subsets of V ,

where the subset {v1, . . . , vn} corresponds to the term v1 ∨ · · · ∨ vn. We view this term as
encoding a program which chooses non-deterministically between one of the return values
v1, . . . , vn.

Example 2.4 (Probabilistic choice). The theory P+
f of probabilistic choice comprises a

family of binary function symbols +r indexed by r ∈ (0, 1) together with the equations

x+r y = y +r∗ x x+r x = x (x+r y) +s z = x+rs (y +r∗s/(rs)∗ z)

where we write r∗ for 1− r. The set of terms D(V ) can be identified with the set of finitely
supported discrete probability distributions on V ; we see this as a program which chooses
probabilistically among possible return values in V .

Example 2.5 (Input). Given a set A, the theory TA of A-valued input comprises a single
A-ary function symbol read, satisfying no equations, whose action we think of as:

(t : A→ X) 7→ let read() be a. t(a) .

The set of terms TA(V ) is, as in the introduction, the initial algebra µX. V +XA, whose
elements may be seen combinatorially as A-ary branching trees with leaves labelled in V ; or
computationally as programs which request A-values from an external source and use them
to determine a return value in V . For example, when A = N, the program which requests
two input values and returns their sum is presented by

let read() be n. let read() be m.n+m ∈ T (N) . (2.2)

We now define the models of an algebraic theory. In the definition, we say that a
category C has powers if it has all set-indexed self-products XA := Πa∈AX.

Definition 2.6 (Σ-structure, T-model). Let Σ be a signature. A Σ-structure X in a category

C with powers is an object X ∈ C with operations JσKX : X |σ| → X for each σ ∈ Σ. For
each t ∈ Σ(V ) the derived operation JtKX : XV → X is then determined by the recursive
clauses:

JvKX = πv and Jσ(t)KX = XV (JtiKX)i∈|σ|−−−−−−−→ X |σ|
JσKX−−−→ X . (2.3)

Given a theory T = (Σ, E), a T-model in C is a Σ-structure X which satisfies JtKX = JuKX
for all equations t = u of T. The unqualified term “model” will mean “model in Set”.



Vol. 19:1 STREAM PROCESSORS AND COMODELS 2:5

A homomorphism f : X → Y of T-models in C is a C-map f : X → Y such that for all
σ ∈ Σ we have JσKY ◦ f |σ| = f ◦ JσKX . We write Mod(T, C) for the category of T-models in
C, and Mod(T) for the models in Set .

The set of computations T (V ) has a structure of T-model T (V ) with operations given
by substitution; and as is well known, this structure is in fact free:

Lemma 2.7. The inclusion of variables ηV : V → T (V ) exhibits T (V ) as the free T-model
on V . That is, for any T-model X and any function f : V → X, there is a unique T-model
homomorphism f † : T (V )→X with f † ◦ ηV = f . Explicitly, f †(t) = JtKX(λv. f(v)).

Taking the full subcategory of Mod(T) on the free T-models yields the well known Kleisli
category of T, which we typically present as follows:

Definition 2.8 (Kleisli category). The Kleisli category Kl(T) of a theory T has sets as
objects; hom-sets Kl(T)(A,B) = Set(A, TB); the identity at A being ηA : A → TA; and
composition g, f 7→ g† ◦ f with g† as in Lemma 2.7 for the free T-model structures. The
free functor FT : Set → Kl(T) is the identity on objects and sends f ∈ Set(X,Y ) to
ηY ◦ f ∈ Kl(T)(X,Y ). The fully faithful comparison functor IT : Kl(T) → Mod(T) maps
A 7→ TA and f 7→ f †.

The Kleisli category captures the compositionality of computations with effects from
T, and allows us to draw the link with Moggi’s monadic semantics [Mog91]; indeed, the
free functor FT : Set → Kl(T) and its right adjoint Kl(T)(1, –) : Kl(T) → Set generate an
associated monad T on Set and we have that Kl(T) ∼= Kl(T) under Set .

So far we have said nothing about non-free T-models. It is a basic fact that every such
model can be obtained from a free one by quotienting by some congruence, and so can been
seen as a set of computations identified up to some notion of program equivalence. This is
important, for example, in [Lev03], and will be important for us in §5 below.

We now turn from models to the dual notion of comodel. We say a category C has
copowers if if each set-indexed self-coproduct A ·X = Σa∈AX exists in C.
Definition 2.9 (T-comodel). Let T be a theory. A T-comodel in a category C with copowers

is a model of T in Cop, comprising an object S ∈ C and co-operations JσKS : S → |σ|·S obeying
the equations of T. The unqualified term “comodel” will mean “comodel in Set”. We write
Comod(T, C) for the category of T-comodels in C, and Comod(T) for the comodels in Set .

As explained in [PS04, PP08], when a theory T presents a notion of computation, its
comodels provide deterministic environments for evaluating computations with effects from
T.

Example 2.10. A comodel S of the theory of A-valued input is a state machine that answers
requests forA-characters; it comprises a set of states S and a map JreadKS = (g, n) : S → A×S
giving for each s ∈ S a next character g(s) ∈ A and a next state n(s) ∈ S.

While the comodels of the preceding example are just A× (–)-coalgebras, the comodel
perspective adds something to this. The general picture is that a T-comodel allows us
to evaluate T-computations t ∈ T (V ) down to values in V via the derived operations of
Definition 2.6. Indeed, given a comodel S and a term t ∈ T (V ), we have the derived

co-operation JtKS : S → V × S which, unfolding the definition, is given by the clauses:

v ∈ V =⇒ JvKS (s) = (v, s)

and σ ∈ Σ, t ∈ T (V )|σ| =⇒ Jσ(t)KS (s) = JtiKS (s′) where JσKS (s) = (i, s′) .
(2.4)
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The idea is that applying JtKS to a starting state s ∈ S will yield the value v ∈ V and final
state s′ ∈ S obtained by running the computation t ∈ T (V ), using the co-operations of the
comodel S to answer the requests posed by the corresponding operation symbols of T.

Example 2.11. For a comodel (g, n) : S → A × S of A-valued input, the clauses (2.4)
become

v ∈ V =⇒ JvKS (s) = (v, s) t ∈ T (V )A =⇒ Jread(t)KS (s) = Jt(g(s))KS (n(s)) .

So if we consider A = N, the term t = read(λn. read(λm. n+m)) ∈ T (N) from (2.2), and the

comodel S with S = {s, s′, s′′} and JreadKS = (g, n) : S → N× S given by the upper line in:

JreadKS : s 7→ (3, s′) s′ 7→ (6, s′′) s′′ 7→ (11, s′′)

JtKS : s 7→ (9, s′′) s′ 7→ (17, s′′) s′′ 7→ (22, s′′) ,

then JtKS : S → N× S is given by the lower line. For example, we calculate that JtK (s) =
Jread(λn. read(λm. n+m))K (s) = Jread(λm. 3 +m)K (s′) = J3 + 6K (s′′) = (9, s′′).

As is idiomatic, the final comodel of a theory describes “observable behaviours” that
states of a comodel may possess. To make this precise, we define states s1 ∈ S1 and s2 ∈ S2

of two T-comodels to be operationally equivalent if running any T-computation t ∈ T (V )
starting from the state s1 of S1 or from the state s2 of S2 gives the same value; i.e.,

if JtKS1 (s1) = (v1, s
′
1) and JtKS2 (s2) = (v2, s

′
2) then v1 = v2 .

Lemma 2.12. States s1 ∈ S1 and s2 ∈ S2 of two T-comodels are operationally equivalent if
and only if they become equal under the unique maps S1 → F ← S2 to the final T-comodel.

Proof. This is [Gar21, Proposition 5.3].

So in the spirit of [KL09, Theorem 4], we may (if we adequately handle the set-theoretic
issues) characterise the final T-comodel as the set of all possible states of all possible comodels,
modulo operational equivalence. However, a more algebraic approach is also possible. The
following is [Gar21, Definition 5.5]:

Definition 2.13 (Admissible behaviour). An admissible behaviour β for a theory T is a
family of functions βV : TV → V , as V ranges over sets, such that

v ∈ V =⇒ βV (v) = v and t ∈ TV, u ∈ (TW )V =⇒ βW (t(u)) = βW (t� uβV (t)) ,

where for terms f ∈ T (A) and g ∈ T (B), we write f � g for the term f(λa. g) ∈ T (B).

An admissible behaviour is a way of evaluating T-computations to values, and from this
perspective, the two axioms are quite intuitive: for example, the second says that, if the
result of evaluating t ∈ TV is v ∈ V , then the result of evaluating t(u) ∈ TW coincides with
that of evaluating the computation which sequences t (discarding the return value) into uv.

Example 2.14. Any state s of a T-comodel S yields an admissible T-behaviour βs, where
for t ∈ TV we define βs(t) to be the first component of JtKS(s) ∈ V × S.

Proposition 2.15. The final T-comodel of a theory T can be described as the set F of
admissible behaviours, under the co-operations

JσKF : β 7→ (β(σ), ∂σβ) (2.5)
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where ∂σβ is the admissible behaviour given by (∂σβ)(t) = β(σ � t). For any T-comodel S,
the unique comodel homomorphism S → F sends s to βs as in Example 2.14.

Proof. This is [Gar21, Proposition 5.9].

For A-valued input, the admissible behaviours can be identified (as in Example 5.10
of loc. cit.) with streams of A-values: given an admissible behaviour β, the corresponding
stream of values is

(β(read), β(read� read), β(read� read� read), . . . ) .

Under this identification, the co-operation JreadKF of (2.5) is easily seen to coincide with
the structure map (1.1) on the set of A-streams: and in this way, we re-find the familiar
construction of the final TA-comodel as the set of A-streams under (1.1).

The comodel view also allows us to capture the topology on the space of streams. Indeed,
any comodel of a theory has a natural prodiscrete topology (i.e., topologised as a product
of discrete spaces), whose basic open sets describe those states which are indistinguishable
with respect to a finite set of T-computations. (This definition appears to be novel.)

Definition 2.16 (Operational topology). Let S be a T-comodel. The operational topology
on S is generated by sub-basic open sets

[t 7→ v] := {s ∈ S : JtKS (s) = (v, s′) for some s′} for all t ∈ T (V ) and v ∈ V .

Lemma 2.17. The operational topology makes any T-comodel into a topological comodel.
In the case of the final T-comodel, this yields the final topological comodel.

Of course, a topological comodel is simply a comodel in the category Top of topological
spaces and continuous maps.

Proof. Let S be a T-comodel. Each co-operation JσKS : S → |σ| · S is continuous for the
operational topology: for indeed, a sub-basic open set of the codomain is {i} × [t 7→ v], and

its inverse image under JσKS is the open set

{ s ∈ S | ∃s′, s′′. JσKS (s) = (i, s′) and JtKS (s′) = (v, s′′)} = [σ 7→ i]∩ [(σ � t) 7→ v] , (2.6)

where the equality comes from the fact that, if JσKS (s) = (i, s′), then JtKS (s′) = Jσ � tKS (s).
So the operational topology makes each comodel S into a topological comodel. We now

show that, in the case of the final comodel F , this yields the final topological comodel. Indeed,
if S is any topological comodel, we have by finality of F qua Set-comodel a unique comodel
homomorphism β(–) : S → F sending s to the admisssible behaviour βs, and we need only
show this is continuous. But the inverse image under β(–) of the subbasic open [t 7→ v] ⊆ F
is the set {s ∈ S : βs(t) = v} = {s ∈ S : JtKS (s) = (v, s′) for some s′ ∈ S}, which is open as

the inverse image of {v} × S ⊆ V × S under the continuous map JtKS : S → V × S.

In the case of the theory of A-valued input, the subbasic open set [t 7→ v] ⊆ AN of the
final comodel can be defined by induction on t ∈ TV :

[w 7→ v] =

{
AN if w = v

∅ if w 6= v ∈ V
and [read(λa. ta) 7→ v] = {aW : a ∈ A,W ∈ [ta 7→ v]} .

From this description, we re-find the fact that the final topological comodel is AN endowed
with the product topology for N copies of the discrete space A.
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3. Stream processors as residual comodels

In this section, we recall a more general kind of comodel considered by, among oth-
ers, [AB20, KRU20, UV20], which allows for stateful translations between different notions
of computation. We then explain how this notion allows us to encode stream processors in
the sense of [HPG09] and also their composition.

Definition 3.1 (Residual comodel). Let T and R be theories. An R-residual T-comodel is
a comodel of T in the Kleisli category Kl(R).

The nomenclature “residual” comes from [KRU20, §5.3], and we will explain the connec-
tion to loc. cit. in Proposition 3.13 below. For now, let us spell out in detail what a residual
comodel S involves. First, there is an underlying set of states S. Next, we have for each
operation σ in the signature of T a basic co-operation JσKS : S → R(|σ| × S) assigning to

each state s ∈ S an R-computation JσKS(s) returning values in |σ|×S—where, as before, we
think of these two components as providing a value answering the request posed by σ, and a
next state. Now we recursively determine a derived co-interpretation JtKS : S → R(V × S)
for each t ∈ T (V ) via:

v ∈ V ⊆ T (V ) =⇒ JvKS (s) = (v, s) ∈ V × S ⊆ R(V × S)

and σ ∈ Σ, t ∈ T (V )|σ| =⇒ Jσ(t)KS(s) = JσKS(s)
(
λ(i, s′). JtiKS(s′)

)
,

(3.1)

and the final requirement is that these derived operations must satisfy the equations of T.

Remark 3.2. In the second line of (3.1), the element JσKS (s) ∈ R(|σ| × S) is an R-term
with variables in JσK × S; and substituting each variable (i, s′) ∈ JσK × S therein by the

R-term JtiKS (s′) ∈ R(V ) gives the value of Jσ(t)KS (s) ∈ R(V ). This amounts to threading
R-computations together by monadic binding ; in Haskell notation, we would write:

Jσ(t)KS (s) = do (i, s′)← JσKS (s)

return JtiKS (s′).

Example 3.3. A comodel of the theory TB of B-valued input residual on the theory P+
f

of non-deterministic choice comprises a set of states S, and a function γ : S → P+
f (B × S):

thus, a non-terminating, finitely branching labelled transition system.

Example 3.4. A comodel of the theory TB of B-valued input residual on the theory D of
probabilistic choice comprises a set of states S, and a function γ : S → D(B × S): thus, a
finitely branching probabilistic generative system in the sense of [vGSST90].

However, for us the key example is the following one:

Example 3.5. A comodel of the theory TB of B-valued input residual on the theory TA of
A-valued input comprises a set of states S, and a function γ : S → TA(B × S) assigning to
each state s ∈ S a program which uses some number of A-tokens from an input stream to
inform the choice of an output B-token and a new state in S.

It is easy to see how each state s0 of such a comodel should encode a stream processor
AN → BN: given an input stream ~a ∈ AN, we consume some initial segment a0, . . . , ak to
answer the requests posed by the program γ(s0), so obtaining an element b0 ∈ B and a
new state s1. We now repeat starting from s1 ∈ S and the remaining part ∂k~a of the input
stream, to obtain b1 and s2 while consuming ak+1, . . . , a`; and so on coinductively. This
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description was made mathematically precise in [HPG09, §3.1], but in fact we can obtain it
in a principled comodel-theoretic manner via (a special case of) a notion given in [PP08,
Appendix].

Definition 3.6 (Tensor of a residual comodel with a comodel). Let T and R be theories.
Let S be an R-residual T-comodel, and let M be an R-comodel. The tensor product S ·M
is the T-comodel with underlying set S ×M and co-operations

JσKS·M : S ×M JσKS×M−−−−−→ R(|σ| × S)×M (t,m) 7→JtKM (m)−−−−−−−−−−→ |σ| × S ×M . (3.2)

This definition makes intuitive sense: given a state machine for translating T-computations
into R-computations, and one for executing R-computations, it threads them together to
yield a state machine for executing T-computations. We will make this justification rigorous
in Definition 3.14 below, but for the moment let us simply assume its reasonability and give:

Definition 3.7 (Trace). Let S be a TA-residual TB-comodel. The trace of a state s ∈ S
is the function tr(s) : AN → BN obtained by partially evaluating at s the unique map of
TB-comodels S · AN → BN, where AN and BN are endowed with their final comodel
structures.

We now unfold this definition. Firstly, for any term t ∈ TA(V ), the derived co-operation

JtKA
N
(~a) : AN → V ×AN is defined recursively by

JvKA
N
(~a) = (v,~a) and Jread(t)KA

N
(~a) = Jta0K

AN
(∂~a) . (3.3)

If we view t as an A-ary branching tree with leaves labelled in V , then JtKA
N
(~a) is the result

of walking up the tree from the root, consuming an element of ~a at each interior node to
determine which branch to take, and returning at a leaf the V -value found there along with
what remains of ~a.

Now, in terms of this, the TB-comodel structure of S ·AN is given by

S ×AN → B × S ×AN (s,~a) 7→ Jγ(s)KA
N
(~a) ,

where γ : S → TA(B × S) is the residual comodel structure of S. This function takes a state
s0 and stream ~a to the triple (b0, s1, ∂

k~a) obtained by walking up k nodes of the tree γ(s)
to the leaf (b0, s1). If we view this comodel structure as a triple of maps

hd : S ×AN → B next : S ×AN → S tl : S ×AN → AN

then we can say, finally, that the trace tr(s) : AN → BN of s ∈ S is given coinductively by:(
tr(s)(~a)

)
0

= hd(s,~a) ∂
(
tr(s)(~a)

)
= tr(next(s,~a))(tl(s,~a)) .

Comparing this construction with that of [HPG09, §3.1], done there with bare hands, we
find that they are exactly the same: the derived co-operations JtK of (3.3) are the functions
eat t of loc. cit., while our trace function tr is their function eat∞.

We have thus shown that each state s of a TA-residual TB-comodel encodes a function
tr(s) : AN → BN; but for these functions to be reasonable stream processors, they should be
continuous for the profinite topologies. While this may be shown with little effort, we may
in fact see it without any effort via a comodel-theoretic argument. We first need:

Definition 3.8 (Tensor of a residual comodel and a topological comodel). Let T and R
be theories, let S be an R-residual T-comodel, and M a topological R-comodel. The
tensor product S ·M is the topological T-comodel with underlying space S ·M and co-
operations (3.2).
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Once again, the justification for this definition will be given below; assuming it for
now, the desired continuity of each tr(s) is immediate. For indeed, viewing AN and BN as
final topological comodels with the profinite topology, there is a unique map of topological
TB-comodels S ·AN → BN. Its underlying function is the unique map of Set-comodels from
Definition 3.7, but the extra information we now gain is the continuity of this map—which
says precisely that each tr(s) : AN → BN is continuous, as desired.

The comodel perspective allows us also to say something about composition of stream
processors. Given a TA-residual TB-comodel S, whose states encode the continuous functions
tr(s) : AN → BN for each s ∈ S, and a TB-residual TC-comodel P , whose states encode the
continuous functions tr(p) : BN → CN for each p ∈ P , we may define the tensor product
P · S, which is a TA-residual TC-comodel whose states encode precisely the continuous
functions tr(p) ◦ tr(s) : AN → CN for s ∈ S and p ∈ P . The general definition is as follows;
again, this will be justified formally by Definition 3.14 below.

Definition 3.9 (Tensor product of two residual comodels). Let T, R and V be theories, let
S be an R-residual T-comodel and let P be a T-residual V-comodel. The tensor product
P · S is the T-residual V-comodel with underlying set P × S and co-operations

JσKP ·S : P × S JσKP×S−−−−−→ T (|σ| × P )× S (t,s)7→JtKS(s)−−−−−−−−→ T (|σ| × P × S) .

When in this definition, S is a TA-residual TB-comodel and P is a TB-residual TC-
comodel, the tensor P · S is the TA-residual TC-comodel with underlying set P × S and
structure map

JreadKP ·S : P × S JreadKP×S−−−−−−−→ TB(C × P )× S (t,s)7→JtKS(s)−−−−−−−−→ TA(C × P × S) . (3.4)

To understand this, we must now unfold the definition of JtKS , which is given by structural
recursion over TB(C × P ) as in (3.1):

J(c, p)KS (s) = (c, p, s) for (c, p) ∈ C × P ⊆ TB(C × P )

Jread(λb. tb)KS (s) = JreadKS (s)
(
λ(b, s′). JtbKS (s′)

)
for t ∈ TB(C × P )B.

(3.5)

Here, in the second clause, JreadKS (s) is a term in TA(B×S), into which we are substituting

the B × S-indexed family of terms JtbKS (s′) ∈ TA(C × P × S) to obtain the desired term in
TA(C × P × S).

Let us now see that the states of P ·S encode precisely the composites of the continuous
functions encoded by the states of P and S. Despite the complexity of our description of
P · S, the proof of this fact is trivial.

Proposition 3.10. Suppose that S is a TA-residual TB-comodel and P is a TB-residual
TC-comodel. For any s ∈ S and p ∈ P , we have that trP ·S(p, s) = trP (p)◦trS(s) : AN → CN.

Proof. Consider the diagram of TC-comodels

P · S ·AN P ·! //

! $$

P ·BN

!}}

CN

wherein each map labelled ! is the unique map into a final object. Since CN is final among
TC-comodels, this diagram clearly commutes; and now partially evaluating at (p, s) ∈ P × S
yields the desired equality.



Vol. 19:1 STREAM PROCESSORS AND COMODELS 2:11

Before continuing, we resolve some unfinished business by justifying Definitions 3.6,
3.8 and 3.9 above. Our starting point will be an alternative presentation of the notion of
comodel due to [Uus15]. In op. cit., Uustalu defines a runner for a theory T, with set of
states S, to be a monad morphism T → TS from the associated monad of T to the state
monad TS = (–×S)S . The data for such a runner are functions T (V )→ (V ×S)S assigning

to each t ∈ T (V ) a function JtKS : S → V × S. Recognising these as the data of the derived
co-operations of a T-comodel structure on S, we should find the main result of [Uus15]
reasonable: that T-comodels with underlying set S are in bijection with T-runners with
underlying set of states S.

While Uustalu’s result is about comodels in Set , it generalises unproblematically. For
any object S of a category C with copowers, we have an adjunction (–) ·S a C(S, –) : C → Set
inducing a monad TS = C(S, (–) · S) on Set ; in [MS14] this is called the linear-use state
monad associated to S. We now have the following natural extension of Uustalu’s result.

Proposition 3.11 [MS14, Theorem 8.2]. Let T be an algebraic theory, C a category with
copowers, and S ∈ C. The following are in bijective correspondence:

(1) T-comodels S in C with underlying object S;

(2) T-runners in C, i.e., monad maps J–KS : T→ TS into the linear-use state monad of S;
(3) Functorial extensions of (–) · S : Set → C along the free functor into the Kleisli category:

Set
(–)·S

//

FT
��

C .

Kl(T)
(–)·S

<<

(3.6)

Remark 3.12. Abstractly, this proposition expresses the fact that Kl(T) is the free category
with copowers containing a comodel of T; this result is originally due to Linton [Lin66].

Proof. As just said, the argument for (1) ⇔ (2) is mutatis mutandis that of [Uus15, §3]. For
(2) ⇔ (3), it is standard [Mey75] that monad maps T→ TS correspond to extensions to the
left in:

Set
FTS

//

FT

��

Kl(TS)

Kl(T)

99
Set

(–)·S
//

FT
��

CS .

Kl(T)

;;

Now the Kleisli category Kl(TS) of the linear-use state monad is isomorphic to the category
CS whose objects are sets, and whose maps A → B are C-maps A · S → B · S, via an
isomorphism which identifies FTS with (–) · S : Set → CS . Similarly we have Kl(T) ∼= Kl(T)
under Set . So monad morphisms T → TS correspond to extensions as right above: and
these, by direct inspection, correspond to extensions as in (3.6).

If here C is itself the Kleisli category Kl(R) of a theory R, then the linear-use state
monad of S ∈ Kl(R) is the monad R(–× S)S found as the commuting combination of the
state monad for S with the monad R induced by R (cf. [HPP06, Theorem 10]). Monad maps
T→ R(S × –)S were in [KRU20] termed R-residual T-runners, and for these the preceding
result specialises to:

Proposition 3.13. Let T and R be algebraic theories and let S be a set. The following are
in bijective correspondence:
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(1) R-residual T-comodels S with underlying set S;

(2) R-residual T-runners J–KS : T→ R(–× S)S;
(3) Functorial extensions of (–)× S : Set → Set through the Kleisli categories of T and R:

Set
(–)×S

//

FT
��

Set

FR
��

Kl(T)
(–)·S

// Kl(R) .

(3.7)

By putting together Propositions 3.11 and 3.13, we have an intuitive definition of tensor
product for a residual comodel and a comodel, or for two residual comodels.

Definition 3.14 (Tensor product of residual comodels). Let V, T, R be theories; M an R-
comodel in C; S an R-residual T-comodel; and P a T-residual V-comodel. The tensor product
S ·M is the T-comodel in C classified by the composite of extensions to the left below, while
the tensor product P ·S is the R-residual V-comodel classified by the composite to the right:

Set
(–)×S

//

FT
��

Set
(–)·M

//

FR
��

C Set
(–)×P

//

FV
��

Set
(–)×S

//

FT
��

Set

FR
��

Kl(T)
(–)·S

// Kl(R)
(–)·M

<<

Kl(V)
(–)·P

// Kl(T)
(–)·S

// Kl(R) .

(3.8)

In particular, when C = Set and C = Top, the tensor product S ·M specialises to those
of Definitions 3.6 and 3.8 above; while the tensor product P · S yields Definition 3.9.

Remark 3.15. Here is another perspective on Definition 3.14. To the left of (3.8), the functor
(–) ·M preserves copowers, and so lifts to a functor Comod(T,Kl(R))→ Comod(T, C), whose
value at S is the tensor product S ·M . We can obtain P · S to the right similarly.

4. Intensional stream processors as a final residual comodel

The arguments of the previous section were given for an arbitrary TA-residual TB-comodel
S; but as in [HPG09], it is natural to consider the final residual comodel in particular. To
this end, we should first clarify the correct notion of morphism between residual comodels.

Definition 4.1 (Map of residual comodels). Let T and R be theories, and let S and U be
R-residual T-comodels. A map of residual comodels S → U is a function f : S → U such
that JσKU ◦ f = R(|σ| × f) ◦ JσKS for all operations σ in the signature of T.

Remark 4.2. Given that an R-residual comodel is a comodel in Kl(R), we might expect
a map of residual comodels to be a map in Kl(R), rather than one in Set . The reason
for our choice is not pure expediency; it has to do with an enrichment of the category of
theories in the category of comonads on Set , currently being investigated by the authors
of [KRU20], and which exploits the general Sweedler theory of [AJ13]. Working through
the calculations, one finds that for two theories R and T, the category of coalgebras for the
hom-comonad 〈R,T〉 is the category of residual comodels, with precisely the maps indicated
in Definition 4.1.

With this clarification made, we see that, in particular, the category of TA-residual
TB-comodels is simply the category of TA(B × –)-coalgebras, and so we have:
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Definition 4.3 (Intensional stream processors). The type of intensional A-B-stream pro-
cessors is the final TA-residual TB-comodel IAB, i.e., the final TA(B × –)-coalgebra

θAB : IAB → TA(B × IAB) . (4.1)

The reflection function is the trace function of the final residual comodel:

reflect : IAB → Top(AN, BN) s 7→ tr(s) : AN → BN ,

where here we write Top for the category of topological spaces and continuous maps.

As well as reflection, [HPG09] also defines a reification function reify : Top(AN, BN)→
IAB that implements each continuous function by a state of the final comodel, and which
satisfies reflect ◦ reify = id. This means that reflect is surjective—but crucially, it is not
injective. To show this, we must first note that, by the usual techniques, the terminal
coalgebra IAB may be described as follows: it is the set of all finite or infinite A-ary
branching trees, with interior nodes labelled with elements of B∗ (i.e., lists of elements of
B), with leaves labelled by elements of BN, and where no infinite path of interior nodes is
labelled by the empty list.

Example 4.4. Fix an element b ∈ B and consider the following two TA-residual TB-comodel
structures on {∗}:

(i) ∗ 7→ (b, ∗) and (ii) ∗ 7→ read(λa. (b, ∗)) . (4.2)

In both comodels, the unique state ∗ encodes the continuous function AN → BN sending
every stream ~a to (b, b, b, b, . . . ). However, these states yield different elements of the final
comodel IAB: (i) gives the trivial tree τ0 whose root is labelled by (b, b, b, . . . ), while (ii)
gives the purely infinite A-ary branching tree τ1 with every node labelled by a single b.

Intuitively, the two states of IAB in this example differ in that the first ignores its input
stream entirely, and simply outputs b’s without cease; while the second frivolously consumes
a single A-token before emitting each b. So IAB is a set of intensional representations of
stream processors. This will lead us neatly on to the second part of the paper, where we give
a comodel-theoretic presentation of extensional stream processors, i.e., the set Top(AN, BN),
and an explanation in these terms of where the reification function of [HPG09] comes from.

Before we do this, let us see how the tensor product of residual comodels allows us to
give an account of the lazy composition of intensional stream processors from [HPG09, §4].

Definition 4.5. The lazy composition of intensional stream processors is given by the
unique map of TA-residual TC-comodels comp : IBC · IAB → IAC , where in the domain we
take the tensor product of residual comodels of Definition 3.14.

Let us now unpack this definition to see that our composition agrees with the one given
in [HPG09, §4]. First, as a special case of (3.4), the TA-residual TC-comodel structure on

IBC · IAB has co-operation JreadKIBC ·IAB given by:

IBC × IAB
θBC×id−−−−−→ TB(C × IBC)× IAB

(t,σ)7→JtKIAB (σ)−−−−−−−−−−→ TA(C × IBC × IAB) ,

where, as in (4.1), we write θBC for JreadKIBC . Furthermore, as in (3.5), we have JtKIAB

defined recursively by:

J(c, τ)KIAB (σ) = (c, τ, σ) for (c, τ) ∈ C × IBC , σ ∈ IAB
Jread(t)KIAB (σ) = θAB(σ)

(
λ(b, σ′). JtbKIAB (σ′)

)
for t ∈ TB(C × IBC)B, σ ∈ IAB.

(4.3)
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We now compare this with the composition function of [HPG09, §4.1], which was obtained
as follows. First, the authors define a TA-residual TC-comodel structure χ : S → TA(C × S)
on the set S = TB(C × IBC)× TA(B × IAB), via the following clauses:

χ
(
(c, τ), u) = (c, θBC(τ), u) for (c, τ) ∈ C × IBC

χ
(
read(t), (b, σ)

)
= χ(tb, θAB(σ)) for t ∈ TB(C × IBC)B, (b, σ) ∈ B × IAB

χ
(
read(t), read(u)

)
= read(λa. χ(read(t), ua)) for t ∈ TB(C × IBC)B, u ∈ TA(B × IAB)A;

they now induce by finality of IAC a unique map of residual comodels u : S → IAC ; and
finally, they define the composition map IBC × IAB → IAC as u ◦ (θBC × θAB).

Proposition 4.6. The lazy composition of Definition 4.5 coincides with that of [HPG09].

Proof. Given the definitions of the two maps, it suffices to show that θBC × θAB is a map of
residual comodels IBC · IAB → S, i.e., that the outside of

IBC × IAB
θBC×id

//

θBC×θAB
��

TB(C × IBC)× IAB

id×θAB
tt

(t,σ)7→JtKIAB (σ)
// TA(C × IBC × IAB)

TA(C×θBC×θAB)

��

S χ
// TA(C × S)

commutes. Clearly the left triangle commutes, so we need only check the same for the right
square. From (4.3), the upper composite f : TB(C × IBC)× IAB → TA(C × S) around this
square is the map defined recursively by

f
(
(c, τ), σ

)
= (c, θBC(τ), θAB(σ)) for (c, τ) ∈ C × IBC , σ ∈ IAB

f
(
read(t), σ

)
= θAB(σ)

(
λ(b, σ′). f(tb, σ

′)
)

for t ∈ TB(C × IBC)B, σ ∈ IAB.

while by (2.1), the clauses defining χ can be rewritten as

χ
(
(c, τ), u) = (c, θBC(τ), u) for (c, τ) ∈ C × IBC , u ∈ TA(B × IAB)

χ
(
read(t), u

)
= u(λ(b, σ). χ(tb, θAB(σ))) for t ∈ TB(C × IBC)B, u ∈ TA(B × IAB).

Comparing these two formulae, it now follows by structural induction on t that f(t, σ) =
χ(t, θAB(σ)) for all (t, σ) ∈ TB(C × IBC)× IAB, as desired.

We may now deduce, as in [HPG09, §4.2], that composition of stream processsors corre-
sponds to composition of the underlying continuous functions. Much as in Proposition 3.10,
the proof in our setting is trivial.

Proposition 4.7. The following diagram commutes for all A,B,C:

IBC × IAB
reflect×reflect

��

comp
// IAC

reflect
��

Top(BN, CN)× Top(AN, BN)
◦ // Top(AN, CN)

(4.4)
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Proof. Consider the diagram of topological TC-comodels and comodel homomorphisms:

IBC · IAB ·AN

IBC ·!

��

!·AN
// IAC ·AN

!

��

IBC ·BN ! // CN

where each “!” denotes a unique map to a final object. Since CN is final, this diagram
commutes, and currying around the two sides yields the corresponding two sides of (4.4),
which thus also commutes.

Before continuing, let us note that other kinds of residual comodel tensor product are
also interesting in this context. For example, if we are given a P+

f -residual TA-comodel S

(i.e., a labelled transition system with label-set A) together with a TA-residual TB-comodel
P , then we can tensor them together to get a P+

f -residual TB-comodel P · S, i.e., a labelled

transition system with label-set B; and given a state s ∈ S and a state p ∈ P , we have the
state (p, s) ∈ P · S in which the transition system S produces a stream of A-labels starting
from state s, and feeds them into the stream processor P starting from state p in order to
produce a stream of B-values. Just as before, we can calculate explicitly the state machine
P · S, and see that it is lazy in the sense that P requests only the minimal possible number
of A-tokens from the transition system S in order to produce each output B-token.

5. Extensional stream processors as a final bimodel

In Section 4, we characterised the set of intensional stream processors as a final TA-residual
TB-comodel. In this section, we give the main result of the paper, characterising the set of
extensional stream processors Top(AN, BN) as a final bimodel [Fre66, TW70, BH96] for TA
and TB.

Definition 5.1 (Bimodel). Let T and R be theories. An R-T-bimodel K is an R-model

(K, J–KK) endowed with T-comodel structure J–KK in the category Mod(R) of R-models.

The main difficulty in working with R-T-bimodels is handling copowers in Mod(R).
A simple case is that of free R-models: a copower of free models is free, and so we have
canonical isomorphisms B ·R(V ) ∼= R(B × V ), which for convenience, we will assume are
in fact identities, i.e., that the chosen copower B ·R(V ) is R(B × V ). The R-T-bimodels
with free underlying R-model are easy to identify: they correspond precisely to R-residual
T-comodels, where the R-T-bimodel R(S) corresponding to the R-residual T-comodel S has

underlying R-model R(S) and co-operations JσKR(S) =
(
JσKS

)†
: R(S)→ R(|σ| ×S), where

(–)† is the Kleisli extension operation of Lemma 2.7.
To understand what we gain by looking at bimodels with non-free underlying model, it is

helpful to think in terms of quotients by bisimulations. If S is an R-residual T-comodel, then
we could define (cf. [PS15, Definition 5.2]) a bisimulation on S to be an equivalence relation

∼ on S such that each co-operation JσKS sends ∼-related states to ≈-related computations
in R(|σ| × S), where ≈ is the congruence generated by (i, s) ≈ (i, s′) whenever s ∼ s′. The
definition ensures that the residual comodel structure descends to the quotient set S/∼;
however, this only gives the possibility of identifying operationally equivalent states, and not
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operationally equivalent computations over states. The following more generous definition
rectifies this.

Definition 5.2 (R-bisimulation). Let R and T be theories. For any R-congruence ∼ on the
free model R(V ) and any set B, the congruence ∼B on R(B × V ) is that generated by

t ∼ u in R(V ) =⇒ t(λs.(b, s)) ∼B u(λs.(b, s)) for all b ∈ B.

If S is an R-residual T-comodel, then a congruence on R(S) is an R-bisimulation if the

co-operations JσKR(S) =
(
JσKS

)†
: R(S) → R(|σ| × S) of the associated bimodel send

∼-congruent terms to ∼|σ|-congruent terms.

Lemma 5.3. Let S be an R-residual T-comodel and ∼ an R-bisimulation on R(S). There
is a unique structure of R-T-bimodel on the quotient R-model K = R(S)/∼ for which the
the quotient map q : R(S) � K becomes a map of bimodels R(S) � K.

Proof. If R(S)/∼ = K then R(B × S)/∼B is a presentation of the copower B ·K. So
the assumption that ∼ is an R-bisimulation ensures that each basic co-operation of R(S)
descends to a co-operation on K, as to the left in:

R(S)
JσKR(S)

//

q
����

R(|σ| × S)

q|σ|
����

R(S)
JtKR(S)

//

q
����

R(V × S)

qV
����

K
JσKK

// |σ| ·K K
JtKK

// V ·K .

Since R(|σ| × S) is the copower |σ| ·R(S), and the quotient map q|σ| is the copower |σ| · q,
it follows that the derived co-operations of R(S) descend to the corresponding derived co-
operations on K, as to the right above; whence the satisfaction of the T-comodel equations
for R(S) implies the corresponding satisfaction for K. So K is an R-T-bimodel, and clearly
this is the unique bimodel structure making q into a bimodel homomorphism.

We can use this construction to explain how the passage from the final TA-residual TB-
comodel to the final TA-TB-bimodel will collapse the intensionality we saw in Example 4.4.

Example 5.4. Consider the two TA-residual TB-comodels S1 and S2 of Example 4.4. While
there is clearly no scope for quotienting by a bisimulation on the set of states {∗}, we can
non-trivially quotient each by a TA-bisimulation on TA(∗): namely the TA-congruence on
TA(∗) generated by ∗ ∼ read(λa. ∗). It is easy to see that this is a TA-bisimulation for both
S1 and S2, and so we obtain quotient TA-TB-bimodels TA(S1)/∼ and TA(S2)/∼. In fact,
these are visibly the same bimodel K, with underlying TA-model the final model {∗}, and

with TB-comodel structure JreadKK : K → B ·K given by the bth coproduct injection. So
we have a cospan of bimodels TA(S1) � K � TA(S2), which in particular implies that the
states ∗ of TA(S1) and TA(S2) must be identified in a final TA-TB-bimodel.

This example provides supporting evidence for the main theorem we shall now prove:
that the set Top(AN, BN) of extensional stream processors is a final TA-TB-bimodel. Before
giving this, let us mention some related results:

Proposition 5.5. For any set B, the final P+
f -TB-bimodel is given by the set of topologically

closed subsets of BN, with the P+
f -model structure given by binary union, and with TB-comodel

structure given as in [Gar18, Proposition 71].
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Proposition 5.6. For any set B, the final D-TB-bimodel is given by the set of probability
distributions on BN, with the D-model structure given by the usual convex combination of
probability distributions, and with TB-comodel structure given as in [Gar18, Proposition 79].

In both of these examples, the elements of the final bimodel can be seen as traces for
states of the corresponding residual comodels (which, we recall, are non-terminating labelled
transition systems and finitely branching probabilistic generative systems respectively.) It is
thus consistent for us to think of the final TA-TB-bimodel as providing an “object of traces”
for A-B-stream processors.

To show that this final bimodel can be identified with Top(AN, BN), we will first construct
an adjunction as to the left in

Mod(TA)
(–)⊗AN

//

oo
Top(AN,–)

> Top Comod(TB,Mod(TA))
(–)⊗AN

//

oo
Top(AN,–)

> Comod(TB,Top) (5.1)

We then show that both directions of this adjunction preserve coproducts, so in particular
copowers; it will then follow that the adjunction to the left lifts to one as to the right
on TB-comodels. The right adjoint of this lifted adjunction, like any right adjoint, will
preserve terminal objects, and so must send the final topological TB-comodel BN to a final
TA-TB-bimodel, with underlying set Top(AN, BN).

To construct the adjunction to the left in (5.1) we apply a standard result of category-
theoretic universal algebra (cf. [Fre66, Theorem 2]). For self-containedness we give a full
proof.

Proposition 5.7. Let C be a category with copowers and S a T-comodel in C. For any
object C ∈ C, the hom-set C(S,C) bears a structure of T-model C(S, C) with operations

JσKC(S,C) (λi. S
fi−→ C) = S

JσKS−−−→ |σ| · S
〈fi〉i∈|σ|−−−−−→ C (5.2)

where 〈fi〉i∈|σ| is the copairing of the fi’s. As C varies, this assignment underlies a functor
C(S, –) : C → Mod(T). If C is cocomplete, this functor has a left adjoint (–)⊗S : Mod(T)→ C.

Proof. For any C ∈ C, the hom-functor C(–, C) : Cop → Set sends copowers in C to powers in
Set , and so sends T-comodels in C to T-models in Set . In particular, the T-model induced
by S ∈ Comod(T, C) is C(S, C) with the operations defined above. The functoriality of this
assignment is clear, so it remains to exhibit the desired adjoint when C is cocomplete.

To this end, note that a T-model homomorphism α : X → C(S, C) is equally a function

α : X → C(S,C) such that, for all basic T-operations σ and all ~x ∈ X |σ|, we have

S
α(JσKX(~x))
−−−−−−−→ C = S

JσKS−−−→ |σ| · S
〈α(xi)〉i∈|σ|−−−−−−−→ C .

Transposing under (–) · S a C(S, –) : C → Set , this is equally to give a map ᾱ : X · S → C in
C such that, for each basic T-operation σ, postcomposition with ᾱ equalises the two maps

X |σ| · S
JσKX ·C−−−−−→ X · S X |σ| · S X|σ|·JσKX−−−−−−→ X |σ| · (|σ| · S) ∼= (X |σ| × |σ|) · S ev·S−−→ X · S .

Thus, defining X ⊗ S to be the joint coequaliser of these parallel pairs as σ varies across
the basic T-operations, we have bijections C(X ⊗ S, C) ∼= Mod(T)(X, C(S, C)) natural in
C ∈ C, so that X ⊗ S is the value at X of the desired left adjoint (–)⊗ S.

Remark 5.8. Again, the final part of this result expresses an abstract fact: Mod(T) is the
free cocomplete category containing a comodel of T.
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In particular, we may apply the preceding result when C is the cocomplete category
Top and S is the final topological TA-comodel AN to obtain an adjunction as to the left
in (5.1). We now show that both directions of this adjunction preserve coproducts, and so
in particular copowers. Since left adjoints always preserve colimits, there is only work to do
for the right adjoint Top(AN, –) : Top → Mod(TA). First we spell out that, on objects, this
functor acts by taking a space C to the set of continuous functions Top(AN, C), under the
A-ary magma structure split that takes a family (fa : a ∈ A) of functions to the function

split(~f) with

split(~f)(~a) = fa0(∂~a) . (5.3)

In other words, split(~f) consumes the first token a0 of its input and then continues as fa0 on
the rest of its input; note that split is in fact invertible, with inverse given by the function
split−1(f) = (f(a–) : a ∈ A). This describes the action of Top(AN, –) : Top → Mod(TA) on
objects; on morphisms, it simply acts by postcomposition.

The following result is the main piece of serious work needed to complete our result;
it refines the topological arguments described in [HPG09, Theorem 2.1], and used there to
construct the reification function for intensional stream processors.

Proposition 5.9. The functor Top(AN, –) : Top → Mod(TA) preserves coproducts.

Proof. Given spaces (Xi : i ∈ I), we have the coproduct injections ιi : Xi → ΣiXi in Top,
and must show that the family of postcomposition maps(

ιi ◦ (–) : Top(AN, Xi)→ Top(AN,ΣiXi)
)
i∈I (5.4)

constitute a coproduct cocone in Mod(TA). We first show:

Lemma 5.10. The maps (5.4) are jointly epimorphic in Mod(TA).

Proof. We show that the sub-A-ary magma M ⊆ Top(AN,ΣiXi) generated by the image of
the maps (5.4) is all of Top(AN,ΣiXi). So suppose not; then there exists some continuous
f : AN → ΣiXi with f /∈ M . Since we have f = split(split−1(f)) = split(λa. f(a–)), we
can find a0 ∈ A with f(a0–) /∈ M . Now repeating the argument with f(a0–), we can
find a1 ∈ A with f(a0a1–) /∈ M ; and continuing in this fashion, making countably many
dependent choices, we find some ~a ∈ AN such that for all n, the continuous function
f(a0a1 . . . an–) : AN → ΣiXi is not in M . In particular, none of these functions factor
through any Xi; but as f(~a) ∈ Xi for some i, this means there is no open neighbourhood of
~a which is mapped by f into the open neigbourhood Xi of f(~a), contradicting the continuity
of f .

Thus, to complete the proof, we need only show that, for a cocone (pi : Top(AN, Xi)→
Y )i∈I in Mod(TA), there exists some map p : Top(AN,ΣiXi)→ Y with p ◦Top(AN, ιi) = pi
for each i. To this end, consider the diagram of A-ary magmas

N
ε
wwww

p̃

''
Top(AN,ΣiXi)

p
// Y

where N = (N, ν) is the free A-ary magma generated by symbols [f, i] for i ∈ I and
f ∈ Top(AN, Xi), where ε sends [f, i] to ιif and where p̃ sends [f, i] to pi(f). It suffices
to exhibit a factorisation p of p̃ through ε as displayed. Now by the lemma above, ε is
epimorphic, and so the coequaliser of its kernel-congruence; so to obtain such a factorisation,
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it suffices to show that if x, y ∈ N satisfy ε(x) = ε(y), then they satisfy p̃(x) = p̃(y). We do
so by induction on the total number of magma operations ν in x and y:

• If x = [f, i] and y = [g, j] then ε(x) = ε(y) says that ιif = ιjg, which is possible only if
i = j and f = g. So x = y and so certainly p̃(x) = p̃(y).
• If x = [f, i] and y = ν(λa. ya) then on taking xa = [f(a–), i] for each a, we get from
ε(x) = ε(y) that

split(λa. ε(xa)) = split(λa. ιif(a–)) = ιif = ε(x) = ε(y) = ε(ν(λa. ya)) = split(λa. ε(ya))

which, since split is invertible, implies that ε(xa) = ε(ya) for each a ∈ A. By induction,
we have p̃(xa) = p̃(ya) for each a, and so we have the desired equality:

p̃(x) = pi(f) = split(λa. pi(f(a–))) = split(λa. p̃(xa)) = split(λa. p̃(ya)) = p̃(ν(λa. ya) = p̃(y) .

• The case where x = ν(λa. xa) and y = [g, j] is dual.
• Finally, if x = ν(λa. xa) and y = ν(λa. ya), then from ε(x) = ε(y) we get

split(λa. ε(xa)) = ε(ν(λa. xa)) = ε(x) = ε(y) = ε(ν(λa. ya)) = split(λa. ε(ya))

and so by invertibility of split that ε(xa) = ε(ya) for all a. By induction, p̃(xa) = p̃(ya) for
all a, and so the desired equality

p̃(x) = p̃(ν(λa. xa) = split(λa. p̃(xa)) = split(λa. p̃(ya)) = p̃(ν(λa. ya) = p̃(y) .

Using this result, we can conclude the argument as explained above. Since both adjoints
to the left of (5.1) preserve coproducts, the adjunction lifts to an adjunction between
categories of TB-comodels as to the right. In particular, the lifted right adjoint sends the
final topological TB-comodel to a final TA-TB-bimodel, so giving our main theorem:

Theorem 5.11. For any sets A and B, the final TA-TB-bimodel EAB is given by the set
of continuous functions Top(AN, BN) with the TA-model structure of (5.3), and with the
TB-comodel structure map

Top(AN, BN)
(g,n)◦(–)−−−−−→ Top(AN, B ·BN)

∼=−→ B · Top(AN, BN) , (5.5)

whose first part is postcomposition with (1.1) and whose second part is the canonical isomor-
phism coming from the fact that Top(AN, –) : Top → Mod(TA) preserves coproducts.

We now describe (5.5) more concretely, but first we describe copowers in Mod(TA).

Lemma 5.12. For any TA-model X = (X, ξ) and set B, the copower B ·X may be found
as either: (i) the quotient of TA(B ×X) by the congruence which identifies

(b, xa) · · · (b, xa′)

• ∼ (b, ξ(λa. xa)) ; (5.6)

or: (ii) the subset of TA(B ×X) on those A-ary branching trees where no non-trivial subtree
has all its leaves labelled by the same element of B, with the TA-model structure map υ being
that of TA(B ×X) except that υ(λa. (b, xa)) = (b, ξ(λa. xa)).

Proof. (i) is the presentation TA(B ×X)/∼B from Lemma 5.3 when ∼ is the congruence

associated to the quotient id† : TA(X) � X. As for (ii), these elements are the normal
forms for the strongly normalising rewrite system obtained by applying (5.6) from left to
right.
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Via presentation (i), we may thus describe (5.5) by associating to each f ∈ Top(AN, BN)
a suitable tree in TA(B×Top(AN, BN)). For this, we use the identification of BN with B ·BN

via ~b 7→ (b0, ∂~b), together with Lemma 5.10, to see that f lies in the closure under the A-ary
magma operation split on Top(AN, BN) of the set of those g : AN → BN for which g(~a)0 is
constant. (This expresses algebraically the fact that, for each ~a ∈ AN, there is some finite
initial segment a0 . . . ak of ~a such that f(~a′)0 = f(~a)0 whenever a0 . . . ak = a′0 . . . a

′
k.)

Choosing any such presentation of f gives a well-founded A-ary tree (encoding the
applications of split) with leaves labelled by functions g : AN → BN with g(~a)0 constant. Each
such g is equally specified by the constant b = g(~a)0, and the function h = ∂ ◦ g : AN → BN,
so that our leaf labels are equally elements in B × Top(AN, BN): so altogether we have an
element of TA(B × Top(AN, BN)). Note that choosing a different presentation of f would
yield a different element of TA(B × Top(AN, BN)); however, our theory ensures that these
elements are congruent under (5.6), so yielding a well-defined element of B · Top(AN, BN).

6. Comparing intensional and extensional stream processors

To conclude the paper, we examine the unique maps from an arbitrary TA-TB-bimodel to
the final one, showing that these act as expected via the trace function of Definition 3.7;
and, finally, we give a comodel-theoretic explanation of “normalisation-by-trace-evaluation”
for intensional stream processors.

We begin with a small refinement of Proposition 5.7.

Proposition 6.1 [PP08, Theorem 4.4]. Let C be a cocomplete category and S a T-comodel
in C. The functor (–) ⊗ S of Proposition 5.7 may be chosen to render commutative the
following diagram, whose top edge is as in (3.6), and whose left edge is as in Definition 2.8:

Kl(T)
(–)·S

//

IT
��

C .

Mod(T)
(–)⊗S

;;

(6.1)

Proof. For a free T-model T (V ), we have natural bijections Mod(T)(T (V ), C(S, C)) ∼=
Set(V, C(S,C)) ∼= C(V · S,C), and so we may take T (V ) ⊗ S = V · S. This makes (6.1)
commute on objects. On morphisms, given θ† : T (V ) → T (W ) in Mod(T), its image
θ† ⊗ S : V · S →W · S under (–)⊗ S is, by adjointness, the unique map making:

C(W · S,C)
∼= //

(–)◦(θ†⊗S)
��

Set(W, C(S,C))
∼= //

��

Mod(T)(TW, C(S, C))

(–)◦θ+
��

C(V · S,C)
∼= // Set(V, C(S,C))

∼= // Mod(T)(TV, C(S, C))

commute for all C ∈ C. Now, the unique dotted map making the right square commute is,
by the freeness of T (V ), the function

(fw ∈ C(S,C) : w ∈W ) 7→ (Jθ(v)KC(S,C) (~f) : v ∈ V ) .

But by induction on (5.2), we have Jθ(v)KC(S,C) (~f) = S
Jθ(v)KS−−−−→ W · S

〈fi〉i∈|σ|−−−−−→ C; whence

we must have θ† ⊗ S = 〈Jθ(v)KS〉v∈V = θ · S as desired.



Vol. 19:1 STREAM PROCESSORS AND COMODELS 2:21

We now characterise the unique maps to EAB from bimodels induced by residual
comodels.

Proposition 6.2. Let S be a TA-residual TB-comodel. The unique bimodel map from the
associated bimodel f : TA(S)→ EAB is tr†, the homomorphic extension of the trace function
tr : S → Top(AN, BN) of Definition 3.7.

Proof. Since (–)⊗AN : Mod(TA)→ Top restricts back along ITA to (–) ·AN : Kl(TA)→ Top,
its lifting to a functor on TB-comodels must, by Remark 3.15, restrict along ITA to the tensor
product of Definition 3.14. So the unique TB-comodel map TA(S)⊗AN → BN must be the
unique map S ·AN → BN of Definition 3.7. By the proof of Proposition 6.1, transposing
this latter map to a bimodel map TA(S)→ EAB is achieved by first currying—which yields
the trace function tr : S → Top(AN, BN)—and then extending homomorphically.

We now do the same for the unique maps to EAB from arbitrary TA-TB-bimodels. To
do so, we show that every such bimodel arises in a canonical way from the construction
of Lemma 5.3. Note that this is not true for bimodels over arbitrary theories; it relies on
a special property of the theory TA, namely that it admits abstract hypernormalisation
in the sense of [Gar18]. See section 7 of op. cit. for a more detailed explanation of this
phenomenon.

Lemma 6.3. Let K be a TA-TB-bimodel. The composite

γ = K
JreadKK−−−−−→ B ·K ⊆−−−→ TA(B ×K)

where we take B ·K ⊆ TA(B ×K) as in Lemma 5.12(ii), endows K with the structure of a
TA-residual TB-comodel Ǩ. The congruence on TA(K) generating the TA-model quotient

map id†K : TA(K) � K is a TA-bisimulation for Ǩ and the quotient bimodel is precisely K.

Proof. Only the final sentence requires any verification; it will follow if we can show that
the square of TA-model maps to the left below is commutative:

TA(K)
γ†
//

id†K
����

TA(B ×K)

B·id†K
����

K
JreadKK

// B ·K

K
JreadKK

//

id
����

B ·K ι // TA(B ×K)

B·id†K
����

K
JreadKK

// B ·K

which by freeness will happen just when the diagram to the right also commutes. But the

map B · id†K therein is the quotient map by the congruence of (5.6), of which ι must be a
section since it selects a family of equivalence-class representatives.

If K is a bimodel, then Ǩ is the maximally lazy realisation of K as a residual comodel,
wherein the program associated to each state k ∈K reads the absolute minimum number of
input A-tokens required to determine the next output B-token, with all subsequent reading
from A handed off (via the TA-model structure on K) to the continuation state.

Proposition 6.4. Let K be a TA-TB-bimodel. The image of k ∈ K under the unique

bimodel map K → EAB is the continuous function trǨ(k) : AN → BN.
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Proof. By Lemma 6.3 we have a quotient map of bimodels id†K : TA(Ǩ) � K which of
necessity fits into a commuting triangle

TA(Ǩ)

! %%

id†K // K .

!yy

EAB

The left edge of this triangle is by Proposition 6.2 the homomorphic extension of trǨ : K →
Top(AN, BN). Thus, tracing the element k ∈ K ⊆ TA(K) around the two sides of this
triangle yields the result.

Finally, we give use the above results to give a comodel-theoretic reconstruction of the
reification of each continuous function on streams by an intensional stream processor; this is
the function rep∞ of [HPG09].

Definition 6.5. The function reify : EAB → IAB is the underlying map of the unique
residual comodel map ĚAB → IAB.

As the notation suggests, we have:

Proposition 6.6. reflect ◦ reify = idEAB .

Proof. By Proposition 6.2, the unique TA-TB-bimodel map TA(IAB) → EAB is reflect†,

while by Lemma 6.3, id†EAB is the unique bimodel TA-TB-bimodel map TA(ĚAB)→ EAB.

So we have a (necessarily commuting) triangle of TA-TB-bimodel maps:

TA(ĚAB)
TA(reify)

//

id†EAB
&&

TA(IAB)

reflect†xx

EAB

and precomposing with η : EAB → TA(EAB) yields the result.

This result is proved in a more general context in [Gar18, §7.3], and as explained
there, the composite reify ◦ reflect implements normalisation-by-trace-evaluation: given an
intensional stream processor, it first computes its underlying trace AN → BN, and then via
the reification function produces from this a maximally lazy intensional stream processor
realising this trace. For instance, under this procedure, the trees τ1, τ2 ∈ IAB of Example 4.4
will both normalise to τ1.
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