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ABSTRACT. The problem of identifying a probabilistic context free grammar has two
aspects: the first is determining the grammar’s topology (the rules of the grammar) and
the second is estimating probabilistic weights for each rule. Given the hardness results
for learning context-free grammars in general, and probabilistic grammars in particular,
most of the literature has concentrated on the second problem. In this work we address
the first problem. We restrict attention to structurally unambiguous weighted context-free
grammars (SUWCFG) and provide a query learning algorithm for structurally unambiguous
probabilistic context-free grammars (SUPCFG). We show that SUWCFG can be represented
using co-linear multiplicity tree automata (CMTA), and provide a polynomial learning
algorithm that learns CMTAs. We show that the learned CMTA can be converted into
a probabilistic grammar, thus providing a complete algorithm for learning a structurally
unambiguous probabilistic context free grammar (both the grammar topology and the
probabilistic weights) using structured membership queries and structured equivalence
queries. A summarized version of this work was published at AAAI 21 [NFZ21].

1. INTRODUCTION

Probabilistic context free grammars (PCFGs) constitute a computational model suitable
for probabilistic systems which observe non-regular (yet context-free) behavior. They are
vastly used in computational linguistics [Cho56], natural language processing [Chu88] and
biological modeling, for instance, in probabilistic modeling of RNA structures [Gra95].
Methods for learning PCFGs from experimental data have been studied for over half a
century. Unfortunately, there are various hardness results regarding learning context-free
grammars in general and probabilistic grammars in particular. It follows from [Gol78] that
context-free grammars (CFGs) cannot be identified in the limit from positive examples, and
from [Ang90] that CFGs cannot be identified in polynomial time using equivalence queries
only. Both results are not surprising for those familiar with learning regular languages, as
they hold for the class of regular languages as well. However, while regular languages can be
learned using both membership queries and equivalence queries [Ang87], it was shown that
learning CFGs using both membership queries and equivalence queries is computationally as
hard as key cryptographic problems for which there is currently no known polynomial-time
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algorithm [AK95]. de la Higuera elaborates more on the difficulties of learning context-free
grammars in his book [dIH10, Chapter 15]. Hardness results for the probabilistic setting
have also been established. Abe and Warmuth have shown a computational hardness result
for the inference of probabilistic automata, in particular, that an exponential blowup with
respect to the alphabet size is inevitable unless RP = NP [AW92].

The problem of identifying a probabilistic grammar from examples has two aspects: the
first is determining the rules of the grammar up to variable renaming and the second is
estimating probabilistic weights for each rule. Given the hardness results mentioned above,
most of the literature has concentrated on the second problem. Two dominant approaches
for solving the second problem are the forward-backward algorithm for HMMs [Rab89] and
the inside-outside algorithm for PCFGs [Bak79, LY90].

In this work we address the first problem. Due to the hardness results regarding learning
probabilistic grammars using membership queries and equivalence queries (MQ and EQ) we
use structured membership queries and structured equivalence queries (SMQ and SEQ), as was
done by [Sak88] for learning context-free grammars. Structured strings, proposed by [LJ78a],
are strings over the given alphabet that includes parentheses that indicate the structure
of a possible derivation tree for the string. One can equivalently think about a structured
string as a derivation tree in which all nodes but the leaves are marked with 7, namely an
unlabeled derivation tree.

It is known that the set of derivation trees of a given CFG constitutes a reqular tree-
language, where a regular tree-language is a tree-language that can be recognized by a tree
automaton [LJ78b]. Sakakibara has generalized Angluin’s L* algorithm (for learning regular
languages using MQ and EQ) to learning a tree automaton, and provided a polynomial learning
algorithm for CFGs using sMQ and SEQ [Sak88]. Let T(G) denote the set of derivation trees
of a CFG G, and S(T(G)) the set of unlabeled derivation trees (namely the structured strings
of G). While a membership query (MQ) asks whether a given string w is in the unknown
grammar G, a structured membership query (sMQ) asks whether a structured string s is
in S(T(G)) and a structured equivalence query (SEQ) answers whether the queried CFG g’
is structurally equivalent to the unknown grammar G, and accompanies a negative answer
with a structured string s’ in the symmetric difference of S(T(G’)) and S(T(G)).

In our setting, since we are interested in learning probabilistic grammars, an SMQ on
a structured string s is answered by a weight p € [0, 1] standing for the probability for G
to generate s, and a negative answer to an SEQ is accompanied by a structured string s
such that G and G’ generate s with different probabilities, along with the probability p with
which the unknown grammar G generates s.

Sakakibara works with tree automata to model the derivation trees of the unknown
grammars [Sak88]. In our case the automaton needs to associate a weight with every tree
(representing a structured string). We choose to work with the model of multiplicity tree
automata. A multiplicity tree automaton (MTA) associates with every tree a value from a
given field K. An algorithm for learning multiplicity tree automata, to which we refer as
M*, was developed in [HO06, DHO07].!

A probabilistic grammar is a special case of a weighted grammar and [AMP99, SJ07]
have shown that convergent weighted CFGs (WCFGs) where all weights are non-negative
and probabilistic CFGs (PCFGs) are equally expressive.” We thus might expect to be able
to use the learning algorithm M* to learn an MTA corresponding to a WCFG, and apply

1Following a learning algorithm developed for multiplicity word automata [BV96, BBB*00].
2The definition of convergent is deferred to the preliminaries.



Vol. 19:1 LEARNING OF STRUCTURALLY UNAMBIGUOUS PROBABILISTIC GRAMMARS 10:3

this conversion to the result, in order to obtain the desired PCFG. However, as we show
in Proposition 4.3, there are probabilistic languages for which applying the M* algorithm
results in an MTA with negative weights. Trying to adjust the algorithm to learn a positive
basis may encounter the issue that for some PCFGs, no finite subset of the infinite Hankel
Matrix spans the entire space of the function, as we show in Proposition 4.5.2 To overcome
these issues we restrict attention to structurally unambiguous grammars (SUCFG, see section
4.2), which as we show, can be modeled using co-linear multiplicity automata (defined next).

We develop a polynomial learning algorithm, which we term C*, that learns a restriction
of MTA, which we term co-linear multiplicity tree automata (CMTA). We then show that a
CMTA for a probabilistic language can be converted into a PCFG, thus yielding a complete
algorithm for learning SUPCFGs using SMQs and SEQs as desired.

A summarized version of this work was published at AAAT’21 [NFZ21].

2. PRELIMINARIES

This section provides the definitions required for probabilistic grammars — the object we
design a learning algorithm for, and multiplicity tree automata, the object we use in the
learning algorithm.

2.1. Probabilistic Grammars. Probabilistic grammars are a special case of context free
grammars where each production rule has a weight in the range [0, 1] and for each non-
terminal, the sum of weights of its productions is one.

A context free grammar (CFG) is a quadruple G = (V, 3, R, S), where V is a finite
non-empty set of symbols called variables or non-terminals, 3 is a finite non-empty set
of symbols called the alphabet or the terminals, R C V x (VU X)* is a relation between
variables and strings over V U X, called the production rules, and S € V is a special variable
called the start variable. We assume the reader is familiar with the standard definition of
CFGs and of derivation trees.

We say that S = w for a string w € X* if there exists a derivation tree ¢ such that all
leaves are in Y. and when concatenated from left to right they form w. That is, w is the yield
of the tree t. In this case we also use the notation S =; w. A CFG G defines a set of words
over Y, the language generated by G, which is the set of words w € X* such that S = w,
and is denoted [G]. For simplicity, we assume the grammar does not derive the empty word.

Weighted grammars. A weighted grammar (WCFG) is a pair (G, 8) where G = (V, 3, R, S)
is a CFG and 6 : R — R is a function mapping each production rule to a weight in R. A
WCFG W = (G,0) defines a function from words over ¥ to weights in R. The WCFG
associates with a derivation tree t its weight, which is defined as

wiy= [ oV - a7
(V—a)eR
where #;(V — «) is the number of occurrences of the production V' — « in the derivation
tree t. We abuse notation and treat W also as a function from ¥* to R defined as W(w) =
> 5=, W(t). That is, the weight of w is the sum of weights of the derivation trees yielding

w, and if w ¢ [G] then W(w) = 0. If the sum of all derivation trees in [G], namely
Zwe[[g]] W(w), is finite we say that W is convergent. Otherwise, we say that W is divergent.

3The definition of the Hankel Matrix and its role in learning algorithms appears in the sequel.
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Probabilistic grammars. A probabilistic grammar (PCFG) is a WCFG P = (G, 0) where
G=(,%,R,S)isa CFG and §: R — [0,1] is a function mapping each production rule of
G to a weight in the range [0, 1] that satisfies

(V—a;)eER

for every V € V.* One can see that if P is a PCFG then the sum of all derivations equals 1,
thus P is convergent.

Word and Tree Series. While words are defined as sequences over a given alphabet, trees
are defined using a ranked alphabet, an alphabet ¥ = {¥¢,%;,...,3,} which is a tuple of
alphabets ¥j where ¥ is non-empty. Let Trees(X) be the set of trees over X, where a node
labeled o € ¥ for 0 < k < p has exactly k children. While a word language is a function
mapping all possible words (elements of X*) to {0, 1}, a tree language is a function from all
possible trees (elements of Trees(X)) to {0,1}. We are interested in assigning each word or
tree a non-Boolean value, usually a weight p € [0,1]. More generally, let K be an arbitrary
domain, e.g. the real numbers. We are interested in functions mapping words or trees to
values in K. A function from ¥* to K is called a word series, and a function from Trees(X)
to K is referred to as a tree series. CFGs define word languages, and induce tree languages
(the parse trees deriving the words defined by the grammars). WCFGs and PCFGs define
word series, where in the latter case the map is from ¥* to [0, 1].

2.2. Multiplicity Tree Automata.

Word and Tree Automata. Word automata are machines that recognize word languages,
i.e. they define a function from ¥* to {0,1}. Tree automata are machines that recognize tree
languages, i.e. they define a function from Trees(X) to {0, 1}. Multiplicity word automata
(MA) are machines to implement word series f : 3* — K where K is a field. Multiplicity tree
automata (MTA) are machines to implement tree series f : Trees(X) — K where K is a field.

Multiplicity Automata. Multiplicity automata can be thought of as an algebraic extension
of automata, in which reading an input letter is implemented by matrix multiplication. In a
multiplicity word automaton with dimension m over alphabet X, for each o € ¥ there is
an m by m matrix, u,, whose entries are values in K where intuitively the value of entry
o (1, 7) is the weight of the passage from state i to state j. The definition of multiplicity
tree automata is a bit more involved; it makes use of multilinear functions as defined next.

Multilinear functions. Let V. = K¢ be the d dimensional vector space over K. Let
n: V¥ = V be a k-linear function. We can represent n by a d by d* matrix over K.

Example 2.1. For instance, if  : V3 — Vand d = 2(le. V= K?) then 7 can be represented
by the 2 x 23 matrix M, provided in Fig 1 where iy jnjs € K for 4, j1, j2, j3 € {1,2}. Then
n, a function taking k parameters in V = K¢, can be computed by multiplying the matrix
M,, with a vector for the parameters for n. Continuing this example, given the parameters
x = (x1 z2),y = (y1 %2), 2 = (21 22) the value n(x,y,z) can be calculated using the

multiplication M, P,,. where the vector P,,. of size 23 is provided in Fig 1.
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Figure 1. A matrix M, for a multi-linear function 1 and a vector P, for the
respective 3 parameters.
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Figure 2. (Left) An MTA implementing a tree series that returns the number of
leaves in the tree. (Right) a tree where a node ¢ is annotated by p(t).

In general, if n : V& — V is such that n(x1,%2,...,xg) = y and M,, the matrix

representation of 7, is defined using the constants ¢} ;, . then
yli] = Z i X1l X2+ - X [j]

{G1.d2001) €{1,2,...,d}F }

Multiplicity tree automata. A multiplicity tree automaton (MTA) is a tuple M =
(3,K,d, p, A) where ¥ = {¥9,X1,...,%,} is the given ranked alphabet, K is a field corre-
sponding to the range of the tree-series, d is a non-negative integer called the automaton
dimension, pu and A are the transition and output function, respectively, whose types are
defined next. Let V = K% Then ) is an element of V, namely a d-vector over K. Intu-
itively, A corresponds to the final values of the “states” of M. The transition function pu
maps each element o of 3 to a dedicated transition function p, such that given o € ¥, for
0 < k < p then i, is a k-linear function from V¥ to V. The transition function p induces
a function from Trees(X) to V, defined as follows. If t = o for some o € Xy, namely ¢ is a
tree with one node which is a leaf, then u(t) = p, (note that ju, is a vector in K¢ when
o€Xy). Ift=o0(ty,..., 1), namely t is a tree with root o € ¥ and children ¢y, ..., t; then
w(t) = po(p(tr),. .., u(tg)). The automaton M induces a total function from Trees(X) to K
defined as follows: M(t) = A - u(t).

Example 2.2. Fig. 2 on the left provides an example of an MTA M = ((X¢, X2), R, 2, i, \)
where ¥g = {a} and Y9 = {b} implementing a tree series that returns the number of leaves
in the tree. Fig. 2 on the right provides a tree where a node t is annotated by u(t). Since
u(te) = (3), where t. is the root, the value of the entire tree is A - (3) = 3.

4Probabilistic grammars are sometimes called stochastic grammars (SCFGs).
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2.3. Contexts and Structured Trees.

Contexts. When learning word languages, learning algorithms typically distinguish words u
and v if there exists a suffix z such that uz is accepted but vz is rejected or vice versa. When
learning tree languages, in a similar way we would like to distinguish between two trees t,
and t,, if there exists a tree t, whose composition with ¢, and ¢, is accepted in one case and
rejected in the other. To define this formally we need some notion to compose trees, more
accurately we compose trees with contexts as defined next. Let ¥ = {3y, %;,...,%X,} be a
ranked alphabet. Let ¢ be a symbol not in ¥. We use Trees,(3) to denote all non-empty trees
over ¥ = {¥pU{¢},X1,...,%,} in which ¢ appears exactly once. Intuitively ¢ indicates the
place where a tree t,, can be composed with a context ¢, yielding a tree that resembles ¢, but
has t,, as a sub-tree instead of the leaf o. We refer to an element of Trees,(X) as a context.
Note that at most one child of any node in a context c¢ is a context; the other ones are pure
trees (i.e. elements of Trees(X)). Given a tree ¢t € Trees(X) and context ¢ € Trees,(X) we
use c[t] for the tree t' € Trees(X) obtained from ¢ by replacing ¢ with ¢.

Structured tree languages/series. Recall that our motivation is to learn a word (string)
series rather than a tree series, and due to hardness results on learning CFGs and PCFGs we
resort to using structured strings. A structured string is a string with parentheses exposing
the structure of a derivation tree for the corresponding trees, as exemplified in Fig. 3.

A skeletal alphabet is a ranked alphabet in which we use a special

symbol ? ¢ ¥ and for every 0 < k < p the set ¥y consists only of the e

symbol 7. For ¢t € Trees(X), the skeletal description of ¢, denoted by D ,

S(t), is a tree with the same topology as ¢, in which the symbol in all N

internal nodes is 7, and the symbols in all leaves are the same as in t. @ b , ? .

Let T be a set of trees. The corresponding skeletal set, denoted S(T') a b

is {S(t) | t € T}. Going from the other direction, given a skeletal tree

s we use T(s) for the set {t € Trees(X) | S(t) = s}. Figure 3. A
A tree language over a skeletal alphabet is called a skeletal tree derivation tree and

language. And a mapping from skeletal trees to K is called a skeletal its corresponding

tree series. Let T denote a tree series mapping trees in Trees(X) to skeletal tree, which

can be  written

K. By abuse of notations, given a skeletal tree s, we use T (s) for

as the structured

the sum of values 7 (t) for every tree ¢ of which s = S(¢). That is,
T(s) = EteT(s) T(t). Thus, given a tree series T (possibly generated
by a WCFG or an MTA) we can treat 7 as a skeletal tree series.

string ((ab)c).

3. FroMm PosiTivE MTAs To PCFGs

Our learning algorithm for probabilistic grammars builds on the relation between WCFGs
with positive weights (henceforth PWCFGs) and PCFGs [AMP99, SJ07]. In particular, we
first establish that a positive multiplicity tree automaton (PMTA), which is a multiplicity
tree automaton (MTA) where all weights of both p and X\ are positive, can be transformed
into an equivalent WCFG W. That is, we show that a given PMTA A over a skeletal
alphabet can be converted into a WCFG W such that for every structured string s we
have that A(s) = W(s). If the PMTA defines a convergent tree series (namely the sum of
weights of all trees is finite) then so will the constructed WCFG. Therefore, given that the
WCFG describes a probability distribution, we can apply the transformation of WCFG to a
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PCFG [AMP99, SJ07] to yield a PCFG P such that W(s) = P(s), obtaining the desired
PCFG for the unknown tree series.

3.1. Transforming a PMTA into a PWCFG. Let A = (X,R;,d,u,\) be a PMTA
over the skeletal alphabet ¥ = {¥y,X;,...,3,}. We define a PWCFG W4 = (G4, 0) for
Ga= (V,X0,R,S) as provided in Fig. 4 where C§1,i2,...7ik is the respective coefficient in the

matrix corresponding to u, for 7 € 3, 1 < k < p.

V={Stu{Vi|1<i<d}

R={S—=V|1<i<d}U 0(S — Vi) = A[i]
{Vioo|l1<i<d, o€¥p}U (Vi = o) = peli] '
(Vi 5 ViV Vi | 1<isin,ig<d, 1<k<p} O(Vi= ViV Vi)=d . .

Figure 4. Transforming a PMTA into a PCFG

Example 3.1. Let A= (X, R4,2, u, \) where ¥ = {3y = {a,b} UXy = {?}}, and

(1 (025 (025 /025 025 0 0
—\o) M= No2s) "= o00) "=\ o o o o)

After applying the transformation we obtain the following PCFG:
S — Ny [1.0]
Ny — N1 Ny [0.25] | N1Na [0.25] | a [0.25] | b [0.25]
Ny — NaNs [0.75] | a [0.25]

Proposition 3.2 states that the transformation preserves the weights.
Proposition 3.2. W(t) = A(t) for every t € Trees(X).

Recall that given a WCFG (G, ), and a tree that can be derived from G, namely some
t € T(G), the weight of ¢ is given by 6(¢). Recall also that we are working with skeletal trees
s € S(T(G)) and the weight of a skeletal tree s is given by the sum of all derivation trees t
such that s is the skeletal tree obtained from t by replacing all non-terminals with ?.

The following two lemmas and the following notations are used in the proof of Propo-
sition 3.2. For a skeletal tree s and a non-terminal V' we use Wy (s) for the weight of all
derivation trees ¢ in which the root is labeled by non-terminal V' and s is their skeletal form.

Assume G = (V, X, R, S). Lemma 3.3 follows in a straightforward manner from the
definition of W(-) given in $2.1.

Lemma 3.3. Let s =7(s1,82,...,8k). The following holds for every non-terminal V € V:
WV(S) = E Q(V — X1X2-"Xk) ‘WXl(Sl)WXQ(SQ)"‘WXk(Sk)
(Xl,X27...,Xk)€Vk

Consider now the transformation from a PMTA to a WCFG (provided in Fig. 4). It
associates with every dimension i of the PMTA A = (X,R,,d, u, A) a variable (i.e. non-
terminal) V;. The next lemma considers the d-dimensional vector pu(s) computed by A and
states that its i-th coordinate holds the value Wy (s).
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Lemma 3.4. Let s be a skeletal tree, and let p(s) = (v1,va,...,vq). Then v; = Wy, (s) for
every 1 <1 <d.

Proof. The proof is by induction on the height of s. For the base case h = 1. Then s
is a leaf, thus s € . Then for each i we have that v[i] = u(o)[i] by definition of MTA
computation. On the other hand, by the definition of the transformation in Fig. 4, we have
0(Vi = o) = p(o)[i]. Thus, Wy, (s) = Wy, (o) = pu(o)[i], so the claim holds.

For the induction step, assume s =7(s1, S2, ..., k). By the definition of a multi-linear
map, for each i we have:

Vi = > iy, Vildn) o vkl
{(jl7j27"'7jk)€{172,...,d}k}
1.5, are the coefficients of the d x d* matrix of us for ? € ¥j. By the definition

of the transformation in Fig. 4 we have that céd,...,jk =0(V; = V;,V;,...Vj,). Also, from our
induction hypothesis, we have that for each j;, v;[j;] = Wy, (si). Therefore, we have that:

vi= Y 0V Vi Vi Vi) W (s1) e W (i)
V.7'1VJ'2'“VJ'pevk

where cl~1

which according to Lemma 3.3 is equal to Wy, (s) as required. ]
We are now ready to prove Proposition 3.2.

Proof of Prop.3.2. Let u(t) = v = (v1,vg,...,u,) be the vector calculated by A for ¢. The
value calculated by A is A - v, which is:

> i+ Al
i=1
By the transformation in Fig. 4 we have that A[i] = (S — V;) for each i. So we have:
> v Ali] =0(S = Vi) - vy
i=1

By Lemma 3.4, for each i, v; is equal to the probability of deriving ¢ starting from the
non-terminal V;, so we have that the value calculated by A is the probability of deriving the
tree starting from the start symbol S. That is, W(t) = Ws(t) = A(t). [

3.2. Structurally Unambiguous WCFGs and PCFGs. In this paper we consider struc-
turally unambiguous WCFGs and PCFGs (in short SUWCFGs and SUPCFGs, resp.) as
defined in the sequel in §4.2. In Thm. 5.1, given in §5, we show that we can learn a PMTA
for a SUWCFG in polynomial time using a polynomial number of queries (see exact bounds
there), thus obtaining the following result.

Corrolary 3.5. SUWCFGs can be learned in polynomial time using SMQs and SEQS, where
the number of SEQs is bounded by the number of non-terminal symbols.

The overall learning time for SUPCFG relies, on top of Corollary 3.5, on the complexity
of converting a WCFG into a PCFG [AMP99], for which an exact bound is not provided,
but the method is reported to converge quickly [SJ07, §2.1].
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4. LEARNING OF STRUCTURALLY UNAMBIGUOUS PROBABILISTIC GRAMMARS

In this section we discuss the setting of the algorithm, the ideas behind Angluin-style learning
algorithms, and the issues with using current algorithms to learn PCFGs. As in G*(the
algorithm for CFGs [Sak88]), we assume an oracle that can answer two types of queries:
structured membership queries (SMQ) and structured equivalence queries (SEQ) regarding
the unknown regular tree series 7 (over a given ranked alphabet ¥). Given a structured
string s, the query SMQ(s) is answered with the value 7 (s). Given an automaton A the
query SEQ(.A) is answered “yes” if A implements the skeletal tree series 7 and otherwise
the answer is a pair (s, 7 (s)) where s is a structured string for which 7 (s) # A(s) (up to a
predefined error).

Our starting point is the learning algorithm M* [HO06] which learns MTA using sMQs
and SEQs. First we explain the idea behind this and similar algorithms, next the issues
with applying it as is for learning PCFGs, then the idea behind restricting attention to
strucutrally unambiguous grammars, and finally our algorithm itself.

Hankel Matrix. The Hankel Matriz is a key concept in learning of languages and formal
series. A word or tree language as well as a word or tree series can be represented by its
Hankel Matrix. The Hankel Matrix has infinitely many rows and infinitely many columns.
In the case of word series both rows and columns correspond to an infinite enumeration

wp, Wi, W, . . . of words over the given alphabet. In the case of tree series, the rows correspond
to an infinite enumeration of trees to, t1, t2,... (where t; € Trees(X)) and the columns to an
infinite enumeration of contexts cg, c1, ca, ... (where ¢; € Trees,(X)). In the case of words,

the entry H (7, j) holds the value for the word w; - w;, and in the case of trees it holds the
value of the tree ¢;[t;]. If the series is regular there should exists a finite number of rows in
this infinite matrix, which we term basis, such that all other rows can be represented using
rows in the basis. In the case of L*, and G*(that learn word-languages and tree-languages,
resp.) rows that are not in the basis should be equal to rows in the basis. The rows of the
basis correspond to the automaton states, and the equalities to other rows determines the
transition relation. In the case of M*(that learns tree-series by means of multiplicity tree
automata) and its predecessor (that learns word-series using multiplicity word automata)
rows not in the basis should be expressible as a linear combination of rows in the basis, and
the linear combinations determines the weights of the extracted automaton.

Example 4.1. Fig. 5 depicts the Hankel Matrix for the tree-series that returns the number
of leaves in a tree over the ranked alphabet ¥ = {3¢ = {a}, 32 = {b}}. The first two rows
linearly span the entire matrix. Let H[a| = v1 and H[b(a,a)] = va. The rest of the rows can
be described as a linear combination of v; and wve, as shown on the right in gray.

L*-style query learning algorithms. All the generalizations of L* share a general idea
that can be explained as follows. The algorithm maintains an observation table, a finite
sub-matrix of the Hankel Matrix, whose entries are filled by asking membership queries.
Once the table meets certain criteria, namely is closed with respect to a basis, which is a
subset of the rows, an automaton can be extracted from it. In the case of L* (that learns
regular word-languages) a table is closed if the row of the empty string is in the basis, for
every row s in the basis, its one letter extension, so is in the rows of the table, and every
row in the table is equivalent to some row in the basis. In the case of C*(that learns tree
automata) instead of one letter extensions, we need for every letter o € ¥, a row with root
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Figure 5. The Hankel Matrix for the tree-series that returns the number of leaves
in a tree over the ranked alphabet ¥ = {X, X5} where X9 = {a} and X5 = {b}.

o and for the k-children all options of trees from the basis. The criterion for a row not in
the basis to be covered, is the same; it should be equivalent to a row in the basis. In the
case of M*, the extension requirement is as for C*, since we are dealing with trees. As for
covering the rows of the table that are not in the basis, the requirement is that a rows that
is not in the basis be expressible as a linear combination of rows in the basis.

In the case of L*, the extracted automaton will have one state for every row in the basis,
where € is the initial state, and a state s is determined to be final if the observation table
entry corresponding to row s and column e is labeled 1 (i.e. the word s is in the language).
Then, the transition from s on o is determined to be the row s’ of the basis that is equivalent
to so.

In the case of M* the size of the basis determines the dimension of the extracted
multiplicity tree automaton. Suppose the size of the basis is d. The output vector A is set
to (c1,...,cq) where ¢; is the value of the entry corresponding to the row i of the basis
and the column ¢ (i.e the value of the i-th row of the basis). Consider a letter o € Xy,
its corresponding transition matrix j, is a d x d* matrix. Think of p, as d* d-vectors
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Figure 6. A closed observation table (on the left) and the MTA extracted from it
(on the right).

(V11..1 V11..2 ... Vdd..d); then the vector vj, j,. j, which corresponds to the row extending o
with the trees in the base rows rj,, 7, ...7j, gets its coefficient from the linear combination
for this row, see Example 4.2.

Note that in all cases we would like the basis to be minimal in the sense that no row
in the basis is expressible using other rows in the basis. This is since the size of the basis
derives the dimension of the automaton, and obviously we prefer smaller automata.

Example 4.2. Fig. 6 shows (on the left) a closed observation table which is a sub-matrix of
the Hankel Matrix of Fig. 5, and the MTA extracted from it (on the right). The base here
consists of the first two rows (thus the dimension d is 2) and as can be seen they linearly
span the other rows of the table. The coefficients with which they span the table appear on
the left-most column. The final vector \ is set to (1) since these are the values of the row
basis in column ¢. The matrix p, is a 2 x 20 matrix since a € 3. We view it as a single
vector that corresponds to the row of the letter a, it is thus (). The matrix uy is a 2 x 22
matrix since b € Xg9. We view it as the vectors (v11 v12 v21 v92). Consider for instance vo;.
It corresponds to the tree with root b whose left child is the second base row, namely the
tree on the second row of the observation table, and whose right child is the first base row,
namely a. It thus corresponds to the 4th row of the table and is therefore set to (_21). The
other vectors of py, are set similarly (follow the color coding in Fig. 6).
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Back to the problem at hand, since we are interested in probabilistic languages, we
would like to apply an L*-style algorithm to obtain a PMTA, so that we can convert it
into a PCFG. Since the coeflicients of the linear combination in rows that are not in the
basis determine the values of the entries of the transitions matrix, we cannot have negative
coefficients. That is, we need the algorithm to find a subset of the rows (a basis), so that all
other rows can be obtained by a positive linear combination of the rows in the basis, so that
the extracted automaton will be a PMTA.

Positive linear spans. An interest in positive linear combinations occurs also in the
research community studying convex cones and derivative-free optimizations and a theory
of positive linear combinations has been developed [CR93, Reg16].” We need the following
definitions and results.

The positive span of a finite set of vectors S = {v1,ve, ..., v} C R" is defined as follows:

span, (S) ={ A1 -vi+A-va+ ..+ Ao | A >0,V1 <i <k}

A set of vectors S = {v1,v9,...,ux} C R"™ is positively dependent if some v; is a positive
combination of the other vectors; otherwise, it is positively independent. Let A € R™*™,
We say that A is nonnegative if all of its elements are nonnegative. The nonnegative
column (resp. row) rank of A, denoted c-rank;(A) (resp. r-rank;(A)), is defined as the
smallest nonnegative integer ¢ for which there exist a set of column- (resp. row-) vectors
V = {v1,v2,...,u4} in R™ such that every column (resp. row) of A can be represented as
a positive combination of V. It was shown that c-ranky(A) = r-rank; (A) for any matrix
A [CR93]. Thus one can freely use ranky (A) for positive rank, to refer to either one of these.

4.1. Trying to Accommodate M* for learning PMTA. The first question that comes
to mind, is whether we can use the M* algorithm as is in order to learn a positive tree series.
We show that this is not the case. We prove two propositions, which show that one cannot
use the M*algorithm to learn PMTA. Proposition 4.3 shows a grammar, for which there
exist a PMTA, and a positive base in the Hankel Matrix, but applying the M*algorithm as
is may choose a non-negative base.

Proposition 4.3. There exists a probabilistic word series for which the M* algorithm may
return an MTA with negative weights.

Proof. Let G be the grammar that assigns to the words aa,ab,ac,ba,cb,cc a probability of %
and to all other words a probability of 0. For simplicity we assume that the grammar is
regular. The first rows of Hankel Matrix for this word series are given in Fig.7 (all entries
not in the figure are 0). One can see that the rows €, b, ¢, ba (highlighted in light gray)
are a positive span of the entire Hankel Matrix. However, the M* algorithm may return
the MTA spanned by the basis €, a, b, aa (highlighted in dark gray). Since the row of ¢
is obtained by subtracting the row of b from the row of a, the resulting MTA will contain
negative weights. []

Proposition 4.5 strengthens this and shows that there are grammars which have PMTA,
but M* would always return a non-positive MTA. This is since the Hankel Matrix Hg
corresponding to the tree-series T of the respective PCFG G has the property that no finite
number of rows positively spans the entire matrix.

Before proving Proposition 4.5, we prove the following lemma;:

5Throughout the paper we use the terms positive and nonnegative interchangeably.
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elalb|claa|ablac|ba|bb|bc|calch]|cc
€ 0/0[0[0] 5| &l &|&]10][0[0|F]|%
a olslz[zl0o]Jo]JofJoJojofJo]o]oO
b ols#/0folojojoflofO[O]O]|O]O
c ojolsliloJoJojofolo]o]o0]oO
aa slojo[oJoJo]JofJoJo]joJo]O]O
ab zlojo[oJoJo]JofJoJo]JoJo]O]O
ac zlojo[oJoJo]JofoJo]JoJo]O]O
ba zlojojoloJoJoJoJo]o]o]oO0]oO
bb ojojojoloJoJoJoJo[o]O0][O0]O
be ojojojoloJoJoJoJo]o][O0][O0]O
ca ojojojoJoJoJoJoJoJo]o]O0]oO
cb slojojoloJoJoJoJo]o]o]oO0]oO
cc zlojofojojofofojofjo]Oo]O]O

Figure 7. The observation table for the grammar G. Two of the possible bases are
highlighted. The dark gray one results in a negative MTA, while the light gray one
results in a positive one, that can be converted to a PCFG. For simplicity, the trees
are presented as words, since we assume that the grammar is regular.

Lemma 4.4. Let B = {b1,ba,...,b,} be a set of positively independent vectors. Let B bea
matriz whose columns are the elements of B, and let o be a positive vector. Then if Ba = b;
then afi] = 1 and afj] = 0 for every j # i.

Proof. Assume b; = Ba. Then we have:

If ai] < 1 we obtain:

J#i
Which is a contradiction, since b; € B and thus can’t be described as a positive combination
of the other elements.
If afi] > 1 we obtain:
>_aljlb; + (afi] = 1)b; = 0
J#i
This is a contradiction, since all b’s are positive, all a[j] > 0 and afi] > 1.
Hence afi] = 1. Therefore we have:

> aljlp; =0
J#i
Since afj] > 0, and b; is positive the only solution is that a[j] = 0 for every j # i. ]
We turn to ask whether we can adjust the algorithm M* to learn a positive basis. We

note first that working with positive spans is much trickier than working with general spans,
since for d > 3 there is no bound on the size of a positively independent set in R‘j_ [Reg16].
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To apply the ideas of the Angluin-style query learning algorihtms we need the Hankel Matrix
(which is infinite) to contain a finite sub-matrix with the same rank. Unfortunately, as we
show next, there exists a probabilistic (thus positive) tree series T that can be recognized
by a PMTA, but none of its finite-sub-matrices span the entire space of Hr.

Proposition 4.5. There exists a PCFG G s.t. for the Hankel Matrix Hg corresponding to
its tree-series Tg no finite number of rows positively spans the entire matriz.

Proof. Let G = ({a}, {N1, N2}, R, N1) be the following PCFG:

D= O

We say that a tree has a chain structure if every inner node is of branching-degree 2
and has one child which is a terminal. We say that a tree has a right-chain structure (resp.
left-chain structure) if the non-terminal is always the right (resp. left) child. Note that all
trees in [G] have a right-chain structure, and the terminals are always the letter a.

Let us denote by p, the total probability of all trees with n non-terminals s.t. the lowest
non terminal is N1, and similarly, let us denote by ¢, the total probability of all trees with
n non-terminals s.t. the lowest non-terminal is No.

We have that pg =0, p; = %, and po = 1—12 We also have that ¢qg =0, ¢t =0 and ¢ = %.

Now, to create a tree with n non-terminals, we should take a tree with n—1 non-terminals,
ending with either N7 or Na, and use the last derivation. So we have:

1 1

Pn = 5 'pnfl‘{'Z'anl
1 1

dn = g 'pn—l+1'Qn—1

We want to express p,, only as a function of p; for ¢ < n, and similarly for ¢,. Starting
with the first equation we obtain:

1 1
Pn = i'pn—l‘i‘Z'Qn—l
4-Ppn+1 —2-Pp =aqn

4'pn_2'pn71 = dn—1

And from the second equation we obtain:

1 1
ang‘pn—l'i_Z'Qn—l
3
3'Qn+l_Z‘Qn:pn
S S
qn 4Qn—1—pn—1

Now setting these values in each of the equation, we obtain:
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1 1
4-ppy1—2-pp = 3 Pn-1t 1(4-pn—2'pn_1)
1 1 1
— . . (4D, —2-p
Pn+1 9 Pn + 12 Pn—1+ 16( Pn DPn 1)
1 1 1 1
Pntl = 3 ‘Pn‘f‘ﬁ “Pn—1+t 1 “Pn — 3 - Pn—1
3 1
Pn+1 = Z *Pn — ﬁ *Pn—1
And:
3 1 3 1
3‘(]n+1—1'Qn:5'(3‘%—1'%—1)4-1'%—1
9 1
3'Qn+1:Z'QH_§'Qn71
9 1 3 1
gn+1 = 12 dn o dn—-1 = 1 dn o dn—1
let us denote by t, the probability that G assigns to a'. This probability is:
1
tn = 6 *Pn—1*+ 5 *GQn—1
Since
3 1
Pn—1 = Z *Pn—2 — ﬂ *Pn-3
and
3 1
dn—1 = 1 Qn—-2 — ﬂ *gn-3
we obtain:
b=t 3 13 1
n —6 Z Pn—2 24 Pn 3) 2 (Z dn—2 ﬂ ans)
. _1 3 1 1 n 1 3 1 1
n—gipn72 éﬂpni’i 51(]n2 §QQn3
ta=3 (5 Puzt 5 tn2) = 5 (g Pus 5 o)
n —4 6 Pn—2 2 dn—2 24 6 Pn-3 2 qn—3
3,1
—4 n—1 24 n—2
Hence, overall, we obtain:
3 1
tp = Z'tn—l_ﬂ'tn—2

10:15

Now, let L be the skeletal-tree-language of the grammar G, and let H be the Hankel
Matrix for this tree set. Note, that any tree ¢ whose structure is not a right-chain, would
have L(t) = 0, and also for every context ¢, L(c[t]) = 0. Similarly, every context ¢ who

violates the right-chain structure, would have L(c[t]) = 0 for every ¢.

Let T, be the skeletal tree for the tree of right-chain structure, with n leaves. We have

that L(T1) = 0, L(T») = &, L(T3) = %, and for every i > 3 we have

3 1

L(T) = 5+ L(Ti1) = o7 L(Ti 2).

B
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Let v; be the infinite row-vector of the Hankel matrix corresponding to T;. We have that for
every 1 > 3,
3 1
17U Ty
Assume towards contradiction that there exists a subset of rows that is a positive base and
spans the entire matrix H.

Let B be the positive base, whose highest member (in the lexicographic order) is the
lowest among all the positive bases. Let v, be the row vector for the highest member in this
base. Thus, v,41 € span, (B). Hence:

V; = *Vi—92.

Vpy1 = aB
Also, vp41 = % cvp — i - vy_1. Therefore,

3 1 .
Z-vr—ﬁ'vr,lzaB

vp==-aB+ = v,_
r 3 18 r—1
We will next show that v,._1 and v, are co-linear, which contradicts our choice of v,.
Since vy_1 € span, (B) we know v,_1 = o/ B for some «’. Therefore,

4 1 -
UT:(g-a—i—l—S-O/)B
Let 8 = % ca+ %8 /. Since « and o/ are non-negative vectors, so is 3. And by Lemma 4.4

it follows that for every i # r:

4-a; o
B 3 +18

Since o and o are non-negative, we have that o; = o = 0.

Since for every i # r, o = 0, it follows that v,_1 = m- v, for some m € R. Now, m can’t
be zero since our language is strictly positive and all entries in the matrix are non-negative.
Thus, v, = % -vp_1, and v, and v,_; are co-linear. We can replace v, by v,_1, contradicting
the fact that we chose the base whose highest member is as low as possible. ]

We note that a similar negative result was independently obtained in [vHKRS20]
which studies the learnability of weighted automata, using an L* algorithm, over algebraic
structures different than fields. It was shown that weighted automata over the semiring
of natural numbers are not learnable in the L* framework. The formal series used in the
proof is f(a™) = 2™ — 1. Since this series is divergent it does not characterize a probabilistic
automata/grammars. Proposition 4.5 strengthens this result as it provides a convergent
series that is not L* learnable.

4.2. Focusing on Structurally Unambiguous CFGs. To overcome these obstacles we re-
strict attention to structurally unambiguous CFGs (SUCFGs) and their weighted /probabilistic
versions (SUWCFGs/SUPCFGs). A context-free grammar is termed ambiguous if there
exists more than one derivation tree for the same word. We term a CFG structurally
ambiguous if there exists more than one derivation tree with the same structure for the
same word. A context-free language is termed inherently ambiguous if it cannot be derived
by an unambiguous CFG. Note that a CFG which is unambiguous is also structurally
unambiguous, while the other direction is not necessarily true. For instance, the language
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{a"b"c™d™ | n > 1,m > 1} U {a™"c™d™ | n > 1,m > 1} which is inherently ambigu-
ous [HU79, Thm. 4.7] is not inherently structurally ambiguous. Therefore we have relaxed
the classical unambiguity requirement.

The Hankel Matrix and MTA for SUPCFG. Recall that the Hankel Matrix considers
skeletal trees. Therefore if a word has more than one derivation tree with the same structure,
the respective entry in the matrix holds the sum of weights for all derivations. This makes
it harder for the learning algorithm to infer the weight of each tree separately. By choosing
to work with structurally unambiguous grammars, we overcome this difficulty as an entry
corresponds to a single derivation tree.

To discuss properties of the Hankel Matrix for an SUPCFG we need the following
definitions. Let H be a matrix, ¢ a tree (or row index) ¢ a context (or column index), 7" a
set of trees (or row indices) and C' a set of contexts (or column indices). We use H|t] (resp.
H{c]) for the row (resp. column) of H corresponding to ¢ (resp. ¢). Similarly we use H[T]
and H|[C] for the corresponding sets of rows or columns. Finally, we use H[t][C] for the
restriction of H to row ¢ and columns [C].

Two vectors, v1,vs € R™ are co-linear with a scalar o € R for some « # 0 iff v1 = a - vo.
Given a matrix H, and two trees t; and t2, we say that ¢; x¢, ¢ iff H[t;] and H][ts] are
co-linear, with scalar o # 0. That is, H[t1] = « - H|[ts]. Note that if H[t;] = H[t2] = 0, then
t1 X% to for every a > 0. We say that ¢ =g to if t1 X t2 for some « # 0. It is not hard to
see that =y is an equivalence relation.

The following proposition states that in the Hankel Matrix of an SUPCFG, the rows of
trees that are rooted by the same non-terminal are co-linear.

Proposition 4.6. Let H be the Hankel Matriz of an SUPCFG. Let t1,ts be derivation trees
rooted by the same non-terminal. Assume P(t1),P(t2) > 0. Then t; X% ta for some o # 0.

Proof. Let ¢ be a context. Let u ¢ v be the yield of the context; that is, the letters with
which the leaves of the context are tagged, in a left to right order (note that v and v might
be ). We denote by P;(c) the probability of deriving the given context ¢, while setting the
context location to be N;. That is:

Pi(c) =P(S ? ulN;v)

Let P(¢1) and P(t2) be the probabilities for deriving the trees ¢; and to respectively. Since
the grammar is structurally unambiguous, we are guaranteed there is a single derivation
tree for uwv where w is the yield of t; with the structure of ¢[¢t;] (and similarly for t3), thus
we obtain

i(c) - P(t1)

P(cft1]) = Pi(
P(c[t2]) = Pi(c) - P(t2)
Hence for every context ¢, assuming that P;(c) # 0, we have

P(c[t:]) _ P(t)
)

P(cfta]) — P(t2
For a context ¢ for which P;(c) = 0 we obtain that P(c[t1]) = P(c[t2]) = 0. Therefore, for
every context
P(t1)

P(c[t1]) = MP(CHQH)
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Thus H[t;] = o - H[to] for a = ﬁgg% Hence H|[t] and H[t3] are co-linear, and t; X% ta. [

We can thus conclude that the number of equivalence classes of =g for an SUPCFG is
finite and bounded by the number of non-terminals plus one (for the zero vector).

Corrolary 4.7. The skeletal tree-set for an SUPCFG has a finite number of equivalence
classes under =g.

Proof. Since the PCFG is structurally unambiguous, it follows that for every skeletal tree s
there is a single tagged parse tree t such that S(¢) = s. Hence, for every s there is a single
possible tagging, and a single possible non-terminal in the root. By Proposition 4.6 every
pair of trees s1, so which are tagged by the same non-terminal, and in which P(s1),P(s2) > 0
are in the same equivalence class under =g . There is another equivalence class for all the
trees t € Trees for which P(¢f) = 0. Since there is a finite number of non-terminals, there is a
finite number of equivalence classes under =g. L]

Next we would like to reveal the restrictions that can be imposed on a PMTA that
corresponds to an SUPCFG. We term a PMTA co-linear, and denote it CMTA, if in every
column of every transition matrix u, there is at most one entry which is non-negative. That
is, in every transition matrix p, of a CMTA all weights are either zero or positive, and there
is at most one non-zero entry in each column.

Proposition 4.8. A CMTA can represent an SUPCFG.

To prove Proposition 4.8 we first show how to convert a PWCFG into a PMTA. Then
we claim, that in case the PWCFG is structurally unambiguous the resulting PMTA is a
CMTA.

Converting a PWCFG into a PMTA. Let (G, 6) be a PWCFG where G = (V,3, R, S).
Suppose w.Lo.g that V = {No, N1, ..., Nyy|—1}, ¥ = {00,01, ..., 051 } and that S = No. Let
n = |V| + |X|. We define a function ¢ : VUX — N<,, in the following manner:
J xr = Nj ey
“ )_{M+j r=o,e%
Note that since VNY = (), ¢ is well defined. It is also easy to observe that ¢ is a bijection, so

L N<, = VUZX is also a function.
We define a PMTA Ag in the following manner:

AQ = (27 R+7 n, w, )‘)
where A € R? is defined as follows

A= (1,0,...,0)

pio ] = {1 F= o)

0 otherwise

and for each o € ¥ we define

For i € {1,...,|V|} and (i1,42,...,%;) € {1,2.. ., we define R=1(i, i1, iy, . . . ,i5) to
be the production rule

THE) = @) ) e ()
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We define p7 in the following way:

i O(R ™ (i,i1,49,...,45)) 1<i<|V|
K240 = .
! 0 otherwise

We claim that the weights computed by the constructed PMTA agree with the weights
computed by the given grammar.

Proposition 4.9. For each skeletal tree t € S(T(G)) we have that Wg(t) = Ag(t).

Proof. The proof is reminiscent of the proof in the other direction, namely that of Propo-
sition 3.2. We first prove by induction that for each ¢ € S(T(G))) the vector u(t) = v =
(v[1],v[2],...,v[n]) calculated by Ag maintains that for each i < |V|, v[i] = Wh; (t); and for
i > |V| we have that v[i] = 1 iff t = .=1(i) and v[i] = 0 otherwise.

The proof is by induction on the height of ¢. For the base case h = 1, thus t is a leaf,
therefore ¢t = o € ¥. By definition u,[i] =1 if i = (o) and 0 otherwise. Hence v[c(0)] = 1,
and for every i # ((o) v[i] = 0. Since the root of the tree is in X, the root of the tree can’t
be a non-terminal, so W, (t) = 0 for every . Thus, the claim holds.

For the induction step, h > 1, thus t = (?(¢1, ta, ..., tx)) for some skeletal trees t1, ta, ..., t
of depth at most h. Let u(t) = v = (v[1],v[2],...,v[n]) be the vector calculated by A for ¢.
By our definition of u, for every i > |V| M?iil,..,,z'j = 0 for all values of i1, g, ...,7;. So for
every i > |V| we have that v[i] = 0 as required, since ¢ ¢ ¥. Now for ¢ < |V|, by definition of
a multi-linear map we have that:

vfi] = > oty gy ol - vsli)
(ilviQ""’ij)e[‘VHj
Since i < |V|, by our definition we have that:
2y gy = 00TH(E) — T (i) ) o ()
For each i, let By, = ¢~ 1(i}), also since i < |V|, t71(i) = N;, hence
w'iy,.i; = 0(Ni — B1By...B))
For each i, by the induction hypothesis, if ¢; is a leaf, v;[j;] = 1 only for j; = «(¢;), and
otherwise v;[j;] = 0. If ¢; is not a leaf, then v;[j;] = 0 for every j; > |V|; and for j; < |V|, we
have that v;[j;] = W, (t;). Therefore we have:
’U[Z] = Z 0(]\7z — BlBQ...Bj) . WNil (tl) s WNij (tj)
(41,82,..,5)E[|V|]7

Thus by Lemma 3.3 we have that v[i] = Wh; (t) as required.

Finally, since S = Ny and since by our claim, for each i < |V|, v; = v[i] = Wh;, (t), we
get that v[1] = Wg(t). Also, since A = (1,0, ...,0) we have that Ag(t) is v[1], which is Wg(¢).
Thus, it follows that Wg(t) = Ag(t) for every ¢t € S(T(G)). []

To show that the resulting PMTA is a CMTA we need the following lemma, which
makes use of the notion of invertible grammars [Sak92]. A CFG G = (V, X, R, S) is said to
be invertible if and only if A - o and B — « in R implies A = B.

Lemma 4.10. A CFG is invertible iff it is structurally unambiguous.
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Proof. Let G be a SUCFG. We show that G is invertible. Assume towards contradiction that
there are derivations N1y — « and Ny — a.. Then the tree ?(«) is structurally ambiguous
since its root can be tagged by both N; and Ns.

For the other direction, let G be an invertible grammar. We show that G is an SUCFG.
Let t be a skeletal tree. We show by induction on the height of ¢ that there is a single
tagging for ¢. For the base case, the height of ¢ is 1. Therefore, t is a leaf; so obviously, it
has a single tagging. For the induction step, we assume that the claim holds for all skeletal
trees of height at most h > 1. Let ¢ be a tree of height h + 1. Then t =?(¢1,t2,...,t,) for
some trees t1,t,...,t, of smaller depth. By the induction hypothesis, for each of the trees
t1,t2,...,tp there is a single possible tagging. Hence we have established that all nodes of ¢,
apart from the root, have a single tagging. Let X; € ¥ U N be the only possible tagging
for the root of t;. Let a = X1X5...X,. Since the grammar is invertible, there is a single
non-terminal N s.t. N — «. Hence, there is a single tagging for the root of ¢ as well. Thus
G is structurally unambiguous. L]

We are finally ready to prove Proposition 4.8.

Proof of Prop.4.8. By Proposition 4.9 a WCFG (G, #) can be represented by a PMTA Ag,
namely they provide the same weight for every skeletal tree. By Lemma 4.10 the fact that G
is unambiguous implies it is invertible. We show that given G is invertible, the resulting
PMTA is actually a CMTA. That is, in every column of the matrices of Ag, there is at
most one non-zero coefficient. Let o € (X U V)P, let ¢(a) be the extension of ¢ to «, e.g.,
t(aN7bb) = t(a)t(N7)e(b)e(b). Since G is invertible, there is a single N; from which « can
be derived, namely for which Wy, (t)¥) > 0 where t2i is a tree deriving o with N; in the
root. If a € 3, i.e. it is a leaf, then we have that u,[j] = 0 for every j # i, and p,[i] > 0. If
a ¢ ¥, then we have that mjL(a) = 0 for every j # 7, and mib(a) > 0, as required. ]

5. THE LEARNING ALGORITHM

We are now ready to present the learning algorithm. Let 7 : Trees(X) — R be an unknown
tree series, and let H7 be its Hankel Matrix. The learning algorithm LearnCMTA (or
C*, for short), provided in Alg. 1, maintains a data structure called an observation table.
An observation table for 7 is a quadruple (7,C, H, B). Where T' C Trees(X) is a set of
row titles, C' C Treesy(x) is a set of column titles, H : T'x €' — R is a sub-matrix of Hr,
and B C T, the so called basis, is a set of row titles corresponding to rows of H that are
co-linearly independent.

The algorithm starts with an almost empty observation table, where T' = (), C' = o,
B = () and uses procedure Complete(T,C,H, B,Y) to add the nullary symbols of the
alphabet to the row titles, uses SMQ queries to fill in the table until certain criteria hold on
the observation, namely it is closed and consistent, as defined in the sequel. Once the table
is closed and consistent, it is possible to extract from it a CMTA A (as we shortly explain).
The algorithm then issues the query SEQ(A). If the result is “yes” the algorithm returns A
which was determined to be structurally equivalent to the unknown series. Otherwise, the
algorithm gets in return a counterexample (s, 7 (s)), a structured string in the symmetric
difference of A and 7T, and its value. It then uses Complete to add all prefixes of ¢ to T and
uses SMQs to fill in the entries of the table until the table is once again closed and consistent.

Given a set of trees T we use ¥(7T') for the set of trees {o(t1,...,tx) | X € 2, 0 € Xy,
t; € T, V1 <i < k}. The procedure Close(T,C, H, B), given in Alg. 2, checks if H[t][C] is
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Algorithm 1 LearnCMTA(T, C, H, B).

1 Initialize B < 0, T < 0, C «+ {o}
2 Complete(T,C, H, B, )
3 while true do

4 A « ExtractCMTA(T,C, H, B)
5| t<+ SEQ(A)

6 if ¢ is null then

7 | return A

8

Complete(T, C, H, B, Pref(t))

Algorithm 2 Close(T, C, H, B).
1 while 3t € X(T) s.t. H[t] is co-linearly independent

from 1" do
2 B+ BU({t}
3 T+ TU{t}

Algorithm 3 Consistent(T, C, H, B)

1 fort € T's.t. H[t] = 0do
for c € X(T,¢),c € C do
if H[c'[c[t]]] # O then
| C<«Cu{c]}
for 1,15 € T s.t. t1 D(%I to do
for c € ¥(T,0),c € C do
if H['][c[t1]] # aH|[][c[t2]] then
‘ | C<«Cu{]}

0NN AW

Algorithm 4 Complete(T,C, H, B, S).

1 T+TUS

2 while (T, C, H, B) is not closed or not consistent do
3 Close(T,C, H, B)
4 Consistent(T,C, H, B)

co-linearly independent from 7T for some tree ¢t € (7). If so it adds ¢ to both T" and B and
loops back until no such trees are found, in which case the table is termed closed.

We use X(T,t) for the set of trees in 3(T') satisfying that one of the children is the tree
t. We use (T, ¢) for the set of contexts all of whose children (but the context) are in 7. An
observation table (T',C, H, B) is said to be zero-consistent if for every tree t € T' for which
HJt] = 0 it holds that H[c[t']] = 0 for every ¢’ € X(T,t) and ¢ € C (where 0 is a vector of all
zeros). It is said to be co-linear consistent if for every t1,t2 € T such that ¢; X% t2 and every
context ¢ € (T, ) we have that c[t;] x¢ c[t2]. The procedure Consistent, given in Alg. 3,
looks for trees which violate the zero-consistency or co-linear consistency requirement, and
for every violation, the respective context is added to the set of columns C.

The procedure Complete(T,C, H, B, S), given in Alg. 4, first adds the trees in S to T,
then runs procedures Close and Consistent iteratively until the table is both closed and
consistent. When the table is closed and consistent the algorithm extracts from it a CMTA
as detailed in Alg. 5.

The procedure ExtractCMTA, given in Alg. 5, sets the output vector A of the CMTA
by setting its j-th coordinate to H(b;,©) (lines 17-18). For each letter o € ¥, it builds the
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Algorithm 5 Extract CMTA

1 d < |B|

2 for0 <k <pdo

3 for o € ¥, do

4 for (i1,a,...,1) € {1,2,...,d}* do

5 Lett:U(bil,biz,...,bik)

6 if H[t] = 0 then

7 for1 <j<ddo

8 | 031,1'2,...,1,@ <0

9 else

10 Letb; € B,a € Rbes.t.t x% b;

11 for1 <j<ddo

12 if j = 7 then

13 | Ugl,w,...,ik co

14 else

15 | Uqu,za,m,ik «0

16 Let 11, be the d x d¥ matrix obtained from the
respective coefficients.

17 for 1 < j < ddo

18| A Hib,o)
19 return A = (X, R, d, p, A)

d x d* matrix p, (where d is the size of the basis B) by setting its coefficients as follows
(lines 4-15). For each possible assignments of trees from the basis as children of o, namely for
each (i1,12,...,1x) € {1,2,...,d} it inspects the row H(t) for t = o(b;,, bi,, ..., b;, ). If this
row is zero then the column of u, corresponding to (i,i9,...,1x) is set to zero. Otherwise,
since the basis consists of rows that are co-linearly independent, there exists a single row in
the basis, b;, such that the row H(t) for t = o(b;,, bi,, ..., bj, ) is co-linear to b;. Let o € Ry
be such that ¢ x¢; b;. Then the entry “21,1'2,...,1‘
are set to zero.

Overall we can show that the algorithm LearnCMTA always terminates, returning a
correct CMTA whose dimension is minimal, namely it equals the rank n of the Hankel
matrix for the target language. It does so while asking at most n equivalence queries,
and the number of membership queries is polynomial in n, and in the size of the largest
counterexample m, but of course exponential in p, the highest rank of a symbol in ¥. Hence
for a grammar in Chomsky Normal Form, where p = 2, it is polynomial in all parameters.

, is set to a and the entries i ,, ; for j #i

Theorem 5.1. Let n be the rank of the target language, let m be the size of the largest
counterexample given by the teacher, and let p be the highest rank of a symbol in 3. Then
the algorithm makes at most n - (n+m-n+ |3|- (n+m-n)P) SMQs and at most n SEQS.

We first give a running example in §5.1, and then prove this theorem in §5.2.

5.1. Running Example. We will now demonstrate a running example of the learning
algorithm. For the unknown target consider the series which gives probability (%)" to
strings of the form a™b™ for n > 1 and probability zero to all other strings. This series can
be generated by the following SUPCFG G = (V,{a,b}, R, S) with V = {S,S2}, and the
following derivation rules:

S — aSy [3] | ab[3]
SQ — Sb [1]
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o o=
> o S S

a 0 o g“ F/ ;/

b 0 = ty a 0 0 0.5
Ya,a) | 0 ty | a 0 0 to b 0 05 |0
?(a,b) | 0.5 ta | b 0 | 05 t3 ?(a,b) 0510 0
7(bya) | 0 ts | ?(a,b) 05| 0 ty ¢ B | ?(a,a) 0 0 0
7(b,b) | O 7(7(a,b),b) | 0 |0.25 7(7(a,b),b) | 0 0.25 0

(a) (b) (c)

Table 1. Observation tables (a) (b) and (c)

The algorithm initializes T = {a, b} and C' = {¢}, fills in the entries of M using SMQs,
first for the rows of T' and then for their one letter extensions 3(7T") (marked in gray),
resulting in the observation table in Tab. 1 (a).

We can see that the table is not closed, since ?(a,b) € 3(T') but is not co-linearly
spanned by T, so we add it to T. Also, the table is not consistent, since a x}{ b, but
MQ(¢[?(a,b)]) # MQ(e[?(a,a)]), so we add ?(a, <) to C, and we obtain the observation table
in Tab. 1 (b). From now on we omit 0 rows of X(7') for brevity.

The table is now closed but it is not zero-consistent, since we have H[a] = 0, but there
exists a context with children in T, specifically ?(¢,b), with which when a is extended
the result is not zero, namely H[?(a,b)] # 0. So we add this context and we obtain the
observation table in Tab. 1 (c).

Note that t4 was added to T since it was not spanned by 7', but it is not a member of
B, since HJt4] = 0. We can extract the following CMTA A; = (£,R,d, i, A) of dimension
d = 3 since |B| = |{t1,t2,t3}| = 3. Let V = R3. For the letters o € ¥y = {a,b} we have
that iy : VO = V, namely pq and g are 3 x 3%-matrices. Specifically, following Alg. 4 we
get that e, = (1,0,0), up = (0,1,0) as a is the first element of B and b is the second. For
? € X2 we have that pr : V2 =V, thus p is a 3 x 32-matrix. We compute the entries of j-
following Alg. 4. For this, we consider all pairs of indices (j, k) € {1,2,3}2. For each such
entry we look for the row t; 5 =?(t;,t;) and search for the base row t; and the scalar « for
which ¢, X% t;. We get that 2 2 N}{ t3, t3,2 M?f t2 and for all other j, k we get ¢; l><}{ tq,
so we set c;k to be 0 for every i. Thus, we obtain the following matrix for ue

00 0O0O0OO0OO0O O O
=10 0 0 0 000 05 0
01 00O0O0OO0O O O

The vector A is also computed via Alg. 4, and we get A = (0,0,0.5).

The algorithm now asks an equivalence query and receives the tree p given in Fig. 8 (i)
as a counterexample:

Indeed, while sMQ(p) = 0 we have that A(p) = 0.125. To see why A(p) = 0.125, let’s
look at the values p(t) for every sub-tree t of p. For the leaves, we have p(a) = (1,0,0) and
ulb) = (0,1,0).

Now, to calculate p(?(a,b)), we need to calculate u2(p(a), 1(b)). To do that, we first
compose them as explained in the multilinear functions paragraph of Sec. 2.2, see also
Fig. 2. The vector P, ) () 18 (0,1,0,0,0,0,0,0,0). When multiplying this vector by the
matrix 77 we obtain (0,0,1). So u(?(a,b)) = (0,0,1). Similarly, to obtain u(7(?(a,b),a))
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? (0,0,0.25)
/\ /\
a ?
/\ (1,0,0) (0,0.25,0)
? ?
P SN
a b 7 b (0,0,1) (0,0.5,0)
P /\
a b (1,0,0) (0,1,0) (07((\071,0)
/\
(1,0,0) (0,1,0)
(i) (ii)
Figure 8. (i) The tree p and (ii) the tree p annotated with the value p(t) for its of
sub-trees ¢.
=
Tle s
o= ol sl e | S
ol g |S S22
= | & &
ti]a 0[0]3 )
=
ty [ b 01510 t | a 0020
i3 ?(aab) 2 0 0 to | b 0 % 0 %
ta | ?(a,a) 0/]0]0 ts | 7(a,b) TToJo]o
ts | 7(*(a,a),a) 0 (1) 0 ta | 2(a,q) olofo0]o
t | ?(?(a,b),b) 01310 ?(7(a,a), a) 0000
tr | 7(?(a,b),?(?(a,b),b)) 01010 ts | 2(?(a,b),b) ol ITfo]o
ts | ?(a, ?(?(a,b), ?(?(a;b),0))) | 0] 0 | O ?(?(a, ), ?(?(a, b), b)) 0000
2a, 7((@,0), 7@, ), 5)7) | 0 0 [ 0] 0
te | 7(a,?(?(a,b),b)) i 0|01 O0
(d) (e)

Table 2. Observation tables (d) and (e)

we first compose the value (0,0,1) for ?(a,b) with the value (0,1,0) for a and obtain
P 2(ap),u(a) = (0,0,0,0,0,0,0,1,0). Then we multiply 77 by P,2(a,),u(a) and obtain (0,0.5,0).

In other words,
wectasn = (1], [3) = 8]

The tree in Fig. 8 (ii) depicts the entire calculation by marking the values obtained for each
sub-tree. We can see that u(p) = (0,0,0.25), thus we get that A = u(p) - A = 0.125.

We add all prefixes of this counterexample to T' and we obtain the observation table in
Tab. 2 (d). This table is not consistent since while g x%° t5 this co-linearity is not preserved
when extended with t3 =7(a,b) to the left, as evident from the context ?(a,©). We thus
add the context ?(a,©)[?(?(a,b),)] =?(a, 7( (a,b),©)) to obtain the final observation table
given in in Tab. 2 (e).

The table is now closed and consistent, and we extract the following CMTA from it:
Az = (2,R, 4, u, \) with pg = (1,0,0,0), pp = (0,1,0,0). Now s is a 4 x 42 matrix. Its
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non-zero entries are C%Q =1, cg’z =1and c‘i4 = % since 12 x}{tg, 132 |><11th5, t15 M}{t(; KOHE’ t3.
And for every other combination of unit-basis vectors we have t; ; x 1 t4. The final output
vector is A = (0,0,0.5,0).

The equivalence query on this CMTA returns true, hence the algorithm now terminates,
and we can convert this CMTA into a WCFG. Applying the transformation provided in
Fig. 4 we obtain the following WCFG:

S — Ng [0.5]
N; — a [1.0]
Ny — b [1.0]
N3 — N1N2 [10] ‘ N1N4 [05]
N4 — N3N2 [10]

Now, following [AMP99, SJ07] we can calculate the partition functions for each non-

terminal. Let fn be the sum of the weights of all trees whose root is N, we obtain:

fs=1, fn;y=1, fnvy=1, fng=2, fn,=2.
Hence we obtain the PCFG
S — N3 [1.0]
N; — a [1.0]
Ny — b [1.0]
N3 — N1N3 [0.5] | N1Ny [0.5]
N4y — N3Ny [1.0]

which is a correct grammar for the unknown probabilistic series.

The careful reader might notice that the produced grammar is not the most succinct
one for this language. Indeed, the conversation of a CMTA to a PCFG could be optimized;
currently it adds additional O(X) non-terminals and derivation rules (for every terminal a a
non-terminal N, and a respective production rule N, — a are introduced). Algorithm 1
itself does return the minimal CMTA with respect to the given skeletal trees.

5.2. Correctness Proof. To prove the main theorem we require a series of lemmas, which
we state and prove here. We start with some additional notations. Let v be a row vector
in a given matrix. Let C be a set of columns. We denote by v[C] the restriction of v to
the columns of C. For a set of row-vectors V in the given matrix, we denote by V[C] the
restriction of all vectors in V' to the columns of C.

Lemma 5.2. Let B be a set of row vectors in a matriz H, and let C' be a set of columns.
If a row v[C] is co-linearly independent from B[C| then v is co-linearly independent from B.

Proof. Assume towards contradiction that there is a vector b € B and a scalar a € R
s.t. v = ab. Then for every column ¢ we have v[c] = ablc]. In particular that holds for
every ¢ € C. Thus, v[C] = ab|C] and so v[C] is not co-linearly independent from B[C],
contradicting our assumption. L]

Lemma 5.3. Let A= (X, R,d,u,\) be a CMTA. Let t1,to s.t. u(t1) = a- u(te). Then for
every context c

ple[ta]) = a- plcft2])
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Proof. The proof is by induction on the depth of ¢ in ¢. For the base case, the depth of ¢ in
cis 1. Hence, ¢ = ¢ and indeed we have

p(c[ta]) = p(tr) = o~ pltz) = o plcfta])
as required.

For the induction step, assume the claim holds for all contexts where ¢ is in depth at
most h. Let ¢ be a context s.t. ¢ is in depth A + 1. Hence, there exists contexts ¢; and co
s.t. ¢ = c1co] where co = o (s1, 82, ..., 8i—1,9, Sit1, ..., Sp) for some s;’s and the depth of ¢ in
c1 is h. Let t]) = eo[t1] and let ), = ca[t2]. We have

pu(th) = plealts])
= o (p(s1), p(
= o (p(s1), p(

Similarly for to we obtain

1u(t) = po(u(s1), 1(52), oy p(8i-1), ilt2), 1(Sit1), - 1(sp))-
By properties of multi-linear functions we obtain:

)y wees 11(8i—1)5 (1) p(Si1), o5 11(Sp))

$1)5 1(82), s
S1 52)3-“7/1(51‘71)705'M(tQ)Hu(SiJrl)v'“a/'L(sp))

N(O-(Sl)‘SQa"'73i—1)t178i+1)"'78]2)) =
(o /L(O’(Sl, 82y uny Si_l,tg, Sid1y ey Sp))

Thus, u(t]) = a - u(th), and by the induction hypothesis on ¢; we have:

per[th]) = o plerta])
Hence
p(c[tr]) = pa[ti]) = a- plefta]) = o - plcftz])
as required. []

Recall that a subset B of T is called a basis if for every t € T, if H|[t] # 0 then there
is a unique b € B such that t x¢ b. Let (T,C, H, B) be an observation table. Then
B = {b1,bz...,bq} is a basis for T, and if b; is the unique element of B for which ¢ x%; b;
for some «, we say that [t] = b;, a[t] = «, and ¢[t] = i. The following lemma states that the
value assigned to a tree ?(t1,t2,...,tp) all of whose children are in 7', can be computed by
multiplying the respective coefficients «[t;] witnessing the co-linearity of t; to its respective
base vector [t;].

Lemma 5.4. Let (T,C, H, B) be a closed consistent observation table. Let ti,ta,....,t, € T,
and let t =7(t1,t2,...,tp). Then

p

H([2(t1,ta, )] = [ [ alta] - H?2([t1], [ta], -, [15])]
i=1
Proof. Let k be the number of elements in t1, t2, ..., t, such that t; # [t;]. We proceed by
induction on k. For the base case, we have k = 0, so for every t; we have t; = [t;] and

aft;] = 1. Hence, obviously we have

H[?(t1,t2,...,tp)] = Ha[ti] -H[?([t1], [t2], -, [tp))]
i=1

Assume now the claim holds for some k£ > 0. Since k + 1 > 0 there is at least one 7 such
that ¢; # [t;]. Let t' =?(t1,t2, ..., ti—1, [ti], tit1, ..., tp). Since the table is consistent, we have
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that H[t] = aft;] - H[t']. Now, ¢’ has k children such that ¢; # [t;], so from the induction

hypothesis we have
P

Hit)= ] oltj]- H2([t], [, ., [t])
j=1

Hence we have
H[t] = aft:] - H[t' = [ [ alty] - H?([1], [t2], -, [1])
j=1
as required. L]
The following lemma states that if ¢t =7(¢,to,...,t,) is co-linear to s =7(s1, s2, ..., Sp)

and t; is co-linear to s;, for every 1 < i < p and H|[t] # 0 then the ratio between the tree
coefficient and the product of its children coefficients is the same.

Lemma 5.5. Let t =?(t1,t2,....tp) and s =7(s1, 2, ..., p) s.t. t; =g s; for 1 <i < p. Then

o] afs]

f:1 alti] Hf:l alsi]
Proof. Let t' =7?([t1], [t2]..., [tp]). Note that we also have t’ =7?([s1], [s2],..., [sp]). Then
from Lemma 5.4 we have that H[t] = le alt;] - H[t']. Similarly we have that H[s] =

P L als;] - H[t']. Tt follows from Lemma 5.4 that ¢ =p s, since for each i t; =g s;. Let

b = [t] = [s]. We have H[t] = «[t] - H[b], and H[s] = a[s] - H[b]. Thus we have

oft] - H[p] = [ [ alt:] - H[¢'
i=1
and
P
afs] - H[o] = [ alsi] - H[t]
i=1
Hence we have . »
alt n_ als .
e 1= = a1
Since H[t] #0, and t =5 b =g t' we obtain that H[b] # 0 and H|[t'] # 0. Therefore
aff] —_  als]
Lol ~ T afsd -

The next lemma relates the value u(t) to t’s coefficeint, a[t], and the vector for respective
row in the basis, ¢[t].

Lemma 5.6. Lett € T. If H[t| # 0 then p(t) = a[t] - [t]. If H[t] =0 then u(t) = 0.

Proof. The proof is by induction on the height of t. For the base case, t = o is a leaf, for
some o € . If H[t] # 0, by Alg. 5, we set ¢!l to be at], and for every j # w[t] we set o7 to
be 0, so pu(t) = pe = aft] - [t] as required. Otherwise, if H[t] = 0 then we set o’ to be 0 for
every 4, so u(t) = 0 as required.
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For the induction step, t is not a leaf. Then ¢t =7(ty,ta, ..., t,). If H[t] # 0, then since H
is zero-consistent, we have for every 1 < i < p that H[t;] # 0. So for every 1 < j < p by
induction hypothesis we have u(t;) = a[t;] - [t;]. Hence

p(t) = po(plt), ... ultp) =
= pr(aftr] - [ta], ... altp] - [tp))
Therefore we have
p®E = > o, - altlhll] - altl ) )
J1se-dp€ln]P
1\Lote that for every ji, j2, ..., Jp # t[t1], tlt2], ..., t[tp] we have aft][t1][1] -+ altp]ltp]lip] =0,
thus
WO = e altdlit]bl] - altlit ]l
= Uf[tl],,,,,L[tp] afti] - afta] - alty)

From Alg. 5, and Lemma 5.5 it follows that

‘ 0 if 7 # [t]
o’ = alt] —
dfta] efta],seltp] mr—a  if j = ([t]

Hence we obtain

Thus u(t) = aft] - [t] as required.
If H[t] = 0 then UZ[tlLL[tQ],...,L[tp

Next we show that rows in the basis get a standard basis vector.

| = 0 for every i, and we obtain wu(t) = 0 as required. []

Lemma 5.7. For every b; € B, u(b;) = e; where e; is the i’th standard basis vector.

Proof. By induction on the height of b;. For the base case, b; is a leaf, so b = ¢ for o € X.
By Alg. 5 we set 0; to be 1 and o; to be 0 for every j # i, so u(b;) = e;.

For the induction step, b; is not a leaf. Note that by definition of the method Close
(Alg. 2), all the children of b; are in B. So b; = o (bj,, biy, .., b;,,) for some base rows b;,’s.
Let’s calculate p(b;)[7]

p)l = D o)) - (b))
J1,925+-,Jp€[N]P

By the induction hypothesis, for every 1 < j < p we have that u(b;;)[7;] = 1, and u(b;; )[k] = 0
for k # i;. So for every vector ji, j2, ..., jp # 11,12, ..., ip We obtain

pbi)li] - - b, ) ip] = 0
For jl,jg, ...,jp = il,ig, veuy ip we obtain
pi) gl - by )p) = 1

Hence we have
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By Alg. 5 we have that 0}1@7_”7% = 1 and Ugm iy = 0 for j #4, so p(b;)]i] =1 and
w(bi)[j] = 0 for j # i. Hence u(b;) = e; as required. []

The next lemma states for a tree t = o(b;,, by, ..., b;,) with children in the basis, if
t x4 b; then pu(t) = « - e; where e; is the i’th standard basis vector.

Lemma 5.8. Let t = (b, biy, -, bi,), s.t. bi; € B for 1 < j <p. Assume H[t] = a - H[b;]
for some i. Then u(t) = a - e;.
Proof. If t = o is a leaf, then by definition we have 0; = a and o; = 0 for j # i, so
p(t) = a - e;. Otherwise, ¢ isn’t a leaf. Assume t = o(b;,, by, ..., b;,). We thus have
pOU = Y g, mb) ] b))
J1,2,-,Jp€[n]P
By Lemma 5.7 we have that u(bij) = ¢;; for 1 < j < p, hence using a similar technique to
the one used in the proof of Lemma 5.7 we obtain that for every 1 < j < p:
()] = O—Z‘?l,ig,.‘.,ip
By Alg. 5 we have that O'Z‘?177;27W7Z~p =« for i = j and Jil,iz,...,ip =0 for i # j, thus u(t) = a-¢;
as required. M

The following lemma generalizes the previous lemma to any tree t € T'.

Lemma 5.9. Let H be a closed consistent sub-matriz of the Hankel Matriz. Then for every
teT s.t. Ht] = o H[b;] we have u(t) = a - e;

Proof. By induction on the height of ¢. For the base case t is a leaf, and the claim holds
by Lemma 5.8. Assume the claim holds for all trees of height at most h. Let ¢ be a tree of
height h. Then t = o(t1, 12, ...,t,). Since T is prefix-closed, for every 1 < j < p we have that
t; € T. And from the induction hypothesis for every 1 < j < p we have that u(t;) = a; - e;;.
Hence

:U’(t) = :U’(O-(tlat% --'7tp)) = NU(M(tl)J :u'(tQ)v "'MU’(tp))

= IU’O'(al T €4y, A2 Elgy ey Op eip)

p
= H Q- /’Lo—(ei17 €igyeens eip)
i=1

Let t' = o(bi,, by, ..., bj,). From Lemma 5.7 we have

p
'u(t) = H Qj - Ma(eiueizv ceey eip)
j=1

Since the table is consistent, we know that for each 1 < j < pand c € C:
H[O’(tl, tz, ciey tj—l’ tj, t]’+1, ceey tp)][c] = Oéj . H[O’(tl, tQ, ceny tj—17 bij y tj+l7 couy tp)] [C]
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We can continue using consistency to obtain that

H[t] [c] = H[O’(tl,tg, ...,tp)][c]

j=1
=1L Bl
j=1
Thus H[t] = [[}_; ;- H[t']. Let 8 = [[}_; aj, then ¢ % #. Let b be the element in the
base s.t. ¢ x% b;. From Lemma 5.8 we have that pu(t') = o - e;. Therefore p(t) = - o -e;.
We have p(t) = - «-e; and ¢ M%B b;. Therefore the claim holds. []

We are now ready to show that for every tree ¢t € T and context ¢ € C the obtained
CMTA agrees with the observation table.

Lemma 5.10. For every t € T and for every c € C we have that A(c[t]) = H][t][].

Proof. Let t € T. Since the table is closed, there exists b; € B such that ¢ x¢; b; for some
a € Ry. The proof is by induction on the depth of ¢ in ¢. For the base case, the depth
of ¢ is 1, so ¢ = ¢, and by Lemma 5.9 we have that u(c[t]) = u(t) = a - e;. Therefore
A(t) = a-e; - A\. By Alg. 5 we have that A\[i] = H[b;|[¢]. Thus A(t) = o - H[b;][o] = H|[t][¢]
as required.

For the induction step, let ¢ be a context such that the depth of ¢ is h + 1. Hence
c=d[o(t1,ta,....ti—1,0,t;, ..., tp)] for some trees t; € T, and some context ¢’ of depth h.
For each 1 < j < p, let b;; be the element in the base, s.t. t; =g b;;, with co-efficient ;.

Let b be the element in the base s.t. t =g b with coefficient «. Let ¢ be the tree:
t = 0(biy, bigs oy biyp 150, biys s bi)
Note that ¢t € £(B) and hence ¢t € T. From the induction hypothesis, we obtain:
A(CT) = HIE[C]

Since the table is consistent, we have:
p ~
HIt][c] = H[o (i), tigs s tiy_1» s ti, n tiy)][(] = @ - Ha,- - HI[t][]
i=1

Let 8 = a - [[}_; ;. By definition of A we have:
A(C/[[J(bil, biQ, vy bik717 b, bik, vy bz’p)]]) = M(Cl[[d(bil,bw, ey bik717 b, bik, cey bzp)]])) A

Since each i;; is in T, from Proposition 5.9 we have that u(tij) = ;- bj;, and that
M(t) =« ,u(b) Let t = O’(til,tiQ, R 7PN 2 7 A ,tzp)) So

:u’(tA) - /’L(U<ti17ti27 "'7tik_17t7tik7 7t1p)))
= :uO'(al : bi17 ey 1 - bik_laa : b7 Qg - bikv ey Op - blp)

p
= - Haz : /’LO'(bip "'7bik_17b7 bik7 ---7bip) - B : :u’(t>
j=1
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By Lemma 5.3 we have that

M(dﬂg(hlvhzwﬂamk—ﬂtvmk’“wt%)ﬂ)::ﬁ'/iQJM])
Hence

A(c[t]) = Ao (tiy iy, s tip s by tiys s ti,)])
= ([0 (tir s tigs woor tig 1oty tin, o tiy)]) - A = B u(C[H]) - A

Note that all the children of ¢ are in B, and so ¢t € T. Hence, from the induction hypothesis
we have B B N

HIt][c] = A(Ct]) = u([t]) - A
Thus N

Alelt]) = 8- H[t]['] = H[t][c]

as required. ]

6. DISCUSSION

The quest to learn probabilistic automata and grammars is still ongoing. Because of the
known hardness results some restrictions need to be applied. Recent works include an L*
learning algorithm for MDPs [TAB*21] (here the assumption is that states of the MDPs
generate an observable output that allows identifying the current state based on the generated
input-output sequence), a passive learning algorithm for a subclass of PCFGs obtained
by imposing several structural restrictions [CF20, Cla21], and using PDFA learning to
obtain an interpretable model of practically black-box models such as recurrent neural
networks [WGY19].

We have presented an algorithm for learning structurally unambiguous PCFGs from a
given black-box language model using structured membership and equivalence queries. To
our knowledge this is the first algorithm provided for this question. Following the motivation
of [WGY19], the present work offers obtaining intrepretable models also in cases where the
studied object exhibits non-regular (yet context-free) behavior. For future work, we think
that improving our method to be more noise-tolerant would make the algorithm able to
learn complex regular and context-free grammars from recurrent neural networks.
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