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Abstract. The powerset construction is a standard method for converting a nondeter-
ministic automaton into a deterministic one recognizing the same language. In this paper,
we lift the powerset construction from automata to the more general framework of coal-
gebras with structured state spaces. Coalgebra is an abstract framework for the uniform
study of different kinds of dynamical systems. An endofunctor F determines both the type
of systems (F -coalgebras) and a notion of behavioural equivalence (∼F ) amongst them.
Many types of transition systems and their equivalences can be captured by a functor F .
For example, for deterministic automata the derived equivalence is language equivalence,
while for non-deterministic automata it is ordinary bisimilarity.

We give several examples of applications of our generalized determinization construc-
tion, including partial Mealy machines, (structured) Moore automata, Rabin probabilistic
automata, and, somewhat surprisingly, even pushdown automata. To further witness the
generality of the approach we show how to characterize coalgebraically several equivalences
which have been object of interest in the concurrency community, such as failure or ready
semantics.
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Introduction

Coalgebra is by now a well established general framework for the study of the behaviour
of large classes of dynamical systems, including various kinds of automata (deterministic,
probabilistic etc.) and infinite data types (streams, trees and the like). For a functor
F : Set → Set, an F -coalgebra is a pair (X, f), consisting of a set X of states and a function
f : X → F (X) defining the observations and transitions of the states. Coalgebras generally
come equipped with a standard notion of equivalence called F -behavioural equivalence that
is fully determined by their (functor) type F . Moreover, for most functors F there exists
a final coalgebra into which any F -coalgebra is mapped by a unique homomorphism that
identifies all F -equivalent states.

Much of the coalgebraic approach can be nicely illustrated with deterministic automata
(DA), which are coalgebras of the functor D(X) = 2×XA. In a DA, two states are D-
equivalent precisely when they accept the same language. The set 2A

∗
of all formal languages

constitutes a final D-coalgebra, into which every DA is mapped by a homomorphism that
sends any state to the language it accepts.

It is well-known that non-deterministic automata (NDA) often provide more efficient
(smaller) representations of formal languages than DA’s. Language acceptance of NDA’s is
typically defined by turning them into DA’s via the powerset construction. Coalgebraically
this works as follows. NDA’s are coalgebras of the functor N(X) = 2 × Pω(X)A, where
Pω is the finite powerset. An N -coalgebra (X, f : X → 2 × Pω(X)A) is determinized by
transforming it into a D-coalgebra (Pω(X), f ♯ : Pω(X) → 2 × Pω(X)A) (for details see
Section 2). Then, the language accepted by a state s in the NDA (X, f) is defined as the
language accepted by the state {s} in the DA (Pω(X), f ♯).

For a second variation on DA’s, we look at partial automata (PA): coalgebras of the
functor P (X) = 2× (1+X)A, where for certain input letters transitions may be undefined.
Again, one is often interested in the DA-behaviour (i.e., language acceptance) of PA’s.
This can be obtained by turning them into DA’s using totalization. Coalgebraically, this
amounts to the transformation of a P -coalgebra (X, f : X → 2×(1+X)A) into aD-coalgebra
(1 +X, f ♯ : 1 +X → 2× (1 +X)A).

Although the two examples above may seem very different, they are both instances of
one and the same phenomenon, which it is the goal of the present paper to describe at a
general level. Both with NDA’s and PA’s, two things happen at the same time: (i) more
(or, more generally, different types of) transitions are allowed, as a consequence of changing
the functor type by replacing X by Pω(X) and (1+X), respectively; and (ii) the behaviour
of NDA’s and PA’s is still given in terms of the behaviour of the original DA’s (language
acceptance).

For a large family of F -coalgebras, both (i) and (ii) can be captured simultaneously
with the help of the categorical notion of monad, which generalizes the notion of algebraic
theory. The structuring of the state space X can be expressed as a change of functor type
from F (X) to F (T (X)). In our examples above, both the functors T1(X) = Pω(X) and
T2(X) = 1 +X are monads, and NDA’s and PA’s are obtained from DA’s by changing the
original functor type D(X) into N(X) = D(T1(X)) and P (X) = D(T2(X)). Regarding (ii),
one assigns F -semantics to an FT -coalgebra (X, f) by transforming it into an F -coalgebra
(T (X), f ♯), again using the monad T . In our examples above, the determinization of NDA’s
and the totalization of PA’s consists of the transformation of N - and P -coalgebras (X, f)
into D-coalgebras (T1(X), f ♯) and (T2(X), f ♯), respectively.
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We shall investigate general conditions on the functor types under which the above
constructions can be applied: for one thing, one has to ensure that the FT -coalgebra map
f : X → F (T (X)) induces a suitable F -coalgebra map f ♯ : T (X) → F (T (X)). Our results
will lead to a uniform treatment of all kinds of existing and new variations of automata,
that is, FT -coalgebras, by an algebraic structuring of their state space through a monad
T . Furthermore, we shall prove a number of general properties that hold in all situations
similar to the ones above. For instance, there is the notion of N -behavioural equivalence
with which NDA’s, being N -coalgebras, come equipped. It coincides with the well-known
notion of Park-Milner bisimilarity from process algebra. A general observation is that if two
states in an NDA are N -equivalent then they are also D- (that is, language-) equivalent.
For PA’s, a similar statement holds. One further contribution of this paper is a proof of
these statements, once and for all for all FT -coalgebras under consideration.

Coalgebras of type FT were studied in [29, 4, 22]. In [4, 22] the main concern was
definitions by coinduction, whereas in [29] a proof principle was also presented. All in all,
the present paper can be seen as the understanding of the aforementioned papers from a new
perspective, presenting a uniform view on various automata constructions and equivalences.

The structure of the paper is as follows. After preliminaries (Section 1) and the details
of the motivating examples above (Section 2), Section 3 presents the general construction
as well as many more examples, including the coalgebraic chracterisation of pushdown
automata (Section 3.2). In Section 4, a large family of automata (technically: functors)
is characterised to which the constructions above can be applied. Section 5 contains the
application of the framework in order to recover several interesting equivalences stemming
from the world of concurrency, such as failure and ready semantics. Section 6 discusses
related work and presents pointers to future work.

This paper is an extended version of [43]. Compared to the conference version, we
include the proofs and more examples. More interestingly, the characterisation of pushdown
automata coalgebraically (Section 3.2) and the material in Section 5 are original.

1. Background

In this section we introduce the preliminaries on coalgebras and algebras. First, we fix
some notation on sets. We will denote sets by capital letters X,Y, . . . and functions by
lower case letters f, g, . . . Given sets X and Y , X × Y is the cartesian product of X and
Y (with the usual projection maps π1 and π2), X + Y is the disjoint union (with injection
maps κ1 and κ2) and XY is the set of functions f : Y → X. The collection of finite subsets
of X is denoted by Pω(X), while the collection of full-probability distributions with finite
support is Dω(X) = {f : X → [0, 1] | f finite support and

∑

x∈X f(x) = 1}. For a set of
letters A, A∗ denotes the set of all words over A; ǫ the empty word; and w1 ·w2 (and w1w2)
the concatenation of words w1, w2 ∈ A∗.

1.1. Coalgebras. A coalgebra is a pair (X, f : X → F (X)), where X is a set of states and
F : Set → Set is a functor. The functor F , together with the function f , determines the
transition structure (or dynamics) of the F -coalgebra [37].

An F -homomorphism from an F -coalgebra (X, f) to an F -coalgebra (Y, g) is a function
h : X → Y preserving the transition structure, i.e., g ◦ h = F (h) ◦ f .
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An F -coalgebra (Ω, ω) is said to be final if for any F -coalgebra (X, f) there exists a
unique F -homomorphism [[−]]X : X → Ω. All the functors considered in examples in this
paper have a final coalgebra.

Let (X, f) and (Y, g) be two F -coalgebras. We say that the states x ∈ X and y ∈ Y

are behaviourally equivalent, written x ∼F y, if and only if they are mapped into the same
element in the final coalgebra, that is [[x]]X = [[y]]Y .

For weak pullback preserving functors, behavioural equivalence coincides with the usual
notion of bisimilarity [37].

1.2. Algebras. Monads can be thought of as a generalization of algebraic theories. A
monad T = (T, µ, η) is a triple consisting of an endofunctor T on Set and two natural
transformations: a unit η : Id ⇒ T and a multiplication µ : T 2 ⇒ T . They satisfy the
following commutative laws

µ ◦ ηT = idT = µ ◦ Tη and µ ◦ µT = µ ◦ Tµ.

Sometimes it is more convenient to represent a monad T, equivalently, as a Kleisli triple
(T, ( )♯, η) [31], where T assigns a set T (X) to each set X, the unit η assigns a function
ηX : X → T (X) to each setX, and the extension operation ( )♯ assigns to each f : X → T (Y )
a function f ♯ : T (X) → T (Y ), such that,

f ♯ ◦ ηX = f (ηX)♯ = idT (X) (g♯ ◦ f)♯ = g♯ ◦ f ♯ ,

for g : Y → T (Z). Monads are frequently referred to as computational types [32]. We list
now a few examples. In what follows, f : X → T (Y ) and c ∈ T (X).

Nondeterminism. T (X) = Pω(X); ηX is the singleton map x 7→ {x}; f ♯(c) =
⋃

x∈c f(x).

Partiality. T (X) = 1 +X where 1 = {∗} represents a terminating (or diverging) compu-
tation; ηX is the injection map κ2 : X → 1 +X; f ♯(κ1(∗)) = κ1(∗) and f ♯(κ2(x)) = f(x).

Further examples of monads include: exceptions (T (X) = E +X), side-effects (T (X) =
(S × X)S), interactive output (T (X) = µv.X + (O × v) ∼= O∗ × X) and full-probability
(T (X) = Dω(X)). We will use all these monads in our examples and we will define ηX and
f ♯ for each later in Section 3.1.

A T-algebra of a monad T is a pair (X,h) consisting of a set X, called carrier, and a
function h : T (X) → X such that h ◦ µX = h ◦ Th and h ◦ ηX = idX . A T -homomorphism
between two T-algebras (X,h) and (Y, k) is a function f : X → Y such that f ◦h = k ◦Tf .
T-algebras and their homomorphisms form the so-called Eilenberg-Moore category SetT.
There is a forgetful functor UT : SetT → Set defined by

UT((X,h)) = X and UT(f : (X,h) → (Y, k)) = f : X → Y .

The forgetful functor UT has left adjoint X 7→ (T (X), µX : TT (X) → T (X)), map-
ping a set X to its free T-algebra. If f : X → Y with (Y, h) a T-algebra, the unique
T-homomorphism f ♯ : (T (X), µX ) → (Y, h) with f ♯ ◦ ηX = f is given by

f ♯ : T (X)
Tf

// T (Y )
h // Y .

The function f ♯ : (T (X), µX) → (T (Y ), µY ) coincides with function extension for a
Kleisli triple. For the monad Pω the associated Eilenberg-Moore category is the category
of join semi-lattices, whereas for the monad 1 +− is the category of pointed sets.
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2. Motivating examples

In this section, we introduce two motivating examples. We will present two constructions,
the determinization of a non-deterministic automaton and the totalization of a partial au-
tomaton, which we will later show to be an instance of the same, more general, construction.

2.1. Non-deterministic automata. A deterministic automaton (DA) over the input al-
phabet A is a pair (X, 〈o, t〉), where X is a set of states and 〈o, t〉 : X → 2×XA is a function
with two components: o, the output function, determines if a state x is final (o(x) = 1)
or not (o(x) = 0); and t, the transition function, returns for each input letter a the next
state. DA’s are coalgebras for the functor 2 × IdA. The final coalgebra of this functor is
(2A

∗
, 〈ǫ, (−)a〉) where 2A

∗
is the set of languages over A and 〈ǫ, (−)a〉, given a language L,

determines whether or not the empty word is in the language (ǫ(L) = 1 or ǫ(L) = 0, resp.)
and, for each input letter a, returns the derivative of L: La = {w ∈ A∗ | aw ∈ L}. From
any DA, there is a unique map l into 2A

∗
which assigns to each state its behaviour (that is,

the language that the state recognizes).

X
l //❴❴❴❴❴❴❴❴❴

〈o,t〉

��

2A
∗

〈ǫ,(−)a〉

��

2×XA

id×lA
//❴❴❴❴❴❴ 2× (2A

∗
)A

A non-deterministic automaton (NDA) is similar to a DA but the transition function gives a
set of next-states for each input letter instead of a single state. Thus, an NDA over the input
alphabet A is a pair (X, 〈o, δ〉), where X is a set of states and 〈o, δ〉 : X → 2× (Pω(X))A is
a pair of functions with o as before and where δ determines for each input letter a a set of
possible next states. In order to compute the language recognized by a state x of an NDA
A, it is usual to first determinize it, constructing a DA det(A) where the state space is
Pω(X), and then compute the language recognized by the state {x} of det(A). Next, we
describe in coalgebraic terms how to construct the automaton det(A).

Given an NDA A = (X, 〈o, δ〉), we construct det(A) = (Pω(X), 〈o, t〉), where, for all
Y ∈ Pω(X), a ∈ A, the functions o : Pω(X) → 2 and t : Pω(X) → Pω(X)A are

o(Y ) =

{

1 ∃y∈Y o(y) = 1

0 otherwise
t(Y )(a) =

⋃

y∈Y

δ(y)(a).

(Observe that these definitions exploit the join-semilattice structures of 2 and Pω(X)A).
The automaton det(A) is such that the language l({x}) recognized by {x} is the same

as the one recognized by x in the original NDA A (more generally, the language recognized
by state X of det(A) is the union of the languages recognized by each state x of A).
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We summarize the situation above with the following commuting diagram:

X

〈o,δ〉

��

{·}
// Pω(X)

〈o,t〉

||②②
②②
②②
②②
②②
②②
②②

l //❴❴❴❴❴ 2A
∗

〈ǫ,(−)a〉

��

2× Pω(X)A
id×lA

//❴❴❴❴❴❴❴❴❴ 2× (2A
∗
)A

We note that the language semantics of NDA’s, presented in the above diagram, can also
be obtained as an instance of the abstract definition scheme of λ-coinduction [4, 22].

2.2. Partial automata. A partial automaton (PA) over the input alphabet A is a pair
(X, 〈o, ∂〉) consisting of a set of states X and a pair of functions 〈o, ∂〉 : X → 2× (1 +X)A.
Here o : X → 2 is the same as with DA. The second function ∂ : X → (1+X)A is a transition
function that sends any state x ∈ X to a function ∂(x) : A → 1 +X, which for any input
letter a ∈ A is either undefined (no a-labelled transition takes place) or specifies the next
state that is reached. PA’s are coalgebras for the functor 2× (1 + Id)A. Given a PA A, we
can construct a total (deterministic) automaton tot(A) by adding an extra sink state to
the state space: every undefined a-transition from a state x is then replaced by a a-labelled
transition from x to the sink state. More precisely, given a PA A = (X, 〈o, ∂〉), we construct
tot(A) = (1 +X, 〈o, t〉), where

o(κ1(∗)) = 0
o(κ2(x)) = o(x)

t(κ1(∗))(a) = κ1(∗)
t(κ2(x))(a) = ∂(x)(a)

(Observe that these definitions exploit the pointed-set structures of 2 and 1 +X).
The language l(x) recognized by a state x will be precisely the language recognized by

x in the original partial automaton. Moreover, the new sink state recognizes the empty
language. Again we summarize the situation above with the help of following commuting
diagram, which illustrates the similarities between both constructions:

X

〈o,∂〉

��

κ2 // 1 +X

〈o,t〉

||①①
①①
①①
①①
①①
①①
①①
①

l //❴❴❴❴❴ 2A
∗

〈ǫ,(−)a〉

��

2× (1 +X)A
id×lA

//❴❴❴❴❴❴❴❴❴ 2× (2A
∗
)A

3. Algebraically structured coalgebras

In this section we present a general framework where both motivating examples can be
embedded and uniformly studied. We will consider coalgebras for which the functor type FT

can be decomposed into a transition type F specifying the relevant dynamics of a system
and a monad T providing the state space with an algebraic structure. For simplicity, we fix
our base category to be Set.

We study coalgebras f : X → FT (X) for a functor F and a monad T such that FT (X)
is a T-algebra, that is FT (X) is the carrier of a T-algebra (FT (X), h). In the motivating
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examples, F would be instantiated to 2 × IdA (in both) and T to Pω, for NDAs, and to
1 + − for PAs. The condition that FT (X) is a T-algebra would amount to require that
2 × Pω(X)A is a join-semilattice, for NDAs, and that 2 × (1 + X)A is a pointed set, for
PAs. This is indeed the case, since the set 2 can be regarded both as a join-semilattice
(2 ∼= Pω(1)) or as a pointed set (2 ∼= 1 + 1) and, moreover, products and exponentials
preserve the algebra structure.

The inter-play between the transition type F and the computational type T (more
precisely, the fact that FT (X) is a T-algebra) allows each coalgebra f : X → FT (X) to be
extended uniquely to a T -algebra morphism f ♯ : (T (X), µX ) → (FT (X), h) which makes
the following diagram commute.

X

f

��

ηX
// T (X)

f♯

��⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

FT (X)

f ♯ ◦ ηX = f

Intuitively, ηX : X → T (X) is the inclusion of the state space of the coalgebra f : X →
FT (X) into the structured state space T (X), and f ♯ : T (X) → FT (X) is the extension of
the coalgebra f to T (X).

Next, we study the behaviour of a given state or, more generally, we would like to say
when two states x1 and x2 are equivalent. The obvious choice for an equivalence would be
FT -behavioural equivalence. However, this equivalence is not exactly what we are looking
for. In the motivating example of non-deterministic automata we wanted two states to be
equivalent if they recognize the same language. If we would take the equivalence arising
from the functor 2 × Pω(Id)

A we would be distinguishing states that recognize the same
language but have difference branching types, as in the following example.

•
a

��

•
a

��
❃❃

❃❃
❃❃a

��✁✁
✁✁
✁

c

��
❃❃

❃❃
❃

b

��✁✁
✁✁
✁

b
��

c
��

• • • •

We now define a new equivalence, which absorbs the effect of the monad T .
We say that two elements x1 and x2 in X are F -equivalent with respect to a monad

T, written x1 ≈T
F x2, if and only if ηX(x1) ∼F ηX(x2). The equivalence ∼F is just F -

behavioural equivalence for the F -coalgebra f ♯ : T (X) → FT (X).
If the functor F has a final coalgebra (Ω, ω) , we can capture the semantic equivalence

above in the following commuting diagram

X

f

��

ηX
// T (X)

f♯

yyss
ss
ss
ss
ss
ss
ss
ss

[[−]]
//❴❴❴❴❴❴❴ Ω

ω

��

FT (X)
F [[−]]

//❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ F (Ω)

(3.1)
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Returning to our first example, two states x1 and x2 of an NDA (in which T is instantiated
to Pω and F to 2 × IdA) would satisfy x1 ≈T

F x2 if and only if they recognize the same

language (recall that the final coalgebra of the functor 2× IdA is 2A
∗
).

It is also interesting to remark the difference between the two equivalences in the case
of partial automata. The coalgebraic semantics of PAs [39] is given in terms of pairs of
prefix-closed languages 〈V,W 〉 where V contains the words that are accepted (that is, are
the label of a path leading to a final state) and W contains all words that label any path
(that is all that are in V plus the words labeling paths leading to non-final states). We
describe V and W in the following two examples, for the states s0 and q0:

W = c∗ + c∗b+ c∗ab∗

V = c∗ab∗
s0

b
!!❈

❈❈
a //

c

�� GFED@ABC?>=<89:;s1

b

TT

s2

q0
a //

c

�� GFED@ABC?>=<89:;q1

b

TT

W = c∗ + c∗ab∗

V = c∗ab∗

Thus, the states s0 and q0 would be distinguished by FT -equivalence (for F = 2× IdA and
T = 1 +−) but they are equivalent with respect to the monad 1 +−, s0 ≈

T
F q0, since they

accept the same language.
We will show in Section 4 that the equivalence ∼FT is always contained in ≈T

F .

3.1. Examples. In this section we show more examples of applications of the framework
above.

3.1.1. Partial Mealy machines. A partial Mealy machine is a set of states X together with
a function t : X → (B × (1 + X))A, where A is a set of inputs and B is a set of output
values. We assume that B has a distinguished element ⊥ ∈ B. For each state x and for
each input a the automaton produces an output value and either terminates or continues to
a next state. Applying the framework above we will be totalizing the automaton, similarly
to what happened in the example of partial automata, by adding an extra state to the state
space which will act as a sink state. The behaviour of the totalized automaton is given
by the set of causal functions from Aω (infinite sequences of A) to Bω, which we denote
by Γ(Aω, Bω) [38]. A function f : Aω → Bω is causal if, for σ ∈ Aω, the n-th value of the
output stream f(σ) depends only on the first n values of the input stream σ. In the diagram
below, we define the final map [[−]] : 1 +X → Γ(Aω, Bω):

X

t

��

κ2 // 1 +X

t♯

}}④④
④④
④④
④④
④④
④④
④④
④④
④

[[−]]
//❴❴❴❴❴❴❴❴❴❴❴

[[κ1(∗)]](σ) = (⊥,⊥, . . .)
[[κ2(x)]](a : τ) = b : ([[z]](τ))

where t(x)(a) = 〈b, z〉

Γ(Aω, Bω)

��

(B × (1 +X))A //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ (B × Γ(Aω, Bω))A

Here ∗ ∈ 1, x ∈ X, a ∈ A, b ∈ B, σ ∈ Aω, z ∈ 1 +X, and a:τ denotes the prefixing of the
stream τ ∈ Aω with the element a.
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3.1.2. Structured Moore automata. In the following examples we look at the functor

F (X) = T (B)×XA

for arbitrary sets A and B and an arbitrary monad T = (T, η, (−)♯). The coalgebras
of F represents Moore automata with outputs in T (B) and inputs in A. Since T (B) is
a T-algebra, T (X)A is a T-algebra and the product of T-algebras is still a T-algebra,
then FT (X) is a T-algebra. For this reason, the (pair of) functions o : X → T (B) and
t : X → T (X)A lift to a (pair of) functions

o♯ : T (X) → T (B) t♯ : T (X) → T (X)A

The final coalgebra of F is T (B)A
∗
. We can characterize the final map [[−]] : T (X) →

T (B)A
∗
, for all m ∈ T (X), a ∈ A and w ∈ A∗, by

X

〈o,t〉

��

ηX
// T (X)

[[m]](ǫ) = o♯(m)
[[m]](a · w) = [[t♯(m)(a)]](w)

〈o♯,t♯〉

{{①①
①①
①①
①①
①①
①①
①①
①

[[−]]
//❴❴❴❴❴❴❴❴❴❴❴❴ T (B)A

∗

〈ǫ,(−)a〉

��

T (B)× T (X)A //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ T (B)× (T (B)A
∗
)A

Below we shall look at various concrete instances of this scheme, for different choices of the
monad T .

Moore automata with exceptions. Let E be an arbitrary set, the elements of which we
think of as exceptions. We consider the exception monad T (X) = E + X which has the
function η(x) = κ2(x) as its unit. We define the lifting f ♯ : T (X) → T (Y ), for any function
f : X → T (Y ), by f ♯ = [id , f ].

An FT -coalgebra 〈o, t〉 : X → (E +B)× (E +X)A will associate with every state x an
output value (either in B or an exception in E) and, for each input a, a next state or an
exception. The behaviour of a state x, given by [[η(x)]], will be a formal power series over
A with output values in E + B; that is, a function from A∗ to E + B. The final map is
defined as follows, for all e ∈ E, x ∈ X, a ∈ A, and w ∈ A∗:

X

〈o,t〉

��

κ2 // E +X

〈o♯,t♯〉

zz✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈

[[−]]
//❴❴❴❴❴❴❴❴❴❴❴❴

[[κ1(e)]](w) = κ1(e)
[[κ2(x)]](ǫ) = o(x)
[[κ2(x)]](a · w) = [[t(x)(a)]](w)

(E +B)A
∗

��

(E +B)× (E +X)A //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ (E +B)× ((E +B)A
∗
)A

Moore automata with side effects. Let S be an arbitrary set of so-called side-effects. We
consider the monad T (X) = (S × X)S , with unit η defined, for all x ∈ X and s ∈ S, by
η(x)(s) = 〈s, x〉. We define the lifting f ♯ : T (X) → T (Y ) of a function f : X → T (Y ) by
f ♯(g)(s) = f(x)(s′), for any g ∈ T (X) and s ∈ S, and with g(s) = 〈s′, x〉.

Consider an FT -coalgebra 〈o, t〉 : X → (B × S)S × ((S × X)S)A and let us explain
the intuition behind this type of automaton type. The set S × X can be interpreted as
the configurations of the automaton, where S contains information about the state of the
system and X about the control of the system. Using the isomorphism X → (S × B)S ∼=
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S×X → S×B, we can think of o : X → (S×B)S as a function that for each configuration
in S × X provides an output in B and the new state of the system in S. The transition
function t : X → ((S × X)S)A gives a new configuration for each input letter and current
configuration, using again the fact that X → ((S ×X)S)A ∼= S ×X → (S ×X)A. In all of
this, a concrete instance of the set of side-effects could be, for example, the set S = V L of
functions associating memory locations to values.

The behaviour of a state x ∈ X will be given by [[η(x)]], where the final mapping is as
follows. For all g ∈ (S ×X)S , s ∈ S, a ∈ A and w ∈ A∗, and with g(s) = 〈s′, x〉, we have

X

〈o,t〉

��

η
// (S ×X)S

〈o♯,t♯〉

yyrr
rr
rr
rr
rr
rr
rr
rr
rr
r

[[−]]
//❴❴❴❴❴❴❴❴❴❴❴❴❴

[[g]](ǫ)(s) = o(x)(s′)
[[g]](a · w) = [[λs.t(x)(a)(s′)]](w)

((B × S)S)A
∗

��

(B × S)S × ((S ×X)S)A //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ (B × S)S × (((B × S)S)A
∗
)A

Moore automata with interactive output. Let O be an arbitrary set of outputs. Consider the
interactive output monad defined by the functor T (X) = µv.X+(O×v) ∼= O∗×X together
with the natural transformation ηX = λx ∈ X.〈ǫ, x〉, and for which the lifting f ♯ : T (X) →
T (Y ) of a function f : X → T (Y ) is given by f ♯(〈w, x〉) = 〈ww′, y〉 with f(x) = 〈w′, y〉. We
consider FT -coalgebras

〈o, t〉 : X → (O∗ ×B)× (O∗ ×X)A

For B = 1, the above coalgebras coincide with (total) subsequential transducers [17]: o : X →
O∗ is the final output function; t : X → (O∗ × X)A is the pairing of the output function
and the next state-function.

The behaviour of a state x will be given by [[η(x)]] = [[〈ǫ, x〉]], where, for every 〈w, x〉 ∈
O∗ ×X, [[〈w, x〉]] : A∗ → O∗, is given by

[[〈w, x〉]](ǫ) = w · o(x) [[〈w, x〉]](aw1) = w · ([[t(x)(a)]](w1))

Probabilistic Moore automata. Consider the monad of probability distributions defined, for
any set X, by

T (X) = Dω(X)

Its unit is given by the Dirac distribution, defined for x, x′ ∈ X by

η(x)(x′) =

{

1 x = x′

0 otherwise

The lifting f ♯ : T (X) → T (Y ) of a function f : X → T (Y ) is given, for any distribution
c ∈ Dω(X) and any y ∈ Y , by

f ♯(c)(y) =
∑

d∈Dω(Y )





∑

x∈f−1(d)

c(x)



 × d(y)

We will consider FT -coalgebras

〈o, t〉 : X → Dω(B)×Dω(X)A
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More specifically, we take B = 2 which implies Dω(2) ∼= [0, 1]. For this choice of B, the
above FT -coalgebras are precisely the (Rabin) probabilistic automata [36]. Each state x has
an output value in o(x) ∈ [0, 1] and, for each input a, t(x)(a) is a probability distribution
of next states. The behaviour of a state x is given by [[η(x)]] : A∗ → [0, 1], defined below.
Intuitively, one can think of [[η(x)]] as a probabilistic language: each word is associated with
a value p ∈ [0, 1]. The final mapping

X

〈o,t〉

��

η
// Dω(X)

〈o♯,t♯〉

||②②
②②
②②
②②
②②
②②
②②
②②

[[−]]
//❴❴❴❴❴❴❴❴❴❴❴❴ [0, 1]A

∗

��

[0, 1] ×Dω(X)A //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ [0, 1] × ([0, 1]A
∗
)A

is given, for any d ∈ Dω(X), x ∈ X, a ∈ A, and w ∈ A∗, by

[[d]](ǫ) =
∑

b∈[0,1]

(
∑

o(x)=b

d(x)) × b

[[d]](aw) = [[λx′.
∑

c∈Dω(X)

(
∑

b=t(x)(a) d(x))× c(x′)]](w)

It is worth noting that this exactly captures the semantics of [36], while the ordinary
∼FT coincides with probabilistic bisimilarity of [28]. Moreover ≈T

F coincides with the trace
semantics of probabilistic transition systems defined in [19] (see Section 7.2 of [23]).

3.2. Pushdown automata, coalgebraically. Recursive functions in a computer program
lead naturally to a stack of recursive function calls during the execution of the program. In
this section, we provide a coalgebraic model of automata equipped with a stack memory. A
pushdown machine is a tuple (Q,A,B, δ), where Q is set of control locations (states), A is a
set of input symbols, B is a set of stack symbols, and δ is finite subset of Q×A×B×Q×B∗,
called the set of transition rules. Note that we do not insist on the sets Q, A and B to be
finite and consider only realtime pushdown machines, i.e. without internal transitions (also
called ǫ-transitions) [21]. A configuration k of a pushdown machine is a pair 〈q, β〉 denoting
the current control state q ∈ Q and the current content of the stack β ∈ B∗. In denoting the
stack as a string of stack symbols we assume that the topmost symbol is written first. There

is a transition 〈q, bβ〉
a
−→ 〈q′, αβ〉 if 〈q′, α〉 ∈ δ(q, a, b). A convenient notation is to introduce

for any string w ∈ A∗ the transition relation on configurations as the least relation such
that

(1) k
ǫ
−→ k

(2) k
aw
−−→ k′ if and only if k

a
−→ k′′ and k′′

w
−→ k′.

A pushdown automaton (pda) is a pushdown machine together with an initial configuration
k0 and a set K of accepting configurations. The sets of accepting configurations usually
considered are (1) the set F ×B∗, where F ⊆ Q is called the set of accepting states, or (2)
Q × {ǫ}, but also (3) F × {ǫ} for F ⊆ Q, or (4) Q × B′B∗ for B′ a subset of B. A word

w ∈ A∗ is said to be accepted by a pda (Q,A,B, δ, k0 ,K) if k0
w
−→ k for some k ∈ K. A

pda with accepting configurations as in (1) is said to be with accepting states, whereas,
when they are as in (2) then the pda is said to be accepting by empty stack. They both
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accept exactly proper context free languages (i.e. context free languages without the empty
word) [3].

Computations in a pushdown machine are generally non-deterministic and can cause
a change in the control state of the automaton as well as in its stack. For this reason
we will model the effects of the computations by means of the so-called non-deterministic
side-effect monad [5]. For a set of states S, let T be the functor Pω(− × S)S . It is a
monad when equipped with the unit ηX : X → T (X), defined by η(x)(s) = {〈x, s〉}, and
the multiplication µX : T (T (X)) → T (X) given by

µX(k)(s) =
⋃

〈c,s′〉∈k(s)

c(s′)

Note that, for a function f : X → T (Y ), the extension f ♯ : T (X) → T (Y ) is defined by

f ♯(c)(s) =
⋃

〈x′,s′〉∈c(s)

f(x′)(s′) .

Examples of algebras for this monad are T (1) = Pω(S)
S and 2S . The latter can in fact be

obtained as a quotient of the former by equating those functions k1, k2 : S → Pω(S) such
that for all s ∈ S, k1(s) = ∅ if and only if k2(s) = ∅.

Every pushdown machine (Q,A,B, δ) together with a set of accepting configurations K
induces a function 〈o, t〉 : Q → FTQ where F is the functor 2B

∗
× idA and T is the monad

defined above specialized for S = B∗ (intuitively, side effects in a pushdown machine are

changes in its stack). The functions o : Q → 2B
∗
and t : Q → Pω(Q×B∗)B

∗A

are defined as

o(q)(β) = 1 if and only if 〈q, β〉 ∈ K

t(q)(a)(ǫ) = ∅
t(q)(a)(bβ) = {〈q′, αβ〉 | 〈q′, α〉 ∈ δ(q, a, b)}

The transition function t describes the steps between pda configurations and it is specified
in terms of the transition instructions δ of the original machine.

From the above is clear that not every function 〈o, t〉 : Q → FTQ defines a pushdown
machine with accepting configurations, as, for example, t(q) may depend on the whole
stack β and not just on the top element b. Therefore we restrict our attention to consider
functions 〈o, t〉 : Q → FTQ such that

(1) t(q)(a)(ǫ) = ∅
(2) t(q)(a)(bβ) = {〈q′, αβ〉 | 〈q′, α〉 ∈ t(q)(a)(b)},

Every 〈o, t〉 satisfying (1) and (2) above defines the pushdown machine (Q,A,B, δ) with
δ(q, a, b) = t(q)(a)(b) and with accepting configuration K = {〈q, β〉|o(q)(β) = 1}. The first
condition is asserting that a machine is in a deadlock configuration when the stack is empty,
while the last condition ensures that transition steps depend only on the control state and

the top element of the stack. For this reason we will write q
a,b|α
−−−→ q′ for 〈q′, αβ〉 ∈ t(q)(a)(b)

indicating that the pushdown machine in the state q by reading an input symbol a and
popping b off the stack, can move to a control state q′ pushing the string α ∈ B∗ on the
current stack (here denoted by β).

Similarly to what we have shown in the examples of structured Moore automata, for

every function 〈o, t〉 : Q → FTQ there is a unique F -coalgebra map [[−]] : T (Q) → 2B
∗A∗

,
which is also a T -algebra homomorphism. It is defined for all c ∈ Pω(Q×B∗)B

∗
and β ∈ B∗
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as

Q

〈o,t〉

��

η
// Pω(Q×B∗)B

∗

〈o♯,t♯〉

yytt
tt
tt
tt
tt
tt
tt
tt
tt
t

[[−]]
//❴❴❴❴ 2B

∗A∗

��

2B
∗
× Pω(Q×B∗)B

∗A
//❴❴❴❴❴❴❴❴❴❴❴❴ 2B

∗
× 2B

∗A∗A

[[η(q)]](ǫ) = o(q)
[[η(q)]](aw) = [[λβ.t(q)(a)(β)]](w)
[[c]](β) =

⋃

〈q,α〉∈c(β)

[[η(q)]](α) .

We then have that a word w ∈ A∗ is accepted by the pda (Q,A,B, δ, k0,K) with k0 = 〈q, β〉
if and only if [[η(q)]](w)(β) = 1.

The above definition implies that for a given word w ∈ A∗ we can decide if it is accepted
by 〈o, t〉 : Q → FTQ from an initial configuration k0 = 〈q, β〉 in exactly |w| steps (assuming
there is a procedure to decide whether o(q)(β) = 1). As a consequence, we cannot use
structured Moore automata to model Turing machines, for which the halting problem is
undecidable: in general terms, for Turing machines, we would need internal transitions that
do not consume input symbols.

We conclude with an example of our construction using a pushdown machine with
control states Q = {q0, q1}, over an input alphabet A = {a, b} and using stack symbols
B = {x, s}. The transitions rules δ are given below:

q0

a,s|x

��

a,x|xx

SS

b,x|ǫ
// q1

b,x|ǫ



We take K = {〈q0, ǫ〉, 〈q1, ǫ〉}, meaning that o(q0)(ǫ) = 1, o(q1)(ǫ) = 1 and o(qi)(β) = 0 in
all other cases. By considering k0 = 〈q0, s〉 as initial configuration, we then have

[[η(q0)]](ǫ)(s) = o(q0)(s) = 0

meaning that the empty word is not accepted by the pda (Q,A,B, δ, k0,K). However, the
word ab is accepted:

[[η(q0)]](ab)(s) = [[λβ.t(q0)(a)(β)]](b)(s)
=

⋃

〈p,β〉∈t(q0)(a)(s)

[[η(p)]](b)(β)

= [[η(q1)]](b)(x)
= [[λβ.t(q1)(b)(β)]](ǫ)(x)
=

⋃

〈p,β〉∈t(q1)(b)(x)

[[η(p)]](ǫ)(β)

= [[η(q1)]](ǫ)(ǫ)
= o(q1)(ǫ)
= 1 .

In fact, the language accepted by the above pushdown automaton is {anbn | n ≥ 1}. The
structured states ci ∈ TQ, their transitions and their outputs of (part of) the associated
Moore automaton are given in Figure 1.

Context-free grammars generating proper languages (i.e. not containing the empty
word ǫ) are equivalent to realtime pda’s [11, 13, 42]. Given an input alphabet A, and a set
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q0

a,s|x

��

a,x|xx

SS

b,x|ǫ
// q1

b,x|ǫ



c4

a

@@

b //

c2

a
>>⑤⑤⑤⑤⑤⑤⑤⑤ b // c5

a

��

b //

a

��
c0

a
>>⑤⑤⑤⑤⑤⑤⑤⑤

b

  ❇
❇❇

❇❇
❇❇

❇
c1

a //

b
��

c6 a,b
gg

c3

a
>>⑤⑤⑤⑤⑤⑤⑤⑤ b // c7

a

OO

b //

a

^^

o♯(c0) = o♯(c1) = λβ.

{

1 if β = ǫ

0 otherwise

o♯(c2) = o♯(c4) = o♯(c6) = λβ.0

o♯(c3) = o♯(c5) = λβ.

{

1 if β = x

0 otherwise

o♯(c7) = λβ.

{

1 if β = xxs

0 otherwise

c0 = η(q0) c1 = η(q1)

c2 = λβ.







{〈q0, xβ
′〉} if β = sβ′

{〈q0, xxβ
′〉} if β = xβ′

∅ otherwise
c3 = λβ.

{

{〈q1, β
′〉} if β = xβ′

∅ otherwise

c4 = λβ.







{〈q0, xxβ
′〉} if β = sβ′

{〈q0, xxxβ
′〉} if β = xβ′

∅ otherwise
c5 = λβ.







{〈q1, β
′〉} if β = sβ′

{〈q1, xβ
′〉} if β = xβ′

∅ otherwise

c6 = λβ.∅ c7 = λβ.

{

{〈q1, β
′〉} if β = xxβ′

∅ otherwise

Figure 1: The structured states ci ∈ TQ, their transitions and their output of (part of) the
Moore automaton associated to the pda (Q,A,B, δ, k0,K) where Q = {q0, q1},
A = {a, b}, B = {x, s}, δ is depicted on the left top, k0 = 〈q0, s〉 and K =
{〈q0, ǫ〉, 〈q1, ǫ〉}.

of variables B, let G = (A,B, s, P ) be a context-free grammar in Greibach normal form [15],
i.e. with productions in P of the form b → aα with b ∈ B, a ∈ A and α ∈ B∗. We can
construct a function 〈o, t〉 : 1 → FT1 (where 1 = {∗}) by setting

o(∗)(β) = 1 if and only if β = ǫ and t(∗)(a)(bβ) = {〈∗, αβ〉 | b → aα ∈ P} .

Clearly this function satisfies conditions (1) and (2) above, and thus, together with the
initial configuration 〈∗, s〉 defines a pda. Furthermore, [[η(∗)]](w)(s) = 1 if and only if there
exists a derivation for w ∈ A∗ in the grammar G.

As an example, let us consider the grammar ({a, b}, {s, x}, s, P ) with productions P =
{s → asx, s → ax, x → b} generating the language {anbn | n ≥ 1}. The associated coalgebra
〈o, t〉 : 1 → FT1 is given by

*

a,s|sx
��

a,s|x

qq

b,x|ǫ

QQ with o(∗)(β) = 1 iff β = ǫ
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*

a,s|sx
��

a,s|x

qq

b,x|ǫ

QQ c′3
//

c′1

a

@@�������
b // c′4

a

��

//

c′0

a

@@�������

b

��
❃❃

❃❃
❃❃

❃
c′5

//

c′2
a //

b

��
❃❃

❃❃
❃❃

❃
c′6

//

c′7
//

c′0 = η(∗)

c′1 = λβ.

{

{〈∗, sxβ′〉, 〈∗, xβ′〉} if β = sβ′

∅ otherwise

c′2 = λβ.

{

{〈∗, β′〉} if β = xβ′

∅ otherwise

c′3 = λβ.

{

{〈∗, sxxβ′〉, 〈∗, xβ′〉} if β = sβ′

∅ otherwise

c′4 = λβ.

{

{〈∗, β′〉} if β = sβ′

∅ otherwise

c′5 = λβ.

{

{〈∗, sxβ′〉, 〈∗, xβ′〉} if β = ssβ′

∅ otherwise

o♯(c′0) = λβ.

{

1 if β = ǫ

0 otherwise
c′6 = λβ.

{

{〈∗, sxβ′〉, 〈∗, xβ′〉} if β = xsβ′

∅ otherwise

o♯(c′2) = λβ.

{

1 if β = x

0 otherwise
c′7 = λβ.

{

{〈∗, β′〉} if β = xxβ′

∅ otherwise

o♯(c′1) = o♯(c′3) = o♯(c′5) = o♯(c′6) = λβ.0

o♯(c′7) = λβ.

{

1 if β = xx

0 otherwise
o♯(c′4) = λβ.

{

1 if β = s

0 otherwise

Figure 2: The structured states ci ∈ TQ, their transitions and their output of (part of)
the Moore automaton associated to the pda (Q,A,B, δ, k0,K) where Q = {∗},
A = {a, b}, B = {x, s}, δ is depicted on the left top, k0 = 〈∗, s〉 and K = {〈∗, ǫ〉}.

Even if the language accepted by the above pda is the same as the one accepted by the
pda in the previous example (i.e., [[η(∗)]](w)(s) = [[η(q0)]](w)(s) for all w ∈ A∗), the two
associated Moore automaton are not in ≈T

F (that is [[η(∗)]] 6= [[η(q0)]]). In fact, the Moore
automaton associated to the above coalgebra (see below) accepts the string abab when
starting from the configuration 〈∗, ss〉, while the one in the previous example does not (in
symbols, [[η(∗)]](abab)(ss) = 1 while [[η(q0)]](abab)(ss) = 0).

The above characterization of context free languages over an alphabet A is different and
complementary to the coalgebraic account of context-free languages presented in [44]. The
latter, in fact, uses the functor D(X) = 2×XA for deterministic automata (instead of the
Moore automata with output in 2B

∗
above, for B a set of variables), and the idempotent

semiring monad T (X) = Pω((X+A)∗) (instead of our side effect monad) to study different
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but equivalent ways to present context-free languages: using grammars, behavioural differ-
ential equations and generalized regular expressions in which the Kleene star is replaced by
a unique fixed point operator.

4. Coalgebras and T-Algebras

In the previous section we presented a framework, parameterized by a functor F and a
monad T, in which systems of type FT (that is, FT -coalgebras) can be studied using a
novel equivalence ≈T

F instead of the classical ∼FT . The only requirement we imposed was
that FT (X) has to be a T-algebra.

In this section, we will present functors F for which the requirement of FT (X) being
a T-algebra is guaranteed because they can be lifted to a functor F ∗ on T-algebra. For
these functors, the equivalence ≈T

F coincides with ∼F ∗. In other words, working on FT -

coalgebras in Set under the novel ≈T
F equivalence is the same as working on F ∗-coalgebras

on T-algebras under the ordinary ∼F ∗ equivalence. Next, we will prove that for this class of
functors and an arbitrary monad T the equivalence ∼FT is contained in ≈T

F . Instantiating
this result for our first motivating example of non-deterministic automata will yield the well
known fact that bisimilarity implies trace equivalence.

Let T be a monad. An endofunctor F ∗ : SetT → SetT is said to be the T-algebra
lifting of a functor F : Set → Set if the following square commutes1:

SetT

UT

��

F ∗
// SetT

UT

��

Set
F

// Set

If the functor F has a T-algebra lifting F ∗ then FT (X) is the carrier of the algebra
F ∗(T (X), µ). Functors that have a T-algebra lifting are given, for example, by those endo-
functors on Set constructed inductively by the following grammar

F :: = Id | B | F × F | FA | TG

where A is an arbitrary set, B is the constant functor mapping every set X to the carrier of
a T-algebra (B,h), and G is an arbitrary functor. Since the forgetful functor UT : SetT →
Set creates and preserves limits, both F1×F2 and FA have a T-algebra lifting if F , F1, and
F2 have. Finally, TG has aT-algebra lifting for every endofunctorG given by the assignment
(X,h) 7→ (TGX,µGX ). Note that we do not allow taking coproducts in the above grammar,
because coproducts of T-algebras are not preserved in general by the forgetful functor UT.
Instead, one could resort to extending the grammar with the carrier of the coproduct taken
directly in SetT. For instance, if T is the (finite) powerset monad, then we could extend
the above grammar with the functor F1 ⊕ F2 = F1 + F2 + {⊤,⊥}.

All the functors of the examples in Sections 2 and 3, as well as those in Section 5, can
be generated by the above grammar and, therefore, they have a T-algebra lifting.

Now, let F be a functor with a T-algebra lifting and for which a final coalgebra Ω exists.
If Ω can be constructed as the limit of the final sequence (for example assuming the functor

1This is equivalent to the existence of a distributive law λ : TF ⇒ FT [24].



GENERALIZING DETERMINIZATION FROM AUTOMATA TO COALGEBRAS 17

accessible [1]), then, because the forgetful functor UT : SetT → Set preserves and creates
limits, Ω is the carrier of a T-algebra, and it is the final coalgebra of the lifted functor F ∗.
Further, for any FT -coalgebra f : X → FT (X), the unique F -coalgebra homomorphism
[[−]] as in diagram (3.1) is a T -algebra homomorphism between T (X) and Ω. Conversely,
the carrier of the final F ∗-coalgebra (in SetT) is the final F -coalgebra (in Set).

Intuitively, the above means that for an accessible functor F with a T-algebra lifting
F ∗, F ∗-equivalence in SetT coincides with F -equivalence with respect to T in Set. The
latter equivalence is coarser than the FT -equivalence in Set, as stated in the following
theorem.

Theorem 4.1. Let T be a monad. If F is an endofunctor on Set for which a final coalgebra
exists and with a T-algebra lifting, then ∼FT implies ≈T

F .

Proof. We first show that there exists a functor from the category of FT -coalgebras to the
category of F -coalgebras.

This functor maps each FT -coalgebra (X, f) into the F -coalgebra (T (X), f ♯) and each
FT -homomorphism h : (X, f) → (Y, g) into the F -homomorphism T (h) : (T (X), f ♯) →
(T (Y ), g♯). In order to prove that this is a functor we just have to show that T (h) is
an F -homomorphism (i.e., the backward face of the following diagram commutes).

T (X)

f♯

✌✌
✌✌
✌✌
✌

��✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌✌

T (h)
// T (Y )

g♯

��✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍

X
h //

f

��

ηX
99tttttttttt

Y

g

��

ηY
::tttttttttt

FT (X)
FT (h)

// FT (Y )

Note that the front face of the above diagram commutes because h is an FT -homomorphism.
Also the top face commutes because η is a natural transformation. Thus

FT (h) ◦ f ♯ ◦ ηX = FT (h) ◦ f = g ◦ h

and also
g♯ ◦ T (h) ◦ ηX = g♯ ◦ ηY ◦ h = g ◦ h.

Since η is the unit of the adjunction, then there exists a unique j♯ : T (X) → FT (Y ) in
SetT such that g ◦ h = j♯ ◦ ηX . Since both FT (h) ◦ f ♯ and g♯ ◦ T (h) are (by construction)
morphisms in SetT, then FT (h) ◦ f ♯ = g♯ ◦ T (h).

Let (X, f) and (Y, g) be two FT -coalgebras and [[−]]X and [[−]]Y their morphisms into the
final FT -coalgebra (Ω, ω). Let (T (X), f ♯), (T (Y ), g♯) and (T (Ω), ω♯) be the corresponding
F -coalgebras and [[−]]TX , [[−]]TY and [[−]]TΩ their morphisms into the final F -coalgebra
(Ω′, ω′).

Since T ([[−]]X) : (T (X), f ♯) → (T (Ω), ω♯) is an F -homomorphism, then by uniqueness,
[[−]]TX = [[−]]TΩ ◦ T ([[−]]X).



18 A. SILVA, F. BONCHI, M. BONSANGUE, AND J. RUTTEN

T (X)

[[−]]TX

((

f♯

✌✌
✌✌
✌✌
✌

��✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌✌

T ([[−]]X)
// T (Ω)

ω♯

��✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍

[[−]]TΩ
// Ω′

ω′

��✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

X
[[−]]X

//

f

��

ηX
99tttttttttt

Ω

ω

��

ηΩ
::✉✉✉✉✉✉✉✉✉✉

FT (X)
FT ([[−]]X)

//

F ([[−]]TX)

44
FT (Ω)

F ([[−]]TΩ)
// F (Ω′)

With the same proof, we obtain [[−]]TY = [[−]]TΩ ◦ T ([[−]]Y ).
Recall that for all x ∈ X and y ∈ Y , by definition, x ∼FT y iff [[x]]X = [[y]]Y and x ≈T

F y

iff [[ηX(x)]]TX = [[ηY (y)]]TY .
Suppose that [[x]]X = [[y]]Y . Then, T ([[ηX(x)]]X) = ηΩ ◦ [[x]]X = ηΩ ◦ [[y]]Y = T ([[ηY (y)]]Y )

and, finally, [[ηX(x)]]TX = [[−]]TΩ ◦ T ([[ηX(x)]]X) = [[−]]TΩ ◦ T ([[ηY (y)]]Y ) = [[ηY (y)]]TY .

The above theorem instantiates to the well-known facts: for NDA, where F (X) = 2×XA

and T = Pω, that bisimilarity implies language equivalence; for partial automata, where
F (X) = 2 × XA and T = 1 + −, that equivalence of pairs of languages, consisting of
defined paths and accepted words, implies equivalence of accepted words; for probabilistic
automata, where F (X) = [0, 1] × XA and T = Dω, that probabilistic bisimilarity implies
probabilistic/weighted language equivalence. Note that, in general, the above inclusion is
strict.

Remark. Let (X, f) be an FT -coalgebra for a monad T and a functor F . If η : id ⇒ T

is pointwise injective, then ∼FT on the FT -coalgebra (X, f) coincides with ∼TFT on the
extended TFT -coalgebra (X, ηFT (X) ◦f) [37, 4]. If moreover F has a T-algebra lifting then,

by the above theorem (on the extended TFT -coalgebra), ∼TFT implies ≈T
TF . Combining

the two implications, it follows that hat ∼FT on the FT -coalgebra (X, f) implies ≈T
TF on

the extended TFT -coalgebra (X, ηFT (X)◦f). Finally, under the assumption that F has a T-

algebra lifting, we also have that ≈T
F the FT -coalgebra (X, f) implies ≈T

TF on the extended
TFT -coalgebra (X, ηFT (X) ◦ f). This yields the following hierarchy of equivalences.

≈T
TF

≈T
F

⊇

◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗

∼TFT

⊆

✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡

= ∼FT

⊆

②②②②②②②②②
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5. Beyond Bisimilarity and Traces

The operational semantics of interactive systems is usually specified by labeled transition
systems (LTS’s). The denotational semantics is given in terms of behavioural equivalences,
which depend the amount of branching structure considered. Bisimilarity (full branching) is
sometimes considered too strict, while trace equivalence (no branching) is often considered
too coarse. The linear time / branching time spectrum [14] shows a taxonomy of many
interesting equivalences lying in between bisimilarity and traces.

Labeled transition system are coalgebras for the functor Pω(Id)
A and the coalgebraic

equivalence ∼Pω(Id)A coincides with the standard notion of Park-Milner bisimilarity. In [35],

it is shown a coalgebraic characterization of traces semantics (for LTS’s) employing Kleisli
categories. More recently, [33] have provided a characterization of trace, failure and ready
semantics by mean of “behaviour objects”. Another coalgebraic approach [26] relies on
“test-suite” that, intuitively, are fragments of Hennessy-Milner logic. In this section, we
show that (finite) trace equivalence [20], complete trace equivalence [14], failures [9] and
ready semantics [34] can be seen as special cases of ≈T

F .

Before introducing these semantics, we fix some notations. A labeled transition system
is a pair (X, δ) where X is a set of states and δ : X → Pω(X)A is a function assigning to

each state x ∈ X and to each label a ∈ A a finite set of possible successors states: x
a
→ y

means that y ∈ δ(x)(a). Given a word w ∈ A∗, we write x
w
→ y for x

a1→ . . .
an→ y and

w = a1 . . . an. When w = ǫ, x
ǫ
→ y iff y = x. For a function ϕ ∈ Pω(X)A, I(ϕ) denotes

the set of all labels “enabled” by ϕ, i.e., {a ∈ A | ϕ(a) 6= ∅}, while Fail(ϕ) denotes the set
{Z ⊆ A | Z ∩ I(ϕ) = ∅}.

Let 〈X, δ〉 be a LTS and x ∈ X be a state. A trace of x is a word w ∈ A∗ such that

x
w
→ y for some y. A trace w of x is complete if x

w
→ y and y stops, i.e., I(δ(y)) = ∅. A

failure pair of x is a pair 〈w,Z〉 ∈ A∗ × Pω(A) such that x
w
→ y and Z ∈ Fail(δ(y)). A

ready pair of x is a pair 〈w,Z〉 ∈ A∗ × Pω(A) such that x
w
→ y and Z = I(δ(y)). We use

T (x), CT (x), F(x) and R(x) to denote, respectively, the set of all traces, complete traces,
failure pairs and ready pairs of x. For I ranging over T , CT ,F and R, two states x and y

are I-equivalent iff I(x) = I(y).

For an example, consider the following transition systems labeled over A = {a, b, c}.
They are all trace equivalent because their traces are a, ab, ac. The trace a is also complete
for p, but not for the others. Only r and s are failure equivalent, since 〈a, {bc}〉 is a failure
pair only of p, while 〈a, {b}〉 and 〈a, {c}〉 are failure pairs of p, r and s, but not of q. Finally
they are all ready different, since 〈a, ∅〉 is a ready pair only of p, 〈a, {b, c}〉 is a ready pair
of q and s but not of r, and 〈a, {b}〉 and 〈a, {c}〉 are ready pairs only of r and s.

p

a

��

a

����
��
��
��

q

a

��

r
a

��
❃❃

❃❃
❃❃

❃❃
a

����
��
��
��

s

a

��

a

��
❃❃

❃❃
❃❃

❃❃
a

����
��
��
��

c

  
❇❇

❇❇
❇❇

❇❇
b

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ c

  
❇❇

❇❇
❇❇

❇❇
b

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

b

��

c

��

b

��
b

  ❆
❆❆

❆❆
❆❆

❆

c
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

c

��

We can now show that these equivalences are instances of ≈T
F . We first show ready

equivalence in details and then, briefly, the others.
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Take T = Pω and F = Pω(Pω(A)) × idA. For each set X, consider the function
πR
X : Pω(X)A → FT (X) defined for all ϕ ∈ Pω(X)A by

πR
X(ϕ) = 〈{I(ϕ)}, ϕ〉.

This function allows to transform each LTS (X, δ) into the FT -coalgebra (X,πR
X ◦ δ). The

latter has the same transitions of 〈X, δ〉, but each state x is “decorated” with the set {I(ϕ)}.
Now, by employing the powerset construction, we transform 〈X,πR

X ◦ δ〉 into the F -
coalgebra (Pω(X), 〈o, t〉), where, for all Y ∈ Pω(X), a ∈ A, the functions o : Pω(X) →
Pω(Pω(A)) and t : Pω(X) → Pω(X)A are

o(Y ) =
⋃

y∈Y

{I(δ(y))} t(Y )(a) =
⋃

y∈Y

δ(y)(a).

The final F -coalgebra is (Pω(Pω(A))
A∗

, 〈ǫ, (−)a〉) where 〈ǫ, (−)a〉 is defined as usual.

X

δ
��

{·}
// Pω(X)

[[Y ]](ǫ) = o(Y )
[[Y ]](aw) = [[t(Y )(a)]](w)〈o,t〉

||②②
②②
②②
②②
②②
②②
②②
②②
②②
②②
②

[[−]]
//❴❴❴❴❴❴❴❴❴❴❴❴❴❴ Pω(Pω(A))

A∗

〈ǫ,(−)a〉

��

(Pω(X))A

πR
X

��

Pω(Pω(A))× (Pω(X))A //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ Pω(Pω(A))× (Pω(Pω(Pω(A))
A∗

))A

Summarizing, the final map [[−]] : Pω(X) → Pω(Pω(A))
A∗

maps each {x} into a function

assigning to each word w, the set {Z ⊆ A | x
w
→ y and Z = I(δ(y))}. In other terms,

Z ∈ [[{x}]](w) iff 〈w,Z〉 ∈ R(x).
For the state s depicted above, [[{s}]](ǫ) = {{a}}, [[{s}]](a) = {{b}, {b, c}, {c}}, [[{s}]](ab) =

[[{s}]](ac) = {∅} and for all the other words w, [[{s}]](w) = ∅.

The other semantics can be characterized in the same way, by choosing different functors
F and different functions πX : Pω(X)A → FT .

For failure semantics, take the same functor as for the ready semantics, that is F =
Pω(Pω(A))× idA and a new function πF

X : Pω(X)A → FT (X) defined ∀ϕ ∈ Pω(X)A by

πF
X(ϕ) = 〈Fail(ϕ), ϕ〉.

The FT -coalgebra (X,πF
X ◦ δ) has the same transitions of the LTS 〈X, δ〉, but each state x

is “decorated” with the set Fail(ϕ).
For both trace and complete trace equivalence, take F = 2×idA (as for NDA). For trace

equivalence, πT
X : Pω(X)A → FT (X) maps ϕ ∈ Pω(X)A into 〈1, ϕ〉. Intuitively, (X,πT

X ◦ δ)
is an NDA where all the states are accepting. For complete traces, πCT

X : Pω(X)A → FT (X)
maps ϕ in 〈1, ϕ〉 if I(ϕ) = ∅ (and in 〈0, ϕ〉 otherwise).

By taking T = Dω instead of T = Pω, we hope to be able to characterize probabilistic
trace, complete trace, ready and failure as defined in [25].
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6. Discussion

In this paper, we lifted the powerset construction on automata to the more general frame-
work of FT -coalgebras. Our results lead to a uniform treatment of several kinds of existing
and new variations of automata (that is, FT -coalgebras) by an algebraic structuring of their
state space through a monad T . We showed as examples partial Mealy machines, struc-
tured Moore automata, nondeterministic, partial and probabilistic automata. Furthermore,
we have presented an interesting coalgebraic characterization of pushdown automata and
showed how several behavioural equivalences stemming from concurrency theory can be
retrieved from the general framework. It is worth mentioning that the framework instanti-
ates to many other examples, among which are weighted automata [41]. These are simply
structured Moore automata for B = 1 and T = S

−
ω (for a semiring S) [16]. It is easy to

see that ∼FT coincides with weighted bisimilarity [10], while ≈T
F coincides with weighted

language equivalence [41].

Some of the aforementioned examples can also be coalgebraically characterized in
the framework of [19, 18]. There, instead of considering FT -coalgebras on Set and F ∗-
coalgebras on SetT (the Eilenberg-Moore category), TG-coalgebras on Set andG-coalgebras
on SetT (the Kleisli category) are studied. The main theorem of [19] states that under
certain assumptions, the initial G-algebra is the final G-coalgebra that characterizes (gen-
eralized) trace equivalence. The exact relationship between these two approaches has been
studied in [23] (and, indirectly, it could be deduced from [6] and [27]). It is worth to remark
that many of our examples do not fit the framework in [19]: for instance, the exception,
the side effect, the full-probability and the interactive output monads do not fulfill their
requirements (the first three do not have a bottom element and the latter is not commu-
tative). Moreover, we also note that the example of partial Mealy machines is not purely
trace-like, as all the examples in [19].

The idea of using monads for modeling automata with non-determinism, probabilism
or side-effects dates back to the “λ-machines” of [2] that, rather than coalgebras, rely on
algebras. More precisely, the dynamic of a λ-machine is a morphism δ : FX → TX, where F
is a functor and T is a monad (for instance the transitions of T -structured Moore automata
are a function δ : X × A → TX mapping a state and an input symbol into an element
of TX). Analogously to our approach, each λ-machine induces an “implicit λ-machine”
having TX as state space. Many examples of this paper (like Moore automata) can be seen
as λ-machines, but those systems that are essentially coalgebraic (like Mealy machines) do
not fit the framework in [2].

There are several directions for future research. On the one hand, we will try to exploit
F -bisimulations up to T [29, 30] as a sound and complete proof technique for ≈T

F . On the
other hand, we would like to lift many of those coalgebraic tools that have been developed
for “branching equivalences” (such as coalgebraic modal logic [12, 40] and (axiomatization
for) regular expressions [8]) to work with the “linear equivalences” induced by ≈T

F .
We have pursued further the applications to decorated traces and the challenging mod-

eling of the full linear-time spectrum in a separate paper [7], work which we also plan to
extend to probabilistic traces.
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