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Abstract. Landin’s SECD machine was the first abstract machine for applicative ex-
pressions, i.e., functional programs. Landin’s J operator was the first control operator for
functional languages, and was specified by an extension of the SECD machine. We present
a family of evaluation functions corresponding to this extension of the SECD machine, us-
ing a series of elementary transformations (transformation into continuation-passing style
(CPS) and defunctionalization, chiefly) and their left inverses (transformation into direct
style and refunctionalization). To this end, we modernize the SECD machine into a bisimi-
lar one that operates in lockstep with the original one but that (1) does not use a data stack
and (2) uses the caller-save rather than the callee-save convention for environments. We
also identify that the dump component of the SECD machine is managed in a callee-save
way. The caller-save counterpart of the modernized SECD machine precisely corresponds
to Thielecke’s double-barrelled continuations and to Felleisen’s encoding of J in terms of
call/cc. We then variously characterize the J operator in terms of CPS and in terms of
delimited-control operators in the CPS hierarchy.

As a byproduct, we also present several reduction semantics for applicative expressions
with the J operator, based on Curien’s original calculus of explicit substitutions. These
reduction semantics mechanically correspond to the modernized versions of the SECD
machine and to the best of our knowledge, they provide the first syntactic theories of
applicative expressions with the J operator.

The present work is concluded by a motivated wish to see Landin’s name added to the
list of co-discoverers of continuations. Methodologically, however, it mainly illustrates the
value of Reynolds’s defunctionalization and of refunctionalization as well as the expres-
sive power of the CPS hierarchy (1) to account for the first control operator and the first
abstract machine for functional languages and (2) to connect them to their successors.
Our work also illustrates the value of Danvy and Nielsen’s refocusing technique to con-
nect environment-based abstract machines and syntactic theories in the form of reduction
semantics for calculi of explicit substitutions.
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1. Introduction

Forty years ago, Peter Landin unveiled the first control operator, J, to a heretofore
unsuspecting world [81, 82, 84]. He did so to generalize the notion of jumps and labels for
translating Algol 60 programs into applicative expressions, using the J operator to account
for the meaning of an Algol label. For a simple example, consider the block

begin s1 ; goto L ; L : s2 end

where the sequencing between the statements (‘basic blocks,’ in compiler parlance [8]) s1

and s2 has been made explicit with a label and a jump to this label. This block is translated
into the applicative expression

λ().let L = J s′2 in let () = s′1 () in L ()

where s′1 and s′2 respectively denote the translation of s1 and s2. The occurrence of J
captures the continuation of the outer let expression and yields a ‘program closure’ that is
bound to L. Then, s′1 is applied to (). If this application completes, the program closure
bound to L is applied: (1) s′2 is applied to () and then, if this application completes, (2)
the captured continuation is resumed, thereby completing the execution of the block.

Landin also showed that the notion of program closure makes sense not just in an
imperative setting, but also in a functional one. He specified the J operator by extending
the SECD machine [80,83].

1.1. The SECD machine. Over the years, the SECD machine has been the topic of
considerable study: it provides an unwavering support for operational semantics [1, 9, 11,
19, 25, 26, 53, 68, 69, 74, 95, 100, 117], compilation [5, 10, 21, 23, 62, 64, 65, 96, 98, 99, 106], and
parallelism [2, 20], and it lends itself readily to variations [47, 48, 51, 67, 101, 105, 116] and
generalizations [87,88,120]. In short, it is standard textbook material [55,63,70,71,79,109],
even though its architecture is generally agreed to be on the ‘baroque’ side, since most
subsequent abstract machines have no data stack and only one control stack instead of
two. Nobody, however, seems to question its existence as a distinct artifact (i.e., man-
made construct) mediating between applicative expressions (i.e., functional programs) and
traditional sequential imperative implementations.

Indeed abstract machines provide a natural meeting ground for theoretically-minded
and experimentally-minded computer scientists: they are as close to an actual implementa-
tion as most theoreticians will ever get, and to an actual formalization as most experimen-
talists will ever go. For example, Plotkin [100] proved the correctness of the SECD machine
in reference to a definitional interpreter due to Morris [91] and a variety of implementations
take the SECD machine as their starting point [10,20,23,87].

1.2. The authors’ thesis. Is there, however, such a gap between applicative expressions
and abstract machines? The thrust of Steele’s MSc thesis [110] was that after CPS trans-
formation,1 a λ-abstraction can be seen as a label and a tail call as a machine jump with the

1‘CPS’ stands for ‘Continuation-Passing Style;’ this term is due to Steele [110]. In a CPS program, all calls
are tail calls and functions thread a functional accumulator, the continuation, that represents ‘the rest of the
computation’ [114]. CPS programs are either written directly or the result of a CPS transformation [39,100].
(See Appendix A.2.) The left inverse of the CPS transformation is the direct-style transformation [33,41].
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machine registers holding the actual parameters. Furthermore the point of Reynolds’s de-
functionalization [102] is that higher-order programs can be given an equivalent first-order
representation.2

It nevertheless took 40 years for the SECD machine to be ‘rationally deconstructed’
into a compositional evaluation function [35], the point being that

(1) the SECD machine is essentially in defunctionalized form, and
(2) its refunctionalized counterpart is an evaluation function in CPS, which turns out to be

compositional.

This deconstruction laid the ground for a functional correspondence between evaluators and
abstract machines [3, 4, 6, 7, 13,16,36,37, 73, 89, 90, 93].

It is therefore the authors’ thesis [36, 90] that the gap between abstract machines and
applicative expressions is bridged by Reynolds’s defunctionalization.

Our goal here is to show that the functional correspondence between evaluators and
abstract machines also applies to the SECD machine with the J operator, which, as we
show, also can be deconstructed into a compositional evaluation function. As a corollary,
we present several new simulations of the J operator, and the first syntactic theories for
applicative expressions with the J operator.

1.3. Deconstruction of the SECD machine with the J operator. Let us outline
our deconstruction of the SECD machine before substantiating it in the next sections. We
follow the order of the first deconstruction [35], though with a twist: for simplicity and
without loss of generality, in the middle of the derivation, we first abandon the stack-
threading, callee-save features of the SECD machine, which are non-standard, for the more
familiar—and therefore less ‘baroque’—stackless, caller-save features of traditional defini-
tional interpreters [59, 91, 102, 111]. (These concepts are reviewed in the appendices. The
point here is that the SECD machine manages the environment in a callee-save fashion.)
We then identify that the dump too is managed in a callee-save fashion and we present the
corresponding caller-save counterpart.

The SECD machine is defined as the iteration of a state-transition function operating
over a quadruple—a data stack (of type S) containing intermediate values, an environment
(of type E), a control stack (of type C), and a dump (of type D) and yielding a value (of type
value):

run : S * E * C * D -> value

The first deconstruction [35] showed that together the C and D components represent the
current continuation and that the D component represents the continuation of the current
caller, if there is one. As already pointed out in Section 1.1, since Landin’s work, the C and
D components of his abstract machine have been unified into one component; reflecting this
unification, control operators capture both what used to be C and D instead of only what
used to be D.

2In the early 1970’s [102], John Reynolds introduced defunctionalization as a variation of Landin’s ‘func-
tion closures’ [80], where a term is paired together with its environment. In a defunctionalized program,
what is paired with an environment is not a term, but a tag that determines this term uniquely. In ML,
the tagged environments are grouped into data types, and auxiliary apply functions dispatch over the tags.
(See Appendix A.3.) The left inverse of defunctionalization is ‘refunctionalization’ [43,44].
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1.3.1. Disentangling and refunctionalization (Section 2). The above definition of run looks
complicated because it has several induction variables, i.e., it dispatches over several com-
ponents of the quadruple. Our deconstruction proceeds as follows:

• We disentangle run into four mutually recursive transition functions, each of which has
one induction variable, i.e., dispatches over one component of the quadruple (boxed in
the signature below):

run_c : S * E * C * D -> value

run_d : value * D -> value

run_t : term * S * E * C * D -> value

run_a : value * value * S * E * C * D -> value

The first function, run c, dispatches towards run d if the control stack is empty, run t if the
top of the control stack contains a term, and run a if the top of the control stack contains
an apply directive. This disentangled specification, as it were, is in defunctionalized
form [43, 44, 102]: the control stack and the dump are defunctionalized data types, and
run c and run d are the corresponding apply functions.

• Refunctionalization eliminates the two apply functions:

run_t : term * S * E * C * D -> value

run_a : value * value * S * E * C * D -> value

where C = S * E * D -> value and D = value -> value

C and D are now function types. As identified in the first rational deconstruction [35], the
resulting program is a continuation-passing interpreter. This interpreter threads a data
stack to hold intermediate results and uses a callee-save convention for environments to
process subterms. (For information and comparison, Appendix B illustrates an interpreter
with no data stack for intermediate results and a caller-save convention for environments,
Appendix C illustrates an interpreter with no data stack for intermediate results and a
callee-save convention for environments, and Appendix D illustrates an interpreter with
a data stack for intermediate results and a caller-save convention for environments.)

At this point, we could continue as in the first deconstruction [35] and exhibit the direct-
style counterpart of this interpreter. The result, however, would be less simple and less
telling than first making do without the data stack (Section 1.3.2) and second adopting the
more familiar caller-save convention for environments (Section 1.3.3) before continuing the
deconstruction towards a compositional interpreter in direct style (Section 1.3.4).

1.3.2. A first modernization: eliminating the data stack (Section 3). In order to focus on
the nature of the J operator, we first eliminate the data stack:

run_t : term * E * C * D -> value

run_a : value * value * E * C * D -> value

where C = value * E * D -> value and D = value -> value

(Two simpler interpreters are presented and contrasted in Appendices B and D. The first,
in Appendix B, has no data stack for intermediate results, and the second, in Appendix D,
has one.)
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1.3.3. A second modernization: from callee-save to caller-save environments (Section 3).
Again, in order to focus on the nature of the J operator, we adopt the more familiar caller-
save convention for environments. In passing, we also rename run t as eval and run a as
apply:

eval : term * E * C * D -> value

apply : value * value * C * D -> value

where C = value * D -> value and D = value -> value

(Two simpler interpreters are presented and contrasted in Appendices B and C. The first, in
Appendix B, uses a caller-save convention for environments, and the second, in Appendix C,
uses a callee-save convention.)

1.3.4. Continuing the deconstruction: towards a compositional interpreter in direct style.

• A direct-style transformation eliminates the dump continuation:

eval : term * E * C -> value

apply : value * value * C -> value

where C = value -> value

The clause for the J operator and the main evaluation function are expressed using the
delimited-control operators shift and reset [38].3 The resulting interpreter still threads
an explicit continuation, even though it is not tail-recursive.

• Another direct-style transformation eliminates the control continuation:

eval : term * E -> value

apply : value * value -> value

The clauses catering for the non-tail-recursive uses of the control continuation are ex-
pressed using the delimited-control operators shift1, reset1, shift2, and reset2 [13, 38, 46,
75,94]. The resulting evaluator is in direct style. It is also in closure-converted form: the
applicable values are a defunctionalized data type and apply is the corresponding apply
function.

• Refunctionalization eliminates the apply function:

eval : term * E -> value

The resulting evaluation function is compositional, and the corresponding syntax-directed
encoding gives rise to new simulations of the J operator.

1.3.5. A variant: from callee-save to caller-save dumps (Section 4). In Section 1.3.3, we kept
the dump component because it is part of the SECD machine semantics of the J operator.
We observe, however, that the dump is managed in a callee-save way. We therefore change
gear and consider the caller-save counterpart of the interpreter:

eval : term * E * C * D -> value

apply : value * value * C -> value

where C = value -> value and D = value -> value

3 Delimited continuations represent part of the rest of the computation: the control operator reset
delimits control and the control operator shift captures the current delimited continuation [38]. These
two control operators provide a direct-style handle for programs with two layers of continuations. This
programming pattern is also used for ‘success’ and ‘failure’ continuations in the functional-programming
approach to backtracking. Programs that have been CPS-transformed twice exhibit two such layers of
continuations. Here, C is the first layer and D is the second. Iterating a CPS transformation gives rise to a
CPS hierarchy [13,38,76,94].
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This caller-save interpreter is still in CPS. We can write its direct-style counterpart and
refunctionalize its applicable values, which yields another compositional evaluation function
in direct style. This compositional evaluation function gives rise to new simulations of the
J operator, some of which had already been invented independently.

1.3.6. Assessment. As illustrated in Sections 1.3.2, 1.3.3, and 1.3.5, there is plenty of room
for variation in the present deconstruction. Each step is reversible: one can CPS-transform
and defunctionalize an evaluator and (re)construct an abstract machine [3,4,6,7,13,16,35–
37].

1.4. Syntactic theories of applicative expressions with the J operator. Let us
outline our syntactic theories of applicative expressions substantiating them in the next
sections.

1.4.1. Explicit, callee-save dumps (Section 7). We present a reduction semantics for Curien’s
calculus of closures extended with the J operator, and we derivationally link it to the caller-
save, stackless SECD machine of Section 7.1.

1.4.2. Implicit, caller-save dumps (Section 8). We present another reduction semantics for
Curien’s calculus of closures extended with the J operator, and we derivationally link it to
a version of the SECD machine which is not in defunctionalized form.

1.4.3. Explicit, caller-save dumps (Section 9). We outline a third reduction semantics for
Curien’s calculus of closures extended with the J operator, and we show how it leads towards
Thielecke’s double-barrelled continuations.

1.4.4. Inheriting the dump through the environment (Section 10). We present a fourth re-
duction semantics for Curien’s calculus of closures extended with the J operator, and we
derivationally link it to a version of the CEK machine that reflects Felleisen’s simulation of
the J operator.

1.5. Prerequisites and domain of discourse: the functional correspondence. We
mostly use pure ML as a meta-language. We assume a basic familiarity with Standard
ML and with reasoning about pure ML programs as well as an elementary understand-
ing of defunctionalization [43, 44, 102] and its left inverse, refunctionalization; of the CPS
transformation [38, 41, 59, 91, 102, 110] and its left inverse, the direct-style transformation;
and of delimited continuations [13, 38, 46, 56, 75]. From Section 3.2, we use pure ML with
delimited-control operators as a meta-language.
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The source language of the SECD machine. The source language is the λ-calculus, extended
with literals (as observables) and the J operator. Except for the variables in the initial
environment of the SECD machine, a program is a closed term:

datatype term = LIT of int

| VAR of string

| LAM of string * term

| APP of term * term

| J

type program = term

The control directives. The control component of the SECD machine is a list of control
directives, where a directive is a term or the tag APPLY:

datatype directive = TERM of term | APPLY

The environment. We use a structure Env with the following signature:

signature ENV = sig

type ’a env

val empty : ’a env

val extend : string * ’a * ’a env -> ’a env

val lookup : string * ’a env -> ’a

end

The empty environment is denoted by Env.empty. The function extending an environment
with a new binding is denoted by Env.extend. The function fetching the value of an identifier
from an environment is denoted by Env.lookup. These functions are pure and total and
therefore throughout, we call them without passing them any continuation, i.e., in direct
style [40].

Values. There are five kinds of values: integers, the successor function, function closures,
“state appenders” [21, page 84], and program closures:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

withtype S = value list (* data stack *)

and E = value Env.env (* environment *)

and C = directive list (* control *)

and D = (S * E * C) list (* dump *)

A function closure pairs a λ-abstraction (i.e., its formal parameter and its body) and its
lexical environment. A state appender is an intermediate value; applying it yields a program
closure. A program closure is a first-class continuation.4

The initial environment. The initial environment binds the successor function:

val e_init = Env.extend ("succ", SUCC, Env.empty)

4The terms ‘function closures’ and ‘program closures’ are due to Landin [82]. The term ‘state appender’
is due to Burge [21]. The term ‘continuation’ is due to Wadsworth [118]. The term ‘first-class’ is due to
Strachey [113]. The term ‘first-class continuation’ is due to Friedman and Haynes [58].
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The starting specification: Several formulations of the SECD machine with the J operator
have been published [21, 51, 82]. We take the most recent one, i.e., Felleisen’s [51], as our
starting point, and we consider the others in Section 5:

(* run : S * E * C * D -> value *)

fun run (v :: s, e, nil, nil)

= v

| run (v :: s’, e’, nil, (s, e, c) :: d)

= run (v :: s, e, c, d)

| run (s, e, (TERM (LIT n)) :: c, d)

= run ((INT n) :: s, e, c, d)

| run (s, e, (TERM (VAR x)) :: c, d)

= run ((Env.lookup (x, e)) :: s, e, c, d)

| run (s, e, (TERM (LAM (x, t))) :: c, d)

= run ((FUNCLO (e, x, t)) :: s, e, c, d)

| run (s, e, (TERM (APP (t0, t1))) :: c, d)

= run (s, e, (TERM t1) :: (TERM t0) :: APPLY :: c, d)

| run (s, e, (TERM J) :: c, d) (* 1 *)

= run ((STATE_APPENDER d) :: s, e, c, d)

| run (SUCC :: (INT n) :: s, e, APPLY :: c, d)

= run ((INT (n+1)) :: s, e, c, d)

| run ((FUNCLO (e’, x, t)) :: v :: s, e, APPLY :: c, d)

= run (nil, Env.extend (x, v, e’), (TERM t) :: nil, (s, e, c) :: d)

| run ((STATE_APPENDER d’) :: v :: s, e, APPLY :: c, d) (* 2 *)

= run ((PGMCLO (v, d’)) :: s, e, c, d)

| run ((PGMCLO (v, d’)) :: v’ :: s, e, APPLY :: c, d) (* 3 *)

= run (v :: v’ :: nil, e_init, APPLY :: nil, d’)

fun evaluate0 t (* evaluate0 : program -> value *)

= run (nil, e_init, (TERM t) :: nil, nil)

The function run implements the iteration of a transition function for the SECD machine:
(s, e, c, d) is a state of the machine and each clause of the definition of run specifies a
state transition.

The SECD machine is deterministic. It terminates if it reaches a state with an empty
control stack and an empty dump; in that case, it produces a value on top of the data
stack. It does not terminate for divergent source terms. It becomes stuck if it attempts
to apply an integer or attempts to apply the successor function to a non-integer value, in
that case an ML pattern-matching error is raised (alternatively, the codomain of run could
be made value option and a fallthrough else clause could be added). The clause marked
“1” specifies that the J operator, at any point, denotes the current dump; evaluating it
captures this dump and yields a state appender that, when applied (in the clause marked
“2”), yields a program closure. Applying a program closure (in the clause marked “3”)
restores the captured dump.

1.6. Prerequisites and domain of discourse: the syntactic correspondence. We
assume a basic familiarity with reduction semantics as can be gathered in Felleisen’s PhD
thesis [50] and undergraduate lecture notes [52] and with Curien’s original calculus of clo-
sures [14, 31], which is the ancestor of calculi of explicit substitutions. We also review the
syntactic correspondence between reduction semantics and abstract machines in Section E
by deriving the CEK machine from Curien’s calculus of closures for applicative order.
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1.7. Overview. We first disentangle and refunctionalize Felleisen’s version of the SECD
machine (Section 2). We then modernize it, eliminating its data stack and making go
from callee-save to caller-save environments, and deconstruct the resulting specification
into a compositional evaluator in direct style; we then analyze the J operator (Section 3).
Identifying that dumps are managed in a callee-save way in the modernized SECD machine,
we also present a variant where they are managed in a caller-save way, and we deconstruct
the resulting specification into another compositional evaluator in direct style; we then
analyze the J operator (Section 4). Overall, the deconstruction takes the form of a series of
elementary transformations. The correctness of each step is very simple: most of the time,
it is a corollary of the correctness of the transformation itself.

We then review related work (Section 5) and outline the deconstruction of the original
version of the SECD machine, which is due to Burge (Section 6).

We then present a reduction semantics for the J operator that corresponds to the
specification of Section 3 (Section 7). We further present a syntactic theory of applicative
expressions with the J operator using delimiters (Section 8), and we show how this syntactic
theory specializes to a reduction semantics that yields the abstract machine of Section 4
(Section 9) and to another reduction semantics that embodies Felleisen’s embedding of J
into Scheme described in Section 4.5 (Section 10).

We then conclude (Sections 11 and 12).

2. Deconstruction of the SECD machine with the J operator:

disentangling and refunctionalization

2.1. A disentangled specification. In the starting specification of Section 1.5, all the
possible transitions are meshed together in one recursive function, run. As in the first
rational deconstruction [35], we factor run into four mutually recursive functions, each with
one induction variable. In this disentangled definition, run c dispatches to the three other
transition functions, which all dispatch back to run c:

• run c interprets the list of control directives, i.e., it specifies which transition to take
according to whether the list is empty, starts with a term, or starts with an apply directive.
If the list is empty, it calls run d. If the list starts with a term, it calls run t, caching
the term in an extra component (the first parameter of run t). If the list starts with an
apply directive, it calls run a.

• run d interprets the dump, i.e., it specifies which transition to take according to whether
the dump is empty or non-empty, given a valid data stack; run t interprets the top term
in the list of control directives; and run a interprets the top value in the data stack.

Graphically:

(s1,e1,c1,d1)
run //

run c

##GGGGGGGGGGGGG

(s2,e2,c2,d2)
run //

run c

##GGGGGGGGGGGGG

(s3,e3,c3,d3)

run c

$$IIII
IIIIII

IIIII

. . .
;;wwwwwwwwwwwww

;;wwwwwwwwwwwww

run d

run t

run a

;;wwwwwwwwwwwww

;;wwwwwwwwwwwww

;;wwwwwwwwwwwww

run d

run t

run a

;;wwwwwwwwwwwww
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(* run_c : S * E * C * D -> value *)

(* run_d : value * D -> value *)

(* run_t : term * S * E * C * D -> value *)

(* run_a : value * value * S * E * C * D -> value *)

fun run_c (v :: s, e, nil, d)

= run_d (v, d)

| run_c (s, e, (TERM t) :: c, d)

= run_t (t, s, e, c, d)

| run_c (v0 :: v1 :: s, e, APPLY :: c, d)

= run_a (v0, v1, s, e, c, d)

and run_d (v, nil)

= v

| run_d (v, (s, e, c) :: d)

= run_c (v :: s, e, c, d)

and run_t (LIT n, s, e, c, d)

= run_c ((INT n) :: s, e, c, d)

| run_t (VAR x, s, e, c, d)

= run_c ((Env.lookup (x, e)) :: s, e, c, d)

| run_t (LAM (x, t), s, e, c, d)

= run_c ((FUNCLO (e, x, t)) :: s, e, c, d)

| run_t (APP (t0, t1), s, e, c, d)

= run_c (s, e, (TERM t1) :: (TERM t0) :: APPLY :: c, d)

| run_t (J, s, e, c, d)

= run_c ((STATE_APPENDER d) :: s, e, c, d)

and run_a (SUCC, INT n, s, e, c, d)

= run_c ((INT (n+1)) :: s, e, c, d)

| run_a (FUNCLO (e’, x, t), v, s, e, c, d)

= run_c (nil, Env.extend (x, v, e’), (TERM t) :: nil, (s, e, c) :: d)

| run_a (STATE_APPENDER d’, v, s, e, c, d)

= run_c ((PGMCLO (v, d’)) :: s, e, c, d)

| run_a (PGMCLO (v, d’), v’, s, e, c, d)

= run_c (v :: v’ :: nil, e_init, APPLY :: nil, d’)

fun evaluate1 t (* evaluate1 : program -> value *)

= run_c (nil, e_init, (TERM t) :: nil, nil)

By construction, the two machines operate in lockstep, with each transition of the origi-
nal machine corresponding to two transitions of the disentangled machine. Since the two
machines start in the same initial state, the correctness of the disentangled machine is a
corollary of them operating in lockstep:

Proposition 2.1 (full correctness). Given a program, evaluate0 and evaluate1 either both
diverge or both yield values that are structurally equal.

In the rest of this section, we only consider programs that yield an integer value, if any.
Indeed we are going to modify the data type of the values as we go from abstract machine
to evaluator, and we want a simple, comparable characterization of the results they yield.

Furthermore, again for simplicity, we short-circuit four state transitions in the abstract
machine above:

...

| run_t (APP (t0, t1), s, e, c, d)

= run_t (t1, s, e, (TERM t0) :: APPLY :: c, d)
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...

| run_a (FUNCLO (e’, x, t), v, s, e, c, d)

= run_t (t, nil, Env.extend (x, v, e’), nil, (s, e, c) :: d)

...

| run_a (PGMCLO (v, d’), v’, s, e, c, d)

= run_a (v, v’, nil, e_init, nil, d’)

...

fun evaluate1 t

= run_t (t, nil, e_init, nil, nil)

2.2. A higher-order counterpart. In the disentangled definition of Section 2.1, there are
two possible ways to construct a dump—nil and consing a triple—and three possible ways
to construct a list of control directives—nil, consing a term, and consing an apply directive.
One could phrase these constructions as two specialized data types rather than as two lists.

These data types, together with run d and run c as their apply functions, are in the
image of defunctionalization. After refunctionalization, the higher-order evaluator reads as
follows;5 it is higher-order because c and d now denote functions:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

withtype S = value list (* data stack *)

and E = value Env.env (* environment *)

and D = value -> value (* dump continuation *)

and C = S * E * D -> value (* control continuation *)

val e_init = Env.extend ("succ", SUCC, Env.empty)

(* run_t : term * S * E * C * D -> value *)

(* run_a : value * value * S * E * C * D -> value *)

fun run_t (LIT n, s, e, c, d)

= c ((INT n) :: s, e, d)

| run_t (VAR x, s, e, c, d)

= c ((Env.lookup (x, e)) :: s, e, d)

| run_t (LAM (x, t), s, e, c, d)

= c ((FUNCLO (e, x, t)) :: s, e, d)

| run_t (APP (t0, t1), s, e, c, d)

= run_t (t1, s, e, fn (s, e, d) =>

run_t (t0, s, e, fn (v0 :: v1 :: s, e, d) =>

run_a (v0, v1, s, e, c, d), d), d)

| run_t (J, s, e, c, d)

= c ((STATE_APPENDER d) :: s, e, d)

and run_a (SUCC, INT n, s, e, c, d)

= c ((INT (n+1)) :: s, e, d)

| run_a (FUNCLO (e’, x, t), v, s, e, c, d)

= run_t (t, nil, Env.extend (x, v, e’), fn (v :: s, e, d) => d v,

fn v => c (v :: s, e, d))

5Had we not short-circuited the four state transitions at the end of Section 2.1, the resulting higher-order
evaluator would contain four βv-redexes. Contracting these redexes corresponds to short-circuiting these
transitions.
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| run_a (STATE_APPENDER d’, v, s, e, c, d)

= c ((PGMCLO (v, d’)) :: s, e, d)

| run_a (PGMCLO (v, d’), v’, s, e, c, d)

= run_a (v, v’, nil, e_init, fn (v :: s, e, d) => d v, d’)

fun evaluate2 t (* evaluate2 : program -> value *)

= run_t (t, nil, e_init, fn (v :: s, e, d) => d v, fn v => v)

The resulting evaluator is in CPS, with two layered continuations c and d. It threads a
stack of intermediate results (s), an environment (e), a control continuation (c), and a
dump continuation (d). Except for the environment being callee-save, the evaluator follows
a traditional eval–apply schema: run t is eval and run a is apply. Defunctionalizing it
yields the definition of Section 2.1 and as illustrated in Appendix A, by construction, run t

and run a in the defunctionalized version operate in lockstep with run t and run a in the
refunctionalized version:

Proposition 2.2 (full correctness). Given a program, evaluate1 and evaluate2 either both
diverge or both yield values; and if these values have an integer type, they are the same
integer.

3. Deconstruction of the SECD machine with the J operator:

no data stack and caller-save environments

We want to focus on J, and the non-standard aspects of the evaluator of Section 2.2 (the
callee-save environment and the data stack) are a distraction. We therefore modernize this
evaluator into a more familiar caller-save, stackless form [59,91,102,111]. Let us describe this
modernization in two steps: first we transform the evaluator to use a caller-save convention
for environments (as outlined in Section 1.3.2 and illustrated in Appendices B and C), and
second we transform it to not use a data stack (as outlined in Section 1.3.3 and illustrated
in Appendices B and D).

The environments of the evaluator of Section 2.2 are callee-save because the apply func-
tion run a receives an environment e as an argument and “returns” one to its continuation
c [8, pages 404–408]. Inspecting the evaluator shows that whenever run a is passed a con-
trol directive c and an environment e and applies c, then the environment e is passed to c.
Thus, the environment is passed to run a only in order to thread it to the control continu-
ation. The control continuations created in run a and evaluate2 ignore their environment
argument, and the control continuations created in run t are passed an environment that
is already in their lexical scope. Therefore, neither the apply function run a nor the control
continuations need to be passed an environment at all.

Turning to the data stack, we first observe that the control continuations of the evaluator
in Section 2.2 are always applied to a data stack with at least one element. Therefore, we
can pass the top element of the data stack as a separate argument, changing the type of
control continuations from S * E * D -> value to value * S * E * D -> value. We can
thus eliminate the data stack following an argument similar to the one for environments
in the previous paragraph: the run a function merely threads its data stack along to its
control continuation; the control continuations created in run a and evaluate2 ignore their
data-stack argument, and the control continuations created in run t are passed a data stack
that is already in their lexical scope. Therefore, neither the apply function run a, the eval
function run t, nor the control continuations need to be passed a data stack at all.
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3.1. A specification with no data stack and caller-save environments. The caller-
save, stackless counterpart of the evaluator of Section 2.2 reads as follows, renaming run t

as eval and run a as apply in passing:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

withtype E = value Env.env (* environment *)

and D = value -> value (* dump continuation *)

and C = value * D -> value (* control continuation *)

val e_init = Env.extend ("succ", SUCC, Env.empty)

(* eval : term * E * C * D -> value *)

(* apply : value * value * C * D -> value *)

fun eval (LIT n, e, c, d)

= c (INT n, d)

| eval (VAR x, e, c, d)

= c (Env.lookup (x, e), d)

| eval (LAM (x, t), e, c, d)

= c (FUNCLO (e, x, t), d)

| eval (APP (t0, t1), e, c, d)

= eval (t1, e, fn (v1, d) =>

eval (t0, e, fn (v0, d) =>

apply (v0, v1, c, d), d), d)

| eval (J, e, c, d)

= c (STATE_APPENDER d, d)

and apply (SUCC, INT n, c, d)

= c (INT (n+1), d)

| apply (FUNCLO (e’, x, t), v, c, d)

= eval (t, Env.extend (x, v, e’), fn (v, d) => d v,

fn v => c (v, d))

| apply (STATE_APPENDER d’, v, c, d)

= c (PGMCLO (v, d’), d)

| apply (PGMCLO (v, d’), v’, c, d)

= apply (v, v’, fn (v, d) => d v, d’)

fun evaluate2’ t (* evaluate2’ : program -> value *)

= eval (t, e_init, fn (v, d) => d v, fn v => v)

The new evaluator is still in CPS, with two layered continuations. In order to justify it
formally, we consider the corresponding abstract machine as obtained by defunctionalization
(shown in Section 7; the ML code for evaluate1’ is not shown here). This abstract machine
and the disentangled abstract machine of Section 2.1 operate in lockstep and we establish
a bisimulation between them. The full details of this formal justification are found in the
second author’s PhD dissertation [90, Section 4.4]. Graphically:
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evaluate0
disentangling

// evaluate1
refunctionalization //

OO

bisimulation

��

evaluate2oo

‘modernization’:
no data stack and
caller-save environments

���
�

�

�

�

�

evaluate1’
//
evaluate2’

defunctionalization
oo

The following proposition follows as a corollary of the bisimulation and of the correctness
of defunctionalization:

Proposition 3.1 (full correctness). Given a program, evaluate2 and evaluate2’ either
both diverge or both yield values; and if these values have an integer type, they are the same
integer.

3.2. A dump-less direct-style counterpart. The evaluator of Section 3.1 is in continu-
ation-passing style, and therefore it is in the image of the CPS transformation. In order to
highlight the control effect of the J operator, we now present the direct-style counterpart
of this evaluator.

The clause for J captures the current continuation (i.e., the dump) in a state appender,
and therefore its direct-style counterpart naturally uses the undelimited control operator
call/cc [41]. With an eye on our next step, we do not, however, use call/cc but its delimited
cousins shift and reset [13,38,46] to write the direct-style counterpart.

Concretely, we use an ML functor to obtain an instance of shift and reset with value

as the type of intermediate answers [46, 56]: reset delimits the (now implicit) dump con-
tinuation in eval, and corresponds to its initialization with the identity function; and shift
captures it in the clauses where J is evaluated and where a program closure is applied.
There is one non-tail call to eval, to evaluate the body of a λ-abstraction; this context is
captured by shift when J is evaluated:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

withtype E = value Env.env (* environment *)

and C = value -> value (* control continuation *)

and D = value -> value (* first-class dump continuation *)

val e_init = Env.extend ("succ", SUCC, Env.empty)

structure SR = make_Shift_and_Reset (type intermediate_answer = value)

(* eval : term * E * C -> value *)

(* apply : value * value * C -> value *)

fun eval (LIT n, e, c)

= c (INT n)

| eval (VAR x, e, c)

= c (Env.lookup (x, e))
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| eval (LAM (x, t), e, c)

= c (FUNCLO (e, x, t))

| eval (APP (t0, t1), e, c)

= eval (t1, e, fn v1 => eval (t0, e, fn v0 => apply (v0, v1, c)))

| eval (J, e, c)

= SR.shift (fn d => d (c (STATE_APPENDER d))) (* * *)

and apply (SUCC, INT n, c)

= c (INT (n+1))

| apply (FUNCLO (e’, x, t), v, c)

= c (eval (t, Env.extend (x, v, e’), fn v => v)) (* * *)

| apply (STATE_APPENDER d, v, c)

= c (PGMCLO (v, d))

| apply (PGMCLO (v, d), v’, c)

= SR.shift (fn d’ => d (apply (v, v’, fn v => v))) (* * *)

fun evaluate3’ t (* evaluate3’ : program -> value *)

= SR.reset (fn () => eval (t, e_init, fn v => v))

The dump continuation is now implicit and is accessed using shift. The first occurrence
of shift captures the current dump when J is evaluated. The second occurrence is used
to discard the current dump when a program closure is applied. CPS-transforming this
evaluator yields the evaluator of Section 3.1:

Proposition 3.2 (full correctness). Given a program, evaluate2’ and evaluate3’ either
both diverge or both yield values; and if these values have an integer type, they are the same
integer.

3.3. A control-less direct-style counterpart. The evaluator of Section 3.2 still threads
an explicit continuation, the control continuation. It however is not in continuation-passing
style because of the non-tail calls to c, eval, and apply (in the clauses marked “*” above)
and the occurrences of shift and reset. This pattern of control is characteristic of the CPS
hierarchy [13, 38, 46, 75] (see also Footnote 3, page 5). We therefore use the delimited-
control operators shift1, reset1, shift2, and reset2 to write the direct-style counterpart of
this evaluator (shift2 and reset2 are the direct-style counterparts of shift1 and reset1, and
shift1 and reset1 are synonyms for shift and reset).

Concretely, we use two ML functors to obtain layered instances of shift and reset with
value as the type of intermediate answers [46, 56]: reset2 delimits the (now twice implicit)
dump continuation in eval; shift2 captures it in the clauses where J is evaluated and where
a program closure is applied; reset1 delimits the (now implicit) control continuation in eval

and in apply, and corresponds to its initialization with the identity function; and shift1
captures it in the clause where J is evaluated:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

withtype E = value Env.env (* environment *)

and D = value -> value (* first-class dump continuation *)

val e_init = Env.extend ("succ", SUCC, Env.empty)

structure SR1 = make_Shift_and_Reset (type intermediate_answer = value)
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structure SR2 = make_Shift_and_Reset_next (type intermediate_answer = value

structure over = SR1)

(* eval : term * E -> value *)

(* apply : value * value -> value *)

fun eval (LIT n, e)

= INT n

| eval (VAR x, e)

= Env.lookup (x, e)

| eval (LAM (x, t), e)

= FUNCLO (e, x, t)

| eval (APP (t0, t1), e)

= let val v1 = eval (t1, e)

val v0 = eval (t0, e)

in apply (v0, v1) end

| eval (J, e)

= SR1.shift (fn c => SR2.shift (fn d => d (c (STATE_APPENDER d))))

and apply (SUCC, INT n)

= INT (n+1)

| apply (FUNCLO (e’, x, t), v)

= SR1.reset (fn () => eval (t, Env.extend (x, v, e’)))

| apply (STATE_APPENDER d, v)

= PGMCLO (v, d)

| apply (PGMCLO (v, d), v’)

= SR1.shift (fn c’ => SR2.shift (fn d’ =>

d (SR1.reset (fn () => apply (v, v’)))))

fun evaluate4’ t (* evaluate4’ : program -> value *)

= SR2.reset (fn () => SR1.reset (fn () => eval (t, e_init)))

The control continuation is now implicit and is accessed using shift1. The dump continuation
is still implicit and is accessed using shift2. CPS-transforming this evaluator yields the
evaluator of Section 3.2:

Proposition 3.3 (full correctness). Given a program, evaluate3’ and evaluate4’ either
both diverge or both yield values; and if these values have an integer type, they are the same
integer.

3.4. A compositional counterpart. We now turn to the data flow of the evaluator of
Section 3.3. As for the SECD machine without J [35], this evaluator is in defunctionalized
form: each of the values constructed with SUCC, FUNCLO, PGMCLO, and STATE APPENDER is
constructed at exactly one place and consumed at exactly one other (the apply function).
We therefore refunctionalize them into the function space value -> value, which is shaded
below:

datatype value = INT of int

| FUN of value -> value

withtype E = value Env.env

val e_init = Env.extend ("succ", FUN (fn (INT n) => INT (n+1)), Env.empty)

structure SR1 = make_Shift_and_Reset (type intermediate_answer = value)

structure SR2 = make_Shift_and_Reset_next (type intermediate_answer = value

structure over = SR1)
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(* eval : term * E -> value *)

(* where E = value Env.env *)

fun eval (LIT n, e)

= INT n

| eval (VAR x, e)

= Env.lookup (x, e)

| eval (LAM (x, t), e)

= FUN (fn v => SR1.reset (fn () => eval (t, Env.extend (x, v, e))))

| eval (APP (t0, t1), e)

= let val v1 = eval (t1, e)

val (FUN f) = eval (t0, e)

in f v1 end

| eval (J, e)

= SR1.shift (fn c => SR2.shift (fn d =>

d (c (FUN (fn v =>

FUN (fn v’ => SR1.shift (fn c’ =>

SR2.shift (fn d’ =>

d (SR1.reset (fn () => let val (FUN f) = v

in f v’ end))))))))))

fun evaluate4’’ t (* evaluate4’’ : program -> value *)

= SR2.reset (fn () => SR1.reset (fn () => eval (t, e_init)))

Unlike all the abstract machines and evaluators before, this evaluation function is com-
positional: all the recursive calls on the right-hand side are over proper sub-parts of the
corresponding expression on the left-hand side. Defunctionalizing this evaluation function
yields the evaluator of Section 3.3:

Proposition 3.4 (full correctness). Given a program, evaluate4’ and evaluate4’’ either
both diverge or both yield values; and if these values have an integer type, they are the same
integer.

3.5. Assessment. From Section 3.1 to Section 3.4, we have modernized the SECD machine
into a stackless machine with a caller-save convention for environments, and then decon-
structed the modernized version of this machine into a series of equivalent specifications,
starting (essentially) from a relation between states and ending with an evaluation function.
The diagram below graphically summarizes the deconstruction. The evaluators in the top
row are the defunctionalized counterparts of the evaluators in the bottom row. (The ML
code for evaluate2’’ and evaluate3’’ is not shown here.)

evaluate2’ //

re-
functionalization

��

evaluate3’ //

CPS
transformationoo

��

evaluate4’

CPS
transformationoo

��
evaluate2’’

direct-style
transformation

//

OO

evaluate3’’
oo

direct-style
transformation

//

OO

evaluate4’’
oo

de-
functionalization

OO
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Using the tracing technique of Appendix A, we can show that evaluate2’ and evaluate2’’

operate in lockstep. We have however not proved this lockstep property for evaluate3’

and evaluate3’’ and for evaluate4’ and evaluate4’’, satisfying ourselves with Plotkin’s
Simulation theorem [100], suitably extended for shift and reset [76,77].

3.6. On the J operator. We now reap the fruits of the modernization and the reconstruc-
tion, and present a series of simulations of the J operator (Sections 3.6.1, 3.6.2, and 3.6.3).
We then put the J operator into perspective (Section 3.6.4).

3.6.1. Three simulations of the J operator. The evaluator of Section 3.4 (evaluate4’’) and
the refunctionalized counterparts of the evaluators of Sections 3.2 and 3.1 (evaluate3’’ and
evaluate2’’) are compositional. They can be viewed as syntax-directed encodings into their
meta-language, as embodied in the first Futamura projection [60] and the original approach
to denotational semantics [112]. Below, we state these encodings as three simulations of J:
one in direct style, one in CPS with one layer of continuations, and one in CPS with two
layers of continuations.

We assume a call-by-value meta-language with right-to-left evaluation.

• In direct style, using shift2 (S2), reset2 (〈〈〈·〉〉〉2), shift1 (S1), and reset1 (〈〈〈·〉〉〉1), based on the
compositional evaluator evaluate4’’ in direct style:

JnK = n
JxK = x

Jt0 t1K = Jt0K Jt1K
Jλx.tK = λx.〈〈〈JtK〉〉〉1

JJK = S1λc.S2λd.d (c λv.λv′.S1λc′.S2λd′.d 〈〈〈v v′〉〉〉1 )

A program p is translated as 〈〈〈〈〈〈JpK〉〉〉1〉〉〉2.
• In CPS with one layer of continuations, using shift (S) and reset (〈〈〈·〉〉〉), based on the

compositional evaluator evaluate3’’ in CPS with one layer of continuations:

JnK′ = λc.c n
JxK′ = λc.c x

Jt0 t1K
′ = λc.Jt1K

′ λv1.Jt0K
′ λv0.v0 v1 c

Jλx.tK′ = λc.c λx.λc.c (JtK′ λv.v)

JJK′ = λc.Sλd.d (c λv.λc.c λv′.λc′.Sλd′.d (v v′ λv′′.v′′) )

A program p is translated as 〈〈〈JpK′ λv.v〉〉〉.
• In CPS with two layers of continuations (the outer continuation, i.e., the dump continu-

ation, can be η-reduced in the first three clauses), based on the compositional evaluator
evaluate2’’ in CPS with two layers of continuations:

JnK′′ = λc.λd.c n d
JxK′′ = λc.λd.c x d

Jt0 t1K
′′ = λc.λd.Jt1K

′′ (λv1.λd.Jt0K
′′ (λv0.λd.v0 v1 c d) d) d

Jλx.tK′′ = λc.λd.c (λx.λc.λd.JtK′′ (λv.λd.d v) λv.c v d) d

JJK′′ = λc.λd.c (λv.λc.λd′′′.c (λv′.λc′.λd′.v v′ (λv′′.λd′′.d′′ v′′) d) d′′′) d

A program p is translated as JpK′′ (λv.λd.d v) λv.v.
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Analysis: The simulation of literals, variables, and applications is standard. The control
continuation of the body of each λ-abstraction is delimited, corresponding to it being eval-
uated with an empty control stack in the SECD machine. The J operator abstracts the
control continuation and the dump continuation and immediately restores them, resuming
the computation with a state appender which holds the abstracted dump continuation cap-
tive. Applying this state appender to a value v yields a program closure (boxed in the three
simulations above). Applying this program closure to a value v′ has the effect of discarding
both the current control continuation and the current dump continuation, applying v to v′,
and resuming the captured dump continuation with the result.

Assessment: The first rational deconstruction [35] already characterized the SECD machine
in terms of the CPS hierarchy: the control stack is the first continuation, the dump is
the second one (i.e., the meta-continuation), and abstraction bodies are evaluated within
a control delimiter (i.e., an empty control stack). Our work further characterizes the J
operator as capturing (a copy of) the meta-continuation.

3.6.2. The C operator and the CPS hierarchy. In the terminology of reflective towers [42],
continuations captured with shift are “pushy”—at their point of invocation, they compose
with the current continuation by “pushing” it on the meta-continuation. In the second
encoding of J in Section 3.6.1, the term Sλd′.d (v v′ λv′′.v′′) serves to discard the current
continuation d′ before applying the captured continuation d. Because of this use of shift to
discard d′, the continuation d is composed with the identity continuation.

In contrast, still using the terminology of reflective towers, continuations captured with
call/cc [29] or with Felleisen’s C operator [50] are “jumpy”—at their point of invocation,
they discard the current continuation. If the continuation d were captured with C, then the
term d (v v′ λv′′.v′′) would suffice to discard the current continuation.

The first encoding of J in Section 3.6.1 uses the pushy control operators S1 (i.e., S)
and S2. Murthy [94] and Kameyama [75] have investigated their jumpy counterparts in
the CPS hierarchy, C1 (i.e., C) and C2. Jumpy continuations therefore suggest two new
simulations of the J operator. We show only the clauses for J, which are the only ones that
change compared to Section 3.6.1. As before, we assume a call-by-value meta-language with
right-to-left evaluation.

• In direct style, using C2, reset2 (〈〈〈·〉〉〉2), C1, and reset1 (〈〈〈·〉〉〉1):

JJK = C1λc.C2λd.d (c λv.λv′.d 〈〈〈v v′〉〉〉1 )

This simulation provides a new example of programming in the CPS hierarchy with jumpy
delimited continuations.

• In CPS with one layer of continuations, using C and reset (〈〈〈·〉〉〉):

JJK′ = λc.Cλd.d (c λv.λc.c λv′.λc′.d (v v′ λv′′.v′′) )

The corresponding CPS simulation of J with two layers of continuations coincides with the
one in Section 3.6.1.
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3.6.3. The call/cc operator and the CPS hierarchy. Like shift and C, call/cc takes a snapshot
of the current context. However, unlike shift and C, in so doing call/cc leaves the current
context in place. So for example, 1 + (call/cc λk.10) yields 11 because call/cc leaves the
context 1 + [ ] in place, whereas both 1 + (Sλk.10) and 1 + (Cλk.10) yield 10 because the
context 1 + [ ] is tossed away.

Therefore J can be simulated in CPS with one layer of continuations, using call/cc and
exploiting its non-abortive behavior:

JJK′ = λc.call/cc λd.c λv.λc.c λv′.λc′.d (v v′ λv′′.v′′)

The obvious generalization of call/cc to the CPS hierarchy does not work, however. One
needs an abort operator as well in order for call/cc2 to capture the initial continuation and
the current meta-continuation. We leave the rest of this train of thought to the imagination
of the reader.

3.6.4. On the design of control operators. We note that replacing C with S in Section 3.6.2
(resp. C1 with S1 and C2 with S2) yields a pushy counterpart for J, i.e., program closures
returning to their point of activation. (Similarly, replacing C with S in the specification of
call/cc in terms of C yields a pushy version of call/cc, assuming a global control delimiter.)
One can also envision an abortive version of J that tosses away the context it abstracts.
In that sense, control operators are easy to invent, though not always easy to implement
efficiently. Nowadays, however, the litmus test for a new control operator lies elsewhere, for
example:

(1) Which programming idiom does this control operator reflect [29,38,41,102,108]?
(2) What is the logical content of this control operator [66,97]?

Even though it was the first control operator ever, J passes this litmus test. As pointed out
by Thielecke,

(1) besides reflecting Algol jumps and labels [81], J provides a generalized return [115,
Section 2.1], and

(2) the type of J λv.v is the law of the excluded middle [116, Section 5.2].

On the other hand, despite their remarkable fit to Algol labels and jumps (as illustrated
in the beginning of Section 1), the state appenders denoted by J are unintuitive to use.
For example, if a let expression is the syntactic sugar of a beta-redex (and x1 is fresh), the
observational equivalence

t0 t1 ∼= let x1 = t1 in t0 x1

does not hold in the presence of J due to the non-standard translation of abstractions, even
though it does hold in the presence of call/cc, C, and shift for right-to-left evaluation. For
example, given C[ ] = (λx2.succ [ ]) 10, t0 = J (λk.k) 0, and t1 = 100, C[t0 t1] yields 0
whereas C[let x1 = t1 in t0 x1] yields 1.



A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 21

4. Deconstruction of the SECD machine with the J operator:

caller-save dumps

In Section 3, we modernized the SECD machine by removing the intermediate data
stack and by managing the environment in a caller-save rather than callee-save fashion.
We left the ‘non-modern’ feature of the dump continuation alone because it was part of
the SECD-machine semantics of the J operator. In this section, we turn our attention to
this dump continuation, and we identify that like the environment in the original SECD
machine, the dump continuation is managed in a callee-save fashion. Indeed the apply
function receives a dump continuation from its caller and passes it in turn to the control
continuation.

4.1. A specification with caller-save dump continuations. Let us modernize the
SECD machine further by managing dump continuation in a caller-save fashion. Our rea-
soning is similar to that used in Section 3 for the environment. Inspecting the evaluator
evaluate2’ shows that when either eval or apply receives a control continuation c and a
dump continuation d as arguments and applies c, the dump continuation d is passed to c.
Therefore, when the control continuation passed to eval or apply is fn (v, d) => d v and
the dump continuation is some d’, d’ can be substituted for d in the body of the control
continuation. After this change, inspecting the control continuations reveals that the ones
created in apply and evaluate2’ ignore their dump-continuation arguments, and the ones
created in eval are passed a dump continuation that is already in their lexical scope. There-
fore, the control continuations do not need to be passed a dump continuation. Since the
dump continuation was passed to apply solely for the purpose of threading it to the control
continuation, apply does not need to be passed a dump continuation either.

The evaluator of Section 3.1 with caller-save dump continuations reads as follows:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

withtype E = value Env.env (* environment *)

and D = value -> value (* dump continuation *)

and C = value -> value (* control continuation *)

val e_init = Env.extend ("succ", SUCC, Env.empty)

(* eval : term * E * C * D -> value *)

(* apply : value * value * C -> value *)

fun eval (LIT n, e, c, d)

= c (INT n)

| eval (VAR x, e, c, d)

= c (Env.lookup (x, e))

| eval (LAM (x, t), e, c, d)

= c (FUNCLO (e, x, t))

| eval (APP (t0, t1), e, c, d)

= eval (t1, e, fn v1 =>

eval (t0, e, fn v0 =>

apply (v0, v1, c), d), d)

| eval (J, e, c, d)

= c (STATE_APPENDER d)
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and apply (SUCC, INT n, c)

= c (INT (n + 1))

| apply (FUNCLO (e’, x, t), v, c)

= eval (t, Env.extend (x, v, e’), c, c)

| apply (STATE_APPENDER d’, v, c)

= c (PGMCLO (v, d’))

| apply (PGMCLO (v, d’), v’, c)

= apply (v, v’, d’)

fun evaluate2’_alt t (* evaluate2’_alt : program -> value *)

= eval (t, e_init, fn v => v, fn v => v)

This evaluator still passes two continuations to eval. However, the dump continuation is
no longer passed as an argument to the control continuation. Thus, the two continuations
have the same type. The dump continuation is a snapshot of the control continuation of the
caller. It is reset to be the continuation of the caller when evaluating the body of a function
closure and it is captured in a state appender by the J operator. Applying a program closure
discards the current control continuation in favor of the captured dump continuation.

As in Section 3.1, the abstract machine corresponding to evaluate2’ alt (obtained
by defunctionalization and displayed in Section 8) operates in lockstep with the abstract
machine corresponding to evaluate2’ (obtained by defunctionalization and displayed in
Section 7). The following proposition is a corollary of this bisimulation and the correctness
of defunctionalization:

Proposition 4.1 (full correctness). Given a program, evaluate2’ and evaluate2’ alt either
both diverge or both yield values; and if these values have an integer type, they are the same
integer.

4.2. The rest of the rational deconstruction. The evaluator of Section 4.1 can be
transformed exactly as the higher-order evaluators of Sections 2.2 and 3.1:

(1) A direct-style transformation with respect to the control continuation yields an
evaluator in direct style.

(2) Refunctionalizing the applicable values yields a compositional, higher-order evalua-
tor in direct style.

Graphically:

evaluate1’OO

bisimulation

��

evaluate2’

defunctionalization
of the continuationsoo

‘modernization’:
a caller-save dump continuation

���
�

�

�

�

evaluate1’ alt evaluate2’ altoo //

direct-style transformation
wrt.

the control continuation
��

evaluate3’ alt

��
evaluate2’ alt’

refunctionalization
of the applicable values

// evaluate3’ alt’
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4.3. Two other simulations of the J operator. As in Section 3.6.1, the compositional
evaluators of Section 4.2 can be viewed as syntax-directed translations into their meta-
language. Below, we state these encodings as two further simulations of the J operator:
one in CPS with an additional return continuation, and one in direct-style with a return
continuation.

• In CPS with an additional return continuation, based on evaluate3’ alt:

JnK′ = λc.λd.c n
JxK′ = λc.λd.c x

Jt0 t1K
′ = λc.λd.Jt1K

′ (λv1.Jt0K
′ (λv0.v0 v1 c) d) d

Jλx.tK′ = λc.λd.c λv.λc.JtK′ c c

JJK′ = λc.λd.c λv0.λc.c λv1.λc.v0 v1 d

A program p is translated as JpK′ (λv.v) λv.v.
• In direct style with a return continuation, based on evaluate3’ alt’:

JnK = λd.n
JxK = λd.x

Jt0 t1K = λd.Jt0K d (Jt1K d)
Jλx.tK = λd.λx.Sλc.〈〈〈c (JtK c)〉〉〉

JJK = λd.λv0.λv1.Sλc.〈〈〈d (v0 v1)〉〉〉

A program p is translated as 〈〈〈JpK λv.v〉〉〉.
NB. Operationally, the two occurrences of reset surrounding the body of the shift-

expression are unnecessary. They could be omitted.

Assessment: Transformed terms are passed a pair of continuations, the usual continuation
of the call-by-value CPS transform and a return continuation. Abstractions set the return
continuation to be the continuation at their point of invocation, i.e., the continuation of
their caller. The J operator captures the current return continuation in a program closure
(boxed above).

4.4. Thielecke. In his work on comparing control constructs [116], Thielecke introduced
a ‘double-barrelled’ CPS transformation, where terms are passed an additional ‘jump con-
tinuation’ in addition to the usual continuation of the call-by-value CPS transformation.
By varying the transformation of abstractions, he was able to account for first-class con-
tinuations, exceptions, and jumping. His double-barrelled CPS transformation, including a
clause for his JI operator (i.e., J λx.x) and modified for right-to-left evaluation, reads as
follows:

JxK = λc.λd.c x
Jt0 t1K = λc.λd.Jt1K (λv1.Jt0K (λv0.v0 v1 c d) d) d
Jλx.tK = λc.λd.c λx.λc′.λd′.JtK c′ c′

JJIK = λc.λd.c λx.λc′.λd′.d x

The continuation c is the continuation of the usual call-by-value CPS transformation. The
continuation d is a return continuation, i.e., a snapshot of the continuation of the caller of
a function abstraction. It is set to be the continuation of the caller in the body of each
function abstraction and it is captured as a first-class function by the JI operator. The extra
continuation passed to each abstraction is not necessary (for the encoding of JI), and can be
eliminated from the translation of abstractions and applications, as we did in Section 4.1.
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As noted by Thielecke and earlier Landin, J can be expressed in terms of JI as:

J ≡ (λc.λv.λv′.c (v v′)) (JI)

The β-expansion is necessary to move the occurrence of JI outside of the outer abstraction,
because λ-abstractions are CPS-transformed in a non-standard way. By CPS-transforming
this definition and eliminating the extra continuation for function abstractions, we derive
the same double-barrelled encoding of Landin’s J operator as in Section 4.3:

JxK′ = λc.λd.c x
Jt0 t1K

′ = λc.λd.Jt1K
′ (λv1.Jt0K

′ (λv0.v0 v1 c) d) d
Jλx.tK′ = λc.λd.c λx.λc′.JtK′ c′ c′

JJK′ = λc.λd.c λv.λc′.c′ λv′.λc′′.v v′ d

Analysis: In essence, Thielecke’s simulation corresponds to an abstract machine which is
the caller-save counterpart of Landin’s machine with respect to the dump.

4.5. Felleisen. Felleisen showed how to embed Landin’s extension of applicative expres-
sions with J into the Scheme programming language [51]. The embedding is defined using
Scheme syntactic extensions (i.e., macros). J is treated as a dynamic identifier that is
bound in the body of every abstraction, similarly to the dynamically bound identifier ‘self’
in an embedding of Smalltalk into Scheme [84]. The control aspect of J is handled through
Scheme’s control operator call/cc.

Here are the corresponding simulations:

• In direct style, using either of call/cc, C, or shift (S), and a control delimiter (〈〈〈·〉〉〉):

JxK = x
Jt0 t1K = Jt0K Jt1K

Jλx.tK = λx.call/cc λd.let J = λv.λv′.d (v v′) in JtK

= λx.Cλd.let J = λv.λv′.d (v v′) in d JtK

= λx.Sλd.let J = λv.λv′.Sλc′.d (v v′) in d JtK

A program p is translated as let J = λv.λv′.〈〈〈v v′〉〉〉 in 〈〈〈JpK〉〉〉.
• In CPS:

JxK′ = λc.c x
Jt0 t1K

′ = λc.Jt1K
′ λv1.Jt0K

′ λv0.v0 v1 c

Jλx.tK′ = λc.c (λx.λd.let J = λv.λc.c λv′.λc′.v v′ d in JtK′ d)

A program p is translated as let J = λv.λc.c (λv′.λc′.v v′ λv′′.v′′) in JpK′ λv.v.

Analysis: The simulation of variables and applications is standard. The continuation of
the body of each λ-abstraction is captured, and the identifier J is dynamically bound to a
function closure (the state appender) which holds the continuation captive. Applying this
function closure to a value v yields a program closure (boxed in the simulations above).
Applying this program closure to a value v′ has the effect of applying v to v′ and resuming
the captured continuation with the result, abandoning the current continuation.

The evaluator corresponding to these simulations always has a binding of J in the envi-
ronment when evaluating the body of an abstraction (see Section 10). Under the assumption
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that J is never shadowed in a program, passing this value as a separate argument to the
evaluator leads one towards the definition of evaluate2’ alt in Section 4.1 (see Section 9).

5. Related work

5.1. Landin and Burge. Landin [82] introduced the J operator as a new language feature
motivated by three questions about labels and jumps:

• Can a language have jumps without having assignments?
• Is there some component of jumping that is independent of labels?
• Is there some feature that corresponds to functions with arguments in the same sense

that labels correspond to procedures without arguments?

Landin gave the semantics of the J operator by extending the SECD machine. In addition
to using J to model jumps in Algol 60 [81], he gave examples of programming with the J
operator, using it to represent failure actions as program closures where it is essential that
they abandon the context of their application.

In his textbook [21, Section 2.10], Burge adjusted Landin’s original specification of the
J operator. Indeed, in Landin’s extension of the SECD machine, J could only occur in the
context of an application. Burge adjusted the original specification so that J could occur
in arbitrary contexts. To this end, he introduced the notion of a “state appender” as the
denotation of J.

Thielecke [115] gave a detailed introduction to the J operator as presented by Landin
and Burge. Burstall [22] illustrated the use of the J operator by simulating threads for
parallel search algorithms, which in retrospect is the first simulation of threads in terms of
first-class continuations ever.

5.2. Reynolds. Reynolds [102] gave a comparison of J to escape, the binder form of
Scheme’s call/cc [29].6 He gave encodings of Landin’s J (i.e., restricted to the context
of an application) and escape in terms of each other.

His encoding of escape in terms of J reads as follows:

(escape k in t)∗ = let k = J λv.v in t∗

As Thielecke notes [115], this encoding is only valid immediately inside an abstraction.
Indeed, the dump continuation captured by J only coincides with the continuation captured
by escape if the control continuation is the initial one (i.e., immediately inside a control
delimiter). Thielecke therefore generalized the encoding by adding a dummy abstraction:

(escape k in t)∗ = (λ().let k = J λx.x in t∗) ()

From the point of view of the rational deconstruction of Section 3, this dummy abstraction
implicitly inserts a control delimiter.

Reynolds’s converse encoding of J in terms of escape reads as follows:

(let d = J λx.t1 in t0)◦ = escape k in (let d = λx.k t1
◦ in t0

◦)

6escape k in t ≡ call/cc λk.t
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where k does not occur free in t0 and t1. For the same reason as above, this encoding is
only valid immediately inside an abstraction and therefore it can be generalized by adding
a dummy abstraction:

(let d = J λx.t1 in t0)◦ = (λ().escape k in (let d = λx.k t1
◦ in t0

◦)) ()

5.3. Felleisen and Burge. Felleisen’s version of the SECD machine with the J operator
differs from Burge’s. In the notation of Section 1.5, Burge’s clause for applying program
closures reads

| run ((PGMCLO (v, (s’, e’, c’) :: d’)) :: v’ :: s, e, APPLY :: c, d)

= run (v :: v’ :: s’, e’, APPLY :: c’, d’)

instead of

| run ((PGMCLO (v, d’)) :: v’ :: s, e, APPLY :: c, d)

= run (v :: v’ :: nil, e_init, APPLY :: nil, d’)

Felleisen’s version delays the consumption of the dump until the function, in the program
closure, completes, whereas Burge’s version does not. The modification is unobservable
because a program cannot capture the control continuation and because applying the ar-
gument of a state appender pushes the data stack, the environment, and the control stack
on the dump. Felleisen’s modification can be characterized as wrapping a control delimiter
around the argument of a dump continuation, similarly to the simulation of static delimited
continuations in terms of dynamic ones [18].

Burge’s version, however, is not in defunctionalized form. In Section 6, we put it in
defunctionalized form without resorting to a control delimiter and we outline the corre-
sponding compositional evaluation functions and simulations.

6. Deconstruction of the original SECD machine with the J operator

We now outline the deconstruction of Burge’s specification of the SECD machine with
the J operator.

6.1. Our starting point: Burge’s specification. As pointed out in Section 5.3, Fell-
eisen’s version of the SECD machine applies the value contained in a program closure before
restoring the components of the captured dump. Burge’s version differs by restoring the
components of the captured dump before applying the value contained in the program
closure. In other words,

• Felleisen’s version applies the value contained in a program closure with an empty data
stack, a dummy environment, an empty control stack, and the captured dump, whereas

• Burge’s version applies the value contained in a program closure with the captured data
stack, environment, control stack, and previous dump.

The versions induce a minor programming difference because the first makes it possible to
use J in any context whereas the second restricts J to occur only inside a λ-abstraction.

Burge’s specification of the SECD machine with J follows. Ellipses mark what does not
change from the specification of Section 1.5:
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(* run : S * E * C * D -> value *)

fun run (v :: nil, e, nil, d)

= ...

| run (s, e, (TERM t) :: c, d)

= ...

| run (SUCC :: (INT n) :: s, e, APPLY :: c, d)

= ...

| run ((FUNCLO (e’, x, t)) :: v :: s, e, APPLY :: c, d)

= ...

| run ((STATE_APPENDER d’) :: v :: s, e, APPLY :: c, d)

= ...

| run ((PGMCLO (v, (s’, e’, c’) :: d’)) :: v’ :: s, e, APPLY :: c, d)

= run (v :: v’ :: s’, e’, APPLY :: c’, d’)

fun evaluate0_alt t (* evaluate0_alt : program -> value *)

= ...

Just as in Section 2.1, Burge’s specification can be disentangled into four mutually-recursive
transition functions. The disentangled specification, however, is not in defunctionalized
form. We put it next in defunctionalized form without resorting to a control delimiter, and
then outline the rest of the rational deconstruction.

6.2. Burge’s specification in defunctionalized form. The disentangled specification
of Burge is not in defunctionalized form because the dump does not have a single point of
consumption. It is consumed by run d for values yielded by the body of λ-abstractions and
in run a for values thrown to program closures. In order to be in the image of defunctional-
ization and have run d as the apply function, the dump should be solely consumed by run d.
We therefore distinguish values yielded by normal evaluation and values thrown to program
closures, and we make run d dispatch over these two kinds of returned values. For values
yielded by normal evaluation (i.e., in the call from run c to run d), run d proceeds as before.
For values thrown to program closures, run d calls run a. Our modification therefore adds
one transition (from run a to run d) for values thrown to program closures.

The change only concerns three clauses and ellipses mark what does not change from
the evaluator of Section 2.1:

datatype returned_value = YIELD of value

| THROW of value * value

(* run_c : S * E * C * D -> value *)

(* run_d : returned_value * D -> value *)

(* run_t : term * S * E * C * D -> value *)

(* run_a : value * value * S * E * C * D -> value *)

fun run_c (v :: nil, e, nil, d)

= run_d (YIELD v, d) (* 1 *)

| run_c ...

= ...

and run_d (YIELD v, nil)

= v

| run_d (YIELD v, (s, e, c) :: d)

= run_c (v :: s, e, c, d)

| run_d (THROW (v, v’), (s, e, c) :: d)

= run_a (v, v’, s, e, c, d) (* 2 *)
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and run_t ...

= ...

and run_a ...

= ...

| run_a (PGMCLO (v, d’), v’, s, e, c, d)

= run_d (THROW (v, v’), d’) (* 3 *)

fun evaluate1_alt t (* evaluate1_alt : program -> value *)

= ...

YIELD is used to tag values returned by function closures (in the clause marked “1” above),
and THROW is used to tag values sent to program closures (in the clause marked “3”). THROW

tags a pair of values, which will be applied in run d (by calling run a in the clause marked
“2”).

Proposition 6.1 (full correctness). Given a program, evaluate0 alt and evaluate1 alt

either both diverge or both yield values that are structurally equal.

6.3. A higher-order counterpart. In the modified specification of Section 6.2, the data
types of control stacks and dumps are identical to those of the disentangled machine of
Section 2.1. These data types, together with run d and run c, are in the image of defunc-
tionalization (run d and run c are their apply functions). The corresponding higher-order
evaluator reads as follows:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

and returned_value = YIELD of value

| THROW of value * value

withtype S = value list (* data stack *)

and E = value Env.env (* environment *)

and D = returned_value -> value (* dump continuation *)

and C = S * E * D -> value (* control continuation *)

val e_init = Env.extend ("succ", SUCC, Env.empty)

(* run_t : term * S * E * C * D -> value *)

(* run_a : value * value * S * E * C * D -> value *)

(* where S = value list, E = value Env.env, C = S * E * D -> value *)

(* and D = returned_value -> value *)

fun run_t ...

= ...

and run_a (SUCC, INT n, s, e, c, d)

= c ((INT (n+1)) :: s, e, d)

| run_a (FUNCLO (e’, x, t), v, s, e, c, d)

= run_t (t, nil, Env.extend (x, v, e’),

fn (v :: nil, e, d) => d (YIELD v),

fn (YIELD v)

=> c (v :: s, e, d)

| (THROW (f, v))

=> run_a (f, v, s, e, c, d))
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| run_a (STATE_APPENDER d’, v, s, e, c, d)

= c ((PGMCLO (v, d’)) :: s, e, d)

| run_a (PGMCLO (v, d’), v’, s, e, c, d)

= d’ (THROW (v, v’))

fun evaluate2_alt t (* evaluate2_alt : program -> value *)

= run_t (t, nil, e_init, fn (v :: nil, e, d) => d (YIELD v),

fn (YIELD v) => v)

As before, the resulting evaluator is in continuation-passing style (CPS), with two layered
continuations. It threads a stack of intermediate results, a (callee-save) environment, a
control continuation, and a dump continuation. The values sent to dump continuations are
tagged to indicate whether they represent the result of a function closure or an application
of a program closure. Defunctionalizing this evaluator yields the definition of Section 6.2:

Proposition 6.2 (full correctness). Given a program, evaluate1 alt and evaluate2 alt

either both diverge or yield expressible values; and if these values have an integer type, they
are the same integer.

6.4. The rest of the rational deconstruction. The evaluator of Section 6.3 can be
transformed exactly as the higher-order evaluator of Section 2.2:

(1) Eliminating the data stack and the callee-save environment yields a traditional eval–
apply evaluator, with run t as eval and run a as apply. The evaluator is in CPS with
two layers of continuations.

(2) A first direct-style transformation with respect to the dump yields an evaluator that
uses shift and reset (or C and a global reset, or again call/cc and a global reset) to
manipulate the implicit dump continuation.

(3) A second direct-style transformation with respect to the control stack yields an
evaluator in direct style that uses the delimited-control operators shift1, reset1,
shift2, and reset2 (or C1, reset1, C2, and reset2) to manipulate the implicit control
and dump continuations.

(4) Refunctionalizing the applicable values yields a compositional, higher-order, direct-
style evaluator corresponding to Burge’s specification of the J operator. The result
is presented as a syntax-directed encoding next.

6.5. Three simulations of the J operator. As in Section 3.6.1, the compositional coun-
terpart of the evaluators of Section 6.4 can be viewed as syntax-directed encodings into
their meta-language. Below, we state these encodings as three simulations of J: one in
direct style, one in CPS with one layer of continuations, and one in CPS with two layers of
continuations. Again, we assume a call-by-value meta-language with right-to-left evaluation
and with a sum (to distinguish values returned by functions and values sent to program clo-
sures), a case expression (for the body of λ-abstractions) and a destructuring let expression
(at the top level).
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• In direct style, using either of shift2, reset2, shift1, and reset1 or C2, reset2, C1, and reset1,
based on the compositional evaluator in direct style:

JnK = n
JxK = x

Jt0 t1K = Jt0K Jt1K
Jλx.tK = λx.case 〈〈〈inLJtK〉〉〉1

of inL(v) ⇒ v
| inR(v, v′) ⇒ v v′

JJK = S1λc.S2λd.d (c λv.λv′.S1λc′.S2λd′.d (inR(v, v′)) )

= C1λc.C2λd.d (c λv.λv′.d (inR(v, v′)) )

A program p is translated as 〈〈〈let inL(v) = 〈〈〈inL(JpK)〉〉〉1 in v〉〉〉2.
• In CPS with one layer of continuations, using either of shift and reset, C and reset,

or call/cc and reset, based on the compositional evaluator in CPS with one layer of
continuations:

JnK′ = λc.c n
JxK′ = λc.c x

Jt0 t1K
′ = λc.Jt1K

′ (λv1.Jt0K
′ λv0.v0 v1 c)

Jλx.tK′ = λc.c (λx.λc.case JtK′ λv.inL(v)
of inL(v) ⇒ c v
| inR(v, v′) ⇒ v v′ c)

JJK′ = λc.Sλd.d (c λv.λc.c λv′.λc′.Sλd′.d (inR(v, v′)) )

= λc.Cλd.d (c λv.λc.c λv′.λc′.d (inR(v, v′)) )

= λc.call/cc λd.c λv.λc.c λv′.λc′.d (inR(v, v′))

A program p is translated as 〈〈〈let inL(v) = JpK′ λv.inL(v) in v〉〉〉.
• In CPS with two layers of continuations, based on the compositional evaluator in CPS

with two layers of continuations:

JnK′′ = λc.λd.c n d
JxK′′ = λc.λd.c x d

Jt0 t1K
′′ = λc.λd.Jt1K

′′ (λv1.λd.Jt0K
′′ (λv0.λd.v0 v1 c d) d) d

Jλx.tK′′ = λc.λd.c (λx.λc.λd.JtK′′ (λv.λd.d (inL(v)))
λv′′.case v′′

of inL(v) ⇒ c v d
| inR(v, v′) ⇒ v v′ c d) d

JJK′′ = λc.λd.c (λv.λc.λd′′′.c (λv′.λc′.λd′.d (inR(v, v′))) d′′′) d

A program p is translated as JpK′′ (λv.λd.d (inL(v))) (λv.let inL(v′) = v in v′).

Analysis: The simulation of literals, variables, and applications is standard. The body of
each λ-abstraction is evaluated with a control continuation injecting the resulting value into
the sum type7 to indicate normal completion and resuming the current dump continuation,
and with a dump continuation inspecting the resulting sum to determine whether to con-
tinue normally or to apply a program closure. Continuing normally consists of invoking

7This machine is therefore not properly tail recursive.
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the control continuation with the resulting value and the dump continuation. Applying a
program closure consists of restoring the components of the dump and then performing the
application. The J operator abstracts both the control continuation and the dump contin-
uation and immediately restores them, resuming the computation with a state appender
holding the abstracted dump continuation captive. Applying this state appender to a value
v yields a program closure (boxed in the three simulations above). Applying this program
closure to a value v′ has the effect of discarding both the current control continuation and
the current dump continuation, injecting v and v′ into the sum type to indicate exceptional
completion, and resuming the captured dump continuation. It is an error to evaluate J
outside of a λ-abstraction.

6.6. Related work. Kiselyov’s encoding of dynamic delimited continuations in terms of
the static delimited-continuation operators shift and reset [78] is similar to this alternative
encoding of the J operator in that both encodings tag the argument to the meta-continuation
to indicate whether it represents a normal return or a value thrown to a first-class contin-
uation. In addition though, Kiselyov uses a recursive meta-continuation in order to encode
dynamic delimited continuations.

7. A syntactic theory of applicative expressions with the J operator:

explicit, callee-save dumps

Symmetrically to the functional correspondence between evaluation functions and ab-
stract machines that was sparked by the first rational deconstruction of the SECD ma-
chine [3,4,6,7,13,16,35,36], a syntactic correspondence exists between calculi and abstract
machines, as investigated by Biernacka, Danvy, and Nielsen [12, 14, 15, 34, 36, 45]. This
syntactic correspondence is also derivational, and hinges not on defunctionalization but on
a ‘refocusing’ transformation that mechanically connects an evaluation function defined as
the iteration of one-step reduction, and an abstract machine.

The goal of this section is to present the reduction semantics and the reduction-based
evaluation function that correspond to the modernized SECD machine of Section 3.1. We
successively present this machine (Section 7.1), the syntactic correspondence (Section 7.2),
a reduction semantics for applicative expressions with the J operator (Section 7.3), and the
derivation from this reduction semantics to this SECD machine (Section 7.4). We consider
a calculus of explicit substitutions because the explicit substitutions directly correspond
to the environments of the modernized SECD machine. In turn, this calculus of explicit
substitutions directly corresponds to a calculus with actual substitutions.

7.1. The SECD machine with no data stack and caller-save environments, revis-

ited. The terms, values, environments, and contexts are defined as in Section 1.5:

(programs) p ::= t[(succ, SUCC) · ∅]

(terms) t ::= pnq | x | λx.t | t t | J

(values) v ::= pnq | SUCC | (λx.t, e) | pDq ◦ v | pDq

(environments) e ::= ∅ | (x, v) · e

(control contexts) C ::= [ ] | C[(t, e) [ ]] | C[[ ] v]

(dump contexts) D ::= • | C · D
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The following four transition functions are the stackless, caller-save respective counterparts
of run t, run a, run c, and run d in Section 2.1. This abstract machine is implemented by the
modernized and disentangled evaluator evaluate1’ in the diagram at the end of Section 3.1:

〈pnq, e, C, D〉eval ⇒ 〈C, pnq, D〉cont

〈x, e, C, D〉eval ⇒ 〈C, v, D〉cont if lookup(x, e) = v

〈λx.t, e, C, D〉eval ⇒ 〈C, (λx.t, e), D〉cont

〈t0 t1, e, C, D〉eval ⇒ 〈t1, e, C[(t0, e) [ ]], D〉eval
〈J, e, C, D〉eval ⇒ 〈C, pDq, D〉cont

〈SUCC, pnq, C, D〉apply ⇒ 〈C, pn + 1q, D〉cont

〈(λx.t, e), v, C, D〉apply ⇒ 〈t, e′, [ ], C · D〉eval where e′ = extend(x, v, e)

〈pD′
q ◦ v′, v, C, D〉apply ⇒ 〈v, v′, [ ], D′〉apply

〈pD′
q, v, C, D〉apply ⇒ 〈C, pD′

q ◦ v, D〉cont

〈[ ], v, D〉cont ⇒ 〈D, v〉dump

〈C[(t, e) [ ]], v, D〉cont ⇒ 〈t, e, C[[ ] v], D〉eval
〈C[[ ] v′], v, D〉cont ⇒ 〈v, v′, C, D〉apply

〈•, v〉dump ⇒ v

〈C · D, v〉dump ⇒ 〈C, v, D〉cont

A program t is evaluated by starting in the configuration 〈t, (succ, SUCC) · ∅, [ ], •〉eval.
The machine halts with a value v if it reaches a configuration 〈•, v〉dump.

7.2. From reduction semantics to abstract machine. Consider a calculus together
with a reduction strategy expressed as a Felleisen-style reduction semantics satisfying the
unique-decomposition property [50]. In such a reduction semantics, a one-step reduction
function is defined as the composition of three functions:

decomposition: a total function mapping a value term to itself and decomposing a
non-value term into a potential redex and a reduction context (decomposition is a
function because of the unique-decomposition property);

contraction: a partial function mapping an actual redex to its contractum; and
plugging: a total function mapping a term and a reduction context to a new term by

filling the hole in the context with the term.

The one-step reduction function is partial because it is the composition of two total functions
and a partial function.

An evaluation function is traditionally defined as the iteration of the one-step reduction
function:
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decompose

$$HH
HH

HH
HH

H

reduction step
// ◦

decompose

$$HH
HH

HH
HH

H

reduction step
// ◦

decompose

$$HH
HH

HH
HH

H

◦
contract

// ◦

plug
::vvvvvvvvv

◦
contract

// ◦

plug
::vvvvvvvvv

◦
contract

//
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Danvy and Nielsen have observed that composing the two total functions plug and decom-
pose into a ‘refocus’ function could avoid the construction of intermediate terms:

◦
decompose

$$HH
HH

HH
HH

H ◦
decompose

$$HH
HH

HH
HH

H ◦
decompose

$$HH
HH

HH
HH

H

//____ ◦
contract

// ◦

plug
::vvvvvvvvv

refocus
//________ ◦

contract
// ◦

plug
::vvvvvvvvv

refocus
//________ ◦

contract
//

The resulting ‘refocused’ evaluation function is defined as the iteration of refocusing and
contraction. CPS transformation and defunctionalization make it take the form of a state-
transition function, i.e., an abstract machine. Short-circuiting its intermediate transitions
yields abstract machines that are often independently known [45].

Biernacka and Danvy then showed that the refocusing technique could be applied to
the very first calculus of explicit substitutions, Curien’s simple calculus of closures [31],
and that depending on the reduction order, it gave rise to a collection of both known
and new environment-based abstract machines such as Felleisen et al.’s CEK machine (for
left-to-right applicative order), the Krivine machine (for normal order), Krivine’s machine
(for normal order with generalized reduction), and Leroy’s ZINC machine (for right-to-left
applicative order with generalized reduction) [14]. They then turned to context-sensitive
contraction functions, as first proposed by Felleisen [50], and showed that refocusing me-
chanically gives rise to an even larger collection of both known and new environment-based
abstract machines for languages with computational effects such as Krivine’s machine with
call/cc, the λµ-calculus, static and dynamic delimited continuations, input/output, stack
inspection, proper tail-recursion, and lazy evaluation [15].

The next section presents the calculus of closures corresponding to the abstract machine
of Section 7.1.

7.3. A reduction semantics for applicative expressions with the J operator. The
λρ̂J-calculus is an extension of Biernacka and Danvy’s λρ̂-calculus [14], which is itself
a minimal extension of Curien’s original calculus of closures λρ [31] to make it closed
under one-step reduction. We use it here to formalize Landin’s applicative expressions with
the J operator as a reduction semantics. To this end, we present its syntactic categories
(Section 7.3.1); a plug function mapping a closure and a two-layered reduction context into
a closure by filling the given context with the given closure (Section 7.3.2); a contraction
function implementing a context-sensitive notion of reduction (Section 7.3.3) and therefore
mapping a potential redex and its reduction context into a contractum and a reduction
context (possibly another one); and a decomposition function mapping a non-value term
into a potential redex and a reduction context (Section 7.3.4). We are then in position
to define a one-step reduction function (Section 7.3.5), and a reduction-based evaluation
function (Section 7.3.6).

Before delving into this section, the reader might want to first browse through Section E,
in the appendix. This section has the same structure as the present one but instead of the
SECD machine, it addresses the CEK machine, which is simpler.
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7.3.1. Syntactic categories. We consider a variant of the λρ̂J-calculus with names instead
of de Bruijn indices, and with two layers of contexts C and D that embody the right-to-left
applicative-order reduction strategy favored by Landin: C is the control context and D
is the dump context. In the syntactic category of closures, pDq and pDq ◦ v respectively
denote a state appender and a program closure, and 〈〈〈c〉〉〉 (which is shaded below) marks the
boundary between the context of a β-redex that has been contracted, i.e., a function closure
that has been applied, and the body of the λ-abstraction in this function closure:

(programs) p ::= t[(succ, SUCC) · ∅]

(terms) t ::= pnq | x | λx.t | t t | J

(closures) c ::= pnq | SUCC | t[e] | c c | pDq | pDq ◦ v | 〈〈〈c〉〉〉

(values) v ::= pnq | SUCC | (λx.t)[e] | pDq | pDq ◦ v

(potential redexes) r ::= x[e] | v v | J

(substitutions) e ::= ∅ | (x, v) · e

(control contexts) C ::= [ ] | C[c [ ]] | C[[ ] v]

(dump contexts) D ::= • | C · D

Values are therefore a syntactic subcategory of closures, and in this section, we make use
of the syntactic coercion ↑ mapping a value into a closure.

7.3.2. Plugging. Plugging a closure in the two layered contexts is defined by induction
over these two contexts. We express this definition as a state-transition system with two
intermediate states, 〈C, c, D〉plug/cont and 〈D, c〉plug/dump, an initial state 〈C, c, D〉plug/cont,
and a final state c. The transition function from the state 〈C, c, D〉plug/cont incrementally
peels off the given control context and the transition function from the state 〈D, c〉plug/dump

dispatches over the given dump context:

〈[ ], c, D〉plug/cont → 〈D, c〉plug/dump

〈C[c0 [ ]], c1, D〉plug/cont → 〈C, c0 c1, D〉plug/cont

〈C[[ ] v1], c0, D〉plug/cont → 〈C, c0 c1, D〉plug/cont where c1 = ↑ v1

〈•, c〉plug/dump → c

〈C · D, c〉plug/dump → 〈〈〈〈c〉〉〉, C, D〉plug/cont

We can now define a total function plug over closures, control contexts, and dump
contexts that fills the given closure into the given control context, and further fills the
result into the given dump context:

plug : Closure × Control × Dump → Closure

Definition 7.1. For any closure c, control context C, and dump context D, plug (C, c, D) =
c′ if and only if 〈C, c, D〉plug/cont →

∗ c′.

7.3.3. Notion of contraction. The notion of reduction over applicative expressions with the J
operator is specified by the following context-sensitive contraction rules over actual redexes:

(Var) 〈x[e], C, D〉 7→ 〈v, C, D〉 if lookup(x, e) = v
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(Betasucc) 〈SUCC pnq, C, D〉 7→ 〈pn + 1q, C, D〉

(BetaFC) 〈((λx.t)[e]) v, C, D〉 7→ 〈t[e′], [ ], C · D〉 where e′ = extend(x, v, e) = (x, v) · e

(BetaSA) 〈pD′
q v, C, D〉 7→ 〈pD′

q ◦ v, C, D〉

(BetaPC) 〈(pD′
q ◦ v′) v, C, D〉 7→ 〈v′ v, [ ], D′〉

(Prop) 〈(t0 t1)[e], C, D〉 7→ 〈(t0[e]) (t1[e]), C, D〉

(J) 〈J, C, D〉 7→ 〈pDq, C, D〉

Three of these contraction rules depend on the contexts: the J rule captures a copy of the
dump context and yields a state appender; the β-rule for function closures resets the control
context and pushes it on the dump context; and the β-rule for program closures resets the
control context and reinstates a previously captured copy of the dump context.

Among the potential redexes, only the ones listed above are actual ones. The other
applications of one value to another are stuck.

We now can define by cases a partial function contract over potential redexes that
contracts an actual redex and its two layers of contexts into the corresponding contractum
and contexts:

contract : PotRed × Control × Dump ⇀ Closure × Control × Dump

Definition 7.2. For any potential redex r, control context C, and dump context D,
contract (r, C, D) = 〈c, C ′, D′〉 if and only if 〈r, C, D〉 7→ 〈c, C ′, D′〉.

7.3.4. Decomposition. There are many ways to define a total function mapping a value
closure to itself and a non-value closure to a potential redex and a reduction context. In
our experience, the following definition is a convenient one. It is a state-transition system
with three intermediate states, 〈c, C, D〉dec/clos, 〈C, v, D〉dec/cont, and 〈D, v〉dec/dump, an
initial state 〈c, [ ], •〉dec/clos and two final states VAL (v) and DEC (r, C, D). If possible,
the transition function from the state 〈c, C, D〉dec/clos decomposes the given closure c and
accumulates the corresponding two layers of reduction context, C and D. The transition
function from the state 〈C, v, D〉dec/cont dispatches over the given control context, and the
transition function from the state 〈D, v〉dec/dump dispatches over the given dump context.

〈pnq, C, D〉dec/clos → 〈C, pnq, D〉dec/cont

〈SUCC, C, D〉dec/clos → 〈C, SUCC, D〉dec/cont

〈pnq[e], C, D〉dec/clos → 〈C, pnq, D〉dec/cont

〈x[e], C, D〉dec/clos → DEC (x[e], C, D)

〈(λx.t)[e], C, D〉dec/clos → 〈C, (λx.t)[e], D〉dec/cont

〈(t0 t1)[e], C, D〉dec/clos → DEC ((t0 t1)[e], C, D)

〈J [e], C, D〉dec/clos → DEC (J, C, D)

〈c0 c1, C, D〉dec/clos → 〈c1, C[c0 [ ]], D〉dec/clos

〈pD′
q, C, D〉dec/clos → 〈C, pD′

q, D〉dec/cont

〈pDq ◦ v, C, D〉dec/clos → 〈C, pDq ◦ v, D〉dec/cont

〈〈〈〈c〉〉〉, C, D〉dec/clos → 〈c, [ ], C · D〉dec/clos
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〈[ ], v, D〉dec/cont → 〈D, v〉dec/dump

〈C[c0 [ ]], v1, D〉dec/cont → 〈c0, C[[ ] v1], D〉dec/clos

〈C[[ ] v1], v0, D〉dec/cont → DEC (v0 v1, C, D)

〈•, v〉dec/dump → VAL (v)

〈C · D, v〉dec/dump → 〈C, v, D〉dec/cont

We now can define a total function decompose over closures that maps a value closure to
itself and a non-value closure to a decomposition into a potential redex, a control context,
and a dump context. This total function uses three auxiliary functions decompose′clos,
decompose′cont, and decompose′dump:

decompose : Closure → Value + (PotRed × Control × Dump)
decompose′clos : Closure × Control × Dump → Value + (PotRed × Control × Dump)
decompose′cont : Control × Value × Dump → Value + (PotRed × Control × Dump)
decompose′dump : Dump × Value → Value + (PotRed × Control × Dump)

Definition 7.3. For any closure c, control context C, and dump context D,

decompose′clos (c, C, D) =

{
VAL (v′) if 〈c, C, D〉dec/clos →

∗ VAL (v′)
DEC (r, C ′, D′) if 〈c, C, D〉dec/clos →

∗ DEC (r, C ′, D′)

decompose′cont (C, v, D) =

{
VAL (v′) if 〈C, v, D〉dec/cont →

∗ VAL (v′)
DEC (r, C ′, D′) if 〈C, v, D〉dec/cont →

∗ DEC (r, C ′, D′)

decompose′dump (D, v) =

{
VAL (v′) if 〈D, v〉dec/dump →∗ VAL (v′)
DEC (r, C ′, D′) if 〈D, v〉dec/dump →∗ DEC (r, C ′, D′)

and decompose (c) = decompose′clos (c, [ ], •).

7.3.5. One-step reduction. We are now in position to define a partial function reduce over
closed closures that maps a value closure to itself and a non-value closure to the next closure
in the reduction sequence. This function is defined by composing the three functions above:

reduce (c) = case decompose (c)
of VAL (v) ⇒ ↑ v
| DEC (r, C, D) ⇒ plug (contract (r, C, D))

The function reduce is partial because of contract, which is undefined for stuck closures.

Definition 7.4 (One-step reduction). For any closure c, c → c′ if and only if reduce (c) = c′.

7.3.6. Reduction-based evaluation. Iterating reduce defines a reduction-based evaluation
function. The definition below uses decompose to distinguish between values and non-
values, and implements iteration (tail-) recursively with the partial function iterate:

evaluate (c) = iterate (decompose (c))

where {
iterate (VAL (v)) = v
iterate (DEC (r, C, D)) = iterate (decompose (plug (contract (r, C, D))))
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The function evaluate is partial because a given closure might be stuck or reducing it might
not converge.

Definition 7.5 (Reduction-based evaluation). For any closure c, c →∗ v if and only if
evaluate (c) = v.

To close, let us adjust the definition of evaluate by exploiting the fact that for any
closure c, plug (c, [ ], •) = c:

evaluate (c) = iterate (decompose (plug (c, [ ], •)))

In this adjusted definition, decompose is always applied to the result of plug.

7.4. From the reduction semantics for applicative expressions to the SECD ma-

chine. Deforesting the intermediate terms in the reduction-based evaluation function of
Section 7.3.6 yields a reduction-free evaluation function in the form of a small-step abstract
machine (Section 7.4.1). We simplify this small-step abstract machine by fusing a part of
its driver loop with the contraction function (Section 7.4.2) and compressing its ‘corridor’
transitions (Section 7.4.3). Unfolding the recursive data type of closures precisely yields the
caller-save, stackless SECD abstract machine of Section 7.1 (Section 7.4.4).

7.4.1. Refocusing: from reduction-based to reduction-free evaluation. Following Danvy and
Nielsen [45], we deforest the intermediate closure in the reduction sequence by replacing the
composition of plug and decompose by a call to a composite function refocus:

evaluate (c) = iterate (refocus (c, [ ], •))

where

{
iterate (VAL (v)) = v
iterate (DEC (r, C, D)) = iterate (refocus (contract (r, C, D)))

and refocus is optimally defined as continuing the decomposition in the current reduction
context [45]:

refocus (c, C, D) = decompose′clos (c, C, D)

Definition 7.6 (Reduction-free evaluation). For any closure c, c 7→∗

J v if and only if
evaluate (c) = v.

7.4.2. Lightweight fusion: making do without driver loop. In effect, iterate is as the ‘dri-
ver loop’ of a small-step abstract machine that refocuses and contracts. Instead, let
us fuse contract and iterate and express the result with rewriting rules over a configu-
ration 〈r, C, D〉iter. We clone the rewriting rules for decompose′clos, decompose′cont, and
decompose′dump into refocusing rules, respectively indexing the configuration 〈c, C, D〉dec/clos

as 〈c, C, D〉eval, the configuration 〈C, v, D〉dec/cont as 〈C, v, D〉cont, and the configuration
〈D, v〉dec/dump as 〈D, v〉dump:

• instead of rewriting to VAL (v), the cloned rules rewrite to v;
• instead of rewriting to DEC (r, C, D), the cloned rules rewrite to 〈r, C, D〉iter.
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The result reads as follows:

〈pnq, C, D〉eval ⇒ 〈C, pnq, D〉cont

〈SUCC, C, D〉eval ⇒ 〈C, SUCC, D〉cont

〈pnq[e], C, D〉eval ⇒ 〈C, pnq, D〉cont

〈x[e], C, D〉eval ⇒ 〈x[e], C, D〉iter

〈(λx.t)[e], C, D〉eval ⇒ 〈C, (λx.t)[e], D〉cont

〈(t0 t1)[e], C, D〉eval ⇒ 〈(t0 t1)[e], C, D〉iter

〈J [e], C, D〉eval ⇒ 〈J, C, D〉iter

〈c0 c1, C, D〉eval ⇒ 〈c1, C[c0 [ ]], D〉eval

〈pD′
q, C, D〉eval ⇒ 〈C, pD′

q, D〉cont

〈pD′
q ◦ v, C, D〉eval ⇒ 〈C, pD′

q ◦ v, D〉cont

〈〈〈〈c〉〉〉, C, D〉eval ⇒ 〈c, [ ], C · D〉eval

〈[ ], v, D〉cont ⇒ 〈D, v〉dump

〈C[c0 [ ]], v1, D〉cont ⇒ 〈c0, C[[ ] v1], D〉eval

〈C[[ ] v1], v0, D〉cont ⇒ 〈v0 v1, C, D〉iter

〈•, v〉dump ⇒ v

〈C · D, v〉dump ⇒ 〈C, v, D〉cont

〈x[e], C, D〉iter ⇒ 〈v, C, D〉eval if lookup(x, e) = v

〈SUCC pnq, C, D〉iter ⇒ 〈pn + 1q, C, D〉eval

〈((λx.t)[e]) v, C, D〉iter ⇒ 〈t[e′], [ ], C · D〉eval where e′ = extend(x, v, e) = (x, v) · e

〈pD′
q v, C, D〉iter ⇒ 〈pD′

q ◦ v, C, D〉eval

〈(pD′
q ◦ v′) v, C, D〉iter ⇒ 〈v′ v, [ ], D′〉eval

〈(t0 t1)[e], C, D〉iter ⇒ 〈(t0[e]) (t1[e]), C, D〉eval

〈J, C, D〉iter ⇒ 〈pDq, C, D〉eval

The following proposition summarizes the situation:

Proposition 7.7. For any closure c, evaluate (c) = v if and only if 〈c, [ ], •〉eval ⇒
∗ v.

Proof: straightforward. The two machines operate in lockstep. �

7.4.3. Inlining and transition compression. The abstract machine of Section 7.4.2, while
interesting in its own right (it is ‘staged’ in that the contraction rules are implemented
separately from the congruence rules [14,69]), is not minimal: a number of transitions yield
a configuration whose transition is uniquely determined. Let us carry out these hereditary,
“corridor” transitions once and for all:

• 〈x[e], C, D〉eval ⇒ 〈x[e], C, D〉iter ⇒ 〈v, C, D〉eval ⇒ 〈C, v, D〉cont if lookup(x, e) = v
• 〈(t0 t1)[e], C, D〉eval ⇒ 〈(t0 t1)[e], C, D〉iter ⇒

〈(t0[e]) (t1[e]), C, D〉eval ⇒ 〈t1[e], C[(t0[e]) [ ]], D〉eval
• 〈J [e], C, D〉eval ⇒ 〈J, C, D〉iter ⇒ 〈pDq, C, D〉eval ⇒ 〈C, pDq, D〉cont

• 〈SUCC pnq, C, D〉iter ⇒ 〈pn + 1q, C, D〉eval ⇒ 〈C, pn + 1q, D〉cont
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• 〈pD′
q v, C, D〉iter ⇒ 〈pD′

q ◦ v, C, D〉eval ⇒ 〈C, pD′
q ◦ v, D〉cont

The result reads as follows:

〈pnq[e], C, D〉eval ⇒ 〈C, pnq, D〉cont

〈x[e], C, D〉eval ⇒ 〈C, v, D〉cont if lookup(x, e) = v

〈(λx.t)[e], C, D〉eval ⇒ 〈C, (λx.t)[e], D〉cont

〈(t0 t1)[e], C, D〉eval ⇒ 〈t1[e], C[(t0[e]) [ ]], D〉eval

〈J [e], C, D〉eval ⇒ 〈C, pDq, D〉cont

〈SUCC pnq, C, D〉iter ⇒ 〈C, pn + 1q, D〉cont

〈((λx.t)[e]) v, C, D〉iter ⇒ 〈t[e′], [ ], C · D〉eval where e′ = extend(x, v, e)

〈(pD′
q ◦ v′) v, C, D〉iter ⇒ 〈v v′, [ ], D′〉iter

〈pD′
q v, C, D〉iter ⇒ 〈C, pD′

q ◦ v, D〉cont

〈[ ], v, D〉cont ⇒ 〈D, v〉dump

〈C[(t[e]) [ ]], v, D〉cont ⇒ 〈t[e], C[[ ] v], D〉eval

〈C[[ ] v′], v, D〉cont ⇒ 〈v v′, C, D〉iter

〈•, v〉dump ⇒ v

〈C · D, v〉dump ⇒ 〈C, v, D〉cont

The eval-clauses for pnq, SUCC (which only occurs in the initial environment), c0 c1, pDq,
and pDq ◦ v and the iter-clauses for x[e], (t0 t1)[e], and J all have disappeared: they were
only transitory. The eval-clause for 〈〈〈c〉〉〉 has also disappeared: it is a dead clause here since
plug has been refocused away.

Proposition 7.8. For any closure c, evaluate (c) = v if and only if 〈c, [ ], •〉eval ⇒
∗ v.

Proof: immediate. We have merely compressed corridor transitions and removed one dead
clause. �

7.4.4. Opening closures: from explicit substitutions to terms and environments. The ab-
stract machine above solely operates on ground closures and the iter-clauses solely dispatch
on applications of one value to another. If we (1) open the closures t[e] into pairs (t, e) and
flatten the configuration 〈(t, e), C, D〉eval into a quadruple 〈t, e, C, D〉eval and (2) flatten
the configuration 〈v v′, C, D〉iter into a quadruple 〈v, v′, C, D〉apply, we obtain an abstract
machine that coincides with the caller-save, stackless SECD machine of Section 7.1.

The following proposition captures that the SECD machine implements the reduction
semantics of Section 7.3.

Proposition 7.9 (syntactic correspondence). For any program t in the λρ̂J-calculus,

t[(succ, SUCC) · ∅] →∗ v if and only if 〈t[(succ, SUCC) · ∅], [ ], •〉eval ⇒
∗ v.

Proof: this proposition is a simple corollary of the above series of propositions and of the
observation just above. �
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7.5. Summary and conclusion. All in all, the syntactic and the functional correspon-
dences provide a method to mechanically build compatible small-step semantics in the form
of calculi (reduction semantics) and abstract machines, and big-step semantics in the form of
evaluation functions. We have illustrated this method here for applicative expressions with
the J operator, providing their first big-step semantics and their first reduction semantics.

8. A syntactic theory of applicative expressions with the J operator:

implicit, caller-save dumps

The J operator capture the continuation of the caller and accordingly, the SECD ma-
chine is structured as the expression continuation of the current function up to its point of
call (the C component) and as a list of the delimited expression continuations of the pre-
viously called functions (the D component). This architecture stands both for the original
SECD machine (Section 2) and for its modernized instances, whether the dump is managed
in a callee-save fashion (Section 3) or in a caller-save fashion (Section 4). In this section, we
study a single representation of the context that is dynamically scanned in search for the
context of the caller, as in Felleisen et al.’s initial take on delimited continuations [54] and
in John Clements’s PhD thesis work on continuation marks [27]. We start from a reduction
semantics (Section 8.1) and refocus it into an abstract machine (Section 8.2).

8.1. Reduction semantics. We specify the reduction semantics as in Sections 7.3 and E.1,
i.e., with its syntactic categories, a plugging function, a notion of contraction, a decompo-
sition function, a one-step reduction function, and a reduction-based evaluation function.

8.1.1. Syntactic categories. We consider a variant of the λρ̂J-calculus with one layer of
context C and with delimiters 〈〈〈c〉〉〉 and 〈〈〈C 〉〉〉 (shaded below) to mark the boundary between
the context of a β-redex that has been contracted, i.e., a function closure that has been
applied, and the body of the λ-abstraction in this function closure which is undergoing
reduction:

(programs) p ::= t[(succ, SUCC) · ∅]

(terms) t ::= pnq | x | λx.t | t t | J

(closures) c ::= pnq | SUCC | t[e] | c c | pCq | pCq ◦ v | 〈〈〈c〉〉〉

(values) v ::= pnq | SUCC | (λx.t)[e] | pCq | pCq ◦ v

(potential redexes) r ::= x[e] | v v | J

(substitutions) e ::= ∅ | (x, v) · e

(contexts) C ::= [ ] | C [c [ ]] | C [[ ] v] | 〈〈〈C 〉〉〉

Again, in the syntactic category of closures, pCq and pCq ◦ v respectively denote a state
appender and a program closure. Also again, values are therefore a syntactic subcategory
of closures, and we make use of the syntactic coercion ↑ mapping a value into a closure.
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8.1.2. Plugging. Plugging a closure in a context is defined by induction over this context:

〈[ ], c〉plug/cont → c

〈C[c0 [ ]], c1〉plug/cont → 〈C , c0 c1〉plug/cont

〈C [[ ] v1], c0〉plug/cont → 〈C , c0 c1〉plug/cont where c1 = ↑ v1

〈〈〈〈C 〉〉〉, c〉plug/cont → 〈C , 〈〈〈c〉〉〉〉plug/cont

Definition 8.1. For any closure c and context C , plug (C , c) = c′ if and only if
〈C, c〉plug/cont →

∗ c′.

8.1.3. Notion of contraction. The notion of reduction is specified by the following context-
sensitive contraction rules over actual redexes:

(Var) 〈x[e], C 〉 7→ 〈v, C 〉 if lookup(x, e) = v

(Betasucc) 〈SUCC pnq, C 〉 7→ 〈pn + 1q, C 〉

(BetaFC ) 〈((λx.t)[e]) v, C 〉 7→ 〈〈〈〈t[e′]〉〉〉, C 〉 where e′ = extend(x, v, e) = (x, v) · e

(BetaSA) 〈pC ′
q v, C 〉 7→ 〈pC ′

q ◦ v, C 〉

(BetaPC ) 〈(pC ′
q ◦ v′) v, C 〉 7→ 〈v′ v, C ′〉

(Prop) 〈(t0 t1)[e], C 〉 7→ 〈(t0[e]) (t1[e]), C 〉

(J) 〈J, C 〉 7→ 〈pC ′
q, C 〉 where C ′ = previous(C )

where previous maps a context to its most recent delimited context, if any:

previous(C[c [ ]]) = previous(C)

previous(C [[ ] v]) = previous(C )

previous(〈〈〈C 〉〉〉) = C

Two of the contraction rules depend on the context: the J rule captures a copy of the
context of the most recent caller and yields a state appender, and the β-rule for program
closures reinstates a previously captured copy of the context. As for the β-rule for function
closures, it introduces a delimiter.

Definition 8.2. For any potential redex r and context C , contract (r, C ) = 〈c, C ′〉 if and
only if 〈r, C ′〉 7→ 〈c, C ′〉.

8.1.4. Decomposition. Decomposition is essentially as in Section 7.3.4, except that there is
no explicit dump component:

〈pnq, C〉dec/clos → 〈C, pnq〉dec/cont

〈SUCC, C〉dec/clos → 〈C, SUCC〉dec/cont

〈pnq[e], C〉dec/clos → 〈C, pnq〉dec/cont

〈x[e], C〉dec/clos → DEC (x[e], C)

〈(λx.t)[e], C〉dec/clos → 〈C, (λx.t)[e]〉dec/cont

〈(t0 t1)[e], C〉dec/clos → DEC ((t0 t1)[e], C)

〈J [e], C〉dec/clos → DEC (J, C)

〈c0 c1, C〉dec/clos → 〈c1, C[c0 [ ]]〉dec/clos
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〈pC ′
q, C〉dec/clos → 〈C, pC ′

q〉dec/cont

〈pC ′
q ◦ v, C〉dec/clos → 〈C, pC ′

q ◦ v〉dec/cont

〈〈〈〈c〉〉〉, C〉dec/clos → 〈c, 〈〈〈C 〉〉〉〉dec/clos

〈[ ], v〉dec/cont → VAL (v)

〈C[c0 [ ]], v1〉dec/cont → 〈c0, C[[ ] v1]〉dec/clos

〈C[[ ] v1], v0〉dec/cont → DEC (v0 v1, C)

〈〈〈〈C〉〉〉, v〉dec/cont → 〈C, v〉dec/cont

Definition 8.3. For any closure c,

decompose (c) =

{
VAL (v) if 〈c, [ ], [ ]〉dec/clos →

∗ VAL (v)
DEC (r, C) if 〈c, [ ], [ ]〉dec/clos →

∗ DEC (r, C)

8.1.5. One-step reduction and reduction-based evaluation. We are now in position to define
a one-step reduction function (as in Sections 7.3.5 and E.1.5) and an evaluation function
iterating this reduction function (as in Section 7.3.6 and E.1.6).

8.2. From reduction semantics to abstract machine. Repeating mutatis mutandis
the derivation illustrated in Sections 7.4 and E.2 leads one to the following variant of the
SECD machine:

(programs) p ::= t[(succ, SUCC) · ∅]

(terms) t ::= pnq | x | λx.t | t t | J

(values) v ::= pnq | SUCC | (λx.t, e) | pCq ◦ v | pCq

(environments) e ::= ∅ | (x, v) · e

(contexts) C ::= [ ] | C [(t, e) [ ]] | C [[ ] v] | 〈〈〈C 〉〉〉

〈pnq, e, C〉eval ⇒ 〈C, pnq〉cont

〈x, e, C〉eval ⇒ 〈C, v〉cont if lookup(x, e) = v

〈λx.t, e, C〉eval ⇒ 〈C, (λx.t, e)〉cont

〈t0 t1, e, C〉eval ⇒ 〈t1, e, C[(t0, e) [ ]]〉eval
〈J, e, C〉eval ⇒ 〈C, pC ′

q〉cont if C ′ = previous(C )

〈SUCC, pnq, C〉apply ⇒ 〈C, pn + 1q〉cont

〈(λx.t, e), v, C 〉apply ⇒ 〈t, e′, 〈〈〈C 〉〉〉〉eval where e′ = extend(x, v, e)

〈pC ′
q ◦ v′, v, C〉apply ⇒ 〈v, v′, C ′〉apply

〈pC ′
q, v, C〉apply ⇒ 〈C, pC ′

q ◦ v〉cont

〈[ ], v〉cont ⇒ v

〈C[(t, e) [ ]], v〉cont ⇒ 〈t, e, C[[ ] v]〉eval
〈C[[ ] v′], v〉cont ⇒ 〈v, v′, C〉apply

〈〈〈〈C 〉〉〉, v〉cont ⇒ 〈C , v〉cont

Starting in the configuration 〈t, (succ, SUCC) · ∅, [ ]〉eval makes this machine evaluate the
program t. The machine halts with a value v if it reaches a configuration 〈[ ], v〉cont.
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Alternatively (if we allow J to be used outside the body of a lambda-term and we let
it denote the empty context), this machine evaluates a program t by starting in the config-
uration 〈t, (succ, SUCC) · ∅, 〈〈〈[ ]〉〉〉〉eval. It halts with a value v if it reaches a configuration
〈[ ], v〉cont.

In either case, the machine is not in defunctionalized form [43, 44]. Therefore, one
cannot immediately map it into an evaluation function in CPS, as in Sections 2, 3, and 4.
The next two sections present two alternatives, each of which is in defunctionalized form
and operates in lockstep with the present abstract machine.

9. A syntactic theory of applicative expressions with the J operator:

explicit, caller-save dumps

Instead of marking the context and the intermediate closures, as in Section 8, one can
cache the context of the caller in a separate register, which leads one towards evaluate1’ alt

in Section 4.2. For an analogy, in some formal specifications of Prolog [17, 49], the cut
continuation denotes the previous failure continuation and is cached in a separate register.

10. A syntactic theory of applicative expressions with the J operator:

inheriting the dump through the environment

Instead of marking the context and the intermediate closures, as in Section 8, or of
caching the context of the caller in a separate register, as in Section 9, one can cache the
context of the caller in the environment, which leads one towards Felleisen’s simulation
(Section 4.5) and a lightweight extension of the CEK machine. Let us briefly outline this
reduction semantics and this abstract machine.

10.1. Reduction semantics. We specify the reduction semantics as in Section 8.1.

10.1.1. Syntactic categories. We consider a variant of the λρ̂J-calculus which is essentially
that of Section 8.1.1, except that J is now an identifier and there are no delimiters:

(programs) p ::= t[(succ, SUCC) · ∅]

(terms) t ::= pnq | x | λx.t | t t

(closures) c ::= pnq | SUCC | t[e] | c c | pCq | pCq ◦ v

(values) v ::= pnq | SUCC | (λx.t)[e] | pCq | pCq ◦ v

(potential redexes) r ::= x[e] | v v

(substitutions) e ::= ∅ | (x, v) · e

(contexts) C ::= [ ] | C [c [ ]] | C [[ ] v]

10.1.2. Plugging. The notion of reduction is essentially as that of Section 8.1.2, except that
there is no control delimiter:

〈[ ], c〉plug/cont → c

〈C[c0 [ ]], c1〉plug/cont → 〈C , c0 c1〉plug/cont

〈C [[ ] v1], c0〉plug/cont → 〈C , c0 c1〉plug/cont where c1 = ↑ v1
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10.1.3. Notion of contraction. The notion of reduction is essentially as that of Section 8.1.3,
except that there is no rule for J and there are no delimiters:

(Var) 〈x[e], C 〉 7→ 〈v, C 〉 if lookup(x, e) = v

(Betasucc) 〈SUCC pnq, C 〉 7→ 〈pn + 1q, C 〉

(BetaFC) 〈((λx.t)[e]) v, C 〉 7→ 〈t[e′], C 〉 where e′ = (J, pCq) · (x, v) · e

(BetaSA) 〈pC ′
q v, C 〉 7→ 〈pC ′

q ◦ v, C 〉

(BetaPC) 〈(pC ′
q ◦ v′) v, C 〉 7→ 〈v′ v, C ′〉

(Prop) 〈(t0 t1)[e], C 〉 7→ 〈(t0[e]) (t1[e]), C 〉

In the β-rule for function closures, J is dynamically bound to the current context.

10.1.4. Decomposition. Decomposition is essentially as in Section 8.1.4, except that there
is no rule for J and there are no delimiters:

〈pnq, C〉dec/clos → 〈C, pnq〉dec/cont

〈SUCC, C〉dec/clos → 〈C, SUCC〉dec/cont

〈pnq[e], C〉dec/clos → 〈C, pnq〉dec/cont

〈x[e], C〉dec/clos → DEC (x[e], C)

〈(λx.t)[e], C〉dec/clos → 〈C, (λx.t)[e]〉dec/cont

〈(t0 t1)[e], C〉dec/clos → DEC ((t0 t1)[e], C)

〈c0 c1, C〉dec/clos → 〈c1, C[c0 [ ]]〉dec/clos

〈pC ′
q, C〉dec/clos → 〈C, pC ′

q〉dec/cont

〈pC ′
q ◦ v, C〉dec/clos → 〈C, pC ′

q ◦ v〉dec/cont

〈[ ], v〉dec/cont → VAL (v)

〈C[c0 [ ]], v1〉dec/cont → 〈c0, C[[ ] v1]〉dec/clos

〈C[[ ] v1], v0〉dec/cont → DEC (v0 v1, C)

10.2. From reduction semantics to abstract machine. Repeating mutatis mutandis
the derivation illustrated in Sections 7.4 and E.2 leads one to the following variant of the
CEK machine:

(programs) p ::= t[(succ, SUCC) · ∅]

(terms) t ::= pnq | x | λx.t | t t

(values) v ::= pnq | SUCC | (λx.t, e) | pCq ◦ v | pCq

(environments) e ::= ∅ | (x, v) · e

(contexts) C ::= [ ] | C [(t, e) [ ]] | C [[ ] v]
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〈pnq, e, C〉eval ⇒ 〈C, pnq〉cont

〈x, e, C〉eval ⇒ 〈C, v〉cont if lookup(x, e) = v

〈λx.t, e, C〉eval ⇒ 〈C, (λx.t, e)〉cont

〈t0 t1, e, C〉eval ⇒ 〈t1, e, C[(t0, e) [ ]]〉eval

〈SUCC, pnq, C〉apply ⇒ 〈C, pn + 1q〉cont

〈(λx.t, e), v, C 〉apply ⇒ 〈t, e′, C 〉eval where e′ = extend(J, pCq, extend(x, v, e))

〈pC ′
q ◦ v′, v, C〉apply ⇒ 〈v, v′, C ′〉apply

〈pC ′
q, v, C〉apply ⇒ 〈C, pC ′

q ◦ v〉cont

〈[ ], v〉cont ⇒ v

〈C[(t, e) [ ]], v〉cont ⇒ 〈t, e, C[[ ] v]〉eval
〈C[[ ] v′], v〉cont ⇒ 〈v, v′, C〉apply

This machine evaluates a program t by starting in the configuration

〈t, (succ, SUCC) · ∅, [ ]〉eval.

It halts with a value v if it reaches a configuration 〈[ ], v〉cont.
Alternatively (if we allow J to be used outside the body of a lambda-term and we

let it denote the empty context), this machine evaluates a program t by starting in the
configuration

〈t, (J, [ ]) · (succ, SUCC) · ∅, [ ]〉eval.

It halts with a value v if it reaches a configuration 〈[ ], v〉cont.
In either case, the machine is in defunctionalized form. Refunctionalizing it yields

a continuation-passing evaluation function. Refunctionalizing its closures and mapping
the result back to direct style yields the compositional evaluation functions displayed in
Section 4.5, i.e., Felleisen’s embedding of the J operator in Scheme [51].

11. Summary and conclusion

We have presented a rational deconstruction of the SECD machine with the J oper-
ator, through a series of alternative implementations, in the form of abstract machines
and compositional evaluation functions, all of which are new. We have also presented the
first syntactic theories of applicative expressions with the J operator. In passing, we have
shown new applications of refocusing and defunctionalization and new examples of control
delimiters and of both pushy and jumpy delimited continuations in programming practice.

Even though they were the first of their kind, the SECD machine and the J operator
remain computationally relevant today:

• Architecturally, and until the advent of JavaScript run-time systems [57], the SECD ma-
chine has been superseded by abstract machines with a single control component instead
of two (namely C and D). In some JavaScript run-time systems, however, methods have
a local stack similar to C to implement and manage their expression continuation, and
a global stack similar to D to implement and manage command continuations, i.e., the
continuation of their caller.
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• Programmatically, and until the advent of first-class continuations in JavaScript [28], the J
operator has been superseded by control operators that capture the current continuation
(i.e., both C and D) instead of the continuation of the caller (i.e., D). In the Rhino
implementation of JavaScript, however, the control operator captures the continuation
of the caller of the current method, i.e., the command continuation instead of both the
expression continuation and the command continuation.

At any rate, as we have shown here, both the SECD machine and the J operator fit the
functional correspondence [3,4,6,7,13,16,35,36] as well as the syntactic correspondence [12,
14, 15, 34, 36, 45], which made it possible for us to mechanically characterize them in new
and precise ways.

All of the points above make us conclude that new abstract machines should be defined
in defunctionalized form today, or at least be made to work in lockstep with an abstract
machine in defunctionalized form.

12. On the origin of first-class continuations

We have shown that jumping and labels are not essentially connected with strings
of imperatives and in particular, with assignment. Second, that jumping is not
essentially connected with labels. In performing this piece of logical analysis we
have provided a precisely limited sense in which the “value of a label” has mean-
ing. Also, we have discovered a new language feature, not present in current
programming languages, that promises to clarify and simplify a notoriously un-
tidy area of programming—that concerned with success/failure situations, and the
actions needed on failure. – Peter J. Landin, 1965 [82, page 133]

It was Strachey who coined the term “first-class functions” [113, Section 3.5.1].8 In turn
it was Landin who, through the J operator, invented what we know today as first-class
continuations [58]: like Reynolds for escape [102], Landin defined J in an unconstrained way,
i.e., with no regard for it to be compatible with the last-in, first-out allocation discipline
prevalent for control stacks since Algol 60.9

Today, ‘continuation’ is an overloaded term, that may refer

• to the original semantic description technique for representing ‘the meaning of the rest
of the program’ as a function, the continuation, as multiply co-discovered in the early
1970’s [103]; or

• to the programming-language feature of first-class continuations as typically provided by
a control operator such as J, escape, or call/cc, as invented by Landin.

Whether a semantic description technique or a programming-language feature, the goal of
continuations was the same: to formalize Algol’s labels and jumps. But where Wadsworth
and Abdali gave a continuation semantics to Algol, and as illustrated in the beginning of
Section 1, Landin translated Algol programs into applicative expressions in direct style. In
turn, he specified the semantics of applicative expressions with the SECD machine, i.e.,
using first-order means. The meaning of an Algol label was an ISWIM ‘program closure’

8“Out of Quine’s dictum: To be is to be the value of a variable, grew Strachey’s ‘first-class citizens’.” Peter
J. Landin, 2000 [86, page 75]

9“Dumps and program-closures are data-items, with all the implied latency for unruly multiple use and
other privileges of first-class-citizenship.” Peter J. Landin, 1997 [85, Section 1]
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as obtained by the J operator. Program closures were defined by extending the SECD
machine, i.e., still using first-order means.

Landin did not use an explicit representation of the rest of the computation in his
direct semantics of Algol 60, and for that reason he is not listed among the co-discoverers of
continuations [103]. Such an explicit representation, however, exists in the SECD machine,
in first-order form—the dump—which represents the rest of the computation after returning
from the current function call.

In an earlier work [35], Danvy has shown that the SECD machine, even though it is
first-order, directly corresponds to a compositional evaluation function in CPS—the tool of
choice for specifying control operators since Reynolds’s work [102]. In particular, the dump
directly corresponds to a functional representation of control, since it is a defunctionalized
continuation. In the light of defunctionalization, Landin therefore did use an explicit repre-
sentation of the rest of the computation that corresponds to a function, and for that reason
we wish to see his name added to the list of co-discoverers of continuations.
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Appendices

Appendix A demonstrates how two programs, before and after defunctionalization, do not
just yield the same result but also operate in lockstep. The three following appendices illus-
trate the callee-save, stack-threading features of the evaluator corresponding to the SECD
machine by contrasting them with a caller-save, stackless evaluator for the pure λ-calculus.
We successively consider a caller-save, stackless evaluator and the corresponding abstract
machine (Appendix B), a callee-save, stackless evaluator and the corresponding abstract
machine (Appendix C), and a caller-save, stack-threading evaluator and the correspond-
ing abstract machine (Appendix D). Finally, Appendix E demonstrates how to go from a
reduction semantics of the λρ̂-calculus to the CEK machine.

Appendix A. Defunctionalizing a continuation-passing version

of the Fibonacci function

We start with the traditional Fibonacci function in direct style (Section A.1), and then
present its continuation-passing counterpart before (Section A.2) and after (Section A.3)
defunctionalization. To pinpoint that these two functions operate in lockstep, we equip
them with a trace recording their calling sequence, and we show that they yield the same

http://www.diku.dk/topps
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result and the same trace. (One can use the same tracing technique to prove Proposition 2.2
in Section 2.2.)

A.1. The traditional Fibonacci function. We start from the traditional definition of
the Fibonacci function in ML:

fun fib n

= if n <= 1

then n

else (fib (n - 1)) + (fib (n - 2))

fun main0 n

= fib n

So for example, evaluating main0 5 yields 5.

A.2. The Fibonacci function in CPS. To CPS-transform, we first name all intermediate
results and sequentialize their computation, assuming a left-to-right order of evaluation [32]:

fun fib n

= if n <= 1

then n

else let val v1 = fib (n - 1)

val v2 = fib (n - 2)

in v1 + v2

end

fun main0’ n

= let val v = fib n

in v

end

We then give fib an extra argument, the continuation:

fun fib_c (n, k)

= if n <= 1

then k n

else fib_c (n - 1,

fn v1 => fib_c (n - 2,

fn v2 => k (v1 + v2)))

fun main1 n

= fib_c (n, fn v => v)

So for example, evaluating main1 5 yields 5.

A.3. The Fibonacci function in CPS, defunctionalized. To defunctionalize the Fi-
bonacci function in CPS, we consider its continuation, which has type int -> int. Each
inhabitant of this function space arises as an instance of the initial continuation in main1

or of the two continuations in fib c. We therefore represent the function space as a sum
with three summands, one for each λ-abstraction, and we interpret each summand with the
body of each of these λ-abstractions, using apply cont:
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type res = int

datatype cont = C0

| C1 of res * cont

| C2 of int * cont

fun apply_cont (C0, v)

= v

| apply_cont (C1 (v1, c), v2)

= apply_cont (c, v1 + v2)

| apply_cont (C2 (n, c), v1)

= fib_c_def (n - 2, C1 (v1, c))

and fib_c_def (n, c)

= if n <= 1

then apply_cont (c, n)

else fib_c_def (n - 1, C2 (n, c))

fun main2 n

= fib_c_def (n, C0)

Defunctionalization is summarized with the following two tables, the first one for the func-
tion abstractions and the corresponding sum injections into the data type cont,10 and the
second one for the function applications and the corresponding calls to the apply function
dispatching over summands:

• introduction
function abstraction sum injection

fn v => v C0

fn v2 => k (v1 + v2) C1 (v1, c)

fn v1 => fib c (n - 2, fn v2 => k (v1 + v2)) C2 (n, c)

• elimination
function application case dispatch

k n apply cont (c, n)

k (v1 + v2) apply cont (c, v1 + v2)

So for example, evaluating main2 5 yields 5.

A.4. The Fibonacci function in CPS with a trace. We can easily show that applying
main1 and main2 as defined above to the same integer yields the same result, but we want to
show a stronger property, namely that they operate in lockstep. To this end, we equip fib c

with a trace recording its calls with the value of its first argument. (It would be simple to
trace its returns as well, i.e., the calls to the continuation.)

Representing the trace as a list, the Fibonacci function in CPS reads as follows:

type res = int

(* fib_c : int * (res * int list -> ’a) -> ’a *)

fun fib_c (n, k, T)

= if n <= 1

then k (n, T)

10Which the cognoscenti will recognize as Daniel P. Friedman’s “data-structure continuations” [59,119].
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else fib_c (n - 1,

fn (v1, T) => fib_c (n - 2,

fn (v2, T) => k (v1 + v2, T),

(n - 2) :: T),

(n - 1) :: T)

(* main3 : int -> res * int list *)

fun main3 n

= fib_c (n, fn (v, T) => (v, T), n :: nil)

So for example, evaluating main3 5 yields (5,[1,0,1,2,3,0,1,2,1,0,1,2,3,4,5]).

A.5. The Fibonacci function in CPS with a trace, defunctionalized. Proceeding
as in Section A.3, the corresponding defunctionalized version reads as follows; fib c def is
equipped with a trace recording its calls with the value of its first argument. (Its returns,
i.e., the calls to apply cont, could be traced as well.)

type res = int

datatype cont = C0

| C1 of res * cont

| C2 of int * cont

(* apply_cont : cont * res * int list -> res * int list *)

fun apply_cont (C0, v, T)

= (v, T)

| apply_cont (C1 (v1, c), v2, T)

= apply_cont (c, v1 + v2, T)

| apply_cont (C2 (n, c), v1, T)

= fib_c_def (n - 2, C1 (v1, c), (n - 2) :: T)

(* fib_c_def : int * cont * int list -> res * int list *)

and fib_c_def (n, c, T)

= if n <= 1

then apply_cont (c, n, T)

else fib_c_def (n - 1, C2 (n, c), (n - 1) :: T)

(* main4 : int -> res * int list *)

fun main4 n

= fib_c_def (n, C0, n :: nil)

So for example, evaluating main4 5 yields (5,[1,0,1,2,3,0,1,2,1,0,1,2,3,4,5]).

A.6. Lockstep correspondence.

Definition A.1. We define R(k, c) as

∀v.∀T.k (v, T) = a ⇔ apply cont (c, v, T) = a

where “e = a” means “there exists an ML value a such that evaluating the ML expression
e yields a.”

Lemma A.2. R(fn (v, T) => (v, T), C0)

Proof: immediate. �
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Lemma A.3. ∀v1.∀k∧c such that R(k, c).R(fn (v2, T) => k (v1 + v2, T), C1 (v1, c)).

Proof:
By βv reduction, (fn (v2, T) => k (v1 + v2, T)) (v2, T) yields the same value as k

(v1 + v2, T).
By definition, apply cont (C1 (v1, c), v2, T) yields the same value as apply cont (c,

v1 + v2, T).
Suppose that k (v1 + v2, T) = a holds. Then since R(k, c), apply cont (c, v1 + v2,

T) = a also holds, and vice-versa. �

Lemma A.4. ∀n.∀k ∧ c such that R(k, c).
1. fib c (n, k, T) = a ⇔ fib c def (n, c, T) = a

2. R(fn (v1, T) => fib c (n, fn (v2, T) => k (v1 + v2, T), n :: T), C2 (n+2, c))

Proof: by simultaneous course-of-value induction. �

Theorem A.5. ∀n.main3 n = a ⇔ main4 n = a

Proof. a consequence of Lemmas A.2 and A.4.

The two versions, before and after defunctionalization, therefore operate in lockstep,
since they yield the same trace and the same result.

Appendix B. A caller-save, stackless evaluator

and the corresponding abstract machine

B.1. The evaluator. The following evaluator for the pure call-by-value λ-calculus (i.e.,
the language of Section 1.5 without constants and the J operator) is standard. As pointed
out by Reynolds [102], it depends on the evaluation order of its metalanguage (here, call by
value):

datatype value = FUN of value -> value

(* eval : term * value Env.env -> value *)

fun eval (VAR x, e)

= Env.lookup (x, e)

| eval (LAM (x, t), e)

= FUN (fn v => eval (t, Env.extend (x, v, e)))

| eval (APP (t0, t1), e)

= let val (FUN f) = eval (t0, e)

in f (eval (t1, e))

end

fun evaluate t

= eval (t, Env.mt)

The evaluator is stackless because it does not thread any data stack. It is also caller-save
because in the clause for applications, when t0 is evaluated, the environment is implicitly
saved in the context in order to evaluate t1 later on. In other words, the environment is
solely an inherited attribute.
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B.2. The abstract machine. As initiated by Reynolds [4, 102], closure-converting the
data values of an evaluator, CPS transforming its control flow, and defunctionalizing its
continuations yields an abstract machine. For the evaluator above, this machine is the CEK
machine [53], i.e., an eval-continue abstract machine where the evaluation contexts and the
continue transition function are the defunctionalized counterparts of the continuations of
the evaluator just above:

(terms) t ::= x | λx.t | t t

(values) v ::= [x, t, e]

(environments) e ::= ∅ | (x, v) · e

(contexts) k ::= END | ARG(t, e, k) | FUN(v, k)

〈x, e, k〉eval ⇒ 〈k, v〉cont if lookup(x, e) = v

〈λx.t, e, k〉eval ⇒ 〈k, [x, t, e]〉cont

〈t0 t1, e, k〉eval ⇒ 〈t0, e, ARG(t1, e, k)〉eval

〈END, v〉cont ⇒ v

〈ARG(t, e, k), v〉cont ⇒ 〈t, e, FUN(v, k)〉eval

〈FUN([x, t, e], k), v〉cont ⇒ 〈t, e′, k〉eval where e′ = extend(x, v, e)

This machine evaluates a closed term t by starting in the configuration 〈t, ∅, END〉eval. It
halts with a value v if it reaches a configuration 〈END, v〉cont.

Appendix C. A callee-save, stackless evaluator

and the corresponding abstract machine

C.1. The evaluator. The following evaluator is a callee-save version of the evaluator of
Appendix B. Whereas the evaluator of Appendix B maps a term and an environment to the
corresponding value, this evaluator maps a term and an environment to the corresponding
value and the environment. This way, in the clause for applications, the environment does
not need to be implicitly saved since it is explicitly returned together with the value of t0.
In other words, the environment is not solely an inherited attribute as in the evaluator of
Appendix B: it is a synthesized attribute as well.

Functional values are passed the environment of their caller, and eventually they return
it. The body of function abstractions is still evaluated in an extended lexical environment,
which is returned but then discarded. Otherwise, environments are threaded through the
evaluator as inherited attributes:

datatype value = FUN of value * value Env.env -> value * value Env.env

(* eval : term * value Env.env -> value * value Env.env *)

fun eval (VAR x, e)

= (Env.lookup (x, e), e)

| eval (LAM (x, t), e)

= (FUN (fn (v0, e0) => let val (v1, e1) = eval (t, Env.extend (x, v0, e))

in (v1, e0) end),

e)
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| eval (APP (t0, t1), e)

= let val (FUN f, e0) = eval (t0, e)

val (v, e1) = eval (t1, e0)

in f (v, e1) end

fun evaluate t

= let val (v, e) = eval (t, Env.mt)

in v end

Operationally, one may wish to note that unlike the evaluator of Appendix B, this eval-
uator is not properly tail recursive since the evaluation of the body of a function abstraction
no longer occurs in tail position [30,101].

C.2. The abstract machine. As in Appendix B, closure-converting the data values of
this evaluator, CPS-transforming its control flow, and defunctionalizing its continuations
yields an abstract machine. This machine is a variant of the CEK machine with callee-save
environments; its terms, values, and environments remain the same:

(contexts) k ::= END | ARG(t, k) | FUN(v, k) | RET(e, k)

〈x, e, k〉eval ⇒E 〈k, v, e〉cont if lookup(x, e) = v

〈λx.t, e, k〉eval ⇒E 〈k, [x, t, e], e〉cont

〈t0 t1, e, k〉eval ⇒E 〈t0, e, ARG(t1, k)〉eval

〈END, v, e〉cont ⇒E v

〈ARG(t, k), v, e〉cont ⇒E 〈t, e, FUN(v, k)〉eval

〈FUN([x, t, e′], k), v, e〉cont ⇒E 〈t, e′′, RET(e, k)〉eval where e′′ = extend(x, v, e′)

〈RET(e′, k), v, e〉cont ⇒E 〈k, v, e′〉eval

This machine evaluates a closed term t by starting in the configuration 〈t, ∅, END〉eval. It
halts with a value v if it reaches a configuration 〈END, v, e〉cont.

C.3. Analysis. Compared to the CEK machine in Section B.2, there are two differences
in the datatype of contexts and one new transition rule. The first difference is that envi-
ronments are no longer saved by the caller in ARG contexts. The second difference is that
there is an extra context constructor, RET, to represent the continuation of the non-tail
call to the evaluator over the body of function abstractions. The new transition interprets
a RET constructor by restoring the environment of the caller before returning.

It is simple to construct a bisimulation between this callee-save machine and the CEK
machine.
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Appendix D. A caller-save, stack-threading evaluator

and the corresponding abstract machine

D.1. The evaluator. In a stack-threading evaluator, a data stack stores intermediate val-
ues after they have been computed but before they are used. Evaluating an expression leaves
its value on top of the data stack. Applications therefore expect to find their argument and
function on top of the data stack.11

Several design possibilities arise. First, one can choose between a single global data
stack used for all intermediate values (i.e., as in Forth) or one can use a local data stack for
each function application (i.e., as in the SECD machine and in the JVM). For the purpose
of illustration, we adopt the latter since it matches the design of the SECD machine.

Since there is one local data stack per function application, then this data stack can
be chosen to be saved by the caller or by the callee. Though the former design might be
more natural, we again adopt the latter in this illustration since it matches the design of
the SECD machine.

If there is a local, callee-save data stack, then functional values are passed their argu-
ment and a data stack, and return a value and a data stack. One can choose instead to
pass the argument to the function on top of the stack and leave the return value on top of
the stack (i.e., as in Forth). We adopt this design here, for a local callee-save data stack:

datatype value = FUN of value list -> value list

(* eval : term * value list * value Env.env -> value *)

fun eval (VAR x, s, e)

= Env.lookup (x, e) :: s

| eval (LAM (x, t), s, e)

= FUN (fn (v0 :: s0)

=> let val (v1 :: s1) = eval (t, nil, Env.extend (x, v0, e))

in (v1 :: s0) end) :: s

| eval (APP (t0, t1), s, e)

= let val s0 = eval (t0, s, e)

val (v :: FUN f :: s1) = eval (t1, s0, e)

in f (v :: s1) end

fun evaluate t

= let val (v :: s) = eval (t, nil, Env.mt)

in v end

Functional values are now passed the data stack of their caller and they find their
argument on top of it. The body of a function abstraction is evaluated with an empty data
stack, and yields a stack with the value of the body on top. This value is returned to the
caller on top of its stack.

11If evaluation is left-to-right, the argument will be evaluated after the function and thus will be on top
of the data stack. Some shuffling of the stack can be avoided if the evaluation order is right-to-left, as in the
SECD machine or the ZINC abstract machine.
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D.2. The abstract machine. As in Appendix C, one may wish to note that functions
using local callee-save data stacks are not properly tail-recursive, though functions using
global or local caller-save data stacks can be made to be.

As in Appendix B and C, closure converting the data values of this evaluator, CPS
transforming its control flow, and defunctionalizing its continuations yields an abstract
machine. This machine is another variant of the CEK machine with a data stack; its terms,
values, and environments remain the same:

(contexts) k ::= END | ARG(t, e, k) | FUN(k) | RET(s, k)

〈x, s, e, k〉eval ⇒S 〈k, v : : s〉cont if lookup(x, e) = v

〈λx.t, s, e, k〉eval ⇒S 〈k, [x, t, e] : : s〉cont

〈t0 t1, s, e, k〉eval ⇒S 〈t0, s, e, ARG(t1, e, k)〉eval

〈END, v : : s〉cont ⇒S v

〈ARG(t, e, k), s〉cont ⇒S 〈t, s, e, FUN(k)〉eval

〈FUN(k), v : : [x, t, e] : : s〉cont ⇒S 〈t, nil, e′, RET(s, k)〉eval where e′ = extend(x, v, e)

〈RET(s′, k), v : : s〉cont ⇒S 〈k, v : : s′〉cont

This machine evaluates a closed term t by starting in the configuration 〈t, nil, ∅, END〉eval.
It halts with a value v if it reaches a configuration 〈END, v : : s〉cont.

D.3. Analysis. Compared to the CEK machine in Section B.2, there are two differences in
the datatype of contexts and one new transition rule. The first difference is that intermediate
values are no longer saved in FUN contexts, since they are stored on the data stack instead.
The second difference is that there is an extra context constructor, RET, to represent the
continuation of the non-tail call to the evaluator over the body of function abstractions (i.e.,
a continuation that restores the caller’s data stack and pushes the function return value on
top). The new transition interprets a RET constructor by restoring the data stack of the
caller and pushing the returned value on top of it before returning.

It is simple to construct a bisimulation between this stack-threading machine and the
CEK machine.

Appendix E. From reduction semantics to abstract machine

As a warmup to Sections 7.3 and 7.4, we present a reduction semantics for applicative
expressions (Section E.1) and we derive the CEK machine from this reduction semantics
(Section E.2).

E.1. A reduction semantics for applicative expressions. The λρ̂-calculus is a minimal
extension of Curien’s original calculus of closures λρ [31] to make it closed under one-
step reduction [14]. We use it here to illustrate how to go from a reduction semantics
to an abstract machine. To this end, we present its syntactic categories (Section E.1.1);
a plug function mapping a closure and a reduction context into a closure by filling the
given context with the given closure (Section E.1.2); a contraction function implementing
a context-insensitive notion of reduction (Section E.1.3) and therefore mapping a potential
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redex into a contractum; and a decomposition function mapping a non-value term into a
potential redex and a reduction context (Section E.1.4). We are then in position to define
a one-step reduction function (Section E.1.5) and a reduction-based evaluation function
(Section E.1.6).

E.1.1. Syntactic categories. We consider a variant of the λρ̂-calculus with names instead
of de Bruijn indices, and with the usual reduction context C embodying a left-to-right
applicative-order reduction strategy.

(terms) t ::= x | λx.t | t t

(closures) c ::= t[e] | c c

(values) v ::= (λx.t)[e]

(potential redexes) r ::= x[e] | v v

(substitutions) e ::= ∅ | (x, v) · e

(contexts) C ::= [ ] | C[[ ] c] | C[v [ ]]

Values are therefore a syntactic subcategory of closures, and in this section, we make use
of the syntactic coercion ↑ mapping a value into a closure.

E.1.2. Plugging. Plugging a closure in a context is defined by induction over this con-
text. We express this definition as a state-transition system with one intermediate state,
〈c, C〉plug, an initial state 〈c, C〉plug, and a final state c. The transition function incremen-
tally peels off the given control context:

〈[ ], c〉plug → c

〈C[[ ] c1], c0〉plug → 〈C, c0 c1〉plug

〈C[v0 [ ]], c1〉plug → 〈C, c0 c1〉plug where c0 = ↑ v0

We now can define a total function plug over closures and contexts that fills the given
closure into the given context:

plug : Closure × Control → Closure

Definition E.1. For any closure c and context C, plug (C, c) = c′ if and only if 〈c, C〉plug →∗

c′.

E.1.3. Notion of contraction. The notion of reduction over applicative expressions is spec-
ified by the following context-insensitive contraction rules over actual redexes:

(Var) x[e] 7→ v if lookup(x, e) = v

(Beta) ((λx.t)[e]) v 7→ t[s′] where s′ = extend(x, v, e) = (x, v) · e

(Prop) (t0 t1)[e] 7→ (t0[e]) (t1[e])

For closed closures (i.e., closures with no free variables), all potential redexes are actual
ones.

We now can define by cases a total function contract that maps a redex to the corre-
sponding contractum:
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contract : PotRed → Closure

Definition E.2. For any potential redex r, contract (r) = c if and only if r 7→ c.

E.1.4. Decomposition. There are many ways to define a total function mapping a value
closure to itself and a non-value closure to a potential redex and a reduction context. In
our experience, the following definition is a convenient one. It is a state-transition system
with two intermediate states, 〈c, C〉dec/clos and 〈C, v〉dec/cont , an initial state 〈c, [ ]〉dec/clos

and two final states VAL (v) and DEC (r, C). If possible, the transition function from
the state 〈c, C〉dec/clos decomposes the given closure c and accumulates the corresponding
reduction context C. The transition function from the state 〈C, v〉dec/cont dispatches over
the given context.

〈x[e], C〉dec/clos → DEC (x[e], C)

〈(λx.t)[e], C〉dec/clos → 〈C, (λx.t)[e]〉dec/cont

〈(t0 t1)[e], C〉dec/clos → DEC ((t0 t1)[e], C)

〈c0 c1, C〉dec/clos → 〈c0, C[[ ] c1]〉dec/clos

〈[ ], v〉dec/cont → VAL (v)

〈C[[ ] c1], v0〉dec/cont → 〈c1, C[v0 [ ]]〉dec/clos

〈C[v0 [ ]], v1〉dec/cont → DEC (v0 v1, C)

We now can define a total function decompose over closures that maps a value closure
to itself and a non-value closure to a decomposition into a potential redex, a control context,
and a dump context. This total function uses two auxiliary functions decompose′clos and
decompose′cont:

decompose : Closure → Value + (PotRed × Context)
decompose′clos : Closure × Context → Value + (PotRed × Context)
decompose′cont : Context × Value → Value + (PotRed × Context)

Definition E.3. For any closure c, value v, and context C,

decompose′clos (c, C) =

{
VAL (v′) if 〈c, C〉dec/clos →

∗ VAL (v′)
DEC (r, C ′) if 〈c, C〉dec/clos →

∗ DEC (r, C ′)

decompose′cont (C, v) =

{
VAL (v′) if 〈C, v〉dec/cont →

∗ VAL (v′)
DEC (r, C ′) if 〈C, v〉dec/cont →

∗ DEC (r, C ′)

and decompose (c) = decompose′clos (c, [ ]).

E.1.5. One-step reduction. We are now in position to define a total function reduce over
closed closures that maps a value closure to itself and a non-value closure to the next closure
in the reduction sequence. This function is defined by composing the three functions above:

reduce (c) = case decompose (c)
of VAL (v) ⇒ ↑ v
| DEC (r, C) ⇒ plug (contract (r), C)
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The function reduce is partial because of contract, which is undefined for stuck closures.
Graphically:

◦
decompose

$$HH
HH

HH
HH

H
reduce // ◦

◦
contract

// ◦

plug
::vvvvvvvvv

Definition E.4 (One-step reduction). For any closure c, c → c′ if and only if reduce (c) = c′.

E.1.6. Reduction-based evaluation. Iterating reduce defines a reduction-based evaluation
function. The definition below uses decompose to distinguish between values and non-
values, and implements iteration (tail-) recursively with the partial function iterate:

evaluate (c) = iterate (decompose (c))

where

{
iterate (VAL (v)) = v
iterate (DEC (r, C)) = iterate (decompose (plug (contract (r), C)))

The function evaluate is partial because reducing a given closure might not converge.
Graphically:

◦
decompose

$$HH
HH

HH
HH

H
reduce // ◦

decompose

$$HH
HH

HH
HH

H
reduce // ◦

decompose

$$HH
HH

HH
HH

H

◦
contract

// ◦

plug
::vvvvvvvvv

◦
contract

// ◦

plug
::vvvvvvvvv

◦
contract

//

Definition E.5 (Reduction-based evaluation). For any closure c, c →∗ v if and only if
evaluate (c) = v.

To close, let us adjust the definition of evaluate by exploiting the fact that for any
closure c, plug (c, [ ]) = c:

evaluate (c) = iterate (decompose (plug (c, [ ])))

In this adjusted definition, decompose is always applied to the result of plug.

E.2. From the reduction semantics for applicative expressions to the CEK ma-

chine. Deforesting the intermediate terms in the reduction-based evaluation function of
Section E.1.6 yields a reduction-free evaluation function in the form of a small-step ab-
stract machine (Section E.2.1). We simplify this small-step abstract machine by fusing
a part of its driver loop with the contraction function (Section E.2.2) and compressing its
‘corridor’ transitions (Section E.2.3). Unfolding the recursive data type of closures precisely
yields the caller-save, stackless CEK machine of Section B.2 (Section E.2.4).
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E.2.1. Refocusing: from reduction-based to reduction-free evaluation. Following Danvy and
Nielsen [45], we deforest the intermediate closure in the reduction sequence by replacing the
composition of plug and decompose by a call to a composite function refocus:

evaluate (c) = iterate (refocus (c, [ ]))

where

{
iterate (VAL (v)) = v
iterate (DEC (r, C)) = iterate (refocus (contract (r), C))

and refocus is optimally defined as continuing the decomposition in the current reduction
context [45]:

refocus (c, C) = decompose′clos (c, C)

This evaluation function is reduction-free because it no longer constructs each intermediate
closure in the reduction sequence.

Graphically:

◦
decompose

$$HH
HH

HH
HH

H ◦
decompose

$$HH
HH

HH
HH

H ◦
decompose

$$HH
HH

HH
HH

H

//____ ◦
contract

// ◦

plug
::vvvvvvvvv

refocus
//________ ◦

contract
// ◦

plug
::vvvvvvvvv

refocus
//________ ◦

contract
//

Definition E.6 (Reduction-free evaluation). For any closure c, c →∗ v if and only if
evaluate (c) = v.

E.2.2. Lightweight fusion: making do without driver loop. In effect, iterate is as the ‘driver
loop’ of a small-step abstract machine that refocuses and contracts. Instead, let us fuse
contract and iterate and express the result with rewriting rules over a configuration 〈r, C〉iter.
We clone the rewriting rules for decompose′clos and decompose′cont into refocusing rules,
indexing their configurations as 〈c, C〉eval and 〈C, v〉cont instead of as 〈c, C〉dec/clos and
〈C, v〉dec/cont , respectively:

• instead of rewriting to VAL (v), the cloned rules rewrite to v;
• instead of rewriting to DEC (r, C), the cloned rules rewrite to 〈r, C〉iter.

The result reads as follows:
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〈x[e], C〉eval ⇒ 〈x[e], C〉iter

〈(λx.t)[e], C〉eval ⇒ 〈C, (λx.t)[e]〉cont

〈(t0 t1)[e], C〉eval ⇒ 〈(t0 t1)[e], C〉iter

〈c0 c1, C〉eval ⇒ 〈c0, C[[ ] c1]〉eval

〈[ ], v〉cont ⇒ v

〈C[[ ] c1], v0〉cont ⇒ 〈c1, C[v0 [ ]]〉eval

〈C[v0 [ ]], v1〉cont ⇒ 〈v0 v1, C〉iter

〈x[e], C〉iter ⇒ 〈v, C〉eval if lookup(x, e) = v
〈((λx.t)[e]) v, C〉iter ⇒ 〈t[e′], C〉eval where e′ = extend(x, v, e)

〈(t0 t1)[e], C〉iter ⇒ 〈(t0[e]) (t1[e]), C〉eval

The following proposition summarizes the situation:

Proposition E.7. For any closure c, evaluate (c) = v if and only if 〈c, [ ]〉eval ⇒
∗ v.

Proof: straightforward. The two machines operate in lockstep. �

E.2.3. Inlining and transition compression. The abstract machine of Section E.2.2, while
interesting in its own right (it is ‘staged’ in that the contraction rules are implemented
separately from the congruence rules [14,69]), is not minimal: a number of transitions yield
a configuration whose transition is uniquely determined. Let us carry out these hereditary,
“corridor” transitions once and for all:

• 〈x[e], C〉eval ⇒ 〈x[e], C〉iter ⇒ 〈v, C〉eval ⇒ 〈C, v〉cont if lookup(x, e) = v
• 〈(t0 t1)[e], C〉eval ⇒ 〈(t0 t1)[e], C〉iter ⇒ 〈(t0[e]) (t1[e]), C〉eval ⇒ 〈(t0[e]), C[[ ] (t1[e])]〉eval
• 〈C[((λx.t)[e]) [ ]], v〉cont ⇒ 〈((λx.t)[e]) v, C〉iter ⇒ 〈t[e′], C〉eval where e′ = extend(x, v, e)

The result reads as follows:

〈x[e], C〉eval ⇒ 〈C, v〉cont if lookup(x, e) = v

〈(λx.t)[e], C〉eval ⇒ 〈C, (λx.t)[e]〉cont

〈(t0 t1)[e], C〉eval ⇒ 〈(t0[e]), C[[ ] (t1[e])]〉eval

〈[ ], v〉cont ⇒ v

〈C[[ ] c1], v0〉cont ⇒ 〈c1, C[v0 [ ]]〉eval

〈C[((λx.t)[e]) [ ]], v〉cont ⇒ 〈t[e′], C〉eval where e′ = extend(x, v, e)

The configuration 〈r, C〉iter has disappeared and so is the case for c0 c1: they were only
transitory.

Proposition E.8. For any closure c, evaluate (c) = v if and only if 〈c, [ ]〉eval ⇒
∗ v.

Proof: immediate. We have merely compressed corridor transitions. �
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E.2.4. Opening closures: from explicit substitutions to terms and environments. The ab-
stract machine above solely operates on ground closures. If we open the closures t[e] into
pairs (t, e) and flatten the configuration 〈(t, e), C〉eval into a triple 〈t, e, C〉eval, we obtain an
abstract machine that coincides with the caller-save, stackless CEK machine of Section B.2.

E.3. Conclusion and perspectives. Appendix B illustrated the functional correspon-
dence between the functional implementation of a denotational or natural semantics and
of an abstract machine, the CEK machine, for the λ-calculus with left-to-right applicative
order. The present appendix illustrates the syntactic correspondence between the func-
tional implementation of a reduction semantics and of an abstract machine, again the CEK
machine, for the λ-calculus with left-to-right applicative order. Together, the functional
correspondence and the syntactic correspondence therefore demonstrate the natural fit of
the CEK machine in the semantic spectrum of the λ-calculus with explicit substitutions
and left-to-right applicative order.

References

[1] Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer Science,
111(1&2):3–57, 1992.

[2] Samson Abramsky and R. Sykes. SECD-M: a virtual machine for applicative programming. In Jean-
Pierre Jouannaud, editor, Functional Programming Languages and Computer Architecture, number 201
in Lecture Notes in Computer Science, pages 81–98, Nancy, France, September 1985. Springer-Verlag.

[3] Mads Sig Ager. Partial Evaluation of String Matchers & Constructions of Abstract Machines. PhD
thesis, BRICS PhD School, Department of Computer Science, Aarhus University, Aarhus, Denmark,
January 2006.

[4] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between evaluators and abstract machines. In Dale Miller, editor, Proceedings of the Fifth
ACM-SIGPLAN International Conference on Principles and Practice of Declarative Programming
(PPDP’03), pages 8–19, Uppsala, Sweden, August 2003. ACM Press.

[5] Mads Sig Ager, Olivier Danvy, and Mayer Goldberg. A symmetric approach to compilation and de-
compilation. In Torben Æ. Mogensen, David A. Schmidt, and I. Hal Sudborough, editors, The Essence
of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones, number
2566 in Lecture Notes in Computer Science, pages 296–331. Springer-Verlag, 2002.

[6] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence between call-by-need
evaluators and lazy abstract machines. Information Processing Letters, 90(5):223–232, 2004. Extended
version available as the research report BRICS RS-04-3.

[7] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence between monadic eval-
uators and abstract machines for languages with computational effects. Theoretical Computer Science,
342(1):149–172, 2005. Extended version available as the research report BRICS RS-04-28.

[8] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques and Tools. World
Student Series. Addison-Wesley, Reading, Massachusetts, 1986.

[9] Anindya Banerjee. The Semantics and Implementation of Bindings in Higher-Order Programming
Languages. PhD thesis, Department of Computing and Information Sciences, Kansas State University,
Manhattan, Kansas, July 1995.

[10] Fred Bayer. LispMe: An implementation of Scheme for the PalmPilot. In Manuel Serrano, editor, Pro-
ceedings of the Second ACM SIGPLAN Workshop on Scheme and Functional Programming, Firenze,
Italy, September 2001.

[11] Gavin Bierman. Observations on a linear PCF. Technical Report 412, Computer Laboratory, University
of Cambridge, Cambridge, UK, January 1997.

[12] Ma lgorzata Biernacka. A Derivational Approach to the Operational Semantics of Functional Languages.
PhD thesis, BRICS PhD School, Department of Computer Science, Aarhus University, Aarhus, Den-
mark, January 2006.



62

[13] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational foundation for delimited
continuations in the CPS hierarchy. Logical Methods in Computer Science, 1(2:5):1–39, November
2005. A preliminary version was presented at the Fourth ACM SIGPLAN Workshop on Continuations
(CW’04).

[14] Ma lgorzata Biernacka and Olivier Danvy. A concrete framework for environment machines. ACM
Transactions on Computational Logic, 9(1):1–30, 2007. Article #6. Extended version available as the
research report BRICS RS-06-3.

[15] Ma lgorzata Biernacka and Olivier Danvy. A syntactic correspondence between context-sensitive cal-
culi and abstract machines. Theoretical Computer Science, 375(1-3):76–108, 2007. Extended version
available as the research report BRICS RS-06-18.

[16] Dariusz Biernacki. The Theory and Practice of Programming Languages with Delimited Continua-
tions. PhD thesis, BRICS PhD School, Department of Computer Science, Aarhus University, Aarhus,
Denmark, December 2005.

[17] Dariusz Biernacki and Olivier Danvy. From interpreter to logic engine by defunctionalization. In Mau-
rice Bruynooghe, editor, Logic Based Program Synthesis and Transformation, 13th International Sym-
posium, LOPSTR 2003, number 3018 in Lecture Notes in Computer Science, pages 143–159, Uppsala,
Sweden, August 2003. Springer-Verlag.

[18] Dariusz Biernacki and Olivier Danvy. A simple proof of a folklore theorem about delimited control.
Journal of Functional Programming, 16(3):269–280, 2006.

[19] Graham Birtwistle and Brian T. Graham. Verifying SECD in HOL. In Jørgen Staunstrup, editor,
Formal Methods for VLSI Design, pages 129–177. North-Holland, 1990.

[20] Guy Blelloch and John Greiner. Parallelism in sequential functional languages. In Simon Peyton Jones,
editor, Proceedings of the Seventh ACM Conference on Functional Programming and Computer Archi-
tecture, pages 226–237, La Jolla, California, June 1995. ACM Press.

[21] William H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.
[22] Rod M. Burstall. Writing search algorithms in functional form. In Donald Michie, editor, Machine

Intelligence, volume 5, pages 373–385. Edinburgh University Press, 1969.
[23] Luca Cardelli. The functional abstract machine. Polymorphism, 1(1), January 1983.
[24] Robert (Corky) Cartwright, editor. Proceedings of the 1988 ACM Conference on Lisp and Functional

Programming, Snowbird, Utah, July 1988. ACM Press.
[25] Jaeyoun Chung. An explicit polymorphic type system for verifying untrusted low-level codes. Mas-

ter’s thesis, Department of Computer Science, Korea Advanced Institute of Science and Technology,
Daejeon, Korea, December 1999.

[26] Anthony Neil Clark. Semantic Primitives for Object-Oriented Programming Languages. PhD thesis,
Department of Computer Science, Queen Mary and Westfield College, University of London, 1996.

[27] John Clements. Portable and High-Level Access to the Stack with Continuation Marks. PhD thesis,
College of Computer Science, Northeastern University, Boston, Massachusetts, February 2006.

[28] John Clements, Ayswarya Sundaram, and David Herman. Implementing continuation marks in
JavaScript. In Will Clinger, editor, Proceedings of the 2008 ACM SIGPLAN Workshop on Scheme
and Functional Programming, pages 1–9, Victoria, British Columbia, September 2008.

[29] William Clinger, Daniel P. Friedman, and Mitchell Wand. A scheme for a higher-level semantic alge-
bra. In John Reynolds and Maurice Nivat, editors, Algebraic Methods in Semantics, pages 237–250.
Cambridge University Press, 1985.

[30] William D. Clinger. Proper tail recursion and space efficiency. In Keith D. Cooper, editor, Proceedings
of the ACM SIGPLAN’98 Conference on Programming Languages Design and Implementation, pages
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