
Logical Methods in Computer Science
Vol. 10(4:18)2014, pp. 1–23
www.lmcs-online.org

Submitted Dec. 23, 2013
Published Dec. 27, 2014

GLOBAL SEMANTIC TYPING

FOR INDUCTIVE AND COINDUCTIVE COMPUTING

DANIEL LEIVANT

Indiana University Bloomington
e-mail address: leivant@indiana.edu

Abstract. Inductive and coinductive types are commonly construed as ontological (Church-
style) types, with canonical semantical interpretation. When studying programs in the
context of global (“uninterpreted”) semantics, it is preferable to think of types as seman-
tical properties (Curry-style). A purely logical framework for reasoning about semantic
types is provided by intrinsic theories, introduced by the author in 2002, which fit tightly
with syntactic, semantic, and proof theoretic fundamentals of formal logic, with potential
applications in implicit computational complexity as well as extraction of programs from
proofs.

Intrinsic theories have been considered so far for inductive data, and we presently
extend that framework to data defined using both inductive and coinductive closures. Our
first main result is a Canonicity Theorem, showing that the global definition of program
typing, via the usual (Tarskian) semantics of first-order logic, agrees with their operational
semantics in the intended (“canonical”) model.

The paper’s other main result is a proof theoretic calibration of intrinsic theories: every
intrinsic theory is interpretable in (a conservative extension of) first-order arithmetic. This
means that quantification over infinite data objects does not lead, on its own, to proof-
theoretic strength beyond that of Peano Arithmetic.

1. Introduction

1.1. A motivation: termination of equational programs. We refer to the well-known
dichotomy between the canonical and global interpretations of proofs and programs, often
referred to as “interpreted” and “uninterpreted,” respectively. The former is exemplified by
Peano’s Arithmetic, whose canonical model is the standard structure of the natural numbers
with basic operations, and by programming languages with primitive types for integers,
strings, etc. Thus, the axioms of Peano’s Arithmetic (PA) are intended to contribute to
the delineation of a particular model, whereas the axioms of Group Theory are intended to
describe a class of models, a task they perform successfully by definition.

The limitative properties of canonical axiomatization and computing, e.g. the high
complexity of program termination in the canonical model, let alone the complexity of

2012 ACM CCS: [Theory of computation]: Models of computation; Logic; Semantics and reasoning.
Key words and phrases: Inductive and coinductive types, equational programs, intrinsic theories, global

model theory.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(4:18)2014

c© D. Leivant
CC© Creative Commons

http://creativecommons.org/about/licenses

2 D. LEIVANT

semantic truth of first-order formulas of arithmetic, justify a reconsideration of canonically
intended theories, such as PA, as global theories with unintended, “non-standard,” models.
Such non-standard models have “non-standard elements,” but the machinery of Tarskian
semantics makes no syntactic distinction between intended and non-standard elements, and
consequently no explicit distinction between canonical and non-standard models.

A trivial remedy is to enrich the vocabulary with type-identifiers. Indeed, that is pre-
cisely Peano’s original axiomatization of arithmetic [26]: his context is an abstract universe
of objects and sets, and the natural numbers form a particular collection N within that
broader universe. The type N is thus construed semantically, as a collection of pre-existing
objects, which happen to satisfy certain properties. This is in perfect agreement with the
brand of typing introduced by Haskell Curry [7, 37]: a function f has type τ→σ if it maps
objects of type τ to objects of type σ; f may well be defined for input values that are not
of type τ .

Semantic types reflect a global perspective, in that they can be considered for any do-
main of discourse. In contrast, Church’s approach [6] construes types as inherent properties
of objects: a function is of type τ → σ when its domain consists of the objects of τ , and
its codomain of objects of type σ. That is, Church’s types are related to the presence of a
canonical model.1

The distinction between ontological and semantic typing can be made for arbitrary
inductive data types D, such as the booleans, strings, finite trees, and lists of natural
numbers. Each inductive data-type is contained in the term algebra generated by a set C
of constructors, a syntactic representation that suggests a global semantics for such types.
Namely, D is a “global predicate,” that assigns to each structure S (for a vocabulary
containing C) the set of denotations of closed C-terms. Such global semantics is a well-known
organizing principle for descriptive and computational devices over a class of structures, such
as all finite graphs [8, 10].

The global viewpoint of types is of particular interest with respect to programs over
inductive data. Each such program P may be of type D→D in one structure and not in
another; e.g. if P is non-total on N, then it is of type N → N in the flat-domain structure
with N interpreted as N⊥, but not when N is interpreted as N.

In [19] we showed that a program P computes a total function in the canonical structure
iff P has a unique solution, with respect to Tarskian semantics, in every reasonable model
of P . See §4.4 below for background and discussion.

Within the global framework, it makes sense to consider formal theories for proving
global typing properties of equational programs. We focus here on equational programs,
since these mesh directly with formal reasoning: a program’s equations can be construed as
axioms, computations as derivations in equational logic, and types as formulas. Moreover,
equational programs are amenable to term-model constructions, which turn out to be a
useful meta-mathematical tool. Theories for reasoning directly about equational programs
were developed in [19], where they were dubbed intrinsic theories. Among other benefits,
they support attractive proof-theoretic characterizations of major complexity classes, such
as the provable functions of Peano Arithmetic and the primitive recursive functions [19, 20].

The rest of the paper is organized as follows. In §2 we define data-systems, i.e. collections
of data-types obtained by both inductive and coinductive definitions. Starting with the
syntactic framework, which generalizes term algebras to potentially-infinite hyper-terms,

1The difference between semantic and ontological typing disciplines is thus significant in ways that phrases
such as “explicit” and “implicit” do not convey.

SEMANTIC COINDUCTIVE TYPING 3

we give an operational semantics for equational programs over hyper-terms. Section 3
describes the equational programs we wish to focus on, including their semantics. Section 4
presents a proof of our first main result, a Canonicity Theorem 4.7 matching the Tarskian
semantics of equational programs with their operational semantics. Section 5 describes
intrinsic theories, a simple proof theoretic setting for reasoning about equational and typing
properties of equational programs. Finally, §6 presents our other main theorem 6.5, stating
that intrinsic theories, even in the presence of coinductive types, are interpretable in a
conservative extension of Peano’s Arithmetic, and are thus of the same proof theoretic
strength as Peano’s Arithmetic.2

2. Data systems

2.1. Symbolic data. A constructor-vocabulary is a finite set C of function identifiers, re-
ferred to as constructors, each assigned an arity ≥ 0; as usual, constructors of arity 0 are
object-identifiers. Given a constructor-vocabulary C, a hyper-term (over C) is an ordered
tree of constructors, possibly infinite, where each node with constructor c of arity r has
exactly r children. We write HC for the set of hyper-terms over C. For a structure S, we
write |S| for the universe of the structure.

The replete C-structure is the structure HC with3

(1) C as vocabulary;
(2) |HC | = HC ; and
(3) a syntactic interpretation for each identifier c ∈ C: [[c]](a1 . . . ar) is the tree with c at

the root and a1 . . . ar as immediate sub-trees.

2.2. Inductive data systems. An inductive type is defined by its generative closure rules.
For example, the rules for N are N(0) and ∀x N(x)→ N(s(x)) (we’ll often omit the universal
quantifier in the statements of such rules). Similarly, words in {0, 1}∗, construed as terms
generated from a nullary constructor e and unary 0 and 1, are generated by the three rules
W(e), ∀x W(x)→ W(0(x)), and W(x)→ W(1(x)). If G names a type G, then the type T of binary
trees with leaves in G is generated by the rules G(x)→ T(x), and T(x) ∧ T(y)→ T(p(x, y)),
where p is a binary constructor (for pairing).

Several types can be generated jointly (i.e. simultaneously), for example: the set of
01-strings with no adjacent 1’s is obtained by defining jointly the set (denoted by E) of
such strings that start with 1, and the set (denoted by Z) of those that don’t: Z(e), Z(x)→
Z(0(x)), Z(x)→ E(1(x)), and E(x)→ Z(0(x)).

Generally, a definition of inductive types from given types ~G consists of:

(1) A sequence ~D = (D1 . . .Dk) of unary relation-identifiers, dubbed type identifiers;
(2) A set of construction rules, each one of the form

∀~y Q1(y1) ∧ · · · ∧Qr(yr) → Di(c(y1 · · · yr)) (2.1)

where c is a constructor of arity r, and each Qℓ is one of the type-identifiers in ~G, ~D.

2The reader familiar with rich type systems, such as those of Coq, Agda, or Nuprl, will notice that
Theorem 6.5 is stated for a type system without infinite-branching type-constructors, such as W-types.

3We use typewriter font for actual identifiers, boldface for meta-level variables ranging over syntactic
objects, and italics for other meta-level variables.

4 D. LEIVANT

These rules delineate the intended meaning of the inductive types ~D from below, as Di is
built up by the construction rules.

Conjoining the composition rules, we obtain a single. The following variant, equivalent
to that conjunction in constructive (intuitionistic) first-order logic, will be useful:

ψ1 ∨ · · · ∨ ψk → Di(x) (2.2)

where each ψi, with x a free variable, is of the form

∃y1 . . . yr x = c(~y) ∧ Q1(y1) ∧ · · · ∧Qr(yr) (2.3)

where y1 . . . yr are distinct variables. We call a formula of the form (2.3) a constructor-
statement (for x).

To focus on the essentials, we do not consider several important type constructions,
such as parametric types, dependent types, sum types, polymorphism, and W-types.

2.3. Coinductive deconstruction rules. Inductive construction rules state sufficient rea-
sons for asserting that a (finite) hyper-term has a given type, given the types of its immediate
sub-terms. The intended semantics of an inductive type D is thus the smallest set of hyper-
terms closed under those rules. Coinductive deconstruction rules state necessary conditions
for a term to have a given type, by implying possible combinations for the types of its
immediate sub-terms. The intended semantics is the largest set of hyper-terms satisfying
those conditions.

For instance, the type of ω-words over 0/1 is given by the deconstruction rule

Wω(x)→ (∃y Wω(y) ∧ x = 0(y)) ∨ (∃y Wω(y) ∧ x = 1(y)) (2.4)

Note that this is not quite captured by the implications Wω(0x)→ Wω(x) and Wω(1x)→
Wω(x), since these do not guarantee that every element of Wω is of one of the two forms con-
sidered.

Moreover, using a destructor function in stating deconstruction rules fails to differen-
tiate between cases of the argument’s main constructor. For example, in analogy to the
inductive definition above of the words with no adjacent 1’s, the ω-words over 0/1 with no
adjacent 1’s are delineated jointly by the two deconstruction rules

Z(x) → (∃y Z(y) ∧ x = 0(y)) ∨ (∃y E(y) ∧ x = 0(y))

and
E(x) → ∃y Z(y) ∧ x = 1(y)

These rules cannot be captured using a destructor, since the latter does not differentiate
between cases for the input’s main constructor.

These observations motivate the following.

Definition 2.1. A deconstruction definition of coinductive types from given types ~G consists
of:

(1) A list ~D of type identifiers;

(2) for each of the types Di in ~D a deconstruction rule, of the form

Di(x) → ψ1 ∨ · · · ∨ ψk (2.5)

where each ψi is a constructor-statement (as in (2.3) above).

SEMANTIC COINDUCTIVE TYPING 5

2.4. General data-systems. We proceed to define data-systems, in which data-types may
be defined by any sequential nesting of induction and coinduction. Descriptive and deductive
tools for such definitions have been studied extensively, e.g. referring to typed lambda calculi,
with operators µ for smallest fixpoint and ν for greatest fixpoint. The Common Algebraic
Specification Language Casl was used as a unifying standard in the algebraic specification
community, and extended to coalgebraic data [29, 32, 23, 34]. Several frameworks combining
inductive and coinductive data, such as [25], strive to be comprehensive, including various
syntactic distinctions and categories, in contrast to our minimalistic approach.

Definition 2.2. A data-system D over a constructor vocabulary C consists of:

(1) A double-list ~D1 . . . ~Dk (the order matters) of unary relation-identifiers, dubbed type-

identifiers, where each ~Di is a type-bundle, and designated as either inductive or coin-
ductive.

(2) For each inductive bundle ~Di, an inductive definition of ~Di from the types in ~Dj , j < i.

(3) For each coinductive bundle ~Di a coinductive definition of ~Di from ~Dj , j < i.

Definition 2.3. We say that a data-system ~D1 . . . ~Dk is Σn (Πn) if ~Dk is inductive (re-
spectively, coinductive), and the list of bundles alternates n−1 times between inductive and
coinductive bundles. (This choice of notation will become evident in Theorem 6.3.) That

is, a single bundle is Σ1 (Π1) if it is inductive (respectively, coinductive); if ~D1 . . . ~Dk is

Σn then ~D1, . . . , ~Dk, ~Dk+1 is Σn if ~Dk+1 is inductive, and Πn+1 if ~Dk+1 is coinductive; if
~D1 . . . ~Dk is Πn then ~D1, . . . , ~Dk, ~Dk+1 is Πn if ~Dk+1 is coinductive, and Σn+1 if ~Dk+1 is
inductive.

A data system D = ~D1 . . . ~Dk has rank n if it is Σn or Πn. A data-type Dij of D has

rank n (in D) if the data-system ~D1 . . . ~Di has rank n.

2.5. Examples of data-systems.

(1) Let C consist of the identifiers 0, 1, e, s, and p, of arities 0,0,0,1, and 2, respectively.
Consider the following Σ3 data-system, for the double list ((B), (N), (F, S), (L)) with
inductive B and N (booleans and natural numbers), coinductive Fand S (streams with
alternating B’s and N’s starting with B or, respectively, N), and finally an inductive L for
lists of such streams. The defining formulas are, in simplified form,

B(0) B(1)

N(0) ∀y N(y)→ N(s(y))

F(x)→ ∃y, z (x = p(y, z)) ∧ B(y) ∧ S(z)

S(x)→ ∃y, z (x = p(y, z)) ∧ N(y) ∧ F(z)

L(e) ∀y, z F(y) ∧ L(z)→ L(p(y, z)) ∀y, z S(y) ∧ L(z)→ L(p(y, z))

Note that constructors p and 0 are reused for different data-types. This is in agreement
with our untyped, generic approach, where the data-objects are untyped.

(2) Let the constructors be 0, 1, s, p, and d, of arities 0,0,1,2 and 3 respectively. Consider
the Π2 data system ((N), (T), (D)), with inductive N (natural numbers), coinductive T

(finite or infinite 2-3 trees with leaves in N), and coinductive D (infinite binary trees

6 D. LEIVANT

with nodes decorated by elements of T). The inductive definition of N is as above; the
coinductive definitions of T and D are

T(x) → N(x)
∨ (∃y1, y2 x = p(y1, y2) ∧ T(y1) ∧ T(y2))
∨ (∃y1, y2, y3 x = d(y1, y2, y3) ∧ T(y1) ∧ T(y2) ∧ T(y3))

and

D(x) → ∃u, y1, y2 x = d(u, y1, y2) ∧ T(u) ∧ D(y1) ∧ D(y2)

Note that we construe a “tree of trees” not as a higher-order object, but simply as a
tree of constructors, suitably parsed.

3. Programs over data-systems

3.1. Equational programs. In addition to the set C of constructors we posit an infinite
set X of variables, and an infinite set F of function-identifiers, dubbed program-functions,
and assigned arities ≥ 0 as well. The sets C, X and F are, of course, disjoint. If E is a set
consisting of function-identifiers and (possibly) variables, we write Ē for the set of terms
generated from E by application: if g ∈ E is a function-identifier of arity r, and t1 . . . tr
are terms, then so is g t1 · · · tr. We use informally the parenthesized notation g(t1, . . . , tr),
when convenient.4 We refer to elements of C, C ∪ X and C ∪ X ∪ F as data-terms, base-
terms, and program-terms, respectively.5 We write |t| for the height of a term t.

We adopt equational programs, in the style of Herbrand-Gödel, as computation model.
See for example [16] for a classical exposition. Such programs are sometimes dubbed “com-
putation rules” [3, 35]. There are easy inter-translations between equational programs and
program-terms such as those of FLR0 [22]. We prefer however to focus on equational
programs because they integrate easily into logical calculi, and are naturally construed as
axioms. In fact, codifying equations by terms is a conceptual detour, since the computa-
tional behavior of such terms is itself spelled out using equations or rewrite-rules.

A program-equation is an equation of the form f(t1, . . . , tk) = q, where f is a program-
function of arity k ≥ 0, t1 . . . tk is a list of base-terms with no variable repeating, and q
is a program-term. Two program-equations are compatible if their left-hand sides cannot
be unified. A program-body is a finite set of pairwise-compatible program-equations. A
program (P, f) (of arity k) consists of a program-body P and a program-function f (of arity
k) dubbed the program’s principal-function. We identify each program with its program-
body when in no danger of confusion. Given a program P , we call the program-terms that
use the function-identifiers occurring in P P -terms.

The requirement that program-equations have no repeating variable in the input is
essential when the input may be infinite, for else the applicability of such an equation might
depend on two inputs being identical, a condition which is not decidable.

Programs of arity 0 can be used to define objects. For example, the singleton program
T consisting of the equation f = sss0 defines 3, in the sense that in every model S of T the
interpretation of the identifier t is the same as that of the numeral for 3. We can similarly
construct nullary programs defining hyper-terms, such as the program I consisting of the
single equation i = s(i). The infinite hyper-term sω is the unique hyper-term solution of

4Note that if g is nullary, it is itself a term, whereas with formal parentheses we’d have g().
5Data-terms are often referred to as values, and base-terms as patterns.

SEMANTIC COINDUCTIVE TYPING 7

this equation. But that uniqueness does not extend to arbitrary structures, of course. For
example, we may have s interpreted as the identity function, and the equation above is
modeled over the ordinals with s interpreted as λx.1 + x, and i as any infinite ordinal.

3.2. Operational semantics of programs. A program (P, f) computes a partial-function
g : C̄ ⇀ C̄ when g(p) = q iff the equation f(p) = q is derivable from P in equational logic.
However, replete structures have infinite terms, so the output of a program over HC must
be computed piecemeal from finite information about the input values.

To formally describe computation over infinite data, with a modicum of syntactic ma-
chinery, we posit that each program over C has defining equations for destructors and a
discriminator. That is, if the given vocabulary’s constructors are c1 . . . ck, with m their
maximal arity, then the program-functions include the unary identifiers πi,m (i = 1..m) and
δ (destructors and discriminator), and all programs contain, for each constructor c of arity
r the equations

πi,m(c(x1, . . . , xr)) = xi (i = 1..r)
πi,m(c(x1, . . . , xr)) = c(x1, . . . , xr) (i = r+1..m)

δ(ci(~t), x1, . . . , xk) = xi (i = 1..k)

(3.1)

We call a repeated composition of destructors a deep-destructor, and construe it as an
address in hyper-terms.

A valuation is a function η from a finite set of variables to HC . If ~v is a list of r distinct
variables, and ~t a list of r hyper-terms, then [~v← ~t] is the valuation η defined by η(vi) = ti.

We posit the presence in C of at least one nullary constructor o; indeed, adding a nullary
constructor to C does not impact the rest of the discussion. For a constructor c we write
co for the term c(o, . . . , o). For a deep-destructor Π we define6

Πo(x) = δ(Π(x), co1, . . . , c
o
k)

That is, Πo(x) identifies the constructor of x at address Π.

Definition 3.1. We say that a set Γ of equations locally infer an equation t = q between
program-terms if, for each deep-destructor Π, the equation Πo(t) = Πo(q) is derivable in
equational logic from Γ. We write then Γ ⊢ω t = q.

The diagram of a valuation η is the set ∆η of equations of the form Πo(v) = co where
v is in the domain of η, Π a deep-destructor, and c the main constructor of Π(η(v)). That
is, ∆η conveys, node by node, the structure of the hyper-term η(v).

An r-ary program (P, f) locally-computes a partial-function
g : HC

r ⇀ HC when, for every ~t ∈ HC
r and q ∈ HC , g(t1, . . . , tr) = q iff P, ∆η ⊢

ω

f(v1 . . . vr) = u, where η = [~v, u← ~t, q].

The notion of local-computability is motivated solely by the presence of infinite data.
For finite hyper-terms local-computability is equivalent to computability, as we now show.
For a data-term t of C let t̂ be corresponding hyper-term, i.e. the syntax-tree of t.

Proposition 3.2. Let t and q be data-terms.

P, ∆[u,v←t̂,q̂] ⊢
ω f(v) = u (3.2)

iff
P ⊢ f(t) = q (3.3)

6Here again we stipulate that C = {c1, . . . ck}; also ri = arity(ci)

8 D. LEIVANT

By structural induction on data-terms we have, in equational logic, and using the
defining equations for the destructors and discriminator (3.1),

u = t, v = q ⊢ ∆[u,v←t̂,q̂]

So (3.2) implies
P, u = t, v = q ⊢ω f(v) = u

i.e.
P ⊢ω f(t) = q

By induction on q, and using again (3.1), this implies (3.3).
For the converse, assume (3.3). Using induction on the length of equational derivations,

for all terms r, s, if P ⊢ {t,q/u, v} (r = s) then

P, ∆[u,v←t̂,q̂] ⊢
ω r = s

In particular, we conclude (3.2).

3.3. Equational vs. Turing computation. The equivalence of equational programs over
N with the µ-recursive functions was implicit already in [9], and explicit in [14]. Their equiv-
alence with λ-definability [5, 15] and hence with Turing computability [40] followed readily.
When equational programs are used over infinite data, a match with Turing machines must
be based on an adequate representation of infinite data by functions over inductive data.
For instance, each infinite 0/1 word w can be identified with the function ŵ : N → B

defined by ŵ(k) = the k’th constructor of w. Similarly, infinite binary trees with nodes
decorated with 0/1 can be identified with functions from W = {0, 1}∗ to {0, 1}. Conversely,
a function f : N→ B can be identified with the ω-word f̌ whose n’th entry is f(n).

It follows that a functional g : (N→ B)→ (N→ B) can be identified with the function
ǧ : B

ω → B
ω, defined by ǧ(w) = (g(ŵ))∨. Conversely, a function h : B

ω → B
ω can be

identified with the functional ĥ : (N→ B)→ (N→ B) defined by ĥ(f) = (h(f̌))∧.
It is easy (albeit tedious) to see that a partial function h : B

ω → B
ω is computable by

an equational program iff the functional ĥ is computable by some oracle Turing machine.
Dually, a functional g : (N → B) → (N → B) is computable by an oracle Turing machine
iff the function ǧ is computable by an equational program.

4. Matching Tarskian semantics and operational semantics

4.1. D-correct structures. We have focused so far on the canonical setup for data-systems
D, with hyper-terms as objects. We now consider arbitrary structures. We call a structure
S a D-structure if its vocabulary (i.e. signature, symbol set) contains the constructor- and
type-identifiers of D. In a D-structure S we may have a finite or infinite regression of
constructor-eliminations, regardless of the nature of the structure elements. For example,
if f is a unary constructor, and g = fS is its interpretation in S, we might have an element
v0 ∈ |S| for which there is a v1 ∈ |S| with v0 = g(v1), and more generally elements vi ∈ |S|
(i = 0, 1, . . .) where vi = g(vi+1). In general g need not be injective, and so vi+1 need not
be uniquely determined by vi.

We say that a D-structure S is D-correct (or just correct when in no danger of confusion)
if

SEMANTIC COINDUCTIVE TYPING 9

(1) S is separated for C, that is, the interpretations in S of the constructors are all injective
and have pairwise-disjoint codomains.7 Note that HC satisfies this property.

(2) If ~Di = 〈Di1 . . .Dim〉 is inductive, then 〈[[Di1]], . . . , [[Dim]]〉 is the minimal m-tuple of

subsets of |S| closed under the construction rules for ~Di, given the sets [[~D1]] . . . [[~Di−1]]

(3) Dually, if ~Di is coinductive, then [[~Di]] is the largest vector of subsets of HC closed under

the deconstruction rules for ~Di, given the sets [[~D1]] . . . [[~Di−1]].

The canonical model A ≡ AD ≡ [[D]] of a data-system D is the D-correct expansion of the
replete structure HC . Note that inductive and coinductive types are given their canonical
interpretation in every D-correct structures, but such structures may have elements that are
outside all types. Indeed, that possibility is the motivation of intrinsic theories in the first
place: one deals with “anomalies” of computation (divergence when an inductive output is
expected, non-productiveness when a coinductive output is expected) not by partiality, but
by allowing output which is not typed. A single element ⊥ denoting divergence does not
suffice (see the proof in [19] of Theorem 4.5 below).

4.2. Decomposition in data-correct structures. Let S be a D-structure, and consider
an element a of |S|. A C-decomposition of a is a finitely-branching tree T of elements of
|S| × C such that

(1) The root of T is of the form 〈a, c〉 with c ∈ C;
(2) if 〈bi, ci〉 (i = 1..r) are the children in T of a node 〈b, c〉 of T , then b = cS(b1, .., br).

If a has a C-decomposition, we say that it is C-decomposable. Put differently, a is C-
decomposable iff it is in the range of a partial mapping ϕ : HC ⇀ |S| that satisfies
ϕ(c(t1 . . . tr)) = cS(ϕ(t1) . . . ϕ(tr)).

Obviously, an element a ∈ |S| may have multiple C-decompositions, and even uncount-
ably many: it suffices to take the structure with two elements a, b and two constant functions
λx.a and λx.b.

Recall that a D-structure S is separated if the interpretations in S of the constructors
c ∈ C are injective and with disjoint codomains.

Proposition 4.1. If S is a separated structure for C, then each element a ∈ |S| has at most
one decomposition.

Proof. Let t, t′ be decompositions of a ∈ |S|. We prove by induction on n that if 〈b, c〉 is at
address α of t of height n, then it is also at address α of t′. The induction’s basis and step
follow outright from the assumption that S is separated.

If t is a C-decomposition of a, let ť be the hyper-term obtained from t by replacing each
node 〈b, c〉 by c. We call ť a constructor-decomposition (for short, a decomposition) of a.
From the proof of proposition 4.1 it follows that an element a of a separated structure has
at most one decomposition, which we denote (when it exists) by ǎ.

Proposition 4.2. Suppose S is a D-correct structure. If a ∈ |S| has type D in S, then it
has a decomposition, which has type D in A.

Conversely, if t ∈ HC has type D in A, then every a ∈ |S| which has t as decomposition,
is of type D in S.

7For N these are Peano’s Third and Fourth Axioms.

10 D. LEIVANT

Proof. We prove the Proposition by cumulative induction on the rank of D in D. Suppose
the statement holds for types of rank < n. For each type D of D define

A(D) = {a ∈ |S| | a has a decomposition, which is in DA }

and
S(D) = {t ∈ HC | t is the decomposition of some a ∈ DS }

Suppose D is in an inductive bundle ~Di of D. The sequence of sets 〈A(Dij)〉j satisfies

the inductive closure condition of ~Di. To see this, consider a rule of D for ~Di, say (w.l.o.g.)

D(y1) ∧D′(y2) ∧E(y3)→ D(c(y1, y2, y3))

where D′ is another type in ~Di and E is a type of rank < n. We show that

(y1 ∈ A(D)) ∧ (y2 ∈ A(D
′)) ∧ (y3 ∈ ES) → c(y1, y2, y3) ∈ A(D)

The first two premises mean that y1 and y2 have decompositions y̌1 ∈ DA and y̌2 ∈ D′A,
and the third premise implies that y̌3 ∈ ES by IH, since E is of rank < n. So the hyper-
term c(y̌1, y̌2, y̌3) is in DA, since A is D-correct. That hyper-term is the decomposition of
c(y1, y2, y3), proving that the latter is in A(D).

Since 〈(Dij)S〉j is the smallest fixpoint of those conditions (given that S is D-correct),
it follows that DS ⊆ A(D), i.e. every element of |S| of type D in S has a decomposition,
which furthermore is of type D in A.

For the converse, we observe that the sequence of sets 〈S(Di,j)〉j is closed under the

inductive closure conditions of the bundle ~Di. To see this, consider again a rule

D(y1) ∧D′(y2) ∧E(y3)→ D(c(y1, y2, y3)

as above. Assume the premise of

(y1 ∈ S(D)) ∧ (y2 ∈ S(D
′)) ∧ (y3 ∈ EA) → c(y1, y2, y3) ∈ S(D)

The first two conjuncts mean that y1 and y2 are decompositions of some a1 ∈ DS and
a2 ∈ D′S , and the third implies, by IH, that y3 is the decomposition of some a3 ∈ ES . The
hyper-term c(y1, y2, y3) is the decomposition of cS(a1, a2, a3), which is in DS , since S is
D-correct. This concludes the case where D is an inductive type.

Suppose now that D is coinductive. Then 〈A(Dij)〉j satisfies the coinductive closure
condition of the bundle Di. To see this, consider the rule of D for D, say

D(x)→ ψ1 ∨ · · · ∨ ψk

where each ψi is a constructor-statement. Assume (w.l.o.g.) that k = 1 and

ψ1 ≡ ∃y1, y2, y3 x = c(y1, y2, y3) ∧D(y1) ∧D′(y2) ∧E(y3) (4.1)

where D′ and E are as above. We show that

a ∈ A(D) → (∃y1 ∈ A(D) ∃y2 ∈ A(D
′) ∃y3 ∈ ES a = cS(y1, y2, y3))

An element a ∈ A(D) has ǎ ∈ DA. Since A is D-correct, ǎ must be c(t1, t2, t3) for some
t1 ∈ DA, t2 ∈ D′A, and t3 ∈ EA. Since ǎ is the decomposition of a, this means that

a = cS(b1, b2, b3), where ti = b̌i. So b1 ∈ A(D), b2 ∈ A(D
′), by the definition of the function

A, and b3 ∈ ES by IH, since E is of rank < n.
Since S is D-correct, DS is the greatest set closed under the closure conditions for

the bundle ~D; it therefore has A(D) as a subset. That is, every element a of S whose
decomposition is of type D in A, is of type D in S.

SEMANTIC COINDUCTIVE TYPING 11

For the converse, we similarly prove that 〈S(Di,j)〉j is closed under the coinductive

closure conditions of the bundle ~Di. Suppose again that the coinductive rule for D is (4.1)
above. We show that for every hyper-term t

t ∈ S(D) → (∃y1 ∈ S(D) ∃y2 ∈ S(D
′) ∃y3 ∈ ES a = cS(y1, y2, y3))

Suppose t ∈ S(D), i.e. t is the deconstruction of some a ∈ DS . Since S is D-correct, a
must be c(b1, b2, b3) for some b1 ∈ DS , b2 ∈ D′S , and b3 ∈ ES . So t must be of the form
c(t1, t2, t3) where t1 ∈ S(D), t2 ∈ S(D

′), by definition of S(· · ·), and t3 ∈ ES (by IH).
Since DA is the greatest subset of HC closed under the rule for D, is follows that it has

S(D) as a subset. That is, if a hyper-term t is the decomposition of an element of DS , then
t is of type D in A.

Corollary 4.3. For any two D-correct structures S and Q, if a ∈ |S| and b ∈ |Q| have the
same decomposition, then they have the same types in S and Q.

4.3. Typing statements.

Definition 4.4. Given a data-system D over C, with D1, . . . ,Dr and E among its type-
identifiers, we say that a partial function g : HC

r ⇀ HC is of type (×j∈JDj) → E if
aj ∈ (Dj)A (j ∈ J) jointly imply that g(~a) is definable and in EA.

If (P, f) is a program that computes the partial-function g above, we also say that P is
of type (×iDi)→ E.

Note that each function, including the constructors, can have multiple types. Also,
a program may compute a non-total mapping over HC , and still be of type D → E, i.e.
compute a total function from type D to type E.

When a (total) function f : HC → HC fails to be of a type D → E there must
be some d ∈ [[D]] for which f(d) 6∈ [[E]]. Thus the value f(d) can represent divergence
with respect to computation over [[D]], as for example when [[D]] = N and [[E]] = N⊥

with f(d) = ⊥. However, to adequately capture the computational behavior of equational
programs, multiple representations of divergence might be necessary; see [19] for examples
and discussion.

The partiality of computable functions is commonly addressed either by allowing partial
structures [17, 1, 24], or by considering semantic domains, with an object ⊥ denoting
divergence. The approach here is based instead on the “global” behavior of programs in all
structures.

4.4. Canonicity for inductive data. Definition 3.1 provides the computational semantics
of a program (P, f). But as a set of equations a program can be construed simply as a first-
order formula, namely the conjunction of the universal closure of those equations. As such,
a program has its Tarskian semantics, referring to arbitrary structures for the vocabulary
in hand, that is the constructors and the program-functions used in P . A model of P is
then just a structure that satisfies each equation in P .

Herbrand proposed to define a (total) function g as computable just in case there is a
program for which g is the unique solution.8 It is rather easy to show that every computable

8This proposal was made to Gödel in personal communication, and reported in [9]. A modified proposal,
incorporating an operational-semantics ingredient, was made in [12].

12 D. LEIVANT

function is indeed the unique solution of a program. But the converse fails. In fact, Her-
brand’s definition yields precisely the hyper-arithmetical functions [30].9 But Herbrand’s
ingenious idea to relate computability of a program to the unicity of its solution is still in
force, provided one refers collectively to all D-correct structures:10

Theorem 4.5. (Canonicity Theorem for N) [19] An equational program (P, f) over N com-
putes a total function iff the formula N(x) → N(f(x)) is true in every N-correct model of
P .

4.5. Canonicity for Data Systems. We generalize Theorem 4.5 to all data-systems.
Given a (unary) program (P, f) over a data-system D, and a valuation η, we construct
a canonical model M(P, η) to serve as “test-structure” for the program P and the valua-
tion η as input.

We define the equivalence relation ≈P,η over hyper-terms to hold between t and q iff
∆η, P locally infer t = q, in the sense of Definition 3.1. When safe, we write ≈ for ≈P,η.

Let Q(P, η) be the structure whose universe is the quotient HC/≈, and where each
function-identifier (constructor or program-function) is interpreted as symbolic application:

for an r-ary identifier f, fQ maps equivalence classes [ti]≈ to [f(~t)]≈. This symbolic interpre-
tation of the constructors guarantees that the structure is separated for C. Let nowM(P, η)
be the D-correct expansion of Q(P, η), i.e. the expansion of Q(P, η) to the full vocabulary
of D, with type-identifiers, where inductive types are interpreted as the minimal subsets of
HC closed under their closure conditions, and the coinductive types as the maximal subsets
closed under their closure conditions.

Lemma 4.6. M(P, η) is a model of P .

Proof. If f(~t) = q is an equation in P , then f(~t) ≈ q is immediate from the definition of
≈P,η. Thus

[f(~t)]≈ = [q]≈
Also, by structural induction on terms, one easily proves that

[[t]]M(P,η) = [t]≈

for each term t, since function-identifiers are interpreted inM(P, η) symbolically.
We conclude

[[f(~t)]]M(P,η) = [[q]]M(P,η)

Theorem 4.7. (Canonicity Theorem for Data Systems) Let D be a data-system over C,
and D, E two type-identifiers of D. Let (P, f) be an equational program over C computing
a partial-function g : HC ⇀ HC.

The following are equivalent:

(1) g : DA → EA
(2) D(x)→ E(f(x)) is true in every D-correct model of P .

The equivalence above generalizes to arities 6= 1.

9The first counter-example to Herbrand’s proposal is probably due to Kalmar [13]. A simple example of
a program whose unique solution is not computable was given by Kreisel, quoted in [30].

10Of course, the important correction of Herbrand’s equational computing is Gödel’s radical change of
perspective, from Tarskian semantics to operational (rewrite rules).

SEMANTIC COINDUCTIVE TYPING 13

Proof. We show that (1) and (2) are also equivalent to

(3) For all valuations η, M(P, η) |= D(x) → E(f(x)).

(1) implies (2): Assume (1), and let S be a D-correct model of P . Consider an element
a ∈ DS . By Proposition 4.2 a has a decomposition ǎ. Moreover, since S is D-correct,
the closure conditions justifying a ∈ DS also justify ǎ ∈ DA. By (1), this implies that
g(ǎ) ∈ EA.

Since g is computed by P we have, for each deep-destructor Π, that an equation
Πo(f(v)) = co is derivable in equational logic from P and ∆η, where c is the main con-
structor of Π(g(ǎ)). Since ǎ is the decomposition of a, all equations ∆η are true in S. But
S is known to be a model of P , so Πo(f(v)) = co is true in S with v bound to a. This being
the case for every deep-destructor Π, it follows that fS(a) has the same decomposition as
g(ǎ). But g(ǎ) ∈ EA and S is D-correct, so fS(a) ∈ ES , proving (2).

(2) implies (3): M(P, η) is D-correct by definition. It is a model of P by Lemma 4.6. So

(3) is a special case of (2).

(3) implies (1): Assume (3). Consider input a ∈ DA, and let η(v) = a. The class [v]≈ has

then the same decomposition as a, and sinceM(P, η) is D-correct, it must have type D in
M(P, η), by Proposition 4.2. By (3) it follows that

fM(P,η)([v]≈) ∈ EM(P,η)

But
fM(P,η)([v]≈) = [f(v)]≈

by definition of M(P, η). Since g is computed by (P, f), we have Πo(f(v)) = Πo(g(a)) for
all deep-destructors Π. So g(a) has the same decomposition as [f(v)]≈, and therefore is in
EA.

5. Intrinsic theories

5.1. Intrinsic theories for inductive data. Intrinsic theories for inductive data-types
were introduced in [19]. They support unobstructed reference to partial functions and to
non-denoting terms, common in functional and equational programming. Each intrinsic
theory is intended to be a framework for reasoning about the typing properties of programs,
including their termination and productivity. In particular, declarative programs are con-
sidered as formal theories. This departs from two longstanding approaches to reasoning
about programs and their termination, namely programs as modal operators [36, 27, 11],
and programs (and their computation traces) as explicit mathematical objects [16, 17].

Let D be a data-system consisting of a single inductive bundle ~D. The intrinsic theory
for D is a first order theory over the vocabulary of D, whose axioms are

• The closure rules of D.
• Separation axioms for C, stating that the constructors are injective and have pairwise-
disjoint codomains. These imply that all data-terms are distinct.

14 D. LEIVANT

• Inductive delineation (data-elimination, Induction), which mirrors the inductive
closure rules. Namely, if a vector ~ϕ[x] of first order formulas satisfies the construction

rules for ~D, then it contains ~D:

Const[~ϕ] → (∧i∀x Di(x)→ ϕi[x]) (5.1)

where Const[~ϕ] is the conjunction of the construction rules for the bundle, with each Di(t)
replaced by ϕi[t]. The formulas ~ϕ are the induction-formulas of the delineation.

Example: Identifying W = {0, 1}∗ with the free algebra generated from the nullary con-
structor ε and the unary 0 and 1, the intrinsic theory IT(W) has as vocabulary these
constructors and a unary type-identifier W . Here we have the

• inductive closure rules:

W (ε)
W (t)

W (0(t))

W (t)

W (1(t))

• and inductive-delineation:

W (t) ϕ[ε]

{ϕ[z]}
· · ·

ϕ[0(z)]

{ϕ[z]}
· · ·

ϕ[1(z)]

ϕ(t)

Definition 5.1. A unary program (P, f) is provably of type D→E in a theory T if D(x)→
E(f(x)) is provable in T from the universal closure of the equations in P .11

Theorem 5.2. [20, 19].

(1) A function f over N has a program provably of type N→N in the intrinsic theory IT(N)
iff it is a provably-recursive function of Peano’s Arithmetic, i.e. a function definable
using primitive-recursion in finite types.

(2) f has a program proved to be of type N→ N using only formulas in which N does not
occur negatively iff f is a primitive-recursive function.

Note that this characterization of the provable functions of PA involves no particular choice
of base functions (such as addition and multiplication). See [19] for examples and discussion.

5.2. Intrinsic theories for arbitrary data-systems. Let D be a data-system. The
intrinsic theory for D, denoted IT(D), is a first order theory over the vocabulary of D,
whose axioms are the Separation axioms, the inductive construction rules and coinductive
deconstruction rules of D, as well as their duals:

• Inductive delineation (data-elimination, Induction): If a vector ~ϕ[x] of first order

formulas satisfies the construction rules for an inductive bundle ~D, then it contains ~D:

Const[~ϕ] → (∧i∀x Di(x)→ ϕi[x])

where Const[~ϕ] is the conjunction of the construction rules for the bundle, with each Di(t)
replaced by ϕi[t].

11Universal closure is needed, since the logic here is first-order, rather than equational.

SEMANTIC COINDUCTIVE TYPING 15

• Coinductive delineation (data-introduction, Coinduction): If a vector ~ϕ[x] of

first order formulas satisfies the deconstruction rule for a coinductive bundle ~D, then it

is contained in ~D:
Deconst[~ϕ] → (∧i∀x ϕi[x]→ Di(x)) (5.2)

where Deconst[~ϕ] is the conjunction of the deconstruction rules for the bundle, with each
Di(t) replaced by ϕi[t].

A characterization result, analogous to Theorem 5.2(2), was proved in [21]: A function
over a coinductive type is definable using corecurrence iff its productivity is provable using
coinduction for formulas in which type-identifiers do not occur negatively. The proof in [21]
is for streams, the general result will be proved elsewhere, as well as an analog Theorem
5.2(1).

The phrase coinduction is often mentioned in reference to the principle enunciated by
David Park, “To prove two processes observationally equivalent, show that they are bisimilar”
(see e.g [33]). The phrase “observational equivalent” is sometimes taken to mean “equal.”
Park’s principle is not directly derivable in the intrinsic theory of given coinductive types
because the equality primitive of intrinsic theories is untyped, acting as a rewrite rule (a
definitional equality in the sense of Martin-Löf’s type theory). However, intrinsic theories
do derive Park’s principle for equality-in-a-type. Consider the following program for a fresh
function identifier eq.

eq(c(x1, . . . , xr), c(y1, . . . , yr)) = c(eq(x1, y1), . . . , eq(xr, yr))

ξ c a constructor of arity r

eq(c(x1, . . . , xr),d(y1, . . . , yt)) = ξ c, d distinct constructors

Here ξ is a nullary constructor, not used in any type definition of the data system. That
is, eq maps two equal hyper-terms into their common value, and maps two distinct hyper-
terms into a hyper-term containing ξ, which is therefore in no type. Now define an equality
relation for a coinductive type D by

x
.
=D y ≡ D(eq(x, y))

Of course, this equality is undecidable, as indeed should be the case for infinite hyper-terms.
Given a bi-simulation between x and y, the program for eq can be used to obtain the

premises of coinduction for the unary predicate λx.D(eq(x, y)) (i.e. with y as parameter).
Our Coinduction scheme (5.2) then implies D(eq(x, y)), i.e. x

.
=D y.

6. Proof theoretic strength

6.1. Innocuous function quantification. Our general intrinsic theories refer to infinite
basic objects (coinductive data), in contrast to intrinsic theories for inductive data only, as
well as traditional arithmetical theories. However, their deductive machinery does not imply
the existence of any particular coinductive object, as would be the case, for example, in the
presence of some forms of the Axiom of Choice or of a comprehension principle. Coinductive
objects can be specified, of course, by programs, but such programs are treated as axioms,
i.e. assumptions.

16 D. LEIVANT

We show next that, as a consequence, any intrinsic theory T is interpretable in a formal
theory whose proof theoretic strength is no greater than that of Peano Arithmetic.

We take as starting point the formalism PRA of Primitive Recursive Arithmetic, with
function identifiers for all primitive recursive functions, and their defining equations as
axioms. In addition, we have the Separation axioms for N (as above), and the schema
of Induction for all formulas.12 It is well known that PRA is interpretable in Peano’s
Arithmetic (where only addition and multiplication are given as functions with their defining
equations).

Let PRA∗ be PRA augmented with function variables and quantifiers over them, as
well as free variables for functionals (i.e. functions from numeric functions to numeric func-
tions.) The set of terms is built by type-correct explicit definition (i.e. composition and
application) from number-, function-, and functional-variables, starting with 0 and identi-
fiers for all primitive-recursive functions. The theory has as axiom schema the Principle of

Explicit Definition: for each term t[~x, ~f] of the extended language, with number variables

~x and function variables ~f ,

∀~f ∃g ∀~x g(~x) = t[~x, ~f]

There are no further axioms stipulating the existence of additional functions.
The schema of Induction applies now to all formulas in the extended language.

Lemma 6.1. The theory PRA∗ is conservative over PRA. That is, if a formula in the
language of PRA is provable in PRA∗, then it is provable already in PRA.

Consequently, PRA∗ is no stronger, proof-theoretically, than PA.

Proof. The proof is virtually the same as that in [39, Prop. 1.14, p. 453], that E-HAω is
conservative over HA.13 The use of classical logic, rather than constructive (intuitionistic)
logic, makes here no difference, and PRA∗ is a sub-theory of (the classical counterpart of)
E-HAω.

The main result of this section, and the second of the paper, is the following evaluation
of the proof theoretic strength of intrinsic theories, which turns out to be surprisingly
modest.

Theorem 6.2. (Arithmetic interpretability) Every intrinsic theory is interpretable in PRA∗.

As will become clear from the proof of Theorem 6.3 below, Theorem 6.2 depends on
our avoiding infinite-branching type constructions, such as W-types.

6.2. Representing data by numeric functions. We posit canonical primitive-recursive
coding-scheme 〈· · ·〉 for sequences of natural numbers. More generally, we assume that basic
syntactic operations on finite data-terms, such as application and sub-term extraction, are
represented by primitive recursive functions. See e.g. [16, 31] for details, related notations,
and proofs of the closure of the primitive-recursive functions and predicates under major
operations, such as bounded quantification and minimization.

For each constructor c, let c♯ be a distinct numeric code. We say that a function
f : N → N represents a hyper-term t ∈ HC if f maps addresses a = 〈a0 · · · ak〉 ∈ N to
the code c♯ of the constructor c at address a of t, whenever such a constructor exists. (We
could insist that f(a) be some flag, say 0, when t has no constructor at address a, thereby

12See e.g. [38] for details and related discussions.
13I am grateful to Ulrich Kohlenbach for pointing me to that reference.

SEMANTIC COINDUCTIVE TYPING 17

determining f uniquely from t; but this would be of no use to us, and would imply the
undecidability of determining whether two computable functions represent the same finite
term.)

For example, the finite term p(e, 0(e)) is represented by f provided f〈〉 = p♯, f〈0〉 = e♯,
f〈1〉 = 0♯, and f〈1, 0〉 = e♯. Similarly, the infinite 01-word (0, 1)ω = 0101 · · · is represented
by f provided f〈02n〉 = 0♯ and f〈02n+1〉 = 1♯ (n ≥ 0).

It follows that an r-ary constructor c is represented by a functional c✷ provided

c✷(f1, . . . , fr)〈〉 = c#

c✷(f1, . . . , fr)(〈i〉 ∗ a) = fi(a) i = 1..r

6.3. Representing types by formulas. Consider a purely co-inductive data-system. One
can state that a hyper-term t is of type D by asserting the existence of a correct type
decoration of the nodes of t, with the root assigned typeD. The correctness of the decoration
can be expressed by a single numeric ∀, but we would need to have an existential function-
quantifier to state, in the first place, the existence of the decoration. We show here that no
such function quantification is needed. Referring to Definition 2.3, we have:

Theorem 6.3. Σn types are defined by Σ0
n formulas, and Πn types by Π0

n formulas.

Proof. The proof is by induction on n ≥ 1. If a type D is Σn, i.e. is in a bundle defined
inductively from Πn−1 types (where we take Π0 to be empty), then a hyper-term t has type
D iff there is a finite deduction establishing D(t) from typing-statements of the form Ej(tj),
with each Ej a type of lower rank, and tj = Π(t) for some deep-destructor Π. By IH each
Ej is defined by some Π0

n−1 formula E✷[tj] and the correctness of the finite type-derivation
is clearly a primitive-recursive predicate. Thus D is definable by existential quantification
over Π0

n−1 formulas, i.e. by a Σ0
n formula D✷.

Consider now a Πn type D. We shall concretize the general argument using a running
example, with types D and E defined by a common coinduction, and T a (previously defined)
Σn−1 type:

D(x) → ∃y, z x = p(y, z) ∧ D(y) ∧ E(z)

∨ ∃y, z x = p(y, z) ∧ T(y) ∧ D(z)

∨ ∃y x = f(y) ∧ E(y)

E(x) → ∃y, z x = p(y, z) ∧ E(y) ∧ D(z)

The decomposition rule for each type has a number of constructor-statements as choices, in
our example D has three and E one. Each choice determines a main constructor, and types
for the component. The spelling out of D into three options can be represented graphically:

D,p

T D

D,p

D E

D,f

E

D

18 D. LEIVANT

We continue an expansion of all typing options for a hyper-term in D. That is, we
construct a tree TD, where a node of height h consists of a finite tree (of height ≤ h), with
types at the leaves, and a pair of a type and a constructor at internal nodes. Each such
node represents a possible partial typing of a hyper-term of type D. The children of each
such node N are the local expansions of the lowermost-leftmost unexpanded leaf, with a
type in the bundle considered. (E.g., in our running example, the leaves with type T are not
expandable, and are left alone.) Put differently, the leaves are expanded in a breadth-first
order. (We refrain from expanding all expandable leaves at each step, because the resulting
tree, albeit finitely-branching, would have unbounded degree.)

D,p

T D

D,f

E,p

E D

D

D,p

T D

D,f

E

D,p

D E

D,p

T D,f

E

D,p

T

D,p

T D,p

D E

D,p

D,p E

D E

D,p

D,p E

T D

D,p

D,f E

E

A few nodes of height 3 are given here:

D,p

D,f E

E

D,p

D,f E,p

DEE

D,p

T D,p

D E

D,p

T D,p

D,p

D E

E

D

D,p

T D

D,f

E

D,p

D E

D,p

T D,f

E

D,p

T

D,p

D,p E

D E

D,p

D,p E

T D

D,p

T D

D,f

E,p

E D

Note that the tree TD is primitive recursive, i.e. there is a primitive-recursive function
that, for every address α, gives (a numeric code for) the node at address α.

A hyper-term t ∈ HC is consistent with a nodeN as above if its constructor-decomposition
is consistent with the tree of constructors in N , and for every deep-destructor Π, if N has

SEMANTIC COINDUCTIVE TYPING 19

at address Π a type E of lower rank, then Π(t) has type E. The consistency of a hyper-term
t with a node N is thus definable by a Σ0

n−1 formula.
A hyper-term has type D iff there is an unbounded (i.e. infinite or terminating) branch

of the tree T above, every node of which is consistent with t. The existence of such a branch
is equivalent, by Weak König’s Lemma, to the existence, for every h > 0, of a node N of
height h in TD, which is consistent with t. Since consistency of t with N is definable by a
Σ0
n−1 formula, this property is Π0

n.

6.4. Interpretation of terms. For an r-ary constructor c let ĉ denote the PR functional
that maps functions f0, . . . , fr−1 representing hyper-terms t0, . . . , tr−1 to a function repre-
senting the hyper-term obtained by rooting t0, . . . , tr−1 from the symbol c, i.e.

ĉ(f0, . . . , fr−1)〈〉 = c♯

ĉ(f0, . . . , fr−1)〈i〉 ∗ a = fi(a)

Recall that we posit the presence in the vocabulary of PRA∗ of identifiers for all PR
functionals, in particular ĉ.

Next, we define a mapping t 7→ t✷ from terms of T to terms of PRA∗. We posit that
the identifiers of PRA∗ for PR functions and functionals are disjoint from the program
identifiers of intrinsic theories.

• For a variable x of T (intended to range over hyper-terms) we let x✷ be a fresh unary
function variable of PRA∗ (intended to range over functions representing hyper-terms).
• For a constructor c of arity r ≥ 0, let (c(t1 . . . tr))

✷ =df ĉ(t
✷

1 . . . t
✷

r).
• For a program-function f of arity r ≥ 0 (i.e. a free variable denoting a function between
hyper-terms), let (f(t1 . . . tr))

✷ =df f
✷(t✷1 . . . t

✷

r), where f✷ is a fresh functional variable
of PRA∗, of arity r.

6.5. Interpretation of formulas. Finally, we define a mapping ϕ 7→ ϕ✷ from formulas
of T (possibly with program-functions) to formulas of PRA∗. Let Htm[g] be a PR formula
stating that the function g represents a hyper-term.

• (t = q)✷ is t✷ = q✷.
• (D(t))✷ is D✷[t✷], where D✷ is the arithmetic formula (possibly with free function
and functional variables) that defines D (Theorem 6.3).
• (ϕ ∧ ψ)✷ is ϕ✷ ∧ ψ✷, and similarly for the other connectives.
• (∀x ϕ)✷ is ∀x✷ Htm[x✷]→ ϕ✷; (∃x ϕ)✷ is ∃x✷ Htm[x✷] ∧ ϕ✷.

Proposition 6.4. The mapping ϕ 7→ ϕ✷ is semantically faithful; that is, for each formula

ϕ[~x,~f] of T, with free object variables among ~x and program-variables among ~f ,

A, [~x←~t, ~f←~g] |= ϕ

iff for all unary functions ~h over N representing (respectively) the hyper-terms ~t, and for

all functionals ~G representing (respectively) the functions ~g,

N , [~x✷←~h, ~f✷← ~G] |= ϕ✷

In particular, if ϕ is a closed formula of T, then ϕ is true in the canonical model A of the
data-system iff ϕ✷ is true in the standard model of PRA∗.

Proof. The proof is straightforward by structural induction on ϕ.

20 D. LEIVANT

6.6. An Interpretability Theorem. We finally show that the interpretation is proof-
theoretically faithful.

Theorem 6.5. If a closed formula ϕ is provable in the intrinsic theory T, then ϕ✷ is
provable in PRA∗.

More generally: if a formula ϕ[~x], with free variables among ~x, is provable in T, then
Htm[~x]→ ϕ✷[~x] is provable in PRA∗.

Proof. The proof proceeds by structural induction on derivations.

Logic: The propositional and quantifier inferences are trivially pressured by the interpre-
tation.

Separation: The case of the Separation Axioms is immediate by the definition of the
interpretation.

Inductive construction: Consider the construction axiom (2.2) for an inductive bundle
~D,

ψ1 ∨ · · · ∨ ψk → Di(x)

where each ψi is a constructor-statement. The interpretation of (2.2) is

Htm[~x✷]→ (ψ✷

1 ∨ · · · ∨ ψ
✷

k → D✷

i [x
✷])

with

ψ✷

i of the form ∃y✷1 . . . y
✷

r ∈ Htm x✷ = c✷(~y) ∧ Q✷

1 [y1] ∧ · · · ∧Q✷

r [yr]

Recall (from Theorem 6.3) that D✷

i [x
✷] states the existence of a finite type derivation

∆ of D[x✷] from statements of the form E[Π(x✷)] with E of lower rank and Π a deep-
destructor. Thus one of the decompositions ψ✷

i must be true for x✷, with the correctness
of the Q✷

j [yj] true by induction on the height of ∆.

Induction: Given an inductive bundle ~D, the interpretation of ~D-induction for formulas
~ϕ (5.1) is

D✷

i [x
✷] → (Const✷[~ϕ✷] ∧ Htm[x✷] → ϕ✷

i [x
✷]) (6.1)

Recall that D✷

i [x
✷] states the existence of a finite derivation ∆ of D(x✷) from formulas

of the form E(Π(x✷)), where E is of lower rank than D, and Π is a deep-destructor. The
conclusion of (6.1) is straightforward by cumulative (i.e. course-of-value) induction on
the height of ∆.

Coinductive deconstruction: A deconstruction axiom (2.5) for a coinductive bundle ~D
has the interpretation

D✷

i [x
✷] → ψ✷

1 ∨ · · · ∨ ψ
✷

k

where each ψi is a constructor-statement. Recall that the definition of D✷

i in this case
(Theorem 6.3) refers to the tree TD of expansion-options for objects of type D. Contin-
uing our running example in the proof of Theorem 6.3, D✷

i [x
✷] implies the existence, at

every height, of an expansion of D which is consistent with the structure of x✷. Nodes
of height 2 which are consistent with x✷ give its decomposition, say as p(y✷, z✷). One of
these nodes must have above it nodes of arbitrary height consistent with x✷.14 If that
node is the leftmost, giving T(y✷) and D(z0), then we have D✷[z✷] by assumption, and
T✷[y✷] holds by the definition of D✷ (since the node for T(y✷) is a leaf of TD).

14Note that we do not use here Weak König’s Lemma, as we do not assert the existence of an infinite
branch as a consequence.

SEMANTIC COINDUCTIVE TYPING 21

Coinduction: Given a coinductive bundle ~D, the interpretation of ~D-coinduction for for-
mulas ~ϕ (2.5) is

ϕ✷

i [x
✷] → ((Deconst✷[~ϕ✷] ∧Htm[x✷]) → D✷

i [x
✷]) (6.2)

The conclusion of (6.2) is established by showing that the tree TD (see the proof of
Theorem 6.3) has a node consistent with x✷ at any given height h. This follows outright
from the assumptions of (6.2) by induction on h.

7. Applications and further developments

Intrinsic theories provide a minimalist framework for reasoning about data and computa-
tion. The benefits were already evident when dealing with inductive data only, including a
characterization of the provable functions of Peano’s Arithmetic without singling out any
functions beyond the constructors, a particularly simple proof of Kreisel’s Theorem that
classical arithmetic is Π0

2-conservative over intuitionistic arithmetic [19], and a particularly
simple characterization of the primitive-recursive functions [20]. The latter application
guided a dual characterization of the primitive corecursive functions in terms of intrinsic
theories with positive coinduction [21].

Intrinsic theories are also related to type theories, via Curry-Howard morphisms, pro-
viding an attractive framework for extraction of computational contents from proofs, using
functional interpretations and realizability methods. The natural extension of the frame-
work to coinductive methods, described here, suggests new directions in extracting such
methods for coinductive data as well. Recent work by Berger and Seisenberg [4] has already
explored similar ideas.

Finally, intrinsic theories are naturally amenable to ramification, leading to a trans-
parent Curry-Howard link with ramified recurrence [2, 18] as well as ramified corecurrence
[28].

References

[1] Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Peter D. Mosses, Donald
Sannella, and Andrzej Tarlecki. CASL: the common algebraic specification language. Theor. Comput.

Sci., 286(2):153–196, 2002.
[2] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the poly-time

functions, 1992.
[3] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Term rewriting for normalization by eval-

uation. Information and Computation, 183(1):19–42, 2003.
[4] Ulrich Berger and Monika Seisenberger. Proofs, programs, processes. Theory Comput. Syst., 51(3):313–

329, 2012.
[5] Alonzo Church. An unsolvable problem of elementary number theory. American Journal of Mathematics,

58:345–363, 1936.
[6] Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5:56–68,

1940.
[7] Haskell Curry. First properties of functionality in combinatory logic. Tohoku Mathematical Journal,

41:371–401, 1936.
[8] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, Berlin, 1995.
[9] Kurt Gödel. On undecidable propositions of formal mathematical systems. In Martin Davis, editor, The

Undecidable. Raven, New York, 1965. Lecture notes taken by Kleene and Rosser at the Institute for
Advanced Study, 1934.

22 D. LEIVANT

[10] Yuri Gurevich. Logic and the challenge of computer science. In trends in theoretical computer science,
pages 1–57. Computer Science Press, Rockville, MD, 1988.

[11] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, Cabridge, MA, 2000.
[12] Jacque Herbrand. Sur la non-contradiction de l’arithmtique. Journal für die reine und angewandte

Mathematik, 1932:1–8, 1932. English translation in [41] 618–628.

[13] László Kalmár. Über ein Problem betreffend die Definition des Begriffes des allgemeine-rekursiven
Funktion. Zeit. mathematische Logik u Grund. der Mathematik, 1:93–96, 1955.

[14] Stephen C. Kleene. General recursive functions of natural numbers. Mathematische annalen, 112:727–
742, 1936.

[15] Stephen C. Kleene. Lambda definability and recursiveness. Duke Mathematical Journal, 2:340–353, 1936.
[16] Stephen C. Kleene. Introduction to Metamathematics. Wolters-Noordhof, Groningen, 1952.
[17] Stephen C. Kleene. Formalized Recursive Functions and Formalized Realizability, volume 89 of Memoirs

of the AMS. American Mathematical Society, Providence, 1969.
[18] Daniel Leivant. Ramified recurrence and computational complexity I: Word recurrence and poly-time.

In Peter Clote and Jeffrey Remmel, editors, Feasible Mathematics II, Perspectives in Computer Science,
pages 320–343. Birkhauser-Boston, New York, 1994.

[19] Daniel Leivant. Intrinsic reasoning about functional programs I: First order theories. Annals of Pure

and Applied Logic, 114:117–153, 2002.
[20] Daniel Leivant. Intrinsic reasoning about functional programs II: Unipolar induction and primitive-

recursion. Theor. Comput. Sci., 318(1-2):181–196, 2004.
[21] Daniel Leivant and Ramyaa Ramyaa. Implicit complexity for coinductive data: a characterization of

corecurrence. In Jean-Yves Marion, editor, DICE, volume 75 of EPTCS, pages 1–14, 2011.
[22] Yiannis N. Moschovakis. The formal language of recursion. J. Symb. Log., 54(4):1216–1252, 1989.
[23] Till Mossakowski, Lutz Schröder, Markus Roggenbach, and Horst Reichel. Algebraic-coalgebraic speci-

fication in CoCasl. J. Log. Algebr. Program., 67(1-2):146–197, 2006.
[24] Peter D. Mosses. CASL Reference Manual, The Complete Documentation of the Common Algebraic

Specification Language, volume 2960 of Lecture Notes in Computer Science. Springer, 2004.
[25] Peter Padawitz. Swinging types=functions+relations+transition systems. Theor. Comput. Sci., 243(1-

2):93–165, 2000.
[26] Giuseppe Peano. Arithmetices principia, novo methodo exposita. Fratres Bocca, Torino, 1889. English

translation in [41], 83–97.
[27] Vaughan R. Pratt. Semantical considerations on floyd-hoare logic. In FOCS, pages 109–121. IEEE

Computer Society, 1976.
[28] Ramyaa Ramyaa and Daniel Leivant. Ramified corecurrence and logspace. Electr. Notes Theor. Comput.

Sci., 276:247–261, 2011.
[29] Horst Reichel. A uniform model theory for the specification of data and process types. In Didier Bert,

Christine Choppy, and Peter D. Mosses, editors, WADT, volume 1827 of Lecture Notes in Computer

Science, pages 348–365. Springer, 1999.
[30] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.
[31] H.E. Rose. Subrecursion. Clarendon Press (Oxford University Press), Oxford, 1984.
[32] Jan Rothe, Hendrik Tews, and Bart Jacobs. The coalgebraic class specification language CCSL. J. UCS,

7(2):175–193, 2001.
[33] Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Program. Lang. Syst.,

31(4), 2009.
[34] Lutz Schröder. Bootstrapping inductive and coinductive types in HasCASL. Logical Methods in Com-

puter Science, 4(4), 2008.
[35] Helmut Schwichtenberg and Stanley S. Wainer. Proofs and Computations. Perspectives in logic. Cam-

bridge University Press, 2012.
[36] Krister Segerberg. A completeness theorem in the modal logic of programs (preliminary report). Notices

American matheamtical society, 24:A–552, 1977.
[37] Jonathan Seldin. Curry’s anticipation of the types used in programming languages. In Proceedings of

the Annual Meeting of the Canadian Society for History and Philosophy of Mathematics, pages 143–163,
Toronto, 2002.

[38] S. Simpson. Subsystems of Second-Order Arithmetic. Springer-Verlag, Berlin, 1999.

SEMANTIC COINDUCTIVE TYPING 23

[39] A.S. Troelstra and D. van Dalen. Constructivism in mathematics: an introduction. Vol. 2. Construc-
tivism in Mathematics. North-Holland, 1988.

[40] Alan M. Turing. Computability and lambda-definability. Journal of Symbolic Logic, 2:153–163, 1937.
[41] J. van Heijenoort. From Frege to Gödel, A Source Book in Mathematical Logic. Harvard University

Press, Cambridge, MA, 1967.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. A motivation: termination of equational programs

	2. Data systems
	2.1. Symbolic data
	2.2. Inductive data systems
	2.3. Coinductive deconstruction rules
	2.4. General data-systems
	2.5. Examples of data-systems

	3. Programs over data-systems
	3.1. Equational programs
	3.2. Operational semantics of programs
	3.3. Equational vs. Turing computation

	4. Matching Tarskian semantics and operational semantics
	4.1. D-correct structures
	4.2. Decomposition in data-correct structures
	4.3. Typing statements
	4.4. Canonicity for inductive data
	4.5. Canonicity for Data Systems

	5. Intrinsic theories
	5.1. Intrinsic theories for inductive data
	5.2. Intrinsic theories for arbitrary data-systems

	6. Proof theoretic strength
	6.1. Innocuous function quantification
	6.2. Representing data by numeric functions
	6.3. Representing types by formulas
	6.4. Interpretation of terms
	6.5. Interpretation of formulas
	6.6. An Interpretability Theorem

	7. Applications and further developments
	References

