
Logical Methods in Computer Science

Vol. 6 (2:1) 2010, pp. 1–26

www.lmcs-online.org

Submitted Jun. 2, 2009

Published Jun. 18, 2010

ORTHOMODULAR LATTICES, FOULIS SEMIGROUPS

AND DAGGER KERNEL CATEGORIES

BART JACOBS

Institute for Computing and Information Sciences (iCIS), Radboud University Nijmegen, The
Netherlands
URL: www.cs.ru.nl/B.Jacobs

Abstract. This paper is a sequel to [20] and continues the study of quantum logic via
dagger kernel categories. It develops the relation between these categories and both ortho-
modular lattices and Foulis semigroups. The relation between the latter two notions has
been uncovered in the 1960s. The current categorical perspective gives a broader context
and reconstructs this relationship between orthomodular lattices and Foulis semigroups as
special instances.

1. Introduction

Dagger kernel categories have been introduced in [20] as a relatively simple setting in
which to study categorical quantum logic. These categories turn out to have orthomodular
logic built in, via their posets KSub(X) of kernel subobjects that can be used to interprete
predicates on X. The present paper continues the study of dagger kernel categories, espe-
cially in relation to orthomodular lattices and Foulis semigroups. The latter two notions
have been studied extensively in the context of quantum logic. The main results of this
paper are as follows.

(1) A special category OMLatGal is defined with orthomodular lattices as objects and
Galois connections between them as morphisms; it is shown that:
• OMLatGal is itself a dagger kernel category—with some additional structure such
as dagger biproducts, and an opclassifier;

• for each dagger kernel category D there is a functor D → OMLatGal preserving
the dagger kernel structure; hence OMLatGal contains in a sense all dagger kernel
categories.

(2) For each object X in a dagger kernel category, the homset Endo(X) = D(X,X) of
endo-maps is a Foulis semigroup.

(3) Every Foulis semigroup S yields a dagger kernel category K†(S) via the “dagger Karoubi”
construction K†(−).
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Translations between orthomodular lattices and Foulis semigroups have been described
in the 1960s, see e.g. [13, 14, 15, 4, 27]. These translations appear as special instances of
the above results:

• given a Foulis semigroup S, all the kernel posets KSub(s) are orthomodular lattices, for
each object s ∈ K†(S) of the associated dagger kernel category (using point (3) mentioned
above). For the unit element s = 1 this yields the “old” translation from Foulis semigroups
to orthomodular lattices;

• given an arbitrary orthomodular lattice X, the set of (Galois) endomaps Endo(X) =
OMLatGal(X,X) on X in the dagger kernel category OMLatGal forms a Foulis
semigroup—using points (1) and (2). Again this is the “old” translation, from ortho-
modular lattices to Foulis semigroups.

Since dagger kernel categories are essential in these constructions we see (further) evidence
of the relevance of categories in general, and of dagger kernel categories in particular, in
the setting of quantum (logical) structures.

The paper is organised as follows. Section 2 first recalls the essentials about dagger ker-
nel categories from [20] and also about the (dagger) Karoubi envelope. It shows that dagger
kernel categories are closed under this construction. Section 3 introduces the fundamen-
tal category OMLatGal of orthomodular lattices with Galois connections between them,
investigates some of its properties, and introduces the functor KSub: D → OMLatGal

for any dagger kernel category D. Subsequently, Section 4 recalls the definition of Foulis
semigroups, shows how they arise as endo-homsets in dagger kernel categories, and proves
that their dagger Karoubi envelope yields a dagger kernel category. The paper ends with
some final remarks and further questions in Section 5.

Added in print. After this paper has been accepted for publication, it became clear that the
category OMLatGal that plays a central role in this paper was already defined some thirty
five years ago, namely by Crown in [8]. There however, the category was not investigated
systematically, nor its central position in the context of categorical quantum logic (in terms
of dagger kernel categories).

2. Dagger kernel categories

Since the notion of dagger kernel category is fundamental in this paper we recall the
essentials from [20], where this type of category is introduced. Further details can be found
there.

A dagger kernel category consists of a category D with a dagger functor † : Dop → D,
a zero object 0 ∈ D, and dagger kernels. The functor † is the identity on objects X ∈ D

and satisfies f †† = f on morphisms f . The zero object 0 yields a zero map, also written
as 0, namely X → 0 → Y between any two objects X,Y ∈ D. A dagger kernel of a
map f : X → Y is a kernel map, written as k : K

� ,2 // X , which is—or can be chosen as—a
dagger mono, meaning that k† ◦ k = idK . Often we write ker(f) for the kernel of f , and
coker(f) = ker(f †)† for its cokernel. The definition k⊥ = ker(k†) for a kernel k yields an
orthocomplement.

We write DKC for the category with dagger kernel categories as objects and functors
preserving †, 0, ker.
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The main examples of dagger kernel categories are: Rel, the category of sets and
relations, its subcategory pInj of sets and partial injections, Hilb, the category of Hilbert
spaces and bounded/continuous linear maps between them, and PHilb, the category of
projective Hilbert spaces. This paper adds another example, namely OMLatGal.

The main results from [20] about dagger kernel categories are as follows.

(1) Each poset KSub(X) of kernel subobjects of an object X is an orthomodular lattice;
this is the basis of the relevance of dagger kernel categories to quantum logic.

(2) Pullbacks of kernels exist along arbitrary maps f : X → Y , yielding a pullback (or
substitution) functor f−1 : KSub(Y ) → KSub(X). Explicitly, as in [16], f−1(n) =
ker(coker(n) ◦ f).

(3) This pullback functor f−1 has a left adjoint ∃f : KSub(X) → KSub(Y ), corresponding
to image factorisation. These f−1 and ∃f only preserve part of the logical structure—
meets are preserved by f−1 and joins by ∃f , via the adjointness—but for instance
negations and joins are not preserved by substitution f−1, unlike what is standard in
categorical logic, see e.g. [26].

Substitution f−1 and existential quantification ∃f are inter-expressible, via the equa-

tion f−1(m)⊥ = ∃f†(m⊥).
(4) The logical “Sasaki” hook ⊃ and “and-then” & connectives—together with the stan-

dard adjunction between them [12, 7]—arise via this adjunction ∃f ⊣ f−1, namely for
m,n, k ∈ KSub(X) as:

m ⊃ n = E(m)−1(n) k & m = ∃E(m)(k)

= m⊥ ∨ (m ∧ n) = m ∧ (m⊥ ∨ k),

where E(m) = m ◦ m† : X → X is the effect (see [11]) associated with the kernel m.

2.1. Karoubi envelope. Next we recall the essentials of the so-called Karoubi envelope
(see [28] or [16, Chapter 2, Exercise B]) construction—and its “dagger” version—involving
the free addition of splittings of idempotents to a category. The construction will be used
in Section 4 to construct a dagger kernel category out of a Foulis semigroup. It is thus
instrumental, and not studied in its own right.

An idempotent in a category is an endomap s : X → X satisfying s ◦ s = s. A splitting
of such an idempotent s is a pair of maps e : X → Y and m : Y → X with m ◦ e = s and
e ◦ m = idY . Clearly, m is then a mono and e is an epi. Such a splitting, if it exists, is
unique up to isomorphism.

For an arbitrary category C the so-called Karoubi envelope K(C) has idempotents
s : X → X in C as objects. A morphism (X

s
→ X)

f
−→ (Y

t
→ Y ) in K(C) consists of a

map f : X → Y in C with f ◦ s = f = t ◦ f . The identity on an object (X, s) ∈ K(C) is
the map s itself. Composition in K(C) is as in C. The mapping X 7→ (X, idX) thus yields
a full and faithful functor I : C → K(C).

The Karoubi envelope K(C) can be understood as the free completion of C with split-
tings of idempotents. Indeed, an idempotent f : (X, s) → (X, s) in K(C) can be split as
f =

(

(X, s)
f
→ (X, f)

f
→ (X, s)

)

. If F : C → D is a functor to a category D in which endo-

morphisms split, then there is an up to isomorphism unique functor F : K(C) → D with
F ◦ I ∼= F .

Hayashi [18] (see also [23]) has developed a theory of semi-functors and semi-adjunctions
that can be used to capture non-extensional features, without uniqueness of mediating maps,
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like for exponents ⇒ [32, 29], products
∏

[25], or exponentials ! [22]. The Karoubi envelope
can be used to turn such “semi” notions into proper (extensional) ones. This also happens
in Section 4.

Now assume D is a dagger category. An endomap s : X → X in D is called a self-
adjoint idempotent if s† = s = s ◦ s. A splitting of such an s consists, as before, of maps
m, e with m ◦ e = s and e ◦ m = id. In that case e†,m† is also a splitting of s, so that we
get an isomorphism ϕ = m† ◦ m in a commuting diagram:

X

s

��

e ''OOOOOOOOO m†

&&
Y

m

wwooooooooo
ϕ

∼=
// Y

e†
nnX

Hence e† = m, as subobjects, and m† = e as quotients.
The dagger Karoubi envelope K†(D) of D is the full subcategory of K(D) with self-

adjoint idempotents as objects, see also [34]. This is again a dagger category, since if
f : (X, s) → (Y, t) in K†(D), then f † : (Y, t) → (X, s) because:

s ◦ f † = s† ◦ f † = (f ◦ s)† = f †,

and similarly f † ◦ t = f †. The functor I : D → K(D) factors via K†(D) → K(D). One can
understand K†(D) as the free completion of D with splittings of self-adjoint idempotents.

Selinger [34] shows that the dagger Karoubi envelope construction K†(−) preserves
dagger biproducts and dagger compact closedness. Here we extend this with dagger kernels
in the next result. It will not be used in the sequel but is included to show that the dagger
Karoubi envelope is quite natural in the current setting.

Proposition 2.1. If D is a dagger kernel category, then so is K†(D). Moreover, the
embedding I : D → K†(D) is a map of dagger kernel categories.

Proof For each object X ∈ D, the zero map 0: X → X is a zero object in K†(D), since
there is precisely one map (X, 0) → (Y, t) in K†(D), namely the zero map 0: X → Y . As
canonical choice we take the zero object 0 ∈ D with zero map 0 = id0 : 0 → 0, which is in
the range of I : D → K†(D).

For an arbitrary map f : (X, s) → (Y, t) in K†(D), let k : K  X be the kernel of
f : X → Y in D. We obtain a map s′ : K → K, as in:

K
� ,2 k // X

f // Y

K

s′
OO

k
// X

s
OO
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since f ◦ s ◦ k = f ◦ k = 0. We obtain that s′ is a self-adjoint idempotent, using that k is
a dagger mono (i.e. satisfies k† ◦ k = id).

s′ ◦ s′ = k† ◦ k ◦ s′ ◦ s′

= k† ◦ s ◦ k ◦ s′

= k† ◦ s ◦ s ◦ k

= k† ◦ s ◦ k

= k† ◦ k ◦ s′

= s′.

s′† = s′† ◦ k† ◦ k

= (k ◦ s′)† ◦ k

= (s ◦ k)† ◦ k

= k† ◦ s† ◦ k

= k† ◦ s ◦ k

= k† ◦ k ◦ s′

= s′.

This yields a dagger kernel in K†(D),

(K, s′)
s◦k // (X, s)

f // (Y, t)

since:

• s ◦ k is a morphism in K†(D): s ◦ (s ◦ k) = s ◦ k and (s ◦ k) ◦ s′ = s ◦ s ◦ k = s ◦ k;
• s ◦ k is a dagger mono:

(s ◦ k)† ◦ (s ◦ k) = (k ◦ s′)† ◦ (k ◦ s′)

= s′† ◦ k† ◦ k ◦ s′

= s′ ◦ s′

= s′

= id(K,s′);

• f ◦ (s ◦ k) = f ◦ k = 0;
• if g : (Z, r) → (X, s) satisfies f ◦ g = 0, then there is a map h : Z → K in D with
k ◦ h = g. Then s′ ◦ h = h, since k ◦ s′ ◦ h = s ◦ k ◦ h = s ◦ g = g = k ◦ h. Similarly,
h ◦ r = h, since k ◦ h ◦ r = g ◦ r = g = k ◦ h. Hence h is a morphism (Z, r) → (K, s′)
in K†(D) with (s ◦ k) ◦ h = s ◦ g = g. It is the unique such mapping with this property
since s ◦ k is a (dagger) mono. �

Example 2.2. In the category Hilb self-adjoint idempotents s : H → H are also called
projections. They can be written as s = m ◦ m† = E(m) for a closed subspace m : M  H,
see any textbook on Hilbert spaces (e.g. [10]). Hence they split already in Hilb, and so the
dagger Karoubi envelope K†(Hilb) is isomorphic to Hilb: it does not add anything.

For the category Rel of sets and relations the sitation is different. A self-adjoint
idempotent S : X → X is a relation S ⊆ X × X that is both symmetric (since S† = S)
and transitive (since S ◦ S = S), and thus a “partial equivalence relation”, commonly
abbreviated as PER. The dagger Karoubi envelope K†(Rel) has such PERs as objects. A
morphismR : (S ⊆ X×X) → (T ⊆ Y ×Y ) is a relation R : X → Y withR ◦ S = R = T ◦ R.

Finally we describe the “effect” operation E(m) = m ◦ m† as a functor into a dagger
Karoubi envelope. For a dagger kernel category D write KSub(D) for the category with
kernels M  X as objects. A morphism (M

m
 X)

f
−→ (N

n
 Y ) in KSub(D) is a map

f : X → Y such that f ◦ m factors through n. The effect operation can then be described
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as a functor:

KSub(D)
E(−) // K†(D)

via:

M_��
m

��

ϕ //___ N_��
n

�� 7−→
(

X
E(m)

// X
)

f◦E(m)
//
(

Y
E(n)

// Y
)

X
f // Y

We use that the necessarily unique map ϕ : M → N with n ◦ ϕ = f ◦ m satisfies ϕ = n† ◦
n ◦ ϕ = n† ◦ f ◦ m. Hence:

E(n) ◦ f ◦ E(m) = n ◦ n† ◦ f ◦ m ◦ m† = n ◦ ϕ ◦ m† = f ◦ m ◦ m† = f ◦ E(m),

so that f ◦ E(m) is a morphism E(m) → E(n) in the dagger Karoubi envelope K†(D). It is
not hard to see that this functor is full.

3. Orthomodular lattices and Dagger kernel categories

In [20] it was shown how each dagger kernel category gives rise to an indexed collection
of orthomodular lattices, given by the posets of the kernel subobjects KSub(X) of each
object X. Here we shall give a more systematic description of the situation and see that a
suitable category OMLatGal of orthomodular lattices—with Galois connections between
them—is itself a dagger kernel category. The mapping KSub(−) turns out to be functor to
this category OMLatGal, providing a form of representation of dagger kernel categories.

We start by recalling the basic notion of orthomodular lattices. They may be un-
derstood as a non-distributive generalisation of Boolean algebras. The orthomodularity
formulation is due to [24], following [3].

Definition 3.1. A meet semi-lattice (X,∧ 1) is called an ortholattice if it comes equipped
with a function (−)⊥ : X → X satisfying:

• x⊥⊥ = x;
• x ≤ y implies y⊥ ≤ x⊥;
• x ∧ x⊥ is below every element, i.e. is bottom element 0.

One can thus define a bottom element as 0 = 1 ∧ 1⊥ = 1⊥ and a join as x ∨ y = (x⊥ ∧ y⊥)⊥,
satisfying x ∨ x⊥ = 1.

Such an ortholattice is called orthomodular if it satisfies (one of) the three equivalent
conditions:

• x ≤ y implies y = x ∨ (x⊥ ∧ y);
• x ≤ y implies x = y ∧ (y⊥ ∨ x);
• x ≤ y and x⊥ ∧ y = 0 implies x = y.

We shall consider two ways of organising orthomodular lattices into a category.

Definition 3.2. The categories OMLat and OMLatGal both have orthomodular lattices
as objects.

(1) A morphism f : X → Y in OMLat is a function f : X → Y between the underlying
sets that preserves ∧, 1, (−)⊥—and thus also ≤, ∨ and 0;
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(2) A morphism X → Y in OMLatGal is a pair f = (f∗, f
∗) of “antitone” functions

f∗ : X
op → Y and f∗ : Y → Xop forming a Galois connection (or adjunction f∗ ⊣ f∗):

x ≤ f∗(y) iff y ≤ f∗(x) for x ∈ X and y ∈ Y .
The identity morphism on X is the pair (⊥,⊥) given by the self-adjoint map id∗ =

id∗ = (−)⊥ : Xop → X. Composition of X
f
→ Y

g
→ Z is given by:

(g ◦ f)∗ = g∗ ◦ ⊥ ◦ f∗ and (g ◦ f)∗ = f∗ ◦ ⊥ ◦ g∗.

The category OMLat is the more obvious one, capturing the (universal) algebraic
notion of morphism as structure preserving mapping. However, the category OMLatGal

has more interesting structure, as we shall see. It arises by restriction from a familiar
construction to obtain a (large) dagger category with involutive categories as objects and
adjunctions between them, see [19]. The components f∗ : X

op → Y and f∗ : Y → Xop of a
map f : X → Y in OMLatGal are not required to preserve any structure, but the Galois
connection yields that f∗ preserves meets, as right adjoint, and thus sends joins in X (meets
in Xop) to meets in Y , and dually, f∗ preserves joins and sends joins in Y to meets in X.

The category OMLatGal indeed has a dagger, namely by twisting:

(f∗, f
∗)† = (f∗, f∗).

A morphism f : X → Y in OMLatGal is a dagger mono precisely when it safisfies
f∗(f∗(x)

⊥) = x⊥ for all x ∈ X, because id∗(x) = x⊥ = id∗(x) and:

(f † ◦ f)∗(x) = f∗(f∗(x)
⊥) = (f † ◦ f)∗(x).

In a Galois connection like f∗ ⊣ f∗ one map determines the other. This standard result
can be useful in proving equalities. For convenience, we make it explicit.

Lemma 3.3. Suppose we have parallel maps f, g : X → Y in OMLatGal. In order to
prove f = g it suffices to prove either f∗ = g∗ or f∗ = g∗.

Proof We shall prove that f∗ = g∗ suffices to obtain also f∗ = g∗. For all x ∈ X and y ∈ Y ,

x ≤ f∗(y) ⇐⇒ y ≤ f∗(x) = g∗(x) ⇐⇒ x ≤ g∗(y).

Given y this holds for all x, and so in particular for x = f∗(y) and x = g∗(y), which yields
f∗(y) = g∗(y). �

Despite this result we sometimes explicitly write out both equations f∗ = g∗ and f∗ =
g∗, in particular when there is a special argument involved.

The following elementary lemma is fundamental.

Lemma 3.4. Let X be an orthomodular lattice, with element a ∈ X.

(1) The (principal) downset ↓a = {u ∈ X | u ≤ a} is again an orthomodular lattice, with
order, conjunctions and disjunctions as in X, but with its own orthocomplement ⊥a

given by u⊥a = a ∧ u⊥, where ⊥ is the orthocomplement from X.
(2) There is a dagger mono ↓a X in OMLatGal, for which we also write a, with

a∗(u) = u⊥ and a∗(x) = a ∧ x⊥.

Proof For the first point we check, for u ∈ ↓a,

u⊥a⊥a = a ∧ (a ∧ u⊥)⊥ = a ∧ (a⊥ ∨ u) = u,
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by orthomodularity, since u ≤ a. We get a map in OMLatGal because for arbitrary u ∈ ↓a
and x ∈ X,

x ≤ a∗(u) = u⊥ ⇐⇒ u ≤ x⊥ ⇐⇒ u ≤ a ∧ x⊥ = a∗(x).

This map a : ↓a→ X is a dagger mono since:

a∗(a∗(u)
⊥) = a∗(u⊥⊥) = a∗(u) = a ∧ u⊥ = u⊥a . �

We should emphasise that the equation u⊥a⊥a = u only holds for u ≤ a, and not for
arbitrary elements u.

Later, in Proposition 3.9, we shall see that these maps ↓a X are precisely the kernels
in the category OMLatGal. But we first show that this category has kernels in the first
place.

To begin, OMLatGal has a zero object 0, namely the one-element orthomodular lattice
{∗}. We can write its unique element as ∗ = 0 = 1. Let us show that the lattice 0 is indeed a
final object in OMLatGal. Let X be an arbitrary orthomodular lattice. The only function
f∗ : X → 0 is f∗(x) = 1. It has an obvious left adjoint f∗ : 0 → L defined by f∗(1) = 1:

x ≤ f∗(1) = 1
========

1 ≤ 1 = f∗(x)

Likewise, the unique morphism g : 0 → Y is given by g∗(1) = 1 and g∗(y) = 1. Hence the
zero morphism z : X → Y is determined by z∗(x) = 1 and z∗(y) = 1.

Theorem 3.5. The category OMLatGal is a dagger kernel category. The (dagger) kernel
of a morphism f : X → Y is k : ↓k → X, where k = f∗(1) ∈ X, as in Lemma 3.4.

Proof The composition f ◦ k is the zero map ↓k → Y . First, for u ∈ ↓f∗(1),

(f ◦ k)∗(u) = f∗(k∗(u)
⊥) = f∗(u

⊥⊥) = f∗(u) = 1,

because u ≤ f∗(1) in X and so 1 ≤ f∗(u) in Y . And for y ∈ Y ,

(f ◦ k)∗(y) = k∗(f∗(y)⊥) = f∗(y) ∧ f∗(1) = f∗(y ∨ 1) = f∗(1) = k = 1↓k.

because f∗ : Y → Xop preserves joins as a left adjoint.
Let g : Z → X, and suppose g ◦ k = 0. We wish to show that there is a unique

morphism h : Z → ↓k with g = k ◦ h. We have f∗ ◦ ⊥ ◦ g∗ = 1 and g∗ ◦ ⊥ ◦ f∗ = 1.
Hence for z ∈ Z we have 1 ≤ f∗(g∗(z)

⊥), so g∗(z)
⊥ ≤ f∗(1) = k. Define h∗ : Z

op → ↓k
by h∗(z) = g∗(z) ∧ k, and define h∗ : ↓k → Zop by h∗(u) = g∗(u). Then h∗ ⊣ h∗ since for
u ≤ k and z ∈ Z:

z ≤ g∗(u) = h∗(u)
========
u ≤ g∗(z)

===========
u ≤ g∗(z) ∧ k = h∗(z)

whence h is a well-defined morphism of OMLatGal. It satisfies:

(k ◦ h)∗(z) = k∗(h∗(z)
⊥↓k)

= k∗((g∗(z) ∧ k)⊥↓k)

= ((g∗(z) ∧ k)⊥↓k ∧ k)⊥

= ((g∗(z) ∧ k)⊥ ∧ k ∧ k)⊥

= (g∗(z) ∧ k) ∨ k⊥

= g∗(z),
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where in the last step we use orthomodularity since k⊥ = f∗(1)⊥ ≤ g∗(z) because g∗(z)
⊥ ≤

f∗(1) = k which follows from 1 ≤ f∗(g∗(z)
⊥). Hence h is a mediating morphism satisfying

k ◦ h = g. It is the unique such morphism, since k is a (dagger) mono. �

For convenience we explicitly describe some of the basic structure that results from
dagger kernels, see [20], namely cokernels and factorisations, given by dagger kernels and
zero-epis. We start with cokernels and zero-epis.

Lemma 3.6. The cokernel of a map f : X → Y in OMLatGal is:

coker(f) =
(

Y
c � ,2 ↓f∗(1)

)

with

{

c∗(y) = y⊥ ∧ f∗(1)

c∗(v) = v⊥.

Then:
f is zero-epi

def
⇐⇒ coker(f) = 0 ⇐⇒ f∗(1) = 0.

Proof Since:

coker(f) = ker(f †)† =
(

↓(f †)∗(1) � ,2 // Y
)†

=
(

Y
� ,2↓f∗(1)

)

. �

We recall from [20] that each map f in a dagger kernel category has a zero-epi/kernel
factorisation f = if ◦ ef . In combination with the factorisation of f † it yields a factorisation

f = if ◦ mf ◦ (if†)† as in:

X
f //

(i
f†

)†
 !*MMMMMM Y

Im(f †) // ◦
mf

// // Im(f)
2 5=

if

88rrrrrr

where the map mf is both zero-epic and zero-monic, and where mf ◦ (if†)† = ef , the
zero-epic part of f .

Lemma 3.7. For a map f : X → Y in OMLatGal one has:

(

Im(f) = ↓(f∗(1)
⊥) � ,2

if // Y
)

with

{

(if )∗(v) = v⊥

(if )
∗(y) = y⊥ ∧ f∗(1)

⊥

(

X
ef
◦ // // ↓f∗(1)

⊥
)

is

{

(ef )∗(x) = f∗(x) ∧ f∗(1)
⊥

(ef )
∗(v) = f∗(v)

(

↓f∗(1)⊥ //
mf
◦ // // ↓f∗(1)

⊥
)

is

{

(mf )∗(x) = f∗(x) ∧ f∗(1)
⊥

(mf )
∗(v) = f∗(v) ∧ f∗(1)⊥.

Proof This is just a matter of unravelling definitions. For instance,

Im(f) = ker(coker(f)) = ker
(

Y
c � ,2↓f∗(1)

)

=
(

↓f∗(1)
⊥ � ,2 // Y

)

.
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since c∗(1↓f∗(1)) = c∗(f∗(1)) = f∗(1)
⊥. We check that if ◦ ef = f , as required.

(if ◦ ef )∗(x) = (if )∗((ef )∗(x)
⊥

f∗(1)⊥ )

=
(

(ef )∗(x)
⊥ ∧ f∗(1)

⊥
)⊥

= (f∗(x) ∧ f∗(1)
⊥) ∨ f∗(1)

= f∗(x),

by orthomodularity, using that f∗(1) ≤ f∗(x), since x ≤ 1. This map ef is indeed zero-epic
by the previous lemma, since:

(ef )∗(1) = f∗(1) ∧ f∗(1)
⊥ = 0.

Next we first observe:

f∗(x ∨ f∗(1)) = f∗(x) ∧ f∗(f
∗(1)) = f∗(x) ∧ 1 = f∗(x), (∗)

since there is a “unit” 1 ≤ f∗(f
∗(1)). We use this twice, in the marked equations, in:

(mf ◦ (if†)†)∗(x) =
(

(mf )∗ ◦ (−)
⊥

f∗(1)⊥ ◦ (if†)∗
)

(x)

= (mf )∗
(

f∗(1)⊥ ∧ ((f †)∗(1)
⊥ ∧ x⊥)⊥

)

= f∗
(

f∗(1)⊥ ∧ (f∗(1) ∨ x)
)

∧ f∗(1)
⊥

(∗)
= f∗

(

f∗(1) ∨ (f∗(1)⊥ ∧ (f∗(1) ∨ x))
)

∧ f∗(1)
⊥

= f∗(f
∗(1) ∨ x) ∧ f∗(1)

⊥

(∗)
= f∗(x) ∧ f∗(1)

⊥

= (ef )∗(x).

The map mf is zero-epic since:

(mf )∗(1↓f∗(1)⊥) = (mf )∗(f
∗(1)⊥) = f∗(f

∗(1)⊥) ∧ f∗(1)
⊥

(∗)
= f∗(f

∗(1) ∨ f∗(1)⊥) ∧ f∗(1)
⊥

= f∗(1) ∧ f∗(1)
⊥

= 0.

Similarly one shows that mf is zero-monic. �

For the record, inverse and direct images are described explicitly.

Lemma 3.8. For a map f : X → Y in OMLatGal the associated inverse and direct images
are:

KSub(Y )
f−1

// KSub(X) KSub(X)
∃f // KSub(Y )

(

↓b→ Y
) � //

(

↓f∗(b⊥) → X
) (

↓a→ X
) � //

(

↓(f∗(a)
⊥) → Y

)
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Proof For f : X → Y and b ∈ Y , we have, using the formulation for pullback of kernels
from Section 2 (or [20, Lemma 2.4]) and Lemma 3.7 above,

f−1(↓b→ Y )

= ker(coker(↓b→ Y ) ◦ f)

= ker((Y → ↓c) ◦ f), for c = b∗(1↓b) = (1↓b)
⊥ = b⊥

= ↓a→ X, for a = (c† ◦ f)∗(1↓b) = f∗(c∗(1↓c)
⊥)

= f∗(c⊥⊥) = f∗(c) = f∗(b⊥)

= ↓f∗(b⊥) → X.

For ∃f we also use Lemma 3.7 in:

∃f (↓a→ X)

= Im(f ◦ (↓a→ X))

= ↓b→ Y, where b = (f ◦ a)∗(1↓a)
⊥ = f∗(a∗(1↓a)

⊥)⊥ = f∗(a
⊥⊥)⊥

= ↓(f∗(a)
⊥) → Y. �

As in any dagger kernel category, the kernel posets KSub(X) of OMLatGal are ortho-
modular lattices. They turn out to be isomorphic to the underlying objectX ∈ OMLatGal.

Proposition 3.9. Each dagger mono a : ↓a  X from Lemma 3.4, for a ∈ X, is actually
a dagger kernel in OMLatGal. This yields an isomorphism of orthomodular lattices

X
∼= // KSub(X), namely a

� //
(

↓a
a // X

)

.

It is natural in the sense that for f : X → Y in OMLatGal the following squares commute,
by Lemma 3.8.

X
∼= ��

⊥◦ f∗ // Y
∼=��

f∗◦⊥ // X
∼=��

KSub(X)
∃f

// KSub(Y )
f−1

// KSub(X)

Proof We first check that the map a : ↓a → X is indeed a kernel, namely of its cokernel
coker(a) : X → ↓a∗(1), see Lemma 3.6, where a∗(1) = a∗(1↓a) = a∗(a) = a⊥. Thus,

ker(coker(a)) = coker(a)∗(1) = coker(a)∗(1↓a⊥) = coker(a)∗(a⊥) = a⊥⊥ = a.
Theorem 3.5 says that the mapping X → KSub(X) is surjective. Here we shall show

that it is an injective homomorphism of orthomodular lattices reflecting the order, so that
it is an isomorphism in the category OMLat.

Assume that a ≤ b in X. We can define ϕ : ↓a → ↓b by ϕ∗(x) = x⊥b = b ∧ x⊥ and
ϕ∗(y) = a ∧ y⊥, for x ∈ ↓a and y ∈ ↓b. Then, clearly, y ≤ ϕ∗(x) iff x ≤ ϕ∗(y), so that ϕ is
a morphism in OMLatGal. In order to show a ≤ b in KSub(X) we prove b ◦ ϕ = a. First,
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for x ∈ ↓a,

(b ◦ ϕ)∗(x) = b∗
(

ϕ∗(x)
⊥b

)

= b∗
(

x⊥b⊥b
)

= b∗(x) because x ∈ ↓a ⊆ ↓b

= x⊥

= a∗(x).

The map X → KSub(X) not only preserves the order, but also reflects it: if we have an
arbitrary map ψ : ↓a→ ↓b in OMLatGal with b ◦ ψ = a, then:

a = a⊥⊥ = a∗(a)
⊥ = (b ◦ ψ)∗(a)

⊥

= b∗(ψ∗(a)
⊥b)⊥

= ψ∗(a)
⊥b⊥⊥

= ψ∗(a)
⊥b

= b ∧ ψ∗(a)
⊥ ≤ b.

This map X → KSub(X) also preserves ⊥, since

(

↓a � ,2 a // X
)⊥

= ker(a†) =
(

↓b
� ,2 b // X

)

where, according to Theorem 3.5, b = (a†)∗(1↓a) = a∗(a) = a⊥.
It remains to show that the mapping X → KSub(X) preserves finite conjunctions. It

is almost immediate that it sends the top element 1 ∈ X to the identity map (top) in
KSub(X). It also preserves finite conjunctions, since the intersection of the kernels ↓a→ X

and ↓b → X is given by ↓(a ∧ b) → X. Since a ∧ b ≤ a, b there are appropriate maps
↓(a ∧ b) → ↓a and ↓(a ∧ b) → ↓b. Suppose that we have maps k → ↓a and k → ↓b, where
k : ↓f∗(1) → X is a kernel of f : X → Y . Since, as we have seen, the order is reflected, we
get f∗(1) ≤ a, b, and thus f∗(1) ≤ a ∧ b, yielding the required map ↓f∗(1) → ↓(a ∧ b). �

The adjunction ∃f ⊣ f−1 that exists in arbitrary dagger kernel categories (see Section 2
or [20, Proposition 4.3]) boils down in our example OMLatGal to the adjunction between
f∗ ⊣ f∗ in the definition of morphisms in OMLatGal, since:

∃f (↓a→ X) ≤ (↓b→ Y ) ⇐⇒ (↓f∗(a)
⊥ → Y ) ≤ (↓b→ Y )

⇐⇒ f∗(a)
⊥ ≤ b

⇐⇒ b⊥ ≤ f∗(a)

⇐⇒ a ≤ f∗(b⊥)

⇐⇒ (↓a→ X) ≤ (↓f∗(b⊥) → X)

⇐⇒ (↓a→ X) ≤ f−1(↓b→ X).

Moreover, the Sasaki hook ⊃ and and-then operators & defined categorically in [20, Propo-
sition 6.1], see Section 2, amount in OMLatGal to their usual definitions in the theory of
orthomodular lattices, see e.g. [12, 27]. This will be illustrated next. We use the “effect”
E(↓a→ X) = a ◦ a† : X → X associated with a kernel in:

(↓a→ X) ⊃ (↓b→ X)
def
= E(↓a→ X)−1(↓b→ X) = (↓c→ X),
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where, according to the description of inverse image (−)−1 in the previous lemma,

c = (a ◦ a†)∗(b⊥) = a∗
(

a∗(b⊥)⊥a
)

=
(

a ∧ (a ∧ b)⊥
)⊥

= a⊥ ∨ (a ∧ b) = a ⊃ b.

Similarly for and-then &:

(↓a→ X) & (↓b→ X)
def
= ∃E(↓b→X)(↓a→ X) = (↓c→ X),

where the description of direct image from Lemma 3.8 yields:

c = (b ◦ b†)∗(a)
⊥ = b∗

(

b∗(a)⊥b
)⊥

=
(

b ∧ (b ∧ a⊥)⊥
)⊥⊥

= b ∧ (b⊥ ∨ a) = a & b.

These & and ⊃ are, by construction, related via an adjunction (see also [12, 7]).
Also one can define a weakest precondition modality [f ] from dynamic logic in this

setting: for f : X → Y and y ∈ Y , put:

[f ](y)
def
= f∗(y⊥).

for “y holds after f”. This operation [f ](−) preserves conjunctions, as usual. An element
a ∈ X yields a test operation a? = E(a) = a ◦ a†. Then one can recover the Sasaki hook
a ⊃ b via this modality as [a?]b, and hence complement a⊥ as [a?]0, see also e.g. [2].

There is another isomorphism of interest in this setting.

Lemma 3.10. Let 2 = {0, 1} be the 2-element Boolean algebra, considered as an orthomod-
ular lattice 2 ∈ OMLatGal. For each orthomodular lattice X, there is an isomorphism (of
sets):

X
∼= // OMLatGal(2,X)

which maps a ∈ X to a : 2 → X given by:

a∗(w) =

{

1 if w = 0

a⊥ if w = 1
a∗(x) =

{

1 if x ≤ a⊥

0 otherwise.

This isomorphism is natural: for f : X → Y one has:

X
∼= ��

⊥◦ f∗ // Y
∼=��

OMLatGal(2,X)
f◦− // OMLatGal(2, Y )

Proof The thing to note is that for a map g : 2 → X in OMLatGal we have g∗(0) = 1
because g∗ : 2

op → X is a right adjoint. Hence we can only choose g∗(1) ∈ X. Once this
is chosen, the left adjoint g∗ : X → 2op is completely determined, namely as 1 ≤ g∗(x) iff
x ≤ g∗(1).

As to naturality, it suffices to show:

(f ◦ a)∗(1) = f∗(a∗(1)
⊥)

= f∗(a
⊥⊥)

= f∗(a)
⊥⊥

= f∗(a)⊥∗(1)

= (⊥ ◦ f∗)(a)∗(1). �
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By combining the previous two results we obtain a way to classify (kernel) subobjects,
as in a topos [30], but with naturality working in the opposite direction. In [20] a similar
structure was found in the category Rel of sets and relations, and also in the dagger kernel
category associated with a Boolean algebra.

Corollary 3.11. The 2-element lattice 2 ∈ OMLatGal is an “opclassifier”: there is a
“characteristic” isomorphism:

KSub(X)
char
∼=

// OMLatGal(2,X).

which is natural: char ◦ ∃f = f ◦ char. �

We conclude our investigation of the category OMLatGal with the following observa-
tion.

Proposition 3.12. The category OMLatGal has (finite) dagger biproducts ⊕. Explicitly,
X1 ⊕X2 is the Cartesian product of (underlying sets of) orthomodular lattices, with copro-
jection κ1 : X1 → X1 ⊕ X2 defined by (κ1)∗(x) = (x⊥, 1) and (κ1)

∗(x, y) = x⊥. The dual
product structure is given by πi = (κi)

†.

Proof Let us first verify that κ1 is a well-defined morphism of OMLatGal, i.e. that
(κ1)

∗ ⊣ (κ1)∗:

z ≤ x⊥ = (κ1)
∗(x, y)

======
x ≤ z⊥

=============
(x, y) ≤ (z⊥, 1) = (κ1)∗(z)

Also, κ1 is a dagger mono since:

(κ1)
∗
(

(κ1)∗(x)
⊥
)

= (κ1)
∗
(

(x⊥, 1)⊥
)

= (κ1)
∗
(

x, 0
)

= x⊥.

Likewise, there is a dagger mono κ2 : X2 → X1 ⊕X2. For i 6= j, one finds that (κj)
† ◦ κi is

the zero morphism.
In order to show that X1⊕X2 is indeed a coproduct, suppose that morphisms fi : Xi →

Y are given. We then define the cotuple [f1, f2] : X1 ⊕ X2 → Y by [f1, f2]∗(x1, x2) =
(f1)∗(x1) ∧ (f2)∗(x2) and [f1, f2]

∗(y) = (f∗1 (y), f
∗
2 (y)). Clearly, [f1, f2]

∗ ⊣ [f1, f2]∗, and:

([f1, f2] ◦ κ1)∗(x) = [f1, f2]∗
(

(κ1)∗(x)
⊥
)

= [f1, f2]∗
(

(x⊥, 1)⊥
)

= (f1)∗(x) ∧ (f2)∗(0)

= (f1)∗(x) ∧ 1

= (f1)∗(x).
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so that [f1, f2] ◦ κ1 = f1. Likewise, [f1, f2] ◦ κ2 = f2. Moreover, if g : X1 ⊕X2 → Y also
satisfies g ◦ κi = fi, then:

[f1, f2]∗(x1, x2) = (f1)∗(x1) ∧ (f2)∗(x2)

= g∗
(

(κ1)∗(x1)
⊥
)

∧ g∗
(

(κ2)∗(x2)
⊥
)

= g∗
(

(x⊥1 , 1)
⊥
)

∧ g∗
(

(1, x⊥2 )
⊥
)

= g∗
(

x1, 0
)

∧ g∗
(

0, x2
)

= g∗
(

(x1, 0) ∨ (0, x2)
)

= g∗
(

x1, x2
)

. �

3.1. From dagger kernel categories to orthomodular lattices. The aim in this sub-
section is to show that for an arbitrary dagger kernel D the kernel subobject functor
KSub(−) is a functor D → OMLatGal. On a morphism f : X → Y of D, define
KSub(f) : KSub(X) → KSub(Y ) by:

KSub(f)∗(m) =
(

∃f(m)
)⊥

KSub(f)∗(n) = f−1
(

n⊥
)

.

Then indeed KSub(f)∗ ⊣ KSub(f)∗, via ∃f ⊣ f−1,

n ≤ (∃f (m))⊥ = KSub(f)∗(m)
=============
∃f (m) ≤ n⊥

===========
m ≤ f−1(n⊥) = KSub(f)∗(n)

The functor KSub(−) preserves the relevant structure. This requires the following auxiliary
result.

Lemma 3.13. In a dagger kernel category, for any kernel k : K  X in KSub(X), there
is an order isomorphism KSub(K) ∼= ↓k ⊆ KSub(X).

Proof The direction KSub(K) → ↓k of the desired bijection is given bym 7→ k ◦ m. This is
well-defined since kernels are closed under composition. The other direction ↓k → KSub(K)
is n 7→ ϕ = k† ◦ n, where n = k ◦ ϕ. One easily checks that these maps are each other’s
inverse, and preserve the order. �

Theorem 3.14. Let D be a dagger kernel category. The functor KSub: D → OMLatGal

is a map of dagger kernel categories.

Proof Preservation of daggers follows because f−1 and ∃f are inter-expressible, see Sec-
tion 2 and [20, Proposition 4.3]:

KSub(f †)∗(n) =
(

∃f†(n))⊥ = f−1(n⊥) = KSub(f)∗(n) =
(

KSub(f)†
)

∗
(n).

Preservation of the zero object is easy: KSub(0) = {0} = 0. Next, let k : K → X be
the kernel of a morphism f : X → Y in D. We recall from [20, Corollary 2.5 (ii)] that this
kernel k can be described as inverse image k = f−1(0) = f−1(1⊥) = KSub(f)∗(1). Hence
by Lemmas 3.13 and 3.4, we have the isomorphism on the left in:

KSub(K) � )/ KSub(k)
,,YYYYYYYYYY

k◦− ∼=
��

KSub(X)
KSub(f)

// KSub(Y )

↓k
$ .5 k

22ddddddddddddd
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It yields a commuting triangle since for n ∈ KSub(K),

KSub(k)∗(n) = ∃k(n)
⊥ = (k ◦ n)⊥ = k∗(k ◦ n).

Similarly for m ∈ KSub(X),

k ◦ KSub(k)∗(m) = k ◦ k−1(m⊥) = k ∧ m⊥ = k∗(m). �

At this stage we conclude that these KSub functors yield a well-behaved translation of
a dagger kernel category into a collection of orthomodular lattices, indexed by the objects of
the category. For the special case D = OMLatGal, the functor KSub: D → OMLatGal

is the identity, up to isomorphism, by Proposition 3.9. A translation in the other direction,
from orthomodular lattices to dagger kernel categories will be postponed until after the
next section, after we have seen the translation from Foulis semigroups to orthomodular
lattices.

Remark 3.15. As pointed out by John Harding, the functor KSub: D → OMLatGal

need not preserve biproducts that exist in D. For instance if we take D to be the category
of Hilbert spaces over R, then KSub(R) is a two-element set, containing {0} and R itself.
However, KSub(R⊕R) = KSub(R2) is much bigger than KSub(R)×KSub(R), since every
line through the origin forms a closed subspace of R2.

In the remainder of this section we shall briefly consider two special subcategories of
OMLatGal, namely with Boolean and with complete orthomodular lattices.

3.2. The Boolean case. Let BoolGal →֒ OMLatGal be the full subcategory of Boolean
algebras with (antitone) Galois connections between them. We recall that a Boolean algebra
can be described as an orthomodular lattice that is distributive.

The main (and only) result of this subsection is simple.

Proposition 3.16. The category BoolGal inherits dagger kernels and biproducts from
OMLatGal. Moreover, as a dagger kernel category it is Boolean.

Proof An arbitrary map f : X → Y inBoolGal has a kernel ↓f∗(1) → X as in Theorem 3.5
for orthomodular lattices because the downset ↓f∗(1) is a Boolean algebra. Similarly, the
biproducts from Proposition 3.12 also exist in BoolGal because X1 ⊕ X2 is a Boolean
algebra if X1 and X2 are Boolean algebras.

For each X ∈ BoolGal one has KSub(X) ∼= X so that KSub(X) is a Boolean algebra.
Hence BoolGal is a Boolean dagger kernel category by [20, Theorem 6.2]. �

Boolean algebras thus give rise to (Boolean) dagger kernel categories on two different
levels: the “large” category BoolGal of all Boolean algebras is a dagger kernel category, but
also each individual Boolean algebra can be turned into a “small” dagger kernel category,
see [20, Proposition 3.5].

3.3. Complete orthomodular lattices. We shall write OMSupGal →֒ OMLatGal for
the full subcategory of orthomodular lattices that are complete, i.e. that have joins

∨

U (and
thus also meets

∧

U) of all subsets U (and not just the finite ones). Notice that the functor
KSub: D → OMLatGal from Theorem 3.14 is actually a functor KSub: D → OMSupGal

for D = Rel, PInj, Hilb.



ORTHOMODULAR LATTICES, FOULIS SEMIGROUPS AND DAGGER KERNEL CATEGORIES 17

A morphism f : X → Y in OMSupGal is completely determined by either f∗ : X
op →

Y preserving all meets, or by f∗ : Y → Xop preserving all joins. This forms the basis for
the next result.

Proposition 3.17. The forgetful functor U : OMSupGal → Sets given by X 7→ X on
objects and f 7→ f∗ ◦ ⊥ on morphisms has a left adjoint F given by F (A) = PA, with
F (g)∗(U ⊆ A) = ¬

∐

g(U) = ¬{g(a) | a ∈ U} and F (g)∗(V ⊆ B) = g−1(¬V ) = {a | g(a) 6∈

V }, for g : A→ B in Sets.

Proof For A ∈ Sets and X ∈ OMSupGal there is a bijective correspondence:

PA
f // X in OMSupGal

==========
A g

// X in Sets

given by f(a) = f∗({a})
⊥ and g∗(U) =

∧

a∈U g(a)
⊥ with g∗(x) = {a ∈ A | g(a) ≤ x⊥}.

Then:
x ≤ g∗(U) =

∧

a∈U g(a)
⊥ ⇐⇒ ∀a∈U . x ≤ g(a)⊥

⇐⇒ ∀a∈U . g(a) ≤ x⊥

⇐⇒ U ⊆ {a ∈ A | g(a) ≤ x⊥} = g∗(x).

Further,

g(a) = g∗({a})
⊥ =

(
∧

b∈{a} g(b)
⊥
)⊥

= g(a)⊥⊥ = g(a).

f∗(U) =
∧

a∈U f(a)
⊥ =

∧

a∈U f∗({a})
⊥⊥ = f∗(

⋃

a∈U{a}) = f∗(U)

f
∗
(x) = {a | f(a) ≤ x⊥} = {a | f∗({a})

⊥ ≤ x⊥} = {a | x ≤ f∗({a})}

= {a | {a} ⊆ f∗(x)} = f∗(x). �

The left adjoint F of this adjunction between OMSupGal and Sets factors via the
graph functor G : Sets → Rel, as in:

Rel
KSub

**
Sets

G 00

⊥ OMSupGal

U

ll

It is not hard to see that the kernels from Theorem 3.5 and biproducts ⊕ from Propo-
sition 3.12 also exist in OMSupGal. For instance, the join of a subset U ⊆ X ⊕Y is given
as pair of joins:

∨

U = (
∨

{x | ∃y. (x, y) ∈ U},
∨

{y | ∃x. (x, y) ∈ U}).

Hence OMSupGal is also a dagger kernel category with dagger biproducts.

4. Foulis semigroups and dagger kernel categories

In this section we shall relate dagger kernel categories and Foulis semigroups. Postpon-
ing the formal definition, we first illustrate that these Foulis semigroups arise quite naturally
in the context of kernel dagger categories.

In every category D the homset Endo(X) = D(X,X) of endomaps f : X → X is a
monoid (or semigroup with unit), with obvious composition operation ◦ and identity map
idX as unit element. If D is a dagger category, there is automatically an involution (−)† on
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this monoid. If it is moreover a dagger kernel category, every endomap s ∈ Endo(X) yields
a self-adjoint idempotent, namely the effect of its kernel:

[ s ]
def
= E(ker(s)) = ker(s) ◦ ker(s)† : X −→ X (4.1)

with the special property that for t ∈ Endo(X),

s ◦ t = 0 ⇐⇒ ∃r∈Endo(X). t = [ s ] ◦ r.

Indeed, if t = [ s ] ◦ r, then:

s ◦ t = s ◦ ker(s) ◦ ker(s)† ◦ r = 0 ◦ ker(s)† ◦ r = 0.

Conversely, if s ◦ t = 0, then there is a map f in D with ker(s) ◦ f = t. Hence t satisfies:

[ s ] ◦ t = ker(s) ◦ ker(s)† ◦ ker(s) ◦ f = ker(s) ◦ f = t.

In the 1960s this structure of an involutive monoid 〈Endo(X), ◦, id, †〉 with operation
[− ] : Endo(X) → Endo(X) was introduced by Foulis [13, 14, 15] and has since been studied
under the name ‘Baer *-semigroup’, and later as ‘Foulis semigroup’, see [27, Chapter 5,
§§18] for a brief overview.

Definition 4.1. A Foulis semigroup consists of a monoid (semigroup with unit) (S, ·, 1)
together with two endomaps (−)† : S → S and [− ] : S → S satisfying:

(1) 1† = 1 and (s · t)† = t† · s† and s†† = s, making S an involutive monoid;
(2) [ s ] is a self-adjoint idempotent, i.e. satisfies [ s ] · [ s ] = [ s ] = [ s ]†;
(3) 0

def
= [ 1 ] is a zero element: 0 · s = 0 = s · 0;

(4) s · x = 0 iff ∃y. x = [ s ] · y.

Or, equivalently (see [27, Chapter 5, §§18, Lemma 1]),

(4)’ [ 0 ] = 1 and s · [ s ] = 0 and t = [ [ t† · s† ] · s ] · t.

We form a category Fsg of such Foulis semigroups with monoid homomorphisms that
commute with † and [− ] as morphisms.

The constructions before this definition show that for each object X ∈ D of a (locally
small) dagger kernel category D, the homset Endo(X) = D(X,X) of endomaps on X is a
Foulis semigroup. Functoriality of this construction is problematic: for an arbitrary map
f : X → Y in D there is a mapping Endo(X) → Endo(Y ), namely s 7→ f ◦ s ◦ f † : Y → X →
X → Y , but it does not preserve the structure of Foulis semigroups, and thus only gives
rise to presheaf.

Proposition 4.2. For a dagger kernel category D, each endo homset Endo(X), for X ∈ D,
is a Foulis semigroup. The mapping X 7→ Endo(X) yields a presheaf D → Sets. �

The lack of functoriality in this construction is problematic. One possible way to address
it is via another notion of morphism between Foulis semigroups, like Galois connections
between orthomodular lattices in the category OMLatGal. We shall not go deeper into
this issue. Also the possible sheaf-theoretic aspects involved in this situation (see also [17])
form a topic on its own that is not pursued here. We briefly consider some examples.

For the dagger kernel category Hilb of Hilbert spaces, the set B(H) of (bounded/conti-
nuous linear) endomaps on a Hilbert space H forms a Foulis semigroup—but of course
also a C∗-algebra. The associated (Foulis) map [− ] : B(H) → B(H) maps s : H → H to
[ s ] : H → H given by [ s ](x) = k(k†(x)), where k is the kernel map {x | s(x) = 0} →֒ H.
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For the category Rel of sets and relations the endomaps on a set X are the relations
R ⊆ X ×X on X. The associated [R ] ⊆ X ×X is {(x, x) | ¬∃y. R(x, y)}.

An interesting situation arises when we apply the previous proposition to the dag-
ger kernel category OMLatGal of orthomodular lattices (with Galois connections be-
tween them). One gets that for each orthomodular lattice X the endo-homset Endo(X) =
OMLatGal(X,X) forms a Foulis semigroup. This construction is more than 40 years old,
see [13] or e.g. [4, Chapter II, Section 19] or [27, Chapter 5, §§18], where it is described in
terms of Galois connections. In the present setting it comes for free, from the structure of
the category OMLatGal. Hence we present it as a corollary, in particular of Proposition 4.2
and Theorem 3.5.

Corollary 4.3. For each orthomodular lattice X the set of (Galois) endomaps Endo(X) =
OMLatGal(X,X) is a Foulis semigroup with composition as monoid, dagger (−)† as in-
volution, and self-adjoint idempotent [ s ] : X → X, for s : X → X, defined as in (4.1).
Equivalently, [ s ] can be described via the Sasaki hook ⊃ or and-then operator &:

[ s ]∗(x) = [ s ]∗(x) = s∗(1) ⊃ x⊥ = s∗(1)⊥ ∨ (s∗(1) ∧ x⊥) = (x & s∗(1))⊥.

Proof We recall from (4.1) that the operation [− ] on endomaps s : X → X is defined
as [ s ] = ker(s) ◦ ker(s)† : X → X. In OMLatGal one has ker(s) = s∗(1)—see Proposi-
tion 3.9—so that:

[ s ]∗(x) = (ker(s) ◦ ker(s)†)∗(x)

= (ker(s)∗(ker(s)
∗(x)⊥)

= s∗(1)∗
(

s∗(1) ∧ s∗(1)∗(x)⊥
)

=
(

s∗(1) ∧ (s∗(1) ∧ x⊥)⊥
)⊥

by Lemma 3.4

= s∗(1)⊥ ∨ (s∗(1) ∧ x⊥). �

4.1. From Foulis semigroups to dagger kernel categories. Each involutive monoid
(S, ·, 1, †) forms a dagger category with one object, and morphisms given by elements of S.
Requirement (4) in Definition 4.1 says that this category has “semi” kernels, given by [− ].
Hence it is natural to apply the Karoubi envelope to obtain proper kernels. It turns out
that this indeed yields a dagger kernel category.

For a Foulis semigroup as in Definition 4.1, we thus write K†(S) for the dagger Karoubi
envelope applied to S as one-object dagger category. Thus K†(S) has self-adjoint idempo-
tents s ∈ S as objects, and morphisms f : s→ t given by elements f ∈ S with f ·s = f = t·f .

Theorem 4.4. This K†(S) is a dagger kernel category. The mapping S 7→ K†(S) yields a
functor Fsg → DKC.

Proof The zero element 0 = [ 1 ] ∈ S is obviously a self-adjoint idempotent, and thus an
object of K†(S). It is a zero object because for each s ∈ K†(S) there is precisely one map
f : s→ 0, namely 0, because f = 0 · f = 0.

For an arbitrary map f : s → t in K†(S) we claim that there is a dagger kernel of the
form:

s · [ f ] � ,2 s·[ f ] // s
f // t

This will be checked in a number of small steps.

• f · (s · [ f ]) = (f · s) · [ f ] = f · [ f ] = 0, by (4′) in Defintion 4.1;
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• By the previous point there is an element y ∈ S with s · [ f ] = [ f ] · y. Hence:

[ f ] · s · [ f ] = [ f ] · [ f ] · y = [ f ] · y = s · [ f ]

This is equation is very useful. It yields first of all that s · [ f ] is idempotent:

(s · [ f ]) · (s · [ f ]) = s · ([ f ] · s · [ f ]) = s · s · [ f ] = s · [ f ].

This element is also self-adjoint:

(s · [ f ])† = ([ f ] · s · [ f ])† = [ f ]† · s† · [ f ]† = [ f ] · s · [ f ] = s · [ f ].

Hence s · [ f ] ∈ S is a self-adjoint idempotent, and thus an object of K†(S).
• s · [ f ] : (s · [ f ]) → s is also a dagger mono:

(s · [ f ])† · (s · [ f ]) = [ f ]† · s† · s · [ f ]

= [ f ] · s · s · [ f ]

= [ f ] · s · [ f ]

= s · [ f ]

= ids·[ f ].

• Finally, if g : r → s in K†(S) satisfies f ◦ g = f · g = 0, then there is a y ∈ S with
g = [ f ] · y. Then:

s · [ f ] · g = s · [ f ] · [ f ] · y = s · [ f ] · y = s · g = g.

Hence g is the mediating map r → (s · [ f ]), since (s · [ f ]) · g = g. Uniqueness follows
because s · [ f ] is a dagger mono.

As to functoriality, assume h : S → T is a morphism of Foulis semigroups. It yields a
functor H : K†(S) → K†(T ) by s 7→ h(s) and f 7→ h(f). This H preserves all the dagger
kernel structure because it preserves the Foulis semigroup structure. �

By combining this result with Proposition 4.2 we have a way of producing new Foulis
semigroups from old.

Corollary 4.5. Each self-adjoint idempotent s ∈ S in a Foulis semigroup S yields a Foulis
semigroup of endo-maps:

Endo(s) = K†(S)(s, s) = {t ∈ S | s · t = t = t · s},

with composition ·, unit s, involution † and [ t ]s
def
= s · [ t ] · s. The special case s = 1 yields

the original semigroup: Endo(1) = S.

Proof We only check the formulation following (4.1):

[ t ]s = ker(t) ◦ ker(t)† = s · [ t ] · (s · [ t ])† = s · [ t ] · [ t ] · s = s · [ t ] · s. �

The posets of kernel subobjects in a dagger kernel category are orthomodular lattices.
This applies in particular to the category K†(S) and yields a way to construct orthomodular
lattices out of Foulis semigroups. We first investigate this lattice structure in more detail,
via (isomorphic) subsets of S.

Lemma 4.6. Let S be a Foulis semigroup with self-adjoint idempotent s ∈ S, considered
as object s ∈ K†(S). The subset

Ks
def
= {s · [ t · s ] | t ∈ S} ⊆ S,
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is an orthomodular lattice with the following structure.

Order k1 ≤ k2 ⇔ k1 = k2 · k1

Top 1s = s = s · [ s · 0 ]

Orthocomplement k⊥ = s · [ k ]

Meet k1 ∧ k2 =
(

k1 · [ [ k2 ] · k1 ]
⊥⊥.

In fact, Ks
∼= KSub(s).

Proof It suffices to prove the last isomorphism Ks
∼= KSub(s) and use it to translate

the orthomodular structure from KSub(s) to Ks. Instead we proceed in a direct manner
and show that each Ks is an orthomodular lattice in a number of small consecutive steps,
resembling the steps taken in [27, Chapter 5, §§18]. One observation that is used a number
of times is:

x · y = 0 =⇒ y = [x ] · y (∗)

for arbitrary x, y ∈ S, Indeed, if x · y = 0, then by requirement (4) in Definition 4.1 there
is a z with y = [x ] · z. But then [x ] · y = [x ] · [x ] · z = [x ] · z = y.

Let s ∈ S now be a fixed self-adjoint idempotent.

(a) Each k ∈ Ks is a self-adjoint idempotent, a dagger kernel k : k → s, and also an
idempotent k : s→ s in K†(S).

Indeed, if k = s · [ t · s ], then (t · s) · k = t · s · [ t · s ] = 0, so that k = [ t · s ] · k by (∗).
Hence:

k · k = s · [ t · s ] · k = s · k = k

k† = ([ t · s ] · k)† = ([ t · s ] · s · [ t · s ])†

= [ t · s ]† · s† · [ t · s ]† = [ t · s ] · s · [ t · s ] = k

k† · k = k · k = k

k · s = k† · s† = (s · k)† = k† = k.

Also, k : k → s is the kernel of t · s : s → 1, using the description of kernels in K†(S)
from the proof of Theorem 4.4.

(b) The set S carries a transitive order t ≤ r iff r · t = t. This ≤ is a partial order on Ks.
Transitivity is obvious: if t ≤ r ≤ q, then r · t = t and q · r = r so that q · t = q · r · t =

r · t = t, showing that t ≤ q.
Reflexivity k ≤ k holds for k ∈ Ks since we have k · k = k as shown in (a). For

symmetry assume k ≤ ℓ and ℓ ≤ k where k, ℓ ∈ Ks. Then ℓ · k = k and k · ℓ = ℓ. Hence
k = k† = (ℓ · k)† = k† · ℓ† = k · ℓ = ℓ.

(c) For an arbitrary t ∈ S put t⊥
def
= s · [ t† · s ] ∈ Ks. Hence from (a) we get equations

t⊥ · t⊥ = t⊥ = (t⊥)† and s · t⊥ = t⊥ = t⊥ · s that are useful in calculations.
We will show t ≤ r ⇒ r⊥ ≤ t⊥ and k⊥⊥ = k for k ∈ Ks.



22 B. JACOBS

Assume t ≤ r, i.e. t = r · t. Then, applying the equation y = [ [ y† · x† ] · x ] · y from
requirement (4′) in Definition 4.1 for y = [ r† · s ] and x = t† · s yields:

[ r† · s ] = [ [ [ r† · s ]† · (t† · s)† ] · t† · s ] · [ r† · s ]

= [ [ [ (t† · s · [ r† · s ])† ] ] · t† · s ] · [ r† · s ]

= [ [ ((r · t)† · s · [ r† · s ])† ] · t† · s ] · [ r† · s ]

= [ [ (t† · r† · s · [ r† · s ])† ] · t† · s ] · [ r† · s ]

= [ [ (t† · 0)† ] · t† · s ] · [ r† · s ] since x · [x ] = 0

= [ [ 0 ] · t† · s ] · [ r† · s ]

= [ 1 · t† · s ] · [ r† · s ]

= [ t† · s ] · [ r† · s ].

This gives us what we need to show r⊥ ≤ t⊥:

t⊥ · r⊥ = t⊥ · s · [ r† · s ]

= t⊥ · [ r† · s ] since t⊥ ∈ Ks

= s · [ t† · s ] · [ r† · s ]

= s · [ r† · s ] as we have just seen

= r⊥.

Next we notice that

t⊥⊥ = s · [ (t⊥)† · s ] = s · [ [ t† · s ]† · s† · s ] = s · [ [ t† · s ] · s ].

Requirement (4′) in Definition 4.1, applied to t, says:

s · t = s · [ [ t† · s† ] · s ] · t = s · [ [ t† · s ] · s ] · t = t⊥⊥ · t = t⊥⊥ · s · t.

It says that s · t ≤ t⊥⊥. In particular, this means k ≤ k⊥⊥ for k ∈ Ks. Since (−)⊥

reverses the order we get:

t⊥⊥⊥ ≤ (s · t)⊥ = s · [ (s · t)† · s ] = s · [ t† · s† · s ] = s · [ t† · s ] = t⊥.

If we finally apply this to k ∈ Ks, say for k = s · [ t · s ] = (t†)⊥ we get:

k⊥⊥ = (t†)⊥⊥⊥ ≤ (t†)⊥ = k.

(d) As motivation for the definition of meet, consider for k1, k2 ∈ Ks their meet as kernels:

r
def
= k1 · k

−1
1 (k2)

= k1 · ker(coker(k2) · k1) see pullback from Section 2

= k1 · ker((s · [ k
†
2 ])

† · k1)

= k1 · k1 · [ [ k2 ] · s · k1 ]

= k1 · [ [ k2 ] · k1 ].

We force this r into Ks via double negation and hence define k1 ∧ k2 = r⊥⊥. Showing
that it is the meet of k1, k2 requires a bit of work.
• We have k1 · r = k1 · k1 · [ [ k2 ] · k1 ] = k1 · [ [ k2 ] · k1 ] = r, so that r ≤ k1 and thus also
k1 ∧ k2 = r⊥⊥ ≤ k⊥⊥

1 = k1.
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• We first observe that

[ k2 ] · s · s · r = [ k2 ] · s · s · k1 · [ [ k2 ] · k1 ] = [ k2 ] · k1 · [ [ k2 ] · k1 ] = 0.

Hence by applying † we get (r† · s) · (s · [ k2 ]) = 0. Via (∗) we obtain s · [ k2 ] =
[ r† · s ] · s · [ k2 ], and thus also

k⊥2 = s · k⊥2 = s · s · [ k2 ] = s · [ r† · s ] · s · [ k2 ] = r⊥ · k⊥2 .

This says k⊥2 ≤ r⊥, from which we get k1 ∧ k2 = r⊥⊥ ≤ k⊥⊥
2 = k2.

• If also ℓ ∈ Ks satisfies ℓ ≤ k1 and ℓ ≤ k2, i.e. k1 · ℓ = ℓ = k2 · ℓ, then, by Defini-
tion 4.1 (4′),

[ k2 ] · k1 · ℓ = [ k2 ] · k2 · ℓ = ([ k2 ] · k2)
†† · ℓ

= (k†2 · [ k2 ]
†)† · ℓ

= (k2 · [ k2 ])
† · ℓ

= 0† · ℓ

= 0.

Hence ℓ = [ [ k2 ] ·k1 ] ·ℓ by (∗) and so ℓ = k1 ·ℓ = s ·k1 ·ℓ = s ·k1 · [ [ k2 ] ·k1 ] ·ℓ = s ·r ·ℓ.
Thus ℓ ≤ s · r ≤ r⊥⊥ = k1 ∧ k2.

(e) We get k⊥ ∧ k = 0, for k ∈ Ks, as follows. Since k · s · [ k ] = k · [ k ] = 0 one has
k⊥ = s · [ k ] = [ k ] · s · [ k ] = [ k ] · k⊥ by (∗). Hence:

k⊥ ∧ k =
(

k⊥ · [ [ k ] · k⊥ ]
)⊥⊥

=
(

k⊥ · [ k⊥ ]
)⊥⊥

= 0⊥⊥ = 0.

(f) Finally, orthomodularity holds in Ks. We assume k ≤ ℓ (i.e. k = ℓ · k) and k⊥ ∧ ℓ = 0,
for k, ℓ ∈ Ks, and have to show ℓ ≤ k (i.e. ℓ = k · ℓ, and thus k = ℓ). To start,
k = k† = (ℓ ·k)† = k† · ℓ† = k · ℓ, so that k · ℓ⊥ = k · s · [ ℓ ] = k · [ ℓ ] = k · ℓ · [ ℓ ] = k ·0 = 0.
Using (∗) yields ℓ⊥ = [ k ] · ℓ⊥ = [ k ] · s · [ ℓ ], and also ℓ⊥ = (ℓ⊥)† = ([ k ] · s · [ ℓ ])† =
[ ℓ ]† · s† · [ k ]† = [ ℓ ] · k⊥. Hence:

k⊥ · ℓ = k⊥ · ℓ⊥⊥ = k⊥ · s · [ ℓ⊥ ] = k⊥ · [ ℓ⊥ ]

= k⊥ · [ [ ℓ ] · k⊥ ]

≤
(

k⊥ · [ [ ℓ ] · k⊥ ]
)⊥⊥

= k⊥ ∧ ℓ

= 0.

By (∗) we get ℓ = [ k⊥ ] · ℓ so that ℓ = s · ℓ = s · [ k⊥ ] · ℓ = k⊥⊥ · ℓ = k · ℓ, as required to
get ℓ ≤ k.

Finally we need to show Ks
∼= KSub(s). As we have seen in (a), each k ∈ Ks yields (an

equivalence class of) a kernel k : k → s. Conversely, each kernel ker(f) = s · [ f ] = s · [ f · s ]
of a map f : s → t in K†(S)—see the proof of Theorem 4.4—is an element of Ks. This
yields an order isomorphism: if k1 ≤ k2 for k1, k2 ∈ Ks, then k1 = k2 · k1 so that we get a
commuting triangle:

k1 � &- k1
))TTTTT

k1 ���
�

s

k2
* 18

k2

55jjjjj
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showing that k1 ≤ k2 in KSub(s). Conversely, if there is an f : k1 → k2 with k2 · f = k1,
then k2 · k1 = k2 · k2 · f = k2 · f = k1, showing that k1 ≤ k2 in Ks. �

4.2. Generators. Recall that a generator in a category is an object I such that for each
pair of maps f, g : X → Y , if f ◦ x = g ◦ x for all x : I → X, then f = g. Every singleton
set is a generator in Sets, and also in Rel. The complex numbers C form a generator in
the category Hilb of Hilbert spaces of C. And the two-element orthomodular lattice is a
generator in OMLatGal by Lemma 3.10.

We shall write DKCg →֒ DKC for the subcategory of dagger kernel categories with a
given generator, and with morphisms preserving the generator, up to isomorphism.

Lemma 4.7. The dagger kernel category K†(S) associated with a Foulis semigroup has
the unit 1 ∈ S as generator. The functor Fsg → DKC from Theorem 4.4 restricts to
Fsg → DKCg.

Proof Assume f, g : s → t in K†(S) with f ◦ x = g ◦ x for each map x : 1 → s. Then, in
particular for x = s we get f = f ◦ s = g ◦ s = g. Every morphism h : S → T of Foulis
semigroups satisfies h(1) = 1, so that the induced functor K†(S) → K†(T ) preserves the
generator. �

Lemma 4.8. The mapping D 7→ KSub(I) yields a functor DCKg → OMLat.

Proof If F : D → E is a functor in DCKg, then one obtains a mapping KSubD(I) →
KSubE(I) by:

(

M
� ,2 m // I

)

� //
(

FM
� ,2Fm // FI

∼= // I
)

.

Since all the orthomodular structure in kernel posets KSub(X) is defined in terms of kernels
and daggers, it is preserved by F . �

By composition we obtain the original (“old”) way to construct an orthomodular lattice
out of a Foulis semigroup, see [15].

Corollary 4.9. The composite functor Fsg → DCKg → OMLat maps a Foulis semigroup
S to the orthomodular lattice [S ] = {[ t ] | t ∈ S} = K1

∼= KSub(1) from Lemma 4.6, over
the generator 1. �

In the reverse direction we have seen in Corollary 4.3 that the set Endo(X) of (Ga-
lois) endomaps on an orthomodular lattice X is a Foulis semigroup, but functoriality is
problematic. However, we can now solve a problem that was left open in [20], namely the
construction of a dagger kernel category out of an orthomodular lattice X. Theorem 4.4
says that the dagger Karoubi envolope K†(Endo(X)) is a dagger kernel category. Its objects
are self-adjoint idempotents s : X → X, and its morphisms f : (X, s) → (X, t) are maps
f : X → X in OMLatGal with t ◦ f = f = f ◦ s.

5. Conclusions

There is a relatively recent line of research applying categorical methods in quantum
theory, see for instance [5, 1, 33, 9, 21, 6]. This paper fits into this line of work, with a focus
on quantum logic (following [20]), and establishes a connection to early work on quantum
structures. It constructs new (dagger kernel) categories of orthomodular lattices and of



ORTHOMODULAR LATTICES, FOULIS SEMIGROUPS AND DAGGER KERNEL CATEGORIES 25

self-adjoint idempotents in Foulis semigroups (also known as Baer *-semigroups). These
categorical constructions are shown to generalise translations between orthomodular lattics
and Foulis semigroups from the 1960s. They provide a framework for the systematic study
of quantum (logical) structures.

The current (categorical logic) framework may be used to address some related research
issues. We mention three of them.

• As shown, the category OMLatGal of orthomodular lattices and Galois connections has
(dagger) kernels and biproducts ⊕. An open question is whether it also has tensors ⊗,
to be used for the construction of (logics of) compound systems, see [35]. The existence
of such tensors is a subtle matter, given the restrictions described in [31].

• A dagger kernel category gives rise to not just one orthomodular lattice (or Foulis semi-
group), but to a collection, indexed by the objects of the category, see for instance the
presheaf description in Proposition 4.2. The precise, possibly sheaf-theoretic (see [17]),
nature of this indexing is not fully understood yet.

• So-called effect algebras have been introduced as more recent generalisations of orthomod-
ular lattices, see [11] for an overview. An open question is how such quantum structures
relate to the present approach.

Acknowledgements. Many thanks to Chris Heunen for discussions and joint work [20], and
to John Harding for spotting a mistake in an earlier version (see Remark 3.15).

References

[1] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Logic in Computer
Science, pages 415–425. IEEE, Computer Science Press, 2004.

[2] A. Baltag and S. Smets. LQP: the dynamic logic of quantum information. Math. Struct. in Comp. Sci.,
16:491–525, 2006.

[3] G. Birkhoff and J. von Neumann. The logic of quantum mechanics. Ann. Math., 37:823–843, 1936.
[4] T.S. Blyth and M.F. Janowitz. Residuation Theory. Pergamum Press, 1972.
[5] J. Butterfield and C.J. Isham. A topos perspective on the Kochen-Specker theorem: I. quantum states

as generalized valuations. Int. Journ. Theor. Physics, 37(11):2669–2733, 1998.
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