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Abstract. The Turing machine models an old-fashioned computer, that does not interact
with the user or with other computers, and only does batch processing. Therefore, we came
up with a Reactive Turing Machine that does not have these shortcomings. In the Reactive
Turing Machine, transitions have labels to give a notion of interactivity. In the resulting
process graph, we use bisimilarity instead of language equivalence.

Subsequently, we considered other classical theorems and notions from automata theory
and formal languages theory. In this paper, we consider the classical theorem of the
correspondence between pushdown automata and context-free grammars. By changing
the process operator of sequential composition to a sequencing operator with intermediate
acceptance, we get a better correspondence in our setting. We find that the missing
ingredient to recover the full correspondence is the addition of a notion of state awareness.

1. Introduction

A basic ingredient of any undergraduate curriculum in computer science is a course on
automata theory and formal languages, as this gives students insight in the essence of a
computer, and tells them what a computer can and cannot do. Usually, such a course
contains the treatment of the Turing machine as an abstract model of a computer. However,
the Turing machine is a very old-fashioned computer: it is deaf, dumb and blind, and all
input from the user has to be put on the tape before the start. Computers behaved like this
until the advent of the terminal in the mid 1970s. This is far removed from computers the
students find all around them, which interact continuously with people, other computers
and the internet. It is hard to imagine a self-driving car driven by a Turing machine that is
deaf, dumb and blind, where all user input must be on the tape at the start of the trip.
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In order to make the Turing machine more interactive, many authors have enhanced
it with extra features, see e.g. [GW08, Weg97]. But an extra feature, we believe, is not
the way to go. Interaction is an essential ingredient, such as it has been treated in many
forms of concurrency theory. We seek a full integration of automata theory and concurrency
theory, and proposed the Reactive Turing Machine in [BLvT13]. In the Reactive Turing
Machine, transitions have labels to give a notion of interactivity. In the resulting process
graphs, we use bisimilarity instead of language equivalence. Subsequently, we considered
other classical theorems and notions from automata theory and formal languages theory
[BCLT09, BLMT16]. We find richer results and a finer theory.

In this paper, we consider the classical theorem of the correspondence between pushdown
automata and context-free grammars: a formal language is accepted by a pushdown au-
tomaton if, and only if, it is generated by a context-free grammar. Our aim is to establish a
process-theoretic variant of that correspondence theorem: a process is defined by a pushdown
automaton if, and only if, can be specified in a process algebra comprising actions, choice,
sequencing and recursion. There are several choices that we need to make both regarding
the process-theoretic semantics of pushdown automata and regarding the process algebra.

Regarding the process-theoretic semantics of pushdown automata, in contrast to language
semantics, in bisimulation semantics it makes a difference whether we consider acceptance by
final state or acceptance by empty stack. Every process that is a pushdown process according
to the acceptance-by-empty-stack interpretation is also a pushdown process according to
the acceptance-by-final-state interpretation, but the converse does not hold [BCLT09]. In
this paper, we focus on the acceptance-by-final-state interpretation and set out to find the
corresponding process algebra.

We start out from the seminal process algebra BPA of Bergstra and Klop [BK84]. Then,
we need to add constants for acceptance and non-acceptance (deadlock), so we look at the
process algebra TSP of [BBR10]. However, as we found earlier (starting from [BCT08]), the
process algebra TSP is not a good choice for the correspondence with pushdown auitomata
modulo bisimulation: by means of a guarded recursive specification over TSP we can define
processes that cannot be generated by any pushdown automaton, and some processes
generated by a pushdown automaton cannot be defined by a guarded recursive specification
over TSP.

By changing the process operator of sequential composition to a sequencing operator with
intermediate acceptance, we get the theory TSP; that provides a better correspondence in our
setting [BLY17, Bel18, BLB19]. All processes defined by a guarded recursive specification
over TSP; can also be generated by a pushdown automaton. However, the other direction
still does not hold.

We find that the missing ingredient to recover the full correspondence is the addition
of a notion of state awareness, by means of a signal that can be passed along a sequencing
operator.

Our main contribution is to show that it suffices to add propositional signals and
conditions in the style of [BB97] to restore the correspondence: we establish that a process
is specified by a guarded sequential recursive specification with propositional signals and
conditions if, and only if, it is the process associated with a pushdown automaton.

This paper extends [BCL21] by adding an axiomatisation of the process theory. This
axiomatisation allows us to derive the head normal theorem already reported in [BCL21]
purely equationally and is proved to be ground-complete for the recursion-free fragment of
the process theory.
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2. Preliminaries

As a common semantic framework we use the notion of a labelled transition system.

Definition 2.1. A labelled transition system is a quadruple (S,A,−→, ↓), where

(1) S is a set of states;
(2) A is a set of actions, τ 6∈ A;
(3) −→ ⊆ S ×A ∪ {τ} × S is an A ∪ {τ}-labelled transition relation; and
(4) ↓ ⊆ S is the set of final or accepting states.

A process graph is a labelled transition system with a special designated root state ↑, i.e.,
it is a quintuple (S,A,→, ↑, ↓) such that (S,A,→, ↓) is a labelled transition system, and

↑ ∈ S. We write s
a−→ s′ for (s, a, s′) ∈ → and s↓ for s ∈ ↓.

By considering language equivalence classes of process graphs, we recover languages as
a semantics, but we can also consider other equivalence relations. Notable among these is
bisimilarity.

Definition 2.2. Let (S,A,→ , ↓) be a labelled transition system. A symmetric binary
relation R on S is a bisimulation if it satisfies the following conditions for every s, t ∈ S
such that s R t and for all a ∈ A ∪ {τ}:
(1) if s

a−→ s′ for some s′ ∈ S, then there is a t′ ∈ S such that t
a−→ t′ and s′ R t′; and

(2) if s↓, then t↓.

The results of this paper do not rely on abstraction from internal computations. This
means we can use the strong version of bisimilarity defined above, which does not give
special treatment to τ -labelled transitions. In general, when we do give special treatment to
τ -labeled transitions, we use some form of branching bisimulation [GW96].

A process is a (strong) bisimulation equivalence class of process graphs.

3. Pushdown Automata

We consider an abstract model of a computer with a memory in the form of a stack : the
stack is last in and first out, something can be added on top of the stack (push), or something
can be removed from the top of the stack (pop).

Definition 3.1. A pushdown automaton M is a sextuple (S,A,D,→, ↑, ↓) where:

(1) S is a finite set of states,
(2) A is a finite input alphabet, τ 6∈ A is the unobservable step,
(3) D is a finite data alphabet,
(4) → ⊆ S × (A ∪ {τ})× (D ∪ {ε})×D∗ × S is a finite set of transitions or steps,
(5) ↑ ∈ S is the initial state,
(6) ↓ ⊆ S is the set of final or accepting states.

If (s, a, d, x, t) ∈ → with d ∈ D, we write s
a[d/x]−−−−→ t, and this means that the machine,

when it is in state s and d is the top element of the stack, can consume input symbol a,

replace d by the string x and thereby move to state t. Likewise, writing s
a[ε/x]−−−→ t means

that the machine, when it is in state s and the stack is empty, can consume input symbol a,

put the string x on the stack and thereby move to state t. In steps s
τ [d/x]−−−−→ t and s

τ [ε/x]−−−→ t,
no input symbol is consumed, only the stack is modified.
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Notice that we defined a pushdown automaton in such a way that it can be detected if
the stack is empty, i.e. when there is no top element.

↑
a[ε/1]
a[1/11]
b[1/ε]

Figure 1: Pushdown automaton of a counter.

For example, consider the pushdown automaton depicted in Figure 1. It represents the
process that can start to read an a, and after it has read at least one a, can read additional
a’s but can also read b’s. Upon acceptance, it will have read up to as many b’s as it has read
a’s. Interpreting symbol a as an increment and b as a decrement, we can see this process as
a counter.

We do not consider the language of a pushdown automaton, but rather consider the
process, i.e., the bisimulation equivalence class of the process graph of a pushdown automaton.
A state of this process graph is a pair (s, x), where s ∈ S is the current state and x ∈ D∗ is
the current contents of the stack (the left-most element of x being the top of the stack). In
the initial state, the stack is empty. In a final state, acceptance can take place irrespective
of the contents of the stack. The transitions in the process graph are labeled by the inputs
of the pushdown automaton or τ .

Definition 3.2. Let M = (S,A,D,→, ↑, ↓) be a pushdown automaton. The process graph
P(M) = (SP(M),A,−→P(M), ↑P(M), ↓P(M)) associated with M is defined as follows:

(1) SP(M) = {(s, x) | s ∈ S & x ∈ D∗};
(2) −→P(M) ⊆ SP(M) ×A ∪ {τ} × SP(M) is the least relation such that for all s, s′ ∈ S,

a ∈ A ∪ {τ}, d ∈ D and x, x′ ∈ D∗ we have

(s, dx)
a−→P(M) (s′, x′x) if, and only if, s

a[d/x′]−−−−→ s′ ;

(s, ε)
a−→P(M) (s′, x) if, and only if, s

a[ε/x]−−−→ s′ ;

(3) ↑P(M)= (↑, ε);
(4) ↓P(M) = {(s, x) | s ∈ ↓ & x ∈ D∗}.

To distinguish, in the definition above, the set of states, the transition relation, the initial
state and the set of accepting states of the pushdown automaton from similar components
of the associated process graph, we have attached a subscript P(M) to the latter. In the
remainder of this paper, we will suppress the subscript whenever it is already clear from the
context whether a component of the pushdown automaton or its associated process graph is
meant.

Figure 2 depicts the process graph associated with the pushdown automaton depicted
in Figure 1.

In language equivalence, the definition of acceptance in pushdown automata leads to
the same set of languages when we define acceptance by final state (as we do here) and
when we define acceptance by empty stack (not considering final states). In bisimilarity,
these notions are different: acceptance by empty stack yields a smaller set of processes than
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(↑, ε) (↑, 1) (↑, 11) . . .

a a a

bbb

Figure 2: The process graph of the counter.

acceptance by final state. This is illustrated by Figure 2: this process graph has infinitely
many non-bisimilar final states. This cannot be realised if we define acceptance by empty
stack. For details, see [BCLT09].

A pushdown automaton has only finitely many transitions, so there is a maximum number
of transitions from a given state, called its branching degree. Then, also the associated
process graph has a branching degree, that cannot be larger than the branching degree of
the underlying pushdown automaton. Thus, in a process graph associated with a pushdown
automaton, the branching is always bounded.

4. Sequential Processes: TSP

In the process setting, a context-free grammar is a recursive specification over a process
algebra comprising actions, choice and sequencing. We start out from the seminal process
algebra BPA of Bergstra and Klop [BK84]. Later, it was extended to the process algebra
BPAδε by adding two constants δ (for deadlock) and ε (for termination). This process
algebra was reformulated as the Theory of Sequential Processes (TSP) in [BBR10], using
0 and 1 for δ and ε. We present TSP next, and then will argue that it is not suitable to
obtain a correspondence with pushdown automata.

Let A be a set of actions and τ 6∈ A the silent action, symbols denoting atomic events,
and let P be a finite set of process identifiers. The sets A and P serve as parameters of the
process theory that we shall introduce below. We use symbols a, b, . . ., possibly indexed,
to range over A ∪ {τ}, symbols X,Y, . . . , possibly indexed, to range over P. The set of
sequential process expressions is generated by the following grammar (a ∈ A ∪ {τ}, X ∈ P):

p ::= 0 | 1 | a.p | p+ p | p · p | X .

The constants 0 and 1 respectively denote the deadlocked (i.e., inactive but not accepting)
process and the accepting process. For each a ∈ A ∪ {τ} there is a unary action prefix
operator a. . The binary operators + and · denote alternative composition and sequential
composition, respectively. We adopt the convention that a. binds strongest and + binds
weakest. The symbol · is often omitted when writing sequential process expressions.

For a (possibly empty) sequence p1, . . . , pn we inductively define
∑n

i=1 pi = 0 if n = 0

and
∑n

i=1 pi = (
∑n−1

i=1 pi) + pn if n > 0.
A recursive specification over sequential process expressions is a mapping ∆ from P to

the set of sequential process expressions. The idea is that the process expression p associated
with a process identifier X ∈ P by ∆ defines the behaviour of X. We prefer to think of ∆ as

a collection of defining equations X
def
= p, exactly one for every X ∈ P . We shall, throughout

the paper, presuppose a recursive specification ∆ defining the process identifiers in P, and

we shall usually simply write X
def
= p for ∆(X) = p. Note that, by our assumption that P is

finite, ∆ is finite too.
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1 ↓ a.p
a−→ p

p ↓
(p+ q) ↓

q ↓
(p+ q) ↓

p
a−→ p′

p+ q
a−→ p′

q
a−→ q′

p+ q
a−→ q′

p ↓ q ↓
p · q ↓

p
a−→ p′

p · q a−→ p′ · q
p ↓ q

a−→ q′

p · q a−→ q′

p
a−→ p′ X

def
= p

X
a−→ p′

p↓ X
def
= p

X↓

Figure 3: Operational semantics for sequential process expressions.

We associate behaviour with process expressions by defining, on the set of process
expressions, a unary acceptance predicate ↓ (written postfix) and, for every a ∈ A ∪ {τ}, a

binary transition relation
a−→ (written infix), by means of the transition system specification

presented in Figure 3. We write p
a9 for “there does not exist p′ such that p

a−→ p′” and

p9 for “p
a9 for all a ∈ A ∪ {τ}”.

For w ∈ A∗ we define p
w→−→ p′ inductively, for all process expressions p, p′, p′′;

• p ε→−→ p;

• if p
a−→ p′ and p′

w→−→ p′′, then p
aw→−→ p′′ (a ∈ A);

• if p
τ−→ p′ and p′

w→−→ p′′, then p
w→−→ p′′.

We see that τ -steps do not contribute to the string w. We write p −→ p′ for there exists

a ∈ A ∪ {τ} such that p
a−→ p′. Similarly, we write p →−→ p′ for there exists w ∈ A∗ such

that p
w→−→ p′ and say that p′ is reachable from p.

When a process expression p satisfies both p ↓ and p −→ we say p has intermediate
acceptance. We will need to take special care of such process expressions in the sequel.

We proceed to define when two process expressions are behaviourally equivalent.

Definition 4.1. A binary relation R on the set of sequential process expressions is a
bisimulation iff R is symmetric and for all process expressions p and q such that if (p, q) ∈ R:

(1) If p
a−→ p′, then there exists a process expression q′, such that q

a−→ q′, and (p′, q′) ∈ R.
(2) If p↓, then q↓.
The process expressions p and q are bisimilar (notation: p↔ q) iff there exists a bisimulation
R such that (p, q) ∈ R.

The operational rules presented in Fig 3 are in the so-called path format from which it
immediately follows that strong bisimilarity is a congruence [BV93]. Branching bisimulation,
however, is not a congruence, but by adding a rootedness condition we get rooted branching
bisimulation which is a congruence [GW96].

As is customary in process theory, we restrict our attention to guarded recursive
specifications, i.e., we require that every occurrence of a process identifier in the definition of
some (possibly different) process identifier occurs within the scope of an action prefix. Note
that we allow τ as a guard. This is possible since we use strong bisimulation, not rooted
branching bisimulation.
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X

(a.1)0 (a.1)1 (a.1)2 (a.1)3

a a a a

aaa

a

a

Figure 4: The process graph of X as defined in X
def
= 1 + X · a.1; the terms (a.1)n are

inductively defined by (a.1)0 = 1 and (a.1)n+1 = (a.1)n · (a.1).

If we do not restrict to guarded recursion, unwanted behaviour can result, as the following
example shows.

Example 4.2. Consider the (unguarded) recursive equation

X
def
= 1 +X · a.1 .

We show the process graph generated by the operational rules in Figure 4.
From the initial state, there are infinitely many transitions, to states that are all non-

bisimilar. Thus, the process graph generated is infinitely branching, and it cannot be
bisimilar to the graph of a pushdown automaton.

By restricting to guarded recursion, we guarantee that the associated process graphs
are finitely branching.

It is convenient to present a guarded sequential specification in a normal form, the
so-called Greibach normal form, see [BLB19].

Definition 4.3. A guarded sequential specification is in Greibach normal form, GNF, if
every right-hand side of every equation has the following form:

• (1+)
∑n

i=1 ai.αi for actions ai ∈ A ∪ {τ} and a sequence of identifiers αi ∈ P∗, n ≥ 0.

Recall that the empty summation equals 0. The 1 summand may or may not occur.
Furthermore, the empty sequence denotes 1.

It is well-known that by adding a finite number of process identifiers, every guarded
sequential specification can be brought into Greibach normal form (i.e. the behaviour
associated with a process identifier by the original specification is strongly bisimilar to the
behaviour associated with it by the transformed specification, see, e.g., [BLB19]).

Since bisimilarity is a congruence, we can consider the equational theory of sequential
expressions. From [BBR10], we know that the finite axiomatization in Table 1 is a sound
and ground-complete (i.e. complete for all process expressions, not including variables)
axiomatisation for the theory TSP with sequential composition and without recursion. In
axiomatisations, we use variables x, y, z denoting arbitrary process expressions.

Now we show why the process algebra TSP is not suitable to establish a correspondence
with pushdown automata. The problem is with the operational semantics of sequential
composition. Consider the following example.

Example 4.4. Consider the recursive specification

X
def
= 1 + a.Y ·X Y

def
= 1 + b.1 + a.Y · Y .

By following the operational rules, we obtain a process graph that is bisimilar to the one
shown in Figure 5 (for simplicity we have identified states labelled with terms that are equal
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x+ y = y + x A1
x+ (y + z) = (x+ y) + z A2
x+ x = x A3
(x+ y) · z = x · z + y · z A4
(x · y) · z = x · (y · z) A5
x+ 0 = x A6
0 · x = 0 A7
x · 1 = x A8
1 · x = x A9
(a.x) · y = a.(x · y) A10

Table 1: The axioms of TSP (a ∈ A ∪ {τ}).

X YX Y 2X Y n−1X Y nX

a a a

bbb

b

b

b

b

b

b

Figure 5: Process graph showing unbounded branching.

up to A5, A8 and A9). We see the similarity with Figure 2, but many more transitions are
added.

We see that the state given by process expression Y n ·X has n outgoing transitions,
to states X,Y · X, . . . , Y n−1 · X,Y n+1 · X. These states are all non-bisimilar. Thus, the
branching in this process graph is unbounded, and it cannot be the process graph of a
pushdown automaton.

We call the phenomenon occurring here transparency : it is possible to skip part of
the terms in a sequential composition. It causes that TSP is too expressive: by means of
a guarded recursive specification we can specify a process that is not pushdown. On the
other hand, TSP is insufficiently expressive at the same time: also due to transparency, the
pushdown automaton in Figure 1 cannot be specified in TSP.

Theorem 4.5. There is no guarded recursive specification over TSP with a process graph
bisimilar to the process graph in Figure 2.

Proof. Suppose such a guarded recursive specification does exist. Without loss of generality,
we can assume it is in Greibach normal form, such that every state of its process graph is
given by a sequential composition of identifiers. As in Figure 2, from every state a maximal
number of consecutive b-steps can be executed, this is also true in the process graph of the
specification, and this is also true for each of the identifiers. As the specification only has
finitely many identifiers, there is a maximal number of consecutive b-steps any identifier
can execute. Take a number k larger than this maximum, and consider the state (↑, 1k)
of the counter, from which exactly k consecutive b-steps can be executed. This state is
bisimilar to a sequential composition p of identifiers of the specification, so also from p, k



Vol. 19:1 PDAS AND CFGS IN BISIMULATION SEMANTICS 15:9

consecutive b-steps can be executed. By choice of k, these b-steps cannot all come from the
same component of p, so p contains two identifiers X,Y (X occurring before Y ), each of
which can execute at least one b-step. As (↑, 1k) ↓, also p ↓, and each identifier in p must be
accepting, so X ↓ and Y ↓. But then, the last operational rule of sequential composition can
be applied to X, and the b-step(s) in X can be skipped. This gives a sequence of less than k
consecutive b-steps from p, after which no further b can be executed. But the resulting state
must be bisimilar to a state (↑, 1n) of the counter, with n > 0. From this state a further b
can be executed, which gives a contradiction.

Transparency occurs because of the last rule of sequential composition in the operational
semantics: process expression p · q can execute a step from q, thereby forgetting p if p is
accepting. When p has intermediate acceptance, so p can still execute a step, this step is
lost.

In order to recover the correspondence between pushdown automata and sequential
process algebra, we need to change this operational rule. In order not to cause confusion, we
introduce a new operator ;, called sequencing, that will replace the sequential composition
operator · of TSP. We call the resulting theory TSP;. It was introduced in [BLY17].

5. Sequential processes: TSP;

We replace the sequential composition · of TSP by the sequencing operator ; of which the
operational rules are shown in Figure 6.

p ↓ q ↓
p ; q ↓

p
a−→ p′

p ; q
a−→ p′ ; q

p ↓ p9 q
a−→ q′

p ; q
a−→ q′

Figure 6: Operational semantics for sequencing.

The last rule for sequencing has a so-called negative premise. It is well-known that
transition system specifications with negative premises may not define a unique transition
relation that agrees with provability from the transition system specification [Gro93, BG96,
Gla04]. Indeed, in [BLY17] it was already pointed out that the transition system specification
in Figure 3 gives rise to such anomalies in case we use unguarded recursion. Consider recursive

equation X
def
= X ; a.1 + 1. If X 9, then according to the rules for sequencing and recursion

we find that X
a−→ 1, which is a contradiction. On the other hand, X → is not provable

from the transition system specification.
This is the second reason for restricting our attention to guarded recursive specifications.

If specification ∆ is guarded, then it is straightforward to prove that the mapping S from
process expressions to natural numbers inductively defined by S(1) = S(0) = S(a.p) = 0,

S(p1 + p2) = S(p1 ; p2) = S(p1) +S(p2) + 1, and S(X) = S(p) if (X
def
= p) ∈ ∆ gives rise to a

so-called stratification S′ from transitions to natural numbers defined by S′(p
a−→ p′) = S(p)

for all a ∈ A ∪ {τ} and process expressions p and p′. In [Gro93] it is proved that whenever
such a stratification exists, then the transition system specification defines a unique transition
relation that agrees with provability in the transition system specification.

The recursive specification

X
def
= 1 + a.Y ;X Y

def
= 1 + b.1 + a.Y ; Y .
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now yields a process graph bisimilar to the one in Figure 2, which has only binary branching.
We see that it is the process of a pushdown automaton. In the next section, we will prove
that every recursive specification over TSP; generates a process graph that is bisimilar to
the process graph of a pushdown automaton. We find that the expressiveness of TSP; is
incomparable to the expressiveness of TSP: by means of a guarded specification over TSP;

we can define the always accepting counter (see Figure 1) but not an unboundedly branching
process, and for TSP it is the other way around.

The operational rules presented in Fig 6 are in the so-called panth format from which it
immediately follows that strong bisimilarity is a congruence [Ver95]. Due to the sequencing
operator, rooted branching bisimulation is no longer a congruence, and we have to add an
extra condition: rooted divergence-preserving branching bisimulation [GW96, Lut20] is a
congruence, which can be proved using [FGL19].

Using sequencing instead of sequential composition, the distributive law A4 is no longer
valid as the following example shows.

Example 5.1. Consider the process expressions (a.1 + 1) ; b.1 and a.1 ; b.1 + 1 ; b.1. On the

one hand, since a.1 + 1
a−→ 1, the last operational rule for ; does not apply to (a.1 + 1) ; b.1,

and hence (a.1 + 1) ; b.1
b9. On the other hand, 1 ; b.1

b−→ 1, so a.1 ; b.1 + 1 ; b.1
b−→ 1. It

follows that (a.1 + 1) ; b.1 6↔ a.1 ; b.1 + 1 ; b.1.

In fact, due to this failure, there is no finite sound and ground-complete axiomatization
of bisimilarity for (the recursion-free fragment of) TSP; [Bel18, BLB19]. In order to find an
axiomatization, nevertheless, it suffices to add an auxiliary unary operator NA, denoting
non-acceptance. Intuitively, NA(p) behaves as p except that it does not have the option to
accept immediately. The operational semantics of NA is obtained by adding one very simple
rule, see Figure 7.

p
a−→ p′

NA(p)
a−→ p′

Figure 7: Operational semantics for non-acceptance.

Now, we can formulate a sound and ground-complete axiomatization of bisimilarity
for the recursion-free fragment of TSP; in three parts. First, there are the axioms in
Table 1 without the distributive law A4. Second, the axiomatization of the NA operator is
straightforward: see axioms NA1–NA4 in Table 2.

Finally, instead of the distributive law we include axioms A11–A13 shown in Table 2.
The ground-completeness argument in [Bel18, BLB19] proceeds via an elimination

theorem: it is established that for every recursion-free process expression p there exists a
recursion-free process expression q without occurrences of the operators ; and NA such that
the equation p = q is derivable from the axioms above using equational logic. Thus the
ground-completeness of the axiomatisation of bisimilarity for (the recursion-free fragment)
of TSP; follows from the ground-completeness of the axiomatisation of bisimilarity for (the
recursion-free fragment of) BSP (see [BBR10, Theorem 4.4.12]).

In the context of a guarded recursive specification ∆, we can, moreover, obtain the
following result.
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NA(0) = 0 NA1
NA(1) = 0 NA2
NA(a.x) = a.x NA3
NA(x+ y) = NA(x) + NA(y) NA4

NA(x+ y) ; z = NA(x) ; z + NA(y) ; z A11
(a.x+ y + 1) ; NA(z) = (a.x+ y) ; NA(z) A12
(a.x+ y + 1) ; (z + 1) = (a.x+ y) ; (z + 1) + 1 A13

Table 2: The axioms for the auxiliary operator NA and weaker forms of distributivity.

Theorem 5.2 (head normal form theorem). Let ∆ be a guarded recursive specification.
For every process expression p there exists a natural number n and sequences of actions
a1, . . . , an and process expressions p1, . . . , pn such that the equation

p = (1 + )
n∑
i=1

ai.pi

(where (1 + ) indicates that there may or may not be a summand 1), is derivable from the
axioms for TSP; and the equations in ∆ using equational logic. The process expression
(1+)

∑n
i=1 ai.pi is called the head normal form of p.

Proof. Let p be a process expression. Without loss of generality we may assume that p is
guarded. For we can replace every unguarded occurrence of a process identifier in p by the
right-hand side of its defining equation in ∆ which, since ∆ is guarded, results in process
expression with one fewer unguarded occurrence of a process identifier. We now proceed by
induction on the structure of p.

Note that p cannot be itself a process identifier, since then p would not be guarded.
If p = 0, then p is a head normal form.
If p = 1, then by A6 we have p = 1 + 0, which is a head normal form.
If p = a.p′, then by A6 and A1 we have that p = 0+a.p′ =

∑0
i=1 aipi+a.p

′ =
∑1

i=1 ai.pi,
with a1 = a and p1 = p′, which is a head normal form.

Suppose that p = p′ + p′′ and (using the induction hypothesis) that

p′ = (1 + )

n′∑
i=1

a′i.p
′
i and p′′ = (1 + )

n′′∑
i=1

a′′i .p
′′
i .

Then, using A1 and A2 and, if necessary, A3 to get rid of a superfluous occurrence of 1, we
get that

p = (1 + )

n′+n′′∑
i=1

ai.pi ,

where ai = a′i and pi = p′i if 1 ≤ i ≤ n′ and ai = a′′i−n′ and pi = p′′i−n′ if n′ < i ≤ n′ + n′′,
and so p has a head normal form.

Suppose that p = p′ ; p′′, and (using the induction hypothesis) that

p′ = (1 + )
n′∑
i=1

a′i.p
′
i and p′′ = (1 + )

n′′∑
i=1

a′′i .p
′′
i .
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We distinguish three cases:

(1) Suppose that the head normal form of p′ does not have the 1-summand. If n′ = 0, then
p = p′ ; p′′ = 0 ; p′′ = 0 and the latter is a head normal form. Otherwise, if n′ > 0, then,

by axioms NA1, NA3 and NA4 we have that p′ = NA(
∑n′

i=1 a
′
i.p
′
i). It then follows with

applications A11, A5, NA1, NA3 and NA4 that

p = p′ ; p′′ = NA(
n′∑
i=1

a′i.p
′
i) ; p′′ =

n′∑
i=1

NA(a′i.p
′
i) ; p′′ =

n′∑
i=1

a′i.p
′
i ; p′′ .

(2) Suppose that the head normal form of p′ has the 1-summand, but the head normal form
of p′′ does not. If n′ = 0, then, by A6 we have that p′ = 1, so by A9 it follows that
p = p′ ; p′′ = 1 ; p′′ = p′′. Otherwise, if n′ > 0, then we first note that, since the head
normal form of p′′ does not have the 1-summand, by the axioms for NA we get that
p′′ = NA(p′′). Then we find with an application of the axiom A12 (and applications of
A1 and A2 if necessary) that

p = p′ ; p′′ = p′ ; NA(p′′) =

(
n′∑
i=1

a′i.p
′
i

)
; NA(p′′) =

(
n′∑
i=1

a′i.p
′
i

)
; p′′ .

We can then proceed as in the first case to find the head normal form for p =
(∑n′

i=1 a
′
i.p
′
i

)
;

p′′.
(3) Suppose that both the head normal forms of p′ and p′′ have the 1-summand. Again, if

n′ = 0, then, by A6 we have that p′ = 1, so by A9 it follows that p = p′ ; p′′ = 1 ; p′′ = p′′.

Otherwise, if n′ > 0, then we apply the axiom A13 to get p = p′ ; p′′ = 1 +
(∑n′

i=1 a
′
i.p
′
i

)
;

p′′, we proceed as in the first case to find a head normal form
(∑n′

i=1 a
′
i.p
′
i

)
; p′′ for(∑n′

i=1 a
′
i.p
′
i

)
; p′′, and observe that p = 1 +

(∑n′

i=1 a
′
i.p
′
i

)
; p′′.

Suppose that p = NA(p′), and (using the induction hypothesis) that

p′ = (1 + )

n∑
i=1

ai.pi .

Then by the axioms for NA, A1 and A6 we have

p = NA(p′) = (0 + )

n∑
i=1

ai.pi =

n∑
i=1

ai.pi .

6. The correspondence

The classical theorem states that a language can be defined by a push-down automaton
just in case it can be defined by a context-free grammar. In our setting, we do have that
the process of a given guarded specification over TSP; (i.e., the equivalence class of process
graphs bisimilar to the process graph associated with the specification) coincides with the
process of some push-down automaton (i.e., the equivalence class of process graphs bisimilar
to the process graph associated with the push-down automaton), but not the other way
around: there is a push-down automaton of which the process is different from the process
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of any guarded sequential specification. In this section, we will prove these facts; in the next
section, we investigate what is needed in addition to recover the full correspondence.

We use the following extra notation. If α ∈ P∗, say α = X1 · · ·Xn, then α denotes the
process expression inductively defined by α = 1 if n = 0 and α = (X1 · · ·Xn−1) ;Xn if n > 0.
We will also use this construct indexed by a word x ∈ D∗, so if we have Xd ∈ P (d ∈ D),
then αx is inductively defined by αε = 1 and αxd = αx ;Xd.

First of all, we look at the failing direction. It can fail if the push-down automaton has
at least two states. For one state, it does work.

Theorem 6.1. For every one-state pushdown automaton there is a guarded sequential
specification of which the process coincides with the process of the automaton.

Proof. Let M = ({↑},A,D,→, ↑, ↓) be a pushdown automaton. We have identifiers X and

Xd for d ∈ D. If there is no transition ↑ a[ε/x]−−−→ ↑, then we can take either X = 1 or X = 0 as
the resulting specification (in case ↓ = {↑} resp. ↓ = ∅). Otherwise, add a summand a.αx ;X
for each such transition to the equation of the initial identifier X. Next, the equation for

the added identifier Xd has a summand a.αx for each transition ↑ a[d/x]−−−−→ ↑, and a summand
1 or 0, depending on whether ↑ ∈ ↓ or not.

Now a bisimulation between the process graph of M and the process graph of the
constructed specification can be obtained by relating a state (↑, x) (x ∈ D∗) to the state
given by the sequence of identifiers αx ;X. The initial states are related (by identifying X

and 1 ;X) and (↑, dx)
a−→ (↑, yx) just in case Xd ;αx ;X

a−→ αy ;αx ;X. Also, (↑, ε) a−→ (↑, x)

just in case X
a−→ αx ;X.

Example 6.2. The counter of Figure 2 can be seen as a stack over a singleton data set {1}.
For a general finite data set D, the stack that is accepting in every state has a pushdown

automaton with state ↑, actions {pushd, popd | d ∈ D}, ↓ = {↑} and transitions ↑ pushd[ε/d]−−−−−−→ ↑
and ↑ popd[d/ε]−−−−−→ ↑ for each d ∈ D and transitions ↑ pushe[d/ed]−−−−−−−→ ↑ for each d, e ∈ D.

The following guarded recursive specification is obtained for this pushdown automaton
in accordance with the procedure described in the proof of Theorem 6.1.

X
def
= 1 +

∑
d∈D

pushd.Xd ;X Xd
def
= 1 + popd.1 +

∑
e∈D

pushe.Xe ;Xd (d ∈ D)

Note that if we use the sequential composition operator · of TSP [BBR10] instead of the
present sequencing operator ; of TSP;, then Theorem 6.1 fails because of the transparency
illustrated in Figure 5. With the sequential composition operator, we cannot find a recursive
specification of the stack accepting in every state of Example 6.2, because of the same
phenomenon.

↑ ↓
a[ε/1]
a[1/11]
b[1/ε]

c[ε/ε]
c[1/1]

b[1/ε]

Figure 8: Pushdown automaton used in the proof of Theorem 6.3.
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(↑, ε) (↑, 1) (↑, 11) . . .

(↓, ε) (↓, 1) (↓, 11) . . .

a a a

bbb

bbb

c c c

Figure 9: The process graph associated with the pushdown automaton in Figure 8.

Theorem 6.3. There is a pushdown automaton with two states, such that there is no
guarded sequential specification with the same process.

Proof. Consider the example pushdown automaton in Figure 8. Suppose there is a finite
guarded sequential specification with the same process, depicted by the representative in
Figure 9. Without loss of generality we can assume that this specification is in Greibach
Normal Form (see [BLB19]). As a consequence, each state of the process graph generated
by the automaton is bisimilar to a sequence of identifiers of the specification (as defined
earlier). Take k a natural number that is larger than the number of process identifiers of the
specification, and for 0 ≤ i ≤ k consider the state (↑, 1i) reached after executing i a-steps.

From this state, consider any sequence of steps
w→−→ where a 6∈ w. Thus, w contains at most

one c and at most i b’s.
In the process graph generated by the recursive specification, this same sequence of

steps
w→−→ is possible from the sequence of identifiers αi bisimilar to state (↑, 1i). Let Xi

be the first element of αi. From Xi, we can also execute at most one c-step and i b-steps,
without executing an a-step.

Since k is larger than the number of process identifiers of the specification, there must
be a repetition in the identifiers Xi (i ≤ k). Thus, there are numbers n,m, n < m ≤ k, with
Xn = Xm. The process identifier Xm can execute at most one c and n < m b’s without

executing an a. But αm
bm→−→, so the additional b-steps must come from the second and

following identifiers of the sequence. As the second identifier is reached by just executing b’s,
this is a state reached by just executing a’s and b’s, so it must allow an initial c-step. Now

we can consider αm
cbm→−→. This sequence of steps must also reach the second identifier, but

then, a second c can be executed, contradicting that αi is bisimilar to (↑, 1i).
Thus, our assumption was wrong, and the theorem is proved.

We see that the contradiction is reached, because when we reach the second identifier in
the sequence αi, we do not know whether we are in a state relating to the initial state or
the final state of the pushdown automaton. Going from the first identifier to the second
identifier by means of the sequencing operator, no extra information can be passed along.
In the next section we will add a mechanism that allows the passing of extra information
along the sequencing operator.

Theorem 6.3 holds for the sequencing operator we introduced, but it holds in the same
way for the sequential composition operator of TSP [BBR10]. No intermediate acceptance
is involved in the proof.

In the other direction, we can find a pushdown automaton with the same process as a
given guarded sequential specification. The proof will be more complicated than the classical
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proof, where it is only needed to find a pushdown automaton with the same language. The
classical proof uses the equivalence of acceptance by final state and acceptance by empty
stack, which does not hold in bisimulation semantics.

We again have to deal with the failure of the distributive law. Due to this, we carefully
need to consider every instance of intermediate acceptance. Consider the sequencing
(a.1 + 1) ; b.1. The left argument of this sequencing shows intermediate acceptance, the right
argument does not. As (a.1 + 1) ; b.1↔ a.1 ; b.1, the intermediate acceptance in the first
argument is redundant, and can be removed. We have to restrict the notion of Greibach
normal form, in order to remove all redundant intermediate acceptance.

We proceed to recall the definition of Acceptance Irredundant Greibach Normal Form
from [BLB19]. First, partition the set of process identifiers P into sets P↓ = {X ∈ P | X↓}
and P6 ↓ = {X ∈ P | X6 ↓}. Then, define the set P6 ↓ of hereditarily non-accepting process

identifiers as the largest subset of P6 ↓ such that for all X ∈ P6 ↓ we have that if (X
def
= p) ∈ ∆

and Y is a process identifier occurring in p, then Y ∈ P6 ↓. We say that α ∈ P∗ is acceptance

irredundant if α ∈ P∗6 ↓P6 ↓P∗↓ ∪ P∗↓ .

Definition 6.4. A recursive specification ∆ is in Acceptance Irredundant Greibach Normal
Form (AIGNF) if every right-hand side of every equation has the following form:

• (1+)
∑n

i=1 ai.αi for actions ai ∈ A ∪ {τ}, acceptance irredundant sequences of identifiers
αi ∈ P∗, and n ≥ 0.

According to [BLB19, Proposition 20], for every recursive specification ∆ there exist
P ′ ⊇ P and a recursive specification ∆′ in AIGNF such that for all X,Y ∈ P we have that
X ↔ Y with respect to ∆ if, and only if, X ↔ Y with respect to ∆′. Moreover, every
state of the process graph associated with a process identifier is given by an acceptance
irredundant sequence of identifiers.

Now that we can assume guarded sequential specifications to be in AIGNF, we are one
step closer to associating a pushdown automaton with each of them. There is, however, still
one complication we need to resolve, as illustrated by the following example.

Example 6.5. Consider the AIGNF specification

X
def
= 1 + a.Y ;X Y

def
= b.1 + a.Y ; Y .

The sequence Y Y X reachable from X is non-accepting, and since Y
b−→ 1, we have that

Y Y X
b−→ Y X. The sequence Y X is non-accepting too, but we have that Y X

b−→ X
and X is accepting. Thus, we see that the b-transition emanating from Y can lead to a
non-accepting state or to an accepting state, depending on the context. So it cannot be
determined from the first process identifier of a sequence of process identifiers alone whether
executing a transition from it will lead to an accepting state or a non-accepting state.

To determine when a pushdown automaton executing a sequential process needs to
switch from non-accepting to accepting, it would be convenient if, given any acceptance
irredundant sequence αβ with α a sequence of non-accepting process identifiers and β a
sequence of accepting process identifiers:

• the rightmost identifier in α is always from a designated subset Ps6 ↓ of non-accepting
identifiers;
• all the other process identifiers in α are not in Ps6 ↓ (nor can they reach a process identifier

in Ps6 ↓).
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Let Ps6 ↓ ⊆ P6 ↓; we say Ps6 ↓ separates non-acceptance from acceptance in α if

α ∈ (P6 ↓ − Ps6 ↓)∗Ps6 ↓P∗↓ ∪ P∗↓ .

If there exists a set Ps6 ↓ ⊆ P6 ↓ such that Ps6 ↓ separates non-acceptance from acceptance in
all sequences of process identifiers associated with the states of a process graph, then a
pushdown automaton simulating the behaviour of that process graph can decide to switch
from non-acceptance to acceptance if, and only if, it executes a transition from some process
identifier in Ps6 ↓ that leads to an accepting sequence of process identifiers.

We now define when a subset of non-accepting process identifiers separates non-
acceptance from acceptance in a given sequential specification in AIGNF.

Definition 6.6. Let ∆ be in AIGNF and let Ps6 ↓ ⊆ P6 ↓. We say that Ps6 ↓ separates non-
acceptance from acceptance in ∆ if for all sequences of process identifiers α and β such that

α
a−→ β for some a ∈ A ∪ {τ} if holds that whenever Ps6 ↓ separates non-acceptance from

acceptance in α, then Ps6 ↓ separates non-acceptance from acceptance in β.

Note that for the AIGNF specification of Example 6.5 there does not exist a subset
of non-accepting process identifiers that separates non-acceptance from acceptance, for we
have that Y Y X is reachable from X and in Y Y X non-acceptance cannot be separated
from acceptance. We shall illustrate below how, by adding an extra process identifier, the
recursive specification of Example 6.5 can be transformed into a recursive specification in
which {Y } separates non-acceptance from acceptance.

Example 6.7. The specification of Example 6.5 can be transformed to a specification
in AIGNF in which {Y } separates non-acceptance from acceptance by introducing a new
process identifier Z and changing the specification to

X
def
= 1 + a.Y ;X Y

def
= b.1 + a.Z ; Y Z

def
= b.1 + a.Z ; Z .

We argue that {Y } separates non-acceptance from acceptance in this recursive specification.

To this end, suppose that α
x−→ β with x ∈ {a, b}. If {Y } separates non-acceptance from

acceptance in α, then either α ∈ {X}∗, or α = Y α′ and α′ ∈ {X}∗, or α = Zα′ and
α′ ∈ {Z}∗{Y }{X}∗.

If α ∈ {X}∗, then x = a and β = Y α ∈ {Z}∗{Y }{X}∗.
If α = Y α′ and α′ ∈ {X}∗, then either x = b and β = α′ ∈ {X}∗ or x = a and

β = ZY α′ ∈ {Z}∗{Y }{X}∗.
If α = Zα′ and α′ ∈ {Z}∗{Y }{X}∗, then either x = b and β = α′ ∈ {Z}∗{Y }{X}∗ or

x = a and β = Zα ∈ {Z}∗{Y }{X}∗.

We generalise the insight of the preceding example in the following proposition.

Proposition 6.8. For every recursive specification ∆ defining the process identifiers in P
there exist a set of process identifiers P ′ ⊇ P and a recursive specification ∆′ defining the
process identifiers in P ′ such that ∆′ is in AIGNF and P6 ↓ separates non-acceptance from
acceptance in ∆′. Moreover, for all X,Y ∈ P we have that X ↔ Y with respect to ∆ if, and
only if, X ↔ Y with respect to ∆′.

Proof. By [BLB19, Proposition 20] we can assume without loss of generality that ∆ is in

AIGNF. Let P†6 ↓ be a set of process identifiers disjoint from P and with the same cardinality

as P6 ↓; with every X ∈ P6 ↓ we bijectively associate a process identifier in P†6 ↓ that we denote
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by X†. Furthermore, if α ∈ P∗ is an acceptance irredundant sequence of identifiers, then

we denote by α† the sequence of identifiers in P ′ = (P ∪ P†6 ↓)
∗ that is obtained from α by

replacing all occurrences of non-accepting process identifiers in α except the last one (if
it exists) by their variants. That is, for all acceptance-irredundant sequences of process
identifiers α, we define α† with induction on the length of α as follows:

• if α ∈ P∗↓ or α ∈ P6 ↓P∗↓ , then α† = α; and

• if α = Xα′ and α′ ∈ P∗6 ↓P6 ↓P∗↓ , then α† = X†(α′)†.

Define the recursive specification ∆′ for all process identifiers Y ∈ P ′ as follows:

(1) if Y ∈ P and ∆(Y ) = (1+)
∑n

i=1 ai.αi, then ∆†(Y ) = (1+)
∑n

i=1 ai.α
†
i ;

(2) if Y = X† for someX ∈ P6 ↓ and ∆(X) = (1+)
∑n

i=1 ai.αi, then ∆†(Y ) = (1+)
∑n

i=1 ai.α
‡
i ,

where α‡i is obtained from α by replacing all occurrences (including the last) of non-

accepting process identifiers Z in α by their variant Z†.

We first argue that for all X,Y ∈ P we have that X ↔ Y with respect to ∆ if, and only
if, X ↔ Y with respect to ∆′. Let f : (P ′)∗ → P∗ be the mapping that maps every sequence
α ∈ (P ′)∗ to the sequence obtained by replacing in α every occurrence of a process identifier

X† ∈ P†6 ↓ by X. It is immediate from the definition of ∆′ that for all α ∈ (P ′)∗ we have that

• if α
a−→ β with respect to ∆′ then f(α)

a−→ f(β) with respect to ∆, and

• if f(α)
a−→ α′ with respect to ∆, then there exists β ∈ (P ′)∗ such that α

a−→ β with
respect to ∆′ and f(β) = α′.

It immediately follows from these two properties that if R is a bisimulation relation with
respect to ∆, then {(α, β) ∈ (P ′)∗ × (P ′)∗ | (f(α), f(β)) ∈ R} is a bisimulation with respect
to ∆′, and if R is a bisimulation relation with respect to ∆′, then {(f(α), f(β)) ∈ P∗ ×P∗ |
(α, β) ∈ R} is a bisimulation with respect to ∆. Hence, X ↔ Y with respect to ∆ if, and
only if, X ↔ Y with respect to ∆′.

It remains to argue that if α is an acceptance irredundant sequence such that P6 ↓
separates non-acceptance from acceptance in α and α

a−→ β for some action a, then also β is
an acceptance irredundant sequence and P6 ↓ separates non-acceptance from acceptance in β.

If α is the empty sequence, then α
a9, so there is nothing to prove.

If α is not the empty sequence, then there is a process identifier Y such that α = Y α′.

We assume that α
a−→ β and we distinguish cases according to whether Y ∈ P or Y ∈ P†6 ↓ :

(1) If Y ∈ P , then ∆′(Y ) = (1+)
∑n

i=1 ai.α
†
i and β = α†iα

′ for some 1 ≤ i ≤ n. Since Y ∈ P
and P6 ↓ separates non-acceptance from acceptance in α, it follows that α′ ∈ P∗↓ . Hence,

since α†i is acceptance irredundant and P6 ↓ separates non-acceptance from acceptance

in α†i it follows that β is also acceptance irredundant and P6 ↓ separates non-acceptance
from acceptance in β.

(2) If Y = X† for some X ∈ P6 ↓ and ∆(X) = (1+)
∑n

i=1 ai.αi, then β = α‡iα
′ for some

1 ≤ i ≤ n. Since P6 ↓ separates non-acceptance from acceptance in α and Y ∈ P†6 ↓, it

follows that α′ ∈ (P†6 ↓)
∗P6 ↓P∗↓ . Moreover, since ∆ is in AIGNF and f(α) is acceptance-

irredundant, it follows that f(β) and hence β is acceptance-irredundant. It follows that

f(α‡i ) is either the empty sequence or a sequence of hereditarily non-accepting process

identifiers, and therefore α‡i ∈ (P†6 ↓)
∗. Thus, we find that β = α‡iα

′ ∈ (P†6 ↓)
∗P6 ↓P∗↓ , so P6 ↓

separates non-acceptance from acceptance in β.
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We can now associate with every guarded sequential specification a suitable pushdown
automaton.

Theorem 6.9. For every guarded sequential specification there is a pushdown automaton
with a bisimilar process graph, with at most two states.

Proof. Let ∆ be a guarded sequential specification over P. By Proposition 6.8 we can
assume without loss of generality that ∆ is in Acceptance Irredundant Greibach Normal
Form and separates non-acceptance from acceptance. Moreover, there exists a subset Ps6 ↓
of non-accepting process identifiers such that every state of the specification is given by
a sequence of identifiers that is acceptance irredundant and Ps6 ↓ separates non-acceptance

from acceptance. The corresponding pushdown automaton has two states {n, t}. The initial
state is n iff the initial identifier S 6↓ and t iff the initial identifier S ↓ (as defined by the
operational semantics), and the final state is t.

• For each summand a.α of an identifier X with X ↓ and α = 1 or the first identifier of α is

an identifier with ↓, add a step t
a[X/α]−−−−→ t. Moreover, in case X is initial, a step t

a[ε/α]−−−→ t;
• For each summand a.α of an identifier X with X ↓ and the first identifier of α an identifier

with 6↓, add a step t
a[X/α]−−−−→ n. Moreover, in case X is initial, a step t

a[ε/α]−−−→ n;
• For each summand a.α of an identifier X ∈ Ps6 ↓ and α = 1 or the first identifier of α is an

identifier with ↓, add a step n
a[X/α]−−−−→ t. Moreover, in case X is initial, a step n

a[ε/α]−−−→ t;

• For each summand a.α of an identifier X ∈ P6 ↓ −Ps6 ↓ , add a step n
a[X/α]−−−−→ n. Moreover, in

case X is initial, a step n
a[ε/α]−−−→ n.

Now the bisimulation relation will relate 1 to (t, ε) and will relate Xd ; αx to (t, x) if Xd ↓
and to (n, x) if Xd 6↓ for each x ∈ P∗. Now it is not difficult to check that the process
of this pushdown automaton is the same as the process of the given guarded sequential
specification.

n t
a[ε/X]
a[X/XY ]

b[X/ε]
c[Y/ε]

Figure 10: Pushdown automaton illustrating the construction in the proof of Theorem 6.9.

Example 6.10. Consider the recursive specification

X
def
= a.X ; Y + b.1 Y

def
= 1 + c.1

Notice it is in Acceptance Irredundant GNF. Notice that for all states in the process graph,
there is never a sequence of more than one non-accepting identifier. We obtain the pushdown
automaton shown in Figure 10.

In the case of the sequential composition operator of TSP [BBR10], Theorem 6.9 fails
because a guarded recursive specification over TSP can generate a process graph with
unbounded branching, that cannot be bisimilar to a process graph generated by a pushdown
automaton (see Example 4.4).
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Note that Theorem 6.9 also fails when we use pushdown automata with acceptance by
empty stack, for by means of a guarded specification over TSP; (or TSP) we can generate a
process graph with infinitely many non-bisimilar accepting states.

The conclusion of this section is, that the replacement of sequential composition · by
sequencing ; results in a calculus that is not too expressive: every guarded specification yields
the process of a pushdown automaton. On the other hand, this calculus is not expressive
enough: we still cannot specify all pushdown processes. In order to do that, we need an
extra ingredient.

7. Signals and conditions

In order to obtain the missing correspondence, we need a mechanism to pass state information
along a sequencing operator. We shall prove that it suffices to add the mechanism provided
by propositional signals together with a conditional statement as given in [BB97], see also
[BBR10].

To keep the focus of attention on the process calculus, especially also when we consider
a sound and ground-complete axiomatization for it, we want to concern ourselves as little as
possible with the formalities of propositional logic. To this end, we presuppose a Boolean
algebra B, with distinguished elements false and true, a unary operator ¬ and binary
operators ∨ and ∧, freely generated by some suitable (finite or countably infinite) set of
generators. The elements of this Boolean algebra can be thought of as abstract propositions
modulo logical equivalence, and each generator as the logical equivalence class of some
propositional variable. A valuation is a homomorphism from B into the two-element Boolean
algebra; it is completely determined by how it maps the generators. Moreover, we have that
if φ and ψ are elements of B and v(φ) = v(ψ) for all valuations v, then φ = ψ. Henceforth,
for the sake of readability, we will commit a minor abuse of language by referring to the
elements of B as propositions and to the generators as propositional variables.

Given an element φ of B and a process expression p, we write φ :→ p, with the intuitive
meaning ‘if φ then p’; the construct is referred to as conditional or guarded command . The
operational behaviour of φ :→ p depends on a valuation that associates a truth value with
φ. Upon executing an action a in a state with valuation v, a state with a possibly different
valuation v′ results. The resulting valuation v′ is called the effect of the execution of a in a
state with valuation v.

We present operational rules for guarded command in Figure 11; it presupposes a
function effect that associates with every action a and every valuation v its effect. We define
when a process expression together with a certain valuation can take a step or be in a final
state.

On the basis of these rules, we can define a notion of bisimulation. We use stateless
bisimulation, which means that two process graphs are bisimilar iff there is a bisimulation
relation that relates two process expressions iff they are related under every possible valuation.
The stateless bisimulation also allows non-determinism, as the effect of the execution of an
action will allow every possible resulting sequel. See the example further on, after we also
introduce the root signal operator.

Definition 7.1. A binary relation R on the set of sequential process expressions with
conditionals is a stateless bisimulation iff R is symmetric and for all process expressions p
and q such that if (p, q) ∈ R:
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〈1, v〉 ↓
v′ = effect(a, v)

〈a.p, v〉 a−→ 〈p, v′〉
〈p, v〉 a−→ 〈p′, v′〉

〈NA(p), v〉 a−→ 〈p′, v′〉
〈p, v〉 a−→ 〈p′, v′〉

〈p+ q, v〉 a−→ 〈p′, v′〉 〈q + p, v〉 a−→ 〈p′, v′〉
〈p, v〉 ↓

〈p+ q, v〉 ↓ 〈q + p, v〉 ↓

〈p, v〉 ↓ 〈q, v〉 ↓
〈p ; q, v〉 ↓

〈p, v〉 a−→ 〈p′, v′〉
〈p ; q, v〉 a−→ 〈p′ ; q, v′〉

〈p, v〉 ↓ 〈p, v〉9 〈q, v〉 a−→ 〈q′, v′〉
〈p ; q, v〉 a−→ 〈q′, v′〉

〈p, v〉 a−→ 〈p′, v′〉 X
def
= p

〈X, v〉 a−→ 〈p′, v′〉
〈p, v〉↓ X

def
= p

〈X, v〉↓

〈p, v〉 a−→ 〈p′, v′〉 v(φ) = true

〈φ :→ p, v〉 a−→ 〈p′, v′〉
〈p, v〉 ↓ v(φ) = true

〈φ :→ p, v〉 ↓

Figure 11: Operational rules for guarded command (a ∈ A ∪ {τ} and φ ranging over
propositions).

(1) If for some a ∈ A ∪ {τ} and valuations v, v′ we have 〈p, v〉 a−→ 〈p′, v′〉, then there exists

a process expression q′, such that 〈q, v〉 a−→ 〈q′, v′〉, and (p′, q′) ∈ R.
(2) If for some valuation v we have 〈p, v〉↓, then 〈q, v〉↓.
The process expressions p and q are stateless bisimilar (notation: p↔s q) iff there exists a
stateless bisimulation R such that (p, q) ∈ R.

Stateless bisimulation is a congruence for sequential process expressions with conditionals
(proven along the lines of [BBR10]), and so we can investigate the equational theory. We
add the axioms in Table 3.

true :→ x = x C1
false :→ x = 0 C2
(φ ∨ ψ) :→ x = (φ :→ x) + (ψ :→ x) C3
(φ ∧ ψ) :→ x = φ :→ (ψ :→ x) C4
φ :→ (x+ y) = (φ :→ x) + (φ :→ y) C5
φ :→ (x ; y) = (φ :→ x) ; y C6

φ :→ NA(x) = NA(φ :→ x) C7
(NA(x) + φ :→ 1); (NA(y) + ψ :→ 1)

= NA(x); (NA(y) + ψ :→ 1) + (φ ∧ ψ) :→ 1 C8

Table 3: The axioms for conditionals.

Note that there is no elimination theorem here: due to the presence of unresolved
propositional variables, conditionals cannot be removed from all closed terms.

Next, we introduce an operator that allows the observation of aspects of the current
state of a process graph. The central idea is that the observable part of the state of a process
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graph is represented by a proposition. We introduce the root-signal emission operator ∧N.
A process expression φ∧Nx represents the process x that shows the signal φ in its initial
state. In order to define this operator by operational rules, we need to define an additional
predicate on process expressions, namely consistency. Cons(〈p, v〉) will not hold when the

valuation of the root signal of p is false. A step
a−→ can only be between consistent states,

and a state can only be accepting when it is consistent. Thus, if the effect of executing the
action a is to set the value of the proposition φ to false (i.e., effect(a, v)(φ) = false for all
valuations v), then the process expression a.(φ∧Np) can under no valuation execute action a.

The operational rules are defined in Fig. 12. First, we define the consistency predicate.
Next, we find that the rule for action prefix, the rules for choice and the second rule for ;
in Fig. 11 require an extra condition. The other rules of Table 11 can remain unchanged.
Finally, we give the operational rules of the root signal emission operator. To emphasise the
difference between guarded commands and root signal emission, process expression φ :→ 1 is
consistent under any valuation, whereas φ∧N1 is inconsistent under a valuation that assigns
false to φ. So, if the effect of the action a is to set the value of φ to false, then a.(φ :→ 1),
in any valuation, can execute an a-transition, whereas a.φ∧N1 cannot.

Cons(〈0, v〉) Cons(〈1, v〉) Cons(〈a.p, v〉)
Cons(〈p, v〉) Cons(〈q, v〉)

Cons(〈p+ q, v〉)
Cons(〈p, v〉)

Cons(〈φ :→ p, v〉)
Cons(〈p, v〉) v(φ) = true

Cons(〈φ∧Np, v〉)
Cons(〈p, v〉) 〈p, v〉 6↓

Cons(〈p ; q, v〉)
〈p, v〉 ↓ Cons(〈q, v〉)

Cons(〈p ; q, v〉)
Cons(〈p, v〉)

Cons(〈NA(p), v〉)
Cons(〈p, v〉) X

def
= p

Cons(〈X, p〉)
Cons(〈p, v′〉) v′ = effect(a, v)

〈a.p, v〉 a−→ 〈p, v′〉
〈p, v〉 a−→ 〈p′, v′〉 Cons(〈q, v〉)

〈p+ q, v〉 a−→ 〈p′, v′〉 〈q + p, v〉 a−→ 〈p′, v′〉
〈p, v〉 ↓ Cons(〈q, v〉)
〈p+ q, v〉 ↓ 〈q + p, v〉 ↓

〈p, v〉 a−→ 〈p′, v′〉 Cons(〈p′ ; q, v′〉)
〈p ; q, v〉 a−→ 〈p′ ; q, v′〉

〈p, v〉 a−→ 〈p′, v′〉 v(φ) = true

〈φ∧Np, v〉 a−→ 〈p′, v′〉
〈p, v〉 ↓ v(φ) = true

〈φ∧Np, v〉 ↓

Figure 12: Operational rules for root-signal emission (a ∈ A ∪ {τ}).

We again have a stateless bisimulation, where two process expressions are related iff
any valuation that makes the root signal of one process expression true also makes the root
signal of the other process expression true and for each such valuation, the process graphs
of the process expressions are stateless bisimilar.
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Definition 7.2. A binary relation R on the set of sequential process expressions with
conditionals and signals is a stateless bisimulation iff R is symmetric and for all process
expressions p and q such that if (p, q) ∈ R:

(1) If for some valuation v we have Cons(〈p, v〉), then also Cons(〈q, v〉).
(2) If for some a ∈ A ∪ {τ} and valuations v, v′ we have 〈p, v〉 a−→ 〈p′, v′〉, then there exists

a process expression q′, such that 〈q, v〉 a−→ 〈q′, v′〉, and (p′, q′) ∈ R.
(3) If for some valuation v we have 〈p, v〉↓, then 〈q, v〉↓.
The process expressions p and q are bisimilar (notation: p↔s q) iff there exists a stateless
bisimulation R such that (p, q) ∈ R.

Again, stateless bisimulation is a congruence for sequential process expressions with
conditionals and signals (see [BBR10]), and we have the following additional axioms.

true ∧Nx = x S1
false ∧Nx = false ∧N0 S2
a.(false ∧Nx) = 0 S3
(φ∧Nx) + y = φ∧N(x+ y) S4
φ∧N(ψ∧Nx) = (φ ∧ ψ)∧Nx S5
φ :→ (ψ∧Nx) = (¬φ ∨ ψ)∧N(φ :→ x) S6
φ∧N(φ :→ x) = φ∧Nx S7
φ∧N(x ; y) = (φ∧Nx) ; y S8
φ∧NNA(x) = NA(φ∧Nx) S9

Table 4: The axioms for signals.

It is tedious but straightforward to verify that the extended theory is still sound. Below
we shall prove first a head normal form theorem and then also a ground-completeness
theorem.

Theorem 7.3 (head normal form theorem). Let ∆ be a guarded recursive specification.
For every process expression p there exists a natural number n, sequences of propositions
φ1, . . . , φn, actions a1, . . . , an, and process expressions p1, . . . , pn, and propositions ψ and χ
such that

p =

n∑
i=1

φi :→ ai.pi + ψ∧Nχ :→ 1 (7.1)

is derivable from the axioms in Tables 1–4 and the equations in ∆ using equational logic.
The process expression at the right-hand side of the equation is called a head normal form of
p, ψ is called its root signal and χ is called its acceptance condition.

Proof. Let p be a process expression. Without loss of generality we may assume that p is
guarded, for we can replace every unguarded occurrence of a process identifier in p by the
right-hand side of its defining equation in ∆ which, since ∆ is guarded, results in process
expression with one fewer unguarded occurrence of a process identifier. We now proceed by
induction on the structure of p.

Note that p cannot be itself a process identifier, since then p would not be guarded.
If p = 0, then p = 0 + 0 = 0 + true ∧Nfalse :→ 1 by axioms A3, C2 and S1. Note that

0 + true ∧Nfalse :→ 1 fits the shape of the right-hand side of Equation (7.1): we take n = 0
and we let ψ = true and χ = false.
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If p = 1, then by A6, A1, C1 and S1 we have p = 1 + 0 = 0 + 1 = 0 + true ∧Ntrue :→ 1,
which fits the shape of the right-hand side of Equation (7.1) if we take n = 0, ψ = true and
χ = true.

If p = a.p′, then by A6, C2 and S1 we have that p = a.p′ + 0 = a.p′ + true ∧Nfalse :→ 1.
Suppose, now, by way of induction hypothesis, that

p′ =

m∑
i=1

φ′i :→ a′i.p
′
i + ψ′ ∧Nχ′ :→ 1

and

p′′ =

n∑
i=1

φ′′i :→ a′′i .p
′′
i + ψ′′ ∧Nχ′′ :→ 1 .

First note that if p = p′ + p′′, then, by A1–A3, C3, S4 and S5, we get that

p =

m+n∑
i=1

φi :→ ai.pi + (ψ′ ∧ ψ′′)∧N(χ′ ∨ χ′′) :→ 1 ,

where φi = φ′i, ai = a′i and pi = p′i if 1 ≤ i ≤ m, and φi = φ′′i , ai = a′′i−m and pi = p′′i−m if
m < i ≤ m+ n.

Next, we consider p = p′ ; p′′. By axioms A1, NA1 (used if m = 0 or n = 0), NA3, NA4,
C7, S4 and S8 we have

p′ = NA(ψ′ ∧N
m∑
i=1

φ′i :→ a′i.p
′
i) + χ′ :→ 1

and

p′′ = NA(ψ′′ ∧N
n∑
i=1

φ′′i :→ a′′i .p
′′
i ) + χ′′ :→ 1 .

Hence, by C8, we have

p = p′ ; p′′ = NA(ψ′ ∧N
m∑
i=1

φ′i :→ a′i.p
′
i) ; p′′ + (χ′ ∧ χ′′) :→ 1 .

The root signal can be transferred to the other summand with applications of S8, S9, S4
and A1:

p = NA(
m∑
i=1

φ′i :→ a′i.p
′
i) ; p′′ + ψ′ ∧N(χ′ ∧ χ′′) :→ 1 .

We then find a head normal form for p with applications of A11, C6, NA3, C7, and A5:

p =
m∑
i=1

φ′i :→ a′i.(p
′
i ; p′′) + ψ′ ∧N(χ′ ∧ χ′′) :→ 1 .

If p = NA(p′), then NA1–NA4, A1, A6, C7, S9, C2 and C4 we have

p = NA(p′) =

m∑
i=1

φ′i :→ a′i.p
′
i + ψ′ ∧Nχ′ :→ 0 =

m∑
i=1

φ′i :→ a′i.p
′
i + ψ′ ∧Nfalse :→ 1 .



15:24 J. C. M. Baeten, C. Carissimo, and B. Luttik Vol. 19:1

Suppose that p = φ :→ p′, with the head normal form of p′ as given above. Let us first
consider the case that m > 0, then by C5, S6 and C4 we get the following head normal form:

p =
m∑
i=1

(φ ∧ φ′i) :→ a′i.p
′
i + (¬φ ∨ ψ′) ∧N(φ ∧ χ′) :→ 1 .

If m = 0, then the same head normal form for p can be obtained, since by C2 and C4 we
have

φ :→
m∑
i=1

φ′i :→ a′i.p
′
i = φ :→ 0 = φ :→ (false :→ 0) =

false :→ 0 = 0 =

m∑
i=1

(φ ∧ φ′i) :→ a′i.p
′
i .

Suppose that p = φ∧Np′, again with the head normal form of p′ as given above. Then by
A1, S4 and S5 we obtain the following head normal form:

p′ =

m∑
i=1

φ′i :→ a′i.p
′
i + (φ ∧ ψ′)∧Nχ′ :→ 1

There may be some redundancy in a head normal form. Consider, for instance, the head
normal form

p = 0 + P :→ a.1 + P :→ b.(¬P ) ∧N1 +(¬P ) :→ c.1 + P ∧Ntrue :→ 1 .

Then the summand ¬P :→ c.1 does not contribute any behaviour, since there does not
exist a valuation that is consistent with the root signal P and at the same time makes
condition ¬P evaluate to true. Moreover, if the effect function satisfies, e.g., the property
that effect(b, v)(P ) = v(P ) for all valuations v, then the effect of b is not consistent with
the root signal of ¬P ∧N1, and so the summand P :→ b.(¬P )∧N1 does not contribute any
behaviour.

Definition 7.4. A head normal form
∑n

i=1 φi :→ ai.pi + ψ∧Nχ :→ 1 is reduced if, for every
1 ≤ i ≤ n, there exists a valuation v such that v(φi ∧ ψ) = true and Cons(〈pi, effect(ai, v)〉).

In the remainder we shall only be interested in a very specific type of effect function.
Let us denote by vtrue the valuation that assigns true to every propositional variable. We
say that the effect function has the reset property if effect(a, v) = vtrue for every action
a and every valuation v. If the effect function has the reset property, then the axiom in
Table 5 is valid.

a.(¬P1 ∨ · · · ∨ ¬Pk)∧Nx = 0 R

Table 5: The axiom for the effect function with the reset property (a ∈ A ∪ {τ} and
P1, . . . , Pk is any sequence of propositional variables).

Lemma 7.5. For every head normal form p with a consistent root signal there exists a
reduced head normal form q such that p = q is derivable from the axioms in Tables 1–5.
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Proof. Let p =
∑n

i=1 φi :→ ai.pi + ψ∧Nχ :→ 1. If for some 1 ≤ i ≤ n, there does not exist a
valuation v such that φi ∧ ψ = true, then φi ∧ ψ = false, so by axioms S7, C4, and C2 we
have that

ψ∧N(φi :→ ai.pi) = ψ∧N(ψ :→ (φi :→ ai.pi)) = ψ∧N(φi ∧ ψ) :→ ai.pi

= ψ∧N(false :→ ai.pi) = ψ∧N0 = 0 .

Hence, by S4, A1–3 and A6 such a summand can be eliminated from the head normal form.
It remains to argue that if Cons(〈pi, vtrue〉) does not hold, then the summand φi :→ ai.pi

can be eliminated. Note that by Theorem 7.3, pi is derivably equal to a head normal form,
say

pi =

ni∑
j=1

φi,j :→ ai,j .pi,j + ψi ∧Nχi :→ 1 .

From the rules in Figure 12 it follows that we have Cons(〈pi, vtrue〉) if, and only if, vtrue(ψi) =
true. Suppose that vtrue(ψi) = false. Since ψi is an element of a Boolean algebra B that
is freely generated by the propositional variables, there exists a finite sequence P1, . . . , Pk
of propositional variables such that, for every valuation v, v(ψi) is completely determined
by the truth values it assigns to these propositional variables. From vtrue(ψi) = false, it
then follows that for all valuations v such that v(ψi) = true there exists 1 ≤ i ≤ k such that
v(Pi) = false. Therefore, ψi = ψi ∧ (¬P1 ∨ · · · ∨¬Pk). Applications of axioms S5 and R then
yield

φi :→ ai.pi = φi :→ ai.(¬P1 ∨ · · · ∨ ¬Pk)∧Npi = 0.

We conclude that if Cons(〈pi, vtrue〉) does not hold, then the summand φi :→ ai.pi can be
eliminated by A6.

Below, we shall prove that, assuming an effect function with the reset property, the
axioms in Tables 1–5 are complete for recursion-free process expressions. The proof will use
induction on the depth of the process expressions involved.

Definition 7.6. We define the depth |p| of a process expression p by

|p| = sup{n | ∃p0, . . . , pn.∃v1, . . . , vn.∃a1, . . . , an.∃v′1, . . . , v′n.

p = p0 & ∀1≤i<n.〈pi, vi〉
ai+1−→ 〈pi+1, v

′
i〉} .

From the operational semantics and the definition of stateless bisimilarity it follows that
if p ↔s q, then |p| = |q|. Moreover, if p is recursion-free, then |p| is finite. The following
lemma facilitates our ground-completeness proof to proceed by induction on depth.

Lemma 7.7. Let p =
∑n

i=1 φi :→ ai.pi + ψ∧Nχ :→ 1 be a recursion-free and reduced head
normal form and suppose that effect has the reset property; then |p| > |pi| for all 1 ≤ i ≤ n.

Proof. Let 1 ≤ i ≤ n. Then since p is reduced, there exists a valuation v such that
v(φi ∧ ψ) 6= false. Since effect has the reset property, we have that effect(ai, v) = vtrue , and

since p is reduced we have that Cons(〈pi, vtrue〉). Therefore 〈p, v〉 ai−→ 〈pi, vtrue〉. Since the
depth of recursion-free processes is finite, it follows that |p| > |pi|.

We can now establish that our axiomatisation is ground-complete.
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Theorem 7.8 (Ground-completeness). Suppose that the effect function has the reset property.
For all recursion-free process expressions p and p′, if p ↔s p

′ then p = p′ is derivable from
the axioms in Tables 1–5 using equational logic.

Proof. We proceed by induction on the sum of the depths of p and q. By Theorem 5.2 and
Lemma 7.5 we may assume that p and p′ are reduced head normal forms:

p =
n∑
i=1

φi :→ ai.pi + ψ∧Nχ :→ 1

and

p′ =

n′∑
j=1

φ′j :→ a′j .p
′
j + ψ′ ∧Nχ′ :→ 1 .

First note that by condition 1 of Definition 7.2 we have that ψ = ψ′ and by condition 3 we
have that χ = χ′. Hence, it remains to establish that p′ = p′ + φi :→ ai.pi for all 1 ≤ i ≤ n.

Note that if v is some valuation such that v(φi) = true, then 〈p, v〉 ai−→ 〈pi, vtrue〉.
It then follows by condition 2 of Definition 7.2 that there exists 1 ≤ j ≤ n′ such that

〈p′, v〉
aj−→ 〈p′j , vtrue〉, aj = ai and pi ↔s p

′
j , and hence v(φ′j) = true. Define

J ′ = {1 ≤ j ≤ n′ | aj = ai & pj ↔s pi} .
We have just argued that v(φi) = true implies that there exists j ∈ J ′ such that v(φ′j) = true,
and hence∨

j∈J ′

(
φi ∧ φ′j

)
= φi . (7.2)

Using that φ′j = (φi ∧ φ′j) ∨ (φi ∧ ¬φ′j), note that by axioms C3 and A3 we have

φ′j :→ a′j .p
′
j = φ′j :→ a′j .p

′
j + (φi ∧ φ′j) :→ a′j .p

′
j ,

and so we have

p′ = p′ +
∑
j∈J ′

(φi ∧ φ′j) :→ a′j .p
′
j .

By Lemma 7.7 we have |pi| < |p| and |p′j | < |p′|, so by the induction hypothesis p′j = pi is
derivable from the axioms in Tables 1–5 . It follows that

p′ = p′ +
∑
j∈J ′

(φi ∧ φ′j) :→ ai.pi .

Finally, we apply C3 and Eqn. (7.2) to get

p′ = p′ + φi :→ ai.pi .

The information given by the truth of the signals allow to determine the truth of some
of the guarded commands. In this way, we can give a semantics for process expressions and
specifications as regular process graphs, leaving out the valuations.

Definition 7.9. Let p, q be sequential process expressions with signals and conditions, let
a ∈ A ∪ {τ} and suppose the root signal of t is not false.

• p a−→ q iff for all valuations v such that Cons(〈p, v〉) we have 〈p, v〉 a−→ 〈q, effect(a, v)〉,
• p ↓ iff for all valuations v such that Cons(〈p, v〉) we have 〈p, v〉 ↓.



Vol. 19:1 PDAS AND CFGS IN BISIMULATION SEMANTICS 15:27

The above definition makes all undetermined guarded commands false, as is illustrated
in the following example.

Example 7.10. Let P be a proposition variable, and let p = P :→ a.1 and q = P :→ b.1.
Note that we have Cons(〈p, v〉) for all valuations v (since p does not emit any signal), but

〈p, v〉 a−→ 〈1, v′〉 only if v(P ) = true. Hence, p does not have any outgoing transitions
according to Definition 7.9. By the same reasoning, also q does not have any outgoing
transitions. Therefore, p and q are bisimilar with respect to the transition relation induced
on them by Definition 7.9.

When two process expressions are stateless bisimilar, then they are also bisimilar with
respect to the transition relation induced on them by the Definition 7.9. The converse,
however, does not hold: although the process expressions p and q in Example 7.10 are
bisimilar, they are not stateless bisimilar.

To illustrate the interplay of root signal emission and guarded command, and to show
how nondeterminism can be dealt with, we give the following example.

tails

heads

toss

toss

toss

toss

hurray

Figure 13: The process graph associated with the specification of a coin toss.

Example 7.11. A coin toss can be described by the following process expression:

T
def
= toss.(heads ∧N1) + toss.(tails ∧N1),

where the effect function has the reset property, i.e. for every valuation v we have

effect(toss, v)(heads) = effect(toss, v)(tails) = true .

Now, consider the expression

S
def
= T ; (heads :→ hurray .1 + tails :→ S).

Then S represents the process of tossing a coin until heads comes up, and its process
graph is shown in Figure 13, as we shall now explain. Let

Heads = (heads ∧N1) ; (heads :→ hurray .1 + tails :→ S)

and let

Tails = (tails ∧N1) ; (heads :→ hurray .1 + tails :→ S) .

To see that S
toss−→ Tails and S

toss−→ Heads, note that 〈S, v〉 toss−→ 〈Heads, effect(toss, v)〉 and

〈S, v〉 toss−→ 〈Heads, effect(toss, v)〉 for every valuation v.

To see that Tails
toss−→ Tails and Tails

toss−→ Heads, first observe that Cons(〈Tails, v〉) if,
and only if, v(tails) = true, and then note that for all such valuations v we, indeed, have

〈Tails, v〉 toss−→ 〈Tails, effect(toss, v)〉 and 〈Tails, v〉 toss−→ 〈Heads, effect(toss, v)〉.
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It is instructive to see why we do not have that Tails
hurray−→ 1. This is because if

v is a valuation that satisfies v(tails) = true and v(heads) = false, then we also have

Cons(〈Tails, v〉), whereas 〈Tails, v〉 hurray9 〈1, effect(hurray , v)〉.
Finally, to see that Heads

hurray−→ 1, first observe that Cons(〈heads, v〉) if, and only if,

v(heads) = true, and then note that, indeed, 〈Heads, v〉 hurray−→ 〈1, effect(hurray , v)〉 for all
such valuations v.

8. The full correspondence

We prove that signals and conditions make it possible to find a guarded sequential specification
with the same process as a given pushdown automaton.

Theorem 8.1. For every pushdown automaton there is a guarded sequential recursive
specification with signals and conditions with the same process.

Proof. Let M = (S,A,D,→, ↑, ↓) be a pushdown automaton. For every state s ∈ S we have
a propositional variable state(s). We assume an effect function with the reset property, to
make sure that the execution of an action from a consistent state always results in a consistent
state. Note that it is the interplay between the emitted root signal and the guards that
ensures appropriate continuations (cf. also Example 7.11).We proceed to define the recursive
specification with initial identifier X and additional identifiers Xε and {Xd | d ∈ D}.

• If M does not contain any transition of the form ↑ a[ε/x]−−−→ s, and the initial state is final,

we can take X
def
= 1 as the specification, and we do not need the additional identifiers.

• If M does not contain any transition of the form ↑ a[ε/x]−−−→ s, and the initial state is not final,

we can take X
def
= 0 as the specification, and we do not need the additional identifiers.

• Otherwise, there is some transition ↑ a[ε/x]−−−→ s in M . For each such transition, add a
summand

a.(state(s)∧Nαx ;Xε)

to the equation of X. The effect v of a in any valuation satisfies v(state(s)) = true.
Besides these summands, add a summand 1 iff the initial state of M is final. Notice that
no restriction on the initial valuation is necessary.
• Next, the equation for the added identifier Xd has a summand

state(s) :→ a.(state(t)∧Nαx)

for each transition s
a[d/x]−−−−→ t, for every s, t ∈ S. The effect v of a in any valuation satisfies

v(state(t)) = true.
Finally, the equation for the added identifier Xd has a summand state(s) :→ 1 whenever

s ∈ ↓.
• Lastly, the equation for the added identifier Xε has a summand

state(s) :→ a.(state(t)∧Nαx ;Xε)

for each transition s
a[ε/x]−−−→ t, for every s, t ∈ S. The effect v of a in any valuation satisfies

v(state(t)) = true.
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Finally, the equation for the added identifier Xε has a summand state(s) :→ 1 whenever
s ∈ ↓.

Then the bisimulation relation will relate the initial states, and will relate every state (s, x)
of the process graph of the pushdown automaton to state state(s)∧Nαx ;Xε of the process
graph of the constructed specification. We see that the process graph of the pushdown

automaton has a step (s, dy)
a−→ (s, xy) (coming from a step s

a[d/x]−−−−→ t in the automaton)

if, and only if, state(s)∧NXd ; αy ;Xε
a−→ state(t)∧Nαx ; αy ;Xε in the process graph of the

specification.

Also, the process graph of the pushdown automaton has a step (s, ε)
a−→ (s, x) (coming

from a step s
a[ε/x]−−−→ t in the automaton) if, and only if, state(s)∧NXε

a−→ state(t)∧Nαx ;Xε in
the process graph of the specification.

Example 8.2. For the pushdown automaton in Fig. 8, we find the following guarded
recursive specification:

S = a.(state ↑ ∧NA ;(state ↑:→ S + state ↓:→ 1)) + c.(state ↓∧N1)

A = state ↓:→ b.(state ↓∧N1) +

+ state ↑:→ (a.(state ↑∧NA;A) + b.(state ↑∧N1) + c.(state ↓∧NA)).

Finally, we are interested in the question whether the mechanism of signals and conditions
is not too powerful: can we find a pushdown automaton with the same process for any
guarded sequential specification with signals and conditions? We will show the answer is
positive. This means we recover the perfect analogue of the classical theorem: the set of
processes given by pushdown automata coincides with the set of processes given by guarded
sequential specifications with signals and conditions.

In order to prove this final theorem, we need another refinement of Greibach normal
forms, now in the presence of signals and conditions. Recall the head normal form of the
previous section. Using Theorem 7.3 and, if necessary, adding a finite number of process
identifiers with appropriate defining equations, we can write each equation in a guarded
sequential specification with signals and conditions in Greibach normal form, as follows:

X =

n∑
i=1

φi :→ ai.αi + ψ ∧N(χ :→ 1) ai ∈ A ∪ {τ}, X ∈ P, αi ∈ P∗ .

Here, ψ is the root signal of X, and χ the acceptance condition of X, writing again

X =
n∑
i=1

φi :→ ai.αi + ψ ∧N0 ai ∈ A ∪ {τ}, X ∈ P, αi ∈ P∗

if ψ ∧ χ is false. We see that X is accepting in any state with a valuation v such that
v(ψ ∧ χ) = true, and it shows intermediate acceptance whenever there exists 1 ≤ i ≤ n with
v(ψ ∧ χ ∧ φi) = true.

We define the Acceptance Irredundant Greibach normal form as before, disregarding
the remaining signals and conditions.

Theorem 8.3. For every guarded sequential recursive specification with signals and condi-
tions there is a pushdown automaton with the same process.
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Proof. Suppose a finite guarded sequential specification with signals and conditions is given.
Without loss of generality we can assume this specification is in Acceptance Irredundant
Greibach normal form, so every state of the specification is given by a sequence of identifiers
that is acceptance irredundant.

Because the specification is in AIGNF, it becomes easier to establish the acceptance
and steps for any state of the process graph of the specification. For any variable of the
specification, we have X ↓ iff for all valuations v that make the root signal of X true also

make the acceptance condition of X true, and X
a−→ α iff for all valuations v that make the

root condition of X also make the guard of a true and Cons(v, a).
Because of the acceptance irredundancy, it holds that if X ↓ then also X ; β ↓ for every

reachable state of the specification. Also, if X
a−→ α then also X ; β

a−→ α ; β for every
reachable state of the specification X ; β.

This means we can follow the proof of Theorem 6.9 exactly, and we are done.

9. Conclusion

We looked at the classical theorem, that the set of languages given by a pushdown automaton
coincides with the set of languages given by a context-free grammar. A language is an
equivalence class of process graphs modulo language equivalence. A process is an equivalence
class of process graphs modulo bisimulation.

This paper solves the question how we can characterize the set of processes given by a
pushdown automaton. In the process setting, a context-free grammar is a process algebra
with actions, choice, sequential composition and recursion. We need to limit to guarded
recursion in the process setting. Starting out from the seminal process algebra BPA of
[BK84], we need to add constants for the inactive and accepting process and for the inactive
non-accepting (deadlock) process. We look at the candidate process algebra TSP of [BBR10],
but find it is not suitable: by means of a guarded recursive specification we find a process
that cannot be the process of a pushdown automaton, and also, there is a process of a
pushdown automaton that cannot be given by a guarded recursive specification.

If we replace the sequential composition operator of TSP by a sequencing operator
[BLY17], we get a better situation: every guarded specification yields the process of a
pushdown automaton, but still, not the other way around, there are processes of pushdown
automata that cannot be given by a guarded specification. We obtain a complete correspon-
dence by adding a notion of state awareness, that allows to pass on some information during
sequencing.

A process is defined by a pushdown automaton if and only if it is defined by a
finite guarded recursive specification over a process algebra with actions, choice,
sequencing, conditions and signals.

We see that signals and conditions add expressive power to the process algebras consid-
ered, since a signal can be passed along the sequencing (or sequential composition) operator.
If we go to the theory BCP, so without sequencing but with parallel composition, then we
know from [BB97] that value passing can be replaced by signal observation. We leave it as
an open problem, whether or not signals and conditions add to the expressive power of BCP.

A pushdown automaton is a model of a computer with a memory in the form of a stack.
A parallel pushdown automaton is like a pushdown automaton, but with a memory in the
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form of a multiset (a set, where the elements have a multiplicity, telling how often they occur).
It is interesting to compare the set of processes defined by a parallel pushdown automaton
with the basic parallel processes, the processes that are defined by a guarded recursive
specification over the language, where sequencing is replaced by parallel composition. We
conjecture that every process defined by a basic parallel recursive specification can also be
defined by a parallel pushdown automaton, and in the other direction that a process defined
by a one-state parallel pushdown automaton can also be defined by a basic parallel recursive
specification. In order to recover a full correspondence, we need to add an extra feature.
We speculate this extra feature can be communication between parallel processes, without
abstraction. Some details can be found in [Til11].

This paper contributes to our ongoing project to integrate automata theory and process
theory. As a result, we can present the foundations of computer science using a computer
model with interaction. Such a computer model relates more closely to the computers we
see all around us.
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