
Logical Methods in Computer Science

Vol. 8 (2:17) 2012, pp. 1–18

www.lmcs-online.org

Submitted Jun. 16, 2011

Published Jun. 28, 2012

EFFICIENT CSL MODEL CHECKING USING STRATIFICATION ∗

LIJUN ZHANG a, DAVID N. JANSEN b, FLEMMING NIELSON c, AND HOLGER HERMANNS d

a,c Technical University of Denmark, DTU Informatics, Denmark
e-mail address: {zhang,nielson}@imm.dtu.dk

b Radboud Universiteit, Model-based System Design, Nijmegen, The Netherlands
e-mail address: dnjansen@cs.ru.nl

d Saarland University, Computer Science, Saarbrücken, Germany
e-mail address: hermanns@cs.uni-saarland.de

Abstract. For continuous-time Markov chains, the model-checking problem with respect
to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable
by Aziz, Sanwal, Singhal and Brayton in 1996 [1, 2]. Their proof can be turned into an ap-
proximation algorithm with worse than exponential complexity. In 2000, Baier, Haverkort,
Hermanns and Katoen [4, 5] presented an efficient polynomial-time approximation algo-
rithm for the sublogic in which only binary until is allowed. In this paper, we propose such
an efficient polynomial-time approximation algorithm for full CSL.

The key to our method is the notion of stratified CTMCs with respect to the CSL prop-
erty to be checked. On a stratified CTMC, the probability to satisfy a CSL path formula
can be approximated by a transient analysis in polynomial time (using uniformization).
We present a measure-preserving, linear-time and -space transformation of any CTMC into
an equivalent, stratified one. This makes the present work the centerpiece of a broadly
applicable full CSL model checker.

Recently, the decision algorithm by Aziz et al. was shown to work only for stratified
CTMCs. As an additional contribution, our measure-preserving transformation can be
used to ensure the decidability for general CTMCs.

1. Introduction

Continuous-time Markov chains (CTMC) play an important role in performance evaluation
of networked, distributed, and biological systems. The concept of formal verification for
CTMCs was introduced by Aziz, Sanwal, Singhal and Brayton in 1996 [1, 2]. Their seminal
paper defined continuous-time stochastic logic (CSL) to specify properties over CTMCs.
It showed that the model checking problem for CTMCs, which asks whether the CTMC
satisfies a given CSL property, is decidable, using algebraic and transcendental number
theory. Their proof is constructive, so it can be turned into an approximation procedure

1998 ACM Subject Classification: G.3, F.4.1, F.3.1.
Key words and phrases: continuous-time Markov chains, continuous stochastic logic, model checking,

approximation algorithm, stratification.
∗ A preliminary version of the paper has appeared in [22].

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (2:17) 2012

c© L. Zhang, D. N. Jansen, F. Nielson, and H. Hermanns
CC© Creative Commons

http://creativecommons.org/about/licenses

2 L. ZHANG, D. N. JANSEN, F. NIELSON, AND H. HERMANNS

for the relevant probabilities. However, its complexity may be worse than exponential in
the size of the formula.

The characteristic construct of CSL is a probabilistic formula of the form P<p(ϕ),
where p ∈ [0, 1]. Here ϕ is a path formula; more concretely, it is a multiple until formula
f1 UI1 f2 UI2 . . . UIk−1

fk where k ≥ 2. The formula P<p(ϕ) expresses a constraint
on the probability to reach an fk-state by passing only through (zero or more) f1-, f2-,
. . . , fk−1-states in the given order (together with a timing constraint indicated by the
intervals I1, . . . , Ik−1). The key to solve the model checking problem is to approximate this
probability Prs(ϕ) closely enough to decide whether it is < p. The decision procedure in [2]
first decomposes the formula into (up to) (k−1)k−1 many subformulas with suitable timing
constraints. For each subformula, it then exploits properties of algebraic and transcendental
numbers, but the corresponding algorithm is unfortunately impractical. In 2000, Baier et

al. [4, 5] presented an approximate model checking algorithm for the case k = 2. This
algorithm is based on transient probability analysis for CTMCs. More precisely, it was
shown that Prs(ϕ) can be approximated, up to an a priori given precision ε, by a sum of
transient probabilities in the CTMCs. Their algorithm then led to further development
of approximation algorithms for infinite CTMCs [11, 12] and abstraction techniques [15].
More importantly, several tools support approximate model checking, including PRISM [17]
and MRMC [16].

Effective model checking of full CSL with multiple until formulas (k > 2) is an open
problem. This problem is gaining importance e. g. in the field of system biology, where one is
interested in oscillatory behavior of CTMCs [6, 19]. More precisely, if one intends to quantify
the probability mass oscillating between high, medium and low concentrations (or numbers)
of some species, a formula like P>0.2(high UI1 medium UI2 low UI3 medium UI4 high) is
needed, but this is not at hand with the current state of the art. In CTL, multiple until
formulas like ∀(high U medium U low U medium U high) do not increase expressivity
because they are equivalent to something like ∀(high U ∀(medium U ∀(. . . U high))).

In this paper we propose an approximate algorithm for checking CSL with multiple
until formulas. We introduce a subclass of stratified CTMCs, on which the approximation
of Prs(ϕ) can be obtained by efficient transient analysis. Briefly, a CTMC is stratified
with respect to ϕ = f1 UI1 f2 UI2 . . . fk, if the transitions of the CTMC respect the order
given by the fi. This specific order makes it possible to express Prs(ϕ) recursively: more
precisely, it is the product of a transient vector and Prs′(ϕ

′), where ϕ′ is a kind of suffix
subformula of ϕ. Stratified CTMCs are the key element for our analysis: in a stratified
CTMC, the problem reduces to a transient analysis, for which efficient implementations
using uniformization [10] exist. Thus, we extend the well-known result [5] for the case of
binary until to multiple until formulas.

For a general CTMC, we present a measure-preserving transformation to a stratified
CTMC. Our reduction is described using a deterministic finite automaton (DFA) over the

alphabet 2{f1,...,fk}. The DFA accepts the finite word w = w1w2 . . . wn if and only if the
corresponding set of time-abstract paths in the CTMC contributes to Prs(ϕ), i. e., it respects
the order of the fi. The transformation does not require to construct the full DFA, but only
the product of the CTMC and the DFA. We show that the product is a stratified CTMC,
and moreover, the measure Prs(ϕ) is preserved. This product can be constructed in linear
time and space in the size of the CTMC and k. Thus our method will be useful as the
centerpiece of a full CSL model checker equipped with multiple until formulas.

EFFICIENT CSL MODEL CHECKING USING STRATIFICATION 3

Recently, the decision algorithm by Aziz et al. was shown to produce erroneous results
on some non-stratified CTMCs [13]. Still, their algorithm is correct on stratified CTMCs.
As an additional contribution, our measure-preservation theorem ensures the decidability
of CSL model checking for general CTMCs.

Overview of the article. Section 2 sets the ground for the paper. In Section 3 we introduce
stratified CTMCs formally. The first main result is shown in Section 4: it constructs a
DFA for an until formula, and then shows that the product is a stratified CTMC and
the relevant measures are preserved. Section 5 discusses the computations in the product
CTMC. A model checking algorithm is presented in Section 6. Section 7 discusses related
work, and the paper is concluded in Section 8.

2. Preliminaries

This section presents the definition of Markov chains, probability space, transient and
steady-state distributions. For details please refer to [20, 18, 5].

2.1. Markov Chains.

Definition 2.1. A labeled discrete-time Markov chain (DTMC) is a tuple D = (S,P, L),
where S is a finite set of states, P : S × S → [0, 1] is a probability matrix satisfying
∑

s′∈S P(s, s′) ∈ {0, 1} for all s ∈ S, and L : S → 2AP is a labeling function.
A labeled continuous-time Markov chain (CTMC) is a tuple C = (S,R, L), where S

and L are defined as for DTMCs, and R : S × S → R≥0 is a rate matrix.

For A ⊆ S, define R(s,A) :=
∑

s′∈AR(s, s′), and let E(s) := R(s, S) denote the exit

rate of s. A state s is called absorbing if E(s) = 0. If R(s, s′) > 0, we say that there is a
transition from s to s′.

The transition probabilities in a CTMC are exponentially distributed over time. If s is
the current state of the CTMC, the probability that some transition will be triggered within
time t is 1−e−E(s)t. Furthermore, if R(s, s′) > 0 for more than one state s′, the probability

to take a particular transition to s′ is R(s,s′)
E(s) ·

(

1− e−E(s)t
)

. The labeling function L assigns

to each state s the set of atomic propositions L(s) ⊆ AP which are valid in s.
A CTMC C (and also a DTMC) is usually equipped with an initial state sinit ∈ S or,

more generally, an initial distribution αinit : S → [0, 1] satisfying
∑

s∈S αinit(s) = 1.

Paths and probabilistic measures. A (sample) path is a right-continuous function σ : R≥0 →
S (with the discrete topology on S). Then, σ(t) denotes the state occupied at time t.

For i ∈ N, let σS[i] = si denote the (i + 1)-th state visited, and σT [i] = ti denote the
time spent in σS [i]. For finite paths, σT [n] is defined to be ∞ if σS [n] is the last (absorbing)
state. Let PathC denote the set of all (finite and infinite) paths, and PathC(s) denote the
subset of those paths starting from s.

We sometimes use a different notation to describe a path, namely a finite sequence
σ = s0t0s1t1 . . . sn (meaning that σS[i] = si and σT [i] = ti for all i < n, and σS [n] = sn
is an absorbing state), or an infinite sequence σ = s0t0s1t1 . . . if no absorbing state is
hit. The relation between the two notations is: σ(t) = si where i is the smallest index

4 L. ZHANG, D. N. JANSEN, F. NIELSON, AND H. HERMANNS

with t <
∑i

j=0 tj (as remarked by [18, p. 170], we have to use a strict inequality here for

technical reasons, not the non-strict inequality as in [5].).
Let s0, s1, . . . , sk be states in S withR(si, si+1) > 0 for all 0 ≤ i < k. Let I0, I1, . . . , Ik−1

be nonempty intervals in R≥0. The cylinder set Cyl(s0, I0, . . . , sk−1, Ik−1, sk) is defined by:

Cyl(s0, I0, . . . , sk−1, Ik−1, sk) := {σ ∈ PathC | ∀0 ≤ i ≤ k. σS [i] = si∧∀0 ≤ i < k. σT [i] ∈ Ii}.
Let F(PathC) denote the smallest σ-algebra on PathC containing all cylinder sets. For
initial distribution α : S → [0, 1], a probability measure (denoted PrCα) on this σ-algebra is
introduced as follows: PrCα is the unique measure that satisfies: PrCα(Cyl (s)) equals α(s),
and for k > 0,

PrCα(Cyl(s0, I0, . . . , Ik−1, sk)) = PrCα(Cyl(s0, I0, . . . , Ik−2, sk−1)) · R(sk−1,sk)
E(sk−1)

· η(Ik−1)

where η(Ik−1) := exp(−E(sk−1) inf Ik−1) − exp(−E(sk−1) sup Ik−1) is the probability to
take a transition during time interval Ik−1. (As a consequence, the probability of a cylinder
set containing a point interval [t, t] is 0.) If α(s) = 1 for some state s ∈ S, we sometimes
simply write PrCs instead of PrCα. We omit the superscript C if it is clear from the context.

Transient and steady-state probability. Starting with distribution α, the transient probabil-
ity vector at time t, denoted by π(α, t), is the probability distribution over states at time
t. If t = 0, we have π(α, 0)(s′) = α(s′). For t > 0, the transient probability is given by:
π(α, t) = π(α, 0)eQt whereQ := R−Diag(E) is the infinitesimal generator matrix. Diag(E)
denotes the diagonal matrix with Diag(E)(s, s) = E(s). The steady-state distribution is
defined as the limit limt→∞ π(α, t), which always exists for finite CTMCs.

2.2. Deterministic Finite Automata.

Definition 2.2. A deterministic finite automaton is a tuple B = (Σ, Q, qin, δ, F), where Σ
is a finite alphabet, Q is a finite set of states, qin ∈ Q is an initial state, δ : Q×Σ p→ Q is a
partial transition function, and F ⊆ Q is a set of final states.

We call a finite sequence w = w1w2 . . . wn over Σ a word over Σ. w induces at most
one path σ(w) = q0q1 . . . qn in B where q0 = qin and qi = δ(qi−1, wi) for i = 1, . . . , n. This
word w, and also the corresponding path σ(w), is accepting if σ(w) exists and qn ∈ F .

2.3. Continuous Stochastic Logic (CSL). We consider the branching-time temporal
logic Continuous Stochastic Logic (CSL) introduced by Aziz et al. [2], which allows us to
specify properties over CTMCs. Its syntax is defined as follows:

Φ := a | ¬Φ | Φ ∧Φ | PEp(ϕ)

ϕ := Φ1 UI1 Φ2 UI2 . . . UIk−1
Φk

where a ∈ AP is an atomic proposition, I1, I2, . . . ⊆ R≥0 are nonempty left-closed intervals
with rational bounds, E ∈ {<,≤,≥, >}, p ∈ Q ∩ [0, 1], and k ≥ 2. We use the abbreviation
✸IΦ = (¬(a ∧ ¬a)) UI Φ, for an arbitrary atomic proposition a. The syntax of CSL
consists of state formulas and path formulas: we use Φ,Φ1,Ψ,Ψ1, . . . for state formulas and
ϕ,ϕ1, ψ, ψ1, . . . for path formulas.

EFFICIENT CSL MODEL CHECKING USING STRATIFICATION 5

Let C = (S,R, L) be a CTMC with s ∈ S. The semantics of most CSL state formulas
is standard: s |= a iff a ∈ L(s); s |= ¬Φ iff s 6|= Φ; s |= Φ ∧ Ψ iff s |= Φ and s |= Ψ. For
probabilistic formulas, we have:

s |= PEp(ϕ) iff Prs{σ ∈ Path | σ |= ϕ} E p

where Prs{σ ∈ Path | σ |= ϕ}, or Prs(ϕ) for short, denotes the probability measure of the
set of all paths which start with s and satisfy ϕ.

The satisfaction relation for CSL path formulas is defined as follows: let σ be a path,
and let ϕ = Φ1 UI1 Φ2 UI2 . . .Φk be a path formula. Then σ |= ϕ if and only if there
exist real numbers 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk−1 such that σ(tk−1) |= Φk, and for each integer
0 < i < k we have (ti ∈ Ii) ∧ (∀t′ ∈ [ti−1, ti))(σ(t

′) |= Φi), where t0 is defined to be 0 for
notational convenience.

For a CSL path formula ϕ = Φ1 U[a1,b1) Φ2 U[a2,b2) Φ3 with a2 < a1, one can replace
the second interval by [a1, b2) without changing the set of paths that satisfy the formula.
Thus, we shall assume that the left endpoints – and similarly, the right endpoints – of the
intervals in multiple until formulas are always nondecreasing.

3. Stratified CTMCs

The main challenge of model checking is the computation and the approximation of the
probability Prs(ϕ). We now introduce the class of stratified CTMCs. This is the key
for the computation of Prs(ϕ). For now, the path formula ϕ contains pairwise different
atomic propositions as subformulas. In Section 6.1, we shall see that this definition is easily
generalized to formulas containing more complex subformulas.

Let C = (S,R, L) be a CTMC. Let ϕ = f1 UI1 f2 UI2 . . . fk be a CSL path formula
with pairwise different atomic propositions. Moreover, we let F := {f1, f2, . . . , fk}, and ⊑
be an order on F such that fi ⊑ fj iff i ≤ j. For a state s, if the set L(s)∩F is not empty,
we let f smin := min⊑ L(s) ∩ F denote the least element fi with respect to the order ⊑. If
such fj does not exist, we define f smin := ⊥.

Definition 3.1 (Stratified CTMC). We say that C is stratified with respect to ϕ iff for all
s1, s2, it holds that:

• If f s1min = ⊥ or f s1min = fk, then R(s1, s2) = 0.
• Otherwise (i. e., f s1min 6= ⊥ and f s1min 6= fk), ifR(s1, s2) > 0 and f s2min 6= ⊥, then f s1min ⊑ f s2min.

A state s with f smin = ⊥ is a bad state, and a state with f smin = fk is a good state.
(Note that there may be other states satisfying fk as well.) Both good and bad states are
absorbing. The intuition behind Def. 3.1 is that paths reaching bad states will not satisfy
ϕ, while those reaching good states or other fk-states may satisfy ϕ (provided the timing
constraints are also satisfied).

Example 3.2. Consider the path formula ϕ := f1 U[0,2) f2 U[2,4) f3 U[2,4) f4 U[3,5) f5.
The CTMC in Fig. 1 is not stratified with respect to ϕ: we have R(s2, s1) > 0, however,
f s2min = f4 6⊑ f1 = f s1min. Deleting this edge and the transition out of s4 would result in a
stratified CTMC with respect to ϕ.

6 L. ZHANG, D. N. JANSEN, F. NIELSON, AND H. HERMANNS

s0

s1 s2

s3 s4

2
1

1

1 2
1

2
f1, f4

f1, f2, f4 f4

f3 f5

Figure 1: A non-stratified CTMC.

The notion of stratified CMTCs is the key to an efficient approximation algorithm.
The essential idea is that we can reduce the model checking problem to one on a similar,
stratified CTMC that preserves the relevant reachability probabilities. Further, our notion
of stratified CTMCs solves a semantical problem in [2]: please refer to Section 6.2 for details.

4. Product CTMC

Given a CTMC and a CSL path formula ϕ, in this section we construct a stratified CTMC
with respect to ϕ preserving the probability to satisfy ϕ. We first construct a deterministic
finite automaton for ϕ in Subsection 4.1. Then, in Subsection 4.2 we build a product CTMC
with the desired property.

4.1. Automaton for a CSL Formula. For a path formula ϕ = f1 UI1 f2 UI2 . . . fk, we
first construct a simple deterministic finite automaton (DFA) that describes the required
order of f1-, f2-, . . . , fk-states.

Definition 4.1 (Formula automaton). Let ϕ = f1 UI1 f2 UI2 . . . fk be a CSL path for-
mula with pairwise different atomic propositions. Then, the formula automaton Bϕ =

(Σ, Q, qin, δ, F) is defined by: Σ = 2{f1,...,fk}, Q = {q1, q2, . . . , qk−1, qk,⊥} with qin = q1 and
F = {q1, . . . , qk}. For a ∈ Σ, the transition relation δ is defined as follows:

(1) δ(qi, a) = qj if i < k; i ≤ j; fi, fi+1 . . . fj−1 6∈ a; and fj ∈ a;
(2) δ(qi, a) = ⊥ if i < k and the above clause does not apply;
(3) ⊥ and qk are absorbing.

As states ⊥ and qk have no outgoing transitions, δ is a partial transition function. Thus
formula automata are actually partial DFAs. The words accepted by Bϕ are finite traces
w ∈ Σ∗ that can be extended to a trace ww′ ∈ Σω that satisfies the time-abstract formula
of the form f1 U f2 U . . . U fk. The constructed finite automaton Bϕ for this special class
of formulas is deterministic, the number of states is linear in k. The number of transitions
is (k−1)2k; however, as we will see later, the product can be constructed in time (and size)
linear in the size of the CTMC and in k.

Example 4.2. In Fig. 2 the formula automaton for k = 4 is illustrated. The initial state is
q1, final states are marked with a double circle. The transition labels indicate which subsets
of AP are acceptable. For example, we have δ(q1, {f1}) = δ(q1, {f1, f2}) = q1, as both sets
satisfy f1.

EFFICIENT CSL MODEL CHECKING USING STRATIFICATION 7

q1 q2

⊥

q3

q4

¬f1∧f2

¬(f1∨f2)∧f3

¬(f1∨f2∨f3)∧f4

¬(f1∨f2∨f3∨f4)

¬f2∧f3

¬(f2∨f3)∧f4

¬(f2∨f3∨f4)

¬f3∧f4

¬(f3∨f4)

f1 f2

f3

Figure 2: Bϕ for ϕ = f1 U f2 U f3 U f4

4.2. Product CTMC.

Definition 4.3 (Product CTMC). Let C = (S,R, L) be a CTMC and ϕ = f1 UI1 f2 UI2
. . . fk a path formula with pairwise different atomic propositions. Let Bϕ be as constructed
above. The product C × Bϕ is a CTMC (S′,R′, L′) where:

(1) S′ = S ×Q,
(2) R′((s, qi), (s

′, q′)) equals R(s, s′) if s |=C fi ∨ fi+1 ∨ · · · ∨ fk−1 and q′ = δ(qi, L(s
′) ∩

{f1, . . . , fk}), and equals 0 otherwise,
(3) the labeling function is defined by:

• L′(s, qi) = L(s) ∩ {fi, fi+1, . . . , fk} for 1 ≤ i ≤ k,
• L′(s,⊥) = ∅.

(4) Given an initial distribution α : S → [0, 1] of C, the initial distribution of the product
α′ : S × Q → [0, 1] is defined by: α′(s, q) equals α(s) if q = δ(qin, L(s) ∩ {f1, . . . , fk}),
and equals 0 otherwise.

The product CTMC contains two kinds of absorbing states. In general, states (s, q) with

s 6|= ∨k
i=1 fi are absorbing in the product, as well as states reached through a transition that

does not follow the prescribed order of fi. These two kinds of states can be considered bad
states. On the other hand, good states of the form (s, qk) with s |= fk are also absorbing.
The behavior after such an absorbing state is irrelevant for the probability to satisfy ϕ.

Example 4.4. Consider the CTMC in Fig. 1, and consider the path formula ϕ1 := f1 U[0,2)

f2 U[0,2) f3 U[0,2) f4 U[0,2) f5. The path σ1 := s0s1s3s2s4 . . . does, if s4 is reached before
time 2, satisfy ϕ1; however, the path σ2 := s0s1s2s1s3s2s4 . . . does not. The product of this
CTMC with Bϕ1

is the CTMC depicted on the left of Fig. 3, which is stratified with respect
to ϕ1. State (s4, q5) is a good state – paths reaching this state before time 2 correspond to
paths satisfying ϕ1 in Fig. 1 –, while (s3,⊥) is a bad state.

For the same CTMC in Fig. 1, consider the path formula ϕ2 := f1 U[1,3) f2 U[1,3)

f3 U[1,3) f4. The product CTMC C × Bϕ2
is depicted on the right of Fig. 3. This product

is stratified with respect to ϕ2. The absorbing state (s2, q4) is a good state.

8 L. ZHANG, D. N. JANSEN, F. NIELSON, AND H. HERMANNS

s0q1

s1q1 s2q4

s3q3 s4q5

s1q4

s3⊥

2

1
1

1

1 2
1 1

f1, f4

f1, f2, f4 f4

f3 f5

f4

s0q1

s1q1 s2q4

s3q3

2

1

1 2

f1, f4

f1, f2, f4 f4

f3

Figure 3: The reachable part of the product CTMC C × Bϕ1
(left) and C × Bϕ2

(right).

For a CTMC C = (S,R, L) and a state s ∈ S, we use C|s = (S′,R′, L′) to denote the
sub-CTMC reachable from s, i. e., S′ ⊆ S is the states reachable from s, R′ and L′ are
functions restricted to S′ × S′ and S′, respectively.

Theorem 4.5 (Measure-preservation theorem). Let C = (S,R, L) be a CTMC and ϕ =
f1 UI1 f2 UI2 . . . fk a path formula. Let Bϕ denote the formula automaton. For s ∈ S, let
sB = (s, δ(qin , L(s) ∩ {f1, . . . , fk})). Then:

(1) C × Bϕ|sB is stratified with respect to ϕ;

(2) PrCs (ϕ) = PrC×Bϕ|sB
sB

(ϕ) = PrC×Bϕ
sB

(ϕ).

Proof. We prove first that C×Bϕ|sB is stratified with respect to ϕ. Consider a state (s, q). By

definition of the product CTMC, if (s, q) 6|=C×Bϕ

∨k−1
i=1 fi, then s 6|=C

∨k−1
i=1 fi or q ∈ {qk,⊥},

so state (s, q) is absorbing and therefore trivially satisfies the stratification conditions. Now

assume that (s, q) |=C×Bϕ

∨k−1
i=1 fi, q 6∈ {qk,⊥}, and moreover assume (s′, q′) is a state with

R′((s, q), (s′, q′)) > 0 (with R′ as in Def. 4.3). By the definition of the transitions of Bϕ,
we have q′ = δ(q, L(s′) ∩ {f1, . . . , fk}). Now assume f

(s′,q′)
min 6= ⊥: it remains to be shown

that f
(s,q)
min ⊑ f

(s′,q′)
min . Let 1 ≤ x ≤ k such that fx = f

(s,q)
min , and let 1 ≤ y ≤ k be such that

q = qy. The indices x′ and y′ are defined similarly for (s′, q′). By definition of transitions
of Bϕ and product CTMC, it is routine to verify that x = y and x′ = y′. Moreover, in
Bϕ, q′ = δ(q, L(s′) ∩ {f1, . . . , fk}) implies that y′ ≥ y, which shows that x ≤ x′, proving

f
(s,q)
min ⊑ f

(s′,q′)
min .

Now we prove the second clause. Obviously, states not reachable from sB can be safely
removed, thus PrC×Bϕ|sB

sB
(ϕ) = PrC×Bϕ

sB
(ϕ). We next prove that PrCs (ϕ) = PrC×Bϕ

sB
(ϕ) by

showing that σ 7→ σB (the canonical mapping from paths in C to paths in C ×Bϕ) preserves
the standard probability measures between the probability spaces. To this end, it is enough
to show that given a cylinder set CB over C × Bϕ, its reverse image C = {σ|σB ∈ CB}
satisfies PrCs (C) = PrC×Bϕ

sB
(CB).

Stated briefly, we now show that paths in C and in C × Bϕ correspond to each other
because we only add some (bounded) information about the past to the states.

Let us first describe the canonical mapping σ 7→ σB. Assume given a path σ =
s0t0s1t1 . . . in C. The corresponding path in C × Bϕ is σB = (s0, q

0)t0(s1, q
1)t1 . . ., where

q0 = δ(qin, L(s0) ∩ {f1, . . . , fk}) and qi+1 = δ(qi, L(si+1) ∩ {f1, . . . , fk}) for all i ≥ 1, as
long as the (si, q

i) are not absorbing. However, if (sn, q
n) is absorbing for some n, then

σB is defined to be the finite path (s0, q
0)t0(s1, q

1)t1 . . . (sn, q
n), where (sn, q

n) is the first
absorbing state encountered. Note that σ |=C ϕ iff σB |=C×Bϕ ϕ.

EFFICIENT CSL MODEL CHECKING USING STRATIFICATION 9

Let CB = Cyl((s0, q
0), I0, (s1, q

1), . . . , (sn, q
n)) and C be as above. By definition of a

cylinder set, R′((si, q
i), (si+1, q

i+1)) > 0 for all i < n, therefore (si, q
i) is not absorbing

(for i < n) and qi+1 = δ(qi, L(si+1) ∩ {f1, . . . , fk}). Now assume that some path σ =
s′0t0s

′
1t1 . . . ∈ C; then it must hold that s′0 = s0, t0 ∈ I0, s

′
1 = s1, t1 ∈ I1, . . . , and

s′n = sn. Therefore, C ⊆ Cyl(s0, I0, s1, . . . , sn). On the other hand, for all paths σ ∈
Cyl(s0, I0, s1, . . . , sn), it is easy to prove that σB ∈ CB . So, C ⊇ Cyl(s0, I0, s1, . . . , sn), and
together, C = Cyl(s0, I0, s1, . . . , sn). It is now an easy calculation to verify that PrCs (C) =
PrC×Bϕ

sB
(CB).

The reverse image of the set of C × Bϕ-paths satisfying ϕ is exactly the set of C-paths
satisfying ϕ. Since these sets are measurable, both can be decomposed into countable unions
of corresponding cylinder sets in C and C × Bϕ, respectively. Thus, the theorem follows.

5. Characterizing the Probability Prα(ϕ)

For a path formula ϕ, together with a stratified CTMC with respect to ϕ, this section aims
at a recursive characterization of the probability Prα(ϕ) starting from an arbitrary initial
distribution α.

We first introduce some notation. For an interval I and 0 ≤ x, we let I ⊖ x denote the
set {t−x | t ∈ I ∧ t ≥ x}. For example, [3, 8)⊖5 = [0, 3). Then, for ϕ = f1 UI1 f2 UI2 . . . fk
and x < sup I1, we let ϕ⊖ x denote the formula f1 UI1⊖x f2 UI2⊖x . . . fk. For 1 ≤ j′, j ≤ k,

define fj′...j :=
∨j
i=j′ fi; for 1 ≤ j < k, define ϕj := fj UIj fj+1 UIj+1

. . . fk. As a degenerate

case of Prs(ϕj), let Prs(fk) := 1 if s |= fk and 0 otherwise. For Φ, we denote by C[Φ] the
CTMC obtained by C by making states satisfying Φ absorbing – by cutting transitions out of
all states satisfying Φ. Moreover, let IΦ denote the indicator matrix defined by: IΦ(s, s) = 1
if s |= Φ, and IΦ(s, s

′) = 0 otherwise.

5.1. Left-Closed Intervals. For the moment, we restrict our attention to until formulas
where all timing constraints have the form Ii = [ai, bi). The following theorem characterizes
the probability for this case:

Theorem 5.1. Let ϕ = f1 UI1 f2 UI2 . . . fk be a CSL path formula with pairwise different

atomic propositions, and assume all Ii = [ai, bi) are left-closed. Let C = (S,R, L) be a

stratified CTMC with respect to ϕ. We write the vector (PrCs (ψ))s∈S as PrC(·)(ψ).

(1) Assume 0 < a1. Then,

PrCα(ϕ) = πC[¬f1](α, a1) · If1 · PrC(·)(ϕ⊖ a1) (5.1)

where πC[¬f1](α, a1) is the transient distribution at time a1 in the CTMC C[¬f1].
(2) Assume 0 = a1 = . . . = aj−1 < aj < b1 for some j ∈ {2, . . . , k − 1}. Then,

PrCα(ϕ) = πC[¬f1...j](α, aj) · If1...j · PrC(·)(ϕ⊖ aj) (5.2)

(3) Assume 0 = a1 = . . . = aj−1 < b1 ≤ aj for some j ∈ {2, . . . , k − 1}. Let j′ ≤ j be the

largest integer such that b1 6∈ Ij′−1. Then,

PrCα(ϕ) = πC[¬f1...j](α, b1) · Ifj′...j · Pr
C[¬fj′...k−1]

(·) (ϕj′ ⊖ b1) (5.3)

10 L. ZHANG, D. N. JANSEN, F. NIELSON, AND H. HERMANNS

(4) Assume 0 = a1 = . . . = ak−1. Let j′ ≤ k be the largest integer such that b1 6∈ Ij′−1.

Then,

PrCα(ϕ) = πC[fk](α, b1) · Ifj′...k · Pr
C[¬fj′...k−1]

(·) (ϕj′ ⊖ b1) (5.4)

If b1 = ∞, we replace πC[fk](α, b1) in this equation by the corresponding steady-state

distribution.

The key idea of the theorem is a property-driven transient analysis. In the first clause
we have a1 > 0, thus for any path σ satisfying ϕ it must hold σ(t) |= f1 for all t ∈
[0, a1). Thus, we make all states satisfying ¬f1 absorbing, and compute the transient

distribution πC[¬f1](α, a1). Furthermore, the multiplication with the matrix If1 removes
the probabilities in states satisfying ¬f1 – thus resulting in a subdistribution. Starting
with this subdistribution, the formula will also be reduced by duration a1. In the other
clauses, we consider the interval [0, aj) or [0, b1), which is the common prefix of the intervals
I1, . . . , Ij−1. Thus during this time the formula f1...j must be satisfied. Here the assumption
of stratification is crucial: otherwise one might be able jump forward and back between
states satisfying f1 and fj, which is illustrated in the following example.

s0 s1 s2 s3 s4
2 2 2 2

f1 f2 f1 f2 f3

Figure 4: A CTMC with Prs0(f1 U[0,1) f2 U[0,1) f3) = 0.

Example 5.2. Consider the CTMC depicted in Fig. 4 and consider the path formula
ϕ = f1 U[0,1) f2 U[0,1) f3. Obviously the probability of the set of paths starting from s0
satisfying ϕ is 0. Since the CTMC is not stratified with respect to ϕ, Thm. 5.1 cannot be
applied directly: the product shall be constructed first. In the product CTMC, no states
labelled with f3 will be reached, thus giving the probability 0, as desired.

Proof of Thm. 5.1. We start with Eqn. (5.1). Let a1 and the other notation be as in the
theorem. For s′ ∈ S, define the event Z1(s

′) := {σ | σ(a1) = s′ ∧ ∀t ∈ [0, a1). σ(t) |=
f1}, consisting of paths which occupy state s′ at time a1 and occupy f1-states during the
time interval [0, a1). Obviously, {σ | σ |= ϕ} ⊆ ⋃

s′|=f1
Z1(s

′).1 Fix first αs as an initial

distribution with αs(s) = 1 and s |= f1. By the law of total probability, we have:

PrCs (ϕ) =
∑

s′|=f1

PrCs (Z1(s
′)) · PrCs (ϕ | Z1(s′))

=
∑

s′|=f1

πC[¬f1](s, a1)(s
′) · PrCs (ϕ | Z1(s′))

1Strictly speaking, this does not hold always because there may be paths that enter an (f2 ∧ ¬f1)-
state exactly at time a1; however, such paths are contained in a (generalization of) cylinder sets like
Cyl(s, [a1, a1], . . .), whose measure is 0.

EFFICIENT CSL MODEL CHECKING USING STRATIFICATION 11

The latter equality follows from the definition of Z1(s
′). By the Markov property of CTMCs:

=
∑

s′|=f1

πC[¬f1](s, a1)(s
′) · PrCs′(ϕ⊖ a1)

=
∑

s′∈S

πC[¬f1](s, a1)(s
′) · 1s′|=f1 · PrCs′(ϕ⊖ a1)

where 1s′|=f1 is 1 if s′ |= f1 and 0 otherwise. Note that PrCα(ϕ) =
∑

s∈S α(s)Pr
C
s (ϕ) =

∑

s|=f1
α(s)PrCs (ϕ), thus Eqn. (5.1) follows.

We now jump to the proof of Eqn. (5.3). This proof is more involved, but follows the
same lines. Define the event Z3(s

′) := {σ | σ(b1) = s′ ∧ ∀t ∈ [0, b1).σ(t) |= f1...j}. Again,
{σ | σ |= ϕ} ⊆ ⋃

s′|=fj′...j
Z3(s

′), and again, fix αs as an initial distribution with αs(s) = 1

and s |= f1...j . We have:

PrCs (ϕ) =
∑

s′|=fj′...j

PrCs (Z3(s
′)) · PrCs (ϕ | Z3(s′))

=
∑

s′|=fj′...j

πC[¬f1...j](s, b1)(s
′) · PrCs (ϕ | Z3(s′))

where the latter equality follows from the definition of Z3(s
′). Now let σ ∈ Z3(s

′), thus
σ(b1) = s′, and σ(t) |= f1...j for all 0 ≤ t < b1. Let σ′ denote the suffix path defined by
σ′(x) := σ(x+ b1).

Now, σ |= ϕ implies that at time b1, σ has reached a state in a stratum from qj′ , . . . , qj ,
so σ′ satisfies ϕj′ ⊖ b1. On the other hand, every path σ ∈ Z3(s

′) whose corresponding

σ′ satisfies ϕj′ ⊖ b1 also satisfies ϕ (because C is stratified). Again, PrCs (ϕ | Z3(s′)) =

PrCs′(ϕj′ ⊖ b1), thus

PrCs (ϕ) =
∑

s′|=fj′...j

πC[¬f1...j](s, b1)(s
′) · PrCs′(ϕj′ ⊖ b1)

=
∑

s′∈S

πC[¬f1...j](s, b1)(s
′) · 1s′|=fj′...j · Pr

C
s′(ϕj′ ⊖ b1) .

However, C needs not be stratified w. r. t. ϕj′⊖b1, so to simplify the subsequent calculations,
we restratify it: C[¬fj′...k−1] is stratified w. r. t. ϕj′ ⊖ b1. Eqn. (5.3) for general initial
distribution α follows as in the case of Eqn. (5.1).

The proof for Eqn. (5.2) is similar to the proof for Eqn. (5.3), except that b1 has to be
replaced by aj and j

′ by 1.
For Eqn. (5.4), we can again make a similar proof. First assume that j′ = k. In that

case, the paths that have reached an fk-state at any time in the interval Ik−1 = I1 are
exactly the paths that satisfy ϕ. They have the same probability as the paths in C[fk] that
are in an fk-state exactly at time b1. Therefore,

PrCs (ϕ) =
∑

s′|=fk

πC[fk](s, b1)(s
′) =

∑

s′∈S

πC[fk](s, b1)(s
′) · 1s′|=fk (5.5)

With the usual assumption fk...k−1 = false, the theorem follows immediately.
If j′ < k, besides the paths mentioned above, other paths satisfy ϕ, namely paths that

reach an fk-state during the interval Ik−1 \ I1 = [b1, bk−1) (and avoid fk-states earlier).

12 L. ZHANG, D. N. JANSEN, F. NIELSON, AND H. HERMANNS

These are the paths that satisfy (f1 ∧ ¬fk) UI1 . . . UIk−2
(fk−1 ∧ ¬fk) UIk−1\I1 fk. Their

probability is, according to Eqn. (5.3),
∑

s′∈S

πC[¬(f1...k−1∧¬fk)](s, b1)(s
′) · Is′|=fj′...k−1∧¬fk

· PrC[¬fj′...k−1]

s′ (ϕj′ ⊖ b1)

Note that C[¬(f1...k−1 ∧¬fk)] = C[fk]. Adding this term to Eqn. (5.5) produces the desired
probability.

We still have to prove Eqn. (5.4) for b1 = ∞. In that case, all timing constraints are
trivial ([ai, bi) = [0,∞)) and j′ = k. Therefore, PrCs (ϕ) is just the probability to reach an

fk-state eventually, which is exactly limb1→∞ πC[fk](s, b1)IfkPr
C[¬fk...k−1]
(·) (fk).

5.2. Closed Intervals. In Thm. 5.1, we have considered formula ϕ with left-closed inter-
vals. Now we discuss that a slight generalization of it can be used to handle closed intervals.
Thus, below we assume that Ii = [ai, bi].

The proof of Thm. 5.1 can be extended easily to hold also for closed intervals. Clause 3
may lead to formulas containing degenerate intervals [0, 0]: As b1 ∈ [a1, b1], often j

′ = 1 in
this clause. (We have to assume, as an additional simplification of notation, I0 := ∅.) As a
consequence, ϕj′ ⊖ b1 = f1 U[0,0] f2 UI2⊖b1 . . . fk.

Further, if the original ϕ already contained a degenerate interval, say a1 = b1, so
I1 = {a1}, applying Clause 1 will also lead to a formula containing [0, 0]. These situations
can be handled by the following lemma:

Lemma 5.3. Let ϕ = f1 UI1 f2 UI2 . . . fk be a CSL path formula. Let C = (S,R, L) be a

stratified CTMC with respect to ϕ. Moreover, assume I1 = . . . = Ij−1 = [0, 0] for 2 ≤ j ≤ k.

Then, PrCs (ϕ) = PrCs (fj UIj . . . fk) for all s ∈ S.

Proof. Assume a path σ satisfies ϕ. The degenerate intervals force t1 = t2 = . . . = tj−1 = 0,
thus no conditions relating to f1, . . . , fj−1 need to be checked.

s0 s1
2

f1, f3 f2

Figure 5: A CTMC with Prs0(f1 U[0,1] f2 U[1,2] f3) 6= Prs0(f1 U[0,1) f2 U[1,2] f3).

Example 5.4. Consider the CTMC in Fig. 5 and the path formula ϕ = f1 U[0,1] f2 U[1,2] f3.
Then, Prs0(ϕ) is the probability to stay in s0 for at least one time unit (ψ(0, E(s0) · 1)
in the notation of Section 6.3 below), since we can choose t1 = t2 = 1 if σT [0] ≥ 1.

Applying Clause 3 of Thm. 5.1, we get j = 2, j′ = 1 and Prs0(ϕ) = πC[¬f1...2](s0, 1) · If1...2 ·
Pr

C[¬f1...2]
(·) (f1 U[0,0] f2 U[0,1] f3) = πC(s0, 1) ·I ·PrC(·)(f2 U[0,1] f3) = (e−2, 0) ·(1, 0)T = e−2, the

correct value. (In [22], we defined j′ slightly differently, producing j′ = 2 and consequently
Prs0(ϕ) = 0. Our earlier definition worked only for left-closed intervals.)

EFFICIENT CSL MODEL CHECKING USING STRATIFICATION 13

Below we apply the theorem to two formulas, and thereby get the well-known result [5]
for the case of binary until for the case k = 2. As above, C is stratified and ϕ = f1 UI1
f2 UI2 . . . fk.

(1) Reachability probability. Assume that I1 = . . . = Ik−1 = [0, b]. Then, it holds Prs(ϕ) =
Prs(✸[0,b]fk), which is the probability to reach an fk-state within time b.

(2) Interval reachability. Assume that I1 = . . . = Ik−1 = [a, b] with a < b. Then, it holds

Prs(ϕ) =
∑

s′|=f1
πC[¬f1](s, a)(s′) · Prs′(✸[0,b−a]fk), which is the interval reachability

probability of staying in f1-states until time a and then moving to an fk-state before
time b has passed.

5.3. Other Intervals. First, the following lemma states properties of the probabilities for
binary until with different interval types:

Lemma 5.5 (Closure of Intervals for Binary Until). Let s ∈ S. Assume given two nonempty

intervals I, J such that inf I = inf J and sup I = supJ . Then, it holds:

(1) If 0 ∈ I ⇔ 0 ∈ J , then s |= PEp(Φ UI Ψ) iff s |= PEp(Φ UJ Ψ) for E ∈ {<,≤,≥, >}.
(2) Otherwise, assume w. l. o. g. 0 ∈ I and 0 6∈ J , and assume 0 < p < 1. Then, s |=

PDp(Φ UI Ψ) ∧ Φ iff s |= PDp(Φ UJ Ψ), for D ∈ {≥, >}. Similarly, s |= PEp(Φ UI
Ψ) ∨ ¬Φ iff s |= PEp(Φ UJ Ψ), for E ∈ {<,≤}.

The lemma follows immediately from the definition of the measure of cylinder set. To see
why we have to treat the case inf I = 0 separately (not distinguished in [5]), assume that
Φ = P≤0.1(f2 U(0,1] f1) and consider the CTMC depicted in Fig. 5: obviously we have
s0 |= Φ as s0 6|= f2. However, s0 6|= P≤0.1(f2 U[0,1] f1) as s0 satisfies f1 directly. The formula
Φ is equivalent to P≤0.1(f2 U[0,1] f1) ∨ ¬f2.

For until formulas with arbitrary multiplicity, we have discussed the case that all of the
intervals are left-closed or closed. Other cases can be handled in a way similar to Lemma 5.5.
However, to avoid too many technicalities, we skip these details.

6. Model Checking Algorithm

Let C = (S,R, L) be a CTMC, s ∈ S, and Φ be a CSL formula. The model checking
problem is to check whether s |= Φ. In the following two sections, we discuss that the
model checking problem is decidable and provide an efficient algorithm for approximate
computation of Prs(ψ).

6.1. Model Checking CSL is Decidable. The standard algorithm to solve CTL-like
model checking problems recursively computes the sets of states satisfying Ψ, denoted
by Sat(Ψ), for all state subformulas Ψ of Φ. For CSL, the cases where Ψ is an atomic
proposition, a negation or a conjunction are given by: Sat(a) = {s ∈ S | a ∈ L(s)},
Sat(¬Ψ1) = S\Sat(Ψ1) and Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2).

The case that Ψ is the probabilistic operator is the challenging part. Let Ψ = PEp(ϕ)
with ϕ = Ψ1 UI1 Ψ2 UI2 . . .Ψk. By the semantics, checking Ψ is equivalent to checking
whether Prs(ϕ) meets the bound E p, i. e., whether Prs(ϕ) E p. Assume that the sets
Sat(Ψi) have been calculated recursively. We replace Ψ1, . . . ,Ψk by fresh (pairwise different)
atomic propositions f1, . . . , fk and extend the label of state s by fi if s ∈ Sat(Ψi). The so

14 L. ZHANG, D. N. JANSEN, F. NIELSON, AND H. HERMANNS

obtained path formula is ψ := f1 UI1 f2 UI2 . . . fk, and obviously we have Prs(ϕ) = Prs(ψ).
The steps needed to characterize Prs(ψ) are:

(i) Construct the formula automaton Bψ.
(ii) Build the product C × Bψ, which by Thm. 4.5 is a stratified CTMC w. r. t. ψ.
(iii) Apply Thm. 5.1 repeatedly to compute Prs(ψ).

Thus, the decidability for the probabilistic formula reduces to checking whether Prs(ψ) E p
holds true in the product CTMC. After applying Thm. 5.1 a finite number of times, we
see that Prs(ψ) reduces to a product of transient probabilities. We can now follow the
argumentation in [2]: Although the calculations differ slightly, Prs(ψ) still is a finite sum
∑

k ηke
δk (with algebraic ηk and δk). For such an expression, [2] proved that it can be

decided whether it is E p, for p ∈ Q. Thus, we still have:

Theorem 6.1 ([2], Thm. 1). Model checking CSL is decidable.

6.2. Usefulness of Stratification. Our notion of stratified CTMCs solves a semantical
problem in [2], which we recently pointed out in [13]. Very briefly, Aziz et al. [2] gave an
algorithm that did not use the ti (in the semantics of until formulas) explicitly, which led
to incorrect results for non-stratified CTMCs.

Consider the CTMC depicted in Fig. 4 and the formula ϕ = f1 U[0,1) f2 U[0,1) f3 in
Example 5.2. For this example, the algorithm in [2] calculates the probability that a path
satisfies, a. o., the conditions: it stays in f1∨f2-states during time [0, 1), thus giving a wrong
result. This problem does not occur provided that the CTMC is stratified.

6.3. Efficient Algorithm for Approximating Prs(ψ). We first explain how to combine
steps (i) and (ii) mentioned above, without having to construct the full automaton Bψ. Most
parts of the construction of C ×Bϕ depend on C only and do not require much information
about Bϕ. For example, for the state space, it is enough to generate k copies of every state
in C, which requires time O(|S|k). When constructing the transitions according to Clause 2
of Def. 4.3, one has to check q′ = δ(qi, L(s

′) ∩ {f1, . . . , fk}), but even this can be done
without actually constructing Bϕ by using the definition of δ (Def. 4.1) directly. Therefore,
the overall time complexity to find all transitions of C×Bϕ is |R| times the number of copies
that its source state may have, i. e., O(|R|k), which is also the maximal total number of
transitions.

The usual numerical algorithm to compute the matrix exponential eQt is based on
uniformization [20]. This algorithm executes most calculations on the uniformized DTMC.
For a CTMC, we say that λ is a uniformization rate if λ ≥ maxs∈S(E(s) −R(s, s)).

Definition 6.2. Let C = (S,R, L) be a CTMC. The uniformized DTMC of C with respect
to the uniformization rate λ is uni(C) = (S,P, L) where P(s, s′) = R(s, s′)/λ if s 6= s′ and
P(s, s) = 1−P(s, S \ {s}).

Let P denote the transition matrix of the uniformized DTMC uni(C), thus it holds that
P = I +Q/λ where I denotes the identity matrix. For t > 0, then:

π(α, t) = π(α, 0)e(P−I)λt = π(α, 0)e−λt
∞
∑

i=0

(λt)i

i!
Pi =

∞
∑

i=0

ψ(i, λt)~v(i) (6.1)

EFFICIENT CSL MODEL CHECKING USING STRATIFICATION 15

In this formula, ψ(i, λt) = e−λt · (λt)i

i! denotes the i-th Poisson probability with parame-
ter λt, i. e., the probability to see precisely i transitions within time t. The vector ~v(i) is
the transient probability of uni(C) after i transitions, i. e., ~v(i) = π(α, 0)Pi. The infinite

sum is approximated, by picking O(
√
λt) terms with large ψ(i, λt), using the Fox–Glynn

algorithm [9, 14]. To find the ~v(i) for Eqn. (6.1), one requires O(λt) matrix–vector multi-
plications [5]. The following lemma states the complexity of our algorithm:

Lemma 6.3 (Complexity). Let |R| denote the number of transitions of C and λ ∈ R>0 the

uniformization rate satisfying λ = maxs∈S(E(s) − R(s, s)). For each formula ϕ = f1 UI1
f2 UI2 . . . fk, the probability PrC×Bϕ

sB
(ϕ) can be approximated:

• in time in O(|R|k · λb) if b = sup Ik−1 is finite,

• in time in O(|R|k · λb+ (|S|k)3) if sup Ik−1 is infinite, where |S| is the number of states

in C and b = max ({inf Ik−1} ∪ {sup Ii|1 ≤ i < k} \ {∞}).
The space complexity is in O(|R|k).
Proof. Recall that the formula automaton Bϕ is deterministic, and the size of the product
automaton is O(|R|k) which is both linear in the size of the CTMC and the formula. This
proves the space complexity.

For the time complexity assume first b < ∞ with b = sup Ik−1. Applying Thm. 5.1,
the probability PrC×Bϕ

sB
(ϕ) can be expressed as a sequence of transient probability analyses,

which can be efficiently approximated by a sequence of uniformization analyses. The com-
plexity of these analyses is linear in the size of the product automaton, and also linear in
λb.

For the second case sup Ik−1 = ∞, by Thm. 5.1, a sequence of transient probability
analyses is followed by one steady-state analysis, which can be done with Gaussian elimi-
nation for the equation systems π ·Q′ = 0 and

∑

s∈S′ π(s) = 1, the complexity of which is

O((|S|k)3). Thus the complexity for this case follows.

Thus, with the notion of stratified CTMC, we achieve polynomial complexity. Our al-
gorithm therefore improves the work of [2], where only multiple until formulas with suitable
timing constraints can be checked polynomially. In the worst case, [2] has to decompose a
CSL formula into O((k − 1)k−1) formulas with suitable timing, thus resulting in an overall
time complexity of O(|R| · λb(k − 1)k) or O((|R|k · λb+ (|S|k)3) · (k − 1)k−1), respectively.

7. Related Work

The logic CSL was first proposed in [1], in which the model checking problem is shown to
be decidable. Our paper gives a practical solution: it shows that the relevant probabilities
can be approximated efficiently. For the case of binary until path formula, Baier et al. [5]
have presented an approximate algorithm for the model checking problem. Their method
can be considered a special case of our approach.

Baier et al. [3] defined a logic asCSL that uses so-called programs as path formulas,
i. e. regular expressions over state formulas and actions. Programs can express multiple
until formulas of the form ϕ1 U[0,b) ϕ2 U[0,b) · · · U[0,b) ϕk because asCSL cannot restrict
the duration of individual program phases. The model checking algorithm translates the
program to an automaton almost equal to the one in Fig. 2. Our work generalizes the
method to multiple until formulas with multiple time bounds.

16 L. ZHANG, D. N. JANSEN, F. NIELSON, AND H. HERMANNS

More recently, Donatelli et al. [8] have extended CSL such that path properties can be
expressed via a deterministic timed automata (DTA) with a single clock. Chen et al. [7]
take this approach further and consider DTA specifications with multiple clocks as well.

In principle, one can translate a multiple until formula to a DTA with a single clock. Its
basic structure would look similar to Fig. 2, but Donatelli’s and Chen’s DTAs also include
all timing information and would have a size in O(k2) – an example construction with
k = 4 is given in Appendix A. To check whether a CTMC satisfies a DTA specification,
they build the product of the two, apply the region construction, and then solve a system of
integral equations. Chen’s method, applied directly to our specifications, would amount to a
complexity in O(k4|S|λc+k9|S|3), where c is the largest difference between time constraints
(roughly comparable to b in Lem. 6.3). Note that our algorithm has only a complexity in
O(|R|k · λb) if b = sup Ik−1 <∞ or O(|R|k · λb+ (|S|k)3) otherwise.

8. Conclusion

In this paper we have proposed an effective approximation algorithm for CSL with a multiple
until operator. We believe that it is the centerpiece of a broadly applicable full CSL model
checker.

The technique we have developed in this paper can also be applied to a subclass of
PCTL∗ formulas. Let ϕ = f1 UI1 f2 UI2 . . . fk be a CSL path formula. As we have seen in
the paper, in case of I1 = . . . = Ik−1 = [0,∞), our multiple until formula f1 UI f2 UI . . . fk
corresponds to the LTL formula f1 U (f2 U (. . . (fk−1 U fk) . . .)). In general, ϕ is similar to
a step-bounded LTL formula ϕ = f1 U[i1,j1] f2 U[i2,j2] . . . fk with i1, j1, . . . integers specifying
the step bounds. Such step-bounded until LTL formulas can be first transformed into nested
next-state formulas, for example we have: f1 U[2,3] f2 = f1 ∧X(f1 ∧X(f2 ∨ (f1 ∧X(f2)))).
The approach we have established in this paper can be adapted slightly to handle this kind
of formulas in complexity linear in jk−1 (assuming jk−1 <∞).

We conclude the paper by noting the connection of our DFA-based approach with the
classical Büchi-automaton-based LTL model checking algorithm by Vardi and Wolper [21].
The LTL formula ϕ is first transformed into a Büchi automaton – of exponential size in the
worst case – accepting exactly the words satisfying ϕ. Then, model checking LTL can be
reduced to automata-theoretic questions in the product. Instead of Büchi automata accept-
ing infinite runs, we only need DFAs, which is due to the simple form of the multiple until
formula: it does not encompass the full expressivity of LTL. This simplification, moreover,
allows us to get a DFA whose number of states is only linear in the length of the CSL
formula, and the size of the product automaton is then linear in both the size of the CTMC
and the length of the CSL formula.

Acknowledgement

Lijun Zhang and Flemming Nielson are partially supported by IDEA4CPS and MT-LAB (a
VKR Centre of Excellence). David N. Jansen and Holger Hermanns are partially supported
by DFG/NWO Bilateral Research Programme ROCKS and by the European Union Sev-
enth Framework Programme under grant agreement no. ICT-214755 (QUASIMODO). The
work of Holger Hermanns has received support by the European Union Seventh Framework
Programme under grant agreement no. 295261 (MEALS). We thank Yang Gao and Ming
Xu for finding a bug in Thm. 5.1 in an early version of this paper.

EFFICIENT CSL MODEL CHECKING USING STRATIFICATION 17

References

[1] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov chains. In R. Alur
and T. A. Henzinger, editors, Computer aided verification: . . . CAV, volume 1102 of LNCS, pages
269–276. Springer, Berlin, 1996.

[2] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continous-time Markov chains. ACM
trans. comput. log., 1(1):162–170, 2000.

[3] C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz, and M. Siegle. Model checking Markov chains with
actions and state labels. IEEE trans. softw. eng., 33(4):209–224, 2007.

[4] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking continuous-time Markov chains
by transient analysis. In E. A. Emerson and A. P. Sistla, editors, Computer aided verification: . . . CAV,
volume 1855 of LNCS, pages 358–372, Berlin, 2000. Springer.

[5] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for continuous-time
Markov chains. IEEE trans. softw. eng., 29(6):524–541, 2003.

[6] P. Ballarini, R. Mardare, and I. Mura. Analysing biochemical oscillation through probabilistic model
checking. Electr. notes theor. comp. sc., 229(1):3–19, 2009.

[7] T. Chen, T. Han, J.-P. Katoen, and A. Mereacre. Model checking of continuous-time markov chains
against timed automata specifications. Logical Methods in Computer Science, 7(1), 2011.

[8] S. Donatelli, S. Haddad, and J. Sproston. Model checking timed and stochastic properties with CSLTA.
IEEE trans. software eng., 35(2):224–240, 2009.

[9] B. L. Fox and P. W. Glynn. Computing Poisson probabilities. Commun. ACM, 31(4):440–445, 1988.
[10] W. K. Grassmann. Finding transient solutions in Markovian event systems through randomization. In

W. J. Stewart, editor, Numerical solution of Markov chains, volume 8 of Probability, pure and applied,
pages 357–371, New York, 1991. Marcel Dekker.

[11] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. Time-bounded model checking of infinite-state
continuous-time Markov chains. Fundam. inform., 95(1):129–155, 2009.

[12] T. A. Henzinger, M. Mateescu, and V. Wolf. Sliding window abstraction for infinite Markov chains.
In A. Bouajjani and O. Maler, editors, Computer aided verification: . . . CAV, volume 5643 of LNCS,
pages 337–352, Berlin, 2009. Springer.

[13] D. N. Jansen. Erratum to: Model-checking continuous-time Markov chains by Aziz et al.
http://arxiv.org/abs/1102.2079v1, February 2011.

[14] D. N. Jansen. Understanding Fox and Glynn’s “Computing Poisson probabilities”. Technical Report
ICIS–R11001, Radboud University Nijmegen, February 2011.

[15] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstraction for continuous-time Markov
chains. In W. Damm and H. Hermanns, editors, Computer aided verification: . . . CAV, volume 4590 of
LNCS, pages 311–324, Berlin, 2007. Springer.

[16] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The ins and outs of the
probabilistic model checker MRMC. Performance evaluation, 68(2):90–104, 2011.

[17] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time
systems. In G. Gopalakrishnan and S. Qadeer, editors, Computer aided verification: . . . CAV, volume
6806 of LNCS, pages 585–591. Springer, 2011.

[18] P. Panangaden. Labelled Markov processes. Imperial College Press, London, 2009.
[19] D. Spieler. Model checking of oscillatory and noisy periodic behavior in Markovian population models.

Master’s thesis, Saarland University, Saarbrücken, 2009. http://alma.cs.uni-sb.de/data/david/mt.pdf.
[20] W. J. Stewart. Introduction to the numerical solution of Markov chains. Princeton Univ. Pr., Princeton,

N. J., 1994.
[21] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In

Symposium on logic in computer science, pages 332–345, Los Alamitos, Calif., 1986. IEEE Comp. Soc..
[22] L. Zhang, D. N. Jansen, F. Nielson, and H. Hermanns. Automata-based CSL model checking. In

L. Aceto, M. Henzinger, and J. Sgall, editors, Automata, languages and programming: . . . ICALP.

Part II, volume 6756 of LNCS, pages 271–282, Berlin, 2011. Springer.

18 L. ZHANG, D. N. JANSEN, F. NIELSON, AND H. HERMANNS

q1,[0,a1)

f1

q1,[a1,a2)

f1

q1,[a2,a3)

f1

q1,[a3,b1)

f1∧¬f4

q′2,[a1,a2)

f2∧¬f1
q′2,[a2,a3)

f2∧¬f1
q′2,[a3,b2)

f2∧¬(f1∨f4)

q2,[a1,a2)

f2

q2,[a2,a3)

f2
q2,[a3,b2)

f2∧¬f4

q′3,[a2,a3)

f3∧¬f2
q′3,[a3,b3)

f3∧¬(f2∨f4)

q3,[a2,a3)f3 q3,[a3,b3)

f3∧¬f4

q4 f4

x = a1 x = a2 x = a3

x = a3

x = a2 x = a3

x = a3

x = a2 x = a3

x = a3

x = a3

x = a3

x = a3

x = a3

x = b1

x = b2

x = b2
x < b3

x < b3

Figure 6: A deterministic CSLTA-timed automaton for f1 U[a1,b1) f2 U[a2,b2) f3 U[a3,b3) f4.

Appendix A. Translating Fig. 2 to a DTA for CSLTA

As mentioned in Section 7, Donatelli et al. [8] have extended CSL such that path properties
can be expressed via a timed automaton. In Fig. 6, we include a DTA corresponding to the
formula f1 U[a1,b1) f2 U[a2,b2) f3 U[a3,b3) f4 with 0 < a1 < a2 < a3 < b1 < b2 < b3. Dashed
lines correspond to transition edges; solid lines to boundary edges. The automaton has a
single clock x. The state label qi,I indicates that time ti−1 has passed and that the current
time is in the interval I. The guard x < b3 is needed in states without boundary edge to
ensure that q4 is not entered too late.

The automaton illustrates that CSLTA may need a DTA with O(k2) states, where k is
the number of phases in the multiple until-formula.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Markov Chains
	2.2. Deterministic Finite Automata
	2.3. Continuous Stochastic Logic (CSL)

	3. Stratified CTMCs
	4. Product CTMC
	4.1. Automaton for a CSL Formula
	4.2. Product CTMC

	5. Characterizing the Probability Pr()
	5.1. Left-Closed Intervals
	5.2. Closed Intervals
	5.3. Other Intervals

	6. Model Checking Algorithm
	6.1. Model Checking CSL is Decidable
	6.2. Usefulness of Stratification
	6.3. Efficient Algorithm for Approximating Prs()

	7. Related Work
	8. Conclusion
	Acknowledgement
	References
	Appendix A. Translating Fig. 2 to a DTA for CSLTA

