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Asstract. We present three fierent functional interpretations wftuitionistic linear logicand show
how these correspond to well-known functional interpietet of intuitionistic logic via embeddings
of ILY into ILL®. The main diference from previous work of the second author is that irtinhistic
linear logic (as opposed to classical linear logic) therptetations of A are simpler and simultaneous
guantifiers are no longer needed for the characterisatitimeahterpretations. We then compare our
approach in developing these three proof interpretatidtistive one of de Paiva around the Dialectica
category model of linear logic.

1. INTRODUCTION

This paper presents a family of functional interpretatiohituitionistic linear logic. First, we
present a single functional interpretation of pure (ilee,@éxponential-free fragment of) intuitionistic
linear logic. This is followed by a parametrised interptieta of the exponentialA. Finally, three
possible instances of the parameter are considered anchghosorrespond to three well-known
functional interpretation of intuitionistic logic.

The second author [10, 11,112,/ 13] has recently shown héerdint functional interpretations
of intuitionistic logic can be factored into a uniform famf interpretations of classical linear logic
combined with Girard’s standard embedding 6f intuitionistic logic into linear logic (see alsol[5]).
In the symmetric context aflassical linear logiceach formulaA is associated with a simultaneous
one-move two-player garﬂé\|§. Intuitively, the two players, say Eloise and Abelard, mpisk
their movesx andy simultaneously and Eloise wins if and onlyAf} holds. The symmetric nature
of the game implies that (proof-theoretically) the formalés interpreted as the formula
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whereEV;‘A is a simple form of branching quantifier — term&chultaneous quantifien [11]. Fol-
lowing this game-theoretic reading, thefdrent interpretations of the modalit@ lare all of the
following form: First, it (always) turns a symmetric gamédran asymmetric one, where Eloise
plays first, giving Abelard the advantage of playing secomdthe symmetric context, this asym-
metric game can be modelled by allowing Abelard to play ationcf which calculates his move
from a given Eloise move. Secondly, the gameilgives a further (non-canonical) advantage to
Abelard, by allowing him to play aet of movesather than a single move. The idea is the follow-
ing: Abelard wins the gameAlif there is a movey € fx that is winning with respect to Eloise’s
movex, i.e. -|Afj. Formally

I'AIf = Vye fx|Aj.
Therefore, the game\always introduces a break of symmetry, but it leaves apleat kind of sets
Abelard is allowed to play. What the second author has shevihat if only singleton sets are
allowed the resulting interpretation corresponds to G8daialectica interpretation 1,17, 12]; if
finite sets are allowed then it corresponds to the DillersNafariant of the Dialectica interpretation
[4,[13]; and if these sets are actually the whole set of mdwasit corresponds to Kreisel's modified
realizability interpretation [9, 11].

In the present paper we show that in the contexhtfitionistic linear logicevery formula can
be interpreted as a game where Eloise plays first and Abdlayd pecond, the branching quantifiers
being no longer needed. In other words, Abelard’s advarwagéaying second, which was limited
to the gameA in classical linear logic, is ubiquitous in intuitionistiimear logic. In this way, the
game-theoretic interpretation of the modaligyis simply to lift the moves of Abelard from a single
move to a set of moves. Formally,

'AZ = VyealAfj.
Therefore, by working in the context dfL“, we can fully separate the canonical part of the inter-
pretation (pure intuitionistic linear logic), where altémpretations coincide, and the non-canonical
part where each choice of “sets of moves” gives rise tdfemint functional interpretation.

As we shall see, the functional interpretationpaire intuitionistic linear logiccoincides with
Godel's Dialectica interpretation aftuitionistic logic, reading—, ® ande® as—, A andv, respec-
tively. This is so because the Dialectica interpretati@ntdies the game& and !A. The connection
between Godel's Dialectica interpretation and intuiitic linear logic was first studied by de Paiva
[14]. One can view our work here as a proof-theoretic readfrae Paiva’s category-theoretic work,
together with an extension linking the “Dialectica” integfation of intuitionistic linear logic also
with Kreisel's modified realizability (see also Bieringsaent work[[2]).

The paper is organised as follows: In Section 2 we presenbalse interpretation of pure
intuitionistic linear logic. In the same section we outliwkich principles are needed for the char-
acterisation of the interpretation (Subsecfiod 2.1). i8efd describes threefiierent interpretations
of the modality A. This is followed (Sectiohl4) by a description of how theseicks correspond to
three well-known functional interpretations of intuitistic logic: Kreisel’s modified realizability,
Diller-Nahm interpretation and Godel’s Dialectica imgegtation. Finally, in Sectionl 5 we compare
our approach (based on finite types) with that of de Paivae(bas cartesian closed categories).

1.1. Intuitionistic Linear Logic. Intuitionistic linear logic can be viewed as a fragment ofa&dl’s
linear logic [6] which is sfficient for embedding intuitionistic logic into the linearrdext. We will
make use of the formulation of intuitionistic linear logizasvn in Table§1l and 2 with the usual side
conditions in the rule¥R anddL. Our system is denoted biL* since we work in the language of
all finite types.
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Table 1: Intuitionistic Linear Logic (connectives)

The finite types are inductively defined in the usual wais a finite type and ip ando are
finite types therp — o is a finite type. The terms df.L® are: the constants (including one of
typei to ensure that all types are inhabited by a closed term ant/fpleel combinator§I? "~
andze—o—=1)-—0)=p=1) infinitely many variables¢ of each finite type, and ift">7 ands” are
terms then the applicatiors is a term of typer. We assume a neutral treatment of equality in the
systemILL” (cf. [18]), i.e. the combinators are axiomatised as

AlTIxy/w] o— Alx/w]  and  A[Zxyz/w] oo A[XZy2)/w],

where A o—- B is an abbreviation fromA — B)&(B — A). By combinatorial completeness
we know that we can associate with each téfnand variablex™ a termAx.t of typer — o also
satisfying A[(Ax.t)(s)/w] o— A[t[S/X]/W].

The atomic formulas ofLL” are denoted by, (the linear logic constant 0 is an atomic for-
mula) and ifA andB are formulas, thed\® B, A& B, A® B, A — B, !A, YXA(X) andIxA(X) are
also formulas.

In this paper we will also work with a subsystemIbt®, dubbedILL;’, where the following
restriction is assumed on the &R-rule: The contExhust consist entirely of formulas of the kind
IA. In Sectior 4 we will see why we need this technical resbittiNevertheless, note that both
systemdLL® andILL}’ are strong enough to capture intuitionistic logi¢ into the linear context,
as made precise in the following proposition.

Proposition 1.1([6]). Define two translations of formulas &f* into formulas ofiLL{’ inductively
as follows:
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'-A ILA[t?/X] + B
— (YR) ——— (VL)
' VYX°A IVX’A+r B
'+ Alt?/X] IA+-B
—— (AR —— (dL)
'+ 3IXA ILAX¥A+r B
IIA'A+B I'B T'rA I A+ B
——(con) —— (wkn) ('R) —('L)
I,/A+B I,'/A+B T HA I'/A+B

Table 2: Intuitionistic Linear Logic (quantifiers and matigl

AL = At A = 1Ay, FAgZL
L* =0 1° =0

(AAB)* =A*&B* (AAB)P =A°®B°

(AvB)* =!A'9!B* (AvB)Y =AoebB°
(A—>B)" =!A" - B (A—- B)° =l(A° - B
(YXA)* = VXA" (YxA)° = IVXA°

AxA)* = AXA* (AxA)° = AxXA°

If A'is provable inIL“ then A and A are provable inlLL;’ (and hence also ifLL*). Moreover, it
is easy to check that°A— A",

Proof. It is already known that if” .« Athen I'* r« A" (seell6/17]). The result with.L“
replaced byLLy just requires our attention in the rule &R. The result ASrfollows immediately
from the fact that ifLL;” we can proveA® o— [A*, L]

The systemdLL®” andILLy’ will be calledinterpreted systemgo distinguish them from the
verifying systenpresented in the next subsection. The interpretations Weistuss map formulas
and proofs in the interpreted system into formulas and grodthe verifying system. In order to
obtain a general notion of interpretation, we must work \tlith simplest (yet relevant) interpreted
system possible. When extending the interpretation to roomgplex systems we must then ensure
that the extra axioms and rules are also interpreted, bsetheght be interpreted by some inter-
pretation but not others. For instance, we chose a neugaintient of equality in the interpreted
system because that is what can be interpreted in generall, thyee interpretations considered. If
one were to add full extensionally the Dialectica intergtienh would no longer work, whereas this
would be no problem for the realizability interpretation.

Notation. Throughout the paper, boldface lettexsb, ... or x, v, ... stand for tuples of terms or
variables.

1.2. Verifying system. As we will show in the next sections, the three presentedtiomal in-
terpretations translate the formuwes B via a sort of flagged disjoint union, i.e. a boolean and a
witness for eitheA or B. Therefore, in the verifying system, which we shall denotdllh’, we
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assume that the language also contains the booleaadase type. We also assume the existence
of two boolean constants true and false (T, F), boolean biasa an equality relatior” between
terms of boolean type, and a constant of thpe p — p — p that should be seen as a conditional
A-termz(t, g) that equals eitheror g depending on whetheP equals true or falsélLL}; is assumed
to contain the following axioms for equality:
(1) '(x="x)
(2) (x=Ly) =y ="x)
(3) (x="y)@ (y="2) = |(x="2)
(@) ((x="y) ® Alx/w] — Aly/w].
We would also like to ensure that true and false are distindtthat there are no other elements of
boolean type
(5) (T=PF)—-0
6) (z=PT)®!(z=P F).
The axioms for the conditional-term are as follows
(7) AIT(t, a)/w] o— Alt/w] and A[F(t, q)/w] o— A[q/W].
For simplicity, we use the following abbreviation:

Ao,B = ((z=T) - A)&((z=PF)— B).

Lemma 1.2. The following are derivable itLL}
FA[T] + A[F]

+ A[Z]
(i) (T =PT) - ArAand!/(F="F) - A+ A
(i) AF(T="F)—B
(iv) AorBoo Aand AOEBo—o B
(V) 1A O,!1B oo (1A O,!B).

Proof. Assertion (i) can be derived from axioms (4) and (6); (ii)ldels easily from axiom 1.;
(iii) can be deduced from axiom (5) and the forward implioas in (iv) follow immediately from
item (ii) and the inverse implications can easily be dedussidg (iii). The forward implication in
assertion (v) can be derived using assertions (i) and {ie)pther implication being trivial.  []

We stress again that we do not need to worry about which axamsdded to theerifying
systeniLL”, as these do not need to be interpreted. For instance, iretifging system we could
even have assumed full extensionality. What we listed abotlee description ofLL,’ is the min-
imal necessary to verify the basic interpretatiorilaf andILL{’, to be described in the following
section. When extending the basic interpretation to detil Miwe will also need to extend the ver-
ifying systemiLL;’. The extensions df.Ly’, however, will depend on the particular interpretation of
IA, and will be introduced in Propositidn 3.3 (Sectidn 3).

2. A Basic INTERPRETATION OF PURE ILL%

In this section we present a basic functional interprematibpure (without the exponentiah)
intuitionistic linear logic, and prove its soundness. g tiext section we then consideffdrent
extensions of this interpretation to full intuitionistinéar logic.

Definition 2.1 (Basic functional interpretation of puteL®). For each formulaA of purelLL®, let
us associate a formula\|§ of ILLy, with two fresh lists of free-variableg andy, inductively as
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follows: For atomic formulady; we let|Ay| := Ay. Assume the interpretations éfandB have
already been defined 41!;1; and|BlY,, we then define

A Bled = AKX — B
IA®Blyw = [AJ®IBI,
A& Biw, = A% 0,IBY,
IA® B = AR 0zIBlY,
AR = 1A
VZAQDly. = IAQN

Intuitively, the meaning oA is reduced to the existence of a tuple of objectsich that/y|Afj.
The x’s are calledwitnessesand they’s challenges Note that, contrary to the interpretation of
classical linear logic [10, 13], the functional interpteta of intuitionistic linear logic is no longer
symmetric. In terms of games, the interpretation above easelen as associating to each formula
A a one-move two-playesequentialgamel|Alj. In this game, Eloise starts by playing a move
followed by Abelard playing a movg Eloise wins if|Aj holds, otherwise Abelard wins.

Theorem 2.2 (Soundness)Let Ay, ..., A, B be formulas of purdLL”, with z as the only free-
variables. If

Ao(2),....A(2 + B(2

is provable in purdLL® then termsay, .. ., a,, b can be extracted from this proof such that
Ao(DIR, - ... 1An(Dl5 + IB(DIG,

is provable inIlLLY, with FV(&) C {Z Xo, ..., Xn, W} andFV(b) C {z Xo, ..., Xn}.

Proof. By induction on the derivation ofy(2),...,An(2 + B(2). The axioms are trivial since the
interpretation does not change atomic formulas and eveeyiyinhabited. Note that for the axiom
I',0 + A, the interpretation of 0 is 0O itself, and so we can take ahjtterms of the right type. The
fact that every type is inhabited is also used in the studyheftles &L andbR. The permutation
rule is immediate. Let us consider a few other cases:

Cut By induction hypothesis, assume we already have termgsstng the two premises g%, +

|A|§0 and|AlY, |A|§1[X] F |B|\E,. We must construct terms that witness the conclu$ioh + B. That

can be done as follows:
b
IO FIAR gy 1A IAR g F Bl ()
u ao y \Y; ao bt Xx
T, F AR Ml Waag ¥ B

TS, 1ALy, + Bl
wherey’ andd’, b’ are obtained frony andé, b via the substitutionsd[ag]/y] and [ag/X], respec-
tively.
Tensor
T = IAG Al + Bl5, o L, |A% 1By + ICly (L)
Tl 1Al - A © BI5, I, AR ® Bl + ICI,

(Definition[2.1) (Definition[2.3)
I, 1Alg + IA® BI%VB Tl IA® BI);\{) FICly
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—o L introduction

c[v]
My - A [ falblga; Al [Blegy - IC1z %)
y clga]
Iy raqergapy + Ataiga) |A|6[ga1’|B|b[ga1 Gl L
i AL . 1A —~ B Fic
yifa(b{ga)]” Mo[gal> 17V fa(b[ga)) bl gal o— (Definition[Z2)
IS¢ et gay - Al gap 1A = Blaygay + 1C12
Universal quantifier
T + A IWNTYGT ot Bl n
b[ ft]
MYy v A=A T [AD 1 + (Bl
U[Z] ) 7zarg (Definition[2.1) - 1 a[ft] prrg (Definition[2.1)
Nl + VZAQI M5 VZAD g - 1Bl
Existential quantifier
TS+ IADI T A F 1B
H (Definition[Z:1) . ratl Al 57 (Definition[2.1)
I F [3zAD)S Ty, F2AR)E + 1Bl

&R introduction
T F AR AR FIAR o7 (BIY,
T F AR o1 (Bl;
F Tl —o IAI2 o [BIY,

F T Az oreg +)
—o T .
T0o72) - Y d (LemmaL.2(i))
F |F|Z(70 1) |A|y Ozl |w
. (Definition[2.1)
F |F|Z()'o,7 ) < IA& BlyWZ
|r|g(70,7 )" IA& BlyWZ
where ) is the dual case.
&L introduction andsR introduction
IT15, |AX + B,  (LemmdT2(v)) T - IAG  AG - IAG o1 IBIS, (cud)
IT14, |AX o7 ICIY + 1B, T, + 1A OT BIS, _
(Definition[2.1) ) (Definition[2.1)
U5, IA& Clye T F IBIE, Tl - A ® BlgwT

The other &L and®R are similar.

oL introduction
I, 1Bly + ICI
(AX. 7 / Lemmd L2 (iv))
(+) |F|g(,,0 71)’ |A|X OF |B|V - |C|F(C1 ,C2)

(LemmdZL2(i)
|r|g()’o,y )’ |AZ <>z|B|V F |C|Z(Cl C2)
Ao B+ CIE) (Definition[Z1)
W

Tl
where §) is the dual case. The other rules are treated similarly.

Ayo,71)’
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2.1. Characterisation. As mentioned in the introduction, one of the main advantadjegorking

in the context of intuitionistic linear logic is that we noniger need branching quantifiers. The
asymmetry introduced ilLL® turns the symmetric games of classical linear logic into ggamihere
Eloise always plays first, so formuldsare interpreted a3x\7’y|A|§.

Proposition 2.3. The following principles, denoted B®C,, MP), IP; and EP (acronyms for linear
versions of Axiom of Choice, Markov Principle, Independent Premises and Extra Principle)
characterise the basic interpretation presented above

AC,  :  VxAyAy(y) — ITVYXAy(FX)

MP;  :  (YXAg — Bg) —o IX(Agr —o Byy)
Py (Ay — JyBy) — dy(Ay — By)

EP D VX V(AGr ® Byr) — (VXAgr ® YVByr)

where Ay, Byt and Ay, By are quantifier-free formulas and purely universal formutddLL}) re-
spectively. It is also assumed thatloes not occur in &, y does not occur in Ain the principle
IP| andv does not occur in & in the principleEP. Formally,

ILLY + AC| + MP; + 1P| + EP I A o— 3xVY|A[].
Moreover, assuming tha® is a primitive symbol, interpreted as 1], the characterisation result

still holds when bang does not occurAg;, MP;, IP; andEP and these principles are interpretable,
i.e. denoting by P any instance of these principles, theeg@msa such thatlLL, + Vy|P|'§‘.

Proof. The linear equivalence can be proved by induction on thecébgtructure ofA. Let us
consider a few cases:

Tensor
A®B &9 AxVyAK® IVwBY,
S ax, wy, w(AL @ |BIY)
= 3Ax, Wy, WA® By
With.
A&B &0 AxvylAR & AvvwiBl,
oo VZ(AXVYIAL Oz IVYWBIY)
oo YZAX, V(YYIA ©, YWIBIY)
oo YZAX, WY, W(AS ©7|B%)
) 3f, gvzy, W(IAII,Z ©21BIY)

o IAX, Wz Y, WA} Oz|BIy)

= 3x,Wy,w,2A& Bl
Linear implication
(IH) v (IPLMPy)

A—oB o9 3xVy|A|§ — AWWwWB|}, oo VXEIVVWﬂy(|A|§ — |BJY)
€L At gvx WAl — IBIY) = 3F., gVx, WA — BIkS,

Universal quantifier
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vzASS vzaxvyia 6 afvy, 2A17 = At vy, 2vzAl,

The other cases are treated similarly. In fact, for the raimgicases (once the induction hypothesis
is assumed) the equivalence can be provedliff alone.

With the assumptions presented, the interpretability efghinciples is easily checked since
guantifier-free formulas are interpretable by themselves, they do not ask for realisers. We
illustrate with the principléAC, where the premise is interpreted as

VXYY 2Aqtl5x = VY ZAq1 (% ¥, 212" = 1V 2Aq1(%, X, 2, = Agi(X, TX, 2)
whereas the conclusion is interpreted as

[AfVYXVZAqe(X, fX, z)|;X = VXV ZAq¢(X, TX, 2|« = VZAq¢(X, TX, 2|, = Agt(X, TX, 2).

Since the realisers of the premise are the same as thoseaufrtbleision, the identity and projection
functions can be taken as realisers of the implication. L]

Remark 2.4. Note that if we are embeddirig® via the standard embedding’(then the connective
® is not needed, and hence the extra princigieis not needed either.

3. SOME INTERPRETATIONS OF ILL%

In this section we consider a few choices of how the basicpné¢ation given in Definitioh 211
can be extended to full intuitionistic linear logic, i.e. weesent three possible interpretations/Af !
All choices considered will have the form

|!A|§ :E!vy:y|A|§, (3.1)
whereVYyrC aAis a meta-level formula construction which we will assumeadtsfy the following:
For some tern{ﬂm(-), () ® () and ¢) o (-) the conditions below are provable i’

(AL) IVycn(2) Aly] = AlZ
(A2) VyE(y; ® yo) Aly] — ((Vycy Aly]) ® H(VyEy, Alyl)
(A3) Yy (f o 2 Aly] - !lYxcz!IVyC fXA[Y].

The three instances of such meta-level formula constnustia— a A we will consider are/yA,

Vye aA (whereye awill be defined later), and\[a/y].

Proposition 3.1. Under the assumptions (A1 — A3) on the formula construdtigm a A, the generic
interpretation ofl A as above leads to a sound functional interpretatiof_of’.

Proof. By Theoreni 2.2 we just have to analyse the rules of contmacieakening, 'R, and L.

Contraction Assume by induction hypothesis that we already have teritmegsing the premise
of the rule, i.e T4, |!A|§g, |!A|§1 F |B|5’V. We must from these construct witnesses for the conclusion

INote that these terms are allowed to be specific to the forsyila particular, the free variables gt-), (-) ® () and
(-) o (-) are assumed to be contained in the free-variablés/afy] (i.e. all free-variables of excepty).
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I,!A+ B. That can be done as follows:
T, LA, A - IB,

IT1S, [PA L ALK + (BI04

®
Ty, VY Cag |A® 1Yy Ca |Al - By, o

ITly. 'y cao® ag |A} - [BIY

b
Tl 1'AlZea, + IBlw

@)
Weakening
re - 185,
Ty, 1Yy CalAl - Bl

Il [LAX - B,
wherea are arbitrary closed terms of the appropriate types. Natedbery type is inhabited by a
closed term.

(wkn)

IR. . .
Ty yy F 1ALy
YW CylyTIC, +IAG
vy Ey W QY A lYDY I HYY EYIAG
VW C (Y ATy 0 VIl FIVY CYIAR
T FIIAG @D
Ty Ly Doy T By
IL.
LA RV
u - xW b (Al)
I, 'Yyen(a) A + [Bly @)
1, LAY 5 + 1Bl
That concludes the proof. ]

Remark 3.2. Assume that the types ¢f anda' in Vyc alAlj are as shown, for a fixedl. Then,
our three families of terms have types

n  p—oTp

® : TpxTp—-Tp

o ! (rT->Tp)xTr— Tp.
In category theory, one could think of (i, o) as forming a Kleisli triple £ monad), with® being a
commutative monoid ofi p. This in turn extends to a comonad on formulas as
T(A[Y]) :=!VyC aA,
where the formulgA with free-variablesy is transformed in the new formul&y c aA with free-
variablesa. See e.g. the work of Valeria de Paival[15] and Martin Hylaj&], (section 3.1) on

categorical logic for more information about the connetti@tween functional interpretations and
comonads. More on the relation between ours and de Paivalseao be found in Sectidd 5.
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Next, we present three sound interpretations by providing three instances 6fy C aA
which satisfy conditions (Al), (A2), and (A3). Itis impontto observe that the meta-level formula
construction’yc aAis part of theverifying systemTherefore, when discussing particular instances
of Yy C aA it is not relevant for the interpretation how the terms neledee axiomatised. Only
axioms in thenterpreted systemeeded to be interpreted.

Proposition 3.3. We have the following:

(@) 'A :=1VylAlj is a sound interpretation dfA.

(b) Assume that the language of the verifying sysierfy has a new finite type™ for each finite
typeo. An element of type™ is a finite set of elements of type The extended language has
a relation symbok infixing between a term of type and a term of typer® with axioms to
ensure that(x € y) if and only if x is an element in the sety. Let then the formiieae t A
abbreviateVx(!(x € t) — A). Assume also the existence of three more constants — o,
®:0" > c" > o ando:o" — (00 — p*) - p* that should be seen as terms such th@} is
the singleton set witl'tas the only element (in particuld¢t € »(t))), t ® q is the union of two
finite sets t and q, and 4 q is the set that results from the union of all sets fx withck Then
'A% :=1Vye a|A|§ is a sound interpretation dfA.

(c) Assume the verifying systdbl}” has an extra axiom schemdA @ (A — 0), asserting the
decidability of quantifier free-formulas A. Assume alsd thefinition by cases is definable over
guantifier-free formulas A in the term languagdlIdf?, i.e.

t ifIA—- 0
t®s:=
[ if 1A,
with the rules
' B[t® 9 ' B[t® 9
I,'A+ B[ ILIA—- O B[t]

Then,|!A|§ = .|A|§ is a sound interpretation dfA.
Proof.

(a) This interpretation ofA corresponds to the choicgyC t A := VyA. It is easy to check that
conditions A1), (A2) and @3) become
IVYAly] — AlZ]

IVyA[y] — IVyAly] ® IYYAlY]
IVYA[Y] — IVXIVYALY]
respectively, which are trivially derivable lhLy.
(b) The interpretation! A} :=!Vy € alA[j corresponds to the choicty C tA = Vy € tA, i.e.

Yy(!(y € t) — AlY]). In this context, the conditionsAl), (A2) and A3) become
IVyen(z) Alyl — Al

IVyey; ® Y, Aly] —IVyey; Aly] ® IVyey, Aly]

IVye f o ZA[y] — ¥xe z!Vye fXA[Y],
which are derivable in the extensionlaf)’ outlined above.

(c) This interpretation ofA corresponds to the choitgyct A[y] := At/y]. Given a formulaA[y]
we definen(:), as being the identity; is defined ad o x := fxandy,; ® y, as
Vi ® Yy Y1 if1Aly;] = 0
1 2= .
yo  ifIAly].

Conditions A1), (A2) and @A3) then become
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Aln(2)] — AlZ

IAly; ® Yol —!Alyi] ® [Aly,]
IA[f o Z] o I1A[fZ]
respectively. From the definitions gf-) and () o () conditions Al) and @3) are trivially
derivable. In the derivation of42) we use
FIA® (A — 0)
'ALy1], ALY © Yo H1ATY ] @ IALY,], and
IAly1] — O,!Aly; ® yo] + 0.
More precisely,
IAly:] < O, !Aly; ® y,] + 0

(cu)
TAlY.] ALY @ Yol HIAIYI®IALY,]  TALy;] — O TALY; ® V] H ATy, [®!ATY,]
(+) 'Alyi] @ ({Aly1] — 0),!Aly; @ Vo] F ALY ]®!AlY,]
IAly: ® Y] H Ay [®!AlY,]
where §) is an instance of the assumed axioffy;] @ (!Aly,] — 0). ]

4. RELATION TO STANDARD |NTERPRETATIONS OF L%

We argued in the introduction (see Proposifiod 1.1) thatHerpurpose of analysinig via

linear logic it sdfices to work with the systertLy’. As it turns out, inlLL{", we can simplify the
interpretation of the connective &, so that we no longer ntbedboolean variable in ¢, in that
particular case.

Proposition 4.1. When interpreting the subsystdii}’, the interpretation of & B presented in
Definition[2.1 can be simplified so that the parametrisedrpratation

A Bld = A, — Bl
IA®Blyw = A ®|BI,
A& Blw = IAX&BI,
A Blyw” = A ©zIBlY,
A = AR
VZADl, = IA@

AT = vy CylAR

is sound forlLLy’, assumingAl), (A2), and (A3) are satisfied.

Proof. We just have to analyse the rules for & having in mind thathimt¢ase of the system under
interpretation, the &R introduction is restricted of therfo!T. The simplified interpretation of
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A& Bis shown sound as:
T k1A Ty k1Bl
VY Cyollly - IAG IVy Cyy [Cly + B
VY C(yo®y1) ITly + AR VY C(yo @ 71) ITly + Bl
VY E(ro® 1) ITIy + A& [BJY
T o). FIA& BIZY

A4.1)

(A2)
(&R)

- (FA)
Yo®Y1
And for the left introduction: - c
T, 1Az + ICly
Ty, 1AIZ & B}, F ICIy,
X,V

T, A& Blap F IClyy

The other &L introduction is similar. ]

(&L)

Since in the remaining part of this section we work with tfatigns of intuitionistic logic into
linear logic, bylAj we refer to the (simplified) parametrised interpretatiosodied in Proposition
[4.1. Next we prove that the threefldirent ways of interpretingAl (cf. Propositiorf 3.8) give rise
to interpretations ofLLy’ that correspond (via the translations of intuitionistigiinto intuition-
istic linear logic) to Kreisel's modified realizability, ¢hDiller-Nahm interpretation, and Godel's
Dialectica interpretation, as:

VA% Interpretation ofL“

!Vy|A|§ Kreisel modified realizability
IVyealAly Diller-Nahm interpretation

HAX Godel's Dialectica interpretation

But first we introduce a simplified version of the translat{gn from IL* into ILL}’, which we will
use in the treatment of the Diller-Nahm and the Dialecti¢arpretations (for modified realizability
we use the translation){). This simplification of Girard’s translation is necessagyas to obtain an
exact match between intuitionistic and linear interpretet. The simplification, however, requires
two additional principles which, as we will see, turn out ibterpretable.

Proposition 4.2. Consider the following simplification of Girard’s transian (-)*, where the trans-
lation of v and3 no longer needs the introduction bfcf. Propositior_1.1)

AL =Ay, fAxZEL
i =0
(AAB)Y =A"&B*
(AVB)* =A*eB*
(A—- B)* =1A* - B*
(YxA* = YXA"
AxA* = dAxA".
If Ais provable inlL” then A is provable inlLLy’ + Ps + P5, where
P : (AeB)—-!Aa!B
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P; : !3IxA— AXIA.

Proof. First we show that given the principleg Bnd B, we have A* o— |A*. The proof is done by
induction on the complexity of the formuka Conjunction, implication and universal quantification
follow easily by induction hypothesis using tHat;’ proves:

(A& B) oo !A®!B
A < B) oo I(IA—!B)

IVXA o— VXA
respectively. Disjunction and existential quantificatame studied below:
I(AvB)* = I(A*®!B*) oolA'g !B
I are B Eiar e B = I(AV B)

and !@xA)* = 1AxXIA* oo IAXIA* 00 aaar & Exar = I(AxA)*. Applying Propositiori 1]1,

we know that fromlIL“ + A we havelLLy + A*. So,ILLy +!A" and hencdLLy + Pg + P5 F!A".
Using the equivalence proved before we héve’ + Py + P3 F!A*. In particular, we conclude
ILLY + Pg + P3 + A*. ]

The reason we are freely allowed to assume the principleand B is that they are inter-
pretable in all choices of interpretations we consider. ussargue that £and B are interpretable,
by showing that the interpretation of the premise implieg tf the conclusion (hence the identity
and projection functions can be taken as realisers for th@idation). For the three choices of
¥xca Awe have considered one can show that

¥Yxza(A(X) & B) — (Yxca A(X) & B) and
¥xca(B — A(X)) — (B — Yxza A(X))
when the variablex does not occur free iB. Also, !(A ¢, B) —<!A Op!B. Therefore, we have that
(A B)xt® = vycavwcc(AL OplBlY)
- I(VycalAf op Ywe c|Bfy)

— I¥ycalA op!vwec|BlY, = |'A@ !Bl5e.
Similarly, '3zA3* = IVy C a[3zAy* = Yy C a|Af = |'Alf = [3ZAL% Therefore, we can
make use of the principlessRand B to simplify the embeddings of intuitionistic logic into {¢h
extension of) linear logic, since the interpretation oéhnlogic will interpret these principles taking
us back to standard linear logic (without Bnd RB). This is illustrated in the following diagram,
wherelLLp abbreviatesL L’ + Pg, + P andIL; abbreviatesL” without disjunctions and existential
guantifications:

Y

ILLY ILLY
-1
ON O =0
Interpretation
IL® - 1LY

The equality on the rightmost upward arrow represents tttetiat all our interpretations transform
proofs inIL* into proofs inILg;, where the two translations){and ¢)* coincide.
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4.1. Modified realizability. Kreisel's modified realizability associates with each fataA of in-
tuitionistic logic a new formulaX mr A", where x is a sequence of fresh variables not present in
A (see [18] for the formal definition). We are going to provetttias form of realizability once
translated to the linear logic context vig°(corresponds (according to Theoreém] 4.4 below) to the
interpretation ofLL{” with |!A]* := !Vy|A|§. First an auxiliary result:

Lemma 4.3. |A°]X o— A%,

Proof. Note that, because of the way we interpr&t it can be checked by induction @gathat the
interpretation ofA° has an empty tuple of challenge variables, i.e. we obtaimradta of the form
|A°X. To verify the lemma, it is enough to prove tHAf* o—- !A’, for some formulad’, since
assuming this we haveA°|* oo A’ oo IA” oo |A°*. The proof is done by induction on the
complexity of the formulaA. We just sketch the cases of conjunction and disjunctios,other
cases being immediate.

I(A A B)°[*Y = |AeBY
= |A°*®|BY
0 I IB oo (A& B).
I(Av B *¥2= A @B *Y* = |A°1*0,IB)Y
N o,B
Q2D ap o,1B).
That other cases are treated similarly. L]

Theorem 4.4. |A°X o— (x mr A)°.
Proof. The proof is done by induction on the complexity of the forel If Ais an atomic formula,
the result is trivial. Consider the case of conjunction:

I(AAB)SY = |A°®@BY = |AT e B

o) (x mr A)° ® (y mr B)°

= (XmrAAaymrB)°=(x,ymrAAaB)°.
The universal and existential quantifications also followriediately using the induction hypothesis,
and the way we define the translation and the interpretatiomglication is treated as

I(A-> B)|9 = [I(A° — B°)|9=1VXA° — B°|}
= WWX(A X — |B°|9)
IH)

—~

IYX((x mr A)° — (gx mr B)°)
IVX!I((X mr A)° — (gx mr B)°)

=  (YX(Xmr A— gxmrB))° =(gmr(A— B))°
whereas disjunction uses the auxiliary result above:

o—0
o—0
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I(A v B)°[*¥2 (L@ NAV B)° %% = 1|A® @ B2 = [(|A°]X O, |B°)
) ((M(z=T) o (xmr A)°)&(I(z=F) — (ymr B)°))
oo IN(z=T)—o (xmrA°)!({(z=F)— (y mr B)°)
= (z=T->xmrAA(z=F - ymrB))°
=  (X,¥,zmr Av B)°.
That concludes the proof. L]

4.2. Godel's Dialectica interpretation. Recall that Godel's Dialectica interpretation first asso-
ciates with each formul& a quantifier-free formulap(x;y) inductively. Then, each formula

is interpreted as the new formulixVyAp(X; y) (see [1], section 2.3). The next result shows that
the Dialectica interpretation corresponds to the’ interpretation Wher¢!A|§ = !|A|§, via the
simplified embedding-J* (cf. Propositioi 4.2).

Theorem 4.5. |A*[¥ o— (Ap(X; ¥))*.

Proof. The proof is again an easy induction on the complexity of tiefilaA. The atomic formu-
las are checked trivially and the other formulas follow inttia¢ely by induction hypothesis using
the definitions of the-{*-translation and the interpretations. We illustrate witle tases: conjunc-
tion
IAAB) w = IAT&B* [y = A
(IH)
o= (Ap(X; ¥))" &(Bp(v;w))*

= (Ap(X;y) A Bp(v;w))" = (AA B)p(x,v; y,w))*

& IBY,

and disjunction
I(AVB)* W’ = A" @B [jw’ = IATS O21BYl,
= ((z=T) <A &Nz=F) - |By)

(M(z=T) = (Ao(x;M))") & ((z=F) — (Bp(v;W))")
= (=T - Ao(xy)" &(z=F - Bp(v;w))*
= ((z=T->AX; V) A(z=F— Bp(v,w)*

= ((AvB)p(xVv,.zy,w))".
The other cases are treated similarly. L]

Note that although-Y* translates formulas fronL® into ILL{" + P + P53, since these two
principles are interpretable the verifying system is #till;.

4.3. Diller-Nahm interpretation. The Diller-Nahm interpretation ffiers from Godel’s Dialectica
interpretation since it allows finite sets to witness theatieg content of an implication. Formally,
the Diller-Nahm interpretation can be defined inductivedy a
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(Aat)dn(;)
(A A B)an(X, Vv, y, W)

Aat

Adn(X; Y) A Ban(V; W)

(=T - Aan(X;¥)) A (z=F — Ban(v; W))
Yy € T XWA4n(X; Y) — Ban(gx; w)

(AV B)4n(X, V, Z Y, W)
(A — Blan(f, g; x, W)
(VzA)an(f; Y. 2 Aan(fz)y)
(FzAan(x, Z ) Adn(X; Y)-

Next we show that the Diller-Nahm interpretation lof’ corresponds to the interpretation of
ILLy with ['A] :=1Vye a|A|§.
Theorem 4.6.|A™[J o— (Adn(X; ¥))".
Proof. The proof, by induction on the structure &f is similar to the one concerning Godel's
interpretation. The only case which needs attention isdhahplication, which we analyse below.
(A - Bl LAY — B = LAY, — B
IVy € fXWATE — [BFI

00 1y e fxw(Aan(x; )" — (Ban(gx; W))*

I(Vy € fxWAGn(X; ¥))* — (Ban(gX; W))*
(Vy € fxwAgn(x;y) — Ban(gx; W))*
= ((A— Ban(f, g x,w))".
Note that the{* translation ofYyca Ais Yyea A", as we can see below:
(YyeaA* = (Yy(yea— A)*
= Vy(l(yea)t - A") = Vy(l(yea) — A*) = VyeaA'.
That concludes the proof. ]

5. Tue CATEGORICAL APPROACH

The study developed in this paper (and in previous work ofsieond author) is strongly
inspired by work of de Paiva and Hyland on categorical modéliear logic using Godel’s Di-
alectica interpretation. In this section we try to explaimal anake more explicit the link between our
framework for unifying interpretations of via interpretations ofLL and the categorical approach
on [14,[15) 16] for modellingLL. More precisely, in[[14] one finds a categorical version & th
Dialectica interpretation and an endofunctor interpretafor the modality A that corresponds to
the Diller-Nahm interpretation. Our goal is to relate thigppeoach with the work in the previous
sections.
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Before presenting de Paiva’s categ@¢ that modeldLL, for sake of intuition, let us infor-
mally sketch the correspondence between our framework ersdthirough the following table.

Our framework de Paiva’s framework
Realizers in 7 - finite types C - cartesian closed category
Formulas IAlC XxY X & Y (object ofDC)
f,F _
Sequents A+ B A (—>) B (morphism ofDC)
Linear implication A—-B [A, B]pc or BA

First, we point out that in de Paiva’s work the realisers @& thnctional interpretation are taken
from a given (fixed) cartesian closed categ@Gryin our case, we work with the particular cartesian
closed category of the functionals of finite type. Also, auterpretations are given syntactically,
and hence, a formulA is interpreted as another formykiy, which can be thought of as a binary
relation betweerx andy. In de Paiva’s work these relations are at the core of cotistigia new
categoryDC out of the given ccc€.

Let us briefly describe how the categ®¢ is defined and its associated constructions. Starting
with C, a finitely complete cartesian closed category with stahb disjoint coproducts, we can
define the monoidal closed categ@¢ as follows. An object oDC is a subobject of the product

U x X, thus a monomorphism »» U x X with A, U andX objects ofC also denoted by « X.
If we think of these objects as set-theoretic relations betw) and X, and consideringr as the
identity monic, we get thah C U x X, precisely as in our framework.

A map between two such objeo@s& U x XandB 2, V x Y consists of a pair of maps ¢,

. . . « (m1.F)
(f,F), f :U > V,F:UxY — Xsuch that pulling baclA — U x XalongU xY — U x X
fxy /

andB 2, V x Y alongU xY VXY (see the diagram below), the first subobjAtba—> UxYis

smaller than the secorigl 2, U XxY,i.e. thereisamak: A’ — B’ in C making the triangle in the
diagram below commute:

A/

ﬂ/

B >———->UXxXY

(mq, F) U x X

fxY

B

B>+ VXY

If we write the two relations in the short versidh< X andV & Y and ()~ for the pullback
functor, then a map iDC can be represented as the pdirK) in the diagram below
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Vae—our—Y
satisfying the conditiona, F)1(e) < (f x Y)71(B).

s . . . . . f£F) . .

The intuition in terms of set-theoretic relations is thddaiing: there is a map (—>) pBinDCif
and only if wheneveuaF(u, y) then f (u)By. In what follows we are going to say that two elements,
x andy are related viar (i.e. xay) by ay. This way the comparison with our framework becomes

easier. Using this notation, the condition above says tltmtrwvera‘;(u " thenﬁ;(“).
In the categonDC we can also define the bifunctogs [-, —]pc and & and the operatios of

weak-coproducts that can be read intuitively as

(@ ®B)xy iff  oyandsy
f oFf f
[e.fliz = (BN i kg, =B
(@& P iff a4 orpY, depending whethew is in X or Y
(a 69,3)‘{3{9 iff a‘{c"(w) or,B‘é"(W) depending whethewr is inU or V.

Apart from the relationr @ 3, our interpretation of the linear logic connectives (Defam [2.1)
coincides precisely with the definitions above. Let us exanin more detail the interpretation of
®, where our two approaches lead téfelient interpretations.

The main reason why we can have a simpler definition ef3 (with no need for the second
player to play higher order movedsg) is because we always assume that each finite type is indabite
by at least one element, while de Paiva’s imposes no singlstriction. More precisely, in our
setting we have

Bl € (UxVxB)x(XxY),
with B for the set of boolean constants, while in de Paiva’s settingsidering set-theoretic rela-
tions,

(@@B) C (U +V)x (XY xYY).
If U andV are non-empty, then the two typgs<V xB andU +V are isomorphic. In case, however,
one ofU or V is empty thenJ x V x B is also empty, wheredd + V can still be non-empty. In
other words, in the most general case, when types can be antygust indeed work with the type
U +V rather than withJ x V x B. Let us see then, how the interpretatiomas 8 works in the case
when some of the move-sets of Eloise could be empty.

While in the first situation Eloise plays one elementigfone fromV, and a boolean choosing
which game is going to count, in the second case Eloise plagtement olJ + V. As we are going
to see, in the latter case (with no extra assumptions) we Abethrd to play functions. Consider
theeL-rule, where froml, A+ C andI', B + C we can conclud&, A& B + C (for simplicity we
shall omit the contexI’). In our framework, the proof of the two premises will prozickaliserd-
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andH such that the premises of the following rule are derivable:

fu h
u,v,b b(fu,hv)
|A€B BIFuvv,va —° |C|W( )

In order to realiseC in the conclusion of the rule we can make use of the booleém choose
betweenfu andhv. Moreover, the “negative” realiser fét® B is just a paiK Fuw, Hvw). Now, in
de Paiva’s more general setting, we have the same informabiout the realisers for the premises
of the rule

Al = ICl' By — ICIY

|A@ B|a/ —0 |C|\(A;aeu)(fa)(ha) ’

aw,H’aw

but in the conclusion we no longer have a triflev, by, but rather an elemeate U +V. Therefore,
the functionald= andH are lifted to functional$" andH’ as

AWV Faw ifaeU AW Hw ifaeU
Faw:= H'aw :=
AW Fuw  ifaeV AW Haw ifaeV.

The extra argumenigsandv are used in the cases when the parameetexs the “wrong” type to be
used in eitheF or G, and a standard value must be used.

For the rest of the section, let us analyse how the lineaclegponential A is interpreted in
both approaches. As pointed by Blute and Scott in [3], amopiural and satisfying categorical
models for the L connectives tnfortunately, the exponentials are less clear: the stiecseems
less canonical: In terms of monoidal categories the structure used to igtles that of comonads
and comonoid objects. In[14], it is shown that if the catggOrhas a free monoid structure with

countable coproducts then the endofunctor ! can be definembjatts ofDC as the pullback of

a* Cux
A" »— (U x X)" alongU x X* — (U x X)*:

A

la a a

C
U x X* =X U x x)* U x X

Note that the functofr : C — MonC is left-adjoint to the forgetful functdd : MonC — C (see([14]
for more details). Intuitively, the relatiom} is transformed into a new relatiora()glx Xl which is

equivalent to/xe{xy, ..., Xa} a%. The functor ! acts on morphismsC as !(f, F) := (f,!F) where
IF : U xY*" — X*is the composite of

UxY U xy)y 5 x

Since the functor ! DC — DC has a natural comonad € 6) structure andA is a comonoid object
in DC, I models the linear logic exponential in the style of the®@#Nahm variant of the Dialectica
interpretation, via finite sets.

In our approach, we have chosen to take a formal (syntagimoach for the interpretation of
IA. We identify three conditions (A1-A3) whictAlneeds to satisfy in order for the resulting inter-
pretation to be sound. Our conditions are more general,raaidde as particular case the instance
where ! is a comonad with comonoid objects. In particularaneeable to obtain interpretations of
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IAthat correspond to other well-known functional interptietasuch as Godel's Dialectica interpre-
tation and Kreisel's modified realizability. A natural gties, of course, arises: Do the Dialectica
and modified realizability interpretations fit into the frework of de Paiva as well, and can they
be seen as arising from other comonads with comonoidaltate® In the first case (the Dialec-
tica interpretation) the answer is yes, and de Paiva does &dew remarks about the Dialectica
interpretation in her paper and in her thesis. More pregiset ! : DC — DC be the identity end-
ofunctor. Intuitively (k)y if and only if ay. It is immediate to check that,(d, id) is a comonad,
but in order for & to be a comonoid object IDC (not surprisingly) we need to require decidability.
More precisely, & — (la®!a) is interpreted as ¢)y,.,, — (')}, ® (la)j, with

Yo if —a
Yo-Y1:= { yo.
V1 otherwise.

As for modified realizability, it is not clear to us at the mamhevhether it can also be shown to
arise from a dterent monoid (other than the free monoid) using a genetalisaf de Paiva’s
construction. We plan to consider this question in our fiinvestigations.
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