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a Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa
e-mail address: gildafer@cii.fc.ul.pt

b Queen Mary University of London, School of Electronic Engineering and Computer Science
e-mail address: paulo.oliva@eecs.qmul.ac.uk

Abstract. We present three different functional interpretations ofintuitionistic linear logicand show
how these correspond to well-known functional interpretations of intuitionistic logic via embeddings
of ILω into ILLω. The main difference from previous work of the second author is that in intuitionistic
linear logic (as opposed to classical linear logic) the interpretations of !Aare simpler and simultaneous
quantifiers are no longer needed for the characterisation ofthe interpretations. We then compare our
approach in developing these three proof interpretations with the one of de Paiva around the Dialectica
category model of linear logic.

1. Introduction

This paper presents a family of functional interpretationsof intuitionistic linear logic. First, we
present a single functional interpretation of pure (i.e., the exponential-free fragment of) intuitionistic
linear logic. This is followed by a parametrised interpretation of the exponential !A. Finally, three
possible instances of the parameter are considered and shown to correspond to three well-known
functional interpretation of intuitionistic logic.

The second author [10, 11, 12, 13] has recently shown how different functional interpretations
of intuitionistic logic can be factored into a uniform family of interpretations of classical linear logic
combined with Girard’s standard embedding (·)∗ of intuitionistic logic into linear logic (see also [5]).
In the symmetric context ofclassical linear logiceach formulaA is associated with a simultaneous
one-move two-player game|A|xy . Intuitively, the two players, say Eloise and Abelard, mustpick
their movesx andy simultaneously and Eloise wins if and only if|A|xy holds. The symmetric nature
of the game implies that (proof-theoretically) the formulaA is interpreted as the formula

Æx
y |A|

x
y
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b The second author gratefully acknowledges support of the Royal Society (grant number 516002.K501/RH/kk).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (1:9) 2011

c© G. Ferreira and P. Oliva
CC© Creative Commons

http://creativecommons.org/about/licenses


2 G. FERREIRA AND P. OLIVA

where

Æx
y A is a simple form of branching quantifier – termedsimultaneous quantifierin [11]. Fol-

lowing this game-theoretic reading, the different interpretations of the modality !A are all of the
following form: First, it (always) turns a symmetric game into an asymmetric one, where Eloise
plays first, giving Abelard the advantage of playing second.In the symmetric context, this asym-
metric game can be modelled by allowing Abelard to play a function f which calculates his move
from a given Eloise movex. Secondly, the game !A gives a further (non-canonical) advantage to
Abelard, by allowing him to play aset of moves, rather than a single move. The idea is the follow-
ing: Abelard wins the game !A if there is a movey ∈ f x that is winning with respect to Eloise’s
movex, i.e.¬|A|xy . Formally

|!A|xf ≡ ∀y∈ f x |A|xy .

Therefore, the game !A always introduces a break of symmetry, but it leaves openwhat kind of sets
Abelard is allowed to play. What the second author has shown is that if only singleton sets are
allowed the resulting interpretation corresponds to Gödel’s Dialectica interpretation [1, 7, 12]; if
finite sets are allowed then it corresponds to the Diller-Nahm variant of the Dialectica interpretation
[4, 13]; and if these sets are actually the whole set of moves then it corresponds to Kreisel’s modified
realizability interpretation [9, 11].

In the present paper we show that in the context ofintuitionistic linear logicevery formula can
be interpreted as a game where Eloise plays first and Abelard plays second, the branching quantifiers
being no longer needed. In other words, Abelard’s advantageof playing second, which was limited
to the game !A in classical linear logic, is ubiquitous in intuitionisticlinear logic. In this way, the
game-theoretic interpretation of the modality !A is simply to lift the moves of Abelard from a single
move to a set of moves. Formally,

|!A|xa ≡ ∀y∈ a |A|xy .
Therefore, by working in the context ofILLω, we can fully separate the canonical part of the inter-
pretation (pure intuitionistic linear logic), where all interpretations coincide, and the non-canonical
part where each choice of “sets of moves” gives rise to a different functional interpretation.

As we shall see, the functional interpretation ofpure intuitionistic linear logiccoincides with
Gödel’s Dialectica interpretation ofintuitionistic logic, reading⊸,⊗ and⊕ as→,∧ and∨, respec-
tively. This is so because the Dialectica interpretation identifies the gamesA and !A. The connection
between Gödel’s Dialectica interpretation and intuitionistic linear logic was first studied by de Paiva
[14]. One can view our work here as a proof-theoretic readingof de Paiva’s category-theoretic work,
together with an extension linking the “Dialectica” interpretation of intuitionistic linear logic also
with Kreisel’s modified realizability (see also Biering’s recent work [2]).

The paper is organised as follows: In Section 2 we present thebasic interpretation of pure
intuitionistic linear logic. In the same section we outlinewhich principles are needed for the char-
acterisation of the interpretation (Subsection 2.1). Section 3 describes three different interpretations
of the modality !A. This is followed (Section 4) by a description of how these choices correspond to
three well-known functional interpretations of intuitionistic logic: Kreisel’s modified realizability,
Diller-Nahm interpretation and Gödel’s Dialectica interpretation. Finally, in Section 5 we compare
our approach (based on finite types) with that of de Paiva (based on cartesian closed categories).

1.1. Intuitionistic Linear Logic. Intuitionistic linear logic can be viewed as a fragment of Girard’s
linear logic [6] which is sufficient for embedding intuitionistic logic into the linear context. We will
make use of the formulation of intuitionistic linear logic shown in Tables 1 and 2 with the usual side
conditions in the rules∀R and∃L. Our system is denoted byILLω since we work in the language of
all finite types.
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(id)
A ⊢ A Γ, 0 ⊢ A

Γ ⊢ A ∆,A ⊢ B
(cut)

Γ,∆ ⊢ B

Γ ⊢ A
(per)

π{Γ} ⊢ A

Γ ⊢ A ∆ ⊢ B
(⊗R)

Γ,∆ ⊢ A⊗ B

Γ,A, B ⊢ C
(⊗L)

Γ,A⊗ B ⊢ C

Γ,A ⊢ B
(⊸R)

Γ ⊢ A⊸ B

Γ ⊢ A ∆, B ⊢ C
(⊸L)

Γ,∆,A⊸ B ⊢ C

Γ ⊢ A Γ ⊢ B
(&R)

Γ ⊢ A& B

Γ,A ⊢ B
(&L)

Γ,A& C ⊢ B

Γ,A ⊢ B
(&L)

Γ,C & A ⊢ B

Γ ⊢ A
(⊕R)

Γ ⊢ A⊕ B

Γ ⊢ B
(⊕R)

Γ ⊢ A⊕ B

Γ,A ⊢ C Γ, B ⊢ C
(⊕L)

Γ,A⊕ B ⊢ C

Table 1: Intuitionistic Linear Logic (connectives)

The finite types are inductively defined in the usual way:i is a finite type and ifρ andσ are
finite types thenρ → σ is a finite type. The terms ofILLω are: the constants (including one of
type i to ensure that all types are inhabited by a closed term and thetyped combinatorsΠσ→τ→σ

andΣ(ρ→σ→τ)→(ρ→σ)→ρ→τ), infinitely many variablesxρ of each finite typeρ, and if tσ→τ andsσ are
terms then the applicationts is a term of typeτ. We assume a neutral treatment of equality in the
systemILLω (cf. [18]), i.e. the combinators are axiomatised as

A[Πxy/w] � A[x/w] and A[Σxyz/w] � A[xz(yz)/w],

whereA � B is an abbreviation from (A ⊸ B) & ( B ⊸ A). By combinatorial completeness,
we know that we can associate with each termtσ and variablexτ a termλx.t of type τ → σ also
satisfyingA[(λx.t)(s)/w] � A[t[s/x]/w].

The atomic formulas ofILLω are denoted byAat (the linear logic constant 0 is an atomic for-
mula) and ifA andB are formulas, thenA ⊗ B, A& B, A ⊕ B, A ⊸ B, !A, ∀xA(x) and∃xA(x) are
also formulas.

In this paper we will also work with a subsystem ofILLω, dubbedILLωr , where the following
restriction is assumed on the &R-rule: The contextΓ must consist entirely of formulas of the kind
!A. In Section 4 we will see why we need this technical restriction. Nevertheless, note that both
systemsILLω andILLωr are strong enough to capture intuitionistic logicILω into the linear context,
as made precise in the following proposition.

Proposition 1.1([6]). Define two translations of formulas ofILω into formulas ofILLωr inductively
as follows:
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Γ ⊢ A
(∀R)

Γ ⊢ ∀xρA

Γ,A[tρ/x] ⊢ B
(∀L)

Γ,∀xρA ⊢ B

Γ ⊢ A[tρ/x]
(∃R)

Γ ⊢ ∃xρA

Γ,A ⊢ B
(∃L)

Γ,∃xρA ⊢ B

Γ, !A, !A ⊢ B
(con)

Γ, !A ⊢ B

Γ ⊢ B
(wkn)

Γ, !A ⊢ B

!Γ ⊢ A
(!R)

!Γ ⊢!A

Γ,A ⊢ B
(!L)

Γ, !A ⊢ B

Table 2: Intuitionistic Linear Logic (quantifiers and modality)

A∗at :≡ Aat A◦at :≡ !Aat, if Aat . ⊥

⊥∗ :≡ 0 ⊥◦ :≡ 0

(A∧ B)∗ :≡ A∗ & B∗ (A∧ B)◦ :≡ A◦ ⊗ B◦

(A∨ B)∗ :≡ !A∗⊕ !B∗ (A∨ B)◦ :≡ A◦ ⊕ B◦

(A→ B)∗ :≡ !A∗ ⊸ B∗ (A→ B)◦ :≡ !(A◦ ⊸ B◦)

(∀xA)∗ :≡ ∀xA∗ (∀xA)◦ :≡ !∀xA◦

(∃xA)∗ :≡ ∃x!A∗ (∃xA)◦ :≡ ∃xA◦

If A is provable inILω then A∗ and A◦ are provable inILLωr (and hence also inILLω). Moreover, it
is easy to check that A◦� !A∗.

Proof. It is already known that ifΓ ⊢ILω A then !Γ∗ ⊢ILLω A∗ (see [6, 17]). The result withILLω

replaced byILLωr just requires our attention in the rule &R. The result forA◦ follows immediately
from the fact that inILLωr we can proveA◦� !A∗.

The systemsILLω and ILLωr will be called interpreted systems, to distinguish them from the
verifying systempresented in the next subsection. The interpretations we will discuss map formulas
and proofs in the interpreted system into formulas and proofs of the verifying system. In order to
obtain a general notion of interpretation, we must work withthe simplest (yet relevant) interpreted
system possible. When extending the interpretation to morecomplex systems we must then ensure
that the extra axioms and rules are also interpreted, but these might be interpreted by some inter-
pretation but not others. For instance, we chose a neutral treatment of equality in the interpreted
system because that is what can be interpreted in general, byall three interpretations considered. If
one were to add full extensionally the Dialectica interpretation would no longer work, whereas this
would be no problem for the realizability interpretation.

Notation. Throughout the paper, boldface lettersa, b, . . . or x, y, . . . stand for tuples of terms or
variables.

1.2. Verifying system. As we will show in the next sections, the three presented functional in-
terpretations translate the formulaA ⊕ B via a sort of flagged disjoint union, i.e. a boolean and a
witness for eitherA or B. Therefore, in the verifying system, which we shall denote by ILLωb , we
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assume that the language also contains the booleansb as base type. We also assume the existence
of two boolean constants true and false (T, F), boolean variables, an equality relation=b between
terms of boolean type, and a constant of typeb→ ρ → ρ → ρ that should be seen as a conditional
λ-termz(t, q) that equals eithert or q depending on whetherzb equals true or false.ILLωb is assumed
to contain the following axioms for equality:

(1) !(x =b x)
(2) !(x =b y)⊸ !(y =b x)
(3) !(x =b y)⊗ !(y =b z)⊸ !(x =b z)
(4) !(x =b y) ⊗ A[x/w] ⊸ A[y/w].

We would also like to ensure that true and false are distinct and that there are no other elements of
boolean type
(5) !(T =b F)⊸ 0
(6) !(z=b T)⊕ !(z=b F).

The axioms for the conditionalλ-term are as follows

(7) A[T(t, q)/w] � A[t/w] andA[F(t, q)/w] � A[q/w].

For simplicity, we use the following abbreviation:

A ^z B :≡ (!(z=b T)⊸ A) & (!( z=b F)⊸ B).

Lemma 1.2. The following are derivable inILLωb

(i)
⊢ A[T] ⊢ A[F]

⊢ A[z]
(ii) !(T =b T)⊸ A ⊢ A and!(F =b F)⊸ A ⊢ A
(iii) A ⊢ !(T =b F)⊸ B
(iv) A ^T B� A and A^F B� B
(v) !A ^z !B� !(!A ^z !B).

Proof. Assertion (i) can be derived from axioms (4) and (6); (ii) follows easily from axiom 1.;
(iii) can be deduced from axiom (5) and the forward implications in (iv) follow immediately from
item (ii) and the inverse implications can easily be deducedusing (iii). The forward implication in
assertion (v) can be derived using assertions (i) and (iv), the other implication being trivial.

We stress again that we do not need to worry about which axiomsare added to theverifying
systemILLωb , as these do not need to be interpreted. For instance, in the verifying system we could
even have assumed full extensionality. What we listed abovein the description ofILLωb is the min-
imal necessary to verify the basic interpretation ofILLω andILLωr , to be described in the following
section. When extending the basic interpretation to deal with !A we will also need to extend the ver-
ifying systemILLωb . The extensions ofILLωb , however, will depend on the particular interpretation of
!A, and will be introduced in Proposition 3.3 (Section 3).

2. A Basic Interpretation of Pure ILLω

In this section we present a basic functional interpretation of pure (without the exponential !A)
intuitionistic linear logic, and prove its soundness. In the next section we then consider different
extensions of this interpretation to full intuitionistic linear logic.

Definition 2.1 (Basic functional interpretation of pureILLω). For each formulaA of pureILLω, let
us associate a formula|A|xy of ILLωb , with two fresh lists of free-variablesx and y, inductively as
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follows: For atomic formulasAat we let |Aat| :≡ Aat. Assume the interpretations ofA andB have
already been defined as|A|xy and|B|vw, we then define

|A⊸ B| f ,gx,w :≡ |A|xf xw ⊸ |B|
gx
w

|A⊗ B|x,vy,w :≡ |A|xy ⊗ |B|
v
w

|A& B|x,vy,w,z :≡ |A|xy ^z |B|vw

|A⊕ B|x,v,zy,w :≡ |A|xy ^z |B|vw

|∃zA(z)|x,zy :≡ |A(z)|xy

|∀zA(z)| fy,z :≡ |A(z)| fz
y .

Intuitively, the meaning ofA is reduced to the existence of a tuple of objectsx such that∀y|A|xy .
The x’s are calledwitnessesand they’s challenges. Note that, contrary to the interpretation of
classical linear logic [10, 13], the functional interpretation of intuitionistic linear logic is no longer
symmetric. In terms of games, the interpretation above can be seen as associating to each formula
A a one-move two-playersequentialgame|A|xy . In this game, Eloise starts by playing a movex
followed by Abelard playing a movey. Eloise wins if|A|xy holds, otherwise Abelard wins.

Theorem 2.2 (Soundness). Let A0, . . . ,An, B be formulas of pureILLω, with z as the only free-
variables. If

A0(z), . . . ,An(z) ⊢ B(z)
is provable in pureILLω then termsa0, . . . , an, b can be extracted from this proof such that

|A0(z)|x0
a0
, . . . , |An(z)|xn

an
⊢ |B(z)|bw

is provable inILLωb , with FV(ai) ⊆ {z, x0, . . . , xn,w} andFV(b) ⊆ {z, x0, . . . , xn}.

Proof. By induction on the derivation ofA0(z), . . . ,An(z) ⊢ B(z). The axioms are trivial since the
interpretation does not change atomic formulas and every type is inhabited. Note that for the axiom
Γ, 0 ⊢ A, the interpretation of 0 is 0 itself, and so we can take arbitrary terms of the right type. The
fact that every type is inhabited is also used in the study of the rules &L and⊕R. The permutation
rule is immediate. Let us consider a few other cases:

Cut. By induction hypothesis, assume we already have terms witnessing the two premises as|Γ|uγ ⊢
|A|a0

y and |∆|v
δ
, |A|xa1[x] ⊢ |B|

b
w. We must construct terms that witness the conclusionΓ,∆ ⊢ B. That

can be done as follows:

|Γ|uγ ⊢ |A|
a0
y

[ a1[a0]
y ]

|Γ|uγ′ ⊢ |A|
a0
a1[a0]

|∆|v
δ
, |A|xa1[x] ⊢ |B|

b
w

[ a0
x ]

|∆|v
δ′
, |A|a0

a1[a0] ⊢ |B|
b′
w

(cut)
|Γ|uγ′ , |∆|

v
δ′
⊢ |B|b

′

w

whereγ′ andδ′, b′ are obtained fromγ andδ, b via the substitutions [a1[a0]/y] and [a0/x], respec-
tively.

Tensor.

|Γ|uγ ⊢ |A|
a
y |∆|vδ ⊢ |B|

b
w

(⊗R)
|Γ|uγ, |∆|

v
δ ⊢ |A|

a
y ⊗ |B|

b
w

(Definition 2.1)
|Γ|uγ, |∆|

v
δ
⊢ |A⊗ B|a,by,w

|Γ|uγ, |A|
x
a, |B|

v
b ⊢ |C|

c
w

(⊗L)
|Γ|uγ, |A|

x
a ⊗ |B|

v
b ⊢ |C|

c
w

(Definition 2.1)
|Γ|uγ, |A⊗ B|x,va,b ⊢ |C|

c
w
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⊸L introduction.

|Γ|uγ[y] ⊢ |A|
a
y

[ f a(b[ ga])
y ]

|Γ|u
γ[ f a(b[ ga])] ⊢ |A|

a
f a(b[ ga])

|∆|wδ[v] , |B|
v
b[v] ⊢ |C|

c[v]
z

[ ga
v ]

|∆|w
δ[ ga] , |B|

ga
b[ ga] ⊢ |C|

c[ ga]
z

(⊸ L)
|Γ|uγ[ f a(b[ ga])] , |∆|

w
δ[ ga] , |A|

a
f a(b[ ga]) ⊸ |B|

ga
b[ ga] ⊢ |C|

c[ ga]
z

(Definition 2.1)
|Γ|u
γ[ f a(b[ ga])] , |∆|

w
δ[ ga] , |A⊸ B| f ,ga,b[ ga] ⊢ |C|

c[ ga]
z

Universal quantifier.

|Γ|uγ[z] ⊢ |A(z)|a[z]
y

|Γ|uγ[z] ⊢ |A(z)|(λz.a[z])z
y

(Definition 2.1)
|Γ|uγ[z] ⊢ |∀zA(z)|λz.a[z]

y,z

|Γ|uγ[x] , |A(t)|xa[x] ⊢ |B|
b[x]
w

[ f t
x ]

|Γ|uγ[ f t] , |A(t)| f t
a[ f t] ⊢ |B|

b[ f t]
w

(Definition 2.1)
|Γ|u
γ[ f t] , |∀zA(z)| fa[ f t],t ⊢ |B|

b[ f t]
w

Existential quantifier.

|Γ|uγ ⊢ |A(t)|ay
(Definition 2.1)

|Γ|uγ ⊢ |∃zA(z)|a,ty

|Γ|uγ[z] , |A(z)|xa[z] ⊢ |B|
b[z]
y

(Definition 2.1)
|Γ|uγ[z] , |∃zA(z)|x,za[z] ⊢ |B|

b[z]
y

&R introduction.

|Γ|uγ0
⊢ |A|ay |A|ay ⊢ |A|

a
y ^T |B|

b
w

|Γ|uγ0
⊢ |A|ay ^T |B|

b
w

⊢ |Γ|uγ0
⊸ |A|ay ^T |B|

b
w

(Ax. 7)
⊢ |Γ|uT(γ0,γ1) ⊸ |A|

a
y ^T |B|

b
w (+)

(Lemma 1.2(i))
⊢ |Γ|uz(γ0,γ1) ⊸ |A|

a
y ^z |B|

b
w

(Definition 2.1)
⊢ |Γ|uz(γ0,γ1) ⊸ |A& B|a,by,w,z

|Γ|uz(γ0,γ1) ⊢ |A& B|a,by,w,z

where (+) is the dual case.

&L introduction and⊕R introduction.

|Γ|uγ, |A|
x
a ⊢ |B|

b
w

(Lemma 1.2(iv))
|Γ|uγ, |A|

x
a ^T |C|

v
c ⊢ |B|

b
w

(Definition 2.1)
|Γ|uγ, |A& C|x,va,c,T ⊢ |B|

b
w

|Γ|uγ ⊢ |A|
a
y |A|ay ⊢ |A|

a
y ^T |B|

b
w

(cut)
|Γ|uγ ⊢ |A|

a
y ^T |B|

b
w

(Definition 2.1)
|Γ|uγ ⊢ |A⊕ B|a,b,Ty,w

The other &L and⊕R are similar.

⊕L introduction.

(+)

|Γ|uγ1
, |B|vb ⊢ |C|

c2
w

(Ax. 7 / Lemma 1.2 (iv))
|Γ|uF(γ0,γ1), |A|

x
a ^F |B|

v
b ⊢ |C|

F(c1,c2)
w

(Lemma 1.2(i))
|Γ|uz(γ0,γ1), |A|

x
a ^z |B|

v
b ⊢ |C|

z(c1,c2)
w

(Definition 2.1)
|Γ|uz(γ0,γ1), |A⊕ B|x,v,za,b ⊢ |C|

z(c1,c2)
w

where (+) is the dual case. The other rules are treated similarly.
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2.1. Characterisation. As mentioned in the introduction, one of the main advantagesof working
in the context of intuitionistic linear logic is that we no longer need branching quantifiers. The
asymmetry introduced inILLω turns the symmetric games of classical linear logic into games where
Eloise always plays first, so formulasA are interpreted as∃x∀y|A|xy .

Proposition 2.3. The following principles, denoted byACl, MPl , IPl andEP (acronyms for linear
versions of Axiom of Choice, Markov Principle, Independence of Premises and Extra Principle)
characterise the basic interpretation presented above

ACl : ∀x∃yA∀(y)⊸ ∃ f∀xA∀( f x)

MPl : (∀xAqf ⊸ Bqf)⊸ ∃x(Aqf ⊸ Bqf)

IPl : (A∀ ⊸ ∃yB∀)⊸ ∃y(A∀ ⊸ B∀)

EP : ∀x, v(Aqf ⊗ Bqf)⊸ (∀xAqf ⊗ ∀vBqf)

where Aqf, Bqf and A∀, B∀ are quantifier-free formulas and purely universal formulasof ILLωb re-
spectively. It is also assumed thatx does not occur in Bqf, y does not occur in A∀ in the principle
IPl andv does not occur in Aqf in the principleEP. Formally,

ILLωb + ACl +MPl + IPl + EP ⊢ A� ∃x∀y|A|xy .
Moreover, assuming that̂ is a primitive symbol, interpreted as in[11], the characterisation result
still holds when bang does not occur inACl , MPl , IPl andEP and these principles are interpretable,
i.e. denoting by P any instance of these principles, there are termsa such thatILLωb ⊢ ∀y|P|ay .

Proof. The linear equivalence can be proved by induction on the logical structure ofA. Let us
consider a few cases:

Tensor.

A⊗ B
(IH)
� ∃x∀y|A|xy ⊗ ∃v∀w|B|vw
(EP)
� ∃x, v∀y,w(|A|xy ⊗ |B|

v
w)

≡ ∃x, v∀y,w|A⊗ B|x,vy,w.

With.

A& B
(IH)
� ∃x∀y|A|xy & ∃v∀w|B|vw

� ∀z(∃x∀y|A|xy ^z∃v∀w|B|vw)

� ∀z∃x, v(∀y|A|xy ^z∀w|B|vw)

� ∀z∃x, v∀y,w(|A|xy ^z |B|vw)

(ACl )
� ∃ f , g∀z, y,w(|A| fz

y ^z |B|
gz
w )

� ∃x, v∀z, y,w(|A|xy ^z |B|vw)

≡ ∃x, v∀y,w, z|A& B|x,vy,w,z.

Linear implication.

A⊸ B
(IH)
� ∃x∀y|A|xy ⊸ ∃v∀w|B|vw

(IPl ,MPl )
� ∀x∃v∀w∃y(|A|xy ⊸ |B|

v
w)

(ACl )
� ∃ f , g∀x,w(|A|xf xw ⊸ |B|

gx
w ) ≡ ∃ f , g∀x,w|A⊸ B| f ,gx,w.

Universal quantifier.
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∀zA
(IH)
� ∀z∃x∀y|A|xy

(ACl )
� ∃ f∀y, z|A| fz

y ≡ ∃ f∀y, z|∀zA| fy,z.

The other cases are treated similarly. In fact, for the remaining cases (once the induction hypothesis
is assumed) the equivalence can be proved inILLωb alone.

With the assumptions presented, the interpretability of the principles is easily checked since
quantifier-free formulas are interpretable by themselves,i.e. they do not ask for realisers. We
illustrate with the principleACl where the premise is interpreted as

|∀x∃y∀zAq f |
f
z,x ≡ |∃y∀zAq f (x, y, z)| f x

z ≡ |∀zAq f (x, f x, z)|z ≡ Aq f (x, f x, z)

whereas the conclusion is interpreted as

|∃ f∀x∀zAq f (x, f x, z)| fz,x ≡ |∀x∀zAq f (x, f x, z)|z,x ≡ |∀zAq f (x, f x, z)|z ≡ Aq f (x, f x, z).

Since the realisers of the premise are the same as those of theconclusion, the identity and projection
functions can be taken as realisers of the implication.

Remark 2.4. Note that if we are embeddingILω via the standard embedding (·)∗ then the connective
⊗ is not needed, and hence the extra principleEP is not needed either.

3. Some Interpretations of ILLω

In this section we consider a few choices of how the basic interpretation given in Definition 2.1
can be extended to full intuitionistic linear logic, i.e. wepresent three possible interpretations of !A.
All choices considered will have the form

|!A|xy :≡ !∀y′⊏ y |A|xy′ (3.1)

where∀y⊏ a A is a meta-level formula construction which we will assume tosatisfy the following:
For some terms1 η(·), (·) ⊗ (·) and (·) ◦ (·) the conditions below are provable inILLωb

(A1) !∀y⊏η(z) A[y] ⊸ A[ z]
(A2) !∀y⊏ (y1 ⊗ y2) A[y] ⊸ !(∀y⊏ y1 A[y]) ⊗ !(∀y⊏ y2 A[y])
(A3) !∀y⊏ ( f ◦ z) A[y] ⊸ !∀x⊏ z !∀y⊏ f x A[y].

The three instances of such meta-level formula construction ∀y⊏ a A we will consider are∀yA,
∀y∈ a A (wherey∈ a will be defined later), andA[a/y].

Proposition 3.1. Under the assumptions (A1 – A3) on the formula construction∀y⊏ a A, the generic
interpretation of!A as above leads to a sound functional interpretation ofILLω.

Proof. By Theorem 2.2 we just have to analyse the rules of contraction, weakening, !R, and !L.

Contraction. Assume by induction hypothesis that we already have terms witnessing the premise
of the rule, i.e.|Γ|uγ, |!A|

x0
a0
, |!A|x1

a1
⊢ |B|bw. We must from these construct witnesses for the conclusion

1Note that these terms are allowed to be specific to the formulaA, in particular, the free variables ofη(·), (·) ⊗ (·) and
(·) ◦ (·) are assumed to be contained in the free-variables of∀yA[y] (i.e. all free-variables ofA excepty).
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Γ, !A ⊢ B. That can be done as follows:

|Γ|uγ, |!A|
x0
a0
, |!A|x1

a1
⊢ |B|bw

[ x
x0
, x

x1
]

|Γ|uγ, |!A|
x
a0
, |!A|xa1

⊢ |B|bw
(3.1)

|Γ|uγ, !∀y′⊏ a0 |A|
x
y′ , !∀y′⊏ a1 |A|

x
y′ ⊢ |B|

b
w

(⊗L)
|Γ|uγ, !∀y′⊏ a0 |A|

x
y′⊗ !∀y′⊏ a1 |A|

x
y′ ⊢ |B|

b
w

(A2)
|Γ|uγ, !∀y′⊏ a0 ⊗ a1 |A|

x
y′ ⊢ |B|

b
w

(3.1)
|Γ|uγ, |!A|

x
a0⊗a1

⊢ |B|bw
Weakening.

|Γ|uγ ⊢ |B|
b
w

(wkn)
|Γ|uγ, !∀y′⊏ a |A|xy′ ⊢ |B|

b
w

(3.1)
|Γ|uγ, |!A|

x
a ⊢ |B|

b
w

wherea are arbitrary closed terms of the appropriate types. Note that every type is inhabited by a
closed term.

!R.
|!Γ|uγ[y′] ⊢ |A|

a
y′

(3.1)
!∀w′⊏γ[y′] |Γ|uw′ ⊢ |A|

a
y′

!∀y′⊏ y !∀w′⊏ (λy′.γ[y′])y′ |Γ|uw′ ⊢ !∀y′⊏ y |A|ay′
(A3)

!∀w′⊏ (λy′.γ[y′]) ◦ y |Γ|uw′ ⊢ !∀y′⊏ y |A|ay′
(3.1)

|!Γ|u(λy′.γ[y′])◦y ⊢ |!A|
a
y

!L.
|Γ|uγ, |A|

x
a ⊢ |B|

b
w

(A1)
|Γ|uγ, !∀y⊏η(a) |A|xy ⊢ |B|

b
w

(3.1)
|Γ|uγ, |!A|

x
η(a) ⊢ |B|

b
w

That concludes the proof.

Remark 3.2. Assume that the types ofyρ andaTρ in ∀y⊏ a |A|xy are as shown, for a fixedA. Then,
our three families of terms have types

η : ρ→ Tρ

⊗ : Tρ × Tρ→ Tρ

◦ : (τ→ Tρ) × Tτ→ Tρ.
In category theory, one could think of (T, η, ◦) as forming a Kleisli triple (∼monad), with⊗ being a
commutative monoid onTρ. This in turn extends to a comonad on formulas as

T(A[y]) :≡ !∀y⊏ a A,

where the formulaA with free-variablesy is transformed in the new formula !∀y ⊏ a A with free-
variablesa. See e.g. the work of Valeria de Paiva [15] and Martin Hyland ([8], section 3.1) on
categorical logic for more information about the connection between functional interpretations and
comonads. More on the relation between ours and de Paiva’s work can be found in Section 5.
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Next, we present three sound interpretations of !A by providing three instances of∀y ⊏ a A
which satisfy conditions (A1), (A2), and (A3). It is important to observe that the meta-level formula
construction∀y⊏ a A is part of theverifying system. Therefore, when discussing particular instances
of ∀y ⊏ a A it is not relevant for the interpretation how the terms needed are axiomatised. Only
axioms in theinterpreted systemneeded to be interpreted.

Proposition 3.3. We have the following:

(a) |!A|x :≡ !∀y|A|xy is a sound interpretation of!A.
(b) Assume that the language of the verifying systemILLωb has a new finite typeσ∗ for each finite

typeσ. An element of typeσ∗ is a finite set of elements of typeσ. The extended language has
a relation symbol∈ infixing between a term of typeσ and a term of typeσ∗ with axioms to
ensure that!(x ∈ y) if and only if x is an element in the set y. Let then the formula∀x ∈ t A
abbreviate∀x(!(x ∈ t) ⊸ A). Assume also the existence of three more constantsη : σ → σ∗,
⊗ : σ∗ → σ∗ → σ∗ and◦ : σ∗ → (σ→ ρ∗)→ ρ∗ that should be seen as terms such thatη(t) is
the singleton set with tσ as the only element (in particular!(t ∈ η(t))), t ⊗ q is the union of two
finite sets t and q, and f◦ q is the set that results from the union of all sets f x with x∈ q. Then
|!A|xa :≡ !∀y∈ a |A|xy is a sound interpretation of!A.

(c) Assume the verifying systemILLωb has an extra axiom schema⊢ !A ⊕ (!A ⊸ 0), asserting the
decidability of quantifier free-formulas A. Assume also that definition by cases is definable over
quantifier-free formulas A in the term language ofILLωb , i.e.

t ⊗ s :=















t if !A⊸ 0

s if !A,
with the rules

Γ ⊢ B[ t ⊗ s]

Γ, !A ⊢ B[s]

Γ ⊢ B[ t ⊗ s]

Γ, !A⊸ 0 ⊢ B[ t]
Then,|!A|xy :≡ !|A|xy is a sound interpretation of!A.

Proof.

(a) This interpretation of !A corresponds to the choice∀y ⊏ t A :≡ ∀yA. It is easy to check that
conditions (A1), (A2) and (A3) become

!∀yA[y] ⊸ A[ z]

!∀yA[y] ⊸ !∀yA[y] ⊗ !∀yA[y]

!∀yA[y] ⊸ !∀x!∀yA[y]
respectively, which are trivially derivable inILLωb .

(b) The interpretation|!A|xa :≡ !∀y ∈ a |A|xy corresponds to the choice∀y ⊏ t A :≡ ∀y ∈ t A, i.e.
∀y(!(y ∈ t)⊸ A[y]). In this context, the conditions (A1), (A2) and (A3) become

!∀y∈η(z) A[y] ⊸ A[ z]

!∀y∈ y1 ⊗ y2 A[y] ⊸ !∀y∈ y1 A[y] ⊗ !∀y∈ y2 A[y]

!∀y∈ f ◦ z A[y] ⊸ !∀x∈ z !∀y∈ f xA[y],
which are derivable in the extension ofILLωb outlined above.

(c) This interpretation of !A corresponds to the choice∀y⊏ t A[y] :≡ A[ t/y]. Given a formulaA[y]
we defineη(·), as being the identity,◦ is defined asf ◦ x :≡ f x andy1 ⊗ y2 as

y1 ⊗ y2 :=















y1 if !A[y1] ⊸ 0

y2 if !A[y1].
Conditions (A1), (A2) and (A3) then become
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!A[η(z)] ⊸ A[ z]

!A[y1 ⊗ y2] ⊸ !A[y1] ⊗ !A[y2]

!A[ f ◦ z] ⊸ !!A[ f z]
respectively. From the definitions ofη(·) and (·) ◦ (·) conditions (A1) and (A3) are trivially
derivable. In the derivation of (A2) we use
⊢ !A⊕ (!A⊸ 0)
!A[y1], !A[y1 ⊗ y2] ⊢ !A[y1] ⊗ !A[y2], and
!A[y1] ⊸ 0, !A[y1 ⊗ y2] ⊢ 0.

More precisely,

(+)

!A[y1], !A[y1 ⊗ y2] ⊢ !A[y1]⊗!A[y2]

!A[y1] ⊸ 0, !A[y1 ⊗ y2] ⊢ 0
(cut)

!A[y1] ⊸ 0, !A[y1 ⊗ y2] ⊢ !A[y1]⊗!A[y2]

!A[y1] ⊕ (!A[y1] ⊸ 0), !A[y1 ⊗ y2] ⊢ !A[y1]⊗!A[y2]

!A[y1 ⊗ y2] ⊢ !A[y1]⊗!A[y2]

where (+) is an instance of the assumed axiom !A[y1] ⊕ (!A[y1] ⊸ 0).

4. Relation to Standard Interpretations of ILω

We argued in the introduction (see Proposition 1.1) that forthe purpose of analysingILω via
linear logic it suffices to work with the systemILLωr . As it turns out, inILLωr , we can simplify the
interpretation of the connective & , so that we no longer needthe boolean variablez in ^z in that
particular case.

Proposition 4.1. When interpreting the subsystemILLωr , the interpretation of A& B presented in
Definition 2.1 can be simplified so that the parametrised interpretation

|A⊸ B| f ,gx,w :≡ |A|xf xw ⊸ |B|
gx
w

|A⊗ B|x,vy,w :≡ |A|xy ⊗ |B|
v
w

|A& B|x,vy,w :≡ |A|xy & |B|vw

|A⊕ B|x,v,zy,w :≡ |A|xy ^z |B|vw

|∃zA(z)|x,zy :≡ |A(z)|xy

|∀zA(z)| fy,z :≡ |A(z)| f z
y

|!A|xy :≡ !∀y′⊏ y |A|xy′
is sound forILLωr , assuming(A1), (A2), and(A3) are satisfied.

Proof. We just have to analyse the rules for & having in mind that, in the case of the system under
interpretation, the &R introduction is restricted of the form !Γ. The simplified interpretation of
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A& B is shown sound as:

|!Γ|uγ0
⊢ |A|ax

(P4.1)
!∀y′⊏γ0 |Γ|

u
y′ ⊢ |A|

a
x

(A2)
!∀y′⊏ (γ0 ⊗ γ1) |Γ|uy′ ⊢ |A|

a
x

|!Γ|uγ1
⊢ |B|by

(P4.1)
!∀y′⊏γ1 |Γ|

u
y′ ⊢ |B|

b
y

(A2)
!∀y′⊏ (γ0 ⊗ γ1) |Γ|uy′ ⊢ |B|

b
y

(&R)
!∀y′⊏ (γ0 ⊗ γ1) |Γ|uy′ ⊢ |A|

a
x & |B|by

(P4.1)
|!Γ|uγ0⊗γ1

⊢ |A& B|a,bx,y

And for the left introduction:
|Γ|uγ, |A|

x
a ⊢ |C|

c
w

(&L)
|Γ|uγ, |A|

x
a & |B|vb ⊢ |C|

c
w

(P4.1)
|Γ|uγ, |A& B|x,va,b ⊢ |C|

c
w

The other &L introduction is similar.

Since in the remaining part of this section we work with translations of intuitionistic logic into
linear logic, by|A|xy we refer to the (simplified) parametrised interpretation described in Proposition
4.1. Next we prove that the three different ways of interpreting !A (cf. Proposition 3.3) give rise
to interpretations ofILLωr that correspond (via the translations of intuitionistic logic into intuition-
istic linear logic) to Kreisel’s modified realizability, the Diller-Nahm interpretation, and Gödel’s
Dialectica interpretation, as:

|!A|xa Interpretation ofILω

!∀y|A|xy Kreisel modified realizability

!∀y∈ a |A|xy Diller-Nahm interpretation

!|A|xa Gödel’s Dialectica interpretation.

But first we introduce a simplified version of the translation(·)∗ from ILω into ILLωr , which we will
use in the treatment of the Diller-Nahm and the Dialectica interpretations (for modified realizability
we use the translation (·)◦). This simplification of Girard’s translation is necessaryso as to obtain an
exact match between intuitionistic and linear interpretations. The simplification, however, requires
two additional principles which, as we will see, turn out to be interpretable.

Proposition 4.2. Consider the following simplification of Girard’s translation (·)∗, where the trans-
lation of∨ and∃ no longer needs the introduction of! (cf. Proposition 1.1)

A+at :≡ Aat, if Aat . ⊥

⊥+ :≡ 0

(A∧ B)+ :≡ A+ & B+

(A∨ B)+ :≡ A+ ⊕ B+

(A→ B)+ :≡ !A+ ⊸ B+

(∀xA)+ :≡ ∀xA+

(∃xA)+ :≡ ∃xA+.

If A is provable inILω then A+ is provable inILLωr + P⊕ + P∃, where

P⊕ : !(A⊕ B)⊸ !A⊕ !B
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P∃ : !∃xA⊸ ∃x!A.

Proof. First we show that given the principles P⊕ and P∃, we have !A∗� !A+. The proof is done by
induction on the complexity of the formulaA. Conjunction, implication and universal quantification
follow easily by induction hypothesis using thatILLωr proves:

!(A& B) � !A⊗ !B

!(!A⊸ B) � !(!A⊸ !B)

!∀xA � !∀x!A
respectively. Disjunction and existential quantificationare studied below:

!(A∨ B)∗ ≡ !(!A∗⊕ !B∗)�!A∗⊕ !B∗

(IH)
� !A+⊕ !B+

(P⊕)
�!(A+ ⊕ B+) ≡ !(A∨ B)+

and !(∃xA)∗ ≡ !∃x!A∗ � ∃x!A∗
(IH)
� ∃x!A+

(P∃)
� !∃xA+ ≡ !(∃xA)+. Applying Proposition 1.1,

we know that fromILω ⊢ A we haveILLωr ⊢ A∗. So, ILLωr ⊢ !A∗ and henceILLωr + P⊕ + P∃ ⊢ !A∗.
Using the equivalence proved before we haveILLωr + P⊕ + P∃ ⊢ !A+. In particular, we conclude
ILLωr + P⊕ + P∃ ⊢ A+.

The reason we are freely allowed to assume the principles P⊕ and P∃ is that they are inter-
pretable in all choices of interpretations we consider. Letus argue that P⊕ and P∃ are interpretable,
by showing that the interpretation of the premise implies that of the conclusion (hence the identity
and projection functions can be taken as realisers for the implication). For the three choices of
∀x⊏a A we have considered one can show that

∀x⊏a (A(x) & B)⊸ (∀x⊏a A(x) & B) and
∀x⊏a (B⊸ A(x))⊸ (B⊸ ∀x⊏a A(x))

when the variablex does not occur free inB. Also, !(A ^b B)⊸ !A ^b !B. Therefore, we have that

|!(A⊕ B)|x,v,ba,c ≡ !∀y⊏ a∀w⊏ c (|A|xy ^b |B|vw)

⊸ !(∀y⊏ a |A|xy ^b ∀w⊏ c |B|vw)

⊸ !∀y⊏ a |A|xy ^b !∀w⊏ c |B|vw ≡ |!A ⊕ !B|x,v,ba,c .

Similarly, |!∃zA|x,za ≡ !∀y ⊏ a |∃zA|x,zy ≡ !∀y ⊏ a |A|xy ≡ |!A|
x
a ≡ |∃z!A|

x,z
a . Therefore, we can

make use of the principles P⊕ and P∃ to simplify the embeddings of intuitionistic logic into (this
extension of) linear logic, since the interpretation of linear logic will interpret these principles taking
us back to standard linear logic (without P⊕ and P∃). This is illustrated in the following diagram,
whereILLωP abbreviatesILLωr +P⊕ +P∃ andILωef abbreviatesILω without disjunctions and existential
quantifications:

ILLωP

(·)+

✲

| · |

ILLωb

(·)+ = (·)∗

✻ ✻

ILω ✲
Interpretation

ILωef

The equality on the rightmost upward arrow represents the fact that all our interpretations transform
proofs inILω into proofs inILωef, where the two translations (·)∗ and (·)+ coincide.
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4.1. Modified realizability. Kreisel’s modified realizability associates with each formula A of in-
tuitionistic logic a new formula “x mr A”, where x is a sequence of fresh variables not present in
A (see [18] for the formal definition). We are going to prove that this form of realizability once
translated to the linear logic context via (·)◦ corresponds (according to Theorem 4.4 below) to the
interpretation ofILLωr with |!A|x :≡ !∀y|A|xy . First an auxiliary result:

Lemma 4.3. |A◦|x � !|A◦|x.

Proof. Note that, because of the way we interpret !A, it can be checked by induction onA that the
interpretation ofA◦ has an empty tuple of challenge variables, i.e. we obtain a formula of the form
|A◦|x. To verify the lemma, it is enough to prove that|A◦|x � !A′, for some formulaA′, since
assuming this we have !|A◦|x � !!A′ � !A′ � |A◦|x. The proof is done by induction on the
complexity of the formulaA. We just sketch the cases of conjunction and disjunction, the other
cases being immediate.

|(A∧ B)◦|x,y ≡ |A◦ ⊗ B◦|x,y

≡ |A◦|x ⊗ |B◦|y

(IH)
� !A′⊗ !B′� !(A′ & B′).

|(A∨ B)◦|x,y,z ≡ |A◦ ⊕ B◦|x,y,z ≡ |A◦|x^z |B◦|y

(IH)
� !A′ ^z !B′

(L1.2(v))
� !(!A′ ^z !B′).

That other cases are treated similarly.

Theorem 4.4. |A◦|x � (x mr A)◦.

Proof. The proof is done by induction on the complexity of the formulaA. If A is an atomic formula,
the result is trivial. Consider the case of conjunction:

|(A∧ B)◦|x,y ≡ |A◦ ⊗ B◦|x,y ≡ |A◦|x ⊗ |B◦|y

(IH)
� (x mr A)◦ ⊗ (y mr B)◦

≡ (x mr A∧ y mr B)◦ ≡ (x, y mr A∧ B)◦.
The universal and existential quantifications also follow immediately using the induction hypothesis,
and the way we define the translation and the interpretations. Implication is treated as

|(A→ B)◦|g ≡ |!(A◦ ⊸ B◦)|g ≡ !∀x|A◦ ⊸ B◦|gx

≡ !∀x(|A◦|x ⊸ |B◦|gx)

(IH)
� !∀x((x mr A)◦ ⊸ (gx mr B)◦)

� !∀x!((x mr A)◦ ⊸ (gx mr B)◦)

≡ (∀x(x mr A→ gx mr B))◦ ≡ (g mr (A→ B))◦

whereas disjunction uses the auxiliary result above:
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|(A∨ B)◦|x,y,z
(L4.3)
� !|(A∨ B)◦|x,y,z ≡ !|A◦ ⊕ B◦|x,y,z ≡ !(|A◦|x ^z |B◦|y)

(IH)
� !((!(z= T)⊸ (x mr A)◦) & (!( z= F)⊸ (y mr B)◦))

� !(!(z= T)⊸ (x mr A)◦)⊗ !(!(z= F)⊸ (y mr B)◦)

≡ ((z= T→ x mr A) ∧ (z= F→ y mr B))◦

≡ (x, y, z mr A∨ B)◦.
That concludes the proof.

4.2. Gödel’s Dialectica interpretation. Recall that Gödel’s Dialectica interpretation first asso-
ciates with each formulaA a quantifier-free formulaAD(x; y) inductively. Then, each formulaA
is interpreted as the new formula∃x∀yAD(x; y) (see [1], section 2.3). The next result shows that
the Dialectica interpretation corresponds to theILLωr interpretation where|!A|xy :≡ !|A|xy , via the
simplified embedding (·)+ (cf. Proposition 4.2).

Theorem 4.5. |A+|xy � (AD(x; y))+.

Proof. The proof is again an easy induction on the complexity of the formulaA. The atomic formu-
las are checked trivially and the other formulas follow immediately by induction hypothesis using
the definitions of the (·)+-translation and the interpretations. We illustrate with two cases: conjunc-
tion

|(A∧ B)+|x,vy,w ≡ |A+ & B+|x,vy,w ≡ |A
+|xy & |B+|vw

(IH)
� (AD(x; y))+ & ( BD(v; w))+

≡ (AD(x; y) ∧ BD(v; w))+ ≡ ((A∧ B)D(x, v; y,w))+

and disjunction
|(A∨ B)+|x,v,zy,w ≡ |A+ ⊕ B+|x,v,zy,w ≡ |A

+|xy ^z |B+|vw

≡ (!(z= T)⊸ |A+|xy) & (!( z= F)⊸ |B+|vw)

(IH)
� (!(z= T)⊸ (AD(x; y))+) & (!( z= F)⊸ (BD(v; w))+)

≡ (z= T→ AD(x; y))+ & (z= F→ BD(v; w))+

≡ ((z= T→ AD(x; y)) ∧ (z= F→ BD(v; w)))+

≡ ((A∨ B)D(x, v, z; y,w))+.
The other cases are treated similarly.

Note that although (·)+ translates formulas fromILω into ILLωr + P⊕ + P∃, since these two
principles are interpretable the verifying system is stillILLωb .

4.3. Diller-Nahm interpretation. The Diller-Nahm interpretation differs from Gödel’s Dialectica
interpretation since it allows finite sets to witness the negative content of an implication. Formally,
the Diller-Nahm interpretation can be defined inductively as
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(Aat)dn(; ) :≡ Aat

(A∧ B)dn(x, v; y,w) :≡ Adn(x; y) ∧ Bdn(v; w)

(A∨ B)dn(x, v, z; y,w) :≡ (z= T→ Adn(x; y)) ∧ (z= F→ Bdn(v; w))

(A→ B)dn( f , g; x,w) :≡ ∀y ∈ f xwAdn(x; y)→ Bdn(gx; w)

(∀zA)dn( f ; y, z) :≡ Adn( fz; y)

(∃zA)dn(x, z; y) :≡ Adn(x; y).

Next we show that the Diller-Nahm interpretation ofILω corresponds to the interpretation of
ILLωr with |!A|xa :≡ !∀y∈ a |A|xy .

Theorem 4.6. |A+|xy � (Adn(x; y))+.

Proof. The proof, by induction on the structure ofA, is similar to the one concerning Gödel’s
interpretation. The only case which needs attention is thatof implication, which we analyse below.

|(A→ B)+| f ,gx,w ≡ |!A+ ⊸ B+| f ,gx,w ≡ |!A
+|xf xw ⊸ |B

+|
gx
w

≡ !∀y ∈ f xw|A+|xy ⊸ |B
+|

gx
w

(IH)
� !∀y ∈ f xw(Adn(x; y))+ ⊸ (Bdn(gx; w))+

≡ !(∀y ∈ f xwAdn(x; y))+ ⊸ (Bdn(gx; w))+

≡ (∀y ∈ f xwAdn(x; y)→ Bdn(gx; w))+

≡ ((A→ B)dn( f , g; x,w))+.
Note that the (·)+ translation of∀y∈a A is ∀y∈a A+, as we can see below:

(∀y∈a A)+ ≡ (∀y(y∈a→ A))+

≡ ∀y(!(y∈a)+ ⊸ A+) ≡ ∀y(!(y∈a) ⊸ A+) ≡ ∀y∈a A+.
That concludes the proof.

5. The Categorical Approach

The study developed in this paper (and in previous work of thesecond author) is strongly
inspired by work of de Paiva and Hyland on categorical modelsof linear logic using Gödel’s Di-
alectica interpretation. In this section we try to explain and make more explicit the link between our
framework for unifying interpretations ofIL via interpretations ofILL and the categorical approach
on [14, 15, 16] for modellingILL. More precisely, in [14] one finds a categorical version of the
Dialectica interpretation and an endofunctor interpretation for the modality !A that corresponds to
the Diller-Nahm interpretation. Our goal is to relate this approach with the work in the previous
sections.
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Before presenting de Paiva’s categoryDC that modelsILL, for sake of intuition, let us infor-
mally sketch the correspondence between our framework and hers through the following table.

Our framework de Paiva’s framework

Realizers in T ω - finite types C - cartesian closed category

Formulas |A| ⊆ X × Y X
α
8 Y (object ofDC)

Sequents A ⊢ B A
( f ,F)
−→ B (morphism ofDC)

Linear implication A⊸ B [A, B]DC or BA

First, we point out that in de Paiva’s work the realisers of the functional interpretation are taken
from a given (fixed) cartesian closed categoryC. In our case, we work with the particular cartesian
closed category of the functionals of finite type. Also, our interpretations are given syntactically,
and hence, a formulaA is interpreted as another formula|A|xy , which can be thought of as a binary
relation betweenx and y. In de Paiva’s work these relations are at the core of constructing a new
categoryDC out of the given cccC.

Let us briefly describe how the categoryDC is defined and its associated constructions. Starting
with C, a finitely complete cartesian closed category with stable and disjoint coproducts, we can
define the monoidal closed categoryDC as follows. An object ofDC is a subobject of the product

U × X, thus a monomorphismA
α
֌ U × X with A, U andX objects ofC also denoted byU

α
8 X.

If we think of these objects as set-theoretic relations betweenU andX, and consideringα as the
identity monic, we get thatA ⊆ U × X, precisely as in our framework.

A map between two such objectsA
α
֌ U × X andB

β
֌ V × Y consists of a pair of maps ofC,

( f , F), f : U → V, F : U × Y → X such that pulling backA
α
֌ U × X alongU × Y

(π1,F)
−→ U × X

andB
β
֌ V × Y alongU × Y

f×Y
−→ V × Y (see the diagram below), the first subobjectA′

α′

֌ U ×Y is

smaller than the secondB′
β′

֌ U ×Y, i.e. there is a mapk : A′ → B′ in C making the triangle in the
diagram below commute:

A′ ✲ A

B′ >
β′
✲

✛

k

U × Y

α′

❄

∨

(π1, F)
✲ U × X

α

❄

∨

B
❄

>
β
✲ V × Y

f × Y

❄

If we write the two relations in the short versionU
α
8 X andV

β
8 Y and (−)−1 for the pullback

functor, then a map inDC can be represented as the pair (f , F) in the diagram below
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U ✛

α
+ X

F

V

f

❄

✛

β
+

✲

Y

satisfying the condition (π1, F)−1(α) ≤ ( f × Y)−1(β).

The intuition in terms of set-theoretic relations is the following: there is a mapα
( f ,F)
→ β in DC if

and only if wheneveruαF(u, y) then f (u)βy. In what follows we are going to say that two elements,
x andy are related viaα (i.e. xαy) by αx

y. This way the comparison with our framework becomes

easier. Using this notation, the condition above says that wheneverαu
F(u,y) thenβ f (u)

y .
In the categoryDC we can also define the bifunctors⊗, [−,−]DC and & and the operation⊕ of

weak-coproducts that can be read intuitively as

(α ⊗ β)u,v
x,y iff αu

x andβv
y

[α, β]F, f
v,z ≡ (βα)F, f

v,z iff αv
F(v,z) ⇒ β

f (v)
z

(α& β)u,v
w iff αu

w or βv
w depending whetherw is in X or Y

(α ⊕ β)w
f ,g iff αw

f (w) or βw
g(w) depending whetherw is in U or V.

Apart from the relationα ⊕ β, our interpretation of the linear logic connectives (Definition 2.1)
coincides precisely with the definitions above. Let us examine in more detail the interpretation of
⊕, where our two approaches lead to different interpretations.

The main reason why we can have a simpler definition ofα ⊕ β (with no need for the second
player to play higher order movesf , g) is because we always assume that each finite type is inhabited
by at least one element, while de Paiva’s imposes no similar restriction. More precisely, in our
setting we have

|α ⊕ β| ⊆ (U × V × B) × (X × Y),

with B for the set of boolean constants, while in de Paiva’s setting, considering set-theoretic rela-
tions,

(α ⊕ β) ⊆ (U + V) × (XU × YV).

If U andV are non-empty, then the two typesU×V×B andU+V are isomorphic. In case, however,
one ofU or V is empty thenU × V × B is also empty, whereasU + V can still be non-empty. In
other words, in the most general case, when types can be empty, we must indeed work with the type
U +V rather than withU ×V ×B. Let us see then, how the interpretation ofα⊕ β works in the case
when some of the move-sets of Eloise could be empty.

While in the first situation Eloise plays one element ofU, one fromV, and a boolean choosing
which game is going to count, in the second case Eloise plays an element ofU +V. As we are going
to see, in the latter case (with no extra assumptions) we needAbelard to play functions. Consider
the⊕L-rule, where fromΓ,A ⊢ C andΓ, B ⊢ C we can concludeΓ,A ⊕ B ⊢ C (for simplicity we
shall omit the contextΓ). In our framework, the proof of the two premises will provide realisersF
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andH such that the premises of the following rule are derivable:

|A|uFuw⊸ |C|
f u
w |B|vHvw⊸ |C|

hv
w

|A⊕ B|u,v,bFuw,Hvw⊸ |C|
b( f u,hv)
w

.

In order to realiseC in the conclusion of the rule we can make use of the booleanb to choose
betweenf u andhv. Moreover, the “negative” realiser forA⊕ B is just a pair〈Fuw,Hvw〉. Now, in
de Paiva’s more general setting, we have the same information about the realisers for the premises
of the rule

|A|uFuw⊸ |C|
f u
w |B|vHvw⊸ |C|

hv
w

|A⊕ B|aF′aw,H′aw⊸ |C|
(a∈U)( f a)(ha)
w

.

but in the conclusion we no longer have a triple〈u, v, b〉, but rather an elementa ∈ U+V. Therefore,
the functionalsF andH are lifted to functionalsF′ andH′ as

F′aw :=















λuU .Faw if a ∈ U

λuU .Fuw if a ∈ V
H′aw :=















λvV.Hvw if a ∈ U

λvV.Haw if a ∈ V.

The extra argumentsu andv are used in the cases when the parametera has the “wrong” type to be
used in eitherF or G, and a standard value must be used.

For the rest of the section, let us analyse how the linear logic exponential !A is interpreted in
both approaches. As pointed by Blute and Scott in [3], apropos natural and satisfying categorical
models for theLL connectives “unfortunately, the exponentials are less clear: the structure seems
less canonical’’. In terms of monoidal categories the structure used to model !A is that of comonads
and comonoid objects. In [14], it is shown that if the category C has a free monoid structure with
countable coproducts then the endofunctor ! can be defined onobjects ofDC as the pullback of

A∗
α∗

֌ (U × X)∗ alongU × X∗
C(U,X)
−→ (U × X)∗:

!A ✲ A∗ A

✛
∗

U × X∗

!α

❄

∨

C(U,X)
✲ (U × X)∗

α∗

❄

∨

U × X

α

❄

∨

Note that the functor∗ : C→ MonC is left-adjoint to the forgetful functorU : MonC→ C (see [14]
for more details). Intuitively, the relationαu

x is transformed into a new relation (!α)u
{x1,...,xn}

which is
equivalent to∀x∈{x1, . . . , xn}α

u
x. The functor ! acts on morphisms inDC as !(f , F) :≡ ( f , !F) where

!F : U × Y∗ → X∗ is the composite of

U × Y∗
C(U,Y)
−→ (U × Y)∗

F∗
−→ X∗.

Since the functor ! :DC→ DC has a natural comonad (!, ǫ, δ) structure and !A is a comonoid object
in DC, ! models the linear logic exponential in the style of the Diller-Nahm variant of the Dialectica
interpretation, via finite sets.

In our approach, we have chosen to take a formal (syntactic) approach for the interpretation of
!A. We identify three conditions (A1–A3) which !A needs to satisfy in order for the resulting inter-
pretation to be sound. Our conditions are more general, and include as particular case the instance
where ! is a comonad with comonoid objects. In particular, weare able to obtain interpretations of
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!A that correspond to other well-known functional interpretation such as Gödel’s Dialectica interpre-
tation and Kreisel’s modified realizability. A natural question, of course, arises: Do the Dialectica
and modified realizability interpretations fit into the framework of de Paiva as well, and can they
be seen as arising from other comonads with comonoidal structure? In the first case (the Dialec-
tica interpretation) the answer is yes, and de Paiva does have a few remarks about the Dialectica
interpretation in her paper and in her thesis. More precisely, let ! : DC → DC be the identity end-
ofunctor. Intuitively (!α)u

v if and only if αu
v. It is immediate to check that (!, id, id) is a comonad,

but in order for !α to be a comonoid object inDC (not surprisingly) we need to require decidability.
More precisely, !α→ (!α⊗ !α) is interpreted as (!α)x

y0·y1
→ (!α)x

y0
⊗ (!α)x

y1
with

y0 · y1 :=















y0 if ¬αx
y0

y1 otherwise.
As for modified realizability, it is not clear to us at the moment whether it can also be shown to
arise from a different monoid (other than the free monoid) using a generalisation of de Paiva’s
construction. We plan to consider this question in our future investigations.
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