
Logical Methods in Computer Science
Vol. 6 (4:6) 2010, pp. 1–27
www.lmcs-online.org

Submitted Nov. 6, 2009
Published Dec. 12, 2010

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS

MARC DE FALCO

e-on software, 68 avenue Parmentier, 75011 Paris
e-mail address: marc@de-falco.fr

Abstract. Interaction nets are a graphical formalism inspired by Linear Logic proof-nets
often used for studying higher order rewriting e.g. β-reduction. Traditional presentations
of interaction nets are based on graph theory and rely on elementary properties of graph
theory. We give here a more explicit presentation based on notions borrowed from Girard’s
Geometry of Interaction: interaction nets are presented as partial permutations and a
composition of nets, the gluing, is derived from the execution formula. We then define
contexts and reduction as the context closure of rules. We prove strong confluence of
the reduction within our framework and show how interaction nets can be viewed as the
quotient of some generalized proof-nets.

1. Introduction

Interaction nets were introduced by Yves Lafont in [Laf90] as a way to extract a model
of computation from the well-behaved proof-nets of multiplicative linear logic. They have
since been widely used as a formalism for the implementation of reduction strategies for
the λ-calculus, providing a pictorial 1 way to do explicit substitution [Mac98][MP98][Lip03]
and implement optimal reduction [AGL92].

Interaction nets are easy to present: a net is made of cells

A

with a fixed number of connection ports, depicted as big dots on the picture, one of which is
distinguished and called the principal port of the cell, and of free ports, and of wires between
those ports such that any port is linked by exactly one wire. Then we define reduction on
nets by giving rules of the form

s2s1 → s2s1R(s1, s2)

1998 ACM Subject Classification: F.1.1.
Key words and phrases: linear logic, interaction nets, geometry of interaction, graph rewriting.
This work is supported by the French ANR project CHoCo (ANR-07-BLAN-0324).

1By putting a visual emphasis on occurrences of a variable, interaction nets allow a formal reasoning
while not being as cumbersome as indices.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-6 (4:6) 2010
c© M. de Falco
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. DE FALCO

where the two cells in the left part are linked by their principal ports and the box in the
right part is a net with the same free ports as the left part. Such a rule can be turned into
a reduction of nets: as soon as a net contains the left part we replace it with the right part.

Even though this definition is sufficient to work with interaction nets, it is too limited
to reason on things like paths or observational equivalence. One of the main issues comes
from the fact that we do not really know what a net is. The situation is quite similar for
graphs: it is the author belief that we cannot study them relying on drawings only without
being deceived by our intuition. Thus, we are inclined to give a precise definition of a graph
as a binary relation or as a set of edges.

The main issue to give such a definition for interaction nets is that it should cope with
reduction. As an example consider a graph-like construction over ports and a rule

s2s1 → s2s1

Can it be applied to the interaction net s2s1 ? If we are rigorous the left part of

the rule is not exactly contained in this net as is not contained in . Perhaps we

could consider this last wire as composed of three smaller ones and two temporary ports

like in and the whole net after reduction would be s2s1 . But then, to

get back a real interaction nets we would have to concatenate all those wires and erase the
temporary ports, which would give us the net . We will refer to this process of wire

concatenation as port fusion.
There are many works giving definitions of interaction nets giving a rigorous description

of reduction. Nevertheless, they all share a common point: they deal either implicitly or
externally with port fusion. In the seminal article [Laf90] a definition of nets as terms with
paired variables is given, it is further refined in [FM99]. In this framework an equivalence
relation on variables deals with port fusion. In [Pin00] a concrete machine is given where
the computation of the equivalence relation is broken into many steps. A rigorous approach
sharing some tools with ours is given in [Vau07], port fusion is done there by an external
port rewriting algorithm.

Therefore, we raise the following question: can we give a definition of interaction nets
allowing a simple and rigorous description of reduction encompassing port fusion, and upon
which we can prove results like strong confluence? This is the aim of this paper.

Our proposition is based on the following observation. When we plug the right part
of a rule in a net, new wires are defined based on a back and forth process between the
original net and this right part. Such kind of interaction is key to the geometry of interaction
(GoI) [Gir89] or game semantics [AJM94, HO00]. The untyped nature of interaction nets
makes the former a possible way to express them. To be able to do so we need to express
an interaction net as some kind of partial permutation and use a composition based on the
so-called execution formula. Such a presentation of multiplicative proof-nets has been made
by Jean-Yves Girard in [Gir87]. If we try to think about the fundamental actions one needs
to be able to do on interaction nets, it is quite clear that we can distinguish a wire action
consisting in going from one port to another along a wire and the cell action consisting
in going from one cell port to another inside the same cell. Those two actions lead to the
description of a net as a pair of permutations. One might ask whether it is possible in some

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS 3

case to faithfully combine this pair in only one permutation, a solution to this question is
what one could call a GoI.

The issue of port fusion is not inherent to interaction nets and can be found in other
related frameworks. Diagram rewriting [Laf03] uses a compact-closed underlying category
allowing mathematically the straightening of wires. There are strong links between this
approach and ours, for example the characterization of the free compact-closed category
over a category given in [KL80] shares a lot of common techniques with our approach. It is
not surprising to find such link as compact-closed categories are unavoidable when dealing
with geometry of interaction. Indeed they provide – through the Int construction of Joyal,
Street and Verity [JSV96] – the categorical framework to interpret GoI [AJ92, HS06]. What
is different in our work, is that we stay at a syntactical level, thus, providing a rigorous
syntax for writing and reducing programs.

This paper is organized as follows. In Section 2 we present the mathematical tools that
we are going to use. In Section 3 we define the statics of interaction nets, in Section 4 basic
tools for handling them and in Section 5 we present their dynamics. In Section 6 we draw
explicit links between interaction nets and proof-nets. In Section 7 we present a categorical
double-pushout approach to net rewriting. In Section 8 we briefly discuss implementation
of the previous definitions.

2. Permutations and partial injections

We give here the main definitions and constructions that are going to be central to
our realization of interaction nets. Those definitions are standard in the partial injections
model of geometry of interaction [Gir87, DR95] or in the definition of the traced monoidal
category PInj [HS06].

2.1. Permutations. We recall that a permutation of a set E is any bijection acting on
E and we write S(E) for the set of these permutations. When E is finite, which we will
assume from here, for a given σ ∈ S(E) we call order the least integer n such that σn = idE ,
for x ∈ E we write Orbσ(x) = {σi(x) | i ∈ N} and we call it the orbit of x, we write Orbs(σ)
for the orbits of σ. If o is an orbit we write |o| for its size.

We write (c1, . . . , cn) for the permutation sending ci to ci+1, for i < n, cn to c1 and
being the identity elsewhere, we call it a cycle of length n which is also its order. Any
permutation is a compound of disjoint cycles.

Let σ be a permutation of E and L any set, we say that σ is labelled by L if we have
a function lσ : Orbs(σ) → L. We say that σ has pointed orbits if it is labelled by E and
∀o ∈ Orbs(σ) we have lσ(o) ∈ o. Remark that an orbit is a sub-cycle and thus, having
pointed orbits means that we have chosen a starting point in those sub-cycles.

2.2. Partial injections. A partial injection (of integers) f is a bijection from a subset
dom(f) of N, called its domain, to a subset codom(f) of N, called its codomain. We write
f : A� B to say that f is any partial injection such that dom(f) = A and codom(f) = B.
We write f? for the inverse of this bijection viewed as a partial injection.

We call partial permutation a partial injection f such that dom(f) = codom(f).

4 M. DE FALCO

A B

C D

f f gf fg f g

Figure 1. Representation of Ex(f, g) with the notations of proposition 2.1

2.3. Execution. Let f be a partial injection and E′, F ′ ⊆ N. We write f �E′F ′ for the partial

injection of domain {x ∈ E′ ∩ domf | f(x) ∈ F ′} and such that f �E′F ′(x) = f(x) where it is
defined. We have

f �E′F ′ : f−1(F ′) ∩ E′ � f(E′) ∩ F ′

If E′ = F ′ we write f�E′ = f �E′E′ .
When dom(f) ∩ dom(g) = ∅ and codom(f) ∩ codom(g) = ∅, we say that f and g are

disjoint and we define the sum f + g and the associated refining order ≺ as expected. We
have dom(f + g) = dom(f)] dom(g) where] is the disjoint union.

Proposition 2.1. Let f : A] B � C] D and g : D � B a situation depicted by the

following diagram
A]B C]D

f

g
.

i) For all n ∈ N, the partial injection from A to C

Exn(f, g) = f �AC + (fgf)�AC + · · ·+ (f(gf)n)�AC
is well defined.

ii) (Exn(f, g))n∈N is an increasing sequence of partial injections with respect to ≺, whose
limit, the increasing union, is noted Ex(f, g).

iii) If dom(f) is finite the sequence (Exn(f, g))n is stationary and

Ex(f, g) : A� C

Fig. 1 gives a graphical presentation of execution.

Proof.

i) To assert the validity of the sum all we have to have show is that ∀i 6= j ∈ N :

(f(gf)i)(A) ∩ (f(gf)j)(A) ∩ C = ∅
(f(gf)i)−1(C) ∩ (f(gf)j)−1(C) ∩A = ∅

Suppose there is an x ∈ (f(gf)i)(A) ∩ (f(gf)j)(A) ∩ C, we set y and z ∈ A such
that x = f(gf)i(y) = f(gf)j(z). We can further suppose that i < j, and we have
y = (gf)j−i(z) ∈ B, which is contradictory as y ∈ A and A ∩B = ∅.

The other equality is proved in the same way.
ii) Let n ≤ m ∈ N and x ∈ dom(Exn(f, g)), by definition of the sum there exists a

unique k such that Exn(f, g)(x) = (f(gf)k)(x). But then x ∈ dom(Exm(f, g)) and

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS 5

the uniqueness of k asserts that Exm(f, g)(x) = (f(gf)k)(x). Thus, Exm(f, g) is a
refinement of Exn(f, g).

iii) Suppose there is a x ∈ A−dom(Ex(f, g)), then we should have for all k, (f(gf)k)(x) ∈ D
or else Ex(f, g)(x) would be defined. But D being finite, there exists n ≤ m such that
(f(gf)n)(x) = (f(gf)m)(x) and we get x = (gf)m−n(x) ∈ B which is contradictory. A
simple argument on cardinal show then that codom(Ex(f, g)) = C.

Theorem 2.2 (Associativity of execution).

Let A]B] C D] E] F
f

g

h

be three partial injections. We have ∀n ∈ N

Exn(Exn(f, g), h) = Exn(f, g + h) = Exn(Exn(f, h), g)

and thus
Ex(Ex(f, g), h) = Ex(f, g + h) = Ex(Ex(f, h), g)

Proof. Let p ∈ dom(Exn(f, g + h)), there exists m ≤ n ∈ N such that

Exn(f, g + h)(p) = f((g + h)f)m(p)

= (f(gf)i1)h . . . h(f(gf)ik)(p) with i1 + · · ·+ ik + k − 1 = m

= (Exn(f, g)hExn(f, g) . . . hExn(f, g))(p)

= (Exn(f, g)(hExn(f, g))k−1)(p)

= Exn(Exn(f, g), h)(p)

By commutativity of + we get the other equality. These equalities are directly transmitted
to Ex.

This theorem is of great significance, it is a completely localized version of Church-
Rosser property. Indeed, we will see later that confluence results are a corollary of this
theorem.

The following proposition states that Ex can always be extended by an independent
partial injection.

Proposition 2.3. Let f, g and h be partial injections such that

A]B C]D
f

g

and dom(h) ∩ dom(f) = codom(h) ∩ codom(f) = ∅.
We have h+ Ex(f, g) = Ex(f + h, g).

Proof. This result directly comes from the relation (f+h)g(f+h) = fgf+hgf+fgh+hgh =
fgf as hg = gh = 0.

6 M. DE FALCO

τ

τ

f + f?

σσ

(σ
f!0 τ)(i)

i

Figure 2. Representation of the Ex0-composition σ
f!0 τ

2.4. w-permutations and Ex-composition. We call w-permutation an involutive partial
permutation of finite domain. That means that a w-permutation is a product of disjoint
cycles of length at most 2.

Let σ and τ be disjoint w-permutations and let f be a partial injection with dom(f) ⊆
dom(σ) and codom(f) ⊆ dom(τ). We call the Ex0-composition of σ and τ along f the
partial permutation

σ
f!0 τ = Ex(σ + τ, f + f?)

Fig. 2 gives a representation of this composition.

Proposition 2.4. σ
f!0 τ is a w-permutation.

Proof. Let x be an element of dom(σ
f!0 τ), there exists n such that

(σ
f!0 τ)(x) = (σ + τ)[(f + f?)(σ + τ)]n(x)

Note that (σ+ τ)? = σ+ τ and (f + f?)? = f + f?, and thus, we have ((σ+ τ)[(f + f?)(σ+

τ)]n)? = [(σ + τ)(f + f?)]n(σ + τ) = (σ + τ)[(f + f?)(σ + τ)]n. So (σ
f!0 τ)2(x) = x.

We have dom(σ
f!0 τ) = (dom(σ) − dom(f))] (dom(τ) − codom(f)). Thus, the

Ex computation does not tell anything about elements in (dom(σ) ∩ dom(f))] (dom(τ) ∩
codom(f)). For such an element x in dom(σ)∩dom(f), either there exists an i in dom(σ)−
dom(f) with x being part of the computation of (σ

f!0 τ)(i) or there exists an n such
that (f?τfσ)n(x) = x. For those x we get some kind of orbit Ox = {(f?τfσ)i(x) , i ∈ N}
to which we get a dual orbit for τ by setting O′x = {(fσf?τ)i((fσ)(x)) , i ∈ N}. By
applying fσ we get a bijective correspondence between Ox and O′x. We call double orbit

the set Ox ∪ O′x and we write O(σ
f!0 τ) for the set of all double orbits. Let R =

{minx∈O∪O′ x , (O,O′) ∈ O(σ
f!0 τ)}. We define the full Ex-composition, written σ

f! τ ,

of domain dom(σ
f!0 τ)]R and such that ∀r ∈ R, (σ f! τ)(r) = r.

We can now give a consequence of theorem 2.2, stating some kind of associativity for
the Ex-composition.

Proposition 2.5. Let σ, τ, ρ be pairwise disjoint w-permutations with

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS 7

dom(σ) = A] B] C

dom(τ) = D] E] F

dom(ρ) = G] H] I

f

g

h

We have σ
f+g! (τ

h! ρ) = (σ
f! τ)

g+h! ρ = (σ
g! ρ)

f+h! τ . When h = 0 we get

σ
f+g! (τ + ρ) = (σ

f! τ)
g! ρ = (σ

g! ρ)
f! τ .

Proof. This proposition states in fact two separated results, one about Ex0-composition and
the other about double orbits.

We have σ
f+g!0 (τ

h!0 ρ) = Ex(σ+Ex(τ + ρ, h+ h?), f + f? + g+ g?) = Ex(Ex(σ+ τ +
ρ, h+ h?), f + f? + g+ g?) by proposition 2.3 and = Ex(σ+ τ + ρ, f + f? + g+ g? + h+ h?)
by theorem 2.2. We get the other equalities in the same way.

For the equalities involving double orbits, we set

O3 = O(σ
f+g!0 (τ

h!0 ρ))−O(τ
h!0 ρ)−O(σ

f!0 τ)−O(σ
g!0 ρ)

To conclude, it suffices to show that double orbits in O3 do not depend on the order of
composition. Indeed, such an orbit is generated by an element x such that

x = ((f? + g?)(τ
h!0 ρ)(f + g)σ)n(x)

= (
n∏
i=1

(f? + g?)(τ + ρ)((h+ h?)(τ + ρ))ki(f + g)σ)(x)

= (
n∏
i=1

Fi)(x)

where the Fis are of the following four shapes:

g?ρhτ(h?ρhτ)kifσ, f?τ(h?ρhτ)kifσ, g?ρ(hτh?ρ)kigσ, and f?τh?ρ(hτh?ρ)kigσ

When ki = 0 they can have the shape g?ρgσ and f?τfσ. This is enough to be able to group

the expression by factoring σ
g!0 ρ or σ

f!0 τ , and thus, to retrieve the expressions of
double orbits in any order of composition.

Remark 2.6. The definition of full Ex-composition by means of double orbits could seem
like a lot of trouble. We will see in the next section that the recovered fixpoints will allow
us to interpret loops in interaction nets. One might argue that loops do not have to be
recovered at any cost, and if our framework cannot see them it is for the best. In fact
there are real justifications for loops, the main point being that seeing loops is what makes
our definition algebraically free. This freeness is really important as it can be seen as a
separation of syntax from semantics. A detailed discussion of the need of loops in the
context of compact-closed categories can be found in [Abr05].

8 M. DE FALCO

3. The statics of interaction nets

We fix a countable set S, whose elements are called symbols, and a function α : S → N,
the arity. We will define nets atop N and in this context an integer will be called a port.

Definition 3.1. An interaction net is an ordered pair R = (σw, σc) where:

• σw is a w-permutation. We write Pl(R) for the fixed points of σw and P (R) for the others,
called ports of the net R.
• σc is a partial permutation of P (R) with pointed orbits and labelled by S in such a way

that ∀o ∈ Orbs(σc), |o| = α(l(o)) + 1 where l is the labelling function.

The elements of Pl(R) are called loops and the other orbits of σw, which are necessarily
of length 2, are called wires. The domain of σw is called the carrier of the net. We write
Pc(R) = dom(σc), whose elements are called cell ports, and Pf (R) = P (R)− Pc(R), whose
elements are called free ports.

An orbit of σc is called a cell. We write pal for the pointing function of σw. Let c be a
cell, pal(c) is its principal port and for i < |c| the element (σic ◦ pal)(c) is its ith auxiliary
port.

Note that a port of a net is present in exactly one wire and at most one cell.

3.1. Representation. Nets admit a very natural representation. We shall draw a cell of

symbol A as a triangle A where the principal port is the dot on the apex and auxiliary

ports are lined up on the opposing edge. We draw free ports as points. To finish the drawing
we add a line between any two ports connected by a wire, and draw circles for loops.

As an example consider the net R = (σw, σc) with

σw = (1)(2 3)(4 5)(6 7)(8 9) and σc = (
•
4 3)A(

•
5 6 7)B

where permutations are given by cycle decomposition and (
•
c1 c2 . . . cn)S is a cell of point

c1 and symbol S. This net will have the representation

1 A B
2 3 4 5 7

6

8

9

3.2. Morphisms of nets and renaming.

Definition 3.2. Let R = (σw, σc) and R′ = (σ′w, σ
′
c) be two interaction nets. A function

f : P (R) 7→ P (R′) is a morphism from R to R′ if and only if

f ◦ σw = σ′w ◦ f, f(Pc(R)) ⊆ Pc(R′),
∀p ∈ Pc(R), (f ◦ σc)(p) = (σ′c ◦ f)(p),

and ∀o ∈ Orbs(σc) we have (f ◦ pal)(o) = (pal ◦ f)(o) and l(o) = (l ◦ f)(o). When f is the
identity on Pf (R) it is said to be an internal morphism.

Example 3.3. Consider the net:

R = ((1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14), (
•
2 3 5)A(

•
8 9 11)A)

of representation:

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS 9

14

13

A A
3 5

2

1

4 6

9 11

8

7

10 12

and the net:

S = ((1 2)(3 4)(5 6)(7 8), (
•
2 3 5)A(

•
8)B)

of representation:

A B
3 5

2

1

4 6

8

7

Let f be the application defined by f(1) = f(7) = f(13) = 1, f(2) = f(8) = f(14) = 2,
f(3) = f(9) = 3, f(5) = f(11) = 5, f(4) = f(10) = 4 and f(6) = f(12) = 6. This is a
morphism from R to S.

Remark 3.4. The equality f ◦σw = σ′w ◦f seems quite strong, but could in fact be deduced
from a simple inclusion of functional graphs, f ◦ σw ⊆ σ′w ◦ f . Indeed, let (p, p′) be in the
graph of σ′w ◦ f , we can compute (f ◦σw)(p) which by the inclusion cannot be anything else
than p′.

Let us detail a bit more this definition. We note that for any two partial permutations
σ and τ , the equation f ◦ σ = σ′ ◦ f induces that a o ∈ Orbs(σ) is mapped to an element
f(o) ∈ Orbs(σ′) such that |f(o)| is a divisor of |o|.

In this case a loop is sent to a loop, a wire to a loop or a wire, and a cell to another
cell. The last two equations say that the principal port of a cell is mapped to a principal
port, and symbols are preserved. So a cell is mapped to a cell of same arity, and each port
is mapped to the same type of port. Moreover only a wire linking free ports can be mapped
to a loop or any kind of wire. As soon as the wire is linking one cell port the third condition
on the morphism must send it to a wire of the same type.

With those facts, it is natural to call renaming (resp. internal renaming) an isomor-
phism (resp. internal isomorphism). An isomorphism class captures interaction nets as
they are drawn on paper. On the other hand, an internal isomorphism class corresponds
to interaction nets drawn where we have also given distinct names to free ports, hence the

name internal. This is an important notion because the drawing is the same as

Whereas the drawing
a b

c d
is different from

c

ba

d
.

In fact, as soon as we would like to consider nets as some kind of terms, we will have to
consider them up to internal isomorphism. Free ports correspond to free variables, whereas
cell ports correspond to bound variables. For example the λ-term λx.(x)y is of course the
same as λz.(z)y but it is distinct from λx.(x)z.

Remark 3.5. Given the fact that nets have finite carriers we can always consider that two
nets have disjoint carriers up to renaming.

10 M. DE FALCO

4. Tools of the trade

We give here the main tools that are going to be crucial to our definition of reduction.

4.1. Gluing and cutting.

Definition 4.1. Let R = (σw, σc) and R′ = (σ′w, σ
′
c) be two nets with disjoint carriers2 and

let f be a partial injection of domain included in Pf (R) and codomain included in Pf (R′).

We call gluing of R and R′ along f the net R
f! R′ = (σw

f! σ′w, σc + σ′c).

From this definitions we get the following obvious facts:

P (R
f! R′) = (P (R)− dom(f))] (P (R′)− codom(f))

Pc(R
f! R′) = Pc(R)] Pc(R′)

Pf (R
f! R′) = (Pf (R)− dom(f))] (Pf (R′)− codom(f))

R
f! R′ = R′

f?! R

For the special case of gluing where f = 0 we have R
0! R′ = (σw + σ′w, σc + σ′c), we write

this special kind of gluing R+R′, it is the so-called parallel composition of the two nets.
Fig. 3 gives a representation of gluing.

Proposition 4.2. If R = R
f! R′ then f = 0 and R′ = 0 = (0, 0). If 0 = R

f! R′ then
f = 0 and R = R′ = 0.

Proof. We will only prove the first assertion, the second being similar. It is a direct conse-
quence of the previous facts, R′ must have no cells, no free ports and no loops. The only
net having this property is the empty net 0.

We can get some kind of associativity property for gluing.

Proposition 4.3. Let R = (σw, σc), S = (τw, τc) and T = (ρw, ρc) be nets of disjoint
carriers and let f, g and h be partial injections satisfying the diagram of proposition 2.5
with respect to σw, τw and ρw.

We have R
f+g! (S

h! T) = (R
f! S)

g+h! T = (R
g! T)

f+h! S.

Proof. The wire part of the equality is a restriction of proposition 2.5 and the cell part is
the associativity of +.

The following corollary will often be sufficient.

Corollary 4.4. If we have a decomposition R0 = R
f! (S

g! T) then there exists fS , fT

such that R0 = (R
fS! S)

g+fT! T .

We can use the gluing to define dually the notion of cutting a subnet of an interaction
net.

Definition 4.5. Let R be a net, we call cutting of R a triple (R1, f, R2) such that R =

R1
f! R2. Any net R′ appearing in a cutting of R is called a subnet of R, noted R′ ⊆ R.

2Which is not a loss of generality thanks to remark 3.5.

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS 11

R R′
f

−→ R
f! R′

Figure 3. Representation of the gluing of two interaction nets

f

R1

R2

(a)

f

R1

R2

(b)

Figure 4. Representation of two special cuttings: (a) a cutting of a single
wire and (b) a cutting of a loop

Fig. 4 gives an example of cutting. The fact that we can cut many times a wire or that
we can divide a loop in many wires hints at the complexity behind these definitions.

Proposition 4.6. The relation ⊆ is an ordering of nets.

Proof. The relation ⊆ is reflexive: R = R
0! 0 and thus, R ⊆ R.

It is antisymmetric: let R1 and R2 be nets such that R1 ⊆ R2 and R2 ⊆ R1. We

have R1 = R2
f! R′2 and R2 = R1

g! R′1.

So R2 = (R2
f! R′2)

g! R′1. By applying the corollary 4.4 we get R2 = R2
f1! (R′2

g+f2!
R′1). and by applying the proposition 4.2 twice we get R′2 = R′1 = 0. So R1 = R2.

And it is transitive: let R ⊆ S ⊆ T , then S = R
f! R′ and T = S

g! S′, so

T = (R
f! R′)

g! S′. By applying the corollary 4.4 we have T = R
f1! (R′

g+f2! S′), that
is to say R ⊆ T .

4.2. Extending morphisms by gluing.

Proposition 4.7. If α : R→ S is a morphism of nets, and T = S
f! S′, then there exists

a morphism α̂ : R→ T extending α.

Proof. It is obvious how to define the image of a cell in R into T , because α maps it to a cell
in S and cells are preserved by gluing. So, the only thing to prove is that we can properly
define the image of a wire in R. We consider a wire (p p′) in R which is mapped to another
wire (α(p) α(p′)) in S (the case where it is a loop is trivial as loops are also preserved by
gluing). In T this wire has either become a loop, and thus we send, by α̂, p and p′ to the
loop port, or it has become a wire trough the Ex-composition:

q → ...→ α(p)
σw−−→ α(p′)→ ...→ q′

where S = (σw, σc), in which case we define α̂(p) = q and α̂(p′) = q′.
By construction, α̂ is a morphism.

12 M. DE FALCO

With idR : R → R being the identity function on ports, and T = R
f! S, we simply

write R ⊆ T for the morphism îdR which we refer to as the inclusion map of R into T .
Note that in our setting these maps are not just co-extensions of identity, this is due to our
notion of subnets.

Definition 4.8. We say that α : R → S is almost injective when there exists a decompo-

sition S = β(R)
f! R′ with β a renaming and β̂ = α where β̂ is given by the previous

proposition. We also use the notation α̃ = β.

Inclusion maps are the archetypal almost injective morphisms. Indeed, every almost
injective morphism splits as a renaming followed by an inclusion map.

4.3. Interfaces and contexts. To define reduction by using the subnet relation, it would
be easier if we could refer implicitly to the identification function in a gluing. As an intuition,
consider terms contexts with multiple holes, to substitute completely such contexts we could
give a function from holes to terms and fill them accordingly. But a more natural definition
would be to give a distinct number to each hole and to fill based on a list of terms. The
substitution would give the first term to the first hole, and so on. The following definition
is a direct transposition of this idea in the framework of interaction nets.

Definition 4.9. We call interface of a net R a subset I = {p1, . . . , pn} of Pf (R) together
with a linear ordering, the length of the order chain p1 < · · · < pn is called the size. We say
that R contains the interface I, noted I ⊂ R. An interface is canonical if it contains all the
free ports of a net.

Let I and I ′ be disjoint interfaces of the same net, we write II ′ the union of these subsets
ordered by the concatenation of the two order chains. Precisely x ≤II′ y ⇐⇒ x ≤I y or
x ≤I′ y or x ∈ I ∧ y ∈ I ′.

Let I and I ′ be two interfaces of same size, there exists one and only order-preserving
bijection from I to I ′ that we write ρ(I, I ′) and call the chord between I and I ′.

We call context a pair (R, I) where I is an interface contained in the net R, it is written
RI .

Let RI and R′I
′

be two contexts with interfaces of same size, we write

RI ! R′
I′

= R
ρ(I,I′)! R′

In the following when we write RI ! R′I
′

we implicitly assume that I and I ′ are of
same size.

We now can state commutativity of gluing directly, the proof being trivial.

Proposition 4.10. RI ! R′I
′

= R′I
′
! RI

The following trivial fact asserts that any gluing can be seen as a context gluing.

Proposition 4.11. Let R
f! R′ be a gluing, there exist interfaces I ⊂ R and I ′ ⊂ R′ such

that R
f! R′ = RI ! R′I

′
.

Proof. It suffices to take I = dom(f) with any linear ordering, and to define the only
ordering of I ′ = codom(f) such that f is strictly increasing.

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS 13

Corollary 4.12. R1 ⊆ R ⇐⇒ ∃I1, R2, I2 such that R = R1
I1 ! R2

I2.

We can now restate corollary 4.4 with interfaces:

Corollary 4.13. For all nets R,S, T and interfaces I, J,K,L, there exists interfaces I ′, J ′,
K ′, L′ such that

RI ! (SJ ! TK)
L

= (RI
′! SJ

′
)
L′! TK

′
.

5. Dynamics

Given the previous definitions we will now present the dynamics of net. It should be
remarked that our definition of dynamics is quite similar to the usual one: it amounts to
finding a subnet called a redex and substituting it with another subnet. The main difference
lies in our rigorous definition of subnets.

Definition 5.1. Let s1 and s2 be symbols. We call interaction rule for (s1, s2) a couple
(Rr

Ir , Rp
Ip) where

Rr =

(
(b c)(a1 b1) . . . (an bn)(c1 d1) . . . (cm dm),

(
•
b b1 . . . bn)s1(

•
c c1 . . . cm)s2

)
and Ir and Ip are both canonical – comprised of all free ports – and of same size.

Let R = (Rr
Ir , Rp

Ip) be a rule. we call reduction by R the binary relation
R−→ on nets

such that for all renaming α and β, and for all net S with S = RI ! α(Rr)
α(Ir) we set

S
R−→ S′ where S′ = RI ! β(Rp)

β(Ip).

The net Rr has the representation s2s1 . Remark that the reduction is

defined as soon as a net contains a renaming of the redex Rr. This reduction appears to be
non-deterministic but it is only the expansion of a deterministic reduction to cope with all
possible renamings.

We recall now the formal definition of the main property of interaction nets and we
wish that our definition ensures it.

Definition 5.2. Let
R−→ be a binary relation on a set E, we say that it is strongly confluent

if and only if for all x, y, z ∈ E such that y 6= z and y
R←− x

R−→ z and there exists t ∈ E
with y

R−→ t
R←− z.

Proposition 5.3. Let R be a net and R1, R2 be two interaction rules applicable on R on

distinct redexes such that R1
R1←−− R R2−−→ R2 and all the ports both in R1 and R2 are also in

R. There exists a net R′ such that R1
R2−−→ R′

R1←−− R2.

Proof. For i = 1, 2, set Ri = (Rr,i
Ir,i , Rp,i

Ip,i). The shape of redexes allow us to assert that
if they are distinct then they are disjoint. As R contains both a redex α1(Rr,1) and a redex
α2(Rr,2), then we can deduce that α1(Rr,1) + α2(Rr,2) ⊆ R. More precisely we have

R = (α1(Rr,1) + α2(Rr,2))
α1(Ir,1)α2(Ir,2)! R0

I

We get

R1 = (β1(Rp,1) + α2(Rr,2))
β1(Ip,1)α2(Ir,2)! R0

I

14 M. DE FALCO

for a renaming β1, and the same kind of expression for R2. It is straightforward to check
that the net

R′ = (β1(Rp,1) + β2(Rp,2))
β1(Ip,1)β2(Ip,2)! R0

I

satisfies the conclusion by applying proposition 4.3. The very existence of this net relies
on the disjointness of the βi(Rp,i) which is ensured by the hypothesis on ports contained in
both R1 and R2.

Corollary 5.4. Let L be a set of rules such that for any pair of symbols there is at most

one rule over them. The reduction
L−→=

⋃
R∈L

R−→ is strongly confluent up to a renaming.

By up to a renaming we mean that we might have to rename one of the nets in a critical
pair before joining them. This is due to the disjointness condition in proposition 5.3.
Remark that we can always substitute one of the branch of the critical pair by another
instance of the same rule on the same redex in such a way that this condition is ensured.

5.1. Example. We will now give a thorough example of a net reduction using the Mul-
tiplicative Linear Logic symbols and rules. We display representations next to the net
definitions.3

Let us consider the rule R = (Rr
Ir , Rp

Ip) where

Rr =

(
(0 3)(6 1)(7 2)(8 4)(9 5),

(
•
0 1 2)℘(

•
3 4 5)⊗

)
℘⊗ 0
1

2

6

7

3

4

5

8

9

Ir = 6 < 7 < 8 < 9

Rp =

(
(10 12)(11 13),
0

)
12

13

11

10

Ip = 10 < 11 < 12 < 13

Now let R be the net(
(0 3)(1 2)(8 4)(7 5)(6 9),

(
•
0 1 2)℘(

•
3 4 5)⊗(

•
6 7 8)℘

)
℘⊗℘ 0
1

2

3

4

5
6

7

8

9

It can be expressed as(
(6 9)(7 10)(8 11)(12 13),

(
•
6 7 8)⊗

)10<11<12<13

!
(

(0 3)(16 1)(17 2)(15 4)(14 5),

(
•
0 1 2)℘(

•
3 4 5)⊗

)14<15<16<17

℘6
7

8

10
11

9

12 13

! ℘⊗ 0
1

2

16
17

3

4

5

15
14

the latter context being a renaming of Rr
Ir , which we substitute with the following renaming

of Rp
Ip : (

(14 16)(15 17),
0

)14<15<16<17

16

17

15

14

3Nevertheless, these representations are not required to do the reduction, they are merely here to help
the reader.

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS 15

Thus, we get the net(
(6 9)(7 10)(8 11)(12 13),

(
•
6 7 8)⊗

)10<11<12<13

!
(

(14 16)(15 17),
0

)14<15<16<17

which simplifies into (
(6 9)(7 8),

(
•
6 7 8)⊗

)
℘6
7

8

9

6. Interaction nets are the Ex-collapse of Axiom/Cut nets

We introduce now a notion of nets lying between proof-nets of multiplicative linear logic
and interaction nets. When we plug directly two interaction nets a complex process of wire
simplification occurs. When we plug two proof-nets we only add special wires called cuts
and we have an external notion of reduction performing such simplification. In this section
we define nets with two kinds of wires: axioms and cuts. Those nets allow us to give a
precise account of the folklore assertion that interaction nets are a quotient of multiplicative
proof-nets.

6.1. Definition and juxtaposition.

Definition 6.1. An Axiom/Cut net, AC net for short, is a tuple R = (σA, σC , σc) where:

• σA and σC are w-permutations of finite domain such that dom(σC) ⊆ dom(σA), σC has
no fixed points and if (a b) is an orbit of σC then there exists c 6= a and d 6= b such that
(c a) and (b d) are orbits of σA.

We write Pl(R) for the fixed points of σA and P (R) = dom(σA)− dom(σC)− Pl(R).
• σc is an element of S(Pc(R)), where Pc(R) ⊆ P (R), has pointed orbits and is labelled by
S in such a way that ∀o ∈ Orbs(σc), |o| = α(l(o)) where l is the labelling function.

The orbits of σC , called cuts, are some kind of undirected unary cells linking orbits of σA,
called axioms.

We directly adapt the representation of interaction nets to AC nets by displaying σc as
double edges. For example the AC net R = (σA, σC , σc) with

σA = (1 2)(3 4)(5 6), σC = (2 3), σc = (
•
4 5)S

will be represented by

S

We can adapt most of the previous definitions for those nets, most importantly free
ports, interfaces and contexts. The nice thing about AC nets is that they yield a very
simple composition.

Definition 6.2. Let RI = (σA, σC , σc) and R′I
′

= (τA, τC , τc) be two contexts on AC nets
with disjoint carriers, with I = i1 > · · · > in and I ′ = i′1 > · · · > i′n.

We call juxtaposition of RI and R′I
′

the AC net

RI ↔ R′
I′

= (σA + τA, σC + τC + (i1 i
′
1) . . . (in i

′
n), σc + τc)

16 M. DE FALCO

The juxtaposition is from the logical point of view a generalized cut, and its interpre-
tation in terms of permutation is exactly the definition made by Girard in [Gir87].

6.2. Ex-collapse.

Proposition 6.3. Let R = (σA, σC , σc) be an AC net and f be a partial injection such that
dom(σC) = dom(f) and codom(f) ∩ dom(σA) = ∅.

The couple (σA
f! f ◦ σC ◦ f?, σc), is an interaction net.

It does not depend on f and we call it the Ex-collapse of R, noted Ex(R).

For the definition of the Ex-composition to be correct, we have to delocalize σC to a domain

disjoint from dom(σA). The Ex-collapse amounts to replace any maximal chain a1
σA−−→

b1
σC−−→ a2 . . . bn−1

σA−−→ an by a chain a1
σA−−→ b1

f−→ f(b1)
f◦σC◦f?−−−−−→ f(a2)

f?−→ . . . bn−1
σA−−→ an

and then to compute the Ex-composition to get a1
σA

f!σC−−−−−→ an.

Proof. Remark that for this to be an interaction net, the only property to be checked which

is not a direct consequence of the definition of AC nets is the fact that σA
f! f ◦ σC ◦ f?

is a w-permutation, but this comes directly from proposition 2.4.
This remark asserts that f as only a shallow role in the definition. Indeed, every time

f is applied in the Ex-composition, it is followed by an application of its inverse. Moreover,
for partial injections σ1, τ1, . . . , σn, τn, we have

σn ◦ τn ◦ · · · ◦ σ1 ◦ τ1 = σn ◦ f?n ◦ fn ◦ τn ◦ g?n ◦ gn ◦ · · · ◦ g?1 ◦ g1 ◦ σ1 ◦ f?1 ◦ f1 ◦ τ1
for every partial injections f1, g1, . . . , fn, gn such that dom(fi) ⊆ codom(τi) ∩ dom(σi) and
dom(gi) ⊆ codom(σi) ∩ dom(τi)

Proposition 6.4. For each interaction net R there exists a unique AC net R′ of the form
(σA, 0, σc) such that Ex(R′) = R. R′ is said to be cutfree.

Proof. If R = (τw, τc) we only have to take R′ = (τw, 0, τc). Uniqueness comes from the fact

that σ
0! 0 = σ.

Definition 6.5. Let R and R′ be two AC nets, we say that R and R′ are Ex-equivalent,
noted R

!∼ R′ when Ex(R) = Ex(R′).

We have an obvious correspondence between juxtaposition and gluing.

Proposition 6.6. Ex(RI ↔ R′I
′
) = Ex(R)I ! Ex(R′)I

′

Proof. We set R = (σA, σC , σc), R
′ = (τA, τC , τc).

If we write f (resp. g) the partial injection used in the computation of Ex(R) (resp.
Ex(R′)), then we can find a partial injection h such that the partial injection used in the

computation of Ex(RI ↔ R′I
′
) is f + g+ h. Moreover, we can decompose h = i+ i′ in such

a way that h(ρ(I, I ′) + ρ(I, I ′)?)h? = iρ(I, I ′)i? + i′ρ(I, I ′)?i′?.
The main part of the proposition amounts to proving that

(σA + τA)
f+g+i+i′! (fσCf

? + gτCg
? + iρ(I, I ′)i? + i′ρ(I, I ′)?i′?) =

(σA
f! fσCf

?)
ρ(I,I′)! (τA

g! gτCg
?)

This equality can be deduced as in the proof of proposition 2.5. The fact that we have extra
partial injections f, g, i and i′ does not add any new difficulty.

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS 17

Therefore we can claim that

Interaction nets are the quotient of AC nets by
!∼ .

7. Reduction by means of double pushout

7.1. Motivation. In this section we briefly recall the double pushout approach of graph
rewriting and why we seek such kind of approach in our context.

We consider as rule of graph rewriting a diagram R← I → S in Graph, the category of
graphs. The graph I corresponds to some sort of common interface between R and S. As
soon as we have a morphism R → G we say that G contains the redex of the rule, and we
can construct in Graph a graph G′ such that we have a pushout

R I

po

G G′

A precise definition of pushout will be given later, but for now let us say that it corresponds
to extracting R from the graph G while leaving the common part I. We can construct
another pushout in the other direction, thus obtaining the diagram:

R I S

po po

G G′ Gr

The graph Gr is then called the reduct of G by the rule. It is constructed by taking the
graph G′ and replacing by S the part left empty by the removing of R in G, and then
applying some kind of gluing operation along the interface I.

This approach, initiated in the seminal paper [EPS73], leads to a definition of graph
reduction which is at the same time intuitive and algebraically rigorous. It is quite natural
to try to define it for interaction nets. Indeed, cutting and gluing are explicit operations in
our framework.

Note that such kind of approach for interaction nets is defined in the paper [Ban95],
but it relies on an embedding of interaction nets in hypergraphs followed by an embedding
of hypergraphs in bipartite graphs. In our setting, we can directly state the approach while
staying in the realm of interaction nets.

18 M. DE FALCO

7.2. Pushouts in IN. Let IN be the category whose objects are interaction nets and mor-
phisms are morphisms of interaction nets.

In this section we write R
f
↪−→ S to say that f is an almost injective morphism from R

to S. We write R
f−→
∼
S when f is a bijection.

We recall here the definition of pushouts.

Definition 7.1. Let C be a category. A commutative square

R

S S′

T

f f ′

g g′

is called a

pushout whenever for any other commutative square

R

S S′

T ′

f f ′

h h′

there exists a unique

T
u−→ T ′ such that ug = h and ug′ = h′.

We write po in the center of a square to state that it is a pushout.

The following lemma asserts that pushouts are stable under iso of their branches, i.e.
that we can replace every middle object of the pushout square with an isomorphic one. It
will be useful to replace almost injective morphisms by inclusion maps.

Lemma 7.2. Let

R

S po S′

T

f f ′

g g′

be a pushout square and S −→
∼
S̃ be an iso. We also have

the following pushout

R

S̃ po S′

T

h f ′

k g′

Lemma 7.3. We have the pushout

R

R
f! S po R

g! S′

R
f+g! (S + S′)

⊆ ⊆

⊆ ⊆

whenever S and S′ are disjoint and dom(f) ∩ dom(g) = ∅.
Proof. Let

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS 19

R

R
f! S R

g! S′

T

⊆ ⊆

h h′

be another commutative square. We will build a morphism u from R
f+g! (S+S′) to T . Let p

be a port belonging to P (R)−dom(f)−dom(g) or P (S)−codom(f) we just set u(p) = h(p).
Similarly we define u(p) = h′(p) when p belongs to P (S′) − codom(g). Now, if we take a

p ∈ dom(f) we can properly define its image p′ in R
f! S. We set u(p) = h(p′) = h′(p).

We proceed in the same way for a p ∈ dom(g).
By construction u is unique and satisfies the required universal property of pushouts.

By using the two previous lemmas and the definition of almost injective morphisms, we
get the following corollary.

Corollary 7.4. Let S
α←−↩ R β

↪−→ S′ be a diagram in IN with S, S′ disjoint. By definition of

almost injectivity we have S = α̃(R)
f! S and S′ = β̃(R)

g! S′.

If dom(fα̃) ∩ dom(gβ̃) = ∅ then we have the following diagram:

R

S po S′

R
fα̃+gβ̃! (S + S′)

α β

Remark 7.5. The disjointness of S and S′ in the previous lemma is not mandatory as
pushouts are only defined up to isomorphism.

Lemma 7.6 (Complement). If we have

R

S

T

α

β

then there exists S′ and R
α′
↪−→ S′ such

that

R

S po S′

T

α

β

α′

⊆

Proof. First, we show that we only need to prove the result when all arrows are inclu-
sion maps. Indeed, by applying the definition of almost injectivity we get the following
commutative diagram:

20 M. DE FALCO

α̃(R) β̃α(R)

R S β̃(S)

T

α

β

α̃
∼

β̃

∼
β̃

∼

⊆⊆

⊆

If we could complete it with a pushout on the right, as in

α̃(R) β̃α(R)

R S β̃(S) po S′

T

α

β

α̃
∼

β̃

∼
β̃

∼

⊆⊆

⊆

⊆

⊆

we would get the main pushout.

So, let us prove it in the case where R ⊆ S ⊆ T . By definition, we have S = R
f! R

and T = S
g! S. Thus, we have T = (R

f! R)
g! S. By corollary 4.13, there exists f1

and f2 such that T = R
f1! (R

f2+g! S). We set S′ = R
f2+g! S. We can conclude by applying

lemma 7.3.

7.3. Generalized reduction.

Definition 7.7. Let Rr
αr←−↩ Ri

αp
↪−→ Rp be a diagram in IN. By definition of almost

injectivity we have Rr = α̃r(Ri)
fr! Rr and Rp = α̃p(Ri)

fp! Rp.
We say that this diagram is a generalized rule when dom(frα̃r) = dom(fpα̃p).

Theorem 7.8. If Rr
αr←−↩ Ri

αp
↪−→ Sp is a generalized rule and we have a morphism Rr

β
↪−→ R

then we can do the following completion

Rr Ri Rp

po po

R S T

αr αp

⊆

β

T is called the reduct of R by the generalized rule.

Proof. The proof is just a chaining of the two lemmas 7.6 and 7.4. The condition of equality
of domain in the definition of generalized rule ensures that the domain of the gluing function
in Ri ↪−→ S, being disjoint from the domain of the gluing function in Ri ↪−→ Rr is also disjoint
from the gluing function in Ri ↪−→ Rp. Thus, the lemma 7.4 is applicable.

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS 21

Proposition 7.9. This reduction is a generalization of the one defined in section 5.

Proof. Indeed let (Rr
Ir , Rp

Ip) be an interaction rule and set Ir = d1 > · · · > dm. We define
a net

Ri = ((d1 f1) . . . (dm fm), 0)

with m new free ports fi.

We directly have an inclusion Ri ⊆ Rr = Ri
fr! Rr and by definition of an interaction

rule, we have a bijection between Ir and Ip which can be lifted to an almost injective

morphism Ri
αp
↪−→ Rp = α̃p(Ri)

fp! Rp.

The diagram Rr ⊇ Ri
αp
↪−→ Rp is a generalized rule as dom(fr) = dom(fpα̃p) =

{f1, . . . , fm}.
Now let Rr

β
↪−→ R be an almost injective morphism, we have R = β̃(Rr)

g! R. We are
going to consider R and Rp disjoint, if it is not the case we just need to add an explicit

renaming to the following computations. By construction, we get S = β̃(Ri)
g′! R, where

g′ is the restriction of g to β̃(Ri), and we have T = Ri
g′β̃+fpα̃p! (R + Rp) which is the result

of the previously defined reduction.

8. Implementation

8.1. Introduction. We detail here part of our implementation in OCaml of an interaction
net tool. This implementation follows closely the mathematical definitions given earlier. By
doing so we hope that we make apparent the idea that this framework, even though involving
mathematical objects, can be seen as a natural syntax for implementing interaction nets.

A self-contained net reducer has been extracted from our implementation and is pre-
sented in Appendix A. For the sake of briefness we have removed from this code subroutines
involving renaming of net.

8.2. Data structures. The easiest way to represent partial permutation is to define them
as their list of orbits. The fact that orbits are disjoint and make sense will in fact be ensured
by the validity of our operations.

We define two types

type ’ a l o r b i t = { c y c l e : i n t l i s t ; l a b e l : ’ a }
type ’ a lperm = ’ a l o r b i t l i s t

for representing labelled permutation, and we only need to set a dummy label to represent
an unlabelled permutation.

Therefore, the type for representing a net is

type c e l l l a b e l = { symbol : symbol ; pa l : i n t }
type net = { c e l l s : c e l l l a b e l lperm ; wi re s : un i t lperm }

Following the previous definitions, we define interface, context and rule

type i n t e r f a c e = i n t l i s t

type context = net ∗ i n t e r f a c e

type r u l e = { symbols : symbol ∗ symbol ; pattern : context }

22 M. DE FALCO

8.3. Algorithms. To have a full implementation we need to be able to find when a reduc-
tion rule could be applied, and then to apply it. Nevertheless the only changing part between
this framework and the usual one is the use of Ex-composition to define the reduction.

We recall here the standard procedure for reducing nets, next to each step we give the
corresponding functions in the code found in Appendix A:

(1) Extract the list of active wires, i.e. wires linking two principal ports
[net_get_active_wires]

(2) Filter out the active wires corresponding to a rule redex
[net_appliable_rules]

(3) For one of these matches, cut out the redex and replace it with the rule pattern
[net_remove_cell,net_remove_wire,net_apply_rule]

The main difference here, is that our replacement of the pattern relies on a net gluing
[net_glue], which in turns relies on an Ex-composition [perm_excomp].

Algorithm 1 Computation of σw
f! τw for σw, τw being w-permutations

orbits = σw + τw
for p ∈ dom(f) do
p′ = f(p)
w = orbit containing p in orbits
w′ = orbit containing p′ in orbits
orbits = orbits− [w,w′]
if w = w′ then
orbits = [min(p, p′)] :: orbits

else
(p, q) = w
(p′, q′) = w′

orbits = [q, q′] :: orbits
end if

end for
return orbits

A method for computing σw
f! τw can be found in Algorithm 1. This algorithm

amounts to concatenation of orbits from σw and τw by removing ports that are part of
dom(f) ∪ codom(f). If we consider that every operations used on permutations are linear,
as it the case with lists, its complexity is in O(|dom(f)|(|dom(σw)|+ |dom(τw)|)). Note that
in most cases |dom(f)| is small compared to |dom(σw)| + |dom(τw)| because of the local
aspect of reduction rules in interaction nets.

8.4. Extensions. Our full interaction net tool4 deals with some common extensions of
interaction nets.

To be able to handle sharing graphs, in the Abadi, Gonthier and Levy flavour [AGL92]
we need to add parameters to cells, the so-called levels. These parameters are both used to
guard the applicability of a rule and add dependencies on the redex parameters inside the
rule pattern. Thus, we extend the previous types with

4available in a preliminary version at the address http://marc.de-falco.fr/mlint

http://marc.de-falco.fr/mlint

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS 23

type ’ a c e l l l a b e l = { symbol : symbol ; pa l : i n t ; parameter : ’ a}
type ’ a r u l e = { symbols : symbol ∗ symbol ;

pattern : ’ a ∗ ’ a −> ’ a context ;

guard : ’ a ∗ ’ a −> bool }
Another common extension is found in differential interaction nets, presented in [ER05],

which handles not only nets but formal sum of nets. Concerning the rules it amounts to
multiple patterns, therefore we only need to adapt the previous type of pattern to

pattern : ’ a ∗ ’ a −> ’ a context l i s t

We would like to emphasise on the fact that these extensions do not imply complex
changes to the code presented in Appendix A. Indeed, our framework presented here for
vanilla interaction net is quite flexible and it could serve as a basis for a rigorous study of
extensions of interaction nets.

Conclusion

Throughout this paper we have developed a syntactical framework for dealing with
interaction nets while still being rigorous. Some specific extensions of this framework – for
example the definition of paths in nets, their reduction and its strong confluence – can be
found in [dF09].

At this point, it is quite natural to ask about semantics. So far no general notion of
denotational semantics for interaction nets can be found in the literature. The closest exam-
ples are either based on geometry of interaction [Laf97, dF08] or experiments [Maz07], and
all treat of specific cases (interaction combinators or differential interaction nets). Building
on this framework, the author has a proposal which will be presented in a further paper.

Acknowledgements

The author would like to thank Laurent Regnier and the anonymous referees of both
versions of this paper for their insightful comments.

References

[Abr05] S. Abramsky. Abstract scalars, loops, and free traced and strongly compact closed categories. In
Algebra and Coalgebra in Computer Science, volume 3629 of Lecture Notes in Computer Science,
pages 1–29. Springer, 2005.

[AGL92] M. Abadi, G. Gonthier, and J-J. Lévy. The geometry of optimal lambda reduction. In Proceed-
ings of the 19th Annual ACM Symposium on Principles of Programming Languages, pages 15–26.
Association for Computing Machinery, ACM Press, 1992.

[AJ92] S. Abramsky and R. Jagadeesan. New foundations for the geometry of interaction. In Proceedings
of the 7th Symposium on Logic in Computer Science, pages 211–222, Santa Cruz, 1992. IEEE
Computer Society Press.

[AJM94] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF (extended abstract). In
Masami Hagiya and John C. Mitchell, editors, Theoretical Aspects of Computer Software. Inter-
national Symposium TACS’94, number 789 in Lecture Notes in Computer Science, pages 1–15,
Sendai, Japan, April 1994. Springer-Verlag.

[Ban95] R. Banach. The algebraic theory of interaction nets. Department of Computer Science, University
of Manchester, Technical Report MUCS-95-7-2, 1995.

[dF08] M. de Falco. The geometry of interaction of differential interaction nets. In Proceedings of the 23th

Symposium on Logic in Computer Science, Pittsburgh, 2008. IEEE Computer Society Press.

24 M. DE FALCO

[dF09] M. de Falco. Géométrie de l’Interaction et Réseaux Différentiels. Thèse de doctorat, Université
Aix-Marseille 2, 2009.

[DR95] V. Danos and L. Regnier. Proof-nets and the Hilbert space. In Jean-Yves Girard, Yves Lafont, and
Laurent Regnier, editors, Advances in Linear Logic, volume 222 of London Mathematical Society
Lecture Note Series. Cambridge University Press, 1995.

[EPS73] H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: an algebraic approach. In IEEE Con-
ference Record of 14th Annual Symposium on Switching and Automata Theory, 1973. SWAT’08,
pages 167–180, 1973.

[ER05] T. Ehrhard and L. Regnier. Differential interaction nets. In Workshop on Logic, Language, Infor-
mation and Computation (WoLLIC), invited paper, volume 123 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2005.

[FM99] M. Fernandez and I. Mackie. A calculus for interaction nets. Lecture Notes in Computer Science,
1702:170–187, 1999.

[Gir87] J-Y. Girard. Multiplicatives. In Lolli, editor, Logic and Computer Science : New Trends and
Applications, pages 11–34, Torino, 1987. Università di Torino. Rendiconti del seminario matematico
dell’università e politecnico di Torino, special issue 1987.

[Gir89] J-Y. Girard. Geometry of interaction I: an interpretation of system F . In Valentini Ferro, Bonotto
and Zanardo, editors, Proceedings of the Logic Colloquium 88, pages 221–260, Padova, 1989. North-
Holland.

[HO00] M. Hyland and L. Ong. On full abstraction for PCF. Information and Computation, 163:285–408,
2000.

[HS06] E. Haghverdi and P. Scott. A categorical model for the geometry of interaction. Theoretical Com-
puter Science, 350(2-3):252–274, 2006.

[JSV96] A. Joyal, R. Street, and D. Verity. Traced monoidal categories, Math. In Proc. Comb. Phil. Soc,
volume 119, pages 447–468, 1996.

[KL80] G. M. Kelly and M. L. Laplaza. Coherence for compact closed categories. Journal of Pure and
Applied Algebra, 19:193–213, 1980.

[Laf90] Y. Lafont. Interaction nets. In Proceedings of the 17th Annual ACM Symposium on Principles of
Programming Languages, pages 95–108, San Francisco, 1990. Association for Computing Machin-
ery, ACM Press.

[Laf97] Y. Lafont. Interaction Combinators. Information and Computation, 137(1):69–101, 1997.
[Laf03] Y. Lafont. Towards an Algebraic Theory of Boolean Circuits. Journal of Pure and Applied Algebra,

184(2-3):257–310, 2003.
[Lip03] Sylvain Lippi. Encoding left reduction in the λ-calculus with interaction nets. Mathematical Struc-

tures in Computer Science, 12(06):797–822, 2003.
[Mac98] I. Mackie. YALE: yet another lambda evaluator based on interaction nets. In Proceedings of the

third ACM SIGPLAN international conference on Functional programming, pages 117–128. ACM
New York, NY, USA, 1998.

[Maz07] D. Mazza. A denotational semantics for the symmetric interaction combinators. Mathematical
Structures in Computer Science, 17(03):527–562, 2007.

[MP98] I. Mackie and J. S. Pinto. Compiling the Lambda Calculus into Interaction Combinators. In Logical
Abstract Machines workshop, 1998.

[Pin00] J. S. Pinto. Sequential and concurrent abstract machines for interaction nets. In FOSSACS ’00:
Proceedings of the Third International Conference on Foundations of Software Science and Com-
putation Structures, pages 267–282. Springer-Verlag London, UK, 2000.

[Vau07] L. Vaux. Lambda-calcul différentiel et logique classique. Thèse de doctorat, Université de la
Méditerranée, 2007.

Appendix A. A lightweight interaction net reducer in OCaml

type symbol = s t r i n g

type ’ a l o r b i t = { c y c l e : i n t l i s t ; l a b e l : ’ a }
type ’ a lperm = ’ a l o r b i t l i s t

type c e l l l a b e l = { symbol : symbol ; pa l : i n t }

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS 25

type net = { c e l l s : c e l l l a b e l l o r b i t l i s t ; w i r e s : un i t lperm }
type port = FreePort of i n t | Cel lPort of c e l l l a b e l l o r b i t ∗ i n t

type i n t e r f a c e = i n t l i s t

type context = net ∗ i n t e r f a c e

type r u l e = { symbols : symbol ∗ symbol ; pattern : context }

(∗ U t i l i t y f u n c t i o n s f o r hand l ing o r b i t s ∗)

let c y c l e l = (L i s t . t l l)@[L i s t . hd l]

let rec c y c l e t o e l =

i f L i s t . hd l = e then l else c y c l e t o e (c y c l e l)

let rec index l p = match l with

| [] −> r a i s e Not found

| hd : : t l −> i f hd = p then 0 else 1+(index t l p)

let rec f i l t e r o p t l =

match l with

| [] −> []

| None : : l −> f i l t e r o p t l

| Some a : : l −> a : : (f i l t e r o p t l)

let l i s t d i f f l 1 l 2 = L i s t . f i l t e r (fun x −> not (L i s t .mem x l 2)) l 1

(∗ Get the o r b i t in p c o n t a i n i n g an element e

∗ This f u n c t i o n r e t u r n s a coup le (o , p ’)

∗ where o i s the o r b i t and p ’ i s the remaining permutat ion ∗)

let l p e r m g e t o r b i t s p l i t e p =

let rec laux acc e p =

match p with

[] −> r a i s e Not found

| o : : o l −> i f L i s t .mem e o . c y c l e

then (o , acc@ol)

else laux (o : : acc) e o l

in laux [] e p

(∗ Get o p t i o n a l l y the o r b i t c o n t a i n i n g e in p ∗)

let l p e r m g e t o r b i t e p = try

let o = f s t (l p e r m g e t o r b i t s p l i t e p) in Some o

with Fa i l u r e −> None

(∗ Get the element a f t e r e a long i t s o r b i t in the permutat ion p ∗)

let lperm next e p =

let (o ,) = l p e r m g e t o r b i t s p l i t e p in

L i s t . hd (c y c l e (c y c l e t o e o . c y c l e))

(∗ Get a new permutat ion p ’ from permutat ion p by

∗ f u s i n g the o r b i t oa c o n t a i n i n g a and the o r b i t ob

∗ c o n t a i n i n g b . This i s done by i n s e r t i n g ob i n s i d e oa in

∗ such a way t h a t p ’ (a) = b . In case oa = ob i t adds a f i x p o i n t . ∗)

let l p e r m f u s e o r b i t s (p : ’ a lperm) (a : i n t) (b : i n t) =

let (oa , o l a) = l p e r m g e t o r b i t s p l i t a p in

i f L i s t .mem b oa . c y c l e

then { c y c l e =[min a b] ; l a b e l=oa . l a b e l } : : o l a

26 M. DE FALCO

else let (ob , no l) = l p e r m g e t o r b i t s p l i t b o la in

{ c y c l e =[lperm next a p ; lperm next b p] ; l a b e l=oa . l a b e l } : : no l

(∗ D i s j o i n t sum o f permutat ions p1 and p2 ∗)

let lperm sum p1 p2 = p1 @ p2

(∗ Compute the ex−composi t ion o f s and t a long f by

∗ f u s i n g o r b i t s in the union o f s and t a long f ∗)

let perm excomp s t f =

let rec f u s e o r b i t s p l = match l with

[] −> p

| (a , b) : : t l −> f u s e o r b i t s (l p e r m f u s e o r b i t s p a b) t l in

f u s e o r b i t s (s@t) f

(∗ Net g l u i n g n1 <−f−> n2 ∗)

let n e t g l u e n1 n2 f = { c e l l s=lperm sum n1 . c e l l s n2 . c e l l s ;

w i r e s=perm excomp n1 . w i r e s n2 . w i r e s f }
let net sum n1 n2 = n e t g l u e n1 n2 []

let coord i 1 i 2 = L i s t . combine i 1 i 2

(∗ c o n t e x t g l u i n g n1ˆ i 1 <−> n2ˆ i2 ∗)

let c o n t e x t g l u e (n1 , i 1) (n2 , i 2) = n e t g l u e n1 n2 (coord i 1 i 2)

(∗ Discr iminate a g iven por t p in the net n ∗)

let n e t g e t p o r t n p =

match l p e r m g e t o r b i t p n . c e l l s with

| Some c −> let c y c l e = c y c l e t o c . l a b e l . pa l c . c y c l e in

Cel lPort (c , index c y c l e p)

| None −> FreePort p

(∗ Pred ica te a s s e r t i n g the f a c t t h a t w i s an a c t i v e wire in n ∗)

let n e t w i r e i s a c t i v e n w = match w. c y c l e with

| [p1 ; p2] −> begin

match (n e t g e t p o r t n p1 , n e t g e t p o r t n p2) with

| (Ce l lPort (c1 ,) , Ce l lPort (c2 ,)) −>
p1 = c1 . l a b e l . pa l && p2 = c2 . l a b e l . pa l

| −> f a l s e

end

| −> f a l s e

let n e t g e t a c t i v e w i r e s n = L i s t . f i l t e r (n e t w i r e i s a c t i v e n) n . w i r e s

(∗ Extrac t the c e l l c o n t a i n i n g the por t p from the net n ∗)

let n e t r e m o v e c e l l n p =

let (c , nc) = l p e r m g e t o r b i t s p l i t p n . c e l l s in

let nw = L i s t . f i l t e r

(fun x −> l i s t d i f f c . c y c l e x . c y c l e <> []) n . w i r e s in

(c , { c e l l s=nc ; w i r e s=nw })

(∗ Extrac t the wire p1−−p2 from the net n ∗)

let net remove wire n p1 p2 =

let nw = L i s t . f i l t e r

(fun w −> l i s t d i f f w. c y c l e [p1 ; p2] <> []) n . w i r e s in

{ c e l l s=n . c e l l s ; w i r e s=nw }

AN EXPLICIT FRAMEWORK FOR INTERACTION NETS 27

(∗ Apply a r u l e in n by removing the redex c o n t a i n i n g the a c t i v e

∗ wire p1−−p2 and r e p l a c i n g i t wi th c t x ∗)

let n e t a p p l y r u l e n (p1 , p2 , ctx) =

let (c1 , n1) = n e t r e m o v e c e l l n p1 in

let (c2 , n2) = n e t r e m o v e c e l l n1 p2 in

let n3 = net remove wire n2 c1 . l a b e l . pa l c2 . l a b e l . pa l in

let i = (l i s t d i f f c1 . c y c l e [p1])@(l i s t d i f f c2 . c y c l e [p2]) in

c o n t e x t g l u e (n3 , i) ctx

(∗ Take a net n and a l i s t o f r u l e s r l and re turn a s u b l i s t

∗ o f r u l e s having a matching redex in n ∗)

let n e t a p p l i a b l e r u l e s n r l =

let law = n e t g e t a c t i v e w i r e s n in

let match ing ru le (s1 , s2) w =

match w. c y c l e with

| [p1 ; p2] −> begin

match (n e t g e t p o r t n p1 , n e t g e t p o r t n p2) with

| (Ce l lPort (c1 ,) , Ce l lPort (c2 ,)) −> begin

match (c1 . l a b e l . symbol , c2 . l a b e l . symbol) with

| cs1 , cs2 when cs1 = s1 && cs2 = s2 −> Some (p1 , p2)

| cs1 , cs2 when cs1 = s2 && cs2 = s1 −> Some (p2 , p1)

| −> None

end

| −> None

end

| −> None in

let r e s r = L i s t . map

(fun (p1 , p2) −> (p1 , p2 , r . pattern))

(f i l t e r o p t (L i s t . map (match ing ru le r . symbols) law))

in L i s t . concat (L i s t . map r e s r l)

(∗ Take a net n and a l i s t o f r u l e s r l and re turn an o p t i o n a l

∗ reduc t ∗)

let net reduce n r l =

let r e s = n e t a p p l i a b l e r u l e s n r l in

match r e s with

| i n s t ance : : −> Some (n e t a p p l y r u l e n in s t anc e)

| −> None

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Permutations and partial injections
	2.1. Permutations
	2.2. Partial injections
	2.3. Execution
	2.4. w-permutations and Ex-composition

	3. The statics of interaction nets
	3.1. Representation
	3.2. Morphisms of nets and renaming

	4. Tools of the trade
	4.1. Gluing and cutting
	4.2. Extending morphisms by gluing
	4.3. Interfaces and contexts

	5. Dynamics
	5.1. Example

	6. Interaction nets are the Ex-collapse of Axiom/Cut nets
	6.1. Definition and juxtaposition
	6.2. Ex-collapse

	7. Reduction by means of double pushout
	7.1. Motivation
	7.2. Pushouts in cat(N)
	7.3. Generalized reduction

	8. Implementation
	8.1. Introduction
	8.2. Data structures
	8.3. Algorithms
	8.4. Extensions

	Conclusion
	Acknowledgements
	References
	Appendix A. A lightweight interaction net reducer in OCaml

