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ABSTRACT. We describe a model for polarization in multi-agent systems based on Esteban
and Ray’s standard family of polarization measures from economics. Agents evolve by
updating their beliefs (opinions) based on an underlying influence graph, as in the standard
DeGroot model for social learning, but under a confirmation bias; i.e., a discounting of
opinions of agents with dissimilar views. We show that even under this bias polarization
eventually vanishes (converges to zero) if the influence graph is strongly-connected. If the
influence graph is a regular symmetric circulation, we determine the unique belief value to
which all agents converge. Our more insightful result establishes that, under some natural
assumptions, if polarization does not eventually vanish then either there is a disconnected
subgroup of agents, or some agent influences others more than she is influenced. We
also prove that polarization does not necessarily vanish in weakly-connected graphs under
confirmation bias. Furthermore, we show how our model relates to the classic DeGroot
model for social learning. We illustrate our model with several simulations of a running
example about polarization over vaccines and of other case studies. The theoretical results
and simulations will provide insight into the phenomenon of polarization.

1. INTRODUCTION

Distributed systems have changed significantly with the advent of social networks. In the
previous incarnation of distributed computing [Lyn96], the emphasis was on consistency,
fault tolerance, resource management, and related topics; these were all characterized by
interaction between processes. The new era of distributed systems adds an emphasis on the
flow of epistemic information (facts, beliefs, lies) and its impact on democracy and on society
at large.
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Social networks may facilitate civil discourse by enabling a prompt exchange of facts,
beliefs and opinions among members of a community. Nevertheless, users in social networks
may shape their beliefs by attributing more value to the opinions of influential figures.
This common cognitive bias is known as authority bias [Raml19]. Furthermore, social
networks often target their users with information that they may already agree with to keep
engagement. It is known that users tend to give more value to opinions that confirm their
own preexisting beliefs [AWA10] in another common cognitive bias known as confirmation
bias. As a result, social networks can cause their users to become radical and isolated in
their own ideological circle, potentially leading to dangerous splits in society [Boz13] in a
phenomenon known as polarization [AWA10].

Indeed, social media platforms have played a key role in the polarization of political
processes. Referenda such as Brexit and the Colombian Peace Agreement, as well as recent
presidential elections in Brazil and USA are compelling examples of this phenomenon [Kirl7].
These cases illustrate that messages in social media with elements of extremist ideology in
political and public discourse may cause polarization and negatively influence fundamental
decision-making processes.

Consequently, we believe that developing a model that focuses on central aspects in social
networks, such as influence graphs and evolution of users’ beliefs, represents a significant
contribution to the understanding of the phenomenon of polarization. In fact, there is a
growing interest in the development of models for the analysis of polarization and social
influence in networks [LSSZ13, PMC16, SPGK18, GG16, Eld19, CGMJCK13, Ped, DeG74,
GJ10, Chr16, SLG11, SLG13, Hunl7|. Since polarization involves non-terminating systems
with multiple agents simultaneously exchanging information (opinions), concurrency models
are a natural choice to capture the dynamics of this phenomenon.

Our approach. In this paper we present a multi-agent model for polarization inspired by
linear-time models of concurrency where the state of the system evolves in discrete time
units (in particular [SJG94, NPV02, Val0l]). In each time unit, the users, called agents,
update their beliefs about a given proposition of interest by taking into account the beliefs
of their neighbors through an underlying weighted influence graph. The belief update gives
more value to the opinion of agents with higher influence (authority bias) and to the opinion
of agents with similar views (confirmation bias). Furthermore, the model is equipped with a
polarization measure based on the seminal work in economics by Esteban and Ray [ER94].
Polarization is measured at each time unit and it is zero if all agents’ beliefs fall within an
interval of agreement about the proposition.

Our goal is to explore how the combination of influence graphs and cognitive biases in our
model can lead to polarization. The closest related work is that on DeGroot models [DeG74].
These are the standard linear models for social learning whose analyses can be carried out by
standard linear techniques from Markov chains. Nevertheless, a novelty in our model is that
its update function extends the classical update from DeGroot models with confirmation
bias. As we elaborate in Section 6.1, the extension makes the model no longer linear and
thus mathematical tools like Markov chains are not applicable in a straightforward way. Our
model also incorporates a polarization measure in a model for social learning and extends
the classical convergence results of DeGroot models to the confirmation bias case.
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Main Contributions. We introduce a variant of the standard DeGroot model where agents
can update their beliefs under confirmation bias. By employing techniques from calculus,
graph theory, and flow networks, we identify how networks and beliefs are structured, for
agents subject to confirmation bias, when polarization does not disappear. Furthermore,
we illustrate and discuss some perhaps unexpected aspects of the temporal evolution of
polarization by means of a series of elucidating simulations. In particular, we address the
non-monotonic evolution of polarization as well as the effect on polarization of various
update functions, influence graphs, and initial belief configurations among agents.

The following are our main theoretical contributions. Assuming confirmation bias and
some natural conditions about the initial belief values, we show that:

(1) Polarization eventually disappears (converges to zero) if the influence graph is strongly-
connected (Definition 4.3).

(2) If polarization does not disappear then either there is a disconnected subgroup of agents
(i.e., the influence graph is not weakly connected, see Definition 5.3), or some agent
influences others more than she is influenced, or all the agents are initially radicalized
(i.e., each individual holds the most extreme value either in favor or against the given
proposition of interest).

(3) If the influence graph is a regular symmetric circulation (Section 5.3) we determine the
unique belief value all agents converge to.

An implementation in Python of the model and the corresponding simulations presented in
this paper are publicly available on GitHub [AAK™'21].

All in all, our formal model, theoretical results, and experimental observations provide
insight into the phenomenon of polarization, and are a step toward the design of robust
computational models and simulation software for human cognitive and social processes.

Organization. In Section™2 we introduce our formal model, and in Section 3 we provide
a series of examples and simulations uncovering interesting new insights and complex
characteristics of the evolution of beliefs and polarization under confirmation bias. The first
contribution listed above appears in Section 4 while the other two appear in Section 5. We
discuss DeGroot and other related work in Section 6, and conclude in Section 7. For the
sake of readability, the proofs follow in Appendix B.

2. THE MODEL

?

Here we present our polarization model, which is composed of “static” and “dynamic’
elements. We presuppose basic knowledge of calculus and graph theory [Soh14, Diel7].

2.1. Static Elements of the Model. Static elements of the model represent a snapshot

of a social network at a given point in time. They include the following components:

e A (finite) set A ={0,1,...,n—1} of n > 1 agents.

e A proposition p representing a declarative sentence, proposing something as being true.
We shall refer to p as a statement or proposition. For example p could be the statement
“vaccines are safe”, “Brerit was a mistake”, or “climate change is real and is caused by
human activity”. We shall see next how each agent in A assigns a value to p. The sentence
p is atomic in the sense that the value assigned to p is obtained from p as a whole; i.e., it
is not obtained by composing values assigned to other sentences.
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o A belief configuration B : A — [0, 1] such that for each agent ¢ € A, the value B; = B(7)
represents the confidence of agent i € A in the veracity of proposition p. The higher the
value B;, the higher the confidence of agent i in the veracity of p. Extreme values 0 and
1 represent a firm belief of agent ¢ in, respectively, the falsehood or truth of p. A belief
configuration B can also be represented as a tuple (By, ..., Bn—1). Given the set of agents
A, we use [0,1]* to denote the set all belief configurations over A.

e A polarization measure p : [0, 1]“4 — RT mapping belief configurations to the non-negative
real numbers. Given a belief configuration B = (By, ..., B,—1), the value p(B) indicates
the polarization among all the agents in A given their beliefs By, ..., B,_1 about the
veracity of the statement p. The higher the value p(B), the higher the polarization amongst
the agents in A.

There are several polarization measures described in the literature. In this work we employ
the influential family of measures proposed by Esteban and Ray [ER94].

In the rest of the paper, we will use the following notion. We say that (7, y) = (7o, 71,
e Th—1, Y0, YL, - - s Yk—1) 18 & distribution if y € R¥, Zf:_ol m; = 1 and for every i, 7 we have
m; > 0 and y; # y; whenever j # i. We use D to denote the set of all distributions.

Definition 2.1 (Esteban-Ray Polarization, [ER94]). An Esteban-Ray polarization measure
is a mapping pgg : D — R for which there are constants K > 0 and « € (0,2) such that

for every (m,y) = (mo, 71, ..., T—1,%0, Y1, - - -, Yk—1) € D we have
k—1k—1

per(m,y) = K> Y 7w mly: — yj-
i=0 j=0

The higher the value of pgr(7,y), the more polarized distribution (7, y) is. The measure
captures the intuition that polarization is accentuated by both intra-group homogeneity and
inter-group heterogeneity. Moreover, it assumes that the total polarization is the sum of the
effects of individual agents on one another. This measure (family) can be derived from a set
of intuitively reasonable axioms [ER94|, which are presented in Appendix A. Succinctly, the
measure considers a society as highly polarized when agents can be divided into two clusters
of similar size, one in which everyone has a high level of confidence in the veracity of the
proposition, and the other in which everyone has a low level of confidence in the veracity of
that same proposition. On the other hand, the measure considers a society as not polarized
at all when all individuals share a similar level of belief, and considers it as slightly polarized
when all individuals hold different levels of belief, without forming distinctive clusters of
similar opinions (i.e., the spread of opinions is diffuse.)

Note that pggr is defined on a discrete distribution, whereas in our model a general
polarization metric is defined on a belief configuration B : A — [0,1]. To apply pgr to our
setup in [AKV19] we converted the belief configuration B into an appropriate distribution
(7™, y)-

First we need some notation: Let Dy be a discretization of the interval [0, 1] into k > 0
consecutive non-overlapping, non-empty intervals (bins) Iy, I1,...,Ix_1. We use the term
borderline points of Dy, to refer to the end-points of Iy, I1, ..., I;_1 different from 0 and 1.
Given a belief configuration B, define the belief distribution of B in Dy, as bd(B, D) = (o,
TlyeeosTh—1,Y0,Y1,- - -, Yk—1) Where each y; is the mid-point of I;, and m; is the fraction of
agents having their belief in I;.
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Definition 2.2 (k-bin polarization, [AKV19]). An Esteban-Ray polarization measure for
belief configurations over Dy, is a mapping p : [0, l]A — R* such that for some Esteban-Ray
polarization measure pggr, we have

p(B) = per(bd(B, Dy))
for every belief configuration B € [0, 1]4.

Notice that when there is consensus about the proposition p of interest, i.e., when all
agents in belief configuration B hold the same belief value, we have p(B) = 0. This happens
exactly when all agents’ beliefs fall within the same bin of the underlying discretization Dy.
The following property is an easy consequence from Definition 2.1 and Definition 2.2.

Proposition 2.3 (Zero Polarization). Let p be a Esteban-Ray polarization measure for
belief configurations over a discretization Dy = Iy, ..., Ix_1. Then p(B) = 0 iff there exists
m € {0,...,k—1} such that for alli € A, B; € I,.

2.2. Dynamic Elements of the Model. Dynamic elements formalize the evolution of
agents’ beliefs as they interact over time and are exposed to different opinions. They include:

e A time frame
T7={0,1,2,...}

representing the discrete passage of time.
o A family of belief configurations

{B': A— 0,1} et

such that each B! is the belief configuration of agents in A with respect to proposition p
at time step t € T.
o A weighted directed graph

T:AxA—[0,1].

The value Z(4, j), written Z; j, represents the direct influence that agent i has on agent
j, or the weight i carries with j. A higher value means that agent j will have higher
confidence in agent i’s opinion and, therefore, will give this opinion more weight when
incorporating it into its own. Conversely, Z; ; can also be viewed as the trust or confidence
that j has in 7. We assume that Z;; = 1 for every agent i, meaning that agents are
self-confident. We shall often refer to Z simply as the influence (graph) Z.

We distinguish, however, the direct influence Z; ; that ¢ has on j from the overall effect
of i on j’s belief. This effect is a combination of various factors, including direct influence,
their current opinions, the topology of the influence graph, and how agents reason. This
overall effect is captured by the update function below.

e An update function

p: (B, Z)— B!
mapping belief configuration B! at time ¢ and influence graph Z to new belief configuration

Bt at time t + 1. This function models the evolution of agents’ beliefs over time. We
adopt the following premises.
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(i) Agents present some Bayesian reasoning: Agents’ beliefs are updated at every time
step by combining their current belief with a correction term that incorporates the
new evidence they are exposed to in that step —i.e., other agents’ opinions. More
precisely, when agent j interacts with agent i, the former affects the latter moving
i’s belief towards j’s, proportionally to the difference B;—Bf in their beliefs. The
intensity of the move is proportional to the influence Z;; that j carries with ¢. The
update function produces an overall correction term for each agent as the average of
all other agents’ effects on that agent, and then incorporates this term into the agent’s
current belief. ! The factor Z;; allows the model to capture authority bias [Ram19], by
which agents’ influences on each other may have different intensities (by, e.g., giving
higher weight to an authority’s opinion).

(ii) Agents may be prone to confirmation bias: Agents may give more weight to evidence
supporting their current beliefs while discounting evidence contradicting them, inde-
pendently from its source. This behavior in known in the psychology literature as
confirmation bias [AWA10], and is captured in our model as follows.

When agent j interacts with agent ¢ at time ¢, the update function moves agent
i’s belief toward that of agent j, proportionally to the influence Z;; of j on 7, but
with a caveat: the move is stronger when j’s belief is similar to ¢’s than when it is
dissimilar. This is realized below by making the move proportional to what we shall
call confirmation-bias factor Bf’j =1- |B§-—Bf]. Clearly, the closer the beliefs of
agents ¢ and j at time ¢, the higher the factor ﬁf,j'

The premises above are formally captured in the following update-function. As usual, given
a set S, we shall use |S| to denote the cardinality of S.

Definition 2.4 (Confirmation-bias update function). Let B be a belief configuration at

time t € T, and Z be an influence graph. The confirmation-bias update-function is the map

OB (Bt T) — B! with B**! given by
1

| Ail

B{f' =Bl + — > B{;Z;: (B} - BY), (2.1)

JEA;

for every agent i € A, where A; = {j € A | Z;; > 0} is the set of neighbors of i and
f’j =1- \B;-—Bﬂ is the confirmation-bias factor of i with respect to j given their beliefs

at time t.

The expression 1/|.4;| ZjeAi ﬁf,j T (B;/ — B!) on the right-hand side of Definition 2.4 is
a correction term incorporated into agent i’s original belief B! at time ¢. The correction
is the average of the effect of each neighbor j € A; on agent i’s belief at that time step.
The value B!*! is the resulting updated belief of agent i at time ¢ + 1. By rewriting (2.1)
as BItt = 1/14,) djea Bt Tii B + (1 —Bi; Ijﬂ) B, it is easy to verify that B!t € [0, 1],
since: (i) we divide the result of the summation by the number of terms; and (ii) each term
of the summation also belongs to the interval [0, 1], as it is a convex combination of the
beliefs of agent i’s neighbors at time ¢ and its own belief, both in the interval [0, 1].

The confirmation-bias factor ﬁf,j lies in the interval [0, 1], and the lower its value, the
more agent ¢ discounts the opinion provided by agent 7 when incorporating it. It is maximum
when agents’ beliefs are identical, and minimum when their beliefs are extreme opposites.

1 Note that this assumption implies that an agent has, in effect, an influence on itself, and hence cannot
be used as a “puppet” who immediately assumes another’s agent’s belief.
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Remark 2.5 (Classical Update: Authority Non-Confirmatory Bias). In this paper we focus
on confirmation-bias update and, unless otherwise stated, assume the underlying function is
given by Definition 2.4. Nevertheless, in Sections 5.3 and 6.1 we will consider a classical
update pC : (B, T)—B'! that captures non-confirmatory authority-bias and is obtained by
replacing the confirmation-bias factor de in Definition 2.4 with 1. That is,

1
t+1 _ pt (pt_npt
Bl =Bt + N ;\.IN (BI-BY). (2.2)

We refer to this function as classical because it is closely related to the standard update func-
tion of the DeGroot models for social learning from Economics [DeG74]. This correspondence
will be formalized in Section 6.1.

Remark 2.6. A preliminary and slightly different version of the biases in Definition 2.4
and Remark 2.5 using in Equations 2.1 and 2.2 the set A instead of A; were given [AKV19].
As a consequence these preliminary definitions take into account the weighted average of all
agents’ beliefs rather that only those of the agents that have an influence over agent .

3. RUNNING EXAMPLE AND SIMULATIONS

In this section we present a running example, as well as several simulations, that motivate
our theoretical results from the following sections. We start by stating some assumptions
that will be adopted throughout this section.

3.1. General assumptions. Recall that we assume Z;; = 1 for every ¢ € A. However,
for simplicity, in all figures of influence graphs we omit self-loops. In all cases we limit
our analyses to a fixed number of time steps. We compute a polarization measure from
Definition 2.2 with parameters o = 1.6, as suggested by Esteban and Ray [ER94|, and
K =1,000. Moreover, we employ a discretization Dy of the interval [0, 1] into k = 5 bins,
each representing a possible general position with respect to the veracity of the proposition
p of interest:

e strongly against: [0,0.20);

e fairly against: [0.20,0.40);

e neutral/unsure: [0.40,0.60);

e fairly in favour: [0.60,0.80); and

e strongly in favour: [0.80,1].2

In all definitions we let A ={0,1,...,n—1}, and 4, j € A be generic agents.

2 Recall from Definition 2.2 that our model allows arbitrary discretizations Dy —i.e., different number of
bins, with not-necessarily uniform widths— depending on the scenario of interest.
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3.2. Running example. As a motivating example we consider the following hypothetical
situation.

Example 3.1 (Vaccine Polarization). Consider the sentence “vaccines are safe” as the
proposition p of interest. Assume a set A of 6 agents that is initially extremely polarized
about p: Agents 0 and 5 are absolutely confident, respectively, in the falsehood or truth of p,
whereas the others are equally split into strongly in favour and strongly against p. Consider
first the situation described by the influence graph in Figure la. Nodes 0, 1 and 2 represent
anti-vaxxers, whereas the rest are pro-vaxxers. In particular, note that although initially
in total disagreement about p, Agent 5 carries a lot of weight with Agent 0. In contrast,
Agent 0’s opinion is very close to that of Agents 1 and 2, even if they do not have any direct
influence over him. Hence the evolution of Agent 0’s beliefs will be mostly shaped by that
of Agent 5. As can be observed in the evolution of agents’ opinions in Figure la, Agent 0
(represented by the purple line) moves from being initially strongly against p (i.e., having an
opinion in the range of [0.00,0.20) at time step 0) to being fairly in favour of p (i.e., having
an opinion in the range of [0.60,0.80)) around time step 8. Moreover, polarization eventually
vanishes (i.e., becomes zero) around time 20, as agents reach the consensus of being fairly
against p.

Now consider the influence graph in Figure 1b, which is similar to Figure la, but with
reciprocal influences (i.e., the influence of i over j is the same as the influence of j over 7).
Now Agents 1 and 2 do have direct influences over Agent 0, so the evolution of Agent 0’s
belief will be partly shaped by initially opposed agents: Agent 5 and the anti-vaxxers. But
since Agent 0’s opinion is very close to that of Agents 1 and 2, the confirmation-bias factor
will help in keeping Agent 0’s opinion close to their opinion against p. In particular, in
contrast to the situation in Figure la, Agent 0 never becomes in favour of p. The evolution
of the agents’ opinions and their polarization is shown in Figure 1b. Notice that polarization
vanishes around time 8 as the agents reach consensus, but this time they are more positive
about (less against) p than in the first situation.

Finally, consider the situation in Figure 1c obtained from Figure la by inverting the
influences of Agent 0 over Agent 1 and Agent 2 over Agent 4. Notice that Agents 1 and 4 are
no longer influenced by anyone though they influence others. Thus, as shown in Figure 1c,
their beliefs do not change over time, which means that the group does not reach consensus
and polarization never disappears though it is considerably reduced. <

The above example illustrates complex non-monotonic, overlapping, convergent, and
non-convergent evolution of agent beliefs and polarization even in a small case with n =6
agents. Next we shall consider richer simulations on a greater variety of scenarios. These
are instrumental in providing insight for theoretical results to be proven in the following
sections.

3.3. Simulations. Here we present simulations for several influence graph topologies with

n = 1,000 agents (unless stated otherwise), which illustrate more complex behavior emerging

from confirmation-bias interaction among agents. Our theoretical results in the next sections

bring insight into the evolution of beliefs and polarization depending on graph topologies.
Next we provide the contexts used in our simulations.
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(A) Influence graph Z and the corresponding evolution of beliefs and polarization for Example 3.1.
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(¢) Inversion of the influences Zy ; and Zs 4 in Figure la.

F1GURE 1. Influence graphs and the corresponding evolution of beliefs and
polarization for Example 3.1. In each figure, the left-hand size is a graph
representation of an influence graph, with nodes representing agents and
each arrow from an agent 7 to an agent j labelled with the influence Z; ;
the former carries on the latter. In each graph on the right-hand side, the
x-axis represents the passage of time, and the y-axis is divided into: (i) an
upper half depicting the evolution of beliefs for each agent at each time step
(with each line representing the agent of same color in the corresponding
influence graph); and (ii) a lower half depicting the corresponding measure
of polarization of the network at each time step. In all cases the initial belief
values for Agents 0 to 5 are, respectively, 0.0, 0.06, 0.13, 0.8, 0.86, and 0.93.
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Strongly against| Fairly against |Neutral / unsure| Fairly in favour Strongly in
[0,0.20) [0.20,0.40) [0.40,0.60) [0.60,0.80) | favour [0.80,1]
Uniform a a | & a | & a | & a | & &
Mildly polarized -0 aaa asasda

Extremely polar. H
Tripolar — |@ & & a & & a a & a

FIGURE 2. Depiction of the general shape of initial belief configurations
(formally defined in Section 3.3), recreated here for a small group of only
n = 10 agents for exemplification purposes (since in the simulations the
number of agents used is much larger). Each row represents an initial
belief configuration, and the 10 agents’ opinions are distributed into columns
according to their level of belief in the veracity of the proposition of interest.
Empty cells represent positions that are not held by any agent, whereas the
other cells have agents with beliefs uniformly distributed in the corresponding
range (as formally defined in Section 3.3). Colors are used only to facilitate
the visualization of each configuration.

Initial belief configurations. We consider the following initial belief configurations, depicted
in Figure 2:
o A uniform belief configuration representing a set of agents whose beliefs are as varied as
possible, all equally spaced in the interval [0, 1]: for every i,
B =i/(n-1).

e A mildly polarized belief configuration with agents evenly split into two groups with
moderately dissimilar inter-group beliefs compared to intra-group beliefs: for every i,

o _ JO2/ma1+0.2, if i < [n/2],
! 0.2(i—["/21)/(n—[n/2]) + 0.6  otherwise.

e An extremely polarized belief configuration representing a situation in which half of the
agents strongly believe the proposition, whereas half strongly disbelieve it: for every i,

o _ J O/, if ¢ <[n/2],
! 0.2(i=["/21)/(n—[n/2]) + 0.8, otherwise.

e A tripolar configuration with agents divided into three groups: for every i,
0.2i/|n/3) if i < /3],
BY = { 0.2(i—1n/3])/(f2njs]—|njs)) + 0.4, if [n/3] < i < [2n/3],
0.2(i=[27/31) /(n—[2n/3]) + 0.8, otherwise.

Influence graphs. As for influence graphs, we consider the following ones, depicted in Figure 3:
e A C-clique influence graph Z¢%%¢ in which each agent influences every other with constant
value C' = 0.5: for every i, j such that i#7,

I = 0.5 .
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(A) C-clique. (B) Circular. (c) Disconnected groups.

(D) Faintly communicating groups. (E) Unrelenting influencers. (F) Malleable influencers.

FIGURE 3. Depiction of the general shape of influence graphs (formally
defined in Section 3.3), recreated here for a small group of only n = 6 agents
for exemplification purposes (since in the simulations the number of agents
used is much larger). Solid (respectively, dashed) arrows indicate that the
originating agent has relatively high (respectively, low) influence on the
receiving agent. In influence graphs in which agents can be divided into
groups with different behaviors, colors are used to indicate such groups.

This represents the particular case of a social network in which all agents interact among
themselves, and are all immune to authority bias.

e A circular influence graph Z¢" representing a social network in which agents can be
organized in a circle in such a way each agent is only influenced by its predecessor and
only influences its successor: for every 4, j such that i#£j,

K3 .
7 0, otherwise.

cire _ {0.5, if (i+1)modn = j,

This is a simple instance of a balanced graph (in which each agent’s influence on others is
as high as the influence received, as in Definition 5.1 ahead), which is a pattern commonly
encountered in some sub-networks.

e A disconnected influence graph Z%s¢ representing a social network sharply divided into
two groups in such a way that agents within the same group can considerably influence
each other, but not at all agents in the other group: for every 4, j such that i#j,

dise _ J 05, if 4, j are both <[n/2] or both >[n/2],
I 0, otherwise.

e A faintly communicating influence graph Z/%"* representing a social network divided into
two groups that evolve mostly separately, with only faint communication between them.
More precisely, agents from within the same group influence each other much more strongly
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than agents from different groups: for every i, j such that i#£j,

faint
Lij =

0.5, if 7,7 are both <[7/2] or both >[n/2],
0.1, otherwise.

This could represent a small, ordinary social network, where some close groups of agents
have strong influence on one another, and all agents communicate to some extent.

e An unrelenting influencers influence graph Z%"¢ representing a scenario in which two
agents (say, 0 and n—1) exert significantly stronger influence on every other agent than
these other agents have among themselves: for every 4, j such that i#£j,

0.6, ifi=0and j#n—1ori=n—1andj+#0,
=90, ifj=0o0rj=n—1,
0.1, if0#i#n—1and0+#£j#n—1.

This could represent, e.g., a social network in which two totalitarian media companies
dominate the news market, both with similarly high levels of influence on all agents. The
networks have clear agendas to push forward, and are not influenced in a meaningful way
by other agents.

e A malleable influencers influence graph Z™alesble representing a social network in which
two agents have strong influence on every other agent, but are barely influenced by anyone
else: for every %, j such that i#£j,

0.8, if¢=0and j # n—1,

0.4, ifi=n—1and j#0,

0.1, ifj=0o0rj=n-1,

0.1, if0#i#n—1and 0+# j#n—1.

malleable __
Z; =

This scenario could represent a situation similar to the “unrelenting influencers” scenario
above, with two differences. First, one TV network has much higher influence than the
other. Second, the networks are slightly influenced by all the agents (e.g., by checking
ratings and choosing what news to cover accordingly).

We simulated the evolution of agents’ beliefs and the corresponding polarization of the
network for all combinations of initial belief configurations and influence graphs presented
above, using both the confirmation-bias update-function (Definition 2.4) and the classical
update-function (Remark 2.5). Simulations of circular influences used n = 12 agents, whereas
the rest used n = 1,000 agents. Both the Python implementation of the model and the
Jupyter Notebook containing the simulations are available on GitHub [AAKT21].

The cases in which agents employ the confirmation-bias update-function, which is the
core of the present work, are summarized in Figure 4. In that figure, each column corresponds
to a different initial belief configuration, and each row corresponds to a different influence
graph, so we can visualize how the behavior of polarization under confirmation bias changes
when we fix an influence graph (row) and vary the initial belief configuration (column), or
vice-versa. In Section 4 and Section 5 we shall discuss some of these results in more detail
when illustrating our formal results. But first, in the following section we highlight some
insights on the evolution of polarization we obtain from the whole set of simulations.
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FIGURE 4. Evolution of belief and polarization under confirmation-bias.
Each row (resp. column) contains all graphs with the same influence graph
(resp. initial belief configuration). Circular influences used n = 12 agents,
the rest used n = 1,000 agents. Each graph should be read as in Figure 1.
Agents with similar behavior are grouped by colors: e.g., in all graphs in the
rightmost column (tripolar initial belief configuration) all agents initiating in
one of the three poles have the same color (green, orange, or blue).
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FIGURE 5. Examples of “expected” behavior of the evolution of polarization.

3.4. Insights from simulations. We divide our discussion into “expected” and “unex-
pected” behaviors identified.

3.4.1. Analysis of “expected” behavior of polarization. We start by considering the cases in
which our simulations agree with some perhaps “expected” behavior of polarization. For this
task, we focus on a scenario in which agents start off with varied opinions, represented by the
uniform initial belief configuration, and all interact with each other via a C-clique influence
graph. We consider both the cases in which agents incorporate new information in a classic
way without confirmation bias (Remark 2.5), and in which agents present confirmation bias
(Definition 2.4). These “expected” results are shown in Figure 5.

In particular, Figure 5a meets our expectation that social networks in which all agents
can interact in a direct way eventually converge to a consensus (i.e., polarization disappears),
even if agents start off with very different opinions and are prone to confirmation bias.
Figure 5b shows that for the same fixed update function and initial belief configuration,
different interaction graphs may lead to very different evolutions of polarization: it grows
to a maximum if agents are disconnected, achieves a very low yet non-zero value in the
presence of 2 unrelenting influencers, and disappears in all other cases (i.e., when agents can
influence each other, even if indirectly). Finally, Figure 5¢ shows that when there are agents
that do not communicate with each other at all, as in a disconnected influence graph, then
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FIGURE 6. Examples of cases in which the evolution of polarization is not
monotonic.

even rational agents updating beliefs according to the classic update function may not reach
consensus, and polarization may stabilize at relatively high values.

We notice that some of the expected behaviors described in this section will follow from
the results of in Section 5 (see, e.g., Theorem 4.18).

3.4.2. Analysis of perhaps “unexpected” behavior of polarization. We now turn our attention
interesting cases in which the simulations help shed light on perhaps counter-intuitive
behavior of the dynamics of polarization. In the following we organize these insights into
several topics.

Polarization is not necessarily a monotonic function of time. At first glance it may seem
that for a fixed social network configuration, polarization either only increases or decreases
with time. Perhaps surprisingly, this is not so, as illustrated in Figure 6.

We start by noticing that Figure 6a shows that for a uniform initial belief configuration
and an interaction graph with two faintly communicating groups, no matter the update
function, polarization increases before decreasing again and stabilizing at a lower level.
This is explained by the fact that in such a set-up agents within the same group will reach
consensus relatively fast, which will lead society to two clear poles and increase polarization
at an initial stage. However, as the two groups continue to communicate over time, even if
faintly, a general consensus is eventually achieved.

Figure 6b shows that a tripolar social network in which agents have confirmation bias,
a similar phenomenon occurs for all interaction graphs. The only exceptions are the cases
of disconnected groups, in which polarization stabilizes at a high level, and of unrelenting
influencers, in which polarization stabilizes at a very low yet non-zero level. In the first
case, this happens because the disconnected groups reach internal consensus but remain
far from the other group, since they do not communicate. This represents a high level of
polarization. The case of two unrelenting influencers retains a low level of polarization
simply because the opinions of the unrelenting influencers never change, even if the rest
of agents attain consensus. Another interesting case is that of two faintly communicating
groups: here polarization first increases as the groups reach internal consensus, but then the
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FiGURE 7. Comparison of different update functions.

two groups move toward one another and polarization decreases. The other two interaction
graphs also stabilize to zero polarization.

The effect of different update functions. Figure 7 shows a comparison of different update
functions in various interesting scenarios.

In particular, Figure 7a shows that, as expected, polarization can permanently increase in
a disconnected social network, with little difference between the behavior of different update
functions. Figure 7b depicts the effects of the two different update functions beginning from
a uniform belief configuration, with two unrelenting influencers as the influence function. In
both cases, all agents except the influencers eventually reach a belief value of 0.5 (the middle
of the belief spectrum, between the two extreme agents), representing an increased but still
fairly low level of polarization. The classic belief update function achieves this equilibrium
fastest, since in under confirmation bias agents are less influenced by others whose beliefs
are far from their own, so their beliefs change more slowly. Finally, Figure 7c shows that
even under two extreme unrelenting influencers, consensus is eventually nearly reached, since
everyone except the influencers eventually reaches a belief configuration between the beliefs
of the two influencers.

The effect of different interaction graphs. Figure 8 shows a comparison of different interaction
graphs in various scenarios. Figures 8a and 8b show that a faintly communicating graph
leads to a temporary peak in polarization, which is reversed in all cases. As we discussed,
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this is explained by the fact that agents within the same group achieve consensus faster than
agents in different groups, leading to a temporary increase in polarization. Note as well that
both figures show that the presence of two unrelenting influencers pushing their agendas is
sufficient prevent consensus-reaching, even if polarization remains at a very low level.

The effect of different initial belief configurations. Figure 9 compares different belief configu-
rations in various scenarios. Figure 9a and Figure 9b show that even initial configurations
with very different levels of polarization can converge to a same polarization level under both
classic update and confirmation bias. However, not all initial belief configurations converge
to a same final value, as is the case with the extremely polarized curve in Figure 9a.

4. BELIEF AND POLARIZATION CONVERGENCE

Polarization tends to diminish as agents approximate a consensus, i.e., as they (asymp-
totically) agree upon a common belief value for the proposition of interest. Here and in
Section 5 we consider meaningful families of influence graphs that guarantee consensus
under confirmation bias. We also identify fundamental properties of agents, and the value of
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convergence. Importantly, we relate influence with the notion of flow in flow networks, and
use it to identify necessary conditions for polarization not converging to zero.

4.1. Polarization at the limit. Proposition 2.3 states that our polarization measure on a
belief configuration (Definition 2.2) is zero exactly when all belief values in it lie within the
same bin of the underlying discretization Dy = Iy ... Ix_q of [0,1]. In our model polarization
converges to zero if all agents’ beliefs converge to a same non-borderline value. More
precisely:

Lemma 4.1 (Zero Limit Polarization). Let v be a non-borderline point of Dy, such that for
every (S A, hmt—)oo Blt =v. Then hmt_>oo p(Bt) =0.

To see why we exclude the k — 1 borderline values of Dy, in the above lemma, assume
v € I, where m € {0,...,k — 1} is a borderline value. Suppose that there are two agents
¢ and j whose beliefs converge to v, but with the belief of ¢ staying always within I,,
whereas the belief of j remains outside of I,,,. Under these conditions one can verify, using
Definition 2.1 and Definition 2.2, that p will not converge to 0. This situation is illustrated
in Figure 10b assuming a discretization Dy = [0, 1/2), [1/2, 1] whose only borderline is 1/2.
Agents’ beliefs converge to value v = 1/2, but polarization does not converge to 0. In contrast,
Figure 10c illustrates Lemma 4.1 for D3 = [0,1/3), [{/3,2/3), [2/3,1]. 3

4.2. Convergence under Confirmation Bias in Strongly Connected Influence. We
now introduce the family of strongly-connected influence graphs, which includes cliques, that
describes scenarios where each agent has an influence over all others. Such influence is not
necessarily direct in the sense defined next, or the same for all agents, as in the more specific
cases of cliques.

Definition 4.2 (Influence Paths). Let C' € (0, 1]. We say that i has a direct influence C
. .C ..
over j, written i —j, if Z; ; = C.
An influence path is a finite sequence of distinct agents from A where each agent in the
sequence has a direct influence over the next one. Let p be an influence path igiy ...%,. The

size of p is |p| = n. We also use iy G i % % in, to denote p with the direct influences

along this path. We write g ~§p in, to indicate that the product influence of iy over i, along
pisC=C1 X+ xCh.

We often omit influence or path indices from the above arrow notations when they are
unimportant or clear from the context. We say that ¢ has an influence over j if i~>j.

The next definition is akin to the graph-theoretical notion of strong connectivity.

Definition 4.3 (Strongly Connected Influence). We say that an influence graph Z is strongly
connected if for all i, j € A such that i#j, i~~j.

3 It is worthwhile to note that this discontinuity at borderline points matches real scenarios where each
bin represents a sharp action an agent takes based on his current belief value. Even when two agents’ beliefs
are asymptotically converging to a same borderline value from different sides, their discrete decisions will
remain distinct. E.g., in the vaccine case of Example 3.1, even agents that are asymptotically converging to a
common belief value of 0.5 will take different decisions on whether or not to vaccinate, depending on which
side of 0.5 their belief falls. In this sense, although there is convergence in the underlying belief values, there
remains polarization with respect to real-world actions taken by agents.
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F1GURE 10. Belief convergence to borderline value 0.5. Polarization does
not converge to 0 with equal-length 2 bins (Figure 10b) but it does with 3
equal-length bins (Figure 10c). In all cases the initial belief values for Agents
0 to 5 are, respectively, 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 and the influence graph
is the one depicted in Figure 10a. The graphs for the evolution of belief and
polarization should be read as in Figure 1.

Remark 4.4. For technical reasons we assume that, initially, there are no two agents
i,j € A such that B? =0 and B? = 1. This implies that for every i,j € A: ﬁgj > 0 where
ﬁg ;18 the confirmation bias of i towards j at time 0 (See Definition 2.4). Nevertheless, at
the end of this section we will address the cases in which this condition does not hold.

We shall use the following notation for the extreme beliefs of agents.

Definition 4.5 (Extreme Beliefs). Define maz! = max;e 4 B! and min' = max;c 4 B! as

the functions giving the maximum and minimum belief values, respectively, at time t.

It is worth noticing that extreme agents —i.e., those holding extreme beliefs— do not
necessarily remain the same across time steps. Figure la illustrates this point: Agent 0 goes
from being the one most against the proposition of interest at time ¢ = 0 to being the one
most in favour of it around ¢t = 8. Also, the third row of Figure 4 shows simulations for a
circular graph under several initial belief configurations. Note that under all initial belief
configurations different agents alternate as maximal and minimal belief holders.

Nevertheless, in what follows will show that the beliefs of all agents, under strongly-
connected influence and confirmation bias, converge to the same value since the difference
between min! and max! goes to 0 as t approaches infinity. We begin with a lemma stating



18:20 M. S. ArwviMm, B. AMORIM, S. KNIGHT, S. QUINTERO, AND F. VALENCIA Vol. 19:1

a property of the confirmation-bias update: The belief value of any agent at any time is
bounded by those from extreme agents in the previous time unit.

Lemma 4.6 (Belief Extremal Bounds). For every i € A, min! < Bf“ < maxt.
The next corollary follows from the assumption in Remark 4.4 and Lemma 4.6.
Corollary 4.7. For everyi,j € A, t > 0: vaj > 0.

Note that monotonicity does not necessarily hold for belief evolution. This is illustrated
by Agent 0’s behavior in Figure la. However, it follows immediately from Lemma 4.6
that min and max in Definition 4.5 are monotonically non-decreasing and non-increasing
functions of .

Corollary 4.8 (Monotonicity of Extreme Beliefs). maz!*! < maz’ and min'*t! > min! for
all t € N.

Monotonicity and the bounding of maz’, min’ within [0, 1] lead us, via the Monotonic
Convergence Theorem [Soh14], to the existence of limits for beliefs of extreme agents.

Theorem 4.9 (Limits of Extreme Beliefs). There are U, L € [0,1] such that lim;—s o, maz’ =
U and lim;—soo mint = L.

We still need to show that U and L are the same value. For this we prove a distinctive
property of agents under strongly connected influence graphs: the belief of any agent at
time ¢ will influence every other agent by the time ¢ + |A| — 1. This is precisely formalized
below in Lemma 4.12. First, however, we introduce some bounds for confirmation-bias and
influence, as well as notation for the limits in Theorem 4.9.

Definition 4.10 (Min Factors). Define £,,;, = min; jea ﬁg ; as the minimal confirmation

bias factor at t = 0. Also let Z,,,;, be the smallest positive influence in Z. Furthermore, let

L = limy—yo min! and U = lim;—so, maz?.

Notice that since min' and maz’ do not get further apart as the time t increases
(Corollary 4.8), min; je 4 ﬁf,j is a non-decreasing function of ¢. Therefore 3,,;, acts as a lower
bound for the confirmation-bias factor in every time step.

Proposition 4.11. B, = min; jea 3 ; for every t > 0.

We use the factor £,,;, in the next result to establish that the belief of agent ¢ at time
t, the minimum confirmation-bias factor, and the maximum belief at ¢ act as bound of the
belief of j at ¢ + |p|, where p is an influence path from i and j.

Lemma 4.12 (Path bound). If Z is strongly connected:
(1) Let p be an arbitrary path i «gp J. Then
B;Hp‘ < maz' 4 CAAL, /| AP (B! — maz).

(2) Letm' € A be an agent holding the least belief value at time t and p be a path such that

m? ~p 1. Then

t
B,L+|p| S maxt _ 5’
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Next we establish that all beliefs at time ¢+ |.A| — 1 are smaller than the maximal belief at ¢
by a factor of at least ¢ depending on the minimal confirmation bias, minimal influence and
the limit values L and U.

Lemma 4.13. Suppose that T is strongly-connected.
(1) If B < maxt — v and v > 0 then B < mazxt — /).
(2) BEHA'*l < maz' — e, where € is equal to (TminBmin/|A)) A =1 (U = L).

Lemma 4.13(2) states that max" decreases by at least € after |A| — 1 steps. Therefore, after
m(]A| — 1) steps it should decrease by at least me.

t

Corollary 4.14. IfT is strongly connected, maztA=1) < mazt—me for e in Lemma 4.13.

We can now state that in strongly connected influence graphs extreme beliefs eventually
converge to the same value. The proof uses Corollary 4.7 and Corollary 4.14 above.

Theorem 4.15. If T is strongly connected then lim;—s . maz' = lim;—so, min'.

Combining Theorem 4.15, the assumption in Remark 4.4 and the Squeeze Theo-
rem [Soh14], we conclude that for strongly-connected graphs, all agents’ beliefs converge to
the same value.

Corollary 4.16. If T is strongly connected then for all i,j € A,lim;— B! = limy—soo B}.

4.2.1. The Extreme Cases. We assumed in Remark 4.4 that there were no two agents ¢, j
such that B! = 0 and B;- = 1. Theorem 4.18 below addresses the situation in which this
does not happen. More precisely, it establishes that under confirmation-bias update, in
any strongly-connected, non-radical society, agents’ beliefs eventually converge to the same
value.

Definition 4.17 (Radical Beliefs). An agent i € A is called radical if B; =0or B; =1. A
belief configuration B is radical if every i € A is radical.

Theorem 4.18 (Confirmation-Bias Belief Convergence). In a strongly connected influence
graph and under the confirmation-bias update-function, if B® is not radical then for all
i,j € A, limy—so0 B! = limp—yo0 B;. Otherwise for every i € A, Bl = Bf“ € {0,1}.

We conclude this section by emphasizing that belief convergence is not guaranteed in
non strongly-connected graphs. Figure 1c from the vaccine example shows such a graph
where neither belief convergence nor zero-polarization is obtained.

5. CONDITIONS FOR POLARIZATION

We now use concepts from flow networks to identify insightful necessary conditions for
polarization never disappearing. Understanding the conditions when polarization does not
disappear under confirmation bias is one of the main contributions of this paper.
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5.1. Balanced Influence: Circulations. The following notion is inspired by the circula-
tion problem for directed graphs (or flow network) [Diel7]|. Given a graph G = (V, E) and a
function ¢ : E — R (called capacity), the problem involves finding a function f : E — R
(called flow) such that:

(1) f(e) <c(e) for each e € F; and
(2) Z(U,w)eE flo,w) = Z(wﬂ,)eE f(w,v) forallveV.

Such an f exists is called a circulation for G and c.
Thinking of flow as influence, the second condition, called flow conservation, corresponds
to requiring that each agent influences others as much as is influenced by them.

Definition 5.1 (Balanced Influence). We say that Z is balanced (or a circulation) if every
i € A satisfies the constraint } ;4 Zi; = > 1 Zji-

Cliques and circular graphs, where all (non-self) influence values are equal, are balanced
(see Figure 3b). The graph of our vaccine example (Figure 1) is a circulation that is neither
a clique nor a circular graph. Clearly, influence graph 7 is balanced if it is a solution to a
circulation problem for some G = (A, A x A) with capacity c: A x A — [0, 1].

Next we use a fundamental property from flow networks describing flow conservation for
graph cuts [Diel7]. Interpreted in our case it says that any group of agents ACA influences
other groups as much as they influence A.

Proposition 5.2 (Group Influence Conservation). Let Z be balanced and {A, B} be a

partition of A. Then
> 2 L= L

icAjeB icA jeB
We now define weakly connected influence. Recall that an undirected graph is connected
if there is path between each pair of nodes.

Definition 5.3 (Weakly Connected Influence). Given an influence graph 7, define the
undirected graph Gz = (A, E) where {i,j} € F if and only if Z;; > 0 or Z;; > 0. An
influence graph 7 is called weakly connected if the undirected graph Gz is connected.

Weakly connected influence relaxes its strongly connected counterpart. However, every
balanced, weakly connected influence is strongly connected as implied by the next lemma.
Intuitively, circulation flows never leaves strongly connected components.

Lemma 5.4. If T is balanced and Z; ;j > 0 then j~i.

5.2. Conditions for Polarization. We have now all elements to identify conditions for
permanent polarization. The convergence for strongly connected graphs (Theorem 4.18), the
polarization at the limit lemma (Lemma 4.1), and Lemma 5.4 yield the following noteworthy
result.

Theorem 5.5 (Conditions for Polarization). Suppose that lim;—so. p(Bt)#0. Then either:

(1) Z is not balanced;

(2) Z is not weakly connected;
(3) B° is radical; or
(4)

4) for some borderline value v, lim;—s Bf = for each i € A.
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20 30 40 50
Time

FiGURE 11. Regular and reciprocal influence, and the corresponding evolu-
tion of beliefs and polarization. This figure should be read as Figure 1.

Hence, at least one of the four conditions is necessary for the persistence of polarization. If
(1) then there must be at least one agent that influences more than what he is influenced
(or vice versa). This is illustrated in Figure 1c from the vaccine example, where Agent 2
is such an agent. If (2) then there must be isolated subgroups of agents; e.g., two isolated
strongly-connected components where the members of the same component will achieve
consensus but the consensus values of the two components may be very different. This
is illustrated in the fourth row of Figure 4. Condition (3) can be ruled out if there is an
agent that is not radical, like in all of our examples and simulations. As already discussed,
(4) depends on the underlying discretization Dy, (e.g., assuming equal-length bins if v is
borderline in Dy, it is not borderline in D41, see Figure 10.).

5.3. Reciprocal and Regular Circulations. The notion of circulation allowed us to iden-
tify potential causes of polarization. In this section we will also use it to identify meaningful
topologies whose symmetry can help us predict the exact belief value of convergence.

A reciprocal influence graph is a circulation where the influence of i over j is the same
as that of j over 4, i.e, Z; ; = Z;;. Also a graph is (in-degree) regular if the in-degree of each
nodes is the same; i.e., for all 4,7 € A, |4;| = |A;].

As examples of regular and reciprocal graphs, consider a graph Z where all (non-self)
influence values are equal. If Z is circular then it is a regular circulation, and if 7 is a clique
then it is a reciprocal regular circulation. Also we can modify slightly our vaccine example
to obtain a regular reciprocal circulation as shown in Figure 11.

The importance of regularity and reciprocity of influence graphs is that their symmetry
is sufficient to the determine the exact value all the agents converge to under confirmation
bias: the average of initial beliefs. Furthermore, under classical update (see Remark 2.5),
we can drop reciprocity and obtain the same result. The result follows from Lemma 5.4,

Theorem 4.18, Corollary 6.1, the Squeeze Theorem [Soh14] and by showing that Y, 4 Bf =

— Pt

Y icA Bf‘H using symmetries derived from reciprocity, regularity, and the fact that ﬁf, ;=B

Theorem 5.6 (Consensus Value). Suppose that T is reqular and weakly connected. If T
1s reciprocal and the belief update is confirmation-bias, or if the influence graph T is a
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circulation and the belief update is classical, then, for every i € A,

1
. t 0
thm Bi——| |§ B;.
jeA

6. RELATED WORK

6.1. Comparison to DeGroot’s model. DeGroot proposed a very influential model,
closely related to our work, to reason about learning and consensus in multi-agent sys-
tems [DeG74], in which beliefs are updated by a constant stochastic matrix at each time step.
More specifically, consider a group {1,2,...,k} of k agents, such that each agent ¢ holds an
initial (real-valued) opinion FZ-0 on a given proposition of interest. Let T} ; be a non-negative
weight that agent ¢ gives to agent j’s opinion, such that E?Zl T; j=1. DeGroot’s model posits
that an agent i’s opinion F} at any time ¢>1 is updated as F/= 2521 Ti,jFit_l. Letting F*
be a vector containing all agents’ opinions at time ¢, the overall update can be computed as
F'I=TF! where T={T;, ;} is a stochastic matrix. This means that the ¢-th configuration
(for t>1) is related to the initial one by F!=T*F°, which is a property thoroughly used to
derive results in the model.

When we use classical update (as in Remark 2.5), our model reduces to DeGroot’s via
the transformation F=BY, and T; j=1/|4;| I, if i#j, or T} j=1—1/|A,] ZjeAi Z;; otherwise.
Notice that T; ;<1 for all 7 and j, and, by construction, Z?ﬂ T;,;=1 for all i. The following
result is an immediate consequence of this reduction.

Corollary 6.1. In a strongly connected influence graph L and under the classical update
function, for all i,j€A,
lim B! = lim B.
t—ro0 t—roo

Unlike its classical counterpart, however, the confirmation-bias update (Definition 2.4)
does not have an immediate correspondence with DeGroot’s model. Indeed, this update is
not linear due the confirmation-bias factor 8} ;=1—|Bj—Bj|. This means that in our model
there is no immediate analogue of the relation among arbitrary configurations and the initial
one as the relation in DeGroot’s model (i.e., F*=T*F). Therefore, proof techniques usually
used in DeGroot’s model (e.g., based on Markov properties) are not immediately applicable
to our model. In this sense our model is an extension of DeGroot’s, and we need to employ
different proof techniques to obtain our results.

The Degroot-like models are also used in [GJ10]. Rather than examining polarization
and opinions, this work is concerned with the network topology conditions under which
agents with noisy data about an objective fact converge to an accurate consensus, close
to the true state of the world. As already discussed the basic DeGroot model does not
include confirmation bias, however [SSVL20, MBA20, MF15, HK02, CVCL20] all generalize
DeGroot-like models to include functions that can be thought of as modelling confirmation
bias in different ways, but with either no measure of polarization or a simpler measure than
the one we use. [Mor05] discusses DeGroot models where the influences change over time,
and [GS16] presents results about generalizations of these models, concerned more with
consensus than with polarization.
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6.2. Other related work. We summarize some other relevant approaches and put into
perspective the novelty of our approach.

Polarization. Polarization was originally studied as a psychological phenomenon in [ML76],
and was first rigorously and quantitatively defined by economists Esteban and Ray [ER94].
Their measure of polarization, discussed in Section 2, is influential, and we adopt it in this
paper. Li et al. [LSSZ13], and later Proskurnikov et al. [PMC16] modeled consensus and
polarization in social networks. Like much other work, they treat polarization simply as the
lack of consensus and focus on when and under what conditions a population reaches an
agreement. Elder’s work [Eld19] focuses on methods to avoid polarization, without using a
quantitative definition of polarization.

Formal Models. Sirbu et al. [SPGK18] use a model that updates probabilistically to inves-
tigate the effects of algorithmic bias on polarization by counting the number of opinion
clusters, interpreting a single opinion cluster as consensus. Leskovec et al. [GG16] simulate
social networks and observe group formation over time. Though belief update and group
formation are related to our work [SPGK18, GG16] are not concerned with a measure for
polarization.

Logic-based approaches. Liu et al. [LSG14] use ideas from doxastic and dynamic epistemic
logics to qualitatively model influence and belief change in social networks. Seligman et
al. [SLG11, SLG13] introduce a basic “Facebook logic.” This logic is non-quantitative,
but its interesting point is that an agent’s possible worlds are different social networks.
This is a promising approach to formal modeling of epistemic issues in social networks.
Christoff [Chr16] extends facebook logic and develops several non-quantitative logics for social
networks, concerned with problems related to polarization, such as information cascades.
Young Pederson et al. [Ped, PSA19, PSA20] develop a logic of polarization, in terms of
positive and negeative links between agents, rather than in terms of their quantitative beliefs.
Baltag et al. [BCRS19] develop a dynamic epistemic logic of threshold models with imperfect
information. In these models, agents either completely believe or completely disbelieve a
proposition, and they update their belief over time based on the proportion of their neighbors
that believe the proposition. Although this work is not concerned with polarization, it
would be interesting to compare the situations where our model converges to the longterm
outcomes of their threshold models, and consider the implications of the epistemic logic
developed in their paper for our model. Hunter [Hun17] introduces a logic of belief updates
over social networks where closer agents in the social network are more trusted and thus
more influential. While beliefs in this logic are non-quantitative, there is a quantitative
notion of influence between users.

Work on Users’ Influence. The seminal paper Huberman et al. [HRW08] is about determining
which friends or followers in a user’s network have the most influence on the user. Although
this paper does not quantify influence between users, it does address an important question
to our project. Similarly, [DVZ03] focuses on finding most influential agents. This work on
highly influential agents is relevant to our finding that such agents can maintain a network’s
polarization over time.
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Work on decentralized gossip protocols also examines the problem of information
diffusion among agents from a different perspective [AGvdH15, AGvdH18, AvDGvdH14a,
AvDGvdH14b]. The goal of a gossip protocol is for all the agents in a network to share all
their information with as few communication steps as possible, using their own knowledge
to choose their communication actions at each step. It may be possible to generalize results
from gossip protocols in order to understand how quickly it is possible for a social network
to reach consensus under certain conditions.

7. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a model for polarization and belief evolution for multi-agent
systems under confirmation bias; a recurrent and systematic pattern of deviation from
rationality when forming opinions in social networks and in society in general. We extended
previous results in the literature by showing that also under confirmation bias, whenever all
agents can directly or indirectly influence each other, their beliefs always converge, and so
does polarization as long as the convergence value is not a borderline point. Nevertheless,
we believe that our main contribution to the study of polarization is understanding how
outcomes are structured when convergence does not obtain and polarization persists. Indeed,
we have identified necessary conditions when polarization does not disappear, and the
convergence values for some important network topologies.

As future work we plan to explore the following directions aimed at making the present
model more robust.

7.1. Dynamic Influence. In the current work, we consider one agent’s influence on another
to be static. For modelling short term belief change, this is a reasonable decision, but in
order to model long term belief change in social networks over time, we need to include
dynamic influence. In particular, agent a’s influence on agent b should become stronger over
time if agent a sees b as reliable, which means that b mostly sends messages that are already
close to the beliefs of agent a. Thus, we plan enrich our model with dynamic influence
between agents: agent a’s influence on b becomes stronger if a communicates messages
that b agrees with, and it becomes weaker if b mostly disagrees with the beliefs that are
communicated by a. We expect that this change to the model will tend to increase group
polarization, as agents who already tend to agree will have increasingly stronger influence
on one another, and agents who disagree will influence one another less and less. This will
be particularly useful for modelling filter bubbles [FGR16], and we will consult empirical
work on this phenomenon in order to correctly include influence update in our model.

7.2. Multi-dimensional beliefs. The current paper considers the simple case where agents
only have beliefs about one proposition. This simplification may be quite useful for modelling
some realistic scenarios, such as beliefs along a liberal /conservative political spectrum, but
we believe that it will not be sufficient for modelling all situations. To that end, we plan
to develop models where agents have beliefs about multiple issues. This would allow us
to represent, for example, Nolan’s two-dimensional spectrum of political beliefs, where
individuals can be economically liberal or conservative, and socially liberal or conserva-
tive [BM68], since more nuanced belief situations such as this one cannot be modelled in
a one-dimensional space. Since Esteban-Ray polarization considers individuals along a
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one-dimensional spectrum, we will extend Esteban-Ray polarization to more dimensions, or
develop a new, multi-dimensional definition of polarization.

7.3. Sequential and asynchronous communication. In our current model, all agents
communicate synchronously at every time step and update their beliefs accordingly. This
simplification is a reasonable approximation of belief update for an initial study of group
polarization, but in real social networks, communication may be both asynchronous and
sequential, in the sense that messages are sent one by one between a pair of agents, rather
than every agent sending every connected agent a message at every time step as in the
current model. The current model is deterministic, but introducing sequential messages will
add nondeterminism to the model, bringing new complications. We plan to develop a logic
in the style of dynamic epistemic logic [Pla07] in order to reason about sequential messages.
Besides being sequential, communication in real social networks is also asynchronous, making
it particularly difficult to represent agents’ knowledge and beliefs about one another, as
discussed in [KMS15, KMS19]. Eventually, we plan to include asynchronous communication
and its effects on beliefs in our model.

7.4. Integrating our approach with data. The current model is completely theoretical,
and in some of the ways mentioned above it is an oversimplification. Eventually, when
our model is more mature, we plan to use data gathered from real social networks both
to verify our conclusions and to allow us to choose the correct parameters in our models
(e.g. a realistic threshold for when the backfire effect occurs). Fortunately, there is an
increasing amount of empirical work being done on issues such as polarization in social
networks [BABT18, KLCKK14, CGMJCK13]. This will make it easier for us to compare
our model to the real state of the world and improve it.

7.5. Applications to issues other than polarization. Our model of changing beliefs in
social networks certainly has other applications besides group polarization. One important
issue is the development of false beliefs and the spread of misinformation. In order to
explore this problem we again need the notion of outside truth. One of our goals is to learn
the conditions under which agents’ beliefs tend to move close to truth, and under what
conditions false beliefs tend to develop and spread. In particular, we hope to understand
whether there are certain classes of social networks which are resistant to the spread of false
belief due to their topology and influence conditions.

7.6. Process Calculus. We plan to develop a process calculus which incorporates structures
from social networks, such as communication, influence, priority, publicly posted messages,
and individual opinions and beliefs. Since process calculi are an efficient, powerful, well
studied formalism for reasoning about concurrent multi-agent systems, using them to
represent social networks would simplify our models and give us access to already developed
tools. In [KPPV12, HPRV15, GKQ*19, GHP'16, AVV09] we developed process calculi
and information systems to reason about the evolution of agents’ beliefs and knowledge.
Nevertheless, these works do not address the notion of polarization or consensus among the
agents of a system.
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APPENDIX A. AXIOMS FOR ESTEBAN-RAY POLARIZATION MEASURE

The Esteban-Ray polarization measure used in this paper was developed as the only function
(up to constants a and K) satisfying all of the following conditions and axioms [ER94]:

Condition H: The ranking induced by the polarization measure over two distributions is
invariant with respect to the size of the population: 4

pER(ﬂ-v y) > PER(WI, y/) — VA > 07 ,OER()‘ﬂ-a y) > pER()‘ﬂJ’y/) .

Axiom 1: Consider three levels of belief p,q,r € [0,1] such that the same proportion of
the population holds beliefs ¢ and r, and a significantly higher proportion of the
population holds belief p. If the groups of agents that hold beliefs ¢ and r reach a
consensus and agree on an “average” belief (¢+7)/2, then the social network becomes
more polarized.

Axiom 2: Consider three levels of belief p, g, r € [0, 1], such that ¢ is at least as close to r
as it is to p, and p > r. If only small variations on ¢ are permitted, the direction that
brings it closer to the nearer and smaller opinion (7) should increase polarization.

Axiom 3: Consider three levels of belief p,q,r € [0,1], such that p < ¢ < r and there
is a non-zero proportion of the population holding belief g. If the proportion of
the population that holds belief ¢ is equally split into holding beliefs ¢ and r, then
polarization increases.

APPENDIX B. PROOFS

Lemma 4.1 (Zero Limit Polarization). Let v be a non-borderline point of Dy, such that for
every i € A, limy—soo Bf = v. Then lim;—s p(B*) = 0.

Proof. Let be any real € > 0. It suffices to find N € R such that for every t > N,
PfunB! < €. Let I,,, be the bin of Dy, such that v € I,,,. Let [ and r be the left and right
endpoints of I,,,, respectively.

Take

r if v =0,
€ =<1 ifv=1,
min{v — l,r — v} otherwise.

Clearly € > 0 because v is not a borderline point. Since

tlign B/ =v,
o0

there is some N; € R such that for every t > N;, |v — B!| < €. This implies that B! € I,
for every t > N;. Take

N = max{N;|i € A}.
From Proposition 2.3 p(B') = 0 < € for every t > N, as wanted. ]

Lemma 4.6 (Belief Extremal Bounds). For every i € A, min! < Bf“ < maxt.

AThis is why we can assume without loss of generality that the distribution is a probability distribution.
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Proof. We want to prove that

t

Bf“ < max’.

Since
B; < maz’,

we can use Definition 2.4 to derive the inequality

B < B, ¥ Bt Vlt'! S BZ(mast — BY).
jeAi i}
Furthermore,
E<BEYE B! + |/11 (maz' — BY)
il JeAN{}

because

/Bf,jzj,i < 1
and

maz' — B! > 0.
We thus obtain

Bf+1 < B
Al =1
= Bt—l-’ : max' — B!
B+ (JAil - 1) - mazt
| Ail
< maxt
as wanted.
The proof that min® < B! is similar. ]

Proposition B.1. Leti € A, k€ A, n,t € N withn > 1, and v € [0, 1].
(1) If Bl <wv then
1o
Bt <v+ m > BiiZii (B —v).
JEA;
(2) It is always the case that
B < maa' + m ﬁt+" 17, (BE 1 — maat).
Proof. Let i,k € A, n,t € N with n > 1, and v € [0, 1].
(1) From Definition 2.4:

BZI?+1 - Z 6{] ,]1 7,)
IA | =
S |A| Z 6{] ]a U)
jeAN\{i}
< w + I Z BtJ 7, z - 'U)

jG.A \{7}
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= U+W26t,j 3,1 U)

JEA;
since |A;| < |AJ.
(2) From Proposition B.1(1):

B;H'" < max' + j Z ﬁt+” 1I (B§+”_1 — maxt>
Al S

< maxt + WBHH II;.M- (Bff"_1 - ma:vt)
using Corollary 4.7 and the fact that

B§+”_1 — max! <0.

Lemma 4.12 (Path bound). If Z is strongly connected:
(1) Let p be an arbitrary path i «gp j. Then

B;Hp‘ < maz® + CBIL/| AP (B! — mazt).

Vol. 19:1

(2) Letm* € A be an agent holding the least belief value at time t and p be a path such that

m’ ~~, i. Then
t
Bﬁ'pl < mazt — 9,

with 6 = (Immﬁmm/w)m (U —L).

Proof. (1) Let p be the path

. Cq o Co Cn .
20 7 11 ce in-

We proceed by induction on n. For n = 1, since

Bfo —max' <0,

we obtain the result immediately from Proposition B.1(2) and Proposition 4.11. Assume

that
| c'pr
B, " < max' + min (B! — maz’)
in-1 Al
where
/ C1 . CQ C 1 N
P =1 11 tn—1
and

C'=Cy x - xCp_y

with n > 1. Notice that |[p’| = |p| — 1. Using Proposition B.1(2), Proposition 4.11, and

the fact that )
f:lf' —maz' <0

we obtain .5
t+|pl t nPmin  pt+|p’|

B; " < max' + 7\./4\ (B;

Using our assumption we obtain

— mazx").

C’ Ip'|
t+|p| < t . CnBmin t Bmm
B, < max' + A (maz’ + Al

(Bj, — maxz') — maz")
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. B‘P| .
— min _
= max’ + All (Bj, — max")
as wanted.
(2) Suppose that p is the path
m' «gp /)
From Lemma 4.12(1) we obtain
[p
t+|p| < t Cﬁmzn t t
B, < maz' + Al (B;: — max")
t min ot t
max’ + All7 (min® — mazx").
Since
C/@|P‘
M (int — max') <0,

| A|Ip|
we can substitute Ilﬂn for C'. Thus,
Tni in \ P
BEHM < maz' + (m”f‘mm> (min' — max?).
From Theorem 4.9, the maximum value of min! is L and the minimum value of maz! is
U, thus
B?+‘P| < maxt + ( mmﬁmzn)lp‘(L U)
CT Al
= maz’ — 6. []
Lemma 4.13. Suppose that T is strongly-connected.
(1) If BE"™ < mazt — v and v > 0 then BT < mazt — /4.
(2) BfHA'_l < max' — ¢, where € is equal to (TminBmin/|4)A ™1 (U = L).
Proof. (1) Using Proposition B.1(1) with the assumption that
Bf"m < max! —~

for v > 0 and the fact that Z;; € [0 1] we obtain the inequality

Bf-i—n—i—l < maxt A Z 5t+n oy <B;5+n _ (maxt . 7)) ]
A | =

From Corollary 4.8, maz! > maz'™" > BH" for every j € A, hence

B <mazt — 4+ — |.A| Z BHnI maa: — (max' — 7).
JEA;
Since
BH"I € [0,1],
we derive
Bf‘*‘”“ < max’ \A\ Z y

JEA;
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< maxt —

.
Al
(2) Let p be the path m’ ~», i where m’ € A is minimal agent at time ¢ and let
o=—"7— U-1L).
(=) -

If |p| = |A| — 1 then the result follows from Lemma 4.12(2). Otherwise |p| < |A| — 1 by
Definition 4.2. We first show by induction on m that

for every m > 0. If m = 0, then
Bf+|p| < maxt . 5’

by Lemma 4.12(2). If m > 0 and

t-+|p|+(m—1) t g
Bi S maxr — W
then 5
t+[p|+
Bi |p| mgmaxt_w
by Lemma 4.13(1). Therefore, take m = | A| — |p| — 1 to obtain
A1 ¢ 0
Bi S mar = A
_ mawt _ (Imznﬁmzn)lp‘(U - L)
|A|\A\71

as wanted. L]
Theorem 4.15. If T is strongly connected then lim;—soo maz! = limy—yo, min’.
Proof. Suppose, by contradiction, that
lim maz' =U # L= lim min'.
t—>o0 t—>ro0
Let

Imin min AL
€= (,j ) (U-1L).

From the assumption U > L and Corollary 4.7 we get that ¢ > 0. Take t = 0 and
1
=([=1+1]).
m= ()

lAl-1)

Using Corollary 4.14 we obtain
max® > maz™ + me.

Since me > 1 and

then max® > 1. But this contradicts Definition 4.5 which states that maz?® € [0, 1]. ]
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Proposition B.2 (Influencing the Extremes). If T is strongly connected and B° is not
radical, then

|A|-1

max <1.

Proof. Since BY is not radical, there must be at least one agent k such that

By € (0,1).
Since 7 is strongly connected, it suffices to show that for every path
k~p i,
we have
Bl <1.

Proceed by induction on size n of the path p = kiy...i,. For n = 0, it is true via the
hypothesis. For n > 1, we have, by IH and Definition 4.2, that

B <1
and
Iin—lvn > 0.
Thus,
B = B+ S AT (5 B,
JEA;

and separating i,_1 from the sum, we get

1 _ _ _
B‘P| Blpl 1 4 W Z Bz‘il,] 11—]_71,” (B]|p| 1 Bz@ 1)+
" jeAN{in—1}

L olpl—1 O
|,/4 |/6’Ln72 1 in 1,in (B B’Ln )
1 1 -1
|-/4 |Bl‘i|ln 1 i” 1yin (Bl‘i|—1 - 1)
< 1. L]

Theorem 4.18 (Confirmation-Bias Belief Convergence). In a strongly connected influence
graph and under the confirmation-bias update-function, if B® is not radical then for all
i,j € A, limy—so0 Bl = limy—o0 B;-. Otherwise for every i € A, Bl = B;?Jrl € {0,1}.

Proof. (1) If there exists an agent k € A such that
By ¢ {01},

then we can use Proposition B.2 to show that by time |A4] — 1, no agent has belief 1, thus
we fall in the general case stated in the beginning of the section (starting at a different
time step does not make any difference for these purposes) and thus, all beliefs converge
to the same value according to Corollary 4.16.

(2) Otherwise it is easy to see that beliefs remain constant as 0 or 1 throughout time, since
the agents are so biased that the only agents j able to influence another agent i ( f j #0)
have the same belief as .
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Proposition 5.2 (Group Influence Conservation). Let Z be balanced and {A, B} be a

partition of A. Then
> L= L

i€A jeB i€A jEB
Proof. Immediate consequence of Proposition 6.1.1 in [Diel7]. []
Lemma 5.4. If T is balanced and Z; j > 0 then j~i.

Proof. For the sake of contradiction, assume that Z is balanced (a circulation) and Z; ; > 0
but there is no path from j to 7. Define the agents reachable from j,

R; = {k € Al j—~k} U {j}

and let R; = A\ R;. Notice that {R;, R;} is a partition of A. Since the codomain of Z is
[0,1], % € R;j, j € Rj and Z; ; > 0 we obtain

Z ZIM > 0.

kERj leﬁj

Clearly there isno k € R;,l € Rj such that Z;; > 0, therefore

> Y T=0

keRj leﬁj
which contradicts Proposition 5.2. []

Theorem 5.5 (Conditions for Polarization). Suppose that lim;—so p(B!)#£0. Then either:

(1) Z is not balanced;

(2) Z is not weakly connected;

(3) B° is radical; or

(4) for some borderline value v, limy—soo Bf = v for each i € A.

Proof. From Lemma 5.4 it follows that if the influence graph 7 is balanced and weakly
connected then Z is also strongly connected. The result follows from Lemma 4.1 and
Theorem 4.18. []

Corollary 6.1. In a strongly connected influence graph L and under the classical update
function, for all i,j€A,
lim Bf = lim B
t—ro0 t—>o0
Proof. Since the graph is strongly connected it suffices to show that the graph represented
by the matrix P in which P; j=p; ; is aperiodic. Since for every individual 7, p; ;>0, there is
a self-loop, thus no number K > 1 divides the length of all cycles in the graph, implying
aperiodicity. Thus, the conditions for Theorem 2 of [DeG74] are met, which completes the
proof. L]
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