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Abstract. Visibly pushdown automata are input-driven pushdown automata that rec-
ognize some non-regular context-free languages while preserving the nice closure and de-
cidability properties of finite automata. Visibly pushdown automata with multiple stacks
have been considered recently by La Torre, Madhusudan, and Parlato, who exploit the
concept of visibility further to obtain a rich automata class that can even express prop-
erties beyond the class of context-free languages. At the same time, their automata are
closed under boolean operations, have a decidable emptiness and inclusion problem, and
enjoy a logical characterization in terms of a monadic second-order logic over words with
an additional nesting structure. These results require a restricted version of visibly push-
down automata with multiple stacks whose behavior can be split up into a fixed number
of phases.

In this paper, we consider 2-stack visibly pushdown automata (i.e., visibly pushdown
automata with two stacks) in their unrestricted form. We show that they are expressively
equivalent to the existential fragment of monadic second-order logic. Furthermore, it
turns out that monadic second-order quantifier alternation forms an infinite hierarchy wrt.
words with multiple nestings. Combining these results, we conclude that 2-stack visibly
pushdown automata are not closed under complementation.

Finally, we discuss the expressive power of Büchi 2-stack visibly pushdown automata
running on infinite (nested) words. Extending the logic by an infinity quantifier, we can
likewise establish equivalence to existential monadic second-order logic.

1. Introduction

The notion of a regular word language has ever played an important rôle in computer
science, as it constitutes a robust concept that enjoys manifold representations in terms of
finite automata, regular expressions, monadic second-order logic, etc. Generalizing regular
languages towards richer classes and more expressive formalisms is often accompanied by
the loss of robustness and decidability properties. It is, for example, well-known that
the class of context-free languages, represented by pushdown automata, is not closed under
complementation and that universality, equivalence, and inclusion are undecidable problems
[12].
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Visibly pushdown languages have been introduced by Alur and Madhusudan to over-
come this deficiency while subsuming many interesting and useful context-free properties [1].
Visibly pushdown languages are represented by special pushdown automata whose stack op-
erations are driven by the input. More precisely, the underlying alphabet of possible actions
is partitioned into (1) call, (2) return, and (3) internal actions, which, when reading an ac-
tion, indicates if (1) a stack symbol is pushed on the stack, (2) a stack symbol is read and
popped from the stack, or (3) the stack is not touched at all, respectively. Such a partition
gives rise to a call-return alphabet. Though this limits the expressive power of pushdown
automata, the such defined class of visibly pushdown languages is rich enough to model var-
ious interesting non-regular properties for program analysis. Even more, this class preserves
some important closure properties of regular languages, such as the closure under boolean
operations, and it exhibits decidable problems, such as inclusion, that are undecidable in the
context of general pushdown automata. Last but not least, the visibly pushdown languages
are captured by a monadic second-order logic that makes use of a binary nesting predicate.
Such a logic is suitable in the context of visibility, as the nesting structure of a word is
uniquely determined, regardless of a particular run of the pushdown automaton. The logi-
cal characterization smoothly extends the classical theory of regular languages [7, 10]. For
context-free languages, quantification over matchings, which are not implicitly given when
we do not have visibility, is necessary to obtain a logical characterization [15].

Visibly pushdown automata with multiple stacks have been considered recently and
independently by La Torre, Madhusudan, and Parlato [13], as well as Carotenuto, Murano,
and Peron [8]. The aim of these papers is to exploit the concept of visibility further to obtain
even richer classes of non-regular languages while preserving important closure properties
and decidability of verification-related problems such as emptiness and inclusion.

In [13], the authors consider visibly pushdown automata with arbitrarily many stacks.
To retain the nice properties of visibly pushdown automata with only one stack, the idea
is to restrict the domain, i.e., the possible inputs, to those words that can be divided into
at most k phases for a predefined k. In every phase, pop actions correspond to one and
the same stack. These restricted visibly pushdown automata have a decidable emptiness
problem, which is shown by a reduction to the emptiness problem for finite tree automata,
and are closed under union, intersection, and complementation (wrt. the domain of k-phase
words). Moreover, a word language is recognizable if, and only if, it can be defined in
monadic second-order logic where the usual logic over words is expanded by a matching
predicate that matches a push with its corresponding pop event. As mentioned above, such
a matching is unique wrt. the underlying call-return alphabet. The only negative result in
this regard is that multi-stack visibly pushdown automata cannot be determinized.

The paper [8] considers visibly pushdown automata with two stacks and call-return
alphabets that appear more general than those of [13]: Any stack is associated with a
partition of one and the same alphabet into call, return, and local transitions so that an
action might be both a call action for the first stack and, at the same time, a return action
for the second. In this way, both stacks can be worked on simultaneously. Note that, if we
restrict to the alphabets of [13] where the stack alphabets are disjoint, the models from [8]
and [13] coincide. Carotenuto et al. show that the emptiness problem of their model is
undecidable. Their approach to gain decidability is to exclude simultaneous pop operations
by introducing an ordering constraint on stacks, which is inspired by [6] (see also [3]). More
precisely, a pop operation on the second stack is only possible if the first stack is empty.
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Under these restrictions, the emptiness problem turns out to be decidable in polynomial
time (note that the number of stacks is fixed).1

In this paper, we consider 2-stack visibly pushdown automata (i.e., visibly pushdown
automata with two stacks) where each action is exclusive to one of the stacks, unless we deal
with an internal action, which does not affect the stacks at all. Thus, we adopt the model
of [13], though we have to restrict to two stacks for our main results. One of these results
states that the corresponding language class is precisely characterized by the existential
fragment of monadic second-order logic where a first-order kernel is preceded by a block
of existentially quantified second-order variables. In a second step, we show that the full
monadic second-order logic is strictly more expressive than its existential fragment so that
we conclude that 2-stack visibly pushdown automata are not closed under complementation.
Note that our model has an undecidable emptiness problem, as can be easily seen.

The key technique in our proofs is to consider words over call-return alphabets as
relational structures, called nested words [2]. Nested words augment ordinary words with
a nesting relation that, as the logical atomic predicate mentioned above, relates push with
corresponding pop events. More precisely, we consider a nested word to be a graph whose
nodes are labeled with actions and are related in terms of a matching and an immediate-
predecessor relation. We thus deal with structures of bounded degree: every node has at
most two incoming edges (one from the immediate predecessor and one from a push event
if we deal with a pop event operating on the non-empty stack) and, similarly, at most two
outgoing edges. As there is a one-to-one correspondence between words and their nested
counterpart, we may consider nested-word automata [2], which are equivalent to visibly
pushdown automata but operate on the enriched word structures. There have been several
notions of automata on graphs and partial orders [18, 19] that are similar to nested-word
automata and have one idea in common: the state that is taken after executing some event
depends on the states that have been visited in neighboring events. Such defined automata
may likewise operate on models for concurrent-systems executions such as Mazurkiewicz
traces [9] and message sequence charts [5]. In the framework of nested-word automata, to
determine the state after executing a pop operation, we therefore have to consider both the
state of the immediate-predecessor position and the state that had been reached after the
execution of the corresponding push event. To obtain a logical characterization of nested-
word automata over two stacks, we adopt a technique from [5]: for a natural number r,
we compute a nested-word automaton Br that computes the sphere of radius r around any
event i, i.e., the restriction of the input word to those events that have distance at most
r from i. Once we have this automaton, we can apply Hanf’s Theorem, which states that
satisfaction of a given first-order formula depends on the number of these local spheres
counted up to a threshold that depends on the quantifier-nesting depth of the formula [11].
This finally leads us to a logical characterization of 2-stack visibly pushdown automata
in terms of existential monadic second-order logic. Note that our construction of Br is
close to the nontrivial technique applied in [5]. In the context of nested words, however,
the correctness proof is more complicated. The fact that we deal with two stacks only is
crucial, and the construction fails as soon as a third stack comes into play.

1In [8], the authors argue that 2-stack visibly pushdown automata without restriction are closed under
complementation, but their proof makes use of the incorrect assumption that these automata are determiniz-
able. In fact, 2-stack visibly pushdown automata can in general not be determinized [13]. In the present
paper, we show that 2-stack visibly pushdown automata are actually not closed under complementation.
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Then, we exploit the concept of nested words to show that full monadic second-order
logic is more expressive than its existential fragment. This is done by a first-order interpre-
tation of nested words over two stacks into grids, for which the analogous result has been
known [17].

An extension of Hanf’s Theorem has been established to cope with infinite structures [4].
This allows us to apply the automaton Br to also obtain a logical characterization of the
canonical extension of 2-stack visibly pushdown automata towards Büchi automata running
on infinite words.

Outline of the paper. In Section 2, we introduce multi-stack visibly pushdown automata,
running on words, as well as multi-stack nested-word automata, which operate on nested
words. We establish expressive equivalence of these two models. Section 3 recalls monadic
second-order logic over relational structures and, in particular, nested words. There, we
also state Hanf’s Theorem, which provides a normal form of first-order definable properties
in terms of spheres. The construction of the sphere automaton Br, which is, to some
extent, the core contribution of this paper, is the subject of Section 4.2. By means of this
automaton, we can show expressive equivalence of 2-stack visibly pushdown automata and
existential monadic second-order logic (Section 4.1). Section 5 establishes the gap between
this fragment and the full logic, from which we conclude that 2-stack visibly pushdown
automata cannot be complemented in general. By slightly modifying our logic, we obtain,
in Section 6, a characterization of Büchi 2-stack visibly pushdown automata, running on
infinite words. We conclude with Section 7 stating some related open problems.

2. Multi-Stack Visibly Pushdown Automata

The set {0, 1, 2, . . .} of natural numbers is denoted by N, the set {1, 2, . . .} of positive
natural numbers by N+. We call any finite set an alphabet. For a set Σ, we denote by Σ∗,
Σ+, and Σω the sets of finite, nonempty finite, and infinite strings over Σ, respectively.2

The empty string is denoted by ε. For a natural number n ∈ N, we let [n] stand for the set
{1, . . . , n} (i.e., [0] is the empty set). In this paper, we will identify isomorphic structures
and we use ∼= to denote isomorphism.

Let K ≥ 1 be a positive natural number. A (K-stack) call-return alphabet is a collection
〈{(Σs

c,Σ
s
r)}s∈[K],Σint〉 of pairwise disjoint alphabets. Intuitively, Σs

c contains the actions
that call the stack s, Σs

r is the set of returns of stack s, and Σint is a set of internal actions,
which do not involve any stack operation.

We fixK ≥ 1 and a K-stack call-return alphabet Σ̃ = 〈{(Σs
c,Σ

s
r)}s∈[K],Σint〉. Moreover,

we set Σc =
⋃

s∈[K] Σ
s
c, Σr =

⋃
s∈[K] Σ

s
r, and Σ = Σc ∪ Σr ∪ Σint .

2.1. Multi-Stack Visibly Pushdown Automata.

Definition 2.1. A multi-stack visibly pushdown automaton (Mvpa) over Σ̃ is a tuple A =
(Q,Γ, δ,QI , F ) where

• Q is its finite set of states,
• QI ⊆ Q is the set of initial states,
• F ⊆ Q is the set of final states,

2From now on, to avoid confusion with nested words, we use the term “string” rather than “word” if we
deal with elements from Σ∗

∪ Σω .
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• Γ is the finite stack alphabet containing a special symbol ⊥ that will represent the empty
stack, and
• δ provides the transitions in terms of a triple 〈δc, δr, δint 〉 with

δc ⊆ Q×Σc × (Γ \ {⊥})×Q,

δr ⊆ Q×Σr × Γ×Q, and

δint ⊆ Q×Σint ×Q .

A 2-stack visibly pushdown automaton (2vpa) is an Mvpa that is defined over a 2-stack
alphabet (i.e., K = 2).

A transition (q, a,A, q′) ∈ δc, say with a ∈ Σs
c, is a push transition meaning that, being

in state q, the automaton can read a, push the symbol A ∈ Γ\{⊥} onto the s-th stack, and
go over to state q′. A transition (q, a,A, q′) ∈ δr, say with a ∈ Σs

r, allows us to pop A 6= ⊥
from the s-th stack when reading a, while the control changes from state q to state q′. If,
however, A = ⊥, then the stack is not touched, i.e., ⊥ is never popped. Finally, a transition
(q, a, q′) ∈ δint is applied when reading internal actions a ∈ Σint . They do not involve any
stack operation and, actually, do not even allow us to read from the stack.

Let us formalize the behavior of the Mvpa A. A stack contents is a nonempty finite
sequence from Cont = (Γ \ {⊥})∗ · {⊥}. The leftmost symbol is thus the top symbol of the
stack contents. A configuration of A consists of a state and a stack contents for every stack.
Hence, it is an element of Q × Cont [K]. Consider a string w = a1 . . . an ∈ Σ+. A run of
A on w is a sequence ρ = (q0, σ

1
0 , . . . , σ

K
0 ) . . . (qn, σ

1
n, . . . , σ

K
n ) ∈ (Q × Cont [K])+ such that

q0 ∈ QI , σ
s
0 = ⊥ for each stack s ∈ [K], and, for all i ∈ {1, . . . , n}, the following hold:

[Push]: If ai ∈ Σs
c for s ∈ [K], then there is a stack symbol A ∈ Γ \ {⊥} such that

(qi−1, ai, A, qi) ∈ δc, σ
s
i = A · σs

i−1, and σs′
i = σs′

i−1 for every s′ ∈ [K] \ {s}.
[Pop]: If ai ∈ Σs

r for s ∈ [K], then there is a stack symbol A ∈ Γ such that (qi−1, ai, A, qi) ∈
δr, σ

s′
i = σs′

i−1 for every s′ ∈ [K] \ {s}, and either A 6= ⊥ and σs
i−1 = A ·σs

i , or A = ⊥ and
σs

i−1 = σs
i = ⊥.

[Internal]: If ai ∈ Σint , then (qi−1, ai, qi) ∈ δint , and σs
i = σs

i−1 for every s ∈ [K].

The run ρ is accepting if qn ∈ F . A string w ∈ Σ+ is accepted by A if there is an accepting
run of A on w. The set of accepted strings forms the (string) language of A, which is a
subset of Σ+ and denoted by L(A).3

Example 2.2. There is no Mvpa that recognizes the context-sensitive language {anbncn |
n ≥ 1}, no matter which call-return alphabet we chose. Note that, however, with the more
general notion of a call-return alphabet from [8], it is possible to recognize this language by

means of two stacks. Now consider the 2-stack call-return alphabet Σ̃ given by Σ1
c = {a},

Σ1
r = {a}, Σ2

c = {b}, Σ2
r = {b}, and Σint = ∅. The language L = {(ab)nan+1b

n+1
| n ≥ 1}

can be recognized by some 2vpa over Σ̃, even by the restricted model of 2-phase 2vpa

from [13], as every word from L can be split into at most two return phases. In the following,

we define a 2vpa A = ({q0, . . . , q4}, {$,⊥}, δ, {q0}, {q0}) over Σ̃ such that L(A) = L+, which
is no longer divisible into a bounded number of return phases. The transition relation δ is

3To simplify the presentation, the empty word ε is excluded from the domain.
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given as follows (a graphical illustration is provided in Figure 1):

δc : (q0, a, $, q2) δr : (q3, a, $, q3)

(q2, b, $, q1) (q3, a,⊥, q4)

(q1, a, $, q2) (q4, b, $, q4)

(q2, b, $, q3) (q4, b,⊥, q0)

The idea is that the finite-state control ensures that an input word matches the regular

expression ((ab)+a+b
+
)+. To guarantee that, in any iteration, the number of a is by one

less than the number of a, any push action a stores a stack symbol $ in stack 1, which can
then be removed by the corresponding pop action a unless the symbol ⊥ is discovered. We
do the same for b and b on stack 2.

q0 q1q2

q3q4 a, $b, $

a, $

b, $

a,⊥

b,⊥

b, $

a, $

Figure 1: A 2vpa

2.2. Nested Words and Multi-Stack Nested-Word Automata. We will now see how
strings over symbols from the call-return alphabet Σ̃ can be represented by relational struc-
tures. Basically, to a string, we add a binary predicate that combines push with correspond-
ing pop events. Let s ∈ [K]. A string w ∈ Σ∗ is called s-well formed if it is generated by
the context-free grammar

A ::= aAb | AA | ε | c

where a ∈ Σs
c, b ∈ Σs

r, and c ∈ Σ \ (Σs
c ∪ Σs

r).

Definition 2.3. A nested word over Σ̃ is a structure ([n],⋖, µ, λ) where n ∈ N+ (we call
the elements from [n] positions, nodes, or events), ⋖ = {(i, i+ 1) | i ∈ [n− 1]}, λ : [n]→ Σ,
and µ =

⋃
s∈[K] µ

s ⊆ [n] × [n] where, for every s ∈ [K] and (i, j) ∈ [n] × [n], (i, j) ∈ µs iff

i < j, λ(i) ∈ Σs
c, λ(j) ∈ Σs

r, and λ(i+ 1) . . . λ(j − 1) is s-well formed.

The set of nested words over Σ̃ is denoted by NW(Σ̃).
Figure 2 depicts a nested word over a 2-stack call-return alphabet. Throughout the

paper, we take advantage of the fact that nested words over a 2-stack call-return alphabet
can be written as a string with one type of stack edges above the string and the other below
the string, where the first type concerns the first stack and the other type concerns the
second stack. In the 2-stack case, the edges do not intersect.

Note that a nested word needs not be well-matched. It might have pending calls, i.e.,
calls without matching return, as well as pending returns, i.e., returns that do not have
a matching call. Therefore, the relations µ and its inverse µ−1 can be seen as partial
maps [n] 99K [n], in the obvious manner. Moreover, observe that, given nested words
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W = ([n],⋖, µ, λ) and W ′ = ([n′],⋖′, µ′, λ′), n = n′ ∧ λ = λ′ implies W = W ′. It is
therefore justified to represent W as the string string(W ) := λ(1) . . . λ(n) ∈ Σ+. This
naturally extends to sets L of nested words and we set string(L) := {string(W ) | W ∈ L}.

Vice versa, given a string w ∈ Σ+, there is precisely one nested word W over Σ̃ such
that string(W ) = w. This unique nested word is denoted nested(w). For L ⊆ Σ+, we let
nested(L) := {nested(w) | w ∈ L}.

Example 2.4. Consider the 2-stack call-return alphabet Σ̃ from Example 2.2, which was
given by Σ1

c = {a}, Σ1
r = {a}, Σ2

c = {b}, Σ2
r = {b}, and Σint = ∅. Figure 2 depicts a nested

word W = ([n],⋖, µ, λ) over Σ̃ with n = 10. The straight arrows represent ⋖, the curved
arrows capture µ (those above the horizontal correspond to the first stack). For example,
(2, 9) ∈ µ. Thus, µ(2) and µ−1(9) are defined, whereas both µ−1(7) and µ−1(10) are not. In
terms of visibly pushdown automata, this means that positions 7 and 10 are employed when
the first/second stack is empty, respectively. Observe that W = nested(a b a b a a a b b b) and
string(W ) = a b a b a a a b b b.

a −→ b −→ a −→ b −→ a −→ a −→ a −→ b −→ b −→ b

1 2 3 4 5 6 7 8 9 10

Figure 2: A nested word

We now turn to an automata model that is suited to nested words and, to some extent,
is equivalent to Mvpa. Our model is an extension of nested-word automata for one stack,
which has been considered in [2], to multiple stacks. We also extend the model of [2] by
calling states. If the state that is reached after executing some action a is a calling state,
then the corresponding run is accepting only if this a is a call with a matching return (i.e.,
it is not pending). We will later see that this concept does not increase the expressive power
of our automata but turns out to be a convenient tool when we translate logical formulas
into automata.

Definition 2.5. A generalized multi-stack nested-word automaton (generalized Mnwa) over

Σ̃ is a tuple B = (Q, δ,QI , F,C) where

• Q is the finite set of states,
• QI ⊆ Q is the set of initial states,
• F ⊆ Q is the set of final states,
• C ⊆ Q is a set of calling states, and
• δ is a pair 〈δ1, δ2〉 of relations δ1 ⊆ Q × Σ × Q and δ2 ⊆ Q × Q × Σr × Q, which contain

the transitions.

We call B a multi-stack nested-word automaton (Mnwa) if C = ∅.
A (generalized) 2-stack nested-word automaton ((generalized) 2nwa) is a (generalized,

respectively) Mnwa that is defined over a 2-stack alphabet (i.e., K = 2).
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Intuitively, δ1 contains all the local and push transitions, as well as all the pop transi-
tions that act on an empty stack (i.e., in terms of nested words and nested-word automata,
those transitions that perform an action from Σr that is not matched by a correspond-

ing calling action). A run of B on a nested word W = ([n],⋖, µ, λ) over Σ̃ is a mapping
ρ : [n] → Q such that (q, λ(1), ρ(1)) ∈ δ1 for some q ∈ QI , and, for all i ∈ {2, . . . , n}, we
have {

(ρ(µ−1(i)), ρ(i − 1), λ(i), ρ(i)) ∈ δ2 if µ−1(i) is defined

(ρ(i− 1), λ(i), ρ(i)) ∈ δ1 otherwise

The run ρ is accepting if ρ(n) ∈ F and, for all i ∈ [n] with ρ(i) ∈ C, µ(i) is defined. The

language of B, denoted by L(B), is the set of nested words from NW(Σ̃) that allow for an
accepting run of B.

Recall that there is a one-to-one correspondence between strings and nested words. We
let therefore L(A) with A an Mvpa stand for the set nested(L(A)).

Example 2.6. Consider again the 2-stack call-return alphabet Σ̃ given by Σ1
c = {a},

Σ1
r = {a}, Σ2

c = {b}, Σ2
r = {b}, and Σint = ∅. In Example 2.2, we have seen that, for

L = {(ab)nan+1b
n+1
| n ≥ 1}, the iteration L+ is the language of some 2vpa over Σ̃. We can

also specify a 2nwa B = ({q0, . . . , q4}, δ, {q0}, {q0}, ∅) over Σ̃ such that L(B) = nested(L+).
Note that L(B) will contain, for example, the nested word that is depicted in Figure 2. The
transition relation δ is given as follows:

δ1 : (q0, a, q2) δ2 : (q2, q3, a, q3)

(q2, b, q1) (q3, q4, b, q4)

(q1, a, q2) (q1, q4, b, q4)

(q2, b, q3)

(q3, a, q4)

(q4, b, q0)

Similarly to Example 2.2, the finite-state control will ensure the general regular structure
of a word without explicit “counting”. This counting is then implicitly done by the relation
δ2, which requires a matching call for a return. A graphical description of B is given in
Figure 3. Hereby, a return transition with an adjoining set of states indicates that one state
of this set must have been reached right after executing the corresponding call (in particular,
the return must not be pending), whereas the remaining return transitions, (q3, a, q4) and
(q4, b, q0), apply only to pending returns.

q0 q1q2

q3q4 {q2}, a{q1, q3}, b

a

b

a

b

b

a

Figure 3: A 2nwa
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A general technique for a reduction from Mvpa to Mnwa and vice versa can be found
below (Lemma 2.8).

We can show that the use of calling states does not increase the expressiveness of
Mnwa. Note that, however, the concept of calling states will turn out to be helpful when
building the sphere automaton in Section 4.2.

Lemma 2.7. For every generalized Mnwa B over Σ̃, there is an Mnwa B′ over Σ̃ such
that L(B′) = L(B).

Proof. In the construction of an Mnwa, we exploit the following property of a nested
word W = ([n],⋖, µ, λ): given (i, j) ∈ µ, say, with λ(i) ∈ Σs

c, µ(i′) is defined for all
i′ ∈ {i + 1, . . . , j − 1} satisfying λ(i′) ∈ Σs

c. Basically, B′ will simulate B. In addition,
whenever a calling state is assigned to a position labeled with an element from Σs

c, we will
set a flag b[s] = 1, which can only be resolved and turn into a final state (b[s] = 0) when a
matching return position has been found. As any interim call position that concerns stack
s is matched anyway, the flags b[s] in that interval are set to 2. Thus, while a flag is 1 or
2, there is still some unmatched calling position. Hence, a final state requires every flag to
equal 0, which also designates the initial state.

Let us become more precise and let B = (Q, δ,QI , F,C) be a generalized Mnwa. We

determine the Mnwa B′ = (Q′, δ′, Q′
I , F

′, ∅) by Q′ = Q×{0, 1, 2}[K], Q′
I = QI ×{(0)s∈[K]},

F ′ = F × {(0)s∈[K]}, and δ′ = 〈δ′1, δ
′
2〉 where

• δ′1 is the set of triples ((q,b), a, (q′,b
′
)) ∈ Q′ × Σ × Q′ such that (q, a, q′) ∈ δ1, q

′ ∈ C
implies a ∈ Σc, and, for every s ∈ [K],

b
′
[s] =





2 if b[s] ∈ {1, 2}

1 if b[s] = 0 and a ∈ Σs
c and q′ ∈ C

0 otherwise

• δ′2 is the set of quadruples ((p, c), (q,b), a, (q′,b
′
)) ∈ Q′×Q′×Σr×Q

′ such that (p, q, a, q′) ∈
δ2, q

′ 6∈ C, and, for every s ∈ [K],

b
′
[s] =

{
0 if c[s] = 1

b[s] otherwise

In fact, we can show that L(B) = L(B′).
Note that the flag assignments depend deterministically on the input word and the

states assigned to the positions. Let W = ([n],⋖, µ, λ) be a nested word over Σ̃.

Suppose ρ to be an accepting run of B on W and let ρ̂ : [n] → {0, 1, 2}[K] be the
unique supplement of ρ according to the flag construction. To verify that (ρ, ρ̂) is indeed an
accepting run of B′ on W , we need to show that ρ̂(n)[s] = 0 for all s ∈ [K]. So let s ∈ [K].
If there is no i ∈ [n] such that λ(i) ∈ Σs

c and ρ(i) ∈ C, then we clearly have ρ̂(n)[s] = 0,
as the flag for stack s never changes its value during the run. If the flag changes its value
from 0 to 1, then this happens at a position i ∈ [n] such that λ(i) ∈ Σs

c and ρ(i) ∈ C. As ρ
is an accepting run of B on W , there is j ∈ [n] such that (i, j) ∈ µ. By construction of B′,
ρ̂(i)[s] = 1, ρ̂(i′)[s] = 2 for all i′ ∈ {i+ 1, . . . , j − 1}, and ρ̂(j)[s] = 0. Thus, we finally have
ρ̂(n)[s] = 0.

Conversely, let ρ : [n]→ Q and ρ̂ : [n]→ {0, 1, 2}[K] be mappings such that (ρ, ρ̂) is an
accepting run of B′ on W . Clearly, ρ is a run of B on W . So let us verify that it is accepting.
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First, observe that ρ(n) ∈ F . So suppose i ∈ [n] such that ρ(i) is a calling state. According
to the construction of B′, λ(i) ∈ Σs

c for some s. Moreover, we have ρ̂(i)[s] = {1, 2}. As
ρ̂(n)[s] = 0, there must be i′ ≤ i and j′ > i such that λ(i′) ∈ Σs

c and (i′, j′) ∈ µ. This
implies that µ(i) is indeed defined so that we can conclude that ρ is an accepting run of B
on W .

The flag construction from the previous proof is illustrated in Figure 4, where we assume
a run on the nested word such that every state associated with a symbol from {a, b} is a
calling state.

a −→ b −→ a −→ b −→ a −→ a −→ a −→ b −→ b −→ b

1 2 3 4 5 6 7 8 9 10

(
b[1]

b[2]

) (
0

0

) (
1

0

) (
2

1

) (
2

2

) (
2

2

) (
2

2

) (
0

2

) (
0

2

) (
0

2

) (
0

0

) (
0

0

)

Figure 4: The flag construction

Lemma 2.8. Let L ⊆ NW(Σ̃) be a set of nested words over Σ̃. The following are equivalent:

(1) There is an Mvpa A over Σ̃ such that L(A) = L.

(2) There is an Mnwa B over Σ̃ such that L(B) = L.

Proof. Given an Mvpa A = (Q,Γ, δ,QI , F ), we define an Mnwa B = (Q′, δ′, Q′
I , F

′, ∅) with
L(A) = L(B) as follows: Q′ = Q× Γ, Q′

I = QI × {⊥}, F
′ = F × Γ, and δ′ = 〈δ′1, δ

′
2〉 where

• δ′1 is the set of triples ((q,A), a, (q′, A′)) ∈ Q′ × Σ × Q′ such that (q, a,A′, q′) ∈ δc,
(q, a, q′) ∈ δint , or (q, a,⊥, q′) ∈ δr, and
• δ′2 is the set of quadruples ((p,B), (q,A), a, (q′ , A′)) ∈ Q′ × Q′ × Σ × Q′ such that

(q, a,B, q′) ∈ δr.

The idea is that the stack symbol associated with a transition is incorporated into the state
of the Mnwa. When an internal or unmatched return action is performed, then we may
chose an arbitrary stack symbol, as it will not be reconsidered later in the run.

For the converse direction, let B = (Q, δ,QI , F, ∅) be an Mnwa. Consider the Mvpa

A = (Q,Q ·∪ {⊥}, δ′, QI , F ) where δ′ = 〈δ′c, δ
′
r, δ

′
int
〉 is given by

• δ′c = {(q, a, q′, q′) | (q, a, q′) ∈ δ1 ∩ (Q× Σc ×Q)},
• δ′

int
= δ1 ∩ (Q× Σint ×Q), and

• δ′r is the set of tuples (q, a,A, q′) ∈ Q × Σr × Γ × Q such that either (q, a, q′) ∈ δ1 and
A = ⊥, or (A, q, a, q′) ∈ δ2.

Here, we need to ensure that, when A performs a matched return action, we can access the
state that B has associated with the corresponding call. To this aim, A just pushes the state
onto the stack so that it becomes accessible when the corresponding return is executed. It
is straightforward to show that L(A) = L(B).
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3. Monadic Second-Order Logic and Hanf’s Theorem

3.1. Monadic Second-Order Logic over Relational Structures. We fix supplies of
first-order variables x, y, . . . and second-order variables X,Y, . . .. Let τ be a function-free
signature. The set MSO(τ) of monadic second-order (MSO) formulas over τ is given by the
following grammar:

ϕ ::= P (x1, . . . , xm) | x1 = x2 | x ∈ X | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃Xϕ

Hereby, m ≥ 1, P ∈ τ is an m-ary predicate symbol, the xk and x are first-order variables,
and X is a second-order variable. Moreover, we will make use of the usual abbreviations
such as ϕ1 ∧ ϕ2 for ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 for ¬ϕ1 ∨ ϕ2, etc. Given a τ -structure
A with universe A, a formula ϕ(x1, . . . , xm,X1, . . . ,Xn) ∈ MSO(τ) with free variables in
{x1, . . . , xm,X1, . . . ,Xn}, (u1, . . . , um) ∈ Am, and (U1, . . . , Un) ∈ (2A)

n
, we write, as usual,

A |= ϕ[u1, . . . , um, U1, . . . , Un] if A satisfies ϕ when assigning (u1, . . . , um) to (x1, . . . , xm)
and (U1, . . . , Un) to (X1, . . . ,Xn).

Let us identify some important fragments of MSO(τ). The set FO(τ) of first order (FO)
formulas over τ comprises those formulas from MSO(τ) that do not contain any second-order
quantifier. Furthermore, an existential MSO (EMSO) formula is of the form ∃X1 . . . ∃Xnϕ
with ϕ ∈ FO(τ). The corresponding class of formulas is denoted EMSO(τ). More generally,
given m ≥ 1, we denote by Σm(τ) the set of formulas of the form ∃X1∀X2 . . . ∃/∀Xmϕ
where ϕ ∈ FO(τ) and the Xk are blocks of second-order variables, possibly empty or of
different length.

We will later make use of the notion of definability relative to a class of structures.
Let F ⊆ MSO(τ) be a class of formulas and L, C be sets of τ -structures. We say that L is
F-definable relative to C if there is a sentence (i.e., a formula without any free variables)
ϕ ∈ F such that L is the set of τ -structures A ∈ C such that A |= ϕ.

3.2. Hanf’s Theorem for Nested Words, and Spheres. We will now provide a signa-

ture that allows us to specify MSO properties of nested words. Let Σ̃ be a call-return
alphabet. We define τeΣ to be the signature {λa | a ∈ Σ} ∪ {⋖, µ} with λa a unary
and ⋖ and µ binary predicate symbols. We write the MSO formula λa(x) as λ(x) = a
and the formula ⋖(x1, x2) as x1 ⋖ x2. MSO formulas over τeΣ

can be canonically in-

terpreted over nested words ([n],⋖, µ, λ) ∈ NW(Σ̃), as λ can be seen as a collection of
unary relations λa = {i ∈ [n] | λ(i) = a} where a ∈ Σ. Thus, nested words over

Σ̃ are actually τeΣ
-structures. A sample MSO formula over τeΣ

such that Σ = {a, b} is
∀x∀y (λ(x) = a ∧ µ(x, y)→ λ(y) = b). It expresses that every matching pair with a calling
a has a b-labeled return position. Given a sentence ϕ ∈ MSO(τeΣ

), we denote by L(ϕ) the

set of nested words over Σ̃ that satisfy ϕ, i.e., L(ϕ) = {W ∈ NW(Σ̃) |W |= ϕ}.
Over nested words (more generally, structures of bounded degree), FO formulas enjoy

a normal form in terms of local formulas. A formula ϕ(x) ∈ FO(τeΣ) with one free variable
x is said to be local if there is r ∈ N such that, in every subformula ∃yψ of ϕ, ψ is of the
form (d(x, y) ≤ r) ∧ χ. Hereby, the formula d(x, y) ≤ r has the expected meaning and can
be obtained inductively. Informally, the truth of a local formula ϕ(x) depends only on the
local neighborhood around x.

Next, we state Hanf’s locality theorem in terms of nested words. It actually applies to
general classes of structures of bounded degree.
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Theorem 3.1 (Hanf [11]). Let ϕ ∈ FO(τeΣ) be a sentence. There is a positive Boolean
combination ψ of formulas of the form

∃=txχ(x) and ∃>txχ(x)

where t ∈ N and χ ∈ FO(τeΣ) is local (with the obvious meaning of the quantifiers ∃=t and

∃>t; note that there might occur different thresholds t in ψ) such that, for every nested word

W ∈ NW(Σ̃), we have
W |= ϕ iff W |= ψ.

Moreover, ψ can be computed effectively and in elementary time.

For a comprehensive proof of this theorem, see, for example, [16, 20]. However, these
proofs are not effective, whereas the original proof by Hanf is effective. It is crucial to note
that Hanf’s Theorem applies to the case of nested words as we deal with a class of structures
of bounded degree (see below for a formal definition). Indeed, there is a uniform bound on
the degree of nested words.

Let A = (N,⋖, µ, λ, . . .) and A
′ = (N ′,⋖′, µ′, λ′, . . .) be tuples such that (N,⋖, µ, λ)

and (N ′,⋖′, µ′, λ′) are τeΣ
-structures. For i, j ∈ N and i′, j′ ∈ N ′, we write (i, j) ⊑A

A′ (i′, j′) if
λ(i) = λ′(i′), λ(j) = λ′(j′), (i, j) ∈ ⋖ implies (i′, j′) ∈ ⋖′, and (i, j) ∈ µ implies (i′, j′) ∈ µ′.
Theorem 3.1 suggests that, over nested words, the validity of an FO formula in a nested
word depends on the local neighborhoods of the latter. This leads to the notion of a sphere,
which will actually play a central role in the remainder of this paper. A sphere of radius
r ∈ N includes elements whose distance from a distinguished sphere center is bounded by
r. Given i, j ∈ N , the distance dA(i, j) of i and j in A is the minimal length of a path from
i to j in the Gaifman graph of (N,⋖, µ, λ). The Gaifman graph of (N,⋖, µ, λ) is defined to
be the undirected graph (N,Arcs) where (i, j) ∈ Arcs iff (i, j) ∈ ⋖ ∪ µ ∪ ⋖−1 ∪ µ−1 [16].
In particular, we have dA(i, i) = 0. If dA(i, j) = 1, we also write i↔A j. We write i→A j if
(i, j) ∈ ⋖ ∪ µ. The degree of a τeΣ

-structure is said to be bounded by some natural number
B if the degree of its Gaifman graph is bounded by B. Observe that the degree of a nested

word is bounded by 3, which is therefore a uniform bound for the class NW(Σ̃).
Let B = (N,⋖, µ, λ) be a τeΣ-structure, r ∈ N, and i ∈ N . The r-sphere of B around

i, which we denote by r-Sph(B, i), is basically the substructure of B induced by the new
universe {j ∈ N | dB(i, j) ≤ r}, but extended by the constant i as a distinguished element,
called the sphere center. Given an isomorphism type S of an r-sphere, we let |B|S := |{i ∈
N | S ∼= r-Sph(B, i)}| denote the number of points in B that realize S. For an example,
consider Figure 5, showing a nested word W and the 2-sphere of W around i = 10 where
the sphere center is marked as a rectangle. Note that 2-Sph(W, 10) ∼= 2-Sph(W, 14) and
|W |2-Sph(W,10) = 2.

We denote by Spheresr(Σ̃) the set of (isomorphism types of) r-spheres that arise from

nested words over Σ̃, i.e.,

Spheresr(Σ̃) := {r-Sph(W, i) |W ∈ NW(Σ̃) and i is a node of W} .

Note that Spheresr(Σ̃) is finite up to isomorphism, which is crucial for the constructions in
Section 4.
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c −→ a −→ b b −→ b −→ a −→ b −→ b
j1 j2 j

c −→ a −→ b −→ c −→ a −→ b −→ b −→ b −→ b −→ a −→ b −→ b −→ b −→ a −→ b −→ b
i i′i1 i2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5: A 2-shpere embedded into a nested word

4. 2-Stack Visibly Pushdown Automata vs. Logic

In this section, we focus on 2vpa. So let us fix a 2-stack call-return alphabet Σ̃ =
〈{(Σ1

c ,Σ
1
r), (Σ

2
c ,Σ

2
r)},Σint 〉.

4.1. The Main Result. The key connection between FO logic and 2vpa/2nwa is provided
by the following proposition, which states the existence of an automaton that computes the
sphere around any node of a nested word.

Proposition 4.1. Let r be any natural number. There are a generalized 2nwa Br =

(Q, δ,QI , F,C) over Σ̃ and a mapping η : Q→ Spheresr(Σ̃) such that

• L(Br) = NW(Σ̃) (i.e., every nested word admits an accepting run of Br), and

• for every nested word W ∈ NW(Σ̃), every accepting run ρ of Br on W , and every node i
of W , we have η(ρ(i)) ∼= r-Sph(W, i).

Before we turn towards the proof of this statement, we will first show how Proposi-
tion 4.1 can be used to establish expressive equivalence of 2vpa and EMSO logic.

Lemma 4.2. Let r, t ∈ N and let S ∈ Spheresr(Σ̃) be an r-sphere in some nested word

over Σ̃. There are generalized 2nwa B1 and B2 over Σ̃ such that L(B1) = {W ∈ NW(Σ̃) |

|W |S = t} and L(B2) = {W ∈ NW(Σ̃) | |W |S > t}.

Proof. In both cases, we start from the generalized 2nwa Br = (Q, δ,QI , F,C) and the

mapping η : Q → Spheresr(Σ̃) from Proposition 4.1. For k = 1, 2, we obtain Bk by
extending the state space with a counter that, using η, counts the number of realizations
of S up to t+ 1. The new set of initial states is thus in both cases QI × {0}. However, the
set of final states of B1 is F × {t}, the one of B2 is F × {t+ 1}.
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We are now prepared to state the first main result of this paper.

Theorem 4.3. Let L ⊆ NW(Σ̃) be a set of nested words over the 2-stack call-return alphabet

Σ̃. Then, the following are equivalent:

(1) There is a 2vpa A over Σ̃ such that L(A) = L.
(2) There is a sentence ϕ ∈ EMSO(τeΣ

) such that L(ϕ) = L.

Both directions are effective. In particular, the 2vpa that we construct for a given EMSO
sentence can be computed in elementary time, and its size is elementary in the size of the
formula.

Proof. To prove (1) → (2), one can perform a standard construction of an EMSO for-
mula from a 2nwa, where the latter can be extracted from the given 2vpa according to
Lemma 2.8. Basically, the formula “guesses” a possible run on the input word in terms of
existentially quantified second-order variables and then verifies, in its first-order fragment,
that we actually deal with a run that is accepting.

So let us directly prove (2)→ (1) and let ϕ = ∃X1 . . . ∃Xmψ(X1, . . . ,Xm) ∈ EMSO(τeΣ
)

be a sentence with ψ(X1, . . . ,Xm) ∈ FO(τeΣ
) (we suppose m ≥ 1). We define a new 2-stack

call-return alphabet

Σ̂ = 〈{(Σ1
c × 2[m],Σ1

r × 2[m]), (Σ2
c × 2[m],Σ2

r × 2[m])},Σint × 2[m]〉

where 2[m] shall denote the powerset of [m]. From ψ, we obtain an FO formula ψ′ over τbΣ
by replacing each occurrence of λ(x) = a with

∨
M∈2[m] λ(x) = (a,M) and each occurrence

of x ∈ Xk with
∨

a∈Σ, M∈2[m] λ(x) = (a,M ∪ {k}). We set L ⊆ NW(Σ̂) to be the set of

nested words that satisfy ψ′. From Hanf’s Theorem (Theorem 3.1), we know that L is the
language of a positive Boolean combination of formulas of the form ∃=txχ(x) and ∃>txχ(x)
where χ is local. It is easy to see that the class of nested-word languages that are recognized
by generalized 2nwa is closed under union and intersection. Thus, the validity of one such
basic formula can be checked by a generalized 2nwa due to Lemma 4.2. We deduce that

there is a generalized 2nwa B′ over Σ̃ recognizing L.

Now, to check whether some nested word from NW(Σ̃) satisfies ϕ, a generalized 2nwa

B with L(B) = L(ϕ) will guess an additional labeling for each node in terms of an element

from 2[m] and then simulate B′. By Lemma 2.7 and Lemma 2.8, we finally obtain a 2vpa

A such that L(A) = L(ϕ).

4.2. Proof of Proposition 4.1. We now turn to the proof of Proposition 4.1. In each state,
the generalized 2nwa Br will guess the current sphere as well as spheres of nodes nearby
and the current position in these additional spheres. Adding some global information allows
us to locally check whether all the guesses are correct. The rest of this section is devoted
to the construction of Br and a corresponding mapping η to prove Proposition 4.1.

4.2.1. The Construction. Recall that Spheresr(Σ̃) denotes the set of all the r-spheres that

arise from nested words, i.e., Spheresr(Σ̃) = {r-Sph(W, i) | W is a nested word and i is a

position in W}. An extended r-sphere over Σ̃ is a tuple E = (N,⋖, µ, λ, γ, α, col ) where

core(E) := (N,⋖, µ, λ, γ) ∈ Spheresr(Σ̃) (in particular, γ ∈ N), α ∈ N , and col ∈ [#Col ]
with #Col = 4 · maxSize(r)2 + 1 where maxSize(r) is the maximal size of an r-sphere,

i.e., maxSize(r) = max{|N | | (N,⋖, µ, λ, i) ∈ Spheresr(Σ̃)}. We say that α is the active
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node of E and col is its color. Strictly speaking, (N,⋖, µ, λ, γ, α, col ) is not a mathematical
structure, as col does not refer to an element of N . We introduced the function core to
extract a mathematical structure from an extended sphere, which will allow us to deal with
notions such as isomorphism.

Let eSpheresr(Σ̃) denote the set of all the (isomorphism classes of) extended spheres

over Σ̃. For an extended sphere E = (N,⋖, µ, λ, γ, α, col ) and an element i ∈ N , we denote
by E[i] the extended sphere (N,⋖, µ, λ, γ, i, col ), i.e., the extended sphere that we obtain
by replacing the active node α with i.

The idea of the construction of the generalized 2nwa Br is the following: A state E
of Br is a set of extended spheres, which reflect the “environment” of a node that E is

assigned to. Now suppose that, in a run of Br on a nested word W̃ = ([ñ], ⋖̃, µ̃, λ̃), E is
assigned to a position i ∈ [ñ] and contains E = (N,⋖, µ, λ, γ, α, col ). If the run is accepting,

this will mean that the environment of i in W̃ looks like the environment of α in E. In
particular, E will contain exactly one extended sphere E = (N,⋖, µ, λ, γ, α, col ) such that γ

and α coincide, meaning that r-Sph(W̃ , i) ∼= (N,⋖, µ, λ, γ). This is illustrated in Figure 6
depicting a nested word and a step of a run of the sphere automaton for r = 1 on this
word. States E and E ′ are assigned to positions 4 and 5, respectively. Each state is a
set of extended spheres. For clarity, however, we will neglect colors in the example. The
sphere center is, as usual, depicted as a rectangle; the active node is marked as a circle.
Observe that each state contains precisely one extended sphere in which the sphere center
and the active node are identical. These are E1 ∈ E , and, respectively, E′

2 ∈ E
′. Indeed,

E1 corresponds to the 1-sphere of the nested word around 4, while E′
2 reflects the 1-sphere

around 5.
Of course, Br has to locally guess the environment of a position. But how can we

ensure that a guess is correct? Obviously, we have to pass a local guess to each neighboring

position in W̃ . So suppose again that a state E containing E = (N,⋖, µ, λ, γ, α, col ) is

assigned to a node i of W̃ . As α shall correspond to i, we need to ensure that λ(α) = λ̃(i)
(this will be taken care of by item (2) in the definition of the transition relation below).
Now suppose that α has a ⋖-successor j ∈ N , i.e., α ⋖ j. Then, we have to guarantee that
i < ñ. This is done by simply excluding E from the set of final states (in Figure 6, neither E
nor E ′ are final states). Moreover, j should correspond to i+1, which is ensured by passing
E[j] to the state that will be assigned to i+ 1 (see item (7); in Figure 6, E ′ must therefore
contain E1[j] where j is the ⋖-successor of the active node of E1, and we actually have
E′

1
∼= E1[j]). On the other hand, if i has a ⋖̃-successor, then α must have a ⋖-successor

j as well such that E[j] belongs to the state that will be assigned to i + 1. Observe that
this rule applies unless dE(γ, α) = r, as then i+ 1 lies out of the area of responsibility of E
(see item (5)). Similar requirements have to be considered wrt. potential ⋖-/⋖̃-predecessors
(see (3), (4), and (6)), as well as wrt. the relations µ and µ̃ (see (3’)–(7’)). One difficulty
in our construction, however, is to guarantee the lack of an edge. So assume the extended
sphere E is the one given by Figure 5 with j1 as the active node. Let us neglect colors

for the moment. Suppose furthermore that W̃ is the nested word from Figure 5, below

the sphere. Then, an accepting run ρ of Br on W̃ will assign to i1 a state that contains
E (modulo some coloring). Moreover, the state assigned to i will contain E[j], where the
sphere center and the active node coincide. We observe that, in E, the node j1 is maximal.

In particular, there is no µ-edge between j1 and j2. This should be reflected in W̃ . A first
idea to guarantee this might be to just prevent ρ(i2) from containing the extended sphere
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a −→ b −→ a −→ b −→ a −→ a −→ a −→ b −→ b −→ b
E E ′

1 2 3 4 5 6 7 8 9 10

E :

a −→ b −→a −→ b −→ a−→ a −→ a −→b−→ b −→ bE1:

a −→ b −→a −→ b −→ a −→ a−→ a −→ b−→ b −→ bE2:

a −→b −→ a −→ b −→ a−→ a −→ a −→ b−→ b −→ bE3:

a −→ b −→ a −→b−→ a −→ a −→a −→ b −→ b−→ bE4:

—E ′:

a −→ b −→a −→ b −→ a−→ a −→ a −→b−→ b −→ bE
′
1:

a −→ b −→a −→ b −→ a −→ a−→ a −→ b−→ b −→ bE
′
2:

a −→b −→ a −→ b −→ a−→ a −→ a −→ b−→ b −→ bE
′
3:

a−→ b −→ a −→ b −→a −→ a −→ a−→ b −→ b −→ bE
′
4:

Figure 6: A step of the sphere automaton

E[j2] (note that (i1, i2) ∈ µ̃). This is, however, too restrictive. Actually, (r-Sph(W̃ , i), i2)
and E[j2] are isomorphic (neglecting the coloring of E) so that ρ(i2) must contain E[j2].
The solution is already present in terms of the coloring of extended spheres. More precisely,
ρ(i2) is allowed to carry E[j2] as soon as it has a color that is different from the color of the
extended sphere E[j1] assigned to i1. Roughly speaking, there might be isomorphic spheres

in W̃ that are overlapping. To consider them simultaneously, they are thus equipped with
distinct colors.

The construction we obtain following the above ideas indeed allows us to infer, from an
accepting run assigning a state E to a node i, the r-sphere around i. As mentioned above,
we simply consider the (unique up to isomorphism) extended sphere (N,⋖, µ, λ, γ, α, col )
contained in E such that γ = α. Then, (N,⋖, µ, λ, γ) is indeed the sphere of interest (recall
that, in Figure 6, these are E1 for E and E′

2 for E ′ if we ignore active nodes and colors).
It is not obvious that the above ideas really do work, all the less as the construction

will apply to nested words over two stacks, but no longer to nested words over more than
two stacks. After all, the key argument will be provided by Proposition 4.5, stating an
important property of nested words over two stacks. Intuitively, it states the following:
Suppose that, in a nested word, there is an acyclic path from a node i to another node i′,
and suppose this path is of a certain type w (recording the labelings and edges seen in the
path). Then, applying the same path several times will never lead back to i. This is finally

the reason why a cycle in an extended sphere that occurs in a run on a nested word W̃ is

in fact simulated by W̃ .
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Let us formally construct the generalized 2nwa Br = (Q, δ,QI , F,C). An element of Q

is a subset E of eSpheresr(Σ̃) such that either E = ∅, which will be the only initial state, or
the following conditions are satisfied:

(a) there is a unique extended sphere (N,⋖, µ, λ, γ, α, col ) ∈ E such that γ = α
(we set core(E) := (N,⋖, µ, λ, γ))

(b) there is a ∈ Σ such that, for every (N,⋖, µ, λ, γ, α, col ) ∈ E , λ(α) = a
(so that we can assign a unique label a to E , denoted by label(E))

(c) for every two elements E = (N,⋖, µ, λ, γ, α, col ) and E′ = (N ′,⋖′, µ′, λ′, γ′, α′, col ′)
from E , if core(E) = core(E′) and col = col ′, then α = α′

So let us turn to the transition relation δ = 〈δ1, δ2〉:

• For E , E ′ ∈ Q and a ∈ Σ, we let (E , a, E ′) ∈ δ1 if E ′ 6= ∅ and the following hold:

(1) for all (N,⋖, µ, λ, γ, α, col ) ∈ E ′, α 6∈ dom(µ−1) (i.e., µ−1(α) is not defined)

(2) label(E ′) = a

(3) for all E = (N,⋖, µ, λ, γ, α, col ) ∈ E and i ∈ N ,

E[i] ∈ E ′ =⇒ (α, i) ∈ ⋖

(4) for all E = (N,⋖, µ, λ, γ, α, col ) ∈ E ′,

E 6= ∅ ∧ ¬∃i : (i, α) ∈ ⋖ =⇒ dE(γ, α) = r

(5) for all E = (N,⋖, µ, λ, γ, α, col ) ∈ E ,

¬∃i : (α, i) ∈ ⋖ =⇒ dE(γ, α) = r

(6) for all E = (N,⋖, µ, λ, γ, α, col ) ∈ E ′ and i ∈ N ,

(i, α) ∈ ⋖ =⇒ E[i] ∈ E

(7) for all E = (N,⋖, µ, λ, γ, α, col ) ∈ E and i ∈ N ,

(α, i) ∈ ⋖ =⇒ E[i] ∈ E ′

• For Ec, E , E ′ ∈ Q and a ∈ Σr, we let (Ec, E , a, E ′) ∈ δ2 if Ec, E , E ′ 6= ∅ and (2)–(7) as above
hold as well as the following:

(3’) for all E = (N,⋖, µ, λ, γ, α, col ) ∈ Ec and i ∈ N ,

E[i] ∈ E ′ =⇒ (α, i) ∈ µ

(4’) for all E = (N,⋖, µ, λ, γ, α, col ) ∈ E ′,

α 6∈ dom(µ−1) =⇒ dE(γ, α) = r

(5’) for all E = (N,⋖, µ, λ, γ, α, col ) ∈ Ec,

α 6∈ dom(µ) =⇒ dE(γ, α) = r

(6’) for all E = (N,⋖, µ, λ, γ, α, col ) ∈ E ′,

α ∈ dom(µ−1) =⇒ E[µ−1(α)] ∈ Ec

(7’) for all E = (N,⋖, µ, λ, γ, α, col ) ∈ Ec,

α ∈ dom(µ) =⇒ E[µ(α)] ∈ E ′

As already mentioned, the only initial state of Br is the empty set, i.e., QI = {∅}. Moreover,
E ∈ Q is a final state if, for every extended sphere (N,⋖, µ, λ, γ, α, col ) ∈ E , both α 6∈
dom(µ) and there is no i ∈ N such that (α, i) ∈ ⋖. Finally, E is contained in C, the set of
calling states, if there is (N,⋖, µ, λ, γ, α, col ) ∈ E such that α ∈ dom(µ).
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The mapping η : Q → Spheresr(Σ̃) as required in Proposition 4.1 is provided by core .
More precisely, we set η(∅) to be some arbitrary sphere and η(E) = core(E) if E 6= ∅.

Let us come back to the example in Figure 6, depicting two states, E and E ′, of the
sphere automaton for radius r = 1, and a nested word that makes use of these states for
being accepted. The sphere automaton contains a transition (Ec, E , a, E

′) for some Ec.
We will verify in the following that conditions (2)–(7) are indeed satisfied. The cases

(3’)–(7’) as well as the construction of Ec are left to the reader.

(2) All the active nodes in E ′ are labeled with a.
(3) Whenever a sphere from E is already present in E ′, then the corresponding active nodes

are in the ⋖-relation. This applies to E1 and E′
1 as well as to E2 and E′

2.
(4) The extended sphere E′

4 is the only one in E ′ whose active node has no ⋖-predecessor.
However, the distance between this active node and the sphere center equals r = 1.

(5) There is one extended sphere in E without a ⋖-successor wrt. the active node, namely
E4. As required, the distance to the sphere center is r = 1.

(6) There are three extended spheres in E ′ whose active nodes have a ⋖-predecessor: E′
1,

E′
2, and E′

3. In fact, E contains, in terms of E1, E2, and, respectively, E3, all three
extended spheres with the active node replaced by the respective ⋖-predecessor.

(7) Symmetrically to the case (6), E1, E2, and E3 from E , where the active node is followed
by a ⋖-successor, have their counterparts in E ′ in terms of E′

1, E
′
2, and E′

3, respectively.

4.2.2. Every Nested Word Is Accepted. Let W̃ = ([ñ], ⋖̃, µ̃, λ̃) be an arbitrary nested word

over Σ̃. We show that W̃ ∈ L(Br). Let us first distribute colors to each of the involved
spheres. For this, we define the notion of an overlap: for any i, i′ ∈ [ñ], i and i′ are said to

have an r-overlap in W̃ if r-Sph(W̃ , i) ∼= r-Sph(W̃ , i′) and dfW
(i, i′) ≤ 2r + 1. For example,

in Figure 5, i and i′ have a 2-overlap.

Claim 4.4. There is a mapping χ : [ñ] → [#Col ] such that, for all i, i′ ∈ [ñ] with i 6= i′,

the following holds: if i and i′ have an r-overlap in W̃ , then χ(i) 6= χ(i′).

Proof. The mapping is obtained as a graph coloring. Consider the graph ([ñ],Arcs), Arcs ⊆
[ñ]× [ñ], where, for i, i′ ∈ [ñ], we have (i, i′) ∈ Arcs iff i 6= i′ and i and i′ have an r-overlap

in W̃ . Observe that ([ñ],Arcs) cannot be of degree greater than 4 · maxSize(r)2. For
each i ∈ [ñ], there are at most four distinct events i′ such that dfW

(i, i′) ≤ 1. Now, if a
position j ∈ [ñ] wants to “get in touch” with i, it requires a position in its own sphere,
another position in the sphere around i, and one of the four possibilities to relate these
two positions. Hence, ([ñ],Arcs) can be #Col -colored by a mapping χ : [ñ]→ [#Col ] (i.e.,
χ(i) 6= χ(i′) for every (i, i′) ∈ Arcs), which concludes the proof of Claim 4.4.

We now specify ρ : [ñ] → Q: for i ∈ [ñ], we set ρ(i) = {(r-Sph(W̃ , i′), i, χ(i′)) | i′ ∈ [ñ]
such that dfW

(i, i′) ≤ r}. With this definition, we can check that, for all i ∈ [ñ], ρ(i) is a

valid state of Br, and that ρ is indeed an accepting run of Br on W̃ . So let i ∈ [ñ] and let
E = (N,⋖, µ, λ, γ, α, col ) and E′ = (N ′,⋖′, µ′, λ′, γ′, α′, col ′) be contained in ρ(i).

(a) Assume that γ = α and γ′ = α′. Then, (N,⋖, µ, λ, γ, γ) ∼= (r-Sph(W̃ , i), i) and

(N ′,⋖′, µ′, λ′, γ′, γ′) ∼= (r-Sph(W̃ , i), i). Consequently, we have (N,⋖, µ, λ, γ, γ) ∼=
(N ′,⋖′, µ′, λ′, γ′, γ′). Moreover, col = col ′ = χ(i).

(b) Of course, λ(α) = λ′(α′).
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(c) Assume (N,⋖, µ, λ, γ) ∼= (N ′,⋖′, µ′, λ′, γ′) and col = col ′. There are i1, i2 ∈ [ñ] with

dfW
(i, i1) ≤ r, dfW

(i, i2) ≤ r, (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), i), (N,⋖, µ, λ, γ, α′) ∼=

(r-Sph(W̃, i2), i), and col = χ(i1) = χ(i2). Clearly, we have r-Sph(W̃, i1) ∼= r-Sph(W̃, i2).
Furthermore, i1 = i2 and, therefore, α = α′. This is because i1 and i2 have an r-

overlap in W̃ so that, according to Claim 4.4, i1 6= i2 would imply χ(i1) 6= χ(i2), which
contradicts the premise.

Now, for i ∈ {0, . . . , ñ} and i′ = i + 1 with i′ 6∈ dom(µ̃−1), we check that the triple
(ρ(i), λ(i′), ρ(i′)) is contained in δ1, where we let ρ(0) = ∅. Note first that, of course,
ρ(i′) 6= ∅.

(1) Suppose E = (N,⋖, µ, λ, γ, α, col ) ∈ ρ(i′). We have E ∼= (r-Sph(W̃ , i′′), i′, χ(i′′)) for
some i′′ ∈ [ñ] with dfW

(i′, i′′) ≤ r. As i′ 6∈ dom(µ̃−1), we deduce α 6∈ dom(µ−1).

(2) Obviously, we have label(ρ(i′)) = λ̃(i′).
(3) Suppose E = (N,⋖, µ, λ, γ, α, col ) ∈ ρ(i) (we thus have i ≥ 1) and j ∈ N such

that E[j] ∈ ρ(i′). Recall that we have to show that, then, (α, j) ∈ ⋖. There are

i1, i
′
1 ∈ [ñ] such that dfW

(i1, i) ≤ r, dfW
(i′1, i

′) ≤ r, (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), i),

(N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i′1), i
′), and col = χ(i1) = χ(i′1). We easily see that i1

and i′1 have an r-overlap in W̃ . We deduce, according to Claim 4.4, i1 = i′1. As,

then, (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), i), (N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i1), i
′), and

(i, i′) ∈ ⋖̃, we can infer (α, j) ∈ ⋖.
(4) Let E = (N,⋖, µ, λ, γ, α, col ) ∈ ρ(i′), suppose i′ ≥ 2, and suppose that there is no

j ∈ N such that (j, α) ∈ ⋖. Recall that we have to show that dE(γ, α) = r. There

is i′1 ∈ [ñ] such that dfW
(i′1, i

′) ≤ r and (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i′1), i
′). But if

dE(γ, α) < r, then dfW
(i′1, i

′) < r, and there must be a ⋖-predecessor of α, which is a
contradiction. We therefore deduce that dE(γ, α) = r.

(5) Let E = (N,⋖, µ, λ, γ, α, col ) ∈ ρ(i) and suppose that there is no j ∈ N such that
(α, j) ∈ ⋖. Similarly to the case (4), we show that dE(γ, α) = r. In fact, there is

i1 ∈ [ñ] such that dfW
(i1, i) ≤ r and (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), i). Again, if

dE(γ, α) < r, then dfW
(i1, i) < r so that there must be a ⋖-successor of α, which is a

contradiction. We conclude that dE(γ, α) = r.
(6) Let E = (N,⋖, µ, λ, γ, α, col ) ∈ ρ(i′) and j ∈ N such that (j, α) ∈ ⋖. We show that,

then, E[j] ∈ ρ(i). There is i′1 ∈ [ñ] such that dfW
(i′1, i

′) ≤ r, (N,⋖, µ, λ, γ, α) ∼=

(r-Sph(W̃ , i′1), i
′), and col = χ(i′1). As (j, α) ∈ ⋖, α is not minimal so that we

have i ≥ 1. Since, furthermore, dE(γ, j) ≤ r implies dfW
(i′1, i) ≤ r, and since we

also have (N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i′1), i) and col = χ(i′1), we deduce E[j] =
(N,⋖, µ, λ, γ, j, col ) ∈ ρ(i).

(7) Let E = (N,⋖, µ, λ, γ, α, col ) ∈ ρ(i) and j ∈ N such that (α, j) ∈ ⋖. We have to
show that E[j] ∈ ρ(i′). There is i1 ∈ [ñ] such that dfW

(i1, i) ≤ r, (N,⋖, µ, λ, γ, α) ∼=

(r-Sph(W̃ , i1), i), and col = χ(i1). Since dE(γ, j) ≤ r implies dfW
(i1, i

′) ≤ r, and

since we have (N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i1), i
′) and col = χ(i1), we deduce E[j] =

(N,⋖, µ, λ, γ, j, col ) ∈ ρ(i′).

Next, for ic, i, i
′ ∈ [ñ] with i′ = i + 1 and (ic, i

′) ∈ µ̃, we check that the quadruple
(ρ(ic), ρ(i), λ(i′), ρ(i′)) is contained in δ2. Checking (2)–(7) proceeds as in the above cases.
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For completeness, we present the cases (3’)–(7’), which are shown analogously. First observe
that, indeed, ρ(ic), ρ(i), and ρ(i′) are all nonempty.

(3’) Suppose E = (N,⋖, µ, λ, γ, α, col ) ∈ ρ(ic) and j ∈ N such that E[j] ∈ ρ(i′). We
show that (α, j) ∈ µ. There are i1, i

′
1 ∈ [ñ] such that dfW

(i1, ic) ≤ r, dfW
(i′1, i

′) ≤ r,

(N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), ic), (N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i′1), i
′), and col =

χ(i1) = χ(i′1). Again, i1 and i′1 have an r-overlap in W̃ . According to Claim 4.4, i1 = i′1.

Then, (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), ic), (N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i1), i
′), and

(ic, i
′) ∈ µ̃, so that we can deduce (α, j) ∈ µ.

(4’) Let E = (N,⋖, µ, λ, γ, α, col ) ∈ ρ(i′) and suppose that there is no j ∈ N such that
(j, α) ∈ µ. We have to show that dE(γ, α) = r. There is i′1 ∈ [ñ] such that dfW

(i′1, i
′) ≤ r

and (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i′1), i
′). But if dE(γ, α) < r, then dfW

(i′1, i
′) < r, so

there must be a µ-predecessor of α, which is a contradiction. We deduce dE(γ, α) = r.
(5’) Let E = (N,⋖, µ, λ, γ, α, col ) ∈ ρ(ic) and suppose that there is no j ∈ N such that

(α, j) ∈ µ. We show that, then, dE(γ, α) = r. There is i1 ∈ [ñ] such that dfW
(i1, ic) ≤ r

and (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i1), ic). If dE(γ, α) < r, then dfW
(i1, ic) < r , so there

must be a µ-successor of α, which is a contradiction. We conclude that dE(γ, α) = r.
(6’) Let E = (N,⋖, µ, λ, γ, α, col ) ∈ ρ(i′) and j ∈ N such that (j, α) ∈ µ. We show E[j] ∈

ρ(ic). There is i′1 ∈ [ñ] such that dfW
(i′1, i

′) ≤ r, (N,⋖, µ, λ, γ, α) ∼= (r-Sph(W̃ , i′1), i
′),

and col = χ(i′1). Due to dE(γ, j) ≤ r, we also have dfW
(i′1, ic) ≤ r, and since

(N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i′1), ic) and col = χ(i′1), we deduce E[j] ∈ ρ(ic).
(7’) Let E = (N,⋖, µ, λ, γ, α, col ) ∈ ρ(ic) and j ∈ N such that (α, j) ∈ µ. We have to

show E[j] ∈ ρ(i′). There is i1 ∈ [ñ] such that dfW
(i1, ic) ≤ r, (N,⋖, µ, λ, γ, α) ∼=

(r-Sph(W̃ , i1), ic), and col = χ(i1). From dE(γ, j) ≤ r, it follows dfW
(i1, i

′) ≤ r. As,

moreover, (N,⋖, µ, λ, γ, j) ∼= (r-Sph(W̃ , i1), i
′) and col = χ(i1), we deduce E[j] =

(N,⋖, µ, λ, γ, j, col ) ∈ ρ(i′).

4.2.3. Every Run Keeps Track Of Spheres. We will now show that an accepting run reveals
the sphere around any node. This constitutes the more difficult part of the correctness
proof.

We introduce some useful notation: By ∆, we denote the set {→,←,y,x, x, y}

of directions. Now let W = ([n],⋖, µ, λ) ∈ NW(Σ̃) be a nested word, i, j ∈ [n], and let

w = e1 . . . em ∈ ∆∗ (where ek ∈ ∆ for all k ∈ {1, . . . ,m}). We write i
w

==⇒W j if there are
i0, i1, . . . , im ∈ [n] such that i0 = i, im = j, and, for every k ∈ {0, . . . ,m − 1}, one of the
following holds:

(a) ek+1 =→ and ik+1 = ik + 1
(b) ek+1 =← and ik+1 = ik − 1
(c) ek+1 = y and ik ∈ dom(µ) and λ(ik) ∈ Σ1

c and ik+1 = µ(ik)
(d) ek+1 = xand ik ∈ dom(µ) and λ(ik) ∈ Σ2

c and ik+1 = µ(ik)
(e) ek+1 = x and ik ∈ dom(µ−1) and λ(ik) ∈ Σ1

r, and ik+1 = µ−1(ik)
(f) ek+1 = yand ik ∈ dom(µ−1) and λ(ik) ∈ Σ2

r, and ik+1 = µ−1(ik)

Moreover, we write i
w
−֒→W j if there are pairwise distinct i0, i1, . . . , im−1 ∈ [n] and im ∈

[n] \ {i1, . . . , im−1} such that i0 = i, im = j, and, for every k ∈ {0, . . . ,m − 1}, (a)–(f) as
above hold.
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We say that a string w ∈ ∆+ is circular if i
w
−֒→W i for some nested word W ∈ NW(Σ̃)

and some position i of W . In other words, a circular string can produce a circle in a nested
word. For example, y→ y→ and y→ x→x→ are circular (for an appropriate alphabet

Σ̃), whereas y→ x→x← is not circular.
The following proposition is crucial for our project, and it fails when considering nested

words over more than two stacks.

Proposition 4.5. Let w ∈ ∆+ be circular. Then, for all k ≥ 2, wk is not circular.

Before we prove Proposition 4.5, observe that it does not hold as soon as a third
stack comes into play. To see this, consider Figure 7, describing a part of a nested word
W over the 3-stack call-return alphabet 〈{({a}, {a}), ({b}, {b}), ({c}, {c})}, ∅〉. Suppose

w = y← y←
3

x← (where the meaning of
3

x is the expected one), which is circular

if we apply our definition to the framework of three stacks. However, we have i
ww
−֒−→W i.

It should be noted that this does not imply that there is no sphere automaton or logi-
cal characterization in the framework with more than two stacks. Indeed, we leave as an
open question if multiple stacks generally allow for a logical characterization in terms of a
fragment of MSO logic.

a −→ c a −→ c c −→ b c −→ b b −→ a b −→ a
i

Figure 7: Proposition 4.5 fails when considering three stacks

In the above definition of i
w
−֒→W j, it is crucial to require the elements i0, i1, . . . , im−1 ∈

[n] to be pairwise distinct. This can be seen considering a part of the nested word W over
the 2-stack call-return alphabet 〈{({a}, {a}), ({b}, {b})}, ∅〉 that is depicted in Figure 8. Let

w = y←←x← y←, which is a circular string. We have i
ww

===⇒W i, i.e., starting from i,
we can follow the sequence of directions w twice, arriving at i again. However, apart from

i, we have to visit j1 and j2 twice. Indeed, i 6
ww
−֒−→W i.

Proof. (of Proposition 4.5). Let W = ([n],⋖, µ, λ) ∈ NW(Σ̃), w ∈ ∆+, and i ∈ [n]. We

have to show that, if i
w
−֒→W i, then w cannot be decomposed nontrivially into identical

circular factors, i.e., there is no circular u ∈ ∆+ such that w = uk for some k ≥ 2.4

To see this easily, we observe that a situation such as i
w
−֒→W i corresponds to a

topological circle, as depicted in Figure 9. A topological circle is a closed line in the
two-dimensional plane that never crosses over itself. Let us construct topological circles
according to the following procedure: We assume a straight (horizontal) line of the plane.

4Actually, one can even show that there is no u ∈ ∆+ at all (not even non-circular) such that w = u
k for

some k ≥ 2.
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a −→ b a −→ b b −→ a b −→ a a −→ a −−−−−→ a −→ a
i j2 j1

Figure 8: Intermediate positions need to be pairwise distinct

Assume further a point i on this line. Starting from i, we choose another two points as
follows: Pick a symbol γ from the alphabet {❀, ❀, �,

	

}. According to this choice, we
first draw a semicircle above the straight line ending somewhere on the line, and then,
without interruption, a semicircle below the line, again resulting in a point on the line.
Each semicircle is drawn in the direction indicated by γ, e.g., � requires to draw the upper
semicircle rightwards and the lower one leftwards, and ❀ requires both the upper and the
lower semicircle to be drawn rightwards. This procedure is continued until we reach the
original point i. We call a sequence from {❀, ❀, �,

	

}+ that allows us to draw a topological
circle circular. For example, in Figure 9, we construct a topological circle by following the
sequence x = ❀ ❀ ❀� ❀ ❀, starting in the left outermost point of intersection on the
horizontal line. Thus, x is circular, whereas

	

� is not circular. Observe that we have

x 6= yk for all y ∈ {❀, ❀, � ,

	

}+ and k ≥ 2.

Figure 9: Proof of Proposition 4.5

It is not hard to see that topological circles behave aperiodically in general, i.e., for any
given y ∈ {❀, ❀, �,

	

}, there is no k ≥ 2 such that yk is circular. To show our proposition,
we can even restrict to circular y. So let y ∈ {❀, ❀, �,

	

}+. But if y is circular, then, for

growing k, yk gives rise to a “spiral”, and going back to the starting point would require to
intersect the line that has been drawn hitherto.

Let us relate our topological circles to the nested-word setting over two stacks. To
this aim, we define a partial mapping f : ∆+ 99K {❀, ❀, � ,

	

}+ that associates with any
circular string a sequence over {❀, ❀, � ,

	

}. This is done by reading a string from left to
right and successively replacing every direction from ∆ with a symbol from {❀, ❀, � ,

	

},
according to the following rules:
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• y is always replaced with ❀

• x is always replaced with ❀

• → is replaced with

{

	

if the previous letter has been x

❀ otherwise

• ← is replaced with

{

� if the previous letter has been y

❀otherwise

• xis replaced with

{

	

if the previous letter has been←

❀ otherwise

• yis replaced with

{

� if the previous letter has been→

❀otherwise

For example, f(←x→ x→x→ y) = ❀ ❀

	
❀ ❀ ❀

	

� . Let w be circular. Clearly,
f(w) is circular as well, i.e., it allows us to draw a topological circle. We assume that the
first letter of w stems from {y,x}. Other cases are either trivial or can be reduced to that
one. Then, if w can be decomposed nontrivially into identical circular factors, then this
also applies to f(w). Summarizing, the power of a circular string is not circular anymore.

This concludes the proof of Proposition 4.5.

We will now show that, indeed, Br discovers the r-sphere around any node of an input
nested word.

Let W = ([n],⋖, µ, λ) ∈ NW(Σ̃) be a nested word and ρ be a run of Br on W . Consider
any i ∈ [n], let (Ni,⋖i, µi, λi, γi) refer to core(ρ(i)), and let col i be the unique element from
[#Col ] satisfying Ei := (Ni,⋖i, µi, λi, γi, γi, col i) ∈ ρ(i).

The following statement claims that an arbitrarily long path in Ei is simulated by a
corresponding path in W .

Claim 4.6. Let d ≥ 0 and suppose there are j0, . . . , jd ∈ Ni such that γi = j0 ↔Ei
j1 ↔Ei

. . .↔Ei
jd. Then, there is a (unique) sequence of nodes i0, . . . , id ∈ [n] such that

• i0 = i,

• for each k ∈ {0, . . . , d}, Ei[jk] ∈ ρ(ik) (in particular, λ(ik) = λi(jk)), and

• for each k ∈ {0, . . . , d− 1}, (jk, jk+1) ⊑
Ei

W (ik, ik+1).

Proof. The proof is by induction. Obviously, the statement holds for d = 0. So assume
d ≥ 0 and suppose there are a sequence j0, . . . , jd, jd+1 ∈ Ni such that γi = j0 ↔Ei

j1 ↔Ei

. . .↔Ei
jd ↔Ei

jd+1 and a unique sequence i0, i1, . . . , id ∈ [n] such that i0 = i, Ei[jk] ∈ ρ(i)

for each k ∈ {0, . . . , d}, and (jk, jk+1) ⊑
Ei

W (ik, ik+1) for each k ∈ {0, . . . , d−1}. We consider
four cases:

• Assume (jd, jd+1) ∈ ⋖i. Then, ρ(id) is not a final state so that id < n. We set id+1 = id+1.
Due to (7), we have Ei[jd+1] ∈ ρ(id+1).
• Assume (jd+1, jd) ∈ ⋖i. Then, according to (6), id ≥ 2. We set id+1 = id− 1. Due to (6),

we also have Ei[jd+1] ∈ ρ(id+1).
• Assume (jd, jd+1) ∈ µi. Clearly, ρ(id) is a calling state so that µ(id) is defined. Setting
id+1 = µ(id), we have, due to (7’), Ei[jd+1] ∈ ρ(id+1).
• Assume (jd+1, jd) ∈ µi. According to (1), id ∈ dom(µ−1). With (6’), letting id+1 =
µ−1(id), we have Ei[jd+1] ∈ ρ(id+1).

This concludes the proof of Claim 4.6.
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Claim 4.7. There is a homomorphism h : r-Sph(W, i)→ core(ρ(i)).

Proof. We show by induction the following statement:

For every d ∈ {0, . . . , r}, there is a homomorphism h : d-Sph(W, i) →
d-Sph((Ni,⋖i, µi, λi), γi) such that, for each i′ ∈ [n] with dW (i, i′) ≤ d,
we have Ei[h(i

′)] ∈ ρ(i′).
(*)

Of course, (*) holds for d = 0. So assume that (*) holds true for some natural number
d ∈ {0, . . . , r−1}, i.e., there is a homomorphism h : d-Sph(W, i)→ d-Sph((Ni,⋖i, µi, λi), γi)
such that Ei[h(i

′)] ∈ ρ(i′) for each i′ ∈ [n] with dW (i, i′) ≤ d. We show that then (*) holds
for d+ 1 as well. For this, let i1, i2 ∈ [n] such that dW (i, i1) = d and dW (i, i2) = d+ 1.

• Suppose i1 ⋖ i2. Since dW (i, i1) < r, we also have dEi
(γi, h(i1)) < r. Due to (5), there

is j2 ∈ Ni such that h(i1) ⋖i j2. Since Ei[h(i1)] ∈ ρ(i1), we obtain, by (7) and (2), that
λi(j2) = λ(i2) and Ei[j2] ∈ ρ(i2).
• Similarly, we proceed if i2 ⋖ i1. By dEi

(γi, h(i1)) < r and (4), there is j2 ∈ Ni such that
j2 ⋖i h(i1). Since Ei[h(i1)] ∈ ρ(i1), we obtain, by (6) and (2), that λi(j2) = λ(i2) and
Ei[j2] ∈ ρ(i2).
• If (i1, i2) ∈ µ, then there exists, exploiting (5’) and (7’), j2 ∈ Ni such that (h(i1), j2) ∈ µi,
λi(j2) = λ(i2), and Ei[j2] ∈ ρ(i2).
• If (i2, i1) ∈ µ, then we can find, due to (4’) and (6’), j2 ∈ Ni such that (j2, h(i1)) ∈ µi,
λi(j2) = λ(i2), and Ei[j2] ∈ ρ(i2).

Observe that j2 is uniquely determined by i2 and does not depend on the choice of i1 or
on the relation between i1 and i2: If we obtained distinct elements j2 and j′2, then the
constraints Ei[j2] ∈ ρ(i2) and Ei[j

′
2] ∈ ρ(i2) would imply that ρ(i2) is not a valid state.

The above procedure extends the domain of the homomorphism h by those elements
whose distance to i is d + 1. I.e., for i1, i2 ∈ [n] with dW (i, i1) = dW (i, i2) = d + 1,
we determined two unique elements h(i1), h(i2) ∈ Ni, respectively. Let us show that
(i1, i2) ⊑

W
core(ρ(i)) (h(i1), h(i2)). Suppose i1 ⋖ i2 (the case i2 ⋖ i1 is symmetric). As

Ei[h(i1)] ∈ ρ(i1) and Ei[h(i2)] ∈ ρ(i2), we have, by (3), h(i1) ⋖i h(i2). Similarly, with (3’),
(i1, i2) ∈ µ implies (h(i1), h(i2)) ∈ µi.

Claim 4.8. There is a homomorphism h′ : core(ρ(i))→ r-Sph(W, i).

Proof. We show, again by induction, the following statement:

For every natural number d ∈ {0, . . . , r}, there is a homomorphism h′ :
d-Sph((Ni,⋖i, µi, λi), γi) → d-Sph(W, i) such that, for every j ∈ Ni with
dEi

(γi, j) ≤ d, we have Ei[j] ∈ ρ(h
′(j)).

(**)

Clearly, (**) holds for d = 0. Assume that (**) holds for some natural number d ∈
{0, . . . , r − 1} and let h′ : d-Sph((Ni,⋖i, µi, λi), γi) → d-Sph(W, i) be a corresponding ho-
momorphism. Let j1, j2 ∈ Ni such that dEi

(γi, j1) = d and dEi
(γi, j2) = d+ 1.

Suppose that j1 ⋖i j2. As Ei[j1] ∈ ρ(h
′(j1)), ρ(h

′(j1)) cannot be a final state of Br so
that there is i2 ∈ [n] such that h′(j1) ⋖ i2. Clearly, we have Ei[j2] ∈ ρ(i2). Analogously,
we proceed in the cases j2 ⋖i j1, (j1, j2) ∈ µi, and (j2, j1) ∈ µi to obtain such an element
i2. Note that i2 is uniquely determined by j2 and does not depend on the choice of j1 or on
the specific relation between j1 and j2. This is less obvious than the corresponding fact in
the proof of Claim 4.7 but can be shown along the lines of the following procedure, proving
that the extension of the domain of h′ by elements j ∈ Ni with dEi

(γi, j) = d + 1 is a
homomorphism:
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We show that, for j, j′ ∈ Ni with dEi
(γi, j) = dEi

(γi, j
′) = d + 1, we have (j, j′) ⊑Ei

W
(h′(j), h′(j′)) (where the elements h′(j) and h′(j′) are obtained as indicated above). So
suppose j ↔Ei

j′. There are ℓ ∈ {0, . . . , d} and pairwise distinct j0, . . . , j2(d+1)−ℓ ∈ Ni,
such that

jℓ+1 ↔Ei
. . . ↔Ei

jd+1 = j

γi = j0 ↔Ei
. . . ↔Ei

jℓ ↔
E
i

↔
E i ↔

E
i

j2(d+1)−ℓ ↔Ei
. . . ↔Ei

jd+2 = j′

For ease of notation, set D = 2(d+ 1)− ℓ and let, for k ∈ N,

mod(k) =

{
k if k ≤ D

((k − ℓ) mod (D − ℓ+ 1)) + ℓ if k > D

I.e., the mapping mod counts until D and afterwards modulo D − ℓ + 1. According to
Claim 4.6, there is a unique infinite sequence i0, i1, . . . ∈ [n] such that

• i0 = i,

• for each k ∈ N, Ei[jmod(k)] ∈ ρ(ik), and

• for each k ∈ N, (jmod (k), jmod (k+1)) ⊑
Ei

W (ik, ik+1).

In what follows, we show that iD+1 = iℓ, which implies (jd+1, jd+2) ⊑
Ei

W (id+1, id+2) so that

(jd+1, jd+2) ⊑
Ei

W (h′(jd+1), h
′(jd+2)). There is a circular string w = eℓ . . . eD ∈ ∆+ such that

• jℓ
w

==⇒Ei
jℓ,

• jℓ
eℓ...eℓ+k−1
=======⇒Ei

jℓ+k for each k ∈ {1, . . . ,D − ℓ}, and

• iℓ
wk

==⇒W iℓ+k(D−ℓ+1) for each k ≥ 1.

We can obtain such a w by setting, for each k ∈ {ℓ, . . . ,D},

ek =





→ if jk ⋖i jmod (k+1)

← if jmod(k+1) ⋖i jk

y if λi(jk) ∈ Σ1
c and (jk, jmod (k+1)) ∈ µi and jk 6⋖i jmod (k+1)

x if λi(jk) ∈ Σ1
r and (jmod (k+1), jk) ∈ µi and jmod(k+1) 6⋖i jk

x if λi(jk) ∈ Σ2
c and (jk, jmod (k+1)) ∈ µi and jk 6⋖i jmod (k+1)

y if λi(jk) ∈ Σ2
r and (jmod (k+1), jk) ∈ µi and jmod(k+1) 6⋖i jk

As [n] is a finite set5, there are p, q ∈ N such that ℓ ≤ p < q and ip = iq. We choose
p and q such that iℓ, . . . , iq−1 are pairwise distinct. We have both Ei[jmod (p)] ∈ ρ(ip) and
Ei[jmod (q)] ∈ ρ(ip). According to the definition of the set of states of Br, this implies
jmod (p) = jmod (q). Let us distinguish three cases:

Case 1: p = ℓ and q = ℓ + k(D − ℓ + 1) for some k ≥ 1. Then, iℓ
wk

−֒−→W iℓ+k(D−ℓ+1) so
that, according to Proposition 4.5, we have k = 1 and iℓ = iD+1, and we are done.

5In the context of infinite nested words, this argument can be replaced with the fact that, starting in i,
there is no infinite sequence of pairwise distinct nodes that follows the infinite sequence of directions w

ω,
i.e., the infinite repetition of w (see Section 6).
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Case 2: p > ℓ and q = p + k(D − ℓ + 1) for some k ≥ 1. Setting e = emod(p−1), we have

both ip−1
e
−֒→W ip and iq−1

e
−֒→W ip, which is a contradiction, as ip−1 6= iq−1.

Case 3: p ≥ ℓ and q 6= p+ k(D− ℓ+ 1) for every k ≥ 1. But this implies mod(p) 6= mod(q)
and, as the jℓ, . . . , jD are pairwise distinct, jmod(p) 6= jmod (q), a contradiction.

This concludes the proof of Claim 4.8.

So let h : r-Sph(W, i) → core(ρ(i)) and h′ : core(ρ(i)) → r-Sph(W, i) be the unique
homomorphisms that we obtain following the constructive proofs of Claims 4.7 and 4.8,
respectively. It is now immediate that h is injective, h−1 = h′, and h : r-Sph(W, i) →
core(ρ(i)) is an isomorphism.

Recall that η : Q → Spheresr(Σ̃) shall map the empty set to an arbitrary sphere
and a nonempty set E ∈ Q onto core(E). Indeed, we constructed a generalized 2nwa

Br = (Q, δ,QI , F,C) together with a mapping η : Q→ Spheresr(Σ̃) such that

• L(Br) is the set of all nested words over Σ̃ (cf. Section 4.2.2), and

• for every nested word W ∈ NW(Σ̃), every accepting run ρ of Br on W , and every node i
of W , we have η(ρ(i)) ∼= r-Sph(W, i) (cf. Section 4.2.3).

This shows Proposition 4.1.

5. Grids and Monadic Second-Order Quantifier Alternation

In this section, we show that the monadic second-order quantifier-alternation hierarchy
over nested words is infinite. In other words, the more alternation of second-order quantifi-
cation we allow, the more expressive formulas become. From this, we can finally deduce that
2-stack visibly pushdown automata cannot be complemented in general. In the proof, we
use results that have been gained in the setting of grids. By means of first-order reductions
from grids into nested words, we can indeed transfer expressiveness results for grids to the
nested-word setting. Let us first state a general result from [17], starting with the formal
definition of a strong first-order reduction:

Definition 5.1 ( [17], Definition 32). Let C and C′ be classes of structures over relational
signatures τ and τ ′, respectively. A strong first-order reduction from C to C′ with rank
m ≥ 1 is an injective mapping Φ : C → C′ such that the following hold:

(1) For every G ∈ C, the universe of the structure Φ(G) is
⋃

k∈{1,...,m}({k} × dom(G)), i.e.,

the disjoint union of m copies of dom(G), where dom(G) shall denote the universe of
G.

(2) There exists some ψ(x1, . . . , xm) ∈ FO(τ ′) such that, for every structure G ∈ C, every
u1, . . . , um ∈ dom(G), and every k1, . . . , km ∈ [m], Φ(G) |= ψ[(k1, u1), . . . , (km, um)] iff
((k1, u1), . . . , (km, um)) = ((1, u1), . . . , (m,u1)). (The intuition is that u ∈ dom(G) is
represented by a model ((1, u), . . . , (m,u)) of ψ.)

(3) For every relation symbol r′ from τ ′, say with arity l, and every κ : [l] → [m], there

is ϕr′
κ (x1, . . . , xl) ∈ FO(τ) such that, for each G ∈ C and each u1, . . . , ul ∈ dom(G),

G |= ϕr′
κ [u1, . . . , ul] iff Φ(G) |= r′[(κ(1), u1), . . . , (κ(l), ul)].

(4) For every relation symbol r from τ , say with arity l, there is ϕr(x1, . . . , xl) ∈ FO(τ ′)
such that, for each G ∈ C and each u1, . . . , ul ∈ dom(G), G |= r[u1, . . . , ul] iff Φ(G) |=
ϕr[(1, u1), . . . , (1, ul)].
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Once we have a strong first-order reduction from C to C′, logical definability carries over
from C to C′:

Theorem 5.2 ( [17], Theorem 33). Let C and C′ be classes of structures over relational
signatures τ and τ ′, respectively. Let Φ : C → C′ be a strong first-order reduction such that
Φ(C) is Σ1(τ

′)-definable relative to C′. Then, for every L ⊆ C and k ≥ 1, L is Σk(τ)-
definable relative to C iff Φ(L) is Σk(τ

′)-definable relative to C′.

We proceed as follows. We first recall the notion of the class of grids, of which we know
that the monadic second-order quantifier-alternation hierarchy is infinite. Then, we give a
strong first-order reduction from the class of grids to the class of nested words over a simple
2-stack visibly pushdown alphabet so that we can deduce that the monadic second-order
quantifier-alternation hierarchy over nested words is infinite, too. Note that we will add to
ordinary grids some particular labeling in terms of a and b, which will simplify the upcoming
constructions. It is, however, easy to see that well-known results concerning ordinary grids
extend to these extended grids (cf. Theorem 5.3 below).

We fix a signature τGrids = {Pa, Pb, succ1, succ2} with Pa, Pb unary and succ1, succ2

binary relation symbols. Let n,m ≥ 1 be natural numbers. The (n,m)-grid is the τGrids -
structure G(n,m) = ([n]× [m], succ1, succ2, Pa, Pb) such that succ1 = {((i, j), (i+1, j)) | i ∈
[n− 1], j ∈ [m]}, succ2 = {((i, j), (i, j +1)) | i ∈ [n], j ∈ [m− 1]}, Pa = {(i, j) ∈ [n]× [m] | j
is odd}, and Pb = {(i, j) ∈ [n]× [m] | j is even}. The (3, 4)-grid is illustrated in Figure 10.
By G, we denote the set of all the grids.

a

a

a

b

b

b

a

a

a

b

b

b

Figure 10: The (3,4)-grid

Theorem 5.3 ( [17]). The monadic second-order quantifier-alternation hierarchy over grids
is infinite. I.e., for every k ≥ 1, there is a set of grids that is Σk+1(τGrids)-definable relative
to G but not Σk(τGrids)-definable relative to G.

For the rest of this section, we suppose that Σ̃ is the 2-stack call-return alphabet given
by Σ1

c = {a}, Σ1
r = {a}, Σ2

c = {b}, Σ2
r = {b}, and Σint = ∅. In particular, the following

results assume all alphabets apart from Σint to be nonempty.

We now describe an encoding Φ : G→ NW(Σ̃) of grids into nested words over Σ̃. Given
n,m ≥ 1, we let

Φ(G(n,m)) :=





nested
(
an
[
(ab)n(ba)n

](m−1)/2
an
)

if m is odd

nested
(
an
[
(ab)n(ba)n

]m/2−1
(ab)nbn

)
if m is even

The idea is that the first n a’s (and, as explained below, the corresponding return events) in
a nested word represent the first column of G(n,m) seen from top to bottom; the first n b’s
represent the second column, where the column is seen from bottom to top; the second n a’s
stand for the third column, again considered from top to bottom, and so on. The encoding
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a −−−−−→ a −−−−−→ a→ a→ b→ a→ b→ a→ b→ b→ a→ b→ a→ b→ a→ a→ b→ a→ b→ a→ b→ b −−−−−→ b −−−−−→ b

Figure 11: The encoding Φ(G(3, 4)) of the (3,4)-grid as a nested word

Φ(G(3, 4)) of the (3,4)-grid as a nested word is depicted in Figure 11. We claim that Φ is

indeed a strong first-order reduction from the set of grids to the set NW(Σ̃) of nested words

over Σ̃. Observe that Φ(G(n,m)) does not have as domain the set {1, 2} × ([n] × [m]) as
required in the definition of a strong first-order reduction. However, below, we will introduce
a bijection χn,m : {1, 2} × ([n]× [m]) → [2 · n ·m] to identify every element in the domain
of Φ(G(n,m)) with some element in {1, 2} × ([n]× [m]).

Proposition 5.4. We have that Φ : G→ NW(Σ̃) is a strong first-order reduction with rank

2. Moreover, Φ(G) is Σ1(τeΣ)-definable relative to NW(Σ̃).

Proof. Let us first introduce a useful notation. Given a nested word W = ([n],⋖, µ, λ) and
c ∈ Σ such that W contains at least k positions labeled with c, we let posc(W,k) denote
the least position i in W such that |{j ∈ [i] | λ(j) = c}| = k (i.e., posc(W,k) denotes the
position of the k-th c in W ).

Let n,m ≥ 1 and let ([2 · n ·m],⋖, µ, λ) refer to Φ(G(n,m)). Recall that λ can be seen
as the collection of unary relations λc = {i ∈ [2 · n ·m] | λ(i) = c} for c ∈ Σ. Let us map
any node in the (n,m)-grid (i.e., any element from [n] × [m]) to a position of Φ(G(n,m))
by defining a function χn,m : [n]× [m]→ [2 · n ·m] as follows:

χn,m(i, j) =

{
posa(Φ(G(n,m)), n · [(j + 1)/2 − 1] + i) if j is odd

posb(Φ(G(n,m)), n · [j/2 − 1] + (n+ 1− i)) if j is even

for any (i, j) ∈ [n] × [m]. Intuitively, χn,m(i, j) ∈ [2 · n · m] represents the node (i, j) in
the (n,m)-grid. This mapping is further extended towards a bijection χn,m : {1, 2} × ([n]×
[m]) → [2 · n ·m] as required by Definition 5.1 (item (1)). Namely, we map χn,m(1, (i, j))
onto χn,m(i, j) and χn,m(2, (i, j)) onto µ(χn,m(i, j)).

We are prepared to specify the first-order formulas as supposed in Definition 5.1: Let

ψ(x1, x2) = µ(x1, x2) . (2)

Indeed, for every n,m ≥ 1, k1, k2 ∈ {1, 2}, and u1, u2 ∈ [n]× [m], we have

Φ(G(n,m)) |= ψ[χn,m(k1, u1), χn,m(k2, u2)] iff ((k1, u1), (k2, u2)) = ((1, u1), (2, u1)) .

We will identify a map κ : [l] → {1, 2} with the tuple (κ(1), . . . , κ(l)). Let, for c ∈ Σ and
κ ∈ {1, 2},

ϕλc

κ (x) =





Pc(x) if c ∈ {a, b} and κ = 1

Pc(x) if c ∈ {a, b} and κ = 2

false otherwise

(3)
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where we let a = a and b = b. For every n,m ≥ 1, κ ∈ {1, 2}, and u ∈ [n]× [m], we have

G(n,m) |= ϕλc

κ (x)[u] iff Φ(G(n,m)) |= (λ(x) = c)[χn,m(κ, u)] .

Further, let, for κ ∈ {1, 2} × {1, 2},

ϕ⋖

κ (x1, x2) =





succ1(x1, x2) ∧ ¬∃z succ2(z, x1) if κ = (1, 1)(
Pa(x1) ∧ succ1(x2, x1) ∧ ¬∃z succ2(x1, z)

∨ Pb(x1) ∧ succ1(x1, x2) ∧ ¬∃z succ2(x1, z)

)
if κ = (2, 2)




(x1 = x2) ∧ Pa(x1) ∧ ¬∃z succ1(x1, z)

∨ (x1 = x2) ∧ Pb(x1) ∧ ¬∃z succ1(z, x1)

∨ Pa(x1) ∧ Pb(x2) ∧ ∃z (succ1(z, x1) ∧ succ2(z, x2))

∨ Pb(x1) ∧ Pa(x2) ∧ ∃z (succ1(z, x1) ∧ succ2(x2, z))




if κ = (1, 2)

(
Pa(x1) ∧ Pb(x2) ∧ succ2(x1, x2)

∨ Pb(x1) ∧ Pa(x2) ∧ succ2(x1, x2)

)
if κ = (2, 1)

For every n,m ≥ 1, κ ∈ {1, 2} × {1, 2}, and u1, u2 ∈ [n]× [m], we have

G(n,m) |= ϕ⋖

κ (x1, x2)[u1, u2] iff Φ(G(n,m)) |= (x1 ⋖ x2)[χn,m(κ(1), u1), χn,m(κ(2), u2)] .

Finally, to complete step (3), let, for κ ∈ {1, 2} × {1, 2},

ϕµ
κ(x1, x2) =

{
x1 = x2 if κ = (1, 2)

false otherwise

Then, for every n,m ≥ 1, κ ∈ {1, 2} × {1, 2} and u1, u2 ∈ [n]× [m],

G(n,m) |= ϕµ
κ(x1, x2)[u1, u2] iff Φ(G(n,m)) |= (µ(x1, x2))[χn,m(κ(1), u1), χn,m(κ(2), u2)] .

Let
ϕPa(x) = (λ(x) = a) and ϕPb(x) = (λ(x) = b) . (4)

Of course, we have, for each n,m ≥ 1, c ∈ {a, b}, and u ∈ [n]× [m],

G(n,m) |= Pc(x)[u] iff Φ(G(n,m)) |= (ϕPc)[χn,m(1, u)] .

Let

ϕsucc1(x1, x2) =

(
λ(x1) = a ∧ λ(x2) = a ∧ (x1 ⋖ x2 ∨ ∃z (x1 ⋖ z ∧ z ⋖ x2))

∨ λ(x1) = b ∧ λ(x2) = b ∧ ∃z (x2 ⋖ z ∧ z ⋖ x1)

)

and let furthermore
ϕsucc2(x1, x2) = ∃z (µ(x1, z) ∧ z ⋖ x2) .

Then, for each n,m ≥ 1, u1, u2 ∈ [n]× [m], and k ∈ {1, 2}, it holds

G(n,m) |= succk(x1, x2)[u1, u2] iff Φ(G(n,m)) |= (ϕsucck)[χn,m(1, u1), χn,m(1, u2)] .

With the above formulas, it is now immediate to verify that Φ is indeed a strong first-order
reduction.

Now observe that Φ(G) is the “conjunction” of

• the regular expression
(
a+
[
(ab)+(ba)+

]∗
a+
)

+
(
a+
[
(ab)+(ba)+

]∗
(ab)+b+

)
,

• the first-order formula ∀x∃y
(
µ(x, y) ∨ µ(y, x)

)
, and
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• the first-order property (written in shorthand)

∀x1, x2, y1, y2

(
λ(x1) = λ(x2) ∧ µ(x1, y1) ∧ µ(x2, y2)

→
(
λ(x1) = a ∧ x2 − x1 = 1 → y1 − y2 ∈ {1, 2}

)

∧
(
λ(y1) = a ∧ y1 − y2 = 1 → x2 − x1 ∈ {1, 2}

)

∧
(
λ(y1) = b ∧ y1 − y2 = 1 → x2 − x1 = 2

)

∧
(
x2 − x1 = 2 ∧ λ(x1 + 1) 6= λ(x1) → y1 − y2 ∈ {1, 2}

)

∧
(
y1 − y2 = 2 ∧ λ(y2 + 1) 6= λ(y2) → x2 − x1 ∈ {1, 2}

))

As the regular expression represents a Σ1(τeΣ)-definable property, Φ(G) is Σ1(τeΣ)-definable

relative to NW(Σ̃), which concludes the proof of Proposition 5.4.

Combining Theorem 5.2, Theorem 5.3, and Proposition 5.4, we obtain the following:

Theorem 5.5. The monadic second-order quantifier-alternation hierarchy over nested words

is infinite. I.e., for all k ≥ 1, there is a set of nested words over Σ̃ (with Σ̃ as specified

above) that is Σk+1(τeΣ)-definable relative to NW(Σ̃) but not Σk(τeΣ)-definable relative to

NW(Σ̃).

Recall that Theorem 5.5 relies on a particularly simple call-return alphabet and the
presence of at least two stacks. Indeed, its proof is based on the 2-stack call-return alphabet

Σ̃, which is given by Σ1
c = {a}, Σ1

r = {a}, Σ2
c = {b}, Σ2

r = {b}, and Σint = ∅.
Finally, Theorems 4.3 and 5.5 give rise to the following theorem:

Theorem 5.6. The class of nested-word languages that are recognized by 2vpa is, in gen-
eral, not closed under complementation. More precisely, there is a set L of nested words

over Σ̃ (with Σ̃ as specified above) such that the following hold:

(1) There is a 2vpa A over Σ̃ such that L(A) = L.

(2) There is no 2vpa A over Σ̃ such that L(A) = NW(Σ̃) \ L.

This implies that the deterministic model of a 2vpa (see [13] for its formal definition)
is strictly weaker than the general model. This fact was, however, already shown in [13]:
Consider the language L = {(ab)mcndm−nxnym−n | m ∈ N, n ∈ [m]} and the 2-stack call-

return alphabet Σ̃ given by Σ1
c = {a}, Σ1

r = {c, d}, Σ2
c = {b}, Σ2

r = {x, y}, and Σint = ∅.

Then, L is accepted by some 2vpa over Σ̃ but not by any deterministic 2vpa over Σ̃.
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6. Büchi Multi-Stack Visibly Pushdown Automata

We now transfer some fundamental notions and results from the finite case into the
setting of infinite (nested) words.

6.1. Büchi Multi-Stack Visibly Pushdown Automata. Let K ≥ 1, and let Σ̃ =
〈{(Σs

c,Σ
s
r)}s∈[K],Σint〉 be a K-stack call-return alphabet.

Definition 6.1. A Büchi multi-stack visibly pushdown automaton (Büchi Mvpa) over Σ̃ is
a tuple A = (Q,Γ, δ,QI , F ) whose components agree with those of an ordinary Mvpa, i.e.,
Q is its finite set of states, QI ⊆ Q is the set of initial states, F ⊆ Q is the set of final states,
Γ is the finite stack alphabet containing the special symbol ⊥, and δ is a triple 〈δc, δr, δint 〉
with δc ⊆ Q× Σc × (Γ \ {⊥})×Q, δr ⊆ Q× Σr × Γ×Q, and δint ⊆ Q× Σint ×Q.

A Büchi 2-stack visibly pushdown automaton (Büchi 2vpa) is a Büchi Mvpa that is
defined over a 2-stack alphabet.

Consider an infinite string w = a1a2 . . . ∈ Σω. A run of the Büchi Mvpa A on w

is a sequence ρ = (q0, σ
1
0 , . . . , σ

K
0 )(q1, σ

1
1 , . . . , σ

K
1 ) . . . ∈ (Q× Cont [K])

ω
(recall that Cont =

(Γ \ {⊥})∗ ·{⊥}) such that q0 ∈ QI , σ
s
0 = ⊥ for every stack s ∈ [K], and [Push], [Pop], and

[Internal] as specified in the finite case hold for every i ∈ N+. We call the run accepting if
{q | q = qi for infinitely many i ∈ N} ∩ F 6= ∅. A string w ∈ Σω is accepted by A if there is
an accepting run of A on w. The such defined (string) language of A is denoted by Lω(A).

For the infinite case, we can likewise establish a relational structure of infinite nested
words:

Definition 6.2. An infinite nested word over Σ̃ is a structure (N+,⋖, µ, λ) where ⋖ =
{(i, i + 1) | i ∈ N+}, λ : N+ → Σ, and µ =

⋃
s∈[K] µ

s ⊆ N+ ×N+ where, for every s ∈ [K]

and (i, j) ∈ N+ ×N+, (i, j) ∈ µs iff i < j, λ(i) ∈ Σs
c, λ(j) ∈ Σs

r, and λ(i+ 1) . . . λ(j − 1) is
s-well formed.

The set of infinite nested words over Σ̃ is denoted by NW
ω(Σ̃). Again, given infinite

nested words W = (N+,⋖, µ, λ) and W ′ = (N+,⋖
′, µ′, λ′), λ = λ′ implies W = W ′ so that

we can represent W as string(W ) := λ(1)λ(2) . . . ∈ Σω. Vice versa, given a string w ∈ Σω,

there is exactly one infinite nested word W over Σ̃ such that string(W ) = w, which we
denote nested(w).

Definition 6.3. A generalized Büchi multi-stack nested-word automaton (generalized Büchi

Mnwa) over Σ̃ is a tuple B = (Q, δ,QI , F,C) where Q, δ, QI , F , and C are as in a
generalized Mnwa. Recall that, in particular, δ is a pair 〈δ1, δ2〉 with δ1 ⊆ Q × Σ × Q and
δ2 ⊆ Q × Q × Σr × Q.

We call B a generalized Büchi 2-stack nested-word automaton (generalized Büchi 2nwa)
if it is defined over a 2-stack alphabet.

If C = ∅, then we call B a Büchi Mnwa (Büchi 2nwa, if K = 2).

A run of B on an infinite nested word W = (N+,⋖, µ, λ) ∈ NW
ω(Σ̃) is a mapping

ρ : N+ → Q such that (q, λ(1), ρ(1)) ∈ δ1 for some q ∈ QI , and, for all i ≥ 2, we have
{

(ρ(µ−1(i)), ρ(i − 1), λ(i), ρ(i)) ∈ δ2 if λ(i) ∈ Σr and µ−1(i) is defined

(ρ(i − 1), λ(i), ρ(i)) ∈ δ1 otherwise
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The run ρ is accepting if ρ(i) ∈ F for infinitely many i ∈ N+ and, for all i ∈ N+ with
ρ(i) ∈ C, both λ(i) ∈ Σc and µ(i) is defined. The language of B, denoted by Lω(B), is the

set of infinite nested words over Σ̃ that allow for an accepting run of B.
As we still have a one-to-one correspondence between strings and nested words, we may

let Lω(A) with A a Büchi Mvpa stand for the set {nested(w) | w ∈ Lω(A)}.
It is now straightforward to adapt Lemma 2.7 and Lemma 2.8 to the infinite setting:

Lemma 6.4. For every generalized Büchi Mnwa B, there is a Büchi Mnwa B′ such that
Lω(B′) = Lω(B).

Lemma 6.5. Let L ⊆ NW
ω(Σ̃). The following are equivalent:

(1) There is a Büchi Mvpa A such that Lω(A) = L.
(2) There is a Büchi Mnwa B such that Lω(B) = L.

6.2. Büchi 2-Stack Visibly Pushdown Automata vs. Logic. In this section, we will
again restrict to two stacks. Unfortunately, EMSO logic over infinite nested words turns
out to be too weak to capture all the behaviors of Büchi 2vpa. Given that EMSO logic
considers a successor relation instead of an order relation, one cannot even express that one
particular action occurs infinitely often. To overcome this deficiency, one can introduce a
first-order quantifier ∃∞xϕ meaning that there are infinitely many positions x to satisfy the
property ϕ [4].

So let us fix a 2-stack call-return alphabet Σ̃ = 〈{(Σ1
c ,Σ

1
r), (Σ

2
c ,Σ

2
r)},Σint 〉 for the rest

of the paper. We introduce the logic MSO∞(τeΣ
), which is given by the following grammar:

ϕ ::= λ(x) = a | x ⋖ y | µ(x, y) | x = y | x ∈ X |

¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃
∞xϕ | ∃Xϕ

where a ∈ Σ. The fragments EMSO∞(τeΣ) and FO∞(τeΣ) are defined as one would expect.
The satisfaction relation is as usual concerning the familiar fragment MSO(τeΣ). Moreover,
given a formula ϕ(y, x1, . . . , xm,X1, . . . ,Xn) ∈ MSO∞(τeΣ), an infinite nested word W ,

(i1, . . . , im) ∈ (N+)m, and (I1, . . . , In) ∈ (2N+)n, we set W |= (∃∞yϕ)[i1, . . . , im, I1, . . . , In]
iff W |= ϕ[i, i1, . . . , im, I1, . . . , In] for infinitely many i ∈ N+. Given a sentence ϕ ∈

MSO∞(τeΣ
), we denote by Lω(ϕ) the set of infinite nested words over Σ̃ that satisfy ϕ.

To establish a connection between the extended logic and our Büchi automata models,
we have to provide an extension of Hanf’s Theorem.

Theorem 6.6 (cf. [4]). Let ϕ ∈ FO∞(τeΣ) be a sentence. There is a positive Boolean
combination ψ of formulas of the form

∃=txχ(x) and ∃>txχ(x) and ∃<∞xχ(x) and ∃=∞xχ(x)

where t ∈ N and χ(x) ∈ FO(τeΣ
) is local such that, for every nested word W ∈ NW

ω(Σ̃), we
have

W |= ϕ iff W |= ψ.

Unfortunately, we do not know if ψ can be computed effectively in this extended setting.
We observe that the 2nwa Br constructed in the proof of Proposition 4.1 can be easily

adapted to obtain its counterpart for infinite nested words:

Proposition 6.7. Let r ∈ N be any natural number. There are a generalized Büchi 2nwa

Bω
r = (Q, δ,QI , F,C) over Σ̃ and a mapping η : Q→ Spheresr(Σ̃) such that
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• Lω(Bω
r ) = NW

ω(Σ̃) and

• for every W ∈ NW
ω(Σ̃), every accepting run ρ of Bω

r on W , and every node i ∈ N+ of
W , we have η(ρ(i)) ∼= r-Sph(W, i).

Proof. First, note that Proposition 4.5 and the crucial argument stated in the proof of
Claim 4.8 (see Footnote 5) hold for infinite nested words just as well. Now, we look at
the generalized 2nwa Br = (Q, δ,QI , F,C) as constructed in the proof of Proposition 4.1.
As the only purpose of the set F of final states is to ensure progress in some states where
progress is required in terms of spheres with a non-maximal active node, we can set Bω

r to
be (Q, δ,QI , Q,C), and we are done.

With this, we can easily extend Lemma 4.2 and determine a Büchi 2nwa to detect if a
particular sphere occurs infinitely often in an infinite nested word:

Lemma 6.8. Let r ∈ N and let S ∈ Spheresr(Σ̃). There is a generalized Büchi 2nwa B

over Σ̃ such that Lω(B) = {W ∈ NW
ω(Σ̃) | there are infinitely many i ∈ N+ such that

r-Sph(W, i) ∼= S}.

Proof. We start from the generalized Büchi 2nwa Bω
r = (Q, δ,QI , Q,C) and the mapping

η : Q→ Spheresr(Σ̃) from Proposition 6.7. To obtain B as required in the proposition, we
simply set the set of final states to be {q ∈ Q | η(q) ∼= S}.

Theorem 6.9. Let L ⊆ NW
ω(Σ̃) be a set of infinite nested words over the 2-stack call-

return alphabet Σ̃. Then, the following are equivalent:

(1) There is a Büchi 2vpa A over Σ̃ such that Lω(A) = L.
(2) There is a sentence ϕ ∈ EMSO∞(τeΣ) such that Lω(ϕ) = L.

Proof. To prove (1) → (2), one again uses standard methods. Basically, second-order
variables Xq for q ∈ Q encode an assignment of states to positions in a nested word. Then,
the first-order part of the formula expresses that this assignment is actually an accepting run.
To take care of the acceptance condition, we add the disjunction of formulas ∃=∞x (x ∈ Xq)
with q a final state.

For the direction (2) → (1), we make use of Lemmas 6.4, 6.5, 6.8, (a simple variation
of) Lemma 4.2, and the easy fact that the class of languages of infinite nested words that
are recognized by generalized Büchi 2nwa is closed under union and intersection. With
this, the proof proceeds exactly as in the finite case.

7. Open Problems

We leave open if visibly pushdown automata still admit a logical characterization in
terms of EMSO logic once they are equipped with more than two stacks.

We conjecture that every first-order definable set of nested words over two stacks is
recognized by some unambiguous 2vpa, i.e., by a 2vpa in which an accepting run is unique.
To achieve such an automaton, the coloring of spheres as performed by Br by simply guessing
and subsequently verifying it has to be done unambiguously.

We do not know if EMSO logic over nested words becomes more expressive if we allow
atomic formulas x < y with the obvious meaning. For this logic, it is no longer possible to
apply Hanf’s theorem as the degree of the resulting structures is not bounded anymore.
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Our method might lead to logical characterizations for concurrent queue systems, where
several visibly pushdown automata communicate with each other via channels [14]. In this
extended setting, we deal with both multiple stacks and channels. A corresponding logic
then has to provide an additional matching predicate msg(x, y) to relate the sending and
reception of a message (see, for example, [5]). It remains to identify channel architectures
for which a logical characterization is possible. Using results from [14], this might lead to
partial results concerning the decidability of corresponding satisfiability problems.

Finally, it might be worthwhile to study if our technique leads to a logical characteri-
zation of 2vpa for more general 2-stack call-return alphabets as introduced in [8].
Acknowledgment We thank the anonymous referees for their careful reading and many
useful remarks.
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