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Abstract. We investigate logics and equivalence relations that capture the qualitative
behavior of Markov Decision Processes (MDPs). We present Qualitative Randomized Ctl

(Qrctl): formulas of this logic can express the fact that certain temporal properties hold
over all paths, or with probability 0 or 1, but they do not distinguish among intermediate
probability values. We present a symbolic, polynomial time model-checking algorithm for
Qrctl on MDPs.

The logic Qrctl induces an equivalence relation over states of an MDP that we call
qualitative equivalence: informally, two states are qualitatively equivalent if the sets of
formulas that hold with probability 0 or 1 at the two states are the same. We show that
for finite alternating MDPs, where nondeterministic and probabilistic choices occur in dif-
ferent states, qualitative equivalence coincides with alternating bisimulation, and can thus
be computed via efficient partition-refinement algorithms. On the other hand, in non-
alternating MDPs the equivalence relations cannot be computed via partition-refinement
algorithms, but rather, they require non-local computation. Finally, we consider Qrctl∗,
that extends Qrctl with nested temporal operators in the same manner in which Ctl∗ ex-
tends Ctl. We show that Qrctl and Qrctl∗ induce the same qualitative equivalence on
alternating MDPs, while on non-alternating MDPs, the equivalence arising from Qrctl∗

can be strictly finer. We also provide a full characterization of the relation between qual-
itative equivalence, bisimulation, and alternating bisimulation, according to whether the
MDPs are finite, and to whether their transition relations are finitely-branching.
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1. Introduction

Markov decision processes (MDPs) provide a model for systems exhibiting both probabilis-
tic and nondeterministic behavior. MDPs were originally introduced to model and solve
control problems for stochastic systems: there, nondeterminism represented the freedom in
the choice of control action, while the probabilistic component of the behavior described
the system’s response to the control action [Ber95]. MDPs were later adopted as models
for concurrent probabilistic systems, probabilistic systems operating in open environments
[Seg95], and under-specified probabilistic systems [BdA95, dA97a].

Given an MDP and a property of interest, we can ask two kinds of verification questions:
quantitative and qualitative questions. Quantitative questions relate to the numerical value
of the probability with which the property holds in the system; qualitative questions ask
whether the property holds with probability 0 or 1. Examples of quantitative questions
include the computation of the maximal and minimal probabilities with which the MDP
satisfies a safety, reachability, or in general, ω-regular property [BdA95]; the corresponding
qualitative questions asks whether said properties hold with probability 0 or 1.

While much recent work on probabilistic verification has focused on answering quanti-
tative questions, the interest in qualitative verification questions predates the one in quan-
titative ones. Answering qualitative questions about MDPs is useful in a wide range of
applications. In the analysis of randomized algorithms, it is natural to require that the
correct behavior arises with probability 1, and not just with probability at least p for some
p < 1. For instance, when analyzing a randomized embedded scheduler, we are interested in
whether every thread progresses with probability 1 [dAFMR05]. Such a qualitative question
is much easier to study, and to justify, than its quantitative version; indeed, if we asked
for a lower bound p < 1 for the probability of progress, the choice of p would need to be
justified by an analysis of how much failure probability is acceptable in the final system,
an analysis that is generally not easy to accomplish. For the same reason, the correct-
ness of randomized distributed algorithms is often established with respect to qualitative,
rather than quantitative, criteria (see, e.g., [PSL00, KNP00, Sto02]). Furthermore, since
qualitative answers can generally be computed more efficiently than quantitative ones, they
are often used as a useful pre-processing step. For instance, when computing the maximal
probability of reaching a set of target states T , it is convenient to first pre-compute the
set of states T1 ⊇ T that can reach T with probability 1, and then compute the maximal
probability of reaching T : this reduces the number of states where the quantitative question
needs to be answered, and leads to more efficient algorithms [dAKN+00]. Lastly, we remark
that qualitative answers, unlike quantitative ones, are more robust to perturbations in the
numerical values of transition probabilities in the MDP. Thus, whenever a system can be
modeled only within some approximation, qualitative verification questions yield informa-
tion about the system that is more robust with respect to modeling errors, and in many
ways, more basic in nature.

In this paper, we provide logics for the specification of qualitative properties of Markov
decision processes, along with model-checking algorithms for such logics, and we study the
equivalence relations arising from such logics. Our starting point for the logics is provided by
the probabilistic logics pCtl and pCtl∗ [HJ94, ASB+95, BdA95]. These logics are able to
express bounds on the probability of events: the logic pCtl is derived from Ctl by adding
to its path quantifiers ∀ (“for all paths”) and ∃ (“for at least one path”) a probabilistic
quantifier P. For a bound q ∈ [0, 1], an inequality ⊲⊳∈ {<,≤,≥, >}, and a path formula ϕ,
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the pCtl formula P⊲⊳qϕ holds at a state if the path formula ϕ holds from that state with
probability ⊲⊳ q. The logic pCtl∗ is similarly derived from Ctl∗. In order to obtain logics
for qualitative properties, we consider the subsets of pCtl and pCtl∗ where ∀, ∃ have
been dropped, and where the bound q against which probabilities are compared can assume
only the two values 0, 1. We call the resulting logics Qrctl and Qrctl∗, for Qualitative
Randomized Ctl and Ctl∗.

We provide symbolic model-checking algorithms for the logic Qrctl; these algorithms
can be easily extended to Qrctl∗, since for MDPs the verification of general temporal-logic
properties can be reduced to reachability questions [CY95, dA97a]. As usual, the model-
checking algorithms for Qrctl proceed by induction on the structure of a formula. The
cases for some of the operators are known; for others, we give new algorithms, completing
the picture of the symbolic algorithms required for Qrctl model checking.

We then proceed to study the equivalence relations that arise from Qrctl. For two
states s and t of an MDP, we write s ≈>0 t if the states s, t satisfy the same Qrctl

formulas; similarly, Qrctl∗ induces the relation ≈>0
∗ . Informally, s ≈>0 t holds if the set of

properties that hold with probability 0, positive, and 1, at s and t coincide. These relations
are thus strictly coarser than standard probabilistic bisimulation [SL94], which relates states
only when the precise probability values coincide. Other works ([DGJP99]) have introduced
distances which quantify the difference in the probabilistic behavior of two MDPs. When
the distance between s and t is zero, s and t are probabilistically bisimilar, and so they are
also qualitatively bisimilar. Aside from that, the distance between two states is in general
unrelated to the states being qualitatively equivalent or not.

The appeal of the relations ≈>0 and ≈>0
∗ lies in their ability to relate implementations

and specifications in a qualitative way, abstracting away from precise probability values.
The relations, and their asymmetrical counterparts related to simulation, are particularly
well-suited to the study of refinement and implementation of randomized algorithms, where
the properties to be preserved are most often probability-1 properties. For instance, when
implementing a randomized thread scheduler [dAFMR05], the implementation needs to
guarantee that each thread is scheduled infinitely often with probability 1; it is not im-
portant that the implementation realizes exactly the same probability of scheduling each
thread as the specification. Our qualitative relations can also be used as a help to analyze
qualitative properties of systems, similarly to how bisimulation reductions can help in veri-
fication. Given a system, the relations enable the construction of a minimized, qualitatively
equivalent system, on which all qualitative questions about the original system can be an-
swered. We will show that our qualitative equivalences are computable by efficient discrete
graph-theoretic algorithms that do not refer to numerical computation.

We distinguish between alternating MDPs, where probabilistic and nondeterministic
choices occur at different states, from the general case of non-alternating MDPs, where both
choices can occur at the same state. Our first result is that on finite, alternating MDPs, the
relation ≈>0 coincides with alternating bisimulation [AHKV98] on the MDP regarded as
a two-player game of probability vs. nondeterminism. This result enables the computation
of ≈>0 via the efficient partition-refinement algorithms developed for alternating bisimula-
tion. We show that the correspondence between ≈>0 and alternating bisimulation breaks
down both for infinite MDPs, and for finite, but non-alternating, MDPs. Indeed, we show
that on non-alternating MDPs, the relation ≈>0 cannot be computed by any partition-
refinement algorithm that is local, in the sense that partitions are refined by looking only
at 1-neighbourhoods of states (the classical partition-refinement algorithms for simulation
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and bisimulation are local). These results are surprising. One is tempted to consider al-
ternating and non-alternating MDPs as equivalent, since a non-alternating MDP can be
translated into an alternating one by splitting its states into multiple alternating ones. The
difference between the alternating and non-alternating models was already noted in [ST05]
for strong and weak “precise” simulation, and in [BS01] for axiomatizations. Our results
indicate that the difference between the alternating and non-alternating model is even more
marked for ≈>0, which is a local relation on alternating models, and a non-local relation in
non-alternating ones.

More surprises follow when examining the roles of the © (“next”) and U (“until”)
operators, and the distinction between Qrctl and Qrctl∗. For Ctl, it is known that
the © operator alone suffices to characterize bisimulation; the U operator does not add
distinguishing power. The same is true for Qrctl on finite, alternating MDPs. On the
other hand, we show that for non-alternating, or infinite, MDPs, U adds distinguishing
power to the logic. Similarly, the relations induced by Qrctl and Qrctl∗ coincide on
finite, alternating MDPs, but Qrctl∗ has greater distinguishing power, and induces thus
finer relations, on non-alternating or infinite MDPs.

In summary, we establish that on finite, alternating MDPs, qualitative equivalence
can be computed efficiently, and enjoys many canonical properties. We also show that the
situation becomes more complex as soon as infinite or non-alternating MDPs are considered.
In all cases, we provide sharp boundaries for the classes of MDPs on which our statements
apply, distinguishing also between finitely and infinitely-branching MDPs. Our results also
indicate how the distinction between alternating and non-alternating MDPs, while often
overlooked, is in fact of great importance where the logical properties of the MDPs are
concerned.

Our organization of the paper is as follows: in section 2 we present the formal definitions
of MDPs and the logics Qrctl∗ and Qrctl. In section 3 we present a model checking
algorithm for MDPs with the logic Qrctl. In section 4 we characterize the equivalence
relations of MDPs with respect to Qrctl. In section 5 we present algorithms to compute
the equivalence relations. Finally, in section 6 we discuss the roles of the until and wait-for
operators in the logics, and in section 7 we consider the role of linear-time nesting (i.e., the
equivalences for the logic Qrctl∗).

2. Definitions

2.1. Markov Decision Processes

A probability distribution on a countable set X is a function f : X 7→ [0, 1] such that
∑

x∈X f(x) = 1; we denote the set of all probability distributions on X by D(X). Given
f ∈ D(X), we define Supp(f) = {x ∈ X | f(x) > 0} to be the support of f . We consider
a fixed set AP of atomic propositions, which includes the distinguished proposition turn .
Given a set S, we denote S+ (respectively Sω) the set of finite (resp. infinite) sequences of
elements of S.

A Markov decision process (MDP) G = (S,A,Γ, δ, [·]) consists of the following compo-
nents:

• a countable set of states S;
• a finite set of actions A;
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• an action assignment Γ : S 7→ 2A \ ∅, which associates with each state s ∈ S the set Γ(s)
of actions that can be chosen at s;

• a transition function δ : S × A 7→ D(S), which associates with each state s and action a
a next-state probability distribution δ(s, a);

• a labeling function [·] : S 7→ 2AP , which labels all s ∈ S with the set [s] of atomic
propositions true at s.

For s ∈ S and a ∈ Γ(s), we let Dest(s, a) = Supp(δ(s, a)) be the set of possible destinations
when the action a is chosen at the state s. The MDP G is finite if the state space S
is finite, and it is finitely-branching if for all s ∈ S and a ∈ Γ(s), the set Dest(s, a) is
finite. A play or path is an infinite sequence ~ω = 〈s0, s1, . . .〉 ∈ Sω of states of the MDP.
For s ∈ S and q ∈ AP , we say that s is a q-state iff q ∈ [s]. We define an edge relation
E = {(s, t) ∈ S × S | ∃a ∈ Γ(s) . t ∈ Dest(s, a)}; for s ∈ S, we let E(s) = {t | (s, t) ∈ E}.
An MDP G is a Markov chain if |Γ(s)| = 1 for all s ∈ S; in this case, for all s, t ∈ S we
write δ(s)(t) rather than δ(s, a)(t) for the unique a ∈ Γ(s).

Interpretations. We interpret an MDP in two distinct ways: as a 11/2-player game, and as
a 2-player game. In the 11/2-player interpretation, probabilistic choice is resolved proba-
bilistically: at a state s ∈ S, player 1 chooses an action a ∈ Γ(s), and the MDP moves
to the successor state t ∈ S with probability δ(s, a)(t). In the 2-player interpretation, we
regard probabilistic choice as adversarial, and we treat the MDP as a game between player 1
and player p (p for “probability”): at a state s, player 1 chooses an action a ∈ Γ(s), and
player p chooses a destination t ∈ Dest(s, a). The 11/2-player interpretation is the classical
one [Der70]. The 2-player interpretation will be used to relate the qualitative equivalence
relations for the MDP with the alternating relations of [AHKV98], and thereby derive al-
gorithms for computing the qualitative equivalence relations.

Strategies. A player-1 strategy is a function σ : S+ 7→ D(A) that prescribes the probability
distribution σ(~w) over actions to be played, given the past sequence ~w ∈ S+ of states visited
in the play. We require that if a ∈ Supp(σ(~w · s)), then a ∈ Γ(s) for all a ∈ A, s ∈ S, and
~w ∈ S∗. We denote by Σ the set of all player-1 strategies.

A player-p strategy is a function π : S+ ×A 7→ D(S). The strategy must be such that,
for all s ∈ S, ~w ∈ S∗, and a ∈ Γ(s), we have that Supp(π(~w ·s, a)) ⊆ Supp(δ(s, a)). Player p
follows the strategy π if, whenever player 1 chooses move a after a history of play ~w, she
chooses the destination state with probability distribution π(~w, a). Thus, in the 2-player
interpretation, nondeterminism plays first, and probability second. We denote by Π the set
of all player-p strategies.

The 2-player interpretation. In the 2-player interpretation, once a starting state s ∈ S and
two strategies σ ∈ Σ and π ∈ Π have been chosen, the game is reduced to an ordinary
stochastic process, and it is possible to define the probabilities of events, where an event
A ⊆ Sω is a measurable set of paths. We denote the probability of event A, starting
from s ∈ S, under strategies σ ∈ Σ and π ∈ Π by Prσ,π

s (A): note that the probability of
events given strategies σ and π do not depend on the transition probabilities of the MDP
as the strategy π can chose any probability distribution at each step. Given s ∈ S and
σ ∈ Σ, π ∈ Π, a play 〈s0, s1, . . .〉 is feasible if for every k ∈ N, there is a ∈ Γ(sk) such that
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σ(s0, s1, . . . , sk)(a) > 0 and π(s0, s1, . . . , sk, a)(sk+1) > 0. We denote by Outc(s, σ, π) ⊆ Sω

the set of feasible plays that start from s given strategies σ and π.

The 11/2-player interpretation. In the 11/2-player interpretation, we fix for player p the
strategy π∗ that chooses the next state with the distribution prescribed by δ. Precisely, for
all ~w ∈ S∗, s ∈ S, and a ∈ Γ(s), we let π∗(~w · s, a) = δ(s, a). We then write Prσs (A) and

Outc(s, σ) instead of Prσ,π∗

s (A) and Outc(s, σ, π∗), respectively, to underline the fact that
these probabilities and set of outcomes are functions only of the initial state and of the
strategy of player 1.

Alternating MDPs. An alternating MDP (AMDP) is an MDP G = (S,A,Γ, δ, [·]) along
with a partition (S1, Sp) of S such that:

(1) If s ∈ S1, then turn ∈ [s] and, for all a ∈ Γ(s), |Dest(s, a)| = 1.
(2) If s ∈ Sp, then turn 6∈ [s] and |Γ(s)| = 1.

The states in S1 are the player-1, or nondeterministic states, and the states in Sp are
the player-p, or probabilistic states. The predicate turn ensures that the MDP is visibly
alternating: the difference between player-1 and player-p states is obvious to the players,
and we want it to be obvious to the logic too. Alternating MDPs can be represented
more succinctly (and more intuitively) by providing, along with the partition (S1, Sp) of

S, the edge relation E ⊆ S × S, and a probabilistic transition function δ̃ : Sp 7→ D(S).
The probabilistic transition function is defined, for s ∈ Sp, t ∈ S, and a ∈ Γ(s), by

δ̃(s)(t) = δ(s, a)(t). A non-alternating MDP is a general (alternating or not) MDP.
We represent MDPs by graphs: vertices correspond to nodes, and each action a from a

state s is drawn as a hyperedge from s to Dest(s, a).

2.2. Logics

We consider two logics for the specification of MDP properties. The first, Qrctl∗, is a
logic that captures qualitative properties of MDPs, and is a qualitative version of pCtl∗

[HJ94, ASB+95, BdA95]. The logic is defined with respect to the classical, 11/2-player
semantics of MDPs. The second logic, Atl∗, is a game logic defined with respect to the
2-player semantics of MDPs as in [AHK02].

Syntax. The syntax of both logics is given by defining the set of path formulas (ϕ) and state
formulas (ψ) via the following inductive clauses:

path formulas: ϕ ::= ψ | ¬ϕ | ϕ ∨ ϕ | ©ϕ | ϕUϕ | ϕWϕ;
state formulas: ψ ::= tt | q | ¬ψ | ψ ∨ ψ | PQ(ϕ);

where q ∈ AP is an atomic proposition, tt is the boolean constant with value true, and PQ
is a path quantifier. The operators U , W and © are temporal operators. The logics Atl∗

and Qrctl∗ differ in the path quantifiers:

• The path quantifiers in Qrctl∗ are: ∃all , ∀all , ∃some , ∀some , ∃1 ,∀1 ,∃>0 and ∀>0.
• The path quantifiers in Atl∗ are: 〈〈1〉〉, 〈〈p〉〉, 〈〈1, p〉〉, 〈〈∅〉〉.
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The fragments Atl of Atl∗ and Qrctl of Qrctl∗ consist of formulas where every temporal
operator is immediately preceded by a path quantifier. In the following, when we refer to
a “formula” of a logic, without specifying whether it is a state or path formula, we always
mean a state formula. As usual, we define ✷ϕ and ♦ϕ to be abbreviations for ϕW(¬tt)
and ttUϕ, respectively.

Semantics. For a play ~ω = 〈s0, s1, . . .〉 we denote by ~ω[i] the play starting from the i-th state
of ~ω, i.e., ~ω[i] = 〈si, si+1, . . .〉. The semantics for the path formulas is defined as follows, for
path formulas ϕ, ϕ1, ϕ2:

~ω |= ϕ1 ∨ ϕ2 iff ~ω |= ϕ1 or ~ω |= ϕ2

~ω |= ¬ϕ iff ~ω 6|= ϕ

~ω |= ©ϕ iff ~ω[1] |= ϕ

~ω |= ϕ1 Uϕ2 iff ∃j ∈ N.~ω[j] |= ϕ2 and ∀0 ≤ i < j. ~ω[i] |= ϕ1

~ω |= ϕ1Wϕ2 iff
(

∀j ∈ N. ~ω[j] |= ϕ1

)

or ∃j ∈ N. ~ω[j] |= ϕ2 and ∀0 ≤ i ≤ j. ~ω[i] |= ϕ1.

Observe that

¬(ψ1 Uψ2) = ✷(¬ψ2) ∨ (¬ψ2 U(¬ψ1 ∧ ¬ψ2)) = ¬ψ2W¬ψ1.

Finally, we have

~ω |= ψ iff s0 |= ψ.

Given a path formula ϕ we denote by [[ϕ]] = {~ω | ~ω |= ϕ} the set of plays that satisfy ϕ.
The semantics of the state formulas of Atl∗ and Qrctl∗ is defined as follows, for a state
s, path formula ϕ, and state formulas ψ1 and ψ2:

s |= tt
s |= q iff q ∈ [s]
s |= ¬ψ1 iff s 6|= ψ1

s |= ψ1 ∨ ψ2 iff s |= ψ1 or s |= ψ2

s |= ∃all (ϕ) iff ∃σ ∈ Σ. Outc(s, σ) ⊆ [[ϕ]]
s |= ∀all (ϕ) iff ∀σ ∈ Σ. Outc(s, σ) ⊆ [[ϕ]]

s |= ∃1 (ϕ) iff ∃σ ∈ Σ. Prσs ([[ϕ]]) = 1
s |= ∀1 (ϕ) iff ∀σ ∈ Σ. Prσs ([[ϕ]]) = 1

s |= ∃>0(ϕ) iff ∃σ ∈ Σ. Prσs ([[ϕ]]) > 0
s |= ∀>0(ϕ) iff ∀σ ∈ Σ. Prσs ([[ϕ]]) > 0

s |= ∃some(ϕ) iff ∃σ ∈ Σ. Outc(s, σ) ∩ [[ϕ]] 6= ∅
s |= ∀some(ϕ) iff ∀σ ∈ Σ. Outc(s, σ) ∩ [[ϕ]] 6= ∅

s |= 〈〈1〉〉(ϕ) iff ∃σ ∈ Σ.∀π ∈ Π.Outc(s, σ, π) ⊆ [[ϕ]]
s |= 〈〈p〉〉(ϕ) iff ∃π ∈ Π.∀σ ∈ Σ.Outc(s, σ, π) ⊆ [[ϕ]]
s |= 〈〈1, p〉〉(ϕ) iff ∃σ ∈ Σ.∃π ∈ Π.Outc(s, σ, π) ⊆ [[ϕ]]
s |= 〈〈∅〉〉(ϕ) iff ∀σ ∈ Σ.∀π ∈ Π.Outc(s, σ, π) ⊆ [[ϕ]].

Given an Atl∗ or Qrctl∗ formula ϕ and an MDP G = (S,A,Γ, δ, [·]), we denote by
[[ψ]]G = {s ∈ S | s |= ϕ} the set of states that satisfy the state formula ψ, and we omit



8 K. CHATTERJEE, L.D̃E ALFARO, M. FAELLA, AND A. LEGAY

s t

1/21/2

1

Figure 1: A simple Markov chain.

the subscript G when obvious from the context. For all path formulas ϕ of Qrctl, the
following dualities hold:

[[∃allϕ]] = [[¬(∀some(¬ϕ))]]

[[∃someϕ]] = [[¬(∀all (¬ϕ))]]

[[∃>0ϕ]] = [[¬(∀1 (¬ϕ))]]

[[∃1ϕ]] = [[¬(∀>0(¬ϕ))]].

(2.1)

We now present a simple example to illustrate the difference between the satisfaction of a
path formula with probability 1 and for all paths.

Example 2.1. Consider the simple Markov chain shown in Figure 1. Let the propositions
true at states s and t be q and r, respectively. Let us consider the starting state as s, and the
formula ♦r (eventually r). The formula holds at state s with probability 1, since the only
closed recurrent set of states in the Markov chain is the state t (labeled with proposition r).
Hence ♦r holds in state s with probability 1. However, there is a path (namely, sω) that
violates the property eventually r, but the probability measure for the set {sω} of paths
is 0. Thus the state s does not satisfy that all on all paths we have eventually r, though it
satisfies the property eventually r with probability 1. If we consider the property eventually
q, then for all paths starting from s the property holds (hence the property also holds with
probability 1).

The following lemma establishes a relationship between Qrctl and Atl, proving that
the Qrctl quantifiers with superscript all and some are equivalent to the Atl quantifiers.

Lemma 2.2. For all path formulas ϕ, the following equivalences hold.

[[〈〈1〉〉ϕ]] = [[∃allϕ]]

[[〈〈1, p〉〉ϕ]] = [[∃someϕ]]

[[〈〈p〉〉ϕ]] = [[∀someϕ]]

[[〈〈∅〉〉ϕ]] = [[∀allϕ]]

Proof. Let G = (S,A,Γ, δ, [·]) be an MDP and let s ∈ S. We prove the first statement.
Assume s |= 〈〈1〉〉ϕ. By definition, there exists σ∗ ∈ Σ such that:

∀π ∈ Π.Outc(s, σ∗, π) ⊆ [[ϕ]].

Let π∗ ∈ Π be the strategy of player p that chooses the next state according to δ (i.e., the
natural strategy of player p in G). We have:

Outc(s, σ∗) = Outc(s, σ∗, π∗) ⊆ [[ϕ]]. (2.2)

Therefore, s |= ∃allϕ.
Conversely, assume s |= ∃allϕ. Then, there exists σ∗ ∈ Σ such that (2.2) holds. Let π

be any strategy of player p. We have that Outc(s, σ∗, π) ⊆ Outc(s, σ∗, π∗), because π∗ is
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the most liberal strategy for player p, i.e., no player-p strategy can ever choose a successor
state that is not among those that are chosen by π∗. Therefore, Outc(s, σ∗, π) ⊆ [[ϕ]] and
s |= 〈〈1〉〉ϕ.

Next, we prove the second statement. The remaining statements follow by duality.
Assume s |= 〈〈1, p〉〉ϕ. Then, there exist σ• ∈ Σ and π• ∈ Π such that Outc(s, σ•, π•) ⊆ [[ϕ]].
Let π∗ be the natural strategy for player p inG. By the previous argument, Outc(s, σ•, π•) ⊆
Outc(s, σ•, π∗). Therefore, Outc(s, σ•, π∗) ∩ [[ϕ]] 6= ∅ and s |= ∃someϕ.
Finally, assume s |= ∃someϕ. By definition, there exists σ∗ ∈ Σ such that Outc(s, σ∗, π∗) ∩
[[ϕ]] 6= ∅, where π∗ is the natural strategy for player p inG. Let ~ω be a play in Outc(s, σ∗, π∗)∩
[[ϕ]]. Define σ• and π• as the deterministic strategies that give as only outcome ~ω. We have:

Outc(s, σ•, π•) = {~ω} ⊆ [[ϕ]].

Therefore, s |= 〈〈1, p〉〉ϕ.

Finally, the following lemma proves the equivalence of some Qrctl formulas.

Lemma 2.3. For all atomic propositions q, r, and for all MDPs, we have:

[[∃>0 © q]] = [[∃some © q]]

[[∃1 © q]] = [[∃all © q]]

[[∃>0q Ur]] = [[∃someq Ur]] (2.3)

[[∃1 qWr]] = [[∃allqWr]].

Proof. The first two statements are obvious by definition. The third statement follows by
noting that s |= ∃someq Ur iff there is a finite path in (S,E) from s to an r-state, and all
states of the path, except possibly the last, are q-states. If such a path exists, there is
certainly a strategy of player 1 that follows it with positive probability.

For the last statement, the “⊇” inclusion is obvious by definition. For the other in-
clusion, assume by contradiction that s ∈ [[∃1 qWr]], but all strategies of player 1 ensuring
qWr with probability one also exhibit a path violating it. Then, s ∈ [[∀some ¬(qWr)]] =
[[∀some ¬rU¬q]]. Following an argument similar to the one for the third statement, we obtain
that s ∈ [[∀>0 ¬rU¬q]] = [[∀>0 ¬(qWr)]], which is a contradiction.

2.3. Equivalence Relations

Given an MDP G = (S,A,Γ, δ, [·]), we consider the equivalence relations induced over its
state space by various syntactic subsets of the logics Qrctl and Atl. Define the following
fragments of Qrctl:

• Qrctl>0 is the syntactic fragment of Qrctl containing only the path quantifiers ∃>0

and ∀>0;
• Qrctlall is the syntactic fragment of Qrctl containing only the path quantifiers ∃all

and ∀all .

Note that, because of the dualities (2.1), we do not need to consider the fragments for ∀1 ,
∃1 , ∀some , ∃some . The relations induced by Qrctl>0 and Qrctlall provide us with a notion
of qualitative equivalence between states.

≈>0 = {(s, s′)∈S×S | ∀ψ ∈ Qrctl>0, s |= ψ iff s′ |= ψ}

≈all = {(s, s′)∈S×S | ∀ψ ∈ Qrctlall , s |= ψ iff s′ |= ψ}.
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≈ATL

≈©,>0

≈>0

≈Game

≈>0
∗

finite finite

finite branching

≈TSfinite branching

finite

≈all

Figure 2: Relationship between equivalence relations for AMDPs.

We denote by ≈>0,© be the equivalence relation defined by Qrctl>0, with © as the only
temporal operator. We also define the equivalences ≈>0

∗ and ≈all
∗ as the Qrctl∗-version of

≈>0 and ≈all , respectively.
The syntactic subset of Atl which uses only the path quantifiers 〈〈1, p〉〉 and 〈〈∅〉〉 induces

the usual notion of bisimulation [Mil90]: indeed, quantifiers 〈〈1, p〉〉 and 〈〈∅〉〉 correspond to
quantifiers ∃ and ∀ of Ctl [CE81], respectively. The syntactic subset of Atl which uses
only the path quantifiers 〈〈1〉〉 and 〈〈p〉〉 induces alternating bisimulation [AHKV98]. We
have:

≈TS = {(s, s′) ∈ S × S | for all Atl formulas ψ with

〈〈1, p〉〉, 〈〈∅〉〉 as path quantifiers, s |= ψ iff s′ |= ψ};

≈Game = {(s, s′) ∈ S × S | for all Atl formulas ψ with

〈〈1〉〉, 〈〈p〉〉 as path quantifiers, s |= ψ iff s′ |= ψ};

≈ATL = {(s, s′) ∈ S × S | for all Atl formulas ψ, s |= ψ iff s′ |= ψ};

where TS is the short form for transition systems. In the relation ≈Game, nondeterministic
and probabilistic choice represent the two players of a game. In the relation ≈TS, nonde-
terminism and probability always cooperate as a single player. Finally, the relation ≈ATL

arises from the full logic Atl, where nondeterminism and probability can be either antago-
nistic or cooperative. The relations ≈TS, ≈Game, and ≈ATL can be computed in polynomial
time via well-known partition-refinement algorithms [Mil90, AHKV98].

Figure 2 (resp. Figure 3) summarizes the relationships between different equivalence
relations on alternating MDPs (resp. general MDPs) that we will show in this paper. An
arrow from relation A to relation B indicates that A implies B, i.e., that A is finer than B.

3. Model Checking Qrctl

In order to characterize the equivalence relations for Qrctl, it is useful to present first
the algorithms for Qrctl model checking. The algorithms are based on the results of
[dA97a, dA97b, dAH00]; see also [CdAH04]. As usual, we present only the algorithms
for formulas containing one path quantifier, as nested formulas can be model-checked by
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≈ATL

≈©,>0

≈>0

≈Game

≈>0
∗

finite branching

≈TS
finite branching

≈all

Figure 3: Relationship between equivalence relations for MDPs.

recursively iterating the algorithms. As a consequence of dualities (2.1), we need to provide
algorithms only for the operators ∃©, ∃U , and ∃W, and for the modalities all , 1 , > 0, and
some . The algorithms use the following predecessor operators, for X,Y ⊆ S:

Pre(X) = {s ∈ S | ∃a ∈ Γ(s) . Dest(s, a) ∩X 6= ∅}

Cpre(X) = {s ∈ S | ∃a ∈ Γ(s) . Dest(s, a) ⊆ X}

Apre(Y,X) = {s ∈ S | ∃a ∈ Γ(s) . Dest(s, a) ⊆ Y ∧Dest(s, a) ∩X 6= ∅}.

The operators Pre and Cpre are classical; the operator Apre is from [dAHK98]. We write
the algorithms in µ-calculus notation [Koz83]. Given an MDP G = (S,A,Γ, δ, [·]), the
interpretation [[ψ]] of a µ-calculus formula ψ is a subset of states. In particular, for a
propositional symbol q ∈ AP , we have [[q]] = {s ∈ S | q ∈ [s]} and [[¬q]] = {s ∈ S |
q 6∈ [s]}. The operators ∪, ∩, and the above predecessor operators are interpreted as the
corresponding operations on sets of states, and µ and ν indicate the least and greatest
fixpoint, respectively. The following result directly leads to model-checking algorithms for
Qrctl.

Theorem 3.1. For atomic propositions q and r, and for all MDPs, the following equalities
hold:

[[∃1 © q]] = [[∃all © q]] = Cpre([[q]]) (3.1)

[[∃>0 © q]] = [[∃some © q]] = Pre([[q]]) (3.2)

[[∃allq Ur]] = µX.([[r]] ∪ ([[q]] ∩ Cpre(X))) (3.3)

[[∃>0q Ur]] = [[∃someq Ur]] = µX.([[r]] ∪ ([[q]] ∩ Pre(X))) (3.4)

[[∃allqWr]] = [[∃1 qWr]] = νY.([[r]] ∪ ([[q]] ∩ Cpre(Y ))) (3.5)

[[∃someqWr]] = νY.([[r]] ∪ ([[q]] ∩ Pre(Y ))) (3.6)

If the MDP is finite, the following equalities also hold:

[[∃1 q Ur]] = νY.µX.([[r]] ∪ ([[q]] ∩ Apre(Y,X))) (3.7)

[[∃>0qWr]] = [[∃>0q U((r ∧ q) ∨ ∃all
✷q)]]. (3.8)
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Proof. The formulas involving the all and some modalities (i.e., statements (3.1) to (3.6))
are derived by the corresponding classical game algorithms, thanks to Lemma 2.2 and
Lemma 2.3. Formula (3.7) is from [dAHK98]. Formula (3.8) can be understood as follows.
A closed component is a subset of states T ⊆ S such that, for all s ∈ T , there is at least one
a ∈ Γ(s) such that Dest(s, a) ⊆ T . Using the relation qWr ≡ (q U(r ∧ q)) ∨ ✷q [MP91], we
have for s ∈ S that s |= ∃>0qWr iff (i) s |= ∃>0q U(q∧r), or (ii) there is a closed component
T composed only of q-states, and a path s0, s1, . . . , sn in (S,E) composed of q-states, with
s0 = s and sn ∈ T (see, e.g., [dA97a]). Formula (3.8) encodes the disjunction of (i) and
(ii).

Note that, even though (3.8) is not a µ-calculus formula, it can be readily translated into
the µ-calculus via (3.4) and (3.5). Also observe the µ-calculus formulas corresponding to
Qrctl are either alternation free or contain one quantifier alternation between the µ and
ν operator. Thus, from the complexity of evaluating µ-calculus formulas we obtain the
following result.

Theorem 3.2. Given a finite MDP G = (S,A,Γ, δ, [·]) and a Qrctl formula ψ, the set
[[ψ]]G can be computed in O(|S| · |δ| · ℓ) time, where |δ| =

∑

s∈S

∑

a∈Γ(s) |Dest(s, a)| and ℓ

denotes the length of ψ.

Proof. We first consider the computation of Pre(X), Cpre(X), and Apre(Y,X) for X,Y ⊆
S. To decide whether s ∈ Pre(X) we check if there exists a ∈ Γ(s) such that Dest(s, a)∩X 6=
∅. Similarly, to decide whether s ∈ Cpre(X) (resp. Apre(Y,X)) we check if there exists
a ∈ Γ(s) such that Dest(s, a) ⊆ X (resp. Dest(s, a) ⊆ Y and Dest(s, a)∩X 6= ∅). It follows
that given sets X and Y , the sets Pre(X), Cpre(X), and Apre(Y,X) can be computed
in time O(

∑

s∈S

∑

a∈A |Dest(s, a)|). Given a formula ψ in Qrctl, with all of its sub-
formulas already evaluated, it follows from Theorem 3.1 that the computation of [[ψ]] can be
obtained by computing a µ-calculus formula of constant length with at most one quantifier
alternation of µ and ν. Using the monotonicity property of Pre,Cpre and Apre, and the
computation of Pre,Cpre and Apre, it follows that each inner iteration of the µ-calculus
formula can be computed in time O(

∑

s∈S

∑

a∈A |Dest(s, a)|). Since the outer iteration of
the µ-calculus formula converges in |S| iterations, it follows that [[ψ]] can be computed in
time O(|S|·

∑

s∈S

∑

a∈A |Dest(s, a)|). By a bottom-up algorithm that evaluates sub-formulas
of a formula first, we obtain the desired bound for the algorithm.

4. Relationship between Qrctl and Atl Equivalences

In this section, we compare the relations induced by Qrctl and Atl. These comparisons
will then be used in Section 5 to derive algorithms to compute ≈all and ≈>0.

We first compare ≈all with the relations induced by Atl. As a first result, we show
that the relations induced by Atl coincide on alternating MDPs (AMDPs). This result
follows from the fact that the turn is visible to the logic.

Proposition 4.1. On AMDPs, we have ≈Game = ≈TS.

Proof. Since the turn is observable (via the truth-value of the predicate turn), both ≈Game

and ≈TS can relate only states where the same player (1 or p) can choose the next move.
Based on this observation, the equality of the relations can be proved straightforwardly by
induction.
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Figure 4: An infinite Markov chain in which states s and s′ cannot be distinguished by
Qrctl>0, but are distinguished by the Atl formula 〈〈p〉〉✷¬q.

Corollary 4.2. On AMDPs, we have ≈ATL = ≈Game = ≈TS.

An immediate consequence of Lemma 2.2 is that ≈all and ≈ATL coincide. This enables
the computation of ≈all via the algorithms for alternating bisimulation [AHKV98].

Proposition 4.3. For all MDPs, ≈all = ≈ATL.

Next, we examine the relationship between ≈>0 and ≈ATL. On finitely-branching
MDPs, ≈>0 is finer than ≈ATL; the result cannot be extended to infinitely-branching MDPs.

Theorem 4.4. The following assertions hold:

(1) On finitely-branching MDPs we have ≈>0 ⊆ ≈ATL.
(2) There is an infinitely-branching AMDP on which ≈>0 6⊆ ≈ATL.

Proof. Assertion 1. For n > 0, we consider the n-step approximation ≈n
ATL of ≈ATL. In

finite MDPs, we have ≈ATL=≈n
ATL for n = |S|; in finitely-branching MDPs, we have ≈ATL=

∩∞
n=0 ≈n

ATL, and this does not extend to MDPs that are not finitely-branching. We define a
sequence Ψ0,Ψ1,Ψ2, . . . of sets of formulas such that, for all s, t ∈ S, we have s ≈n

ATL t iff s
and t satisfy the same formulas in Ψn. To this end, given a finite set Ψ of formulas, we denote
by BoolC(Ψ) the set of all formulas that consist in disjunctions of conjunctions of formulas
in {ψ,¬ψ | ψ ∈ Ψ}. We assume that each conjunction (resp. disjunction) in BoolC(Ψ) does
not contain repeated elements, so that from the finiteness of Ψ follows the one of BoolC(Ψ).
We let Ψ0 = BoolC(AP) and, for k ≥ 0, we let Ψk+1 = BoolC(Ψk ∪ {∃>0 © ψ,∃all © ψ |
ψ ∈ Ψk}). The formulas in BoolC(Ψ0),BoolC(Ψ1), . . . ,BoolC(Ψn) provide witnesses that
≈>0 ⊆ ≈n

ATL. Thus for all n, we have ≈>0 ⊆ ≈n
ATL, and it follows that ≈>0 ⊆ ≈ATL.

Assertion 2. Consider a Markov chain, depicted in Figure 4, with state space S = N∪{s, s′},
with only one predicate symbol q, such that [0] = {q}, and [t] = ∅ for all t ∈ S \ {0}. There
is a transition from s to every i ∈ N with probability 1/2i+1. There is a transition from s′

to s′ with probability 1/2, and from s′ to every i ∈ N with probability 1/2i+2. There is a
transition from i ∈ N with i > 0 to every state in {j ∈ N | j < i}, with uniform probability.
There is a deterministic transition from 0 to itself. Since this is a Markov chain, the two
path quantifiers ∃ and ∀ are equivalent, and we need only consider formulas of the form
∃>0 and ∃1 . By induction on the length of a Qrctl formula ϕ, we can then show that ϕ
cannot distinguish between states in the set {i ∈ N | i > |ϕ|} ∪ {s, s′}. Hence, s ≈>0 s′. On
the other hand, we have s 6≈ATL s

′, since s 6|= 〈〈p〉〉✷¬q and s′ |= 〈〈p〉〉✷¬q.
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To obtain a partial converse of this theorem, we need to translate all Qrctl formulas into
Atl. For finite MDPs, Lemmas 2.2 and 2.3 enable us to translate all Qrctl formulas,
except for formulas of the type ∃1 U and ∃>0W. For the latter type, from (3.8) together
with Lemmas 2.2 and 2.3, we obtain the following result.

Lemma 4.5. For finite MDPs, and for all atomic propositions q, r, we have

[[∃>0qWr]] = [[〈〈1, p〉〉
(

q U((q ∧ r) ∨ 〈〈1〉〉✷q)
)

]].

Regarding formulas of the type ∃1 U , they can be model-checked using the µ-calculus ex-
pression (3.7). To obtain a translation into Atl, which will be given in proof of Theorem 4.7,
we first translate into Atl the operator Apre . To this end, for Atl formulas ϕ, ψ, define

FApre(ϕ,ψ) = (〈〈1〉〉 © (ϕ ∧ ψ)) ∨
(

〈〈∅〉〉 © ϕ ∧ 〈〈p〉〉 © ψ
)

.

Lemma 4.6. For AMDPs, and for all Atl formulas ϕ, ψ, we have [[FApre(ϕ,ψ)]] =
Apre([[ϕ]], [[ψ]]).

Proof. We consider the following characterization of the Apre operator, valid for AMDPs:
for sets X and Y , and a state s we have s ∈ Apre(Y,X) iff the following conditions hold:
(a) if s ∈ S1, then there exists a ∈ Γ(s) such that δ(s, a) ∈ X∩Y ; and (b) if s ∈ Sp, then for
the unique action a ∈ Γ(s), we have Dest(s, a) ⊆ Y and Dest(s, a) ∩X 6= ∅. The definition
of FApre captures the above two conditions. The result follows.

Note that the lemma holds only for alternating MDPs: indeed, we will show that, on
non-alternating MDPs, the operator Apre is not translatable into Atl.

Using these lemmas, we can show that on finite AMDPs, we have ≈ATL ⊆ ≈>0. This
result is tight: we cannot relax the assumption that the MDP is finite, nor the assumption
that it is alternating.

Theorem 4.7. The following assertions hold:

(1) On finite AMDPs, we have ≈ATL ⊆ ≈>0.
(2) There is a finite MDP on which ≈ATL 6⊆ ≈>0.
(3) There is an infinite, but finitely-branching, AMDP on which ≈ATL 6⊆ ≈>0.

Proof. Assertion 1. We prove that on a finite, alternating MDP, the counterpositive holds:
if s 6≈>0 t, then s 6≈ATL t. Let s and t be two states such that s 6≈>0 t. Then, there must
be a formula ϕ in Qrctl>0 that distinguishes s from t. From this formula, we derive a
formula f(ϕ) in Atl that distinguishes s from t.

We proceed by structural induction on ϕ, starting from the inner part of the formula
and replacing successive parts that are in the scope of a path quantifier by their Atl version.
The cases where ϕ is an atomic proposition, or a boolean combination of formulas are trivial.
Using (2.1), we reduce Qrctl>0-formulas that involve a ∀ operator to formulas that only
involve the ∃ operator. Lemma 2.3 provides translations for all such formulas, except those
of type ∃1 (ϕUψ). For instance, (2.3) leads to f(∃>0ϕUψ) = 〈〈1, p〉〉f(ϕ)Uf(ψ). In order
to translate a formula of the form γ = ∃1 (ϕUψ), we translate the evaluation of the nested
µ-calculus formula (3.7) into the evaluation of a nested Atl formula, as follows. Define the
set of formulas {αi,j | 0 ≤ i, j ≤ n}, where n = |S| is the number of states of the AMDP,
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Figure 5: States s and t cannot be distinguished by Atl, but are distinguished by ∃1
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Figure 6: An infinite Markov chain on which ≈ATL 6⊆ ≈>0, where xi’s and yi’s represent
the probabilities that the corresponding edge is taken.

via the following clauses:

∀i ∈ [0..n] : αi,0 = ff

∀j ∈ [1..n] : α0,j = tt

∀i ∈ [1..n] . ∀j ∈ [0..n − 1] :

αi,j+1 = f(ψ) ∨
(

f(ϕ)∧FApre(αi−1,n, αi,j)
)

.

From Lemma 4.6, the above set of formulas encodes the iterative evaluation of the nested
fixpoint (3.7), so that we have [[αn,n]] = [[γ]], and we can define f(γ) = αn,n. This concludes
the translation.

Assertion 2. Consider the MDP shown in Figure 5. The states s and t are such that
(s, t) ∈≈ATL. However, s |= ∃1 (✸q) (consider the strategy that plays always a), whereas
t 6|= ∃1 (✸q).

Assertion 3. Consider the infinite AMDP shown in Figure 6. All states are probabilistic

states, i.e. S1 = ∅. For all i > 0, we set xi = 1
2 and yi = 2−

1

2i , so that
∏

i>0 xi = 0 and
∏

i>0 yi = 1
2 . It is easy to see that s ≈ATL t. However, s |= ∃>0(✷q) and t 6|= ∃>0(✷q).

The example in Figure 5 also shows that on non-alternating MDPs, unlike on alternating
ones (see Lemma 4.6), the Apre operator cannot be encoded in Atl. If we were able to
encode Apre in Atl, by proceeding as in the proof of the first assertion, given two states s,
t with s 6≈>0 t, we could construct an Atl formula distinguishing s from t.

As a corollary to Theorems 4.4 and 4.7, we have that on finite, alternating MDPs,
the equivalences induced by Atl and Qrctl coincide. Thus the discrete graph theoretic
algorithms to compute equivalences for Atl can be used to compute the Qrctl equivalences
for finite AMDPs.

Corollary 4.8. For finite AMDPs, we have ≈>0 = ≈ATL.
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Figure 7: MDPs illustrating how separating nondeterministic and probabilistic choice does
not help to compute ≈>0.

5. Computing Qrctl Equivalences

In this section, we take advantage of the results obtained in Section 4 to derive algorithms
to compute ≈>0 and ≈all for AMDPs. We also provide an algorithm to compute those
relations on non-alternating MDPs.

5.1. Alternating MDPs

Corollary 4.8 immediately provides an algorithm for the computation of the Qrctl equiva-
lences on AMDPs, via the computation of the Atl equivalences (interpreting nondetermin-
ism and probability as the two players). In particular, the partition-refinement algorithms
presented in [AHK02] can be directly applied to the problem. This yields the following
result.

Theorem 5.1. The two problems of computing ≈>0 and ≈all on finite AMDPs are PTIME-
complete.

Proof. Consider a turn-based game and consider the AMDP obtained from the game as-
signing uniform transition probabilities to all out-going edges from a player 2 state. Then
the 2-player game interpretation of the AMDP coincides with the original turn-based game.
The result then follows from Corollary 4.8, and from the PTIME-completeness of ATL
model checking and computing ≈ATL [AHK02].

5.2. Non-Alternating MDPs

For the general case of non-alternating MDPs, on the other hand, the situation is not
nearly as simple. First, let us dispel the belief that, in order to compute ≈>0 on a non-
alternating MDP, we can convert the MDP into an alternating one, compute ≈>0 via ≈ATL

(using Corollary 4.8) on the alternating one, and then somehow obtain ≈>0 on the original
non-alternating MDP. The following example shows that this, in general, is not possible.

Example 5.2. Consider the MDP depicted in Figure 7(a), where the set of predicates is
AP = {q, r}. We have s ≈>0 s′. Indeed, the only difference between s and s′ is that at
state s′ the action c is available: since c is a convex combination of a and b, s and s′ are
probabilistically bisimilar in the sense of [SL94], and thus also related by ≈>0. We transform
this MDP into an alternating one by adding, for each state s and each a ∈ Γ(s), a state
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〈s, a〉 which represents the decision of choosing a at s; the result is depicted in Figure 7(b).
In this AMDP, however, the state 〈s′, c〉 has no equivalent, as it satisfies both ∃>0 © q
and ∃>0 © r. Therefore, on this AMDP we have s 6≈>0 s′, as witnessed by the formula
∃all © ((∃>0 © q) ∧ (∃>0 © r)).

As the example illustrates, the problem is that once nondeterminism and probability are
separated into different states, the distinguishing power of ≈>0 increases, so that computing
≈ATL on the resulting alternating MDP does not help to compute ≈>0 on the original non-
alternating one.

Failure of local partition refinement. Simulation and bisimulation relations can be com-
puted via partition refinement algorithms that consider, at each step, the 1-neighbourhood
of each state: that is, the set of states reachable from a given state in one step [Mil90].
We call such algorithms 1-neighbourhood partition refinements. Here, we show a general re-
sult: no 1-neighbourhood partition refinement algorithm exists for ≈>0 on non-alternating
MDPs.

We make this notion precise as follows. Consider an MDP G = (S,A,Γ, δ, [·]), together
with an equivalence relation ∼ on S. Intuitively, two states are 1-neighbourhood isomorphic
up to ∼ if their 1-step future looks identical, up to the equivalence ∼. Formally, we say

that two states s, t ∈ S are 1-neighbourhood isomorphic up to ∼, written s
1
∼ t, iff s ∼ t,

and if there is a bijection R between E(s) and E(t), and a bijection R̂ between Γ(s) and
Γ(t), which preserve ∼ and the transition probabilities. Precisely, we require that:

• if s′ ∈ E(s) and t′ ∈ E(t) with s′Rt′, then s′ ∼ t′;

• if a ∈ Γ(s) and b ∈ Γ(t) with a R̂ b, then for all s′ ∈ E(s) and t′ ∈ E(t) with s′R t′, we
have δ(s, a)(s′) = δ(t, b)(t′).

Let PartS be the set of equivalence relations on S. A partition refinement operator f :
PartS 7→ PartS is an operator such that, for all ∼ ∈ PartS, we have f(∼) is finer than ∼.
We say that a partition operator computes a relation ≈ if we have ≈ = limn→∞ fn(∼pred),
where fn denotes n repeated applications of f and s ∼pred t iff [s] = [t].

We say that a partition refinement operator f is 1-neighbourhood if it refines an equiva-
lence relation ∼ on the basis of the 1-neighbourhood of the states, treating in the same fash-
ion states whose 1-neighbourhoods are isomorphic up to ∼. Precisely, f is 1-neighbourhood

if, for all ∼∈ PartS and for all s, s′, t, t′ ∈ S with s
1
∼ s′, t

1
∼ t′, we have either

(s, t), (s′, t′) ∈ f(∼), or (s, t), (s′, t′) 6∈ f(∼). We can now state the non-existence of 1-
neighbourhood refinement operators for ≈>0 as follows.

q

r

s4s3s2s1

Figure 8: MDP showing the lack of 1-neighbourhood refinement operators.



18 K. CHATTERJEE, L.D̃E ALFARO, M. FAELLA, AND A. LEGAY

Theorem 5.3. There is no 1-neighbourhood partition refinement operator which computes
≈>0 on all MDPs.

Proof. Consider the states s1, s2, s3, s4 of the MDP depicted in Figure 8, and take ∼ = ∼pred .
Let f be any 1-neighbourhood partition refinement operator. From s1 ∼ s2 ∼ s3 ∼ s4, we

can see that s2
1
∼ s3

1
∼ s4. Let ∼′ = f(∼). Considering the pairs (s1, s2), (s1, s3), and

(s1, s4) in the definition of 1-neighbourhood partition refinement operator, we have that ∼′

satisfies one of the following two cases:

(1) s1 6∼′ s2 and s1 6∼′ s3 and s1 6∼′ s4,
(2) s1 ∼′ s2 and s1 ∼′ s3 and s1 ∼′ s4.

In the first case, the partition refinement terminates with a relation ∼′′ such that s1 6∼′′ s2.
This is incorrect, since we can prove by induction on the length of Qrctl>0 formulas that
no such formula distinguishes s1 from s2, so that s1 ≈>0 s2. In the second case, the partition
refinement terminates with a relation ∼′′ such that s1 ∼′′ s3. This is also incorrect, since
the formula ∃1♦r is a witness to s1 6≈>0 s3. We conclude that a 1-neighbourhood partition
refinement operator cannot compute ≈>0.

To give an algorithm for the computation of ≈>0, given two sets of states C1 and C2,
let:

U(C1, C2) = {~ω = 〈s0, s1, . . .〉 | ∃j ≥ 0 . sj ∈ C2 and ∀ 0 ≤ i < j . si ∈ C1}

EU1 (C1, C2) = {s ∈ S | ∃σ ∈ Σ. Prσ
s (U(C1, C2)) = 1}.

Intuitively, if C1 = [[ϕ1]] and C2 = [[ϕ2]] for two Qrctl formulas ϕ1 and ϕ2, then EU1 (C1, C2)
is [[∃1 (ϕ1 U ϕ2)]].
We say that an equivalence relation ≃ is 1, p, EU -stable if, for all unions C1, C2 of equivalence
classes with respect to ≃, and for all s, t ∈ S with s ≃ t, we have:

(1) s ∈ Pre(C1) iff t ∈ Pre(C1);
(2) s ∈ Cpre(C1) iff t ∈ Cpre(C1);
(3) s ∈ EU1 (C1, C2) iff t ∈ EU1 (C1, C2).

Let ≈EU
ATL be the coarsest equivalence relation that is 1, p, EU -stable. We show that ≈EU

ATL

coincides with ≈>0.

Theorem 5.4. For all finite MDPs, we have ≈EU
ATL = ≈>0.

Proof. We prove containment in the two directions.

≈EU
ATL ⊆ ≈>0. This statement is equivalent to saying that for all formulas ϕ in Qrctl>0,

[[ϕ]] is the union of classes in S/≈EU
ATL. Let s and t be two states such that s 6≈>0 t, and let ϕ

be a formula from Qrctl>0 such that s |= ϕ and t 6|= ϕ. We show by structural induction
on ϕ that s 6≈EU

ATL t. The cases where ϕ is a proposition, or the boolean combination of
formulas are trivial. All other cases follow as in the proof of the first part of Theorem 4.7,
except for the case ϕ = ∃1 (ϕ1 Uϕ2). For ϕ = ∃1 (ϕ1 Uϕ2), we have s ∈ EU1 ([[ϕ1]], [[ϕ2]]),
while t 6∈ EU1 ([[ϕ1]], [[ϕ2]]). By inductive hypothesis, we can assume that [[ϕ1]] and [[ϕ2]] are
unions of classes in S/≈EU

ATL. So, (s, t) 6∈ ≈EU
ATL.

≈>0 ⊆ ≈EU
ATL. The proof follows the same idea of the proof of the first part of Theorem 4.4.

The only modification needed is in the inductive definition of the set of formulas: we take
here Ψk+1 = BoolC(Ψk ∪ {∃>0 © ψ,∃all © ψ,∃1ψ Uψ′ | ψ,ψ′ ∈ Ψk}).
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The following theorem provides an upper bound for the complexity of computing ≈>0

on MDPs. The PTIME-completeness of ordinary simulation [ABGS91] provides a lower
bound, but no tight lower bound is known.

Theorem 5.5. The problem of deciding whether s ≈>0 t for two states s and t of an MDP
is in co-NP.

Proof. We show that the problem of deciding s 6≈>0 t is in NP. To this end, we have to
show that there is a certificate for s 6≈>0 t that has polynomial size, and is polynomially
checkable. Consider the usual partition-refinement method for computing ≈ATL [Mil90,
AHKV98]. The method starts with an equivalence relation ≃ that reflects propositional
equivalence. Then, ≃ is refined at most m = |S| times. At each refinement step, some
state-pairs are removed from ≃. A certificate for the removal of a pair from ≃ is simply
a Cpre or Pre or EU1 operator, along with a union of equivalence classes; it is thus of
size polynomial in m. Since at most m2 pairs can be removed from ≃, the total size of
these state-pair removal certificates is polynomial in m. This yields a polynomial-size and
polynomially-checkable certificate for s 6≈>0 t.

6. The Roles of Until and Wait-For

In this section we study the roles of the until and the wait-for operator, and the relationship
between the equivalences induced by Qrctl and Qrctl∗.

It is well known that in the standard branching logics Ctl and Ctl∗, as well as in
ATL, the next-time operator © is the only temporal operator needed for characterizing
bisimulation. For Qrctl, this is not the case: the operators U and W can increase the
distinguishing power of the logics, as the following theorem indicates.

Theorem 6.1. The following assertions hold:

(1) On finitely-branching MDPs, we have ≈>0,© = ≈ATL.
(2) For all MDPs, we have ≈>0 ⊆ ≈>0,©.
(3) For finite AMDPs, we have ≈>0,© = ≈>0.
(4) There is a finitely-branching, infinite AMDP on which ≈>0,© 6⊆ ≈>0.
(5) There is a finite, (non-alternating) MDP on which ≈>0,© 6⊆ ≈>0.

Proof. Assertion 1. The inclusion ≈>0,© ⊆ ≈ATL follows from the fact that formulas used
in the first part of the proof of Theorem 4.4 make use only of the © temporal operator,

and from ≈ATL = ≈©
ATL. To prove the inclusion ≈ATL ⊆ ≈>0,©, consider two states s, t ∈ S

such that s 6≈>0,© t. Then, there is a Qrctl>0 formula ϕ that distinguishes them. From
this formula we derive an Atl formula f(ϕ) that also distinguishes them. We proceed by
structural induction. The result is obvious for boolean operators and atomic propositions.
The cases ϕ = ∃1 ©ϕ1 and ϕ = ∃>0 ©ϕ1 are an easy consequence of Lemma 2.3.

Assertion 2. Immediate, as the set of Qrctl>0 formulas without U and W is a subset of
the set of all Qrctl>0 formulas.

Assertion 3. The result is derived as follows: ≈>0,© ⊆ ≈ATL = ≈>0. The inclusion
≈>0,© ⊆ ≈ATL is a consequence of Assertion 1 of this theorem. The equality ≈Game = ≈>0

follows by combining Assertion 1 of Theorem 4.4 and Assertion 1 of Theorem 4.7.
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Assertion 4. The result follows by considering again the infinite AMDP of Figure 6. Rea-
soning as in the proof of Theorem 4.7, it holds (s, t) ∈ ≈>0,©, but (s, t) 6∈ ≈>0: indeed,
note that s |= ∃>0(✷q) and t 6|= ∃>0(✷q).

Assertion 5. The result is a consequence of Theorem 4.7, Assertion 2, and of the present
theorem, Assertion 1: the same MDP used to show ≈ATL 6⊆ ≈>0, depicted in Figure 5, also
shows ≈>0,© 6⊆ ≈>0.

7. Linear Time Nesting

The logics Ctl and Ctl∗ induce the same equivalence, namely, bisimulation. Similarly,
ATL and ATL* both induce alternating bisimulation. We show here that Qrctl and
Qrctl∗ induce the same equivalences on finite, alternating MDPs, but we show that for
infinite, or non-alternating, MDPs, Qrctl∗ induces finer relations than Qrctl. These
results are summarized by the following theorem.

Theorem 7.1. The following assertions hold:

(1) For all MDPs, we have ≈>0
∗ ⊆ ≈>0.

(2) For all finite AMDPs, we have ≈>0
∗ = ≈>0.

(3) There is a finitely-branching, infinite AMDP, on which ≈>0 6⊆ ≈>0
∗ .

(4) There is a finite MDP on which ≈>0 6⊆ ≈>0
∗ .

Before presenting the proof of this result, it is useful to recall some facts about Rabin
automata, Markov decision processes, and probabilistic verification.

Rabin automata and temporal logic. An infinite-word automaton over AP is a tuple
A = (L,Linit , p·q,∆), where L is a finite set of locations, Linit ⊆ L is the set of initial
locations, p·q : L 7→ 2AP is a labeling function that associates with each location l ∈ L the
set plq ⊆ AP of predicates that are true at l, and ∆ : L 7→ 2L is the transition relation.
The automaton A is deterministic if the following conditions hold:

• for all η ⊆ AP , there is a unique l ∈ Linit with plq = η;
• for all l ∈ L and all η ⊆ AP , there is l′ ∈ ∆(l) with pl′q = η;
• for all l, l′, l′′ ∈ L, we have that l′, l′′ ∈ ∆(l) and l′ 6= l′′ implies pl′q 6= pl′′q.

The set of paths of A is Paths(A) = {l0, l1, l2, . . . | l0 ∈ Linit∧∀k ≥ 0.lk+1 ∈ ∆(lk)}. A Rabin
acceptance condition over a set L is a set of pairs F = {(P1, R1), (P2, R2), . . . , (Pm, Rm)}
where, for 1 ≤ i ≤ m, we have Pi, Ri ⊆ L. The acceptance condition F defines a set of paths
over L. For a path τ = s0, s1, s2, . . . ∈ Lω, we define Inf(τ) to be the set of locations that
occur infinitely often along τ . We define Paths(F ) = {τ ∈ Lω | ∃i ∈ [1..m] . (Inf(τ) ∩ Pi =
∅ ∧ Inf(τ)∩Ri 6= ∅)}. A Rabin automaton (A,F ) is an infinite-word automaton A with set
of locations L, together with a Rabin acceptance condition F on L; we associate with it the
set of paths Paths(A,F ) = Paths(A) ∩ Paths(F ).

Given a set of predicates AP , a trace ρ ∈ (2AP )ω over AP is an infinite sequence
of interpretations of AP ; we indicate with Traces(AP) = (2AP )ω the set of all traces
over AP . A Rabin automaton (A,F ) with A = (L,Linit , p·q,∆) induces the set of traces
Traces(A,F ) = {pl0q, pl1q, pl2q, . . . | l0, l1, l2, . . . ∈ Paths(A,F )}. An Ltl formula ϕ over
the set of propositions AP induces the set of traces Traces(ϕ) ⊆ Traces(AP), defined as
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usual (see, e.g., [MP91]). From [VW86] it is known that for an Ltl formula ϕ we can
construct a deterministic Rabin automaton (A,F ) such that Traces(A,F ) = Traces(ϕ).

We can now proceed to prove Theorem 7.1.

Proof of Theorem 7.1.

Proof. The first assertion is obvious. For the other assertions, we proceed as follows.
Assertion 2. Let G = (S,A,Γ, δ, [·]) be a finite, alternating MDP. Since Qrctl is a frag-
ment of Qrctl∗, it follows that ≈>0

∗ ⊆ ≈>0. To prove ≈>0⊆≈>0
∗ , we show that if there

exists a Qrctl∗ formula that distinguishes two states s and t, then there also exists a
Qrctl formula that distinguishes s and t. We focus on formulas of the type ∃>0ϕ and
∃1ϕ, where ϕ is an Ltl formula. The generalization to the complete logic follows by
structural induction and duality. Thus, assume that there are two states s∗, t∗ ∈ S and
α ∈ {1 , > 0} such that s∗ |= ∃αϕ and t∗ 6|= ∃αϕ. Let (A,F ) be a deterministic Rabin
automaton such that Traces(A,F ) = Traces(ϕ), and assume that A = (L,Linit , p·q,∆) and
F = {(P1, R1), . . . , (Pm, Rm)}. Let G′ = G × A = (S′,A,Γ′, δ′, [·]′) be the MDP resulting
from forming the usual synchronous product of G and A. In detail, we have:

• S′ = {(s, l) ∈ S × L | [s] = plq};
• Γ′(s, l) = Γ(s) for all (s, l) ∈ S′;
• for all (s1, l1), (s2, l2) ∈ S′ and a ∈ A, we have δ′((s1, l1), a)(s2, l2) = δ(s1, a)(s2) if
l2 ∈ ∆(l1), and δ′((s1, l1), a)(s2, l2) = 0 otherwise;

• [(s, l)] = plq, for all (s, l) ∈ S′.

Let F ′ be the Rabin acceptance condition of G′, defined by F ′ = {(P ′
1, R

′
1), . . . , (P

′
m, R

′
m)},

where each P ′
i , R

′
i ⊆ S′ is defined as follows: P ′

i = {(s, l) ∈ S′ | l ∈ Pi} and R′
i = {(s, l) ∈ S′ |

l ∈ Ri}. For every s ∈ S, denote with linit(s) the unique l ∈ Linit such that [s] = plq. Using
the results of [dA97a, dAHK98, CdAH04] on the model-checking of MDPs with respect to
probabilistic temporal-logic properties, we can construct µ-calculus formulas to distinguish
(s∗, linit (s

∗)) and (t∗, linit(t
∗)). Define, first of all, the following abbreviations:

ψ̂all =
m
⋃

i=1

νY. µX.
[

P ′
i ∩

(

Cpre(X) ∪ (R′
i ∩ Cpre(Y ))

)

]

ψ̂1 =

m
⋃

i=1

νY .µX.
[

P ′
i ∩

(

Apre(Y,X) ∪ (R′
i ∩ Cpre(Y ))

)

]

ψ̂some =

m
⋃

i=1

νY. µX.
[

P ′
i ∩

(

Pre(X) ∪ (R′
i ∩ Pre(Y ))

)

]

.

On the basis of the above formulas, define:

ψall = µW .
(

ψ̂all ∪ Cpre(W )
)

ψ1 = νZ . µW .
(

Apre(Z,W ) ∪ ψ̂1
)

ψ>0 = µW .
(

ψ̂1 ∪ Pre(W )
)

ψsome = µW .
(

ψ̂some ∪ Pre(W )
)

.

For α ∈ {all , 1 , > 0, some} and s ∈ S, we have:

(s, linit (s)) ∈ [[ψα]]G′ iff s |= ∃αϕ
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so that, in particular, (s∗, linit (s
∗)) ∈ [[ψα]]G′ and (t∗, linit (t

∗)) 6∈ [[ψα]]G′ . Hence, the formula
ψα is a µ-calculus witness, on G′, of the distinction between s∗ and t∗. We now show how to
transform ψα, first into a µ-calculus formula to be evaluated on G, and then into a Qrctl

formula to be evaluated on G. This will show that s∗ 6≈>0 t∗, as required.
To obtain a µ-calculus formula on G, from ψα we construct a µ-calculus formula γα

with the following property: for all s ∈ S, we have s ∈ [[γα]]G iff (s, linit (s)) ∈ [[ψα]]G′ . The
idea, taken from [dAHM01], is as follows.

First, ψα can be rewritten in equational form [BC96], as a sequence of blocks B′
1, . . . , B

′
k,

where B′
1 is the innermost block and B′

k the outermost block. Each block B′
j , for 1 ≤ j ≤ k,

has the form vj = λej , where λ ∈ {µ, ν}, and where ej is an expression not containing µ,
ν, in which all the occurrences of the variables v1, . . . , vk have positive polarity [BC96]; the
output variable is vk.

From this formula, we obtain another formula γα, also in equational form, with sets of
variables {vl

i | 1 ≤ i ≤ k ∧ l ∈ L} ∪ {vk+1}. Formula γα simulates on G the evaluation of
ψα on G′: for each variable vi, with 1 ≤ i ≤ k, formula γα contains the set of variables
{vl

i | l ∈ L}, where the value of vi at location l ∈ L is encoded as the value of vl
i at s. The

formula ψ consists of the blocks B1, . . . , Bk, plus an additional block Bk+1. For 1 ≤ i ≤ k,
the block Bi contains the equations for the variables {vl

i | l ∈ L}. The equation for vl
i is

obtained from the equation for vi as follows:

• replace each variable vi on the left-hand side with the variable vl
i;

• replace Pj (resp. Rj), for 1 ≤ j ≤ m, with S if l ∈ Pj (resp. l ∈ Rj), and with ∅ if l 6∈ Pj

(resp. l 6∈ Rj);

• replace Cpre(vh), for variable 1 ≤ h ≤ k, with Cpre(
⋃

l′∈∆(l) v
l′

h);

• intersect the right-hand side with
⋂

q∈plq q ∩
⋂

q∈AP\plq¬q.

The block Bk+1 consists of only one equation vk+1 =
⋃

l∈Linit
vl
k, and can be either a µ or

a ν-block. The output variable is vk+1.
The result of the above transformation is a µ-calculus formula γα on G containing only

the operators Cpre and Apre. By (3.1) and Lemma 4.6, both operators can be encoded in
Qrctl. Then, proceeding as in the first part of the proof of Theorem 4.7, we can “unroll”
the computation of the fixpoints of the µ-calculus formulas, since we know that each fixpoint
converges in at most |S| iterations. The result of these two transformations is a Qrctl

formula λα, such that s∗ |= λα and t∗ 6|= λα, as required.

Assertion 3. Consider the AMDP G with state space S = ({1, 2, 3} × N) ∪ {0}. The only
successor of 0 is 0 itself. States of the type 〈i, 2n〉, for i ∈ {1, 2, 3} (i.e., even states) belong
to player 1, while odd states belong to player p. For all n ≥ 0 we have: Γ(〈1, 2n〉) =
Γ(〈3, 2n〉) = {a, b} and Γ(〈2, 2n〉) = {a, b, c}, where, for all i ∈ {1, 2, 3}:

Dest(〈i, 2n〉, a) = {〈i, 2n〉}

Dest(〈i, 2n〉, b) = {〈i, 2n + 1〉}

Dest(〈2, 2n〉, c) = {〈3, 2n + 1〉}.

Player p states starting with 1 or 2 lead to the next state in their chain and to the sink
state 0 with equal probability. Formally, Γ(〈i, 2n + 1〉) = {x} and

δ(〈1, 2n + 1〉, x)(〈1, 2n + 2〉) = δ(〈1, 2n + 1〉, x)(0) =

δ(〈2, 2n + 1〉, x)(〈2, 2n + 2〉) = δ(〈2, 2n + 1〉, x)(0) = 1/2.
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s tu
q

s′ t′u′

q

Figure 9: An MDP where s ≈>0 s′ and s 6≈>0
∗ s′.

Finally, states starting with 3 obey the following distribution.

δ(〈3, 2n + 1〉, x)(〈2, 2n + 2〉) = exp(−1/2n)

δ(〈3, 2n + 1〉, x)(0) = 1 − exp(−1/2n).

Observe that G is a finitely-branching, infinite AMDP. We take AP = {q}, and we ask
that the predicate q be true at all odd states. Then, by induction on the structure of a
Qrctl formula, it is not hard to see that 〈1, 0〉 ≈>0 〈2, 0〉. On the other hand, we have
〈2, 0〉 |= ∃>0

✷♦q and 〈1, 0〉 6|= ∃>0
✷♦q.

Assertion 4. Consider the MDP depicted in Figure 9. By induction on the structure
of a Qrctl formula, it is not hard to see that s ≈>0 s′. On the other hand, for ϕ =
∃1 (♦q ∧ ✷∃>0 © q) we have s |= ϕ, s′ 6|= ϕ.

We do not provide an algorithm for computing ≈>0
∗ on non-alternating MDPs. Identi-

fying such an algorithm is an open problem.
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