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Abstract. Based on a new coinductive characterization of continuous functions we ex-
tract certified programs for exact real number computation from constructive proofs. The
extracted programs construct and combine exact real number algorithms with respect
to the binary signed digit representation of real numbers. The data type correspond-
ing to the coinductive definition of continuous functions consists of finitely branching
non-wellfounded trees describing when the algorithm writes and reads digits. We discuss
several examples including the extraction of programs for polynomials up to degree two
and the definite integral of continuous maps. This is a revised and substantially extended
version of the conference paper [6].

1. Introduction

Most of the recent work on exact real number computation describes algorithms for functions
on certain exact representations of the reals (for example streams of signed digits [18, 19]
or linear fractional transformations [17]) and proves their correctness using a certain proof
method (for example coinduction [16, 11, 8, 30]). Our work has a similar aim, and builds on
the work cited above, but there are two important differences. The first is methodological :
we do not ‘guess’ an algorithm and then verify it, instead we extract it from a proof, by some
(once and for all) proven correct method. That this is possible in principle is well-known.
Here we want to make the case that it is also feasible, and that interesting and nontrivial
new algorithms can be obtained (see also [33, 9] for related work on program extraction
in constructive analysis and inductive definitions). The second difference is algorithmic:
our method represents a uniformly continuous real function not by a function operating on
representations of reals, but by an infinite tree that contains information not only about the
real function as a point map, but also about its modulus of continuity. Since the representing
tree is a pure data structure (without function component) a lazy programming language,
like Haskell, will memoize computations which improves performance in certain situations.

A crucial ingredient in the proofs (that we use for program extraction) is a coinductive
definition of the notion of uniform continuity (u. c.). Although, classically, continuity and
uniform continuity are equivalent for functions defined on a compact interval (we only
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consider such functions), it is a suitable constructive definition of uniform continuity which
matters for our purpose. For convenience, we consider as domain and range of our functions
only the interval I := [−1, 1] = {x ∈ R | |x| ≤ 1} and, for the purpose of this introduction,
only unary functions. However, later we will also look at functions of several variables where
one has to deal with the non-trivial problem of choosing the input streams from which the
next digit is consumed, a choice which can have a big influence on the performance of the
program.

We let SD := {−1, 0, 1} be the set of (binary) signed digits. By SDS we denote the set
of all infinite streams a = a0 : a1 : a2 : . . . of signed digits ai ∈ SD. A signed digit stream
a ∈ SDS represents the real number

σ(a) :=
∑
i≥0

ai2
−(i+1) ∈ I

A function f : I → I is represented by a stream transformer f̂ : SDS → SDS if f ◦σ = σ ◦ f̂ .
The coinductive definition of uniform continuity, given in Sect. 3, allows us to extract
from a constructive proof of the u. c. of a function f : I → I an algorithm for a stream
transformer f̂ representing f . Furthermore, we show directly and constructively that the
coinductive notion of u. c. is closed under composition. The extracted stream transformers
are represented by finitely branching non-wellfounded trees which, if executed in a lazy
programming language, give rise to memoized algorithms. These trees turn out to be
closely related to the data structures studied in [21, 22], and the extracted program from
the proof of closure under composition is a generalization of the tree composing program
defined there.

In Sect. 2, we briefly review inductive and coinductive sets defined by monotone set
operators. We give some simple examples, among them a characterization of the real num-
bers in the interval I by a coinductive predicate C0. The method of program extraction
from proofs involving induction and coinduction is discussed informally, but in some detail,
in Sect. 3. The earlier examples are continued and a program transforming fast Cauchy
representations into signed digit representations is extracted from a coinductive proof. In
Sect. 4, the coinductive characterization C0 of real numbers is generalized to nested coin-
ductive/inductive predicates Cn characterizing uniformly continuous real functions of n
arguments, and closure under composition is proven. In Sect. 5, we study wellfounded in-
duction from the perspective of program extraction and introduce the notion of a digital
system as a technical tool for showing that certain families of functions are contained in Cn.
The positive effect of memoization is demonstrated by a case study on iterated logistic maps
(which are special polynomials of degree 2). Furthermore, we prove that the predicates Cn

capture precisely uniform continuity. In Sect. 6 we extract a program for integration from
a proof that the definite integral on I of a function in C1 can be approximated by rational
numbers with any given precision.

The extracted programs are shown in the functional programming language Haskell.
As Haskell’s syntax is very close to the usual mathematical notation for data and functions
we hope that also readers not familiar with Haskell will be able to understand the code.
The Haskell code shown in this paper is self contained and can be obtained from the author
on request.
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2. Induction and coinduction

We briefly discuss inductive and coinductive definitions as least and greatest fixed points of
monotone set operators and the corresponding induction and coinduction principles. The
results in this section are standard and can be found in many logic and computer science
texts. For example in [14] inductive definitions are proof-theoretically analysed, and in [13]
least and greatest fixed points are studied in the framework of the modal mu-calculus.

An operator Φ: P(U) → P(U) (where U is an arbitrary “universal” set and P(U) is
the powerset of U) is monotone if for all X,Y ⊆ U

if X ⊆ Y , then Φ(X) ⊆ Φ(Y )

A set X ⊆ U is Φ-closed (or a pre-fixed point of Φ) if Φ(X) ⊆ X. Since P(U) is a complete
lattice, Φ has a least fixed point µΦ (Knaster-Tarski Theorem). For the sake of readability
we will sometimes write µX.Φ(X) instead of µΦ. µΦ can be defined as the least Φ-closed
subset of U . Hence we have the closure principle for µΦ, Φ(µΦ) ⊆ µΦ and the induction
principle stating that for every X ⊆ U , if Φ(X) ⊆ X, then µΦ ⊆ X. It can easily be shown
that µΦ is even a fixed point of Φ, i. e. Φ(µΦ) = µΦ (Lambek’s Lemma). For monotone
operators Φ,Ψ: P(U) → P(U) we define

Φ ⊆ Ψ :⇔ ∀X ⊆ U Φ(X) ⊆ Ψ(X)

It is easy to see that the operation µ is monotone, i. e. if Φ ⊆ Ψ, then µΦ ⊆ µΨ. Using
monotonicity of µ one can easily prove, by induction, a principle, called strong induction.
It says that, if Φ(X ∩ µΦ) ⊆ X, then µΦ ⊆ X.

Dual to inductive definitions are coinductive definitions. A subset X of U is called
Φ-coclosed (or a post-fixed point of Φ) if X ⊆ Φ(X). By duality, Φ has a largest fixed
point νΦ which can be defined as the largest Φ-coclosed subset of U . Similarly, all other
principles for induction have their coinductive counterparts. To summarise, we have the
following principles:

Fixed point Φ(µΦ) = µΦ and Φ(νΦ) = νΦ.

Monotonicity if Φ ⊆ Ψ, then µΦ ⊆ µΨ and νΦ ⊆ νΨ.

Induction if Φ(X) ⊆ X, then µΦ ⊆ X.

Strong induction if Φ(X ∩ µΦ) ⊆ X, then µΦ ⊆ X.

Coinduction if X ⊆ Φ(X), then X ⊆ νΦ.

Strong coinduction if X ⊆ Φ(X ∪ νΦ), then X ⊆ νΦ.

Example 2.1 (natural numbers). Define Φ : P(R) → P(R) by

Φ(X) := {0} ∪ {y + 1 | y ∈ X} = {x | x = 0 ∨ ∃y ∈ X (x = y + 1)}

Then µΦ = N = {0, 1, 2, . . .}. We consider this as the definition of the natural numbers.
The induction principle is logically equivalent to the usual zero-successor-induction on N:
if X(0) (base) and ∀x (X(x) → X(x + 1)) (step), then ∀x ∈ NX(x). Strong induction
weakens the step by restricting x to the natural numbers: ∀x ∈ N (X(x) → X(x+ 1)).

Example 2.2 (signed digits and the interval [−1, 1]). For every signed digit d ∈ SD
we set Id := [d/2 − 1/2, d/2 + 1/2] = {x ∈ R | |x − d/2| ≤ 1/2}. Note that I is the union
of the Id and every sub interval of I of length ≤ 1/2 is contained in some Id. We define an
operator J0 : P(R) → P(R) by

J0(X) := {x | ∃d ∈ SD (x ∈ Id ∧ 2x− d ∈ X)}
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and set C0 := νJ0. Since clearly I ⊆ J0(I), it follows, by coinduction, that I ⊆ C0. On the
other hand C0 ⊆ I, by the fixed point property. Hence C0 = I. The point of this definition
is, that the proof of “I ⊆ J0(I)” has an interesting computational content: x ∈ I must be
given in such a way that it is possible to find d ∈ SD such that x ∈ Id. This means that d/2
is a first approximation of x. The computational content of the proof of “I ⊆ C0”, roughly
speaking, iterates the process of finding approximations to x ad infinitum, i. e. it computes
a signed digit representation of x as explained in the introduction, that is, a stream a of
signed digits with σ(a) = x. This will be made precise in Lemma 3.2 (Sect. 4).

Example 2.3 (lists, streams and trees). Let the Scott-domain D be defined by the
recursive domain equation D = 1 +D ×D where 1 := {⊥} is a one point domain and “+”
denotes the separated sum of domains (see [20] for information on domains). The elements
of D are ⊥ (the obligatory least element), Nil := Left(⊥), and Cons(x, y) := Right(x, y)
where x, y ∈ D. Define Φ : P(D) → P(D) → P(D) by

Φ(X)(Y ) := {Nil} ∪ {Cons(x, y) | x ∈ X, y ∈ Y }

Clearly, Φ is monotone in both arguments. For a fixed set X ⊆ D, List(X) := µ(Φ(X))
(= µY.Φ(X)(Y )) can be viewed as the set of finite lists of elements in X, and Stream(X) :=
ν(Φ(X)) (= νY.Φ(X)(Y )) as the set of finite or infinite lists or streams of elements in X.
Since µ is monotone the operator List : P(D) → P(D) is again monotone. Hence we
can define Tree := νList ⊆ D which is the set of finitely branching wellfounded or non-
wellfounded trees. On the other hand, Tree′ := µStream consist of all finitely or infinitely
branching wellfounded trees. The point of this example is that the definition of Tree is
similar to the characterization of uniformly continuous functions from In to I in Sect. 4, the
similarity being the fact that it is a coinductive definition with an inductive definition in its
body. The set C0 of the previous example corresponds to the case n = 0 where the inner
inductive definition is trivial.

Formalization We now sketch the formal system for reasoning about inductive and coin-
ductive definitions (a full account is given in [7, 10]). Since we only consider (co)inductive
definitions of subsets of a given “universal set” we can work in a many-sorted first-order
predicate logic with free predicate variables extended by the possibility to form for a pred-
icate P which is strictly positive (s.p.) in a predicate variable X the predicates µX.P and
νX.P denoting the least and greatest fixed points of the monotone set operator defined by
P. For example, P could be given as a comprehension term {~x | A(~x,X)} where A(~x,X) is
a formula which is s.p. in X. The formula A(~x,X) may have further free object and pred-
icate variables. “Nested” inductions/coinductions such as νX.µY.{~x | A(~x,X, Y )}, where
A(~x,X, Y ) is strictly positive in X and Y , are allowed. Hence the second example above
can be formalized. As a proof calculus we use intuitionistic natural deduction with axioms
expressing (co)closure and (co)induction for (co)inductively defined predicates. Further ax-
ioms describing the mathematical structures under consideration can be freely added as
long as (we know that) they are true and do not contain disjunctions. The latter restriction
ensures that these “ad-hoc axioms” have no computational content, as will be explained in
Sect. 3. Note that, for example, the formula ∀x ∈ N ∃y ∈ N (y2 ≤ x < (y + 1)2) does have
computational content since the definition of the predicate N, given in the first example,
contains a disjunction. Hence, although true, this formula must not be used as an axiom,
but needs to be proven.
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In the first example object variables are of sort R while in the second example they are of
sort D (hence R andD are the “universal sets”). The second example shows how data struc-
tures which normally would be defined as initial algebras or final coalgebras of endofunctors
on the category of sets can be introduced in our system. The domain-theoretic modelling
has the further advantage that partial objects (e.g. lists or trees with possibly undefined
nodes and leaves) can be described and reasoned about as well, without extra effort. We be-
lieve that, by restricting ourselves to categories which are just powersets, partially ordered
by inclusion, the constructions become easier to understand for non-category-theorists, and
the formal system sketched above is simpler than one describing initial algebras and final
coalgebras of functors in general.

3. Program extraction from proofs

In this section we briefly explain how we extract programs from proofs. Rather than giving
technical definitions we only sketch the formal framework and explain the extraction method
by means of simple examples, which hopefully provide a good intuition also for non-experts.
More details and full correctness proofs can be found in [7] and [10].

The method of program extraction we are using is based on an extension and variation
of Kreisel’s modified realizability [26]. The extension concerns the addition of inductive and
coinductive predicates. Realizability for such predicates has been studied previously, in the
slightly different context of q-realizability by Tatsuta [36]. The variation concerns the fact
that we are treating the first-order part of the language (i. e. quantification over individuals)
in a ‘uniform’ way, that is, realizers do not depend on the individuals quantified over. This
is similar to the common uniform treatment of second-order variables [37]. The argument
is that an arbitrary subset of a set is such an abstract (and even vague) entity so that one
should not expect an algorithm to depend on it. With a similar argument one may say
that individuals of an abstract mathematical structure (R, model of set-theory, etc.) are
unsuitable as inputs for programs. Hence, a realizer of a formula ∀xA(x) is an object a
such that a realizes A(x) for all x where a does not depend on x. A realizer of a formula
∃xA(x) is an object a such that a realizes A(x) for some x. Note that the witness x is not
part of the realizer a. But which data should a program then depend on and which should
it produce? The answer is: data defined by the ‘propositional skeletons’ of formulas and
‘canonical’ proofs.

Example (parity) Let us extract a program from a proof of

∀x (N(x) ⇒ ∃y (x = 2y ∨ x = 2y + 1)) (3.1)

where the variable x ranges over real numbers and the predicate N is defined as in the
example in Sect. 2, i. e.

N := µX.{x | x = 0 ∨ ∃y (X(y) ∧ x = y + 1)} (3.2)

The type corresponding to (3.2) is obtained by the following type extraction:

• replace every atomic formula of the form X(t) by a type variable α associated with the
predicate variable X,

• replace other atomic formulas by the unit or ‘void’ type 1,
• delete all quantifiers and object terms (i. o. w. remove all first-order parts),
• replace ∨ by + (disjoint sum) and ∧ by × (cartesian product),
• carry out obvious simplifications (e.g. replace α× 1 by α).
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Hence we arrive at the type definition

Nat := µα.1+ α

In Haskell we can define this type as

data Nat = Zero | Succ Nat -- data

deriving Show

The line “deriving Show” creates a default printing method for values of type Nat. The
comment “-- data” indicates that we intend to use the recursive data type Nat as an
inductive data type (or initial algebra). This means that the “‘total”, or “legal” ele-
ments are inductively generated from Zero and Succ. The natural (domain-theoretic)
semantics of Nat also contains, for example, an “infinite” element defined recursively by
infty = Succ infty which is not total in the inductive interpretation of Nat. In a coin-
ductive interpretation (usually indicated by the comment -- codata) infty would count
as total.1

By applying type extraction to (3.1) we see that a program extracted from a proof of
this formula will have type Nat → 1 + 1. By identifying the two-element type 1 + 1 with
the Booleans we get the Haskell signature

parity :: Nat -> Bool

The definition of parity can be extracted from the obvious inductive proof of (3.1): For
the base, x = 0, we take y = 0 to get x = 2y. In the step, x + 1, we have, by i. h. some y
with x = 2y∨x = 2y+1. In the first case x+1 = 2y+1, in the second case x+1 = 2(y+1).
The Haskell program extracted from this proof is

parity Zero = True

parity (Succ x) = case parity x of {True -> False ; False -> True}

If we wish to compute not only the parity, but as well the rounded down half of x (i. e.
quotient and remainder), we just need to relativize the quantifier ∃y in (3.1) to N (i. e.
∀x (N(x) ⇒ ∃y (N(y)∧ (x = 2y∨x = 2y+1))) and use in the proof the fact that N is closed
under the successor operation. The extracted program is then

parity1 :: Nat -> (Nat,Bool)

parity1 Zero = (Zero,True)

parity1 (Succ x) = case parity1 x of

{(y,True) -> (y,False) ;

(y,False) -> (Succ y,True)}

In order to try these programs out it is convenient to have a function that transforms built-in
integers into elements of Nat.

iN :: Integer -> Nat -- defined for non-negative integers only

iN 0 = Zero

iN (n+1) = Succ (iN n)

Now try parity (iN 7) and parity1 (iN 7).
The examples above show that we can get meaningful computational content despite

ignoring the first-order part of a proof. Moreover, we can fine-tune the amount of com-
putational information we extract from a proof by simple modifications of formulas and
proofs. Note also that we used arithmetic operations on the reals and their arithmetic laws

1That Haskell does not distinguish between the inductive and the coinductive interpretation is justified
by the limit-colimit-coincidence in the domain-theoretic semantics [1].
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without implementing or proving them. Since these laws can be written as equations (or
conditional equations) their associated type is void. This ensures that it is only their truth
that matters, allowing us to treat them as ad-hoc axioms without bothering to derive them
from basic axioms. In general, a formula containing neither disjunctions nor free predicate
variables has always a void type and can therefore be taken as an axiom as long as it is
true.

The reader might be puzzled by the fact that quantifiers are ignored in the program
extraction process. Quantifiers are, of course, not ignored in the specification of the ex-
tracted program, i. e. in the definition of realizability. For example, the statement that the
program p :=parity realizes (3.1) is expressed by

∀n, x (n rN(x) ⇒ ∃y (p(n) = True ∧ x = 2y ∨ p(n) = False ∧ x = 2y + 1))

where n ranges over Nat (i. e. Zero, Succ Zero, Succ(Succ Zero), . . . ) and n rN(x)
means that n realizes N(x) which in this case amounts to x being the value of n in R. The
Soundness Theorem for realizability states that the program extracted from a proof realizes
the proven formula (cf. [10]; see also e.g. [37], [36] for proofs of soundness for related notions
of realizability).

Remark. Although the example above seems to suggest that realizers are typed, it is in fact
more convenient to work with per se untyped realizers taken from a domain D which is
defined by the recursive domain equation

D = 1 +D +D +D ×D + [D → D]

([D → D] denotes the domain of continuous endofunctions on D). It is well-known that
such domain equations of “mixed variance” have effective solutions up to isomorphism (see
e.g. [20]). Type expressions 1, α, ρ+ σ, ρ × σ, ρ → σ, µα.ρ, να.ρ with suitable positivity
conditions for fixed point types can naturally be interpreted as subsets of D.2 Realizers
extracted from proofs are terms of an untyped λ-calculus with constructors and recursion
which denote elements of D. It can be shown that the value of a program extracted from a
proof of a formula A lies in the denotation of the type extracted from A [10]. One can also
show that the denotational and operational semantics “match” (computational adequacy).
This implies that extracted programs are correct, both in a denotational and operational
sense [7]. Note that in general a realizing term denotes an element of D, but not an element
of the mathematical structure the proof is about. It is just by coincidence that in the
example above the closed terms of type Nat denote at the same time elements of D and
real numbers, and that both denotations are in a one-to-one correspondence. In the case of
the predicate C0 defined below (and even more so for the predicates Cn defined in Sect. 4)
there is no such tight correspondence between objects satisfying a predicate and realizers
of that fact.

Example 3.1 (from Cauchy sequences to signed digit streams). In the second
example of Sect. 2 we defined the set C0 coinductively by

C0 = νX.{x | ∃d (SD(d) ∧ Id(x) ∧X(2x− d))} (3.3)

2In fact, general recursive types recα . ρ without positivity restriction have a natural semantics in D as
(ranges of) finitary projections [3].
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Since SD(d) is shorthand for d = −1∨ d = 0∨ d = 1, and Id(x) is shorthand for |x− d/2| ≤
1/2, the corresponding type is

C0 = να.(1 + 1+ 1)× α (3.4)

Identifying notationally the type 1+ 1+ 1 with SD

data SD = N | Z | P -- Negative, Zero, Positive

deriving Show

we obtain that C0 is the type of infinite streams of signed digits, i. e. the largest fixed point
of the type operator

type J0 alpha = (SD,alpha)

This corresponds to the set operator J0 which C0 is the largest fixed point of. Therefore
we define (choosing ConsC0 as constructor name)

data C0 = ConsC0 (J0 C0) -- codata

i. e. C0 = ConsC0 (SD,C0).

We wish to extract a program that computes a signed digit representation of x ∈ I from
a fast rational Cauchy sequence converging to x and vice versa. Set

Q(x) := ∃n,m, k (N(n) ∧ N(m) ∧N(k) ∧ x = (n−m)/k)

A(x) := ∀n (N(n) ⇒ ∃q (Q(q) ∧ |x− q| ≤ 2−n))

Constructively, A(x) means that there is a fast Cauchy sequence of rational numbers con-
verging to x. Technically, this is expressed by the fact that the realizers of A(x) are precisely
such sequences. On the other hand, realizers of C0(x) are exactly the infinite streams of
signed digits a such that σ(a) = x In general, realizability for inductive resp. coinduc-
tive predicates is defined in a straightforward way, again as an inductive resp. coinductive
definition (see [7, 10] for details).

Lemma 3.2.
∀x (I(x) ∧A(x) ⇔ C0(x)) (3.5)

Proof. To prove the implication from left to right we show I ∩ A ⊆ C0 by coinduction, i.
e. we show I ∩ A ⊆ J0(I ∩ A). Assume I(x) and A(x). We have to show (constructively!)
J0(I∩A)(x), i. e. we need to find d ∈ SD such that x ∈ Id and 2x−d ∈ I∩A. Since, clearly
the assumption A(x) implies A(2x − d) for any d ∈ SD, and furthermore x ∈ Id holds iff
2x − d ∈ I, we only need to find some signed digit d such that x ∈ Id. The assumption
A(x), used with n = 2, yields a rational number q with |x − q| ≤ 1/4. It is easy to find
(constructively!) a signed digit d such that [q − 1/4, q + 1/4] ∩ I ⊆ Id. For that d we have
x ∈ Id.

For the converse implication we show ∀n (N(n) ⇒ ∀x (C0(x) ⇒ ∃q (Q(q)∧|x−q| ≤ 2−n))
by induction on N(n) using the coclosure axiom for C0. We leave the details as an exercise
for the reader.

The type corresponding to the predicate Q is Nat×Nat ×Nat, which we however im-
plement by Haskell’s built-in rationals, since it is only the arithmetic operations on rational
numbers that matter, whatever the representation. (It is possible - and instructive as an
exercise - to extract implementations of the arithmetic operations on rational numbers w.r.t.
the representation Nat×Nat×Nat from proofs that Q is closed under these operations. In
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order to obtain reasonably efficient programs one has to modify the definition of Q by re-
quiring n−m and k to be relatively prime.) The type of the predicate A is Nat → Rational.
The program extracted from the first part of the proof of Lemma 3.2 is

cauchy2sd :: (Nat -> Rational) -> C0

cauchy2sd = coitC0 step

where step is the program extracted from the proof of I ∩A ⊆ J0(I ∩A):

step :: (Nat -> Rational) -> J0(Nat -> Rational)

step f = (d,f’) where

q = f (Succ (Succ Zero))

d = if q > 1/4 then P else if abs q <= 1/4 then Z else N

f’ n = 2 * f (Succ n) - fromSD d

fromSD :: SD -> Rational

fromSD d = case d of {N -> -1 ; Z -> 0 ; P -> 1}

The program coitC0 is a polymorphic “coiterator” realizing the coinduction scheme X ⊆
J0(X) ⇒ X ⊆ νJ0:

coitC0 :: (alpha -> J0 alpha) -> alpha -> C0

coitC0 s x = ConsC0 (mapJ0 (coitC0 s) (s x))

mapJ0 :: (alpha -> beta) -> J0 alpha -> J0 beta

mapJ0 f (d,x) = (d,f x)

An equivalent definition of coitC0 would be

coitC0’ s x = ConsC0 (d,coitC0’ s y) where (d,y) = s x

The program extracted from the second part of the proof of Lemma 3.2 is

sd2cauchy :: C0 -> (Nat -> Rational)

sd2cauchy c n = aux n c where

aux Zero c = 0

aux (Succ n) (ConsC0 (d,c)) = (fromSD d + aux n c)/2

In order to try out the programs cauchy2sd and sd2cauchy it is convenient to have trans-
lations between the types C0 and Haskell’s type of infinite streams of signed digits (below,
“:” is the cons operation for lists).

c0s :: C0 -> [SD]

c0s (ConsC0 (d,c)) = d : c0s c

sc0 :: [SD] -> C0

sc0 (d:ds) = ConsC0 (d,sc0 ds)

Now evaluate let {f x = 2/3} in take 10 (c0s(cauchy2sd f)) and
let {ds = P:Z:ds} in [sd2cauchy (sc0 ds) (iN n) | n <- [0..9]]

(ds is the infinite list [P,Z,P,Z,...] and [e(n) | n <- [0..9]] is a list comprehension
expression denoting [e(0),...,e(n)]).

We hope that the examples above give enough hints for understanding program extrac-
tion from coinductive proofs. Here is a sketch of how it works in general. Suppose νΦ is a
coinductive predicate defined by a strictly positive set operator Φ (J0 in our example), e.g.
Φ(X) = {~x | A(X,~x)} where A is s.p. in X. From Φ one extracts a s.p. type operator
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data Phi alpha = PhiDef(alpha) -- to be replaced by a suitable

-- extracted type definition

(J0 in our example). Due to the strict positivity of Phi one can define, by structural
recursion on the definition of Phi alpha, a polymorphic map operation

mapPhi :: (alpha -> beta) -> Phi alpha -> Phi beta

mapPhi = undefined -- to be replaced by an extracted program

and from that, recursively, the coiterator

coitFix :: (alpha -> Phi alpha) -> alpha -> Fix

coitFix s x = ConsFix (mapPhi (coitFix s) (s x))

where Fix is the largest fixed point of Phi:

data Fix = ConsFix (Phi Fix) -- codata

The program extracted from a coinductive proof of X ⊆ νΦ is coitFix step where
step :: alpha -> Phi alpha is the program extracted from the proof of X ⊆ Φ(X)
(alpha is the type corresponding to the predicate X). For inductive proofs the construc-
tion is similar: One defines recursively an “iterator”

itFix :: (Phi alpha -> alpha) -> Fix -> alpha

itFix s (ConsFix z) = s (mapPhi (itFix s) z)

where the type Fix is now viewed as the least fixed point of Phi. The program extracted from
an inductive proof of µΦ ⊆ X is now itFix step where step :: Phi alpha -> alpha

is extracted from the proof of Φ(X) ⊆ X. It is a useful exercise to re-program the data
type Nat and the iteratively defined functions parity, parity1 and sd2cauchy following
strictly this general scheme. The above sketched computational interpretations of induction
and coinduction and more general recursive schemes can be derived from category-theoretic
considerations using the initial algebra/final coalgebra interpretation of least and greatest
fixed points (see for example [28, 23, 2, 15]).

4. Coinductive definition of uniform continuity

For every n we define a set Cn ⊆ RIn for which we will in Sect. 5 show that it coincides
with the set of uniformly continuous functions from In to I.

In the following we let n,m, k, l, i range over N, p, q over Q, x, y, z over R, and d, e over
SD. Hence, for example, ∃dA(d) is shorthand for ∃d (SD(d)∧A(d)) and

∧
dA(d) abbreviates

A(−1) ∧A(0) ∧A(1). We define average functions and their inverses

avd : R → R, avd(x) :=
x+ d

2
vad : R → R, vad(x) := 2x− d

Note that avd[I] = Id and hence f [I] ⊆ Id iff (vad ◦ f)[I] ⊆ I. We also need extensions of the
average functions to n-tuples

avi,d(x1, . . . , xi−1, xi, xi+1, . . . , xn) := (x1, . . . , xi−1, avd(xi), xi+1, . . . , xn)

We define an operator Kn : P(RIn) → P(RIn) → P(RIn) by

Kn(X)(Y ) := {f | ∃d (f [In] ⊆ Id ∧X(vad ◦ f)) ∨ ∃i
∧
d

Y (f ◦ avi,d)}
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Since Kn is strictly positive in both arguments, we can define an operator Jn : P(RIn) →
P(RIn) by

Jn(X) := µ(Kn(X)) = µY.Kn(X)(Y )

Hence, Jn(X) is the set inductively defined by the following two rules:

∃d (f [In] ⊆ Id ∧X(vad ◦ f)) ⇒ Jn(X)(f) (4.1)

∃i
∧
d

Jn(X)(f ◦ avi,d) ⇒ Jn(X)(f) (4.2)

Since, as mentioned in Sect. 2, the operation µ is monotone, Jn is monotone as well.
Therefore, we can define Cn as the largest fixed point of Jn,

Cn = νJn = νX.µY.Kn(X)(Y ) (4.3)

Note that for n = 0 the second argument Y of Kn becomes a dummy variable, and therefore
J0 and C0 are the same as in the corresponding example in Sect. 2. Note also that if f ∈ Cn,
then f [In] ⊆ Id ⊆ I for some d ∈ SD since Cn = µY.Kn(Cn)(Y ) = Kn(Cn)(Cn).

The type corresponding to the formula Kn(X)(Y ) is ϕn(α)(β) := SD × α + Nn × β3

where Nn := {1, ..., n}. Therefore, the type of Jn(X) is µβ.SD × α + Nn × β3 which is
the type of finite ternary trees with indices i ∈ Nn attached to the inner nodes and pairs
(d, x) ∈ SD× α attached to the leaves. Consequently, the type of Cn is

να.µβ.SD× α+ Nn × β3 (4.4)

This is the type of non-wellfounded trees obtained by infinitely often stacking the finite trees
on top of each other, i. e. replacing in a finite tree each x in a leaf by another finite tree
and repeating the process in the substituted trees ad infinitum. Alternatively, the elements
of (4.4) can be described as non-wellfounded trees without leaves such that

− each node is either a
writing node labelled with a signed digit and with one subtree, or a
reading node labelled with an index i ∈ Nn and with three subtrees;

− each path has infinitely many writing nodes.

The interpretation of such a tree as a stream transformer is easy. Given n signed digit
streams a1, . . . , an as inputs, run through the tree and output a signed digit stream as
follows:

1. At a writing node (d, t) output d and continue with the subtree t.
2. At a reading node (i, (td)d∈SD) continue with td, where d is the head of ai, and replace

ai by its tail.

Fig. 1 shows an initial segment of a tree representing the function

f : I → I, f(x) =
2

3
(1− x2)− 1

which is an instance of the family of logistic maps discussed in Sect. 5. In order to “run”
this tree with an input stream of signed digits, we follow the path determined by the input
digits. N, Z or P in the input stream means: go at a branching point left, middle or right. The
digits met on this path form the output stream. For example, the input stream Z:Z:Z:Z:...

(representing the number 0) leads us along the spine of the tree and results in the output
stream N:Z;P:Z:P:Z:... (representing −1

2 + 1
8 + 1

32 + . . . = −1
2 + 1

6 = −1
3 = f(0)) while
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Figure 1: An initial segment of the tree of f(x) = 2
3(1− x2)− 1.

the input stream P:Z:Z:Z:... (representing the number 1
2) results in the output stream

N:Z;Z:Z:... (representing −1
2 = f(12)).

3

The above informally described interpretation of the elements of Cn as stream trans-
formers is the extracted program of a special case of Proposition 4.2 below which shows
that the predicates Cn are closed under composition. The following lemma is needed in its
proof.

Lemma 4.1. If Cn(f), then Cn(f ◦ avi,d).

Proof. We fix i ∈ {1, . . . , n} and d ∈ SD and set

D := {f ◦ avi,d | Cn(f)}

We show D ⊆ Cn by strong coinduction, i. e. we show D ⊆ Jn(D∪Cn), i. e. Cn ⊆ E where

E := {f | Jn(D ∪ Cn)(f ◦ avi,d)}

Since Cn = Jn(Cn) it suffices to show Jn(Cn) ⊆ E. We prove this by strong induction on
Jn(Cn), i. e. we show Kn(Cn)(E ∩ Jn(Cn)) ⊆ E. Induction base: Assume f [In] ⊆ Id′ and
Cn(vad′ ◦ f). We need to show E(f), i. e. Jn(D∪Cn)(f ◦ avi,d). By (4.1) it suffices to show
(f◦avi,d)[I

n] ⊆ Id′ and (D∪Cn)(vad′◦f◦avi,d). We have (f◦avi,d)[I
n] = f [avi,d[I

n]] ⊆ f [In] ⊆
Id′ . Furthermore, D(vad′ ◦ f ◦avi,d) holds by the assumption Cn(vad′ ◦ f) and the definition
of D. Induction step: Assume, as strong induction hypothesis,

∧
d′(E ∩Jn(Cn))(f ◦avi′,d′).

We have to show E(f), i. e. Jn(D ∪ Cn)(f ◦ avi,d). If i′ = i, then the strong induction
hypothesis implies Jn(Cn)(f ◦ avi,d) which, by the monotonicity of Jn, in turn implies
Jn(D ∪ Cn)(f ◦ avi,d). If i′ 6= i, then

∧
d′ avi′,d′ ◦ avi,d = avi,d ◦ avi′,d′ and therefore, since

3The LATEXcode for the display of the tree was generated automatically from a term denoting this tree
which in turn was extracted from a formal proof that the function f lies in C1.
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the strong induction hypothesis implies
∧

d′ E(f ◦avi′,d′), we have
∧

d′ Jn(D∪Cn)(f ◦avi,d ◦
avi′,d′). By (4.2) this implies Jn(D ∪Cn)(f ◦ avi,d).

Proposition 4.2. Consider f : In → R and gi : I
m → R, for i = 1, . . . , n. If Cn(f) and

Cm(g1), . . . ,Cm(gn), then Cm(f ◦ (g1, . . . , gn)).

Proof. We prove the proposition by coinduction, i. e. we set

D := {f ◦ (g1, . . . , gn) | Cn(f), Cm(g1), . . . , Cm(gn)}

and show that D ⊆ Jm(D), i. e. Cn ⊆ E where

E := {f ∈ RIn | ∀~g (Cm(~g) ⇒ Jm(D)(f ◦ ~g))}

and Cm(~g) := Cm(g1) ∧ . . . ∧ Cm(gn). Since Cn = Jn(Cn) it suffices to show Jn(Cn) ⊆ E.
We do an induction on Jn(Cn), i. e. we show Kn(Cn)(E) ⊆ E. Induction base: Assume
f [In] ⊆ Id, Cn(vad ◦ f) and Cm(~g). We have to show Jm(D)(f ◦ ~g)). By (4.1) it suffices
to show (f ◦ ~g)[Im] ⊆ Id and D(vad ◦ f ◦ ~g). The first statement holds since ~g[Im] ⊆ I,
the second holds by the definition of D and the assumption. Induction step: Assume, as
induction hypothesis,

∧
d E(f ◦ avi,d). We have to show E(f) , i. e. Cm ⊆ F where

F := {g ∈ RIm | ∀~g (g = gi ∧Cm(~g) ⇒ Jm(D)(f ◦ ~g))}

Since Cm ⊆ Jm(Cm) it suffices to show Jm(Cm) ⊆ F which we do by a side induction
on Jm, i. e. we show Km(Cm)(F ) ⊆ F . Side induction base: Assume g[Im] ⊆ Id and
Cm(vad ◦ g) and Cm(~g) where g = gi. We have to show Jm(D)(f ◦ ~g). Let ~g′ be obtained
from ~g by replacing gi with vad ◦ g. Since Cm(~g′), we have Jm(D)(f ◦ avi,d ◦ ~g

′), by the
main induction hypothesis. But avi,d ◦ ~g

′ = ~g. Side induction step: Assume
∧

d F (g ◦ avj,d)
(side induction hypothesis). We have to show F (g). Assume Cm(~g) where g = gi. We have
to show Jm(D)(f ◦ ~g). By (4.2) it suffices to show Jm(D)(f ◦ ~g ◦ avj,d) for all d. Since the
i-th element of ~g ◦ avj,d is g ◦ avj,d and, by Lemma 4.1, Cm(~g ◦ avj,d), we can apply the side
induction hypothesis.

The program extracted from Prop. 4.2 composes trees. The cases m = 0 and n = 1
are of particular interest. If m = 0, then the program interprets a tree in Cn as an n-
ary stream transformer. In the proof the functions ~g are then just real numbers, and
composition, f ◦ ~g, becomes function application, f(~g). Furthermore, the side induction
step disappears. If n = 1, then the vectors ~g consist of only one function g and F simplifies
to {g ∈ RIm | Jm(D)(f ◦g)}. Furthermore, the side induction step does not need Lemma 4.1
anymore and becomes almost trivial. We show the programs for the cases n = 1,m = 0 and
n = m = 1. We use the following auxiliary programs extracted from a proof of the formula
(X(−1) ∧X(0) ∧X(1)) ⇔ ∀dX(d).

type Triple alpha = (alpha,alpha,alpha)

appTriple :: Triple alpha -> SD -> alpha

appTriple (xN,xZ,xP) d = case d of {N -> xN ; Z -> xZ ; P -> xP}

abstTriple :: (SD -> alpha) -> Triple alpha

abstTriple f = (f N, f Z, f P)

The data types associated with the operators K1, J1 and the predicate C1 as well as their
associated map functions and (co)iterators are
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data K1 alpha beta = W1 SD alpha | R1 (Triple beta)

mapK1 :: (alpha -> alpha’) -> (beta -> beta’) ->

K1 alpha beta -> K1 alpha’ beta’

mapK1 f g (W1 d a) = W1 d (f a)

mapK1 f g (R1 (bN,bZ,bP)) = R1 (g bN,g bZ,g bP)

data J1 alpha = ConsJ1 (K1 alpha (J1 alpha)) -- data

itJ1 :: (K1 alpha beta -> beta) -> J1 alpha -> beta

itJ1 s (ConsJ1 z) = s (mapK1 id (itJ1 s) z)

mapJ1 :: (alpha -> alpha’) -> J1 alpha -> J1 alpha’

mapJ1 f (ConsJ1 x) = ConsJ1 (mapK1 f (mapJ1 f) x)

data C1 = ConsC1 (J1 C1) -- codata

coitC1 :: (alpha -> J1 alpha) -> alpha -> C1

coitC1 s x = ConsC1 (mapJ1 (coitC1 s) (s x))

Now, the extracted programs of Proposition 4.2. Case n = 1,m = 0:

appC :: C1 -> C0 -> C0

appC c ds = coitC0 costep (c,ds) where

costep :: (C1,C0) -> J0 (C1,C0)

costep (ConsC1 x,ds) = aux x ds

aux :: J1 C1 -> C0 -> J0 (C1,C0)

aux = itJ1 step

step :: K1 C1 (C0 -> J0 (C1,C0)) -> C0 -> J0 (C1,C0)

step (W1 d c’) ds = (d,(c’,ds))

step (R1 es) (ConsC0 (d0,ds’)) = appTriple es d0 ds’

Case n = m = 1:

compC1 :: C1 -> C1 -> C1

compC1 c1 c2 = coitC1 costep (c1,c2) where

costep :: (C1,C1) -> J1 (C1,C1)

costep (ConsC1 x1,c2) = aux x1 c2

aux :: J1 C1 -> C1 -> J1(C1,C1)

aux = itJ1 step

step :: K1 C1 (C1 -> J1 (C1,C1)) -> C1 -> J1 (C1,C1)

step (W1 d1 c1’) c2 = ConsJ1 (W1 d1 (c1’,c2))

step (R1 es) (ConsC1 x2) = subaux x2 where
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subaux :: J1 C1 -> J1 (C1,C1)

subaux = itJ1 substep

substep :: K1 C1 (J1 (C1,C1)) -> J1 (C1,C1)

substep (W1 d2 c2’) = appTriple es d2 c2’

substep (R1 fs) = ConsJ1 (R1 fs)

Remark. The cases shown above are also treated in [21] (without application to exact real
number computation). Whereas in [21] the program was ‘guessed’ and then verified, we are
able to extract the program from a proof making verification unnecessary. Of course, one
could reduce Proposition 4.2 to the case m = n = 1, by coding n streams of single digits
into one stream of n-tuples of digits. But this would lead to less efficient programs, since
it would mean that in each reading step all inputs are read, even those that might not be
needed (for example, the function f(x, y) = x/2+ y/100 certainly should read x more often
than y).

Remark. Note that the realizability relation connecting real functions satisfying C1 and trees
in the type C1 is much less tight than it was in the case of natural numbers (where realiz-
ability provided a one-to-one correspondence between real numbers satisfying the predicate
N and elements of the type Nat). Although, by coincidence, every element of the type C1

defines, via the program appC a stream transformer, this stream transformer will in general
not correspond to a real function, i. e. it will not necessarily respect equality of reals rep-
resented by signed digit streams. The latter is the case only if the tree happens to realize
a function f (which is of course the case if the tree was extracted from a proof of C1(f)).
Moreover, a tree can realize C1(f) for different f because the predicate C1 says nothing
about the behaviour of functions outside the interval I.

In order to try out the programs appC and compC1 one needs examples of elements of
the type C1. Such examples will be provided in the next section.

5. Wellfounded induction and digital systems

Now we study the principle of induction along a wellfounded relation from the perspective
of program extraction. As an important application we show that certain families of real
functions which we call digital systems are contained in Cn. This provides a convenient tool
for proving that certain functions, for example polynomials and, more generally, uniformly
continuous functions on In are in Cn, and in turn allows us to extract implementations for
these functions.

Wellfounded induction Let U be a set, A a subset of U and < a binary relation on U .
Define a monotone operator Φ : P(U) → P(U) (depending on A and <) by

Φ(X) := {x | ∀y ∈ A(y < x ⇒ y ∈ X)}

The relation < is called wellfounded on A, WfA(<), if A ⊆ µΦ. A set X ⊆ U is called
<-progressive on A, ProgA(<,X), if Φ(X)∩A ⊆ X. The principle of wellfounded induction
(on A along < at X), WfIndA(<,X), is

ProgA(<,X) ⇒ A ⊆ X

For the purpose of program extraction let us assume that the partial order x < y is defined
without using disjunctions and hence has no computational content. For example, the
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definition could be an equation t(x, y) = 0 for some term t(x, y). The following program
realizes wellfounded induction for provably wellfounded relations (alpha and beta are the
types of realizers of A and X, respectively):

wfrec :: ((alpha -> beta) -> alpha -> beta) -> alpha -> beta

wfrec prog = h where h = prog h

Proposition 5.1. If WfA(<) is provable, then wfrec realizes WfIndA(<,X).

The proof of Prop. 5.1 is beyond the scope of this introductory paper and will be given in
a subsequent publication.

Remark. One can easily prove WfA(<) ⇒ WfIndA(<,X) from the induction principle for
µΦ and extract a program computing a realizer of WfIndA(<,X) from a realizer of WfA(<).
The point is, that our realizer of WfIndA(<,X) does not depend on a realizer of WfA(<).

Remark. In [32] a Dialectica Interpretation of a different form of wellfounded induction is
given. There, the realizing program refers to a decision procedure for the given wellfounded
relation.

Digital systems Let (A,<) be a provably wellfounded relation. A digital system is a
family F = (fx : In → I)x∈A such that for all x ∈ A

∃d (fx[I
n] ⊆ Id ∧ ∃y ∈ Afy = vad ◦ fx) ∨ ∃i

∧
d

∃y ∈ A (y < x ∧ fy = fx ◦ avi,d)

When convenient we identify the family F with the set {fx | x ∈ A}.

Remark. The definition of a digital system makes reference to the (undecidable) equality
relation between real functions. This is not a problem because, as explained in Section 2, it
is not necessary for the mathematical objects and predicates to be constructively given. It
is enough to be able to formulate the necessary axioms without using disjunctions (which
is the case for the usual axioms for equality between functions).

Proposition 5.2. If F is a digital system, then F ⊆ Cn.

Proof. Let F be a digital system. We show F ⊆ Cn by coinduction. Hence, we have to
show Jn(F)(fx) for all x ∈ A. But, looking at the definition of Jn(F) and the properties
of a digital system, this follows immediately by wellfounded <-induction on x.

We can extract a program from the proof of Prop. 5.2 that transforms a (realization
of) a digital system into a family of trees realizing its members (case n = 1):

digitsys1 :: (alpha -> Either (SD,alpha) (Triple alpha))

-> alpha -> C1

digitsys1 s = coitC1 (wfrec prog) where

-- prog :: (alpha -> J1 alpha) -> alpha -> J1 alpha

prog ih x =

case s x of

{Left (d,a) -> ConsJ1 (W1 d a) ;

Right (aN,aZ,aP) -> ConsJ1 (R1 (ih aN, ih aZ, ih aP))}
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Example 5.3 (linear affine functions). For ~u, v ∈ Qn+1 define f~u,v : I
n → R by

f~u,v(~x) := u1x1 + . . .+ unxn + v

Clearly, f~u,v[I
n] = [v − |~u|, v + |~u|] where |~u| := |u1| + . . . + |un|. Hence f~u,v[I

n] ⊆ I iff
|~u|+ |v| ≤ 1, and if |~u| ≤ 1/4, then f~u,v[I

n] ⊆ Id for some d. Furthermore, f~u,v ◦avi,d = f~u′,v′

where ~u′ is like ~u except that the i-th component is halved and v′ = v + uid/2. Hence, if i
was chosen such that |ui| ≥ |~u|/n, then |~u′| ≤ q|~u| where q := 1 − 1/(2n) < 1. Therefore,
we set A := {~u, v ∈ Qn+1 | |~u|+ |v| ≤ 1} and define a wellfounded relation < on A by

~u′, v′ < ~u, v :⇔ |~u| ≥ 1/4 ∧ |~u′| ≤ q|~u|

From the above it follows that Pol1,n := (f~u,v)~u,v∈A is a digital system. Hence Pol1,n ⊆ Cn,
by Proposition 5.2. Program extraction gives us a program that assigns to each tuple of
rationals ~u,w ∈ A a tree representation of f~u,w. Here is the program for the case n = 1:

type Rat2 = (Rational,Rational)

linC1 :: Rat2 -> C1

linC1 = digitsys1 s where

s :: Rat2 -> Either (SD,Rat2) (Triple Rat2)

s (u,v) = if abs u <= 1/4

then let e = if v < -(1/4) then N else

if v > 1/4 then P

else Z

in Left (e,(2*u,2*v-fromSD e))

else Right (abstTriple (\d -> (u/2,u*fromSD d/2+v)))

In order to try this program out we introduce a utility function that applies a function
f : C0 → C0 to the signed digit representation of a rational number q and computes the
result with precision 2−n as a rational number.

runC :: (C0 -> C0) -> Rational -> Integer -> Rational

runC f q n = sd2cauchy (f (cauchy2sd (const q))) (iN n)

Now we can compute, for example, the tree representation of the function f(x) = 1
4x + 1

5

at the signed digit representation of the point x = 1
3 with an accuracy of 2−10 by defining

f :: C0 -> C0

f = appC (linC1 (1/4,1/5))

and evaluating the expression runC f (1/3) 10 . The computed result, 145
512 , differs from

the exact result, 1
4x+ 1

5 = 17
60 , by

1
7680 < 2−10, as required.

Remark 5.4. In [25] it is shown that the linear affine transformations are exactly the
functions that can be represented by a finite automaton. The trees computed by our
program generate these automata, simply because for the computation of the tree for f~u,v
only finitely many other indices ~u′, v′ are used, and Haskell will construct the tree by
connecting these indices by pointers.

Example 5.5 (iterated logistic map). With a similar proof as for the linear affine maps
one can show that all polynomials of degree 2 with rational coefficients mapping I to I are
in C1. The following program can be extracted. It takes three rational numbers u, v, w
and computes a tree representation of the function fu,v,w(x) := ux2 + vx + w, provided
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fu,v,w maps I to I. The programs quadWrite and quadRead compute the coefficients of the
quadratic functions vae ◦ fu,v,w and fu,v,w ◦ avd while quadTest tests whether fu,v,w[I] ⊆ Id.
Since a quadratic function may or may not have an extremal point in the interval I this test
is more complicated than in the linear affine case.

type Rat3 = (Rational,Rational,Rational)

quadC1 :: Rat3 -> C1

quadC1 = digitsys1 s where

s :: Rat3 -> Either (SD,Rat3) (Triple Rat3)

s uvw = case (filter (quadTest uvw) [N,Z,P]) of

(e:_) -> Left (e,quadWrite uvw e)

[] -> Right (abstTriple (quadRead uvw))

quadWrite :: Rat3 -> SD -> Rat3

quadWrite (u,v,w) e = (2*u , 2*v , 2*w - e’)

where e’ = fromSD e

quadRead :: Rat3 -> SD -> Rat3

quadRead (u,v,w) d = (u/4 , (u*d’+v)/2 , u*d’^2/4 + v*d’/2 + w)

where d’ = fromSD d

quadTest :: Rat3 -> SD -> Bool

quadTest (u,v,w) e = (e’-1)/2 <= low && high <= (e’+1)/2

where

e’ = fromSD e

low = minimum crit -- min (f_uvw I)

high = maximum crit -- max (f_uvw I)

crit = [ u+v+w, u-v+w] ++ -- [f_uvw 1, f_uvw (-1)]

(if u == 0 then []

else let x = -v/(2*u) -- extremal point

in if -1 <= x && x <= 1

then [u*x^2 + v*x + w] -- f_uvw x

else [])

In particular the so-called logistic map (transformed to I), defined by

fa(x) = a(1− x2)− 1,

is in C1 for each rational number a ∈ [0, 2].

lmaC1 :: Rational -> C1

lmaC1 a = quadC1 (-a,0,a-1)

Exact computation of iterations of the logistic map were studied in [12] and [31]. In order
to test the performance of our implementation with these maps we use a generalized expo-
nentiation function that raises a value x to the power n (> 0) with respect to an arbitrary
binary function g as “multiplication”:
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gexp :: (alpha -> alpha -> alpha) -> alpha -> Int -> alpha

gexp g x 1 = x

gexp g x (n+1) = g (gexp g x n) x

Now we define a tree representing the 100-fold iteration of the logistic map f2
t100 :: C1

t100 = gexp compC1 t1 100 where t1 = lmaC1 2

and evaluate runC (appC t100) 0.7 100 which means we compute f100
2 (0.7) with a

precision of 2−100. The result,

1008550774065780194036545699607

1267650600228229401496703205376

(which is approximately 0.7956062765908836) is computed within a few seconds. Regard-
ing efficiency, in general our experimental results compare well with those in [31] which
are based on the binary signed digit representation as well. In addition, when one repeats
the evaluation of the expression (appC t100) 0.7 100 the result is computed instantly
because the relevant branch of the tree t100 has been computed before and is now mem-
oized. The memoization effect is still noticeable if one slightly changes the iteration index
or the argument x. Note that the function f100

2 is a polynomial of degree 2100 which os-
cillates about 2100 times in the interval I, and the exact value of f100

2 (0.7) is a rational
number which has a (bit-)size > 2100. Computing f100

2 (0.7) using double precision float-
ing point arithmetic yields the completely wrong value −0.1571454279758806 (evaluate
gexp (.) (\x-> 2*(1-x^2)-1) 100 0.7 :: Double).

In [12] much higher iterations of logistic maps where computed (up to n = 100, 000)
by exploiting specific information about these functions to fine-tune the program. Our
program, however, was extracted from completely general proofs about polynomials and
composability of arbitrary u. c. functions.

An important application of digital systems is the following proof that the predicate
Cn precisely captures uniform continuity. We work with the maximum norm on In and set
Bδ(~p) := {~x ∈ In | |~x − ~p| ≤ δ} for ~p ∈ In. We also set Q := I ∩ Q and let δ, ǫ range over
positive rational numbers. Furthermore, we set

Box(δ, ǫ, f) :⇔ ∀~p ∈ Qn ∃q ∈ Q (f [Bδ(~p)] ⊆ Bǫ(q))

It is easy to see that f : In → R is uniformly continuous with f [In] ⊆ I iff

∀ǫ ∃δBox(δ, ǫ, f) (5.1)

Proposition 5.6. For any function f : In → R, Cn(f) iff f is uniformly continuous and
f [In] ⊆ I.

Proof. We have to show that Cn(f) holds iff (5.1) holds.
For the “if” part we use Prop. 5.2. Let A be the set of triples (f,m, [d1, . . . , dk]) such

that f satisfies (5.1), Box(2−m, 1/4, f) holds, and d1, . . . , dk ∈ SD with k < n (hence in the
case n = 1 the list [d1, . . . , dk] is always empty). Define a wellfounded relation < on A by

(f ′,m′, [d′1, . . . , d
′
k′ ]) < (f,m, [d1, . . . , dk]) :⇔ m′ < m ∨ (m′ = m ∧ k′ > k)

For ~d = [d1, . . . , dk], where k < n, set av~d
:= av1,d1 ◦ . . . ◦ avk,dk , i. p. av[] is the identity

function. We show that F := (f ◦av~d
)
(f,m,~d)∈A

is a digital system (this is sufficient, because

f ◦ av[] = f).
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Let α := (f,m, [d1, . . . , dk]) ∈ A.
Case m = 0, i. e. Box(1, 1/4, f). We show that the left disjunct in the definition of

a digital system holds. We have f [In] = f [B1(~0)] ⊆ B1/4(q) for some q ∈ Q. If |q| ≤ 1/4,
choose d := 0, if q > 1/4, choose d := 1, if q < −1/4 choose d := −1. Then clearly f [In] ⊆ Id,
and g := vad ◦ f is uniformly continuous and maps In into I. Hence (g,m′, []) ∈ A for some
m′.

Case m > 0. We show that the right disjunct in the definition of a digital system holds.
Choose i := k + 1. Let d ∈ SD. If k + 1 < n, then β := (f,m, [d1, . . . , dk, d]) < α and
f ◦ av[d1,...,dk,d] = (f ◦ av[d1,...,dk]) ◦ avi,d. If k + 1 = n, then for g := f ◦ av[d1,...,dk,d] we have
β := (g,m − 1, []) ∈ A because av[d1,...,dk,d] is a contraction with contraction factor 1/2.
Clearly, β < α . Furthermore, g ◦ av[] = g = (f ◦ av[d1,...,dk]) ◦ avi,d.

For the “only if” part we assume Cn(f). Set

Ek := {f : In → R | ∃δBox(δ, 2−k , f)}

For proving (5.1) it obviously suffices to show ∀k (f ∈ Ek). Hence, it suffices to show
Cn ⊆ Ek for all k. We proceed by induction on k.

Base, k = 0: Since B1(0) = I, we clearly have Box(1, 20, f) for all f ∈ Cn.
Step, k → k+1: Since Cn = Jn(Cn) it suffices to show Jn(Cn) ⊆ Ek+1. We prove this

by side induction on Jn(Cn), i. e. we show Kn(Cn)(Ek+1) ⊆ Ek+1. Side induction base:
Assume f [In] ⊆ Id and Cn(vad ◦ f). By the main induction hypothesis, Box(δ, 2−k, vad ◦ f)

for some δ. Hence Box(δ, 2−(k+1), f). Side induction step: Assume, as side induction

hypothesis, Box(δd, 2
−(k+1), f ◦ avi,d) for all d ∈ SD. Setting δ = min{δd | d ∈ SD}, we

clearly have Box(δ/2, 2−(k+1), f).

Remark. Prop. 5.6 is mainly of theoretical value since it shows that the predicate Cn does
not exclude any u. c. functions. From a practical perspective it is less useful, since, although
the proof of the “if” direction computes a tree for every u. c. function f , this tree usually
does not represent a very good algorithm for computing f because it follows the strategy
to read all inputs if some input needs to be read (because in the proof the number m is
decremented only if k+1 = n, i. e. all inputs have been read). Hence, for particular families
of u. c. functions one should not use this proof, but rather design a special digital system
that reads inputs only when necessary (as done in the case of the linear affine functions).

6. Integration

We prove that for functions f in C1 the integral
∫
f :=

∫ 1
−1 f =

∫ 1
−1 f(x) dx can be ap-

proximated by rational numbers, and extract from the proof a program that computes the
integral with any prescribed precision. For the formal proof we do not need to define what
the (Riemann- or Lebesgue-) integral is; it suffices to know that the following equations
hold.

Lemma 6.1. (a)
∫
f = 1

2

∫
(vad ◦ f) + d

(b)
∫
f = 1

2(
∫
(f ◦ av−1) +

∫
(f ◦ av1)).

Proof. (a)
∫
(vad ◦ f) =

∫ 1
−1 (2f(x)− d) dx = 2

∫
f − d

∫ 1
−1 1 dx = 2

∫
f − 2d.

(b) By the substitution rule for integration
∫ avd(1)
avd(−1) f = 1

2

∫ 1
−1 (f ◦ avd). Therefore,∫

f =
∫ 0
−1 f +

∫ 1
0 f = 1

2

∫ 1
−1 (f ◦ av−1) +

1
2

∫ 1
−1 (f ◦ av1).
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Proposition 6.2. If C1(f), then ∀k ∃p |
∫
f − p| ≤ 21−k.

Proof. We show

∀k ∀f (C1(f) ⇒ ∃p |

∫
f − p| ≤ 21−k)

by induction on k.
k = 0: Since C1(f) implies f [I] ⊆ I it follows that |

∫
f | ≤ 2. Hence we can take p := 0.

k + 1: C1(f) implies J1(C1)(f). Hence it suffices to show

∀f (J1(C1)(f) ⇒ ∃p |

∫
f − p| ≤ 2−k)

by a side induction on J1(C1)(f). If C1(vad ◦ f), then, by the main induction hypothesis,
|
∫
(vad ◦ f)− p| ≤ 21−k for some p. By Lemma 6.1 (a) it follows |

∫
f − (p2 + d)| = 1

2 |
∫
(vad ◦

f) − p| ≤ 2−k. If ∀d∃p |
∫
(f ◦ av−1) − p| ≤ 2−k, then in particular there are p and q

such that |
∫
(f ◦ av−1)− p| ≤ 2−k and |

∫
(f ◦ av1)− q| ≤ 2−k. By Lemma 6.1 (b) it follows

|
∫
f− 1

2 (p+q)| = 1
2 |
∫
(f ◦av−1)+

∫
(f ◦av1)−(p+q)| ≤ 1

2 (|
∫
(f ◦av−1)−p|+|

∫
(f ◦av1)−q|) ≤

2−k.

When extracting a program from the proof of Proposition 6.2 we may treat the equations
of Lemma 6.1 as axioms. The proof of Lemma 6.1 is completely irrelevant for the extracted
program and was given only to convince us of the truth of the equations. Here is the
program extracted from the proof of Proposition 6.2:

integral :: C1 -> Nat -> Rational

integral c n = aux n c where

aux Zero c = 0

aux (Succ n) (ConsC1 x) = itJ1 step x where

step :: K1 C1 Rational -> Rational

step (W1 d c’) = aux n c’/2 + fromSD d

step (R1 (eN,_,eP)) = (eN + eP)/2

We can try it out by evaluating, for example, integral (lmaC1 1.5) (iN 10).
An interesting aspect of our integration program is the fact that it “adapts” automat-

ically to the shape of the function. For example, if we integrate a smoother function, e.g.
by changing above the index a = 1.5 to, say, 0.1, then we can increase the precision from
2−10 to 2−20 and observe about the same computation time.

Remark. In [35] an algorithm for exact integration is given which is based on the equations
of Lemma 6.1 as well and which uses ideas from [5] on a sequential implementation of the
“fan functional”, but where the function to be integrated is given as a continuous function on
signed digit streams. Unsurprisingly, our integration program is simpler and more efficient
because in our case the integrand is given as a tree containing explicit information about
the modulus of uniform continuity. In general, of course, our program is still exponential
in the precision which is in accordance with general results on the exponential nature of
integration [24].
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7. Conclusion and further work

We presented a method for extracting from coinductive proofs tree-like data structures
coding exact lazy algorithms for real functions. The extraction method is based on a
variant of modified realizability that strictly separates the (abstract) mathematical model
the proof is about from the data types the extracted program is dealing with. The latter
are determined solely by the propositional structure of formulas and proofs. This has the
advantage that the abstract mathematical structures do not need to be ‘constructivized’.
In addition, formulas not containing disjunctions are computationally meaningless and can
therefore be taken as axioms as long as they are true. This enormously reduces the burden
of formalization and turns - in our opinion - program extraction into a realistic method for
the development of nontrivial certified algorithms. In particular, the very short proof and
extracted program for the definite integral demonstrates that our method does not become
unwieldy when applied to less trivial problems.

Up to and including Sect. 3 the proof formalization and program extraction has been
carried out in the Coq proof assistant. The formalization in Coq of proofs involving nested
inductive/coinductive predicates such as Cn causes problems because Coq’s guardedness
checker does not recognize such proofs as correct. In order to circumvent these problems
we are currently adapting the existing implementation of program extraction in the Minlog
proof system [4] to our setting. However, we would like to stress that program extraction
from proofs has turned out to be a very reliable and useful methodology for obtaining
certified programs, even if the extraction is done with pen and paper and not supported
by a proof assistant. We also plan to extend this work to more general situations where
the interval I and the maps avd are replaced by an arbitrary bounded metric space with
a system of contractions (see [34] for related work), or even to the non-metric case (for
example higher types). These extensions will facilitate the extraction of efficient programs
for e.g. analytic functions, parametrised integrals, and set-valued functions.

Although our extracted programs perform reasonably well, we do not claim to be able to
compete with existing specialized software for exact real number computation (e.g. [29, 27])
regarding efficiency. Our aim is rather to provide a practical methodology for producing
correct and verified software and combining existing fully specified correct (and trusted)
software components. For example, existing efficient exact implementations of certain real
functions could be formally represented in our logical system as constants which are axiom-
atized by their given specification and realized by the existing implementation. In future
work we plan to apply program extraction also to other areas, for example, monadic parsing.

Acknowledgements

I would like to thank the anonymous referees for their constructive criticism and valuable
suggestions that led to several improvements of the paper.

References

[1] Abramsky, S., Jung, A.: Domain theory. In Abramsky, S., Gabbay, D.M., Maibaum, T.S.E., eds.:
Handbook of Logic in Computer Science, Volume 3. Clarendon Press (1994) 1–168

[2] Abel, A., Matthes, R., Uustalu, T.: Iteration and coiteration schemes for higher-order and nested
datatypes. Theoretical Computer Science 333 (2005) 3–66



FROM COINDUCTIVE PROOFS TO EXACT REAL ARITHMETIC: THEORY AND APPLICATIONS 23

[3] Amadio, R., Bruce K., Longo, G.: The finitary projection model for second order lambda calculus and
the solutions to higher order domain equations. In Proceedings of the First Annual IEEE Symposium
on Logic in Computer Science (1986) 122-130.

[4] Benl, H., Berger, U., Schwichtenberg, H., Seisenberger, M., Zuber, W.: Proof theory at work: Program
development in the Minlog system. In Bibel, W., Schmitt, P., eds.: Automated Deduction – A Basis
for Applications. Volume II of Applied Logic Series. Kluwer, Dordrecht (1998) 41–71

[5] Berger U.: Total Sets and Objects in Domain Theory. Annals of Pure and Applied Logic 60 (1993)
91–117

[6] Berger, U.: From coinductive proofs to exact real arithmetic. In Grädel, E. and Kahle, R. eds.: Com-
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