
Logical Methods in Computer Science
Vol. 9(3:29)2013, pp. 1–12
www.lmcs-online.org

Submitted Oct. 24, 2012
Published Sep. 30, 2013

ALTERNATING TURING MACHINES FOR INDUCTIVE LANGUAGES

DANIEL LEIVANT

Indiana University
e-mail address: leivant@indiana.edu

ABSTRACT. We show that alternating Turing machines, with a novel and natural definition of accep-
tance, accept precisely the inductive (Π

1

1) languages. Total alternating machines, that either accept
or reject each input, accept precisely the hyper-elementary (∆1

1) languages. Moreover, bounding the
permissible number of alternations yields a characterization of the levels of the arithmetical hierar-
chy. Notably, these results use simple finite computing devices, with finitary and discrete operational
semantics, and neither the results nor their proofs make anyuse of transfinite ordinals.

Our characterizations elucidate the analogy between the polynomial-time hierarchy and the arith-
metical hierarchy, as well as between their respective limits, namely polynomial-space andΠ1

1.

1. INTRODUCTION

Inductive definitions via first-order positive operators constitute a broad computation paradigm. A
fundamental result of computation theory, formulated in various guises over the last century, identi-
fies the languages obtained by such definitions with those explicitly definable byΠ1

1 formulas, that
is where second order quantification, over functions or relations, is restricted to positive occurrences
of ∀. This central link was first discovered by Suslin in 1916 for sets of real numbers [16]. Kleene
independently rediscovered the correspondence for sets ofnatural numbers (and so for languages)
[6, 5]. Spector formulated the basic notions more explicitly [15], and Moschovakis, Barwise, and
Gandy established the characterization for near-arbitrary countable first-order structures in 1971.
This characterization ofΠ1

1 in terms of inductive definability endows it with many of the structural
properties of the computably enumerable (RE) sets, and suggests an analogy between computability
based on finite processes, captured byΣ0

1, and a generalized form of computability based on infinite
processes.

Our aim here is to capture the full power of inductive definability by a novel and natural defi-
nition of acceptance for alternating Turing machines. Thisis unrelated to notions of “infinite-time
computations” that have been investigated repeatedly overthe decades.

Alternation in computational and definitional processes isan idea that has appeared and reap-
peared in various guises over the last 50 odd years. Kleene’sdefinition of the arithmetical hierarchy

2012 ACM CCS:[Theory of computation]: Turing machines; Complexity classes; Higher order logic.
2010 Mathematics Subject Classification:03D10,03D60,03D70.
Key words and phrases:Alternating Turing machines, inductive and hyper-elementary languages, arithmetical hier-

archy, polynomial-time hierarchy.
This research was also supported by LORIA Nancy and Université Paris-Diderot.

LOGICAL METHODS
lIN COMPUTER SCIENCE DOI:10.2168/LMCS-9(3:29)2013

c© D. Leivant
CC© Creative Commons

http://creativecommons.org/about/licenses

2 D. LEIVANT

in terms of quantifier alternation was an early manifestation, extended by Kleene, Spector, Gandy
and others to the transfinite hyper-arithmetical hierarchy[14, 1]. An explicit link with alternation
was discovered by Moschovakis [13, 12, 7], who characterized the inductive sets by a game quanti-
fier [12, Theorem 5C2]. Harel and Kozen [3] showed how this characterization can be expressed in
terms of an idealized programming language with random existential and universal assignments.

Alternating control made an entry into Computation Theory with the definition, by Chandra,
Kozen and Stockmeyer, of alternating Turing machines [2], where existential and universal variants
of non-determinism mesh. A state declared existential accepts when some child-configuration ac-
cepts, whereas a universal state accepts if all child-configurations accept. A computation can thus
alternate between existential and universal phases. The striking result of [2], which has become a
classic and has made its way into numerous textbooks, is thatalternating Turing machines eluci-
date a powerful and elegant interplay between time and spacecomplexity. Namely, for reasonable
functionsf the languages accepted by alternating Turing machines in timeO(f) are precisely the
languages accepted by deterministic machines in spaceO(f), and the languages accepted by al-
ternating machines in spaceO(f) are those accepted by deterministic machines in time2O(f). In
particular, alternating polynomial time is precisely polynomial space. Moreover, when only fewer
thank alternations are allowed, one obtains thek’th level of the polynomial time hierarchy.

We establish here a formal parallel between the logical and the complexity-theoretic develop-
ments of alternation. Our point of departure is a simple and natural modification of the definition of
acceptance by an alternating Turing machine, where acceptance by a universal configurationc will
now refer to all configurations that end the universal computation-phase spawned byc, rather than
just to the immediate children ofc. We prove that a language is accepted by such a machine iff it
is inductive (Π1

1). Moreover, when up tok alternations are allowed, we obtain thek’th levels of the
arithmetical hierarchy. Also, if a languageL is accepted by a machine which is total, in the sense
that every input is either accepted or rejected, thenL is hyper-arithmetical (∆1

1).
Note that our machines are no different from traditional alternating Turing machines: the differ-

ence lies only in the definition of acceptance. In particular, no infinitary rules, such as game quan-
tifiers or random assignments, are used. We thus obtain here adirect correspondence betweenΠ1

1

and polynomial space, and between the arithmetical hierarchy and the polynomial-time hierarchy.
The two sides of this correspondence are characterized by the same alternating Turing machines,
but with a global (potentially infinitary) definition of acceptance for the former, and a local one for
the latter.

The author is grateful to Yiannis Moschovakis for importantcomments on an early draft of this
paper.

2. GLOBAL SEMANTICS FOR ALTERNATING COMPUTATIONS

2.1. Alternating Turing machines. The following will be used as reserved symbols, which we
posit to occur only when explicitly referred to:⊔ for the blank symbol,+ for the cursor-forward
command, and− for cursor-backward. We consider primarily single-tape machines. Given a finite
alphabetΣ, analternating Turing machine (ATM) overΣ is a deviceM consisting of

(1) Disjoint finite setsE (existential states) andU (universal states). Elements ofQ = E ∪ U are
thestates.

(2) An elements0 ∈ Q, dubbed thestart state.
(3) A finite alphabetΓ ⊇ Σ ∪ {⊔} (themachine alphabet).

ALTERNATION AND PI-1-1 3

(4) A relationδ ⊆ (Q × Γ) × (A × Q), whereA = Γ ∪ {−,+} is the set ofactions.1 δ may
be construed as a multi-valued function, with domainQ× Γ and co-domainA ×Q. We write

q
γ(a)

−−−−→
M

q′ for (q, γ, a, q′) ∈ δ, and omit the subscriptM when in no danger of confusion.

A configuration (cfg)(of M) is a tuple(q, u, γ, v) with q ∈ Q, u, v ∈ Γ∗, andγ ∈ Γ. A cfg is said
to beexistentialor universalaccording to the state therein. The definition of a yield relation c ⇒ c′

between configurations is defined as usual; that is, it is generated inductively by the conditions:2

• If q
γ(+)

−−−−→
M

q′ then (q, u, γ, τv) ⇒ (q′, uγ, τ , v) and (q, u, γ, ε) ⇒ (q′, uγ, ⊔, ε);3

• If q
γ(−)

−−−−→
M

q′ then (q, uτ , γ, v) ⇒ (q′, u, τ , γv) and (q, ε, γ, v) ⇒ (q′, ε, γ, v) (i.e.

the cursor does not move); and

• If q
γ(τ)

−−−−→
M

q′ then (q, u, γ, v) ⇒ (q′, u, τ , v).

Following [8] we dispense here with accepting and rejectingstates: when no transition applies
to a universal cfg then it has no children, and so the condition for acceptance is satisfied vacuously.
Dually, a dead-end existential cfg is rejecting. For brevity we also write configurations(q, u, γ, v)
as a pairs(q, w), where the understanding is thatw is a “cursored string”uγv.

2.2. Acceptance and rejection.Thecomputation tree ofM for cfg c is a finitely-branching (but
potentially infinite) treeTM (c) of cfg-occurrences〈α, c〉, α being the node-address andc the cfg,
where the children of〈α, c〉 are〈iα, ci〉 with ci the i-th cfg c′ such thatc ⇒ c′ (under some fixed
ordering of the transition rules ofδ).

We write c−→
∃

c′ whenc ⇒ c′ andc is existential,c−→→
∃

c′ if c−→
∃

∗c′ andc′ is universal. (As

usual,−→
∃

∗ is the reflexive and transitive closure of−→
∃

.) In other words, the universal cfgc′ can

be reached from the cfgc by successive applications of the yield relation⇒, where all intermediate
states are existential.

The definitions ofc−→
∀

c′ andc−→→
∀

c′ are similar. We call a cfgc′ as above, for either−→→
∃

or

−→→
∀

, analternation-pivot (forc).

The setACof accepted configurationsis generated inductively by the following closure condi-
tions:

(1) If c is existential andc′ ∈ AC for somec′ such thatc−→→
∃

c′, thenc ∈ AC.

(2) If c is universal andc′ ∈ AC for all c′ such thatc−→→
∀

c′, thenc ∈ AC.

If S is any set of configurations, we writeCC[S] for the conjunction of the conditions above forS.
That is,

(1) If c is existential andc′ ∈ S for somec′ such thatc−→→
∃

c′, thenc ∈ S.

(2) If c is universal andc′ ∈ S for all c′ such thatc−→→
∀

c′, thenc ∈ S.

Thus,AC is generated by the closure conditionsCC[AC]. Note thatCC[S] is aΠ0
2 formula. For

instance, (2) can be expressed as

∀ cfg c ((∀ traces witnessing a relationc−→→
∀

c′) c′ ∈ S) → c ∈ S

1We follow here the convention whereby Turing machines either move their cursor or overwrite it, but not both.
2Note that inductive definitions posit implicitly an exclusivity condition, so the “only if” direction is not needed.
3We writeε for the empty string.

4 D. LEIVANT

Thus, the setACof accepted configurations is explicitly definable as the setof configurationsc
satisfying theΠ1

1 formula
∀S (CC[S] → c ∈ S)

Similarly, the setRCof rejected configurationsis generated inductively by closure conditions dual
to the ones above:

(1) If c is existential andc′ ∈ RC for all c′ such thatc−→→
∃

c′, thenc ∈ RC.

(2) If c is universal andc′ ∈ RC for somec′ such thatc−→→
∀

c′, thenc ∈ RC.

Again,RC is explicitly definable by aΠ1
1 formula.

We say that a state isdead-endif no transition rule applies to it. A universal dead-end state is
anaccept-state, and an existential dead-end state areject-state.

The initial configuration of the machineM for input w is 〈s0, ε, ⊔, w〉. M accepts an input
stringw if the initial cfg forw is in the setACof accepted configurations, as defined above. Dually,
M rejectsw if that cfg is inRC. For example, ifM has only universal states, then no computation
tree can have an alternation-pivot, and so everyw is accepted. The computation tree forw may well
have leaves, that is dead-end configurations, but since herethese are all universal configurations
with no children, they are accepted. Dually, ifM has only existential states, then no input can
be accepted. These examples are merely consequences of our choice to represent acceptance and
rejection by dead-end universal and existential configurations, respectively. For example, a usual
non-deterministic Turing machine can be obtained simply byconsidering each accept-state as a
universal state with no applicable transition rule.

The language accepted by an ATMM is

L(M) = {w ∈ Σ∗ | M acceptsw}

and thelanguage rejected byM is

L̄(M) = {w ∈ Σ∗ | M rejectsw}

It is easy to see thatL(M) ∩ L̄(M) = ∅. Our definitions of acceptance and rejection of configu-
rations conform to the local closure conditions of acceptance (and rejection) of usual ATMs, as we
point out in the next Proposition. However, those conditions cannot be used todefineacceptance
and rejection, because we allow infinite computation trees.

Proposition 2.1. LetM be an ATM,T a computation tree ofM for inputw. If c is a cfg in the tree,
with childrenc1 . . . cm, then

(1) If c is existential, thenc is accepted iff someci is accepted, andc is rejected iff allci’s are
rejected.

(2) If c is universal, thenc is accepted iff allci’s are accepted, andc is rejected iff someci is
rejected.

Proof. Let c be existential. Ifc is an accepted cfg, i.e.c−→→
∃

c′ for some accept-statec′, thenci−→→
∃

∗c′

for someci, sincec itself is existential. If thatci is existential, then it is accepted, by definition; and
if it is not, thenci = c′, which is accepted by assumption.

Conversely, suppose that someci is accepted. Ifci is universal, thenc−→→
∃

c′, and soc is ac-

cepted, by definition of acceptance. Ifci is existential, then there must be an acceptedc′ such that
ci−→→

∃

∗c′; but thenc−→→
∃

∗c′, soc is accepted.

Other cases are proved similarly.

ALTERNATION AND PI-1-1 5

2.3. Divergence and totality. An ATM may well neither accept nor reject an input stringw. For
example, if the computation tree ofM for a given inputw has infinitely many alternation-pivots
along each computation-trace (a situation that we can engineer fairly easily), thenM neither accepts
nor rejects that input. Indeed, the empty set satisfies the closure conditions for acceptance ofw, as
well as the closure conditions for rejection.

We say that an ATMM is total if every input is either accepted or rejected byM . Let us identify
a simple condition that guarantees totality. We say that a computation tree isalternation well-
foundedif no branch has infinitely many alternation-pivots. An ATM is alternation well-foundedif
all its computations are alternation well-founded.

Proposition 2.2. If an ATM is alternation well-founded then it is total.

Proof. We prove the contra-positive: if a cfgc is neither accepted nor rejected, then the computation
treeT that it spawns has a branch with infinitely many alternation-pivots.

Supposec is universal. Sincec is not accepted, we must havec−→→
∀

c′ for some alternation-

pivot c′ which is not accepted. And sincec is also not rejected, all of its alternation-pivots, and
in particularc′, are not rejected. Ifc is existential, a dual argument shows thatc−→→

∀

c′ for some

alternation-pivotc′ which is neither accepted nor rejected.
Iterating the argument we obtain a branch with an infinite sequencec0 = c, c1 = c′, . . . of

successive alternation-pivots, all of which are neither accepted nor rejected.

The converse of Proposition 2.2 fails. Indeed, it is easy to construct a total ATM that is not al-
ternation well-founded, by inserting innocuous computation traces with infinitely many alternation-
pivots, with no impact on the acceptance or rejection of the input. See the proof of Proposition 2.4
below.

2.4. Duality and one-sidedness.Thedual of an ATMM is the machineM̄ whose transition rela-
tion is that ofM , but with the sets of universal and existential states interchanged, that is withM ’s
setsU andE as the sets of existential and universal states, respectively.

Directly from the definitions we have

Proposition 2.3. LetM̄ be the dual ofM . ThenL(M̄) = L̄(M), whence alsōL(M̄) = L(M).

A machineM is one-sidedif it either has no accepted configurations, or no rejected configura-
tions.

Proposition 2.4. For every machineM there are one-sided machinesM+ and M− such that
L(M) = L(M+), andL̄(M) = L̄(M−).

Proof. The proof is analogous to the conversion of a deterministic TM to a TM that diverges for any
input it does not accept.

Let M+ be obtained fromM by expanding its transition relation as follows. Using auxiliary
states and transitions, we add for every existential state atransition into an auxiliary universal state
that starts an infinite trace (using auxiliary states) of alternation-pivots. That is, we create a fresh
alternation-pivot following each existential cfg, where that alternation-pivot is neither accepted nor
rejected. Each state accepted inM is accepted inM+, because no existential configuration is
loosing any pivot by the modification. And if a state is accepted inM+, then it is accepted inM ,
because the setA of configurations ofM+ that consists just of the accepting configurations ofM

satisfies the closure conditionsAC for M+, and therefore contains the set of configurations accepted
by M+ (which is the minimal such set).

6 D. LEIVANT

But M+ has no rejected configurations: existential configurationscannot be rejected because
they have an alternation-pivot, namely the one introduced by the definition ofM+, which is not
rejected. And then universal configurations cannot be rejected, because all their alternation-pivots,
which are existential, are non-rejected.

The construction ofM− is dual.

2.5. The Arithmetical Hierarchy. We say that an ATMM is Σk if its initial state is existential,
and for everyw ∈ Σ∗, all branches of the computation-tree forw have≤ k alternation-pivots. The
definition ofΠk machines is similar, but with a universal initial state. Here again we posit that the
existential states ofΠ1 machines have no applicable transition rules.

Theorem 2.5. Letk ≥ 1. A language isΣ0
k (Π0

k) iff it is accepted by aΣk (Πk, respectively) ATM.

Proof. The proof is by induction onk. For the base caseΣ0
1, let L be a language defined by aΣ0

1

formula, that is
L = {x ∈ Σ∗ | ϕ[x]}

where
ϕ[x] ≡ ∃w1, . . . , wr ϕ0[~w, x]

with ϕ0 a bounded formula, i.e. with all quantifiers bounded (under the substring relation). Define
a Σ1 machineM that acceptsL, as follows. M branches existentially to choose a stringw =
w1# · · ·#wr, then proceeds to check deterministically thatϕ0[w1 . . . wr]. (We classify the states
for that deterministic process to be universal, so that dead-end states are accepted.)

For the converse, note first that in aΣ1 computation tree the universal configuration are all
accepted, since they have no pivots. So acceptance by a aΣ1 machineM is definable by theΣ0

1

formula that states, for inputw, the existence of a finite tree of configurations, related by the rules
of M , with the initial configuration forw as root, of which the internal nodes are existential and the
leaves are universal.

For the base caseΠ0
1, supposeL is defined by aΠ0

1 formula

ϕ[x] ≡ ∀w1 . . . wr ϕ0[w1, . . . , wr, x]

Define aΠ1 machineM that acceptsL, as follows.M generates stringsw1# · · ·#wr in successive
lexicographic order. After each such choiceM branches universally to the next string as well as to
a deterministic module that acceptsx iff ϕ0[~w, x] for the current value ofw1# · · ·#wr.

Conversely, ifL = L(M) whereM is anΠ1 machine, thenL is definable by a formula that
states that for all (finite) computation traces, the trace’slast configuration is not existential (i.e.
rejected).

The induction step generalizes the induction basis: The properties above are proved for level
k+1 of the Arithmetical Hierarchy by referring to sub-computations at levelk, rather than to deter-
ministic sub-computations.

3. ALTERNATION AND INDUCTIVE LANGUAGES

3.1. Accepted languages are inductive.Fix an alphabetΣ. Consider formulas over the vocabulary
(i.e. similarity type) with an identifier for each letter inΣ as well as for the empty-string, a binary
function-identifier for concatenation, and a binary relation for the substring relation.

Proposition 3.1. The following conditions are equivalent for a languageL ⊆ Σ∗.

ALTERNATION AND PI-1-1 7

I1: L is defined by a formula of the form∀f ϕ[w, f], whereϕ is first-order andf ranges over
Σ∗ → Σ∗.

I2: L is defined by a formula of the form∀f ∃x ϕ0[w, f, x], whereϕ0 is a bounded formula, i.e.
with each quantifier restricted to substrings of some string.

I3: L is defined by a formula of the form∀f ∃x ϕ0[w, f̄(x), x], wheref̄(x) abbreviates the string
f(0)# · · ·#f(|x|) (with # a fresh symbol, used as a textual separator).

I4: L is defined by a formula of the form∀S ∃x ∀y ϕ0[w, f, x, y], whereS ranges over subsets of
Σ∗.

Proof. I1 implies I2 by the Kuratowski-Tarski algorithm [11]. I2 implies I3 by the boundedness of
ϕ0. I1 implies I4 by an interpretation of functions by relations (and hence sets, since we are talking
about languages), and I3 and I4 each implies I1 trivially.

Note that the use of a set quantifier in I4 necessitates an alternation of first-order quantifiers,
which is not needed in I1. This is essential: without the presence of the first-order universal quanti-
fier ∀y we get Kreisel’sstrict-Π1

1 formulas, which are no more expressive thanΣ0
1 [9, 10].

A languageL ⊆ Σ∗ is inductive(Π1
1) when it satisfies the equivalent conditions of Proposition

3.1 (see e.g. [4]).
Recall that our definition above of acceptance by an ATM refers to the setAC of accepted

configurations, which isΠ1
1 definable. We therefore have:

Proposition 3.2. Every language accepted by an ATM is inductive.

3.2. Inductive languages are accepted.

Proposition 3.3. Every inductive language is accepted by an ATM.

Proof. We refer to characterization (I3) ofΠ1
1 languages. As usual,Σn stands for the set of strings

overΣ of lengthn. LetL be a language defined by

∀f∃x ϕ0[w, f̄(x), x]

which we write momentarily as

∀f ∃x ϕ0[w, z0# · · ·#zn, x]

wheren = |x| andzi = f(i). This is equivalent to the following infinite formula (where, as usual,
Σn is the set of strings of lengthn).

ϕ0[w, ε, ε]
∨ ∀z0 (∃x ∈ Σ1 ϕ0[w, z0, x])

∨ ∀z1 (∃x ∈ Σ2 ϕ0[w, z0 # z1, x])
∨ ∀z2 (∃x ∈ Σ3 ϕ0[w, z0 # z1# z2, x])

∨ ∀z3 (∃x ∈ Σ4 ϕ0[w, z0 # z1# z2 # z3, x])
∨ · · ·

(3.1)

We use here infinitary formulas for informal expository purpose; compare [12, 13].
Formula (3.1) is captured by an ATM which, on inputw,

(1) checks deterministicallyϕ0[w, ε, ε]; if this fails,
(2) chooses by universal nondeterminism a valuez0;4

4Recall from the introduction that such a choice, for our finitely-branching machine, involves a computation tree with
an infinite branch.

8 D. LEIVANT

(3) for each such choice forz0, branches by existential nondeterminism to
(a) guess (by existential nondeterminism) anx ∈ Σ, then check (deterministically)ϕ0[w, z0, x];

if this fails
(b) choose by universal nondeterminism az1;
(c) etc.

Combining Propositions 3.2 and 3.3 we conclude:

Theorem 3.4.L is inductive iff it is accepted by an ATM.

4. TOTAL MACHINES AND HYPER-ARITHMETICAL LANGUAGES

A basic result of computation theory is the characterization of decidable languages in terms of
semi-decidability:

Theorem 4.1. A languageL ⊆ Σ∗ is accepted by a Turing machine that terminates for all inputiff
bothL and its complement are accepted by a Turing machine.

The analog of Theorem 4.1 is

Theorem 4.2. A languageL ⊆ Σ∗ is accepted by a total ATM iff bothL and its complement
L̄ = Σ∗ − L are accepted by an ATM.

The forward implication of the Theorem is easy: If a languageL is accepted by a total ATM
M then the dual machinēM accepts̄L, by by Proposition 2.3.

Towards proving below the converse implication, assume that L = L(M0) andL̄ = L(N). By
Proposition 2.4 we may assume that neither machine has rejected configurations. Thus̄L is rejected
by the machineM1 = N̄ , which has no accepted cfg. We wish to construct out ofM0 andM1 a
total machineM that acceptsL and rejects̄L. A naive emulation of the standard proof of Theorem
4.1 would swap control betweenM0 andM1 after each computation step. That is,M is defined as
a two-tape machine, whose states are tuples〈q0, q1, j〉, with qi a state ofMi, and wherej ∈ {0, 1}
indicates which machine is to make a move. The type of〈q0, q1, j〉 (existential or universal) is the
type ofqj. SinceM1 has no accepted cfg, a cfgc of M would be accepted when itsM0 component
is accepted byM0; and sinceM0 has no rejected configurations,c would be rejected inM if its M1

component is rejected byM1.
However, the construction above does not work for our ATMs, due to the global definition

of acceptance. Consider a universal cfgc0 of M0, which is accepted inM0 because it has no
pivots. Whenc0 is coupled inM with a universal cfgc1 of M1, the combined cfg may spawn a
computation tree with pivots ofM1, whoseM0-component is not accepted inM0. The combined
cfg is not accepted then inM , even thoughc0 is accepted inM0.

We consider instead a merge ofM0 andM1 where control swap from a universal phase ofM0

toM1 is delayed until that phase has ended, and dually for an existential phase ofM1.
Note that for simple Turing machines (deterministic or nondeterministic) phases coincide with

computation steps, since no universal configurations are present.
More precisely, we posit, without loss of generality, thatM0 andM1 are single-tape ATM’s

over a common input alphabetΣ, and using a common extended alphabetΓ ⊂ Σ ∪ {⊔}. The
combined machineM is then defined as follows.

• M is a two-tape ATM, whose states of interest are tuples〈q0, q1, j〉, with qi a state ofMi, (i =
0, 1). The type of〈q0, q1, j〉 (existential or universal) is the type ofqj (in Mj).

ALTERNATION AND PI-1-1 9

• In addition,M has auxiliary states and (deterministic) transitions thatpre-process its computation
by copying the input into the second tape, reinitializing the cursor positions, and passing control
to a state〈s0, s1, 0〉, wheresi is the initial state ofMi.

• Forγ, δ ∈ Γ, α ∈ {+,−} ∪ Γ,

if q0
γ(α)
−→ p0 is a rule ofM0 then

– If both q0 andp0 are universal, then

〈q0, q1, 0〉
γ,δ(α,δ)
−−−−−→ 〈p0, q1, 0〉

i.e. on readingγ on the first tape, andδ on the second,M performs actionα on component 0
of the cfg, actionδ (i.e. no-op) on component 1, and leaves control to component0.

– Otherwise, i.e. if at least one ofq0, p0 is existential, then

〈q0, q1, 0〉
γ,δ(α,δ)
−−−−−→ 〈p0, q1, 1〉

• If q1
γ(α)
−→ p1 is a rule ofM1, then

– If both q1 andp1 are existential, then

〈q0, q1, 1〉
γ,δ(α,δ)
−−−−−→ 〈q0, p1, 1〉

– Otherwise, i.e. if at least one ofq1, p1 is universal, then

〈q0, q1, 1〉
γ,δ(α,δ)
−−−−−→ 〈q0, p1, 0〉

Proposition 4.3. Assume that no string is both accepted byM0 and rejected byM1. ThenM
accepts every string accepted byM0.

Proof. We prove that ifM0 accepts a cfg(q0, u0) then, for every non-rejected cfg(q1, u1) of M1,
M accepts(〈q0, q1, 0〉, 〈u0, u1〉). If M0 acceptsu, then (by assumption)M1 does not reject it, and
so the Proposition follows by considering the cfg(〈, s0, s1, 0〉, 〈u, u〉).

Define the setA of M0-configurations by

A = {(q0, u0) | (〈q0, q1, 0〉, 〈u0, u1〉) is accepted inM
for all non-rejected configurations(q1, u1) of M1 }

We show thatA satisfies the closure conditions defining the set of configurations accepted byM0.

• The existential closure condition:Suppose that(q0, u0)−→→
∃

(p0, w0), where(p0, w0) ∈ A, and

the reduction sequence is of lengthn ≥ 1.5 We prove that(q0, u0) ∈ A by induction onn.
Let (q0, u0)−→

∃

(r0, v0)−→→
∃

(p0, w0). Note, first, that we must have(r0, v0) ∈ A: if n = 1 then

(r0, v0) = (p0, w0) ∈ A, and ifn > 1 then(r0, v0) ∈ A by IH.
Towards proving that(q0, u0) ∈ A let (q1, u1) be a non-rejected cfg ofM1. We have

(〈q0, q1, 0〉, 〈u0, u1〉) −→
∃

(〈r0, q1, 1〉, 〈v0, u1〉)

We show that(〈r0, q1, 1〉, 〈v0, u1〉) is accepted inM , whence so is(〈q0, q1, 0〉, 〈u0, u1〉).
We have the following cases.

– q1 is universal. EachM1-cfg (r1, v1) such that(q1, u1)−→
∀

(r1, v1) must be non-rejected, since

(q1, u1) is non-rejected. We have

(〈r0, q1, 1〉, 〈v0, u1〉) −→
∀

(〈r0, r1, 0〉, 〈v0, v1〉)

5
n = 0 is excluded, since by definition of−→→

∃
the stateq0 is existential andp0 is universal.

10 D. LEIVANT

and the latter cfg is accepted, since(r0, v0) ∈ A and(r1, v1) is non-rejected. It follows that
(〈r0, q1, 1〉, 〈v0, u1〉) is accepted inM .

– q1 is existential. Since(q1, u1) is non-rejected, it follows that(q1, u1)−→→
∃

(r1, v1) for some

non-rejected cfg(r1, v1) of M1. By definition ofM , we have

(〈r0, q1, 1〉, 〈v0, u1〉) −→→
∃

(〈r0, r1, 0〉, 〈v0, v1〉)

The latter cfg is accepted, since(r0, v0) ∈ A, and (r1, v1) is non-rejected. It follows that
(〈r0, q1, 1〉, 〈v0, u1〉) is accepted inM .
We have thus shown that if(q0, u0)−→→

∃

(p0, w0), where(p0, w0) ∈ A, then(q0, u0) ∈ A.

• The universal closure condition: Suppose that for all(p0, w0), if (q0, u0)−→→
∀

(p0, w0) then

(p0, w0) ∈ A. Towards showing that(q0, u0) ∈ A, let (q1, u1) be a non-rejected cfg ofM1.
By definition of M , if (〈q0, q1, 0〉, 〈u0, u1〉) −→→

∀

C, whereC is a cfg ofM , thenC =

(〈p0, q1, 1〉, 〈w0, u1〉), where(q0, u0)−→→
∀

(p0, w0).

We show that(〈p0, q1, 1〉, 〈w0, u1〉) is accepted inM for each such(p0, w0), implying that
(〈q0, q1, 0〉, 〈u0, u1〉) is accepted.

We have the following cases.
– q1 is universal. Suppose(q1, u1)−→

∀

(p1, v1). Then

(〈p0, q1, 1〉, 〈w0, u1〉) −→
∀

(〈p0, p1, 0〉, 〈w0, v1〉)

The cfg(p1, v1) must be non-rejected, since(q1, u1) is non-rejected. Since(p0, w0) ∈ A, it
follows that(〈p0, p1, 0〉, 〈w0, v1〉) is accepted. This being the case for every(p1, v1) as above,
we conclude that(〈p0, q1, 1〉, 〈w0, u1〉) is accepted.

– q1 is existential. Since(q1, u1) is non-rejected, it follows that(q1, u1)−→→
∃

(p1, v1) for some

non-rejected configuration(p1, v1) of M1. By definition ofM , we have

(〈p0, q1, 1〉, 〈w0, u1〉) −→→
∃

(〈p0, p1, 0〉, 〈w0, v1〉)

The latter configuration is accepted inM , since(p0, w0) ∈ A and(p1, v1) is non-rejected. It
follows that(〈p0, q1, 1〉, 〈w0, u1〉) is also accepted,

We have thus shown that if(p0, w0) ∈ A whenever (q0, u0)−→→
∀

(p0, w0), then(q0, u0) ∈ A, that

isA satisfies the universal closure condition for acceptance inM0.

SinceA satisfies both the existential and the universal closure conditions for acceptance inM0, it
follows thatA contains every accepting cfg ofM0, proving the Proposition.

Proof of Theorem 4.2 — Concluded.We have noted already the forward implication. We show
that ifL andL̄ are accepted by ATM’s, thenL is accepted by a total ATM.

LetL = L(M0) andL̄ = L(N), and refer to the machinesM1 andM of the discussion above.
By Proposition 4.3,M accepts every string accepted byM0.

An argument dual to that in the proof of Proposition 4.3 showsthat M rejects every cfg
(〈q0, q1〉, 〈u0, u1〉), whereM1 rejects(q1, u1) andM0 does not accept(q0, u0). In particular, assum-
ing M1 rejects an input stringu, M rejects(〈t0, s1, 1〉, 〈v, u〉) whenever(t0, v) is a non-accepted
configuration ofM0.

A small extra step is needed to account for the fact thatM0, and notM1, has the initial control
in M . Posit, without loss of generality, that the initial states0 of M0 is existential and deterministic
(i.e. at most one transition applies). SinceM0 does not acceptu, we must have(s0, u)−→

∃

(t0, v)

ALTERNATION AND PI-1-1 11

where(t0, v) is a non-accepted cfg. But then the unique initial transition ofM (past the initialization
phase) is

(〈s0, s1, 0〉, 〈u, u〉)−→
∃

(〈t0, s1, 1〉, 〈v, u〉)

SinceM1 rejects(s1, u) andM0 does not accept(t0, v), M must reject(〈t0, s1, 1〉, 〈v, u〉), as noted
above, and therefore must also reject(〈s0, s1, 0〉, 〈u, u〉).

In conclusion,M accepts every string accepted byM0, and rejects every string rejected byM1.
SoM is a total machine that acceptsL and rejects̄L.

5. CONCLUSION

The combined use of existential and universal nondeterminism has been of interest primarily in
Computational Complexity theory, but has not been considered thus far as a tool in the foundations
of computing. This is because the semantics of acceptance has been defined “locally”, that is in
terms of the relation between computational configurationsand their immediate descendants. That
semantics implies that acceptance (and rejection) are witnessed by finite computation trees, and thus
cannot lead us beyond the semi-decidable (RE) languages. Viewed from another angle, the closure
properties involved areΠ0

1, and so the accepted languages are defined by strict-Π1
1 formulas (see

§3.1 above).
We showed here that a very natural alternative semantics foruniversal nondeterminism changes

the picture radically, as the languages accepted are precisely theΠ1
1 ones. This further illustrates

the foundational analogy between alternation in feasible time with local semantics, which yields
PSpace as a limit of the PTime Hierarchy (starting with PTimeand NP), and alternation for arbi-
trary computations with global semantics, which yieldsΠ1

1 as a limit of the arithmetical hierarchy
(starting withΣ0

1).
Generalized models of computation that go beyond computability have been studied exten-

sively, of course. The novelty of the approach here is that itrefers to the very same hardware as
traditional Turing machines (albeit with both modes of nondeterminism), but redefines the notion
of acceptance, in a way that remains consistent with the underlying, intuitive, intent.

The ability to refer to both computational complexity and higher recursion theory using the
same machine models has the potential of suggesting analogies between results, and thereby transfer
of results. We believe that this will provide insights and additional machine-based proofs for Higher
Recursion Theory.

The approach developed here seems to also break with past works in this area in that it dispenses
with transfinite recurrence and induction over Kleene’s constructive ordinals, and does not use any
transfinite stage-comparison technique. Instead, the proofs use inductive definitions directly.

Directly dealing with inductive definitions, without calibrating them by ordinals provides, in
fact, a closer analogy with finite computing. Computation traces of machines and of programs
are construed intuitively as finite objects, without directreference to the natural numbers, either as
clocking computation steps or as codes for computational objects. Wit the frequent use of “structural
induction” and “structural recurrence.” It is, therefore,natural to expect that higher-order compu-
tation traces can be studied directly, without a detour through transfinite clocking by constructive
ordinals. The proof of Theorem 4.2 achieves precisely that.

12 D. LEIVANT

REFERENCES

[1] Jon Barwise.Admissible Sets and Structures, volume 7 ofPerspectives in Mathematical Logic. Springer-Verlag,
Berlin, 1975.

[2] Ashok Chandra, Dexter Kozen, and Larry Stockmeyer. Alternation.Journal of the ACM, 28:114–133, 1981.
[3] David Harel and Dexter Kozen. A programming language forthe inductive sets, and applications.Information and

Control, 63:118–139, 1984.
[4] Stephen C. Kleene.Introduction to Metamathematics. Wolters-Noordhof, Groningen, 1952.
[5] Stephen C. Kleene. Hierarchies of number theoretic predicates.Bull. American Mathematical Spociety, 61:193–213,

1955.
[6] Stephen C. Kleene. On the form of predicates in the theoryof constructive ordinals.American journal of mathemat-

ics, 77:405–428, 1955.
[7] Phokion Kolaitis. Game quantification. InModel-Theoretic Logics, pages 365–421. Springer-Verlag, New York,

1985.
[8] Dexter Kozen.Theory of Computation. Springer, London, 2006.
[9] G. Kreisel. La prédicativité.Bull. Soc. math. France, 88:371–391, 1960.

[10] Georg Kreisel. Survey of proof theory.Journal of symbolic Logic, 33:321–388, 1968.
[11] Kazimierz Kuratowski and Alfred Tarski. Les opérations logiques et les ensembles projectifs.Fund. Math., 17:240–

248, 1931.
[12] Y. Moschovakis.Elementary Induction on Abstract Structures. North-Holland, Amsterdam, 1974.
[13] Yianis Moschovakis. The game quantifier.Proc. AMS, 31:245–250, 1971.
[14] H. Rogers.Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.
[15] Clifford Spector. Inductively defined sets of natural numbers. InInfinitistic methods, pages 97–102. Pergamon, New

York, 1961.
[16] Mikhail Yakovlevich Suslin. Sur une definition des ensembles mesurables B sans nombres transfinis.Comptes ren-

dus de l’Academie des sciences, 164:88–91, 1917.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or
send a letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105,
USA, or Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Global semantics for alternating computations
	2.1. Alternating Turing machines
	2.2. Acceptance and rejection
	2.3. Divergence and totality
	2.4. Duality and one-sidedness
	2.5. The Arithmetical Hierarchy

	3. Alternation and inductive languages
	3.1. Accepted languages are inductive
	3.2. Inductive languages are accepted

	4. Total machines and hyper-arithmetical languages
	5. Conclusion
	References

