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Abstract. We define and study LNL polycategories, which abstract the judgmental struc-
ture of classical linear logic with exponentials. Many existing structures can be represented
as LNL polycategories, including LNL adjunctions, linear exponential comonads, LNL mul-
ticategories, IL-indexed categories, linearly distributive categories with storage, commuta-
tive and strong monads, CBPV-structures, models of polarized calculi, Freyd-categories,
and skew multicategories, as well as ordinary cartesian, symmetric, and planar multicat-
egories and monoidal categories, symmetric polycategories, and linearly distributive and
*-autonomous categories. To study such classes of structures uniformly, we define a notion
of LNL doctrine, such that each of these classes of structures can be identified with the
algebras for some such doctrine. We show that free algebras for LNL doctrines can be pre-
sented by a sequent calculus, and that every morphism of doctrines induces an adjunction
between their 2-categories of algebras.
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1. Introduction

When presenting logics and type theories, it is generally useful to separate the structural
rules, such as exchange, weakening, contraction, identity, and cut, from the logical rules
governing particular connectives. This separation of concerns can be reflected in cate-
gorical semantics by starting with a kind of multicategory [Lam69, Her00, Lei04] or poly-
category [Sza75] encapsulating the structural rules, in which we can formulate universal
properties of objects that correspond to the connectives.

A multicategory is like a category, but allows the domain of a morphism to be a finite
list of objects; a polycategory allows both the domain and codomain to be such a list. Such
morphisms correspond respectively to intuitionistic sequents A1, . . . , Am ` B and classical
sequents A1, . . . , Am ` B1, . . . , Bn. One can then formulate universal properties for “tensor
products” as representing objects for such morphisms, generalizing the classical characteri-
zation of the tensor product of vector spaces as a representing object for multilinear maps.

The choice of structural rules in a logic is reflected by an action on the morphisms of
a multi- or polycategory that modifies the elements in the domain or codomain lists. For
instance, the exchange rule is reflected by an operation taking any morphism (Γ, A,B,∆)→
C to a morphism (Γ, B,A,∆)→ C. This leads to different kinds of multi- and polycategory,
such as the following.

• Cartesian multicategories (a.k.a. abstract clones) correspond to intuitionistic nonlinear
logic, with all structural rules. A cartesian multicategory with enough representing ob-
jects is equivalent to a cartesian monoidal category or a cartesian closed category.
• Symmetric multicategories correspond to intuitionistic multiplicative-additive linear logic,

with exchange but no weakening or contraction. A symmetric multicategory with enough
representing objects is equivalent to a symmetric monoidal category, possibly closed.
• Symmetric polycategories correspond to classical multiplicative-additive linear logic. A

symmetric polycategory with enough representing objects is equivalent to a linearly dis-
tributive category or a ∗-autonomous category.

Multicategories and polycategories also have advantages from a purely category-theoret-
ic standpoint. They can simplify coherence problems, since operations defined by universal
properties generally do not require explicit coherence axioms. They can also enable the
unification of different-looking structures in a larger context; for instance, monoidal cat-
egories and closed categories can both be represented as multicategories [Her00, Man12],
and the Chu and Dialectica constructions are both instances of one polycategorical opera-
tion [Shu20].

It seems, however, that no polycategorical structure exists in the literature to corre-
spond to classical linear logic with exponentials. Structured categories with exponential
modalities have certainly been studied, such as lnl adjunctions [Ben95] and linearly dis-
tributive categories with storage [BCS96]. And a multicategorical version, corresponding to
intuitionistic linear logic with exponentials, is suggested in [HT21]. But the polycategorical
case appears to be missing.

In this paper we fill this gap by defining LNL polycategories. An lnl polycategory has
two classes of objects, called linear and nonlinear. The linear objects form a symmetric
polycategory, while the nonlinear objects form a cartesian multicategory, and there are
additional morphisms relating the two classes of objects, enabling a description of the
modalities ! and ? by universal properties. This can be regarded as a semantic counterpart of
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split-context presentations of linear logic, such as [Ben95, Bar96, Wad94] in the intuitionistic
case and [Gir93] in the classical one.

Like their syntactic counterpart of full classical linear logic, lnl polycategories are an
extremely rich structure. In addition to lnl adjunctions and linearly distributive categories
with storage, they include cartesian multicategories (if all objects are nonlinear), symmetric
polycategories (if all objects are linear), symmetric multicategories (if all objects are linear
and all codomains are unary), and CBPV structures (if all linear codomains are unary and
all linear domains are subunary). Thus, any structured category that can be represented by
any of these multi- or polycategorical notions can also be regarded as an lnl polycategory.

This suggests that lnl polycategories should provide a unifying context to compare
different kinds of structured category, and to study the correspondence between logic and
category. To facilitate this, we define a notion of LNL doctrine D, whose “algebras” (which
we call D-categories) are lnl polycategories satisfying certain object and arity restrictions
and in which objects having certain universal properties exist. Inspired by [Her04, LSR17,
BZ20], we express these universal properties fibrationally : an lnl doctrine D is an lnl
polycategory |D| equipped with a collection of distinguished “cones”, and a D-category is
an lnl polycategory P equipped with a functor P → |D| admitting a “cartesian” lift for
each distinguished cone. We also incorporate a “well-sortedness” condition that allows a
restriction to Kleisli adjunctions if desired. In this way, we can represent all of the following
kinds of structured category, and many more, as the algebras for lnl doctrines:

• Cartesian multicategories, symmetric multicategories, symmetric polycategories, lnl mul-
ticategories, and skew multicategories.
• Symmetric monoidal categories, closed symmetric monoidal categories, and symmetric

closed categories.
• Cartesian monoidal categories and cartesian closed categories.
• Cartesian monoidal categories with a commutative strong monad.
• Symmetric monoidal categories with a strong monad.
• CBPV adjunction models, EEC+ models, and ECBV models.
• Freyd-categories and Freyd-multicategories.
• Linearly distributive categories and ∗-autonomous categories.
• lnl adjunctions, possibly closed or ∗-autonomous.
• Symmetric monoidal categories with a linear exponential comonad, linearly distributive

categories with storage, and ∗-autonomous categories with storage.
• Any of the above with any specified family of limits and/or colimits.

We also argue that lnl doctrines provide a unifying context to study substructural log-
ics, and to compare the corresponding kinds of monoidal category. Specifically, we will use
a well-known iterative category-theoretic construction, known as the small object argument,

to present the free D-category ŜD generated by an input datum S that we call a D-sketch.
This has the following two consequences.

Firstly, from this construction we can extract a syntactic sequent calculus that also
presents free D-categories. The iterative small object argument corresponds naturally to
the inductive definition of sequent calculus derivations. The structural rules arise since
each stage is an lnl polycategory, while the logical rules are inserted by iterative pushouts
that enforce the existence of objects with universal properties. Thus, there is a precise
correspondence between the syntactic and semantic versions of the separation of concerns
between structural and logical rules.
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Secondly, we use the free D-category on a sketch to show that any morphism of doctrines
F : D1 → D2 induces a pseudo 2-adjunction between D1-categories and D2-categories. That

is, any D2-category T has an underlying D1-category F̂∗T , and any D1-category S generates

a free D2-category F̂∗S. Thus, lnl doctrines also supply a uniform way to relate different
sorts of monoidal category, potentially with exponential monads and comonads.

2. lnl polycategories

The different kinds of multicategories mentioned in Section 1, corresponding to logics with
different structural rules, are all instances of a well-developed theory of “generalized mul-
ticategories” parametrized by a monad on a bicategory or double category of spans or
profunctors.1 This theory was used for instance in [HT21] to begin defining an analogue
of lnl polycategories for intuitionistic linear logic (see our discussion of “lnl multicate-
gories” below). lnl polycategories ought to be an instance of a similar theory of “gener-
alized polycategories”, but unfortunately, no such general theory has been formulated yet
(though [Gar08] provides strong evidence for its existence). Thus, in this paper we simply
give the definitions explicitly.

Definition 2.1. A linear-nonlinear (lnl) polycategory P consists of:

(i) A set of nonlinear objects, which we denote by letters near the end of the Roman
alphabet such as X,Y, Z. We denote finite lists of nonlinear objects by the Greek
letters Θ,Υ. If (X1, . . . , Xm) is such a list and σ : {1, . . . , n} → {1, . . . ,m} is a
function, we write σ : (X1, . . . , Xm)→ (Xσ1, . . . , Xσn) and call it a structural map.

(ii) For each Θ, X, a nonlinear hom-set P
(
Θ ;X

)
containing nonlinear morphisms,

with a functorial action by any structural map σ : Θ→ Υ:

(−)σ : P
(
Υ ;X

)
→ P

(
Θ ;X

)
.

(iii) Compositions and identities for the nonlinear hom-sets

◦X : P
(
Θ1, X,Θ2 ; Y

)
× P

(
Υ ;X

)
→ P

(
Θ1,Υ,Θ2 ; Y

)
1X ∈ P

(
X ;X

)
satisfying the multicategory axioms and equivariant for the structural actions.

(iv) A set of linear objects, which we denote by letters near the beginning of the Roman
alphabet such as A,B,C. We denote finite lists of linear objects by the Greek letters
Γ,∆. If (A1, . . . , An) is such a list and τ : {1, . . . , n} ∼−→ {1, . . . , n} is a permutation,
we write τ : (A1, . . . , An) ∼−→ (Aσ1, . . . , Aσn) and call it a structural permutation.

(v) For each Θ and Γ,∆, a linear hom-set P
(
Θ | Γ ; ∆

)
containing linear morphisms,

with a functorial action by a structural map σ : Θ′ → Θ and structural permutations
τ : Γ′ → Γ and ρ : ∆→ ∆′:

ρ(−)σ|τ : P
(
Θ | Γ ; ∆

)
→ P

(
Θ′ | Γ′ ; ∆′

)
.

(vi) For each A an identity morphism 1A ∈ P
(
| A ;A

)
.

(vii) Composition morphisms

◦A : P
(
Θ | Γ1, A,Γ2 ; ∆

)
× P

(
Θ′ | Γ′ ; ∆′1, A,∆

′
2

)
−→ P

(
Θ,Θ′ | Γ1,Γ

′,Γ2 ; ∆′1,∆,∆
′
2

)
◦X : P

(
Θ1, X,Θ2 | Γ ; ∆

)
× P

(
Υ ;X

)
−→ P

(
Θ1,Υ,Θ2 | Γ ; ∆

)
1See [CS10] for a general framework, building on much prior work cited therein.
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that are associative, unital, and equivariant in all reasonable ways. (Note that
by equivariance, all the compositions are uniquely determined by those in which
Θ2,Γ2,∆

′
2 are empty.)

Definition 2.2. A functor H : P → Q between lnl polycategories consists of functions
between their linear and nonlinear objects and morphisms, preserving domains, codomains,
structural actions, identities, and composites. A transformation α : H ⇒ K : P → Q
between functors consists of:

(i) For each nonlinear object X of P, a nonlinear morphism αX ∈ Q
(
HX ;KX

)
.

(ii) For each linear object A of P, a linear morphism αA ∈ Q
(
| HA ;KA

)
.

(iii) For each nonlinear f ∈ P
(
Θ ; Y

)
, we have αY ◦Hf = Kf ◦ (αΘ).2

(iv) For each linear f ∈ P
(
Θ | Γ ; ∆

)
, we have (α∆) ◦Hf = Kf ◦ (αΘ | αΓ).

This defines a strict 2-category lnlPoly.

lnl polycategories are such a rich structure that they include many better-known struc-
tures as special cases. (The reader unfamiliar with any of the structures mentioned below
is free to take the asserted characterization as a definition.)

• Symmetric polycategories can be identified with lnl polycategories having no nonlin-
ear objects (and hence no nonlinear morphisms). These model the judgmental structure
of classical multiplicative-additive linear logic.
• Symmetric multicategories can be identified with lnl polycategories having no non-

linear objects and in which all (linear) morphisms are co-unary, i.e. have a codomain of
length 1. These model the judgmental structure of intuitionistic multiplicative-additive
linear logic.
• Even more degenerately, ordinary categories can be identified with lnl polycategories

having no nonlinear objects and in which all (linear) morphisms are both unary and
co-unary.
• Cartesian multicategories can be identified with lnl polycategories having no linear

objects and no linear morphisms (here the former does not quite imply the latter, as there
are homsets P

(
Θ | ;

)
). These model the judgmental structure of intuitionistic (nonlinear)

logic.
• By an lnl multicategory we will mean an lnl polycategory in which all linear mor-

phisms are co-unary. These model the judgmental structure of intuitionistic linear logic
(with exponentials); they do not quite appear in the literature, though a structure like
them is the goal of [HT21] (see Example 3.10).

Remark 2.3. In fact, each of the above five subcategories is a slice category lnlPoly/S
for some subterminal object S. The terminal object of lnlPoly has one linear object, one
nonlinear object, and all hom-sets singletons; thus a subterminal object has at most one
object of each sort and each hom-set a subsingleton.

The slice category lnlPoly/S over a subterminal is thus the full subcategory of lnlPoly
consisting of those objects P whose unique map to the terminal object factors through S.
This means that P has only objects of the sorts that S does, and only morphisms of the
arity and co-arity that S does.

For example, let sympoly be the subterminal object with one linear object, no non-
linear objects, and all linear homsets singletons. Then lnlPoly/sympoly consists of lnl

2Here if Θ = (X1, . . . , Xn) then Kf ◦ (αΘ) denotes (· · · (Kf ◦X1 αX1)◦X2 αX2 · · · )◦Xn αXn , and similarly
elsewhere.
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polycategories with no nonlinear objects, i.e. symmetric polycategories. We can argue sim-
ilarly for the following suggestively-named subterminals:

• symmulti, which has one linear object, no nonlinear objects, co-unary linear homsets
singletons, and others empty.
• cat, which has one linear object, no nonlinear objects, and only the identity morphism.
• cartmulti, which has one nonlinear object, no linear objects, all nonlinear homsets

singletons, and all linear homsets empty.
• lnlmulti, which has one linear object, one nonlinear object, all nonlinear homsets and

co-unary linear homsets singletons, and others empty.

For consistency, we may write the terminal object of lnlPoly as lnlpoly.
We will consider other slices of lnlPoly later in the paper. For ease of reference, Table 3

on page 54 summarizes the definitions of all the small lnl polycategories over which we
slice.

The slice category over any subterminal object S is coreflective, with coreflector (−)×S.
Thus, all five of these subcategories are coreflective. In particular, any lnl polycategory
P has an underlying symmetric polycategory, which we denote PL, and an underlying
cartesian multicategory, which we denote PNL.

Remark 2.4. With a little more work, we can also represent planar (i.e. non-symmetric)
multicategories inside lnlPoly. Specifically, any planar multicategoryM freely generates a
symmetric multicategory ΣM, which has the same objects asM, and such that a morphism
in ΣM(Γ;B) is a pair (f, σ) where f ∈M(Γ′;B) and σ : Γ ∼−→ Γ′ is a structural permutation.
The functor Σ thus defined from planar multicategories to symmetric multicategories (or
to lnl polycategories) is faithful but not full: the morphisms in its image are those that
preserve the permutations σ. But we can enforce this condition by restriction to a suitable
slice.

Let plmulti be the image under Σ of the terminal planar multicategory; thus it has
one (linear) object, and its morphisms with arity n and co-arity 1 are labeled by permu-
tations of n objects. Then each ΣM comes with a canonical projection to plmulti that
records the permutations σ, and a morphism ΣM → ΣM′ is in the image of Σ precisely
when it commutes with these projections. Thus, the category of planar multicategories is
equivalent to the slice category of the category of symmetric multicategories, and hence also
of lnlPoly, over plmulti. Note that unlike the slices considered in Remark 2.3, plmulti
is not subterminal, corresponding to the fact that Σ is not full.

Remark 2.5. An analogous construction is not possible for planar polycategories; freely
adding symmetric actions to a planar polycategory does not yield a symmetric one, as not
all composites are definable [Kos05, Example 1.3]. Informally, the gap between planar and
symmetric is wider in the classical case than in the intuitionistic one. This is one reason
that in this paper we focus on the symmetric case.

Remark 2.6. As pointed out by a referee, it is natural to also wonder about cyclic multi-
categories [GK95, CGR14, HRY19, DCH21]. These behave very differently, because their
cyclic action mixes domains and codomains — generally with an involution applied to the
objects — thereby enabling them to represent morphisms with codomains of arbitrary ar-
ity as well. Hence, as shown in [Shu20, §7], cyclic symmetric multicategories are almost
equivalent to symmetric polycategories with strict duals (“∗-polycategories” [Hyl02]). The
situation with cyclic planar multicategories is less clear, but they seem likely to be related
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to planar polycategories, and hence would suffer from problems akin to those in described
in Remark 2.5.

Remark 2.7. As noted in Section 1, lnl polycategories are a semantic counterpart of “split-
context” syntaxes such as [Ben95, Bar96, Gir93]. It may thus be surprising that although
we are modeling classical linear logic, we have nevertheless only split the left-hand context,
as is done in intuitionistic linear syntaxes such as [Ben95, Bar96], rather than splitting both
contexts as in [Gir93]. There are two reasons for this.

The first is that it is simpler and sufficient. As we will see below, even with only one
split context we can still characterize both modalities ! and ? by universal properties. This
is a polycategorical version of the observation that to model classical linear logic it suffices
to have an lnl adjunction (which models intuitionistic linear logic) whose linear category is
∗-autonomous; there is no need to add a second nonlinear category. Moreover, most natural
examples have this form anyway.

By the way, note that the apparent asymmetry in splitting the left-hand context, rather
than the right-hand one, is really just an artifact of notation. We could equally well write
P
(
Θ | Γ ; ∆

)
as P

(
Γ ; ∆ | Θ

)
, reversing the direction of the nonlinear morphisms so they

form a “co-cartesian co-multicategory”. But splitting the left-hand context is more intuitive
and remains closer to the natural examples.

The second reason is that “doubly-split” lnl polycategories, at least for one definition of
such, are actually a special case of singly-split ones. Let dblsplit be the lnl polycategory
with one linear object, two nonlinear objects, and all homsets singletons. Then an object
of the slice category lnlPoly/dblsplit is an lnl polycategory equipped with a partition
of its nonlinear objects into two subsets, which we may call the “left-hand objects” and the
“right-hand objects”. Accordingly, if Θ consists of left-hand objects and Υ of right-hand
objects, we can choose to denote the linear homset P

(
Θ,Υ | Γ ; ∆

)
by P

(
Θ | Γ ; ∆ | Υ

)
.

Similarly, if Υ consists of right-hand objects and Z is a right-hand object, we can write the
nonlinear homset P

(
Υ;Z

)
as P

(
Z ;Υ

)
, thereby regarding the right-hand objects as forming

a co-cartesian co-multicategory, which acts on the linear homsets P
(
Θ | Γ ; ∆ | Υ

)
on the

right.
The only possibly-surprising thing about this notion of “doubly-split lnl polycategory”

is that we also have “mixed nonlinear homsets” P
(
Θ,Υ;X

)
(which might perhaps be better

written P
(
Θ ; X ; Υ

)
) where Θ consists of left-hand objects, Υ of right-hand objects, and

X could be of either sort. However, such mixed morphisms arise naturally as the result
of weakening a “pure” nonlinear morphism of either handedness by objects of the other
handedness, and once we have these there is no reason there couldn’t be other morphisms
of the same sort as well (see, for instance, Proposition 3.18).

Note also that there is a morphism to dblsplit from the terminal object lnlpoly (in
fact, two of them), so that our category lnlPoly is also equivalent to a slice category of this
category lnlPoly/dblsplit of doubly-split lnl polycategories. Thus, formally we could
take either one as the primitive notion and define the other in terms of it. We have chosen
the singly-split notion as primitive, since it is, as noted above, simpler and sufficient.

We will see some more examples of lnl polycategories in Section 3, but first we define
the basic universal properties that appear therein. Inspired by [BZ20], we say that a mor-
phism ψ in an lnl polycategory containing an object R (linear or nonlinear) in its domain
or codomain is universal in R if composing along R induces bijections on homsets of all
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possible types. For the five possible combination of types for ψ and R, this specializes to
the following.

Definition 2.8. Let X be a nonlinear object and A a linear object.

• A nonlinear morphism ψ ∈ P
(
Θ ; X

)
is universal in X if composing with ψ induces

bijections

P
(
Θ′, X ; Y

) ∼−→ P(Θ′,Θ ; Y
)

P
(
Θ′, X | Γ ; ∆

) ∼−→ P(Θ′,Θ | Γ ; ∆
)
.

• A nonlinear morphism ψ ∈ P
(
Θ, X ; Y

)
is universal in X if composing with ψ induces

bijections

P
(
Θ′ ;X

) ∼−→ P(Θ,Θ′ ; Y ).
• A linear morphism ψ ∈ P

(
Θ, X | Γ ; ∆

)
is universal in X if composing with ψ induces

bijections

P
(
Θ′ ;X

) ∼−→ P(Θ,Θ′ | Γ ; ∆
)
.

• A linear morphism ψ ∈ P
(
Θ | Γ ; ∆, A

)
is universal in A if composing with ψ induces

bijections

P
(
Θ′ | Γ′, A ; ∆′

) ∼−→ P(Θ′,Θ | Γ′,Γ ; ∆′,∆
)
.

• A linear morphism ψ ∈ P
(
Θ | Γ, A ; ∆

)
is universal in A if composing with ψ induces

bijections

P
(
Θ′ | Γ′ ; ∆′, A

) ∼−→ P(Θ′,Θ | Γ′,Γ ; ∆′,∆
)
.

A functor is said to preserve a certain kind of universal morphism if it takes any such
morphism to a similarly universal morphism.

Universal morphisms are unique up to unique isomorphism:

Proposition 2.9. If ψ ∈ P
(
Θ | Γ ; ∆, A

)
and ψ′ ∈ P

(
Θ | Γ ; ∆, A′

)
are universal in A and

A′ respectively, then there is a unique isomorphism φ : A ∼= A′ such that φ ◦A ψ = ψ′; and
similarly for other kinds of universal morphism.

Proof. As usual, φ is determined by applying the universal property of ψ to ψ′, and con-
versely for its inverse.

We now explore the most important cases of universality, starting with versions of the
polycategorical representability conditions from [CS97, BZ20]. For clarity and conciseness,
we indicate the object in which a universal morphism is universal by underlining it, e.g.
ψ ∈ P

(
Θ | Γ, A ; ∆

)
.

Definition 2.10. Let A,B be linear objects in an lnl polycategory P.

• A tensor product of A,B is a universal morphism ψ ∈ P
(
| A,B ;A ⊗ B

)
.

• A cotensor product of A,B is a universal morphism ψ ∈ P
(
| A`B ;A,B

)
.

• A unit 1 is a universal morphism ψ ∈ P
(
| ; 1
)
.

• A counit ⊥ is a universal morphism ψ ∈ P
(
| ⊥ ;

)
.

• A dual of A is a universal morphism ψ ∈ P
(
| A,A∗ ;

)
.

We say that P “has ⊗” if any A,B have a tensor product, and so on.
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A dual is equivalently a universal morphism ψ ∈ P
(
| ;A,A∗

)
; see e.g. [BZ20].

These universal properties specialize in the case Θ = ∅ to the like-named ones in the
symmetric polycategory PL. Thus, as shown in [CS97, BZ20], if an lnl polycategory has
all ⊗,`,1,⊥ then PL is a linearly distributive category, and if it also has all (·)∗ then
PL is ∗-autonomous [Bar79, Bar91, CS97].

We similarly have tensors and units of nonlinear objects, but these turn out to coin-
cide with cartesian products, by the following folklore analogue of the equivalence between
positive and negative presentations of product types in structural logic.

Proposition 2.11. The following are equivalent for objects X,Y and X × Y of an lnl
polycategory.

(i) There is a universal morphism ψ ∈ P
(
X,Y ;X × Y

)
. In other words, composing with

ψ induces bijections

P
(
Θ, X × Y ; Z

) ∼−→ P(Θ, X, Y ; Z
)

P
(
Θ, X × Y | Γ ; ∆

) ∼−→ P(Θ, X, Y | Γ ; ∆
)
.

(ii) There is a morphism ψ ∈ P
(
X,Y ;X × Y

)
inducing bijections

P
(
Θ, X × Y ; Z

) ∼−→ P(Θ, X, Y ; Z
)

(iii) There are π1 ∈ P
(
X × Y ;X

)
and π2 ∈ P

(
X × Y ; Y

)
inducing bijections

P
(
Θ ;X × Y

) ∼−→ P(Θ ;X
)
× P

(
Θ ; Y

)
.

(iv) There are morphisms ψ ∈ P
(
X,Y ; X × Y

)
and π1 ∈ P

(
X × Y ; X

)
and π2 ∈

P
(
X × Y ; Y

)
such that the composites

(X,Y )
ψ−→ X × Y π1−→ X (X,Y )

ψ−→ X × Y π2−→ Y

(X × Y,X × Y )
(π1,π2)−−−−→ (X,Y )

ψ−→ X × Y

are the image of identities under structural maps.

Proof. Of course (i) implies (ii), so it suffices to prove that (ii) and (iii) each imply (iv) and
that (iv) implies (i) and (iii).

Assuming (ii), let π1 : X × Y → X be the image of 1X under the composite

P
(
X ;X

)
→ P

(
X,Y ;X

) ∼−→ P(X × Y ;X
)
,

of a structural map and the universal property of (ii), and similarly for π2. The equations
in (iv) hold by the universal property.

Assuming (iii), ψ : (X,Y )→ X × Y is the image of (1X , 1Y ) under the composite

P
(
X ;X

)
× P

(
Y ; Y

)
→ P

(
X,Y ;X

)
× P

(
X,Y ; Y

)
→ P

(
X,Y ;X × Y

)
of structural maps with the universal property of (iii). Again, the equations in (iv) hold by
the universal property.

Conversely, assuming (iv), the right-to-left directions of (i) are composing with (π1, π2)
and a structural map, while the right-to-left direction of (iii) is composing with ψ and a
structural map. These are inverses by the equations in (iv).
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We will refer to such an X × Y as a product of X and Y . There is an analogue for
nullary products and terminal nonlinear objects, denoted 1 (not to be confused with the
linear 1). By Proposition 2.11(iii), if all ×, 1 exist then PNL is a cartesian monoidal
category. Note that these are essentially facts about cartesian multicategories, which
extend automatically to an lnl polycategory P from PNL.

Corollary 2.12. Any functor of lnl polycategories preserves nonlinear products and ter-
minal objects.

Proof. The equations in Proposition 2.11(iv) are preserved by any functor.

Remark 2.13. If we changed notation as suggested in Remark 2.7 to regard the nonlinear
objects (or the “right-hand” ones) as instead forming a co-cartesian co-multicategory, then
the identical operations × and 1 would instead behave like a coproduct and an initial object
(and hence would be better denoted + and ∅).

We now consider the exponential modalities (a.k.a. storage modalities) that relate
linear and nonlinear objects.

Definition 2.14. Let X be a nonlinear object and A a linear one.

• An F-modality is a universal morphism ψ ∈ P
(
X | ;FX

)
.

• A U-modality is a universal morphism ψ ∈ P
(
UA | ;A

)
.

• An
F

-modality is a universal morphism ψ ∈ P
(
X | F

X ;
)
.

• A

U

-modality is a universal morphism ψ ∈ P
( U

A | A ;
)
.

Thus, the exponential modalities are characterized by natural bijections

P
(
Θ, X | Γ ; ∆

) ∼= P(Θ | Γ,FX ; ∆
)

P
(
Θ | ;A

) ∼= P(Θ ; UA
)

P
(
Θ, X | Γ ; ∆

) ∼= P(Θ | Γ ; ∆,

F

X
)

P
(
Θ | A ;

) ∼= P(Θ ;

U

A
)
.

Note that F and U are covariant, while

F

and

U

are contravariant. We will see below that
these are adjoint in pairs, F a U and

Ua F

, and induce the usual comonad ! = FU and
monad ? =

FU

.
We can also consider internal-homs of various sorts.

Definition 2.15. Let X,Y be nonlinear objects and A,B be linear objects.

• A linear hom is a universal morphism ψ ∈ P
(
| A( B,A ;B

)
.

• A linear co-hom is a universal morphism ψ ∈ P
(
| B ;B CA,A

)
.

• A nonlinear hom is a universal morphism ψ ∈ P
(
X → Y ,X ; Y

)
.

• A mixed hom is one of the following:3

– a universal morphism ψ ∈ P
(
X | X →(B ;B

)
.

– a universal morphism ψ ∈ P
(
A� B | A ;B

)
.

– a universal morphism ψ ∈ P
(
X →�B,X | ;B

)
.

3As notational mnemonics, the arrowhead in →,→(,→� indicates the domain object is nonlinear, the
open circle in (,→( indicates the codomain object and hom-object are both linear, and the closed circle in
�,→� indicates the codomain object is linear but the hom-object is nonlinear.
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Thus, these various kinds of homs are characterized by bijections

P
(
Θ | Γ, A ; ∆, B

) ∼= P(Θ | Γ ; ∆, A( B
)

P
(
Θ | Γ, B ; ∆, A

) ∼= P(Θ | Γ, B CA ; ∆
)

P
(
Θ, X ; Y

) ∼= P(Θ ;X → Y
)

P
(
Θ, X | Γ ; ∆, B

) ∼= P(Θ | Γ ; ∆, X →(B
)

P
(
Θ | A ;B

) ∼= P(Θ ;A� B
)

P
(
Θ, X | ;B

) ∼= P(Θ ;X →�B
)
.

In particular:

• If ⊗,1,( exist then the monoidal structure ⊗ on PL is closed.
• If `,⊥,C exist then the monoidal structure ` on PL is coclosed.
• If ×, 1,→ exist then PNL is cartesian closed.

The mixed homs suggest analogous mixed tensor products, such as universal mor-
phisms ψ ∈ P

(
X | A ; X oA

)
, or ψ ∈ P

(
X,Y | ;X � Y

)
. However, lest we start to

feel the zoo of universal properties is too large, we note that the more exotic sorts can be
constructed from the simpler ones in the following sense.

Proposition 2.16. If ψ is universal in R, while φ contains R in its domain or codomain
and is universal in a different object S, then ψ ◦R φ is universal in S.

Proof. There are a number of different versions of this statement depending on the types of
R,S, ψ, φ and whether the objects occur in domain or codomain, but they all reduce to “the
composite of bijections is a bijection”. See Proposition 4.10 for a more rigorous proof.

One instance of this is the associativity of tensors: given universal morphisms

ψ1 ∈ P
(
| A,B ;A ⊗ B

)
ψ3 ∈ P

(
| A ⊗ B,C ; (A ⊗ B) ⊗ C

)
ψ2 ∈ P

(
| B,C ;B ⊗ C

)
ψ4 ∈ P

(
| A,B ⊗ C ;A ⊗ (B ⊗ C)

)
the two composites

ψ3 ◦A⊗B ψ1 ∈ P
(
| A,B,C ; (A ⊗ B) ⊗ C

)
ψ4 ◦B⊗C ψ2 ∈ P

(
| A,B,C ;A ⊗ (B ⊗ C)

)
are both universal, hence by Proposition 2.9 there is an induced isomorphism

(A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C).

This is how (⊗, 1) is shown to be a monoidal structure, and similarly for (`,⊥) and (if we
like) (×, 1).

Another familiar instance is that in a ∗-autonomous category, linear homs can be defined
in terms of duals and cotensors if these exist. Given universal morphisms

ψ1 ∈ P
(
| A∗, A ;

)
ψ2 ∈ P

(
| A∗ `B ;A∗, B

)
their composite ψ1 ◦A∗ ψ2 ∈ P

(
| A∗ `B,A ; B

)
is universal in A∗ ` B, exhibiting it as

A( B. Similarly, we have B CA = A∗ ⊗ B, and De Morgan duality:

A`B = (A∗ ⊗ B∗)∗ ⊥ = 1∗

F

X = (FX)∗

U

A = U(A∗)
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In particular, PL is ∗-autonomous as soon as P has ⊗, 1, (·)∗. And as in a ∗-autonomous
category, duals can be constructed by homming into the counit:

A∗ = A( ⊥.

Less familiar instances of Proposition 2.16 relate the modalities to the tensors and homs,
particularly the mixed ones: we have

X →(B = FX ( B X oA = FX ⊗ A
A� B = U(A( B) X � Y = F(X × Y )

X →�B = U(FX ( B) X � Y = FX ⊗ FY

X →�B = X → UB 1 = F1

UA = 1� A FX = X o 1

UA = 1→�A FX = X � 1

whenever all the operations on the right-hand side exist. In particular, since both F(X×Y )
and FX ⊗ FY have the universal property of X � Y , they are isomorphic if they both
exist. (This is, of course, closely related to Seely’s characterization of the modality !; see
Remark 3.6.) Thus, if ⊗,1,×, 1,F exist then F is a strong monoidal functor. Similarly, if
both U(FX ( B) and X → UB exist they are isomorphic (which is related to Girard’s
embedding of nonlinear logic in linear logic); if

F

(X × Y ) and

F

X ` F

Y exist they are
isomorphic; and so on.

Remark 2.17. As a trivial instance, a unary co-unary linear morphism, i.e. one of the
form ψ ∈ P

(
| A ; B

)
, is universal if and only if it is an isomorphism (and similarly in the

nonlinear case). Thus, Proposition 2.16 also implies that universal morphisms are stable
under composition with isomorphisms, conversely to Proposition 2.9.

We can also consider limits and colimits in lnl polycategories. In general, we require a
limit of a diagram of linear or nonlinear objects (and unary co-unary morphisms) to induce
bijections on all hom-sets where it appears in the codomain, and similarly for a colimit
whenever it appears in the domain. (In the case of products and coproducts, this definition
appears in [Pas04].) The simplest case of this is that a limit of nonlinear objects satisfies

P
(
Θ ; limiXi

) ∼= limi P
(
Θ ;Xi

)
, (2.1)

generalizing Proposition 2.11(iii) and reducing to an ordinary limit in the cartesian monoidal
PNL if ×, 1 exist. However, a colimit of nonlinear objects satisfies both

P
(
Θ, colimiXi ; Y

) ∼= limi P
(
Θ, Xi ; Y

)
(2.2)

P
(
Θ, colimiXi | Γ ; ∆

) ∼= limi P
(
Θ, Xi | Γ ; ∆

)
(2.3)

induced by the same universal cocone. This implies that the colimit is

(i) preserved in each variable by ×, insofar as × exists;
(ii) sent by F to a colimit in PL that is preserved in each variable by ⊗, insofar as F,⊗

exist; and
(iii) sent by

F

to a limit in PL that is preserved in each variable by `, insofar as

F

,`
exist.

Moreover, if all ×,F, F

,⊗,` exist, then a colimit in the ordinary category PNL is a colimit
in P if and only if it is preserved in these ways.
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Similarly, a colimit of linear objects satisfies

P
(
Θ | Γ, colimiAi ; ∆

) ∼= limi P
(
Θ | Γ, Ai ; ∆

)
(2.4)

which implies that it is preserved by ⊗ in each variable and sent by

U

to a limit in PNL,
insofar as ⊗, U

exist. If all ⊗,`,⊥,F exist, then a colimit in the ordinary category PL is a
colimit in P if and only if it is preserved by ⊗. Dually, a limit of linear objects satisfies

P
(
Θ | Γ ; ∆, limiAi

) ∼= limi P
(
Θ | Γ ; ∆, Ai

)
(2.5)

which implies that it is preserved by ` in each variable and sent by U to a limit in PNL,
insofar as `,U exist. And if all `,⊗,1,F exist, a colimit in PL is a colimit in P if and only
if it is preserved by `. Note also that ⊗ preserves all colimits if ( exists, F preserves all
colimits if U exists, and so on.

We will write X+Y for the coproduct of nonlinear objects and ∅ for the initial nonlinear
object, and we denote finite products and coproducts of linear objects with Girard’s notation
for the linear logic additive connectives: A&B for the product, A⊕B for the coproduct, >
for the terminal object, and 0 for the initial object. Thus the above preservation properties
state that

X × (Y + Z) ∼= (X × Y ) + (X × Z) X ×∅ ∼= ∅
F(X + Y ) ∼= FX ⊕ FY F∅ ∼= 0

F

(X + Y ) ∼= F

X &

F

Y

F∅ ∼= >
A ⊗ (B ⊕ C) ∼= (A ⊗ B)⊕ (A ⊗ C) A ⊗ 0 ∼= 0

U

(A⊕B) ∼= U

A× U

B

U

0 ∼= 1

A` (B & C) ∼= (A`B) & (A` C) A`> ∼= >
U(A&B) ∼= UA× UB U> ∼= 1

If we specialize the above universal properties to symmetric polycategories, symmetric
multicategories, cartesian multicategories, or lnl multicategories, there are three possible
results. Some universal properties make sense unmodified, such as ⊗,` in polycategories
or ×,→ in cartesian multicategories. Others make no sense at all, such as `,⊥ in lnl
multicategories or F,U in symmetric polycategories.

A third group can only have a restricted universal property. Specifically, limits and
colimits in a symmetric multicategory or lnl multicategory can only induce bijections of
hom-sets with unary codomain: instead of (2.3)–(2.5) we assert only

P
(
Θ, colimiXi | Γ ;B

) ∼= limi P
(
Θ, Xi | Γ ;B

)
P
(
Θ | Γ, colimiAi ;B

) ∼= limi P
(
Θ | Γ, Ai ;B

)
P
(
Θ | Γ ; limiAi

) ∼= limi P
(
Θ | Γ ;Ai

)
.

Since the left- and right-hand sides of (2.3)–(2.5) have the same codomain arity, these
apparently-weaker universal properties are equivalent to (2.3)–(2.5) for limits and colimits
over nonempty domain categories. But the limit of the empty diagram of copies of the
empty set is no longer empty, so an initial or terminal object in an lnl multicategory E (in
the above sense) need not be initial or terminal in E qua lnl polycategory.

In fact, an lnl multicategory cannot have a terminal linear object, or an initial linear
or nonlinear object, in the lnl-polycategorical sense. For example, if > is a terminal linear
object, we must have P

(
Θ | Γ ; ∆,>

)
= 1 for all ∆, whereas in an lnl multicategory we
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Unmodified Nonsensical Modified

polycategories
⊗, 1,`,⊥, (·)∗,
(,C,&,⊕,>, 0 ×, 1,→,F,U, F

,

U

,+,∅

symm. multi. ⊗,1,(,&,⊕ `,⊥, (·)∗,C,×, 1,→,
F,U,

F

,

U

,+,∅ >, 0

cart. multi. ×, 1,→,+,∅ ⊗, 1,`,⊥, (·)∗,(,C,
F,U,

F

,

U

,&,⊕,>, 0

lnl multi.
×, 1,→,⊗,1,(,

&,⊕,F,U `,⊥, (·)∗,C, F

,

U >, 0

Table 1. Universal properties in subcategories

have P
(
Θ | Γ ; ∆,>

)
= ∅ if |∆| > 0. This is already the case for ordinary multicategories

and polycategories.
The categorization of universal properties in these four subcategories into these three

groups is shown in Table 1.

3. Relation to the literature

By our observations in Section 2, the following categorical structures can be identified with
certain lnl polycategories:

• Symmetric monoidal categories.
• Symmetric monoidal categories with any desired limits, and any desired colimits that are

preserved in each variable by the tensor product.
• Closed symmetric monoidal categories, with any desired limits and colimits (the latter

automatically preserved by the tensor product, due to closedness).
• Cartesian monoidal categories.
• Cartesian monoidal categories with any desired limits, and any desired colimits that are

preserved in each variable by the cartesian product.
• Cartesian closed categories, with any desired limits and colimits.
• Symmetric linearly distributive categories.
• Symmetric linearly distributive categories with any desired colimits that are preserved in

each variable by the tensor product, and any desired limits that are preserved in each
variable by the cotensor product.
• (Symmetric) ∗-autonomous categories, with any desired limits and colimits.

The “strong” morphisms between these structures (those that preserve all the asserted
categorical structure up to coherent isomorphisms) can also be identified with functors of
lnl polycategories that preserve the relevant universal properties, and similarly for the
transformations. In other words, the standard 2-categories of the above structures are
equivalent to locally full sub-2-categories of lnlPoly.

We now add the modalities, starting with the “intuitionistic” case of lnl multicategories.
These are designed to model split-context intuitionistic linear logic syntaxes such as [Ben95,
Bar96], without necessarily assuming that any connectives exist. But if enough connectives
do exist, they reduce to a better-known notion of model for intuitionistic multiplicative-
exponential linear logic:
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Proposition 3.1. An lnl multicategory in which the modality F exists is uniquely deter-
mined by a functor of symmetric multicategories

F : PNL → PL

where PNL is a cartesian multicategory and PL a symmetric one. Moreover:

(i) The modality U also exists if and only if the functor F has a right adjoint (in the
2-category of symmetric multicategories).

(ii) If ×, 1,⊗,1 exist, then F is equivalently a strong symmetric monoidal functor from a
cartesian monoidal category to a symmetric monoidal one.

(iii) Thus, an lnl multicategory with ×, 1,⊗, 1,F,U is equivalently an lnl adjunction
[Ben95, Mel09]: a symmetric monoidal adjunction from a cartesian monoidal category
to a symmetric monoidal one.

Proof. Given the modality F, we make it a functor by composing with (Y | ) → FY and
applying its universal property:

P
(
X1, . . . , Xn ; Y

)
→ P

(
X1, . . . , Xn | ;FY

) ∼−→ P( | FX1, . . . ,FXn ; FY
)
.

Conversely, given a functor F, we define the general linear hom-sets by

P
(
X1, . . . , Xn | Γ ;B

)
= PL(FX1, . . . ,FXn,Γ ;B).

Thus, the universal property of F holds by definition. Statement (i) is then a multicategorical
version of the standard equivalence between adjunctions defined with bijections of hom-sets
and with unit and counit. We have already noted (ii), and (iii) follows immediately.

Remark 3.2. Benton [Ben95] assumed PNL cartesian closed and PL symmetric monoidal
closed, but later authors such as [Mel09] have observed that this is unnecessary for the bare
definition. If both categories are closed we will speak of a closed lnl adjunction.

Since left adjoints preserve colimits and right adjoints preserve limits, the following
structures also form locally full sub-2-categories of lnlPoly:

• lnl adjunctions.
• lnl adjunctions with any desired limits and colimits in either category, such that colimits

are preserved by the product or tensor product in each variable.
• Closed lnl adjunctions, with any desired limits and colimits in either category.

The notion of lnl adjunction does depend on having both ⊗ and ×, whereas lnl
multicategories can specify the correct behavior of F and U even if ⊗,× may not exist. As
evidence for this correctness, we note that ×, 1 are not necessary for the induced comonad
on PL to coincide with a structure also existing in the literature.

Proposition 3.3. If P is an lnl multicategory with ⊗,1,F,U, the symmetric monoidal
category PL admits a linear exponential comonad [BBdPH92, HS03], i.e. it is a linear
category in the sense of [Ben95].

Proof. Let ! be the comonad FU. To give the map !A ⊗ !B → !(A ⊗ B), we act on the
⊗-universal morphism ( | A,B) → A ⊗ B as follows. The two noninvertible maps are
composition with the U-universal morphisms (UA | ) → A and (UB | ) → B and with the
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F-universal morphism (U(A ⊗ B) | )→ FU(A ⊗ B):

P
(
| A,B ;A ⊗ B

)
→ P

(
UA,UB | ; A ⊗ B

)
∼−→ P

(
UA,UB ; U(A ⊗ B)

)
→ P

(
UA,UB | ; FU(A ⊗ B)

)
∼−→ P

(
| FUA,FUB ; FU(A ⊗ B)

)
∼−→ P

(
| FUA ⊗ FUB ; FU(A ⊗ B)

)
.

Similarly, to give the map !A → !A ⊗ !A we act on the ⊗-universal morphism (!A, !A) →
!A ⊗ !A as follows. The two noninvertible maps are composition with the F-universal
morphism (UA | )→ FUA = !A and a structural map.

P
(
| !A, !A ; !A ⊗ !A

)
= P

(
| FUA,FUA ; !A ⊗ !A

)
→ P

(
UA,UA | ; !A ⊗ !A

)
→ P

(
UA | ; !A ⊗ !A

)
∼−→ P

(
| FUA ; !A ⊗ !A

)
.

The nullary cases are similar, and the axioms follow by universal properties.

This implication for lnl adjunctions was observed in [Ben95, §2.2.1]; lnl multicate-
gories give a way to state and prove it even in the absence of ×, 1. Conversely:

Proposition 3.4. The Eilenberg–Moore adjunction of any linear exponential comonad !
determines an lnl multicategory with ×, 1,⊗, 1,F,U, whose underlying linear exponential
comonad recovers the given !.

Proof. Such an Eilenberg–Moore adjunction is an lnl adjunction (see [Ben95, §2.2.2] and
[Mel09, §7]), hence an lnl multicategory with ×, 1,⊗, 1,F,U.

Moreover, since any subset of objects of a multicategory determines a sub-multicategory
(in stark contrast to the situation for monoidal categories), we still obtain an lnl multicat-
egory with ⊗, 1,F,U if we restrict to any subset of the !-coalgebras containing the cofree
ones. The smallest choice, of course, consists of exactly the cofree coalgebras, so we have:

Corollary 3.5. The Kleisli adjunction of any linear exponential comonad ! determines an
lnl multicategory with ⊗, 1,F,U, whose underlying linear exponential comonad recovers the
given !.

Remark 3.6. To include the Kleisli adjunction in the case when both categories are required
to be monoidal, one has to assume that cofree coalgebras are closed under products. This
follows for instance if the original monoidal category has products [Ben95, §2.2.3], in which
case we recover the notion of Seely comonad, characterized by !A ⊗ !B ∼= !(A&B). But
lnl polycategories allow us to include the Kleisli case even when & doesn’t exist.

There are also intermediate choices between the Eilenberg–Moore category (all coal-
gebras) and Kleisli category (cofree coalgebras), such as the category of finite products of
cofree coalgebras (if L has finite products), or category of exponentiable coalgebras (if L is
closed monoidal), as discussed in [Ben95, §2.2.2].

Here is another situation that lnl polycategories allow us to treat more generally.
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Example 3.7. Let E be a symmetric multicategory; we can enhance it to an lnl multi-
category with F by taking the nonlinear objects to be the commutative comonoids in E . It
may not be immediately obvious how to define a comonoid in a multicategory that lacks ⊗,
but it is possible: C is a comonoid when it is equipped with operations

E
(
Θ1, C, C,Θ2 ;B

)
→ E

(
Θ1, C,Θ2 ;B

)
E
(
Θ1,Θ2 ;B

)
→ E

(
Θ1, C,Θ2 ;B

)
that are associative, unital, and appropriately natural and equivariant. Such cocommutative
comonoids form a cartesian multicategory with a forgetful multicategory functor to E , so
by Proposition 3.1 it yields an lnl multicategory.

If E is symmetric monoidal, then cocommutative comonoids form a cartesian monoidal
category, so this lnl multicategory has ×, 1,⊗, 1,F. Thus, if F has a right adjoint U,
i.e. if cofree cocommutative comonoids exist, then it is an lnl adjunction, known as a
Lafont category [Laf88] or a free exponential modality [MTT18]. But we get an lnl
multicategory even without these assumptions.

In general, given a category with a linear exponential comonad, we prefer to regard
it as an lnl multicategory via the Kleisli construction rather than the Eilenberg–Moore
construction. The reason for this is the following folklore observation, showing that Kleisli
adjunctions can be detected by a purely intrinsic condition:

Lemma 3.8. An adjunction F : A � B : G is equivalent to the Kleisli adjunction of the
monad GF if and only if its left adjoint F is essentially surjective on objects, and isomorphic
to that Kleisli adjunction if and only if F is bijective on objects.

Proof. The “only if” direction is clear, so suppose F is essentially surjective on objects,
and let FT : A � AT : GT be the Kleisli adjunction of the monad T = GF . Thus the
objects of AT are formal copies “AT ” of the objects A ∈ A, with AT (AT , BT ) = A(A, TB).
There is a unique comparison functor H : AT → B defined by H(AT ) = FA, which is
essentially surjective on objects since F is (and bijective on objects if F is). But it is also
fully faithful, since B(FA,FB) ∼= A(A,GFB) = A(A, TB) = AT (AT , BT ); hence it is an
equivalence.

Thus, applying the Kleisli construction, we have the following locally full sub-2-cate-
gories of lnlPoly:

• Symmetric monoidal categories with linear exponential comonad. This includes Seely
comonads (if the category has finite products) and Lafont comonads (if cofree cocommu-
tative comonoids exist).
• Symmetric monoidal categories with linear exponential comonad and any desired limits

and any desired colimits preserved by the tensor product in each variable.
• Closed symmetric monoidal categories with linear exponential comonad and any desired

limits and colimits.

In each case the “strong” morphisms, corresponding to functors of lnl multicategories that
preserve (among other things) the exponential modalities F,U, are those that preserve the
comonad up to coherent isomorphism: F (!A) ∼= !(FA).

Note that all of these lnl polycategories have the following property.

Definition 3.9. An lnl polycategory is of Kleisli type if it is equipped with a choice of
U that is bijective on objects.
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lnl multicategories of Kleisli type correspond to syntaxes for intuitionistic linear logic
that have only one class of type, such as [Bar96, Has05], rather than two syntactic classes
for “linear types” and “nonlinear types”.

Example 3.10. We conjecture that the Linear Non-Linear multicategories suggested
by [HT21] are equivalent to lnl multicategories of Kleisli type. In addition, the IL-indexed
categories of [MdPR00] are equivalent to lnl multicategories of Kleisli type having ⊗
,1,&,>,(, and →( (our →( being written “→”).

We can also attempt to induce an lnl multicategory from a monad on a cartesian
monoidal category or multicategory. In fact this is quite easy: the 2-category of symmetric
multicategories has Eilenberg–Moore objects, so any monad T therein on a multicategory E
induces an adjunction of multicategories E � ET . If E is cartesian, by Proposition 3.1 this
yields an lnl multicategory with F,U. The interesting thing is that if E is representable,
hence a (cartesian) monoidal category, then a symmetric-multicategory-monad on it is the
same as a lax symmetric monoidal monad, and hence by [Koc72] the same as a commutative
strong monad.

Proposition 3.11. Any commutative strong monad T on a cartesian monoidal category
E induces an lnl multicategory P having F,U,×, 1,1, where PNL = E and the PL is the
symmetric multicategory of T -algebras. Moreover:

(i) If E is cartesian closed with equalizers, then P has →,(.
(ii) If E and T are such that the category of T -algebras has coequalizers (e.g. E is locally

presentable and T is accessible, or E is cartesian closed with reflexive coequalizers
preserved by T ) then P also has ⊗, and thus is an lnl adjunction.

Proof. We have already observed the first statement, except for noting that 1 = T1. State-
ments (i) and (ii) follow by results in the literature [Koc71, Sea13].

Of course, we can also restrict to any full sub-multicategory of the Eilenberg–Moore
category, such as the Kleisli category, and still have an lnl multicategory. As in the
comonad case, when given a commutative strong monad on a cartesian monoidal category
we generally regard it as an lnl multicategory via the Kleisli construction; thus we have
the following locally full sub-2-categories of lnlPoly:

• Cartesian monoidal categories with a commutative strong monad.
• Cartesian monoidal categories with a commutative strong monad and any desired limits

and any desired colimits preserved by the product in each variable.
• Cartesian closed categories with a commutative strong monad and any desired limits and

colimits.

A non-commutative monad T on a cartesian monoidal category E does not induce a
multicategory structure on its Eilenberg–Moore category ET . However, as long as T is a
strong monad, we can still combine E with ET to produce an lnl multicategory, albeit
a rather degenerate one. Specifically, if A and B are T -algebras and X is an object of
E , we can define an X-indexed family of algebra maps A → B to be a morphism
f : X ×A→ B such that the following diagram commutes:

X × TA T (X ×A) TB

X ×A B

Tf

f
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in which the map X × TA→ T (X ×A) is the monad strength.

Proposition 3.12. Any strong monad T on a cartesian monoidal category E induces an
lnl multicategory P with PNL = E, whose linear objects are the T -algebras, with

P
(
Θ | ;A

)
= E(Θ;A)

P
(
Θ | A ;B

)
=
{

(×Θ)-indexed families of algebra maps A→ B
}

and all other linear homsets empty.

(Here by×Θ we mean the cartesian product of all the objects in Θ, or the terminal
object if Θ is empty.)

This lnl multicategory is linearly subunary, i.e. all its linear morphisms have linear
codomain of length 1 (since it is an lnl multicategory) and linear domain of length ≤ 1. It
has ×, 1,U, and also an F with a weaker universal property:

P
(
Θ, X | ;B

) ∼= P(Θ | FX ;B
)
. (3.1)

This is similar to the restriction on >, 0 in multicategories from Section 2. It implies there
is a 1 (namely F1) with a similarly restricted universal property. Conversely, from o and a
restricted 1, we can construct a restricted F as FX = X o 1.

These lnl multicategories provide semantics for “call-by-push-value” [Lev03] and re-
lated theories. In this case, they are usually described as enriched adjunctions, analogously
to the definition of lnl adjunctions as monoidal adjunctions. To explain this, recall that if
E is cartesian monoidal, its Yoneda embedding E ↪→ [Eop,Set] is fully faithful and preserves
products; thus any E-enriched category can be regarded as an [Eop,Set]-enriched one. In ad-
dition, E itself is always [Eop,Set]-enriched, with hom-presheaves E(A,B)(X) = E(X×A,B).

Proposition 3.13. A linearly subunary lnl multicategory with ×, 1 is uniquely determined
by a CBPV pre-structure [Lev03]: a cartesian monoidal category E, a category L enriched
over [Eop,Set], and an [Eop,Set]-enriched functor R : L → [Eop,Set]. Moreover:

(i) The modality U exists if and only if R lands inside E.
(ii) If U exists, then F exists with restricted universal property (3.1) if and only if R :
L → E has an [Eop,Set]-enriched left adjoint.

(iii) The hom-objects of L lie in E if and only if � exists.
(iv) L has [Eop,Set]-enriched powers by representables if and only if →( exists.
(v) L has [Eop,Set]-enriched copowers by representables if and only if o exists.
(vi) L has [Eop, Set]-enriched finite products if and only if &,> exist with a restricted

universal property respecting the arity restrictions.
(vii) E is distributive [CLW93] and the hom-presheaves of L preserve finite coproducts if

and only if +,∅ exist with a restricted universal property.

Proof. Of course, E corresponds to PNL, which is cartesian monoidal if and only if ×, 1 exist.
The arity restrictions then ensure that the linear hom-sets are uniquely determined by those
of the form P

(
X | A ; B

)
and P

(
X | ;B

)
. The former assemble into an [Eop, Set]-enriched

category L, and the latter into the functor R.
To say that R lands in E is to say that each functor X 7→ P

(
X | ;B

)
is representable,

which is to say that U exists. Given this, (3.1) says exactly that F is an [Eop, Set]-enriched
left adjoint of U. The other claims follow by similar comparisons of universal properties.
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Corollary 3.14. A linearly subunary lnl multicategory with ×, 1,U,�,→(,o, and re-
stricted F (or equivalently 1) is equivalent to a cartesian monoidal category E, a E-enriched
category L with powers and copowers, and an object 1 ∈ L.

Proof. Proposition 3.13 implies exactly this characterization except that instead of 1 we
have a E-enriched adjunction F : E � L : U. But this is uniquely determined by F1 ∼= 1,
since FX ∼= X o 1 and UA ∼= 1� A.

As before, the arity restrictions can be enforced by slicing: if cbpv ∈ lnlPoly is
the subterminal with one nonlinear object, one linear object, all nonlinear homsets and co-
unary subunary linear homsets singletons, and others empty, then the linearly subunary lnl
multicategories constitute the slice lnlPoly/cbpv. By adding appropriate combinations of
universal properties, we obtain various related structures in the literature. Thus we have
the following locally full sub-2-categories of lnlPoly:

• CBPV pre-structures, as in Proposition 3.13.
• CBPV adjunction models or EC+ models [EMS12], which are CBPV pre-structures

having U,→(, and F,+,∅,&,> with restricted universal properties.
• EEC+ models [EMS12], which are EC+ models having also →,�,o as well as ⊕, 0

with restricted universal properties. Thus they are structures as in Corollary 3.14 where
E and L both have finite products and coproducts.
• MLJηp models [CFMM16], which are CBPV pre-structures having only U,→(, and re-

stricted F.
• LJηp models, which are MLJηp models having also restricted +,∅,&,>.
• ECBV models [MS14], which are linearly unary lnl multicategories (that is, all linear

morphisms have linear domain and codomain of length exactly 1) having ×, 1,�,o, but
no F or U. Of course, this arity restriction is given by slicing over a different object ecbv.

We now consider the “classical” case: lnl polycategories that are not co-unary.

Proposition 3.15. An lnl polycategory in which the modality F exists is uniquely deter-
mined by a functor of symmetric multicategories

F : PNL → symmulti∗(PL)

where PNL is a cartesian multicategory, PL a symmetric polycategory, and symmulti∗

denotes the underlying symmetric multicategory of a symmetric polycategory. Also:

(i) The modality U also exists if and only if the functor F has a right adjoint

symmulti∗(PL)→ PNL

in the 2-category of symmetric multicategories.
(ii) If ×, 1,⊗,1,`,⊥ exist, then F is equivalently a strong symmetric monoidal functor

from a cartesian monoidal category to (the ⊗ monoidal structure of) a symmetric
linearly distributive one.

(iii) Thus, an lnl polycategory with ×, 1,⊗, 1,`,⊥,F,U is equivalently an lnl adjunction
M� L in which L is linearly distributive. Moreover, it also has (·)∗ if and only if L
is ∗-autonomous.

Proof. As in Proposition 3.1, we make the modality F in an lnl polycategory into a functor
using its universal property; while given a functor as above we define the general linear
homsets by

P
(
X1, . . . , Xn | Γ ; ∆

)
= PL(FX1, . . . ,FXn,Γ ; ∆)
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so that the universal property of F holds by definition. The rest is also similar to Proposi-
tion 3.1, using the result of [CS97] that a symmetric polycategory with ⊗,1,`,⊥ is equiv-
alently a symmetric linearly distributive category. The universal property of F relative
to linear morphisms with arbitrary codomain ensures that it is uniquely determined by
its action on underlying multicategories, while U knows nothing about the non-co-unary
morphisms at all.

Note that since

F

and

U

can be defined in terms of F,U, (·)∗ by

F

X = (FX)∗ and

U

A = U(A∗), an lnl adjunction with L ∗-autonomous also has

F

,

U

. Thus, we have the
following locally full sub-2-categories of lnlPoly:

• Linearly distributive lnl adjunctions and ∗-autonomous lnl adjunctions, de-
fined as in Proposition 3.15(iii).
• Linearly distributive lnl adjunctions with any desired limits and colimits in either cate-

gory, subject to the restrictions that colimits must be preserved by the product or tensor
product in each variable, and limits in the linearly distributive category must be preserved
by the cotensor product in each variable.
• ∗-autonomous closed lnl adjunctions with any desired limits and colimits in either cate-

gory.

On the other hand, if we add

F

and

U

without (·)∗, the induced structure on L is also
one that appears in the literature:

Proposition 3.16. If P is an lnl polycategory with ⊗,1,`,⊥,F,U, F

,

U

, then PL is a
(symmetric) linearly distributive category with storage [BCS96].

Proof. Note that any lnl polycategory P has an underlying lnl multicategory
lnlmulti∗(P) containing all the objects, all the nonlinear morphisms, but only the co-unary
linear morphisms. It also has a linear opposite PL·op in which the nonlinear morphisms
are the same, but PL·op

(
Θ | Γ ; ∆

)
= P

(
Θ | ∆ ; Γ

)
.

Thus, applying Proposition 3.3 to lnlmulti∗(P) and lnlmulti∗(PL·op), we obtain a
linear exponential comonad ! = FU and a linear exponential monad ? =

FU

, so it remains
only to show that ? is a !-strong monad and dually. We obtain the morphism ?A ⊗ !B →
?(A ⊗ !B) by acting on the

U

-universal morphism of (

U

(A ⊗ FUB) | ) → A ⊗ FUB as
follows.

P
( U

(A ⊗ FUB) | A ⊗ FUB ;
) ∼−→ P( U

(A ⊗ FUB) | A,FUB ;
)

∼−→ P
( U

(A ⊗ FUB),UB | A ;
)

∼−→ P
( U

(A ⊗ FUB),UB ;

U

A
)

→ P
( U

(A ⊗ FUB),UB | FU

A ;
)

∼−→ P
(
| FU

A,FUB ;

FU

(A ⊗ FUB)
)

∼−→ P
(
| FU

A ⊗ FUB ;

FU

(A ⊗ FUB)
)

= P
(
| ?A ⊗ !B ; ?(A ⊗ !B)

)
.

The noninvertible map above is composition with the

F

-universal (

U

A | FU

A) → (). It is
straightforward to check the axioms. (This is like the proof in [BCS96, §3.1] that proof nets
with storage boxes form a linearly distributive category with storage.)

The converse of Proposition 3.16 is subtler. If L is a symmetric linearly distributive
category with storage, it is in particular a symmetric monoidal category (under ⊗,1) with a
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linear exponential comonad !. Therefore, it gives rise to an lnl adjunctionM� L as above,
where M is the Eilenberg–Moore category of the comonad !. Hence, by Proposition 3.15,
any subcategory of this M (such as the Kleisli category) yields an lnl polycategory P
with PL = L and having ⊗, 1,`,⊥,F,U. Similarly, any subcategory of the opposite of the
Eilenberg–Moore category of the monad ? yields an lnl polycategory P with PL = L and
having ⊗, 1,`,⊥, F

,

U

.
If L has duals, hence is ∗-autonomous, then by [BCS96, Proposition 5.1] the modalities

! and ? are dual, in that ?A ∼= (!(A∗))∗. This implies that their Eilenberg–Moore and Kleisli
categories are dual to each other, by equivalences that lie over the self-duality (·)∗; hence
these two lnl polycategories coincide and are a ∗-autonomous lnl adjunction that induces
the given ! and ?. However, if L does not have duals, then the Eilenberg-Moore categories
of ! and ? need not be dual:

Example 3.17. Let L be a distributive lattice that is not a Boolean algebra. As in [CS97],
we can regard L as a linearly distributive category with ⊗ = ∧ and ` = ∨. Since ∧ is the
cartesian product and ∨ the cartesian coproduct, we can equip L with storage modalities
! and ? that are both just the identity. (Thanks to Robin Cockett for pointing out this
example.) The Eilenberg–Moore categories of this ! and ? are then both just L itself, which
may not be self-dual.

In fact this L cannot occur as PL for any lnl polycategory P with F,U,

F

,

U

such that
its (identity) modalities ! and ? are recovered as FU and

FU

respectively. To see this, note
that for any nonlinear object X in an lnl polycategory, if FX and

F

X both exist, then
they are dual to each other. Thus, if F,

F
both exist, then any object of the form FX or

F
X

has a dual — and hence if ! = FU is the identity, then every object has a dual. But this
would imply that L is a Boolean algebra.

Thus, if we want to embed a general linearly distributive category with storage into an
lnl polycategory, we have to give up on having all F,U,

F

,

U

. But we can get away with
something slightly less:

Proposition 3.18. A linearly distributive category L admits storage modalities if and only
if it can occur as PL for an lnl polycategory P having ⊗,1,`,⊥,U, U

along with F defined
on the image of U and

F

defined on the image of

U

.

Proof. For “if”, just note that the proof of Proposition 3.16 uses only this weaker hypothesis.
For “only if”, let L be a symmetric linearly distributive category with storage, and define an
lnl polycategory L!,? as follows. Its linear objects are the objects of L, while its nonlinear

objects consist of two copies of the objects of L denoted A! and A?. Its homsets are defined
by:

L!,?

(
A!

1, . . . , A
!
p, B

?
1, . . . , B

?
q | C1, . . . , Cm ;D1, . . . , Dn

)
= L(!A1 ⊗ · · · ⊗ !Ap ⊗ C1 ⊗ · · · ⊗ Cm , ?B1 ` · · ·` ?Bq `D1 ` · · ·`Dn)

L!,?

(
A!

1, . . . , A
!
p, B

?
1, . . . , B

?
q ; C !

)
= L(!A1 ⊗ · · · ⊗ !Ap , ?B1 ` · · ·` ?Bq ` C)

L!,?

(
A!

1, . . . , A
!
p, B

?
1, . . . , B

?
q ; C?

)
= L(!A1 ⊗ · · · ⊗ !Ap ⊗ C , ?B1 ` · · ·` ?Bq)

In particular, we have

L!,?

(
A! ; C !

)
= L(!A,C) L!,?

(
A! ; C?

)
= L(!A ⊗ C,⊥)

L!,?

(
B? ; C?

)
= L(C, ?B) L!,?

(
B? ; C !

)
= L(1, ?B ` C).
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That is, the category of nonlinear objects and unary morphisms consists of a copy of the
Kleisli category of ! (the objects A!) and a copy of the opposite of the Kleisli category of ?
(the objects B?), with the morphisms between the two defined in a twisted way using the
linearly distributive structure.

Composition of two linear morphisms is defined just as in the ordinary symmetric
polycategory underlying L. To compose a nonlinear morphism with either a linear or
nonlinear morphism, we make use of the “generalized Kleisli lift”: given

f : !A1 ⊗ · · · ⊗ !Ap −→ ?B1 ` · · ·` ?Bq ` C

we can construct the composite

!A1 ⊗ · · · ⊗ !Ap → !!A1 ⊗ · · · ⊗ !!Ap

→ !(!A1 ⊗ · · · ⊗ !Ap)

!f−→ !(?B1 ` · · ·` ?Bq ` C)

→ ?B1 ` · · ·` ?Bq ` !C

where the first map is composed of the comultiplications !Ai → !!Ai of !, the second map
is the lax monoidal structure of !, the third in !f , and the fourth is q applications of the
strength !(?B`C)→ ?B` !C. By first applying this construction to a nonlinear morphism
with codomain C !, or the dual construction to one with codomain C?, we can then compose
it along this object with any other morphism as usual in the underlying polycategory of L.

Of course this lnl polycategory has ⊗,1,`,⊥. By construction it has UA = A! and
U

A = A?, and partially defined FA! = !A and

F

A? = ?A. Note that this is very similar to
the proof in [BCS96, §3.2] that proof nets with storage are sound for linearly distributive
categories with storage.

This “double Kleisli category” construction is functorial, and lands inside the slice
category lnlPoly/dblsplit from Remark 2.7. In terms of this slice, we can describe the
restricted domains of F and

F

by saying that F is defined on left-hand objects and

F

on
right-hand ones.

Moreover, if L is ∗-autonomous, then A? ∼= (A∗)! in (L!,?)NL. Thus in this case L!,?

is equivalent (though not isomorphic) to the Kleisli adjunction of ! and also to the Kleisli
adjunction of ?.

This gives us the following locally full sub-2-categories of lnlPoly:

• Linearly distributive categories with storage.
• ∗-autonomous categories with storage.
• Linearly distributive or ∗-autonomous categories with storage, any desired colimits pre-

served by the tensor product in each variable, and any desired limits preserved by the
cotensor product in each variable.

4. Unifying universality

In defining lnl doctrines, we will want to work generally with classes of universal arrows
and colimits in lnl polycategories. Unfortunately, the different kinds of objects and mor-
phisms in an lnl polycategory make such a general treatment quite cumbersome. For
instance, we already saw in Section 2 that there are formally five different kinds of “univer-
sal morphism” in an lnl polycategory, which has the consequence that a fully formal proof
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of Proposition 2.16 (universal morphisms compose) would have on the order of 25 different
cases to consider.4 Similarly, there are four different kinds of limits and colimits, and so on.
Duality doesn’t simplify the situation significantly either, since an lnl polycategory has no
“opposite” that reverses the nonlinear morphisms. Nevertheless, there is a clear intuition
that this technical multiplicity is in some sense “inessential”: all the cases behave similarly.
In this section we give an alternative definition of lnl polycategories that enables us to
formally unify these cases.

Given a set of objects partitioned into linear and nonlinear ones, by a signed object
we mean an object together with an element of {−,+}, written R+ or R−, where R is a
(linear or nonlinear) object. We denote general signed objects by letters towards the middle
of the Roman alphabet such as K,L,M, . . . , and lists of signed objects by the Greek letters
Φ,Ψ. If K is a signed object we write K• for the result of flipping its sign: (R+)• = R−

and (R−)• = R+.

Definition 4.1. A list of signed objects is admissible if

(i) it contains at most one positive nonlinear object, and
(ii) if it does contain one such, then it contains no linear objects.

Lemma 4.2. If (Φ,K) and (K•,Ψ) are admissible, so is (Φ,Ψ).

Proof. If a positive nonlinear object X+ appears in Φ, then K and all other objects in Φ
must be negative nonlinear. Hence K• is positive nonlinear, so all objects in Ψ are also
negative nonlinear. We can argue similarly if Ψ contains X+.

By a structural map we mean a morphism σ : (K1, . . . ,Km)→ (Kσ1, . . . ,Kσn) where
(K1, . . . ,Km) is a list of signed objects and σ : {1, . . . , n} → {1, . . . ,m} is a function with
the property that for any j with 1 ≤ j ≤ m, if |σ−1(j)| 6= 1 then Kj is negative and
nonlinear.

Definition 4.3. An entries-only lnl polycategory P consists of:

• A set of objects partitioned into linear and nonlinear ones.
• For any admissible list of signed objects (K1, . . . ,Kn), a hom-set P(K1, . . . ,Kn), with

functorial actions P(Ψ)→ P(Φ) by structural maps σ : Φ→ Ψ.
• For any object R (linear or nonlinear), an identity 1R ∈ P(R−, R+).
• Whenever (Φ,K) and (K•,Ψ) are admissible, a composition map

◦K : P(K•,Ψ)× P(Φ,K)→ P(Φ,Ψ)

that is associative, unital, and equivariant with respect to the structural actions and
permutations that swap the two inputs.

A functor between entries-only lnl polycategories consists of functions between their linear
and nonlinear objects and morphisms, preserving entries, structural actions, identities, and
composites.

Proposition 4.4. The category of entries-only lnl polycategory is equivalent to that of
lnl polycategories.

4Not exactly 25, of course, since some pairs of universal morphisms will not be composable.
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Proof. By structural permutations, the hom-sets of an entries-only lnl polycategory are
uniquely determined (up to isomorphism) by those of the form

P(X−1 , . . . , X
−
m, Y

+)

P(X−1 , . . . , X
−
m, A

−
1 , . . . , A

−
n , B

+
1 , . . . , B

+
p )

for nonlinear objects Xi, Y and linear objects Aj , Bk. We can identify these with the hom-
sets

P
(
X1, . . . , Xm ; Y

)
P
(
X1, . . . , Xm | A1, . . . , An ;B1, . . . , Bp

)
in an ordinary lnl polycategory, and the identities, compositions, and structural actions
correspond.

Of course, the 2-categorical structure of lnlPoly that we defined in Section 2 can also be
transported across this equivalence. A transformation between functors of entries-only lnl
polycategories thus has components αX ∈ Q((HX)−, (KX)+) and αA ∈ Q((HA)−, (KA)+)
satisfying suitable axioms.

Henceforth, we will pass freely back and forth between the two definitions, using
whichever notation for homsets is more convenient. We can now define a general notion of
universal morphism that encompasses all five cases described in Section 2.

Definition 4.5. A morphism f ∈ P(Φ,K) in an entries-only lnl polycategory is universal
in K if for any list of signed objects Ψ such that (K•,Ψ) is admissible, the composition
map (− ◦K f) : P(K•,Ψ) → P(Φ,Ψ) is bijective, i.e. for any h ∈ P(Φ,Ψ) there exists a
unique g ∈ P(K•,Ψ) such that g ◦K f = h.

In fact, following [Her04, LSR17, BZ20], it is useful to generalize from universal mor-
phisms in one multi- or poly-category to cartesian ones relative to a functor.

Definition 4.6. Given a functor π : P → Q of entries-only lnl polycategories, a morphism
f ∈ P(Φ,K) is π-cartesian in K if for any list of signed objects Ψ of P such that (K•,Ψ)
is admissible, the following square is a pullback:

P(K•,Ψ) P(Φ,Ψ)

Q(πK•, πΨ) Q(πΦ, πΨ)

−◦Kf

π π

−◦(πK)(πf)

(4.1)

In other words, for any h ∈ P(Φ,Ψ) and ` ∈ Q(πK•, πΨ) such that ` ◦πK πf = πh, there
exists a unique g ∈ P(K•,Ψ) such that g ◦K f = h and πg = `.

Note that if Q is terminal, both sets on the bottom row of (4.1) are singletons; so the
square is a pullback just when the morphism on top is a bijection. Thus, f is universal in
K precisely when it is π-cartesian in K for the unique functor π : P → lnlpoly to the
terminal object.

Cartesian morphisms specialize to various notions in the literature:

• For symmetric multicategories, cartesian morphisms with K positive specialize to the
“strongly cocartesian” morphisms of [Her04, Remarks 2.2(1)].
• For cartesian multicategories, cartesian morphisms specialize to the cartesian and opcarte-

sian morphisms of [LSR17].
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• For symmetric polycategories, cartesian morphisms specialize to the cartesian and op-
cartesian morphisms of [BZ20].
• For categories, cartesian morphisms specialize to the traditional notion of cartesian and

opcartesian morphism.

Example 4.7. Cartesian morphisms can express restricted universal properties. For in-
stance, in Definition 4.6 let Q = cbpv, and let f ∈ P(X−, A+) for a nonlinear X and linear
A, with vertex K = A+. Then the hom-set Q(πK•, πΨ) is empty unless Ψ contains exactly
one positive linear object and the rest nonlinear. Thus, f is cartesian just when it exhibits
A as FX with the universal property of (3.1).

Example 4.8. Cartesian morphisms can also express adjunctions that behave similarly
to F a U but stay inside the linear or nonlinear world. For instance, let smadj be the
lnl multicategory with two objects p,n, both linear, a unique morphism Γ → p when Γ
consists entirely of p’s, and a unique morphism Γ → n for any Γ. Then an object P of
lnlPoly/smadj is a symmetric multicategory with a partition of its objects into “positive”
and “negative” ones, such that any morphism with a negative object in its domain has a
negative codomain. Suppose in addition that

• For any positive object A, there is a negative object B and a morphism A → B that is
cartesian in B over the unique morphism p→ n in smadj.
• For any negative object B, there is a positive object A and a morphism A → B that is

cartesian in A over the unique morphism p→ n in smadj.

By an argument like that of Proposition 3.1, such a P is uniquely determined by an ad-
junction of symmetric multicategories. Further cartesian liftings can specialize this to an
adjunction of symmetric monoidal categories, with strong left adjoint and lax right adjoint.

Example 4.9. As an even simpler example, let adj have two linear objects p,n and only one
nonidentity morphism p→ n. Then an object of lnlPoly/adj is an ordinary category with
its objects partitioned into positive and negative ones, such that there are no morphisms
from a negative object to a positive one. Such a category is precisely the “collage” of a
profunctor between the categories P and N of positive and negative objects. If all cartesian
liftings of the morphism p→ n exist in one direction, then the profunctor is representable
by a functor P → N ; if they exist in the other direction, it is representable by a functor
N → P; and if both exist, it is representable by an adjunction P � N .

As an example of the value of the entries-only framework, we can now prove (a gener-
alization of) Proposition 2.16 without a division into 25-odd cases:

Proposition 4.10. Given π : P → Q, if f ∈ P(Φ1,K) is π-cartesian in K and g ∈
P(K•,Φ2, L) is π-cartesian in L, then their composite g ◦K f ∈ P(Φ1,Φ2, L) is π-cartesian
in L.

Proof. In the following diagram:

P(L•,Ψ) P(K•,Φ2,Ψ) P(Φ1,Φ2,Ψ)

Q(πL•, πΨ) Q(πK•, πΦ2, πΨ) Q(πΦ1, πΦ2, πΨ)

−◦Lg

π

−◦Kf

π π

−◦(πL)(πg) −◦(πK)(πf)

both squares are pullbacks since f and g are π-cartesian, hence so is the rectangle.
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Subterminal S Universal properties Equivalent structure
lnlpoly ×, 1,→,⊗, 1, (·)∗,F,U ∗-autonomous closed lnl adjunction
lnlmulti ×, 1,→,⊗, 1,(,F,U closed lnl adjunction
sympoly ⊗,1, (·)∗ ∗-autonomous category
symmulti ⊗,1,( closed symmetric monoidal category
cartmulti ×, 1,→ cartesian closed category

cbpv ×, 1,→,→(,�,o,1†,F†,U structure of Corollary 3.14

† with restricted universal property.

Table 2. Bifibrations over subterminals

Following [LSR17, BZ20], we define:

Definition 4.11. A functor π : P → Q is a bifibration if for any list Φ of signed objects
in P and any morphism g ∈ Q(πΦ, L) there exists a π-cartesian morphism f ∈ P(Φ,K)
such that π(f) = g.

When Q is one of our distinguished subterminal objects (including the terminal object
lnlpoly), bifibrations π : P → Q reduce to more familiar structures:

Theorem 4.12. For each row in Table 2, with subterminal object S listed in the first column,
the following structures are equivalent:

(i) A bifibration π : P → S.
(ii) An object of lnlPoly/S with the universal properties in the second column.
(iii) The categorical structure indicated in the third column.

Proof. Clearly (i)⇒(ii), while (ii)⇔(iii) follows from Section 3. The remaining direction
(ii)⇒(i) is similar to the universal characterization of ∗-autonomous categories in [BZ20].
By×Θ,

⊗
Γ, or

˙
∆ we mean the result of combining all the objects in a list with the

given binary operation; if the list contains only one object the result is that object (in which
case the binary operation doesn’t even need to exist), while if the list is empty the result
is the corresponding nullary operation 1, 1, or ⊥. Now we construct the five possible types
of morphism universal in X or A as follows:

• For ψ ∈ P
(
Θ ;X

)
we take X =×Θ.

• For ψ ∈ P
(
Θ, X ; Y

)
we take X =×Θ→ Y .

• For ψ ∈ P
(
Θ, X | Γ ; ∆

)
we take X =×Θ→ (

⊗
Γ�

˙
∆).

• For ψ ∈ P
(
Θ | Γ ; ∆, A

)
we take A =×Θ o

⊗
(Γ,∆∗).

• For ψ ∈ P
(
Θ | Γ, A ; ∆

)
we take A =×Θ→(

˙
(Γ∗,∆).

We leave it to the reader to check that whenever a particular type of universal morphism
exists in one of our subterminals S, the requisite universal operations are among those
assumed by (ii) or can be constructed from them. (When S = cbpv, we discussed the
restricted universal property of F in Example 4.7.)

Definition 4.13. If Q is a fixed object such as those in Table 2 (or more generally Table 3),
we refer to an object P ∈ lnlPoly/Q as birepresentable if the map π : P → Q is a
bifibration.
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For instance, a birepresentable lnl polycategory is a ∗-autonomous closed lnl ad-
junction, a birepresentable symmetric polycategory is a ∗-autonomous category, a birepre-
sentable cartesian multicategory is a cartesian closed category, and so on.5

Similarly, we can define a general notion of limit that encompasses all four cases. In fact,
we can define a general notion that encompasses both universal morphisms and (weighted)
limits and colimits!

Definition 4.14. An abstract cone is a small entries-only lnl polycategory C equipped
with a specified signed object K called the vertex, such that C(Φ) is empty if Φ contains
any copies of K• or contains more than one copy of K, except that C(K•,K) = {1K}.
Nonidentity morphisms containing K (necessarily exactly once) are called abstract pro-
jections, while morphisms not containing K are called abstract transitions. Note that
no two abstract projections can be composable. The reduct of an abstract cone is its sub-
lnl-polycategory obtained by removing the underlying object of K, its identity morphism,
and all the abstract projections; we denote this by ∂C.

An expansion of an abstract cone C is determined by a finite number of new objects
(each linear or nonlinear) and a sign for each of them, yielding a signed list Ψ, such that
(K•,Ψ) is admissible (where K is the vertex of C). The expansion itself is an entries-only
lnl polycategory denoted C/Ψ (which is not itself an abstract cone) obtained by adding the

new objects to C along with one new morphism f̃ ∈ C/Ψ(Φ,Ψ) for each abstract projection
f ∈ C(Φ,K), called the expanders, and an additional new morphism χ ∈ C/Ψ(K•,Ψ)

called the factorization. Composition is defined by χ ◦K f = f̃ , and by f̃ ◦ g = f̃ ◦ g when
g is an abstract transition. The corresponding pre-expansion is the sub-lnl-polycategory
∂(C/Ψ) ⊆ C/Ψ obtained by omitting the morphism χ. Note that we have inclusions

∂C ⊆ C ⊆ ∂(C/Ψ) ⊆ C/Ψ.

Definition 4.15. By a concrete cone we mean a functor whose domain is an abstract cone.
Let π : P → Q a functor of (entries-only) lnl polycategories, and G : C → P a concrete
cone. We say that G is π-extremal if for any expansion C/Ψ of C, any commutative square
as shown below such that the composite C → ∂(C/Ψ)→ P is G has a unique diagonal filler.

C ∂(C/Ψ) P

C/Ψ Q

G

π
∃!

If Q = lnlpoly is terminal, instead of π-extremal we say that G is universal.

We will be primarily interested in two important classes of abstract cones, which show
respectively that the notion of extremal cone includes both cartesian/universal morphisms
and limits and colimits. Here is the first.

5In the literature, sometimes “representable” means only that “covariant” universal arrows exist, e.g.
a “representable symmetric multicategory” is a not-necessarily-closed symmetric monoidal category. But
other times it means that all universal arrows exist, e.g. a “representable polycategory” is a ∗-autonomous
category. Our “birepresentable”, in analogy to “bifibration”, avoids ambiguity.
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Definition 4.16. Let Φ be a finite list of abstract objects and let K be an additional
abstract object, such that K and each object of Φ is either linear or nonlinear and has a
chosen sign. Let CartΦ/K be the lnl polycategory whose objects are those of Φ and K and
having precisely one nonidentity morphism f ∈ CartΦ/K(Φ,K). This is an abstract cone
with vertex K; we call it the abstract cartesianness cone determined by Φ and K.

Observe that a concrete cone G : CartΦ/K → P is determined by a single morphism
Gf ∈ P(GΦ, GK).

Proposition 4.17. For any φ : P → Q, a concrete cone G : CartΦ/K → P is π-extremal if
and only if Gf is π-cartesian in K.

Proof. Because there is exactly one abstract projection f in CartΦ/K , an extension of a
functor G : C → P to some pre-expansion ∂((CartΦ/K)/Ψ) is uniquely determined by a
list of signed objects Ψ in P such that (GK•,Ψ) is admissible, together with a morphism

f̃ ∈ P(GΦ,Ψ). A further extension of this to the expansion (CartΦ/K)/Ψ consists of a

morphism χ ∈ P(GK•,Ψ) such that χ ◦Gf = f̃ . Applying these characterizations to Q as
well, we see that G is π-extremal if and only if

For any list of signed objects Ψ in P such that (GK•,Ψ) is admissible, any

morphism f̃ ∈ P(GΦ,Ψ), and any morphism ξ ∈ Q(πGK•, πΨ) such that

ξ ◦ πGf = πf̃ , there exists a unique morphism χ ∈ P(GK•,Ψ) such that

χ ◦Gf = f̃ and π(χ) = ξ.

However, this is also exactly what it means for (4.1) (with f replaced by Gf) to be a
pullback of sets, which is the definition of when Gf is π-cartesian in K.

Our second important class of abstract cones is the following.

Definition 4.18. Let A be an ordinary small category, and let A. denote the result of
adjoining a new terminal object T . If we make A. an lnl polycategory by declaring all
objects to be linear, it becomes an abstract cone with vertex T+. We denote this by ColimL

A
and call it the abstract linear colimit cone determined by A.

Dually, if A/ denotes the result of adjoining a new initial object I, then with all objects
linear it yields an abstract cone with vertex I−. We denote this by LimL

A and call it an
abstract linear limit cone.

Similarly, by declaring all the objects to be nonlinear, we obtain abstract nonlinear
colimit cones ColimNL

A and abstract nonlinear limit cones LimNL
A .

Observe that a concrete cone G : ColimL
A → P is determined by a cocone under a

A-shaped diagram in the category of linear objects of P, and similarly in the other cases.

Proposition 4.19.

(i) A concrete cone G : ColimL
A → P is universal if and only if the corresponding cocone

is a colimit, in the strong sense of (2.4).
(ii) A concrete cone G : LimL

A → P is universal if and only if the corresponding cocone
is a limit, in the strong sense of (2.5).

(iii) A concrete cone G : ColimNL
A → P is universal if and only if the corresponding cocone

is a colimit, in the strong sense of (2.2)–(2.3).
(iv) A concrete cone G : LimNL

A → P is universal if and only if the corresponding cocone
is a limit in the sense of (2.1).
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Proof. We prove (i); the others are analogous. Because the vertex T+ of ColimL
A is linear

and positive, (T−,Ψ) is admissible just when Ψ contains no positive nonlinear objects. An
extension of G : ColimL

A → P to some pre-expansion ∂((ColimL
A)/Ψ) thus consists of a

list Θ of nonlinear objects of P, lists Γ and ∆ of linear objects of P, and a morphism

f̃i ∈ P
(
Θ | Γ, GAi ; ∆

)
for each object Ai ∈ A, such that f̃i ◦ Gg = f̃j for each morphism

g : Aj → Ai in A. This is precisely an element of limi P
(
Θ | Γ, Ai ; ∆

)
, the right-hand side

of (2.4).
A further extension to the expansion (ColimL

A)/Ψ is then determined by a morphism

χ ∈ P
(
Θ | Γ, GT ; ∆

)
such that χ ◦GT fi = f̃i for all Ai ∈ A. To say that there is a unique

such morphism is thus precisely to say that the natural map from left-to-right in (2.4) is a
bijection.

Definition 4.20. If H : C → Q is a concrete cone, we say that π : P → Q has extremal
lifts of H if for any lift G : ∂C → P of the reduct of C to P, there exists a compatible lift
of H that is π-extremal:

∂C P

C Q

G

π

H

π-ext

Example 4.21. By Proposition 4.17, π is a bifibration if and only if it has extremal lifts
of all the abstract cartesianness cones from Definition 4.16.

Definition 4.22. We say that an lnl polycategory is bicomplete if its unique map to
the terminal object has extremal lifts of all concrete cones for the abstract limit and colimit
cones from Definition 4.18 (where A is small).

By Proposition 4.19, bicompleteness is equivalent to having all small limits and colimits
of both kinds of objects, in the sense described in Section 2.

As pointed out by a referee, the generalization of Definition 4.22 to a relative notion over
an arbitrary base Q is a little subtle: there are at least two natural-seeming possibilities.

Definition 4.23. Let π : P → Q be a functor of lnl polycategories.

(i) We say π is relatively bicomplete if it has extremal lifts of all concrete cones
H : C → Q where C is one of the abstract cones from Definition 4.18 (where A is
small).

(ii) We say π is fiberwise bicomplete if it has extremal lifts only of such cones that
have the additional property that H factors through the terminal object (equivalently,
its image contains only identity maps).

The two coincide in the “absolute” case when Q is terminal, or more generally when it
satisfies the following condition.

Proposition 4.24. If Q contains no nonidentity unary co-unary morphisms between two
objects of the same sort (linear or nonlinear), then a functor π : P → Q is relatively
bicomplete if and only if it is fiberwise bicomplete. In particular, this is the case when Q is
subterminal.

Example 4.25. As noted in Section 2, an lnl multicategory cannot have a terminal linear
object or an initial linear or nonlinear object when considered as an lnl polycategory. How-
ever, while a concrete cone G : C → P of such a shape in an lnl multicategory cannot be
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universal, it can be π-extremal for the unique functor π : P → lnlmulti (see Remark 2.3).
This yields the correct “modified” notion of initial and terminal object in an lnl multicate-
gory as discussed in Section 2, since not all expansions of this cone factor through lnlmulti.
Since lnlmulti is subterminal, Proposition 4.24 applies to lnl multicategories, so there is
no ambiguity in the correct notion of “bicomplete lnl multicategory”.

Similarly, we obtain the correct notions of limit and colimit for symmetric polycate-
gories, cartesian multicategories, symmetric multicategories, and CBPV pre-structures. The
non-subterminals from Remarks 2.4 and 2.7 also satisfy the condition of Proposition 4.24,
so there is no ambiguity in their correct notion of bicompleteness either.

The potential difference between relative and fiberwise bicompleteness can be attributed
to the fact that Definitions 4.16 and 4.18 overlap. Specifically, the abstract cartesianness
cone CartΦ/K when Φ is a single object of the same sort and opposite sign as K coincides
with an abstract limit or colimit cone where A is the terminal category. In the absolute
case, this is a universal unary co-unary morphism between objects of the same sort, as in
Remark 2.17, or equivalently a limit or colimit of a single object, which is trivial. But if
π : P → Q has extremal lifts for these unary co-unary cones, then its underlying ordinary
functors between categories of linear and nonlinear objects are each both a fibration and
opfibration, in the classical Grothendieck sense.

Example 4.26. The non-subterminal Q = smadj from Example 4.8 contains a noniden-
tity morphism p→ n between linear objects. Thus, while a fiberwise bicomplete object of
lnlPoly/smadj contains only limits and colimits of positive and negative objects individu-
ally, a relatively bicomplete one also includes the cartesian lifts mentioned in Example 4.8
that make it an adjunction of symmetric multicategories.

Since these adjoint functors relating positive and negative objects are analogous to the
exponential modalities relating linear and nonlinear objects, and do not intuitively look like
a sort of “limit”, it is natural to view them as belonging to birepresentability and not to
“completeness”. As pointed out by the referee, this argues for fiberwise bicompleteness as
the correct notion of “bicompleteness” for general base objects Q.

Our general notion of “extremal cone” also includes examples that don’t fall into either
Definition 4.16 or Definition 4.18. However, our main purpose in introducing it is to give
a common language to talk about these two examples. To this end, we note that together
these two examples suffice to reconstruct all extremal cones.

Theorem 4.27. For any functor π : P → Q of lnl polycategories, the following are
equivalent.

(i) P has an extremal lift of any concrete cone H : C → Q (with C small).
(ii) P is a relatively bicomplete bifibration.
(iii) P is a fiberwise bicomplete bifibration.

Proof. Example 4.21 and Definition 4.22 show that (i)⇒(ii), and clearly (ii)⇒(iii). So let
us assume (iii), and let H : C → Q be a cone and G : ∂C → P a lift of its reduct to P. For

any abstract projection f ∈ C(Φ,K), let f̃ ∈ P(GΦ,Kf ) be π-extremal in Kf and such that

π(f̃) = H(f) and hence π(Kf ) = H(K), where the sign and linearity of Kf are the same
as that of K. Such a morphism exists because π is a bifibration.

Now for any abstract transition g ∈ C(Ψ, L) and any abstract projection f ∈ C(L•,Φ,K)
that it is composable with, producing an abstract projection f ◦L g ∈ C(Ψ,Φ,K), the
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C ∂(C/Ψ) P1

P2

C/Ψ P3

G

π1

π2

∃!

∃!

Figure 1. Diagram for Proposition 4.30

composite f̃ ◦Gg ∈ P(GΨ, GΦ,Kf ) satisfies

π(f̃ ◦Gg) = π(f̃) ◦ π(Gg) = H(f) ◦H(g) = H(f ◦ g).

Thus, by the universal property of f̃ ◦L g ∈ P(GΨ, GΦ,Kf◦Lg) it induces a unique morphism
g̃ ∈ P(K•f◦Lg,Kf ) such that π(g̃) = 1K .

Now these objects Kf and morphisms g̃ form a small diagram of objects of P (linear
or nonlinear according as K is such) lying in the fiber over K. In particular, therefore, the
image of this diagram under π admits a specified cone (if K is negative) or cocone (if K is
positive) with vertex H(K), consisting entirely of identity maps. Thus, since π is fiberwise
bicomplete, this cone of identity maps has a π-extremal lift. Composing the projections of

this lift with the morphisms f̃ yields a π-extremal concrete cone C → P extending G and
lifting H.

Of course, there are analogous results in which set-theoretic size of the limits and
colimits and of the abstract cones are limited in chosen ways. We also have a version of
Proposition 2.9 and its converse.

Proposition 4.28. Given π : P → Q and an abstract cone C with vertex K, if F,G : C → P
coincide on the reduct ∂C and are both π-extremal, then there is a unique isomorphism
φ : F (K) ∼= G(K) such that π(φ) is an identity and such that φ ◦K F (f) = G(f) for all
abstract projections f in C.

Given π : P → Q, an abstract cone C with vertex K, a concrete cone G : C → P, and
an isomorphism φ : G(K) ∼= K ′, there is a concrete cone Gφ : C → P that agrees with G on
the reduct ∂C, sends the vertex to K ′, and the abstract projections f to Gφ(f) = φ ◦G(f).

Proposition 4.29. If in the above construction G is π-extremal, so is Gφ.

And a composition property for functors:

Proposition 4.30. Suppose π1 : P1 → P2 and π2 : P2 → P3, and a concrete cone G : C →
P1. If G is π1-extremal and π1G is π2-extremal, then G is π2π1-extremal.

Proof. In the diagram in Figure 1, to find a unique lift in the rectangle, we first find a
unique lower diagonal lift and then a unique upper one.
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5. Doctrines and sketches

In Section 3 we encountered a long list of categorical structures that form locally full sub-
2-categories of lnlPoly. In this section and the next we will define a general class of
such sub-2-categories, which we call (sorted, lnl) doctrines. Inspecting the examples in
Section 3, we see that each is characterized by three kinds of data:

(i) Restrictions on the kinds of objects (e.g. no nonlinear objects) and the arities of mor-
phisms (e.g. all linear morphisms are co-unary). We have already remarked that these
restrictions can be detected by slicing lnlPoly over subterminals such as symmulti,
cbpv, etc. More generally, we can equip the objects or morphisms with structure
by slicing over a non-subterminal object, such as plmulti, dblsplit, and smadj in
Remarks 2.4 and 2.7 and Example 4.8.

(ii) Existence of universal cones, for all cones in some family (e.g. existence of tensors,
internal-homs, modalities, or limits or colimits). Sometimes the universal property
of these cones has to be restricted to respect the allowed arities of morphisms, which
corresponds to asking for cartesian lifts over the base objects in (i).

(iii) Requirements that certain adjunctions are of some “Kleisli type”, hence determined
by a monad, a comonad, or both.

In this section we define lnl doctrines, which encapsulate (i) and (ii). In the next section
we extend these to “sorted doctrines” that incorporate (iii) as well.

Definition 5.1. An lnl doctrine D is an lnl polycategory |D| equipped with a family of
concrete cones G : C → |D|, called the D-cones. We say D is small if |D| is small and the
family of cones is also small.

Given such a doctrine, a D-category is an lnl polycategory P equipped with a functor
π : P → |D| that has extremal lifts of all D-cones:

∂C P

C |D|

π

G

∃
π-ext

A D-functor between D-categories is a morphism in lnlPoly/|D| that preserves π-extremal
lifts of D-cones, and a D-transformation between D-functors is a 2-cell in lnlPoly/|D|.
This defines a locally full sub-2-category D-Cat ⊆ lnlPoly.

Example 5.2. Let |D| = lnlpoly be terminal, and let the D-cones contain one repre-
sentative from each isomorphism class of cones6 constructed in Definition 4.16. Then by
Theorem 4.12, a D-category is a birepresentable lnl polycategory.

Similarly, if |D| = lnlpoly and the D-cones contain one representative of each isomor-
phism class of cones, by Theorem 4.27 a D-category is a bicomplete birepresentable lnl
polycategory. (Note that this doctrine is not small.) We can include more restricted classes
of limits as well by combining the cones from Definition 4.16 with some of those from Defi-
nition 4.18; e.g. there is a (small) doctrine for birepresentable lnl polycategories with finite
products and coproducts (additives).

Example 5.3. Taking |D| to be one of the subterminals sympoly, symmulti, cartmulti,
cat, and lnlmulti from Remark 2.3, we can equip it with a family of cones that specify

6An isomorphism of abstract cones is an isomorphism of lnl polycategories that preserves the vertices.
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desired universal morphisms and/or limits and colimits with the appropriately restricted
universal properties for the corresponding subclass of lnl polycategories, which as noted
in Theorem 4.12 and Example 4.25 can be characterized by saying that certain cones are
π-extremal rather than globally universal. For instance, there is a doctrine D with |D| =
symmulti for which the D-categories are bicomplete closed symmetric monoidal categories;
another doctrine with |D| = symmulti for which the D-categories are symmetric monoidal
categories (not necessarily closed or bicomplete); a doctrine with |D| = lnlmulti for which
the D-categories are lnl adjunctions; and so on. Similarly, taking |D| = cbpv or ecbv
as in Proposition 3.13 and Theorem 4.12, we have doctrines for CBPV adjunction models,
EEC+ models, and ECBV models.

Non-subterminal examples can incorporate further adjunctions. For instance, based
on Example 4.8 we can formulate a doctrine for symmetric monoidal adjunctions. By
combining this idea with arity restrictions as in Proposition 3.13 (CBPV structures), we
obtain doctrines for models of polarized linear calculi as in [CFMM16]:

Example 5.4. Let linpol be the lnl multicategory with two objects p,n, both linear, a
unique morphism Γ → p when Γ consists entirely of p’s, and a unique morphism Γ → n
when Γ contains no more than one n. If we equip it with the single-projection cones
(p,p) → p and () → p (with vertex underlined), we obtain a doctrine whose categories
consist of a symmetric monoidal category E , a category L enriched over the Day convolution
monoidal structure on [Eop, Set], and an [Eop,Set]-enriched functor R : L → [Eop,Set]. As in
Proposition 3.13, by adding the following cones we enforce additional universal properties:

(i) From p→ n we make R land inside E .
(ii) From p→ n we give R : L → E a left adjoint.
(iii) From (p,n)→ n we make L enriched over E .
(iv) From (p,n)→ n we give L powers by representables.
(v) From (p,n)→ n we give L copowers by representables.

In particular, with items (i), (ii) and (iv) we obtain a doctrine for the IMLLηp models
of [CFMM16]. And if we additionally include cones for ⊕, 0 of positive objects and &,> of
negative ones, we obtain their IMALLηp models.

Now let lnlpol have two linear objects p,n and one nonlinear object x, with all
nonlinear homsets singletons, a unique morphism (Θ | Γ) → p if Γ consists entirely of p’s,
and a unique morphism (Θ | Γ) → n when Γ contains no more than one n. With the
above cones for an IMLLηp model, cones for ×, 1, and also the morphisms x→ p and x→ p
representing a U defined on positive objects and an F valued in positive objects, this yields
a doctrine for the IMELLηp models of [CFMM16]. Adding ⊕, 0 of positive objects, &,>
of negative ones, plus +,∅, we obtain IMLLηp models.

Note that the morphisms in D-Cat preserve the specified universal properties up to
canonical isomorphism. This is 2-categorically correct, but means that D-Cat is not well-
endowed with strict limits and colimits. Thus, following the philosophy of homotopy theory,
we embed it in a larger but better-behaved category.

Definition 5.5. Given an lnl doctrine D, a D-sketch is an lnl polycategory P together
with a functor π : P → |D|, and for each D-cone G : C → |D| a set (perhaps empty) of lifts
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of G to P that we call proto-extremal:
P

C |D|

π

G

 .

A morphism of D-sketches is a functor in lnlPoly/|D| that preserves proto-extremal
cones; a transformation is an arbitrary 2-cell in lnlPoly/|D|. This defines a 2-category
D-Sketch.

A D-sketch is realized if every proto-extremal cone is in fact π-extremal. It is sat-
urated if whenever H : C → P is proto-extremal, where K is the vertex of C, and
φ : H(K) ∼= K ′ is an isomorphism in P such that π(φ) is an identity, the cone Hφ : C → P
constructed before Proposition 4.29 is also proto-extremal. It is precomplete if for any
D-cone G : C → |D|, any lift of its reduct ∂C ↪→ C → |D| to P can be extended to a
proto-extremal cone:

∂C P

C |D|

π

G

∃
p.e.

Finally, it is (D-)complete if it is realized, saturated, and precomplete.

Proposition 5.6. The 2-category of D-complete sketches is equivalent, as a strict 2-category,
to the 2-category D-Cat of D-categories.

Proof. We regard a D-category as a sketch by designating every π-extremal lift of a D-
cone as proto-extremal. This defines a 2-functor D-Cat → D-Sketch, which lands inside
the D-complete sketches (using Proposition 4.29) and is an isomorphism on hom-categories.
Moreover, precompleteness and realization make any D-complete sketch into a D-category,
while in the presence of these properties saturation is equivalent (using Proposition 4.28) to
saying that all π-extremal lifts of D-cones are proto-extremal; hence the functor is essentially
surjective as well.

D -Sketch is a complete and cocomplete strict 2-category, with limits and colimits
created in lnlPoly. If D is small, D -Sketch is even locally presentable. It is also better-
endowed with adjunctions, particularly ones arising from doctrine morphisms.

Definition 5.7. Let D1,D2 be lnl doctrines. A doctrine map F : D1 → D2 is a functor
|F| : |D1| → |D2| together with, for each D1-cone G : C → |D1|, a D2-cone CF → |D2| and an
isomorphism of abstract cones C ∼= CF (preserving the vertex) making the evident square
commute.

Proposition 5.8. Any doctrine map F : D1 → D2 induces a strict 2-adjunction (i.e. an
adjunction of Cat-enriched categories)

F∗ : D1-Sketch� D2-Sketch : F∗.

Proof. We have a 2-adjunction

F∗ : lnlPoly/|D1|� lnlPoly/|D2| : F∗
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given by composition with |F| and pullback along it, so it suffices to lift this to sketches. For
the right adjoint F∗, we define a lift C → F∗P of some D1-cone C → |D1| to be proto-extremal
if the composite CF ∼= C → F∗P → P is proto-extremal:

F∗P P

|D1| |D2|

C CF

y

∼=

For the left adjoint F∗, we define a lift D → F∗P of some D2-cone D → |D2| to be proto-
extremal if the latter D2-cone is the F -image of some D1-cone C → |D1| and there is a
proto-extremal lift C → P making the evident diagram commute:

P F∗P

|D1| |D2|

C CF = D

y

∼=

It is straightforward to check that these constructions lift the 2-adjunction.

We really want an analogous adjunction D1-Cat� D2-Cat, but this can only be expected
to be a pseudo 2-adjunction, satisfying its universal property up to equivalence.7 We will
construct this in Section 9, using the above strict 2-adjunction.

6. Sorted doctrines

In Section 3 we chose to represent monads and comonads as their Kleisli adjunction rather
than their Eilenberg–Moore adjunction (or any other), due to Lemma 3.8. Thus, to impose
the third kind of “Kleisli type” condition mentioned in Section 5, it suffices to assert essential-
surjectivity properties for some of the modalities.

Definition 6.1. An arrow-type abstract cone is determined by two signed objects K,L
(each linear or nonlinear). Its vertex is K, and its only nonidentity morphism is an abstract
projection in C(L,K).

If a cone belonging to a doctrine D is arrow-type determined by K,L, then by choosing
extremal lifts, any D-category can be equipped with a functor from the fiber over L to the
fiber over K. This functor is contravariant if K and L have the same sign and covariant if
they have different signs. Of the cones from Definition 4.16 representing the basic universal
properties from Section 2, F,U,

F

,

U

, (·)∗ are arrow-type.

Definition 6.2. A sorted lnl doctrine is an lnl doctrine D together with:

7A pseudo 2-adjunction is traditionally called a “biadjunction”, but this seems inadvisable here since we
are using the prefix “bi-” with a different connotation in “bifibration” and “bicomplete”.
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(i) A partition of the objects of |D| (which we call sorts) into primitive sorts and
derived sorts.

(ii) For each derived sort R, there is exactly one D-cone GR : CR → |D| whose concrete
vertex G(K) is R− or R+, and this is an arrow-type cone whose other vertex G(L) is
a primitive sort. We call it the sorting cone for R.

Definition 6.3. Let D be a sorted doctrine and π : S → |D| a D-sketch.

• S is well-sorted if for every derived sort R and every object R̃ ∈ π−1(R), there exists a

proto-extremal lift of GR that maps the vertex to R̃.
• S is strictly well-sorted if for every derived sort R with corresponding primitive sort
S, there is a specified bijection between the objects of π−1(R) and π−1(S) and, for each

R̃ and S̃ that correspond under this bijection, a specified proto-extremal lift of GR with

entries R̃ and S̃.

We write D-sCat for the 2-category of well-sorted D-complete sketches (D-categories).

Thus a D-category is well-sorted if and only if the functor π−1(S)→ π−1(R) induced by
each sorting cone is essentially surjective on objects, and strictly well-sorted if a particular
choice of this functor has been made that is bijective on objects. We are “really” interested
in the strictly well-sorted sketches, but the non-strictly well-sorted ones are more convenient
to work with technically. Fortunately we have the following:

Proposition 6.4. For a sorted doctrine D, every well-sorted D-category is equivalent in D
-Sketch to a strictly well-sorted one.

Proof. If π : S → |D| is well-sorted, for each derived sort R with corresponding primitive sort
S we have an essentially surjective functor π−1(S)→ π−1(R). Thus, we can replace π−1(R)
by an equivalent category whose objects are those of π−1(S), making the functor bijective
on objects. These equivalences on fibers extend to an equivalence of D-categories.

Thus, D-sCat is equivalent (as a bicategory) to its full sub-2-category of strictly well-
sorted D-categories.

Example 6.5. Any lnl doctrine can be made sorted with all sorts primitive, so that all
D-sketches are (vacuously) strictly well-sorted.

Example 6.6. Let D be any doctrine for which |D| has exactly one nonlinear object x and
one linear object a, such as lnlmulti or the terminal object lnlpoly. Suppose furthermore
that the only D-cone with vertex x± is an arrow-type cone with vertex x− and abstract
projection in C(a+,x−) (that is, a U-cone). Then we can make D a sorted doctrine where
a is primitive, x is derived, and this cone is the sorting cone.

We call this a Kleisli sorted doctrine. Then a D-category is strictly well-sorted just
when it is of Kleisli type (Definition 3.9). If D also contains F, then by Lemma 3.8 this is
equivalent to its being the Kleisli adjunction of the comonad ! = FU. Thus, the 2-category
of symmetric monoidal categories with a linear exponential comonad, and its variants with
internal-homs and/or limits and colimits, are equivalent to D -sCat for some sorted lnl
doctrine D. Similarly, by taking an F-cone as sorting we can represent cartesian monoidal
categories with a commutative strong monad.

Example 6.7. Let D be the sorted doctrine defined as follows. We take |D| = dblsplit,
as in Remark 2.7; thus a functor π : P → |D| partitions the nonlinear objects of P into
left-hand and right-hand ones. We equip D with cones for ⊗,1,`,⊥, as well as F defined on
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left-hand objects, U taking values in left-hand objects,

F

defined on right-hand objects, and

U

taking values in right-hand objects. And we take the U and

U

cones as sorting. Then a
D-category is strictly well-sorted just when it has a choice of U and

U

that are bijective onto
the left-hand and right-hand objects respectively. A straightforward extension of Lemma 3.8
now shows that this is the same as its being the double-Kleisli adjunction of Proposition 3.18
constructed from the linearly distributive category with storage PL. Thus, the 2-categories
of linearly distributive or ∗-autonomous categories with storage, and their variants with
limits and colimits, are equivalent to D -sCat for some sorted lnl doctrine D.

Example 6.8. By making one of the sorts in smadj (Example 4.8) derived from the other,
we obtain sorted doctrines for lax symmetric monoidal monads or comonads.

Example 6.9. Recall the lnl multicategory linpol from Example 5.4. We now rechristen
it symskew, calling its two linear objects l and t; thus there is a unique morphism Γ→ l
when Γ consists entirely of l’s, and a unique morphism Γ → t when Γ contains no more
than one t. We make this a sorted doctrine D with t primitive, l derived, sorting cone
l→ t (with vertex l), and no other cones.

A strictly well-sorted D-category is determined by the objects over t and the morphisms
with target over t. Every object over l is the image of one over t by a functor that we may
either leave implicit or denote G. We call a morphism over Γ→ t loose if Γ consists entirely
of l’s; thus the loose homsets are of the form P(GA1, . . . ,GAn;B). We call a morphism
over Γ → t tight if Γ contains a t; these tight homsets are uniquely determined by those
where the first element of Γ is t, i.e. of the form P(A1,GA2, . . . ,GAn;B). This yields a
doctrine for the symmetric skew multicategories of [BL20, §5]; the morphism j from
tight to loose morphisms:

P(A1,GA2, . . . ,GAn;B)→ P(GA1,GA2, . . . ,GAn;B)

is given by composition with the universal arrow GA1 → A1 over the sorting cone.
In a skew multicategory regarded as an lnl polycategory over symskew, a tight unit

1 (with restricted universal property) is a “left universal nullary map classifier”. Similarly,
for objects A and B over t, with corresponding objects GA and GB over l, a tensor
product A ⊗ GB (which also lies over t) is a “left universal tight binary map classifier”
(see [BL18, §4.4]); and a hom GA ( B (also lying over t) corresponds to the notion of
“closedness” from [BL18, §4.5]. Thus, by [BL18, BL20], we have sorted lnl doctrines for
(symmetric) skew monoidal categories and (symmetric) skew closed categories. In particular,
the “noninvertible associator” of a skew monoidal category is represented as a comparison
map

(A ⊗ GB) ⊗ GC −→ A ⊗ G(B ⊗ GC)

whose noninvertibility is unsurprising due to the different placements of G. (However, a
symmetric closed skew-monoidal category is not a bifibration over symskew; it lacks some
universal properties, such as a tensor product of two loose objects.)

Example 6.10. Let D be the sorted doctrine with |D| = cbpv, with a single cone for F that
is sorting. Thus, a strictly well-sorted D-category is a linearly subunary lnl multicategory
with an F satisfying a restricted universal property, and such that F is bijective from the
nonlinear objects to the linear ones. Thus, it consists of a cartesian multicategory together
with additional linear homsets

P
(
X1, . . . , Xn | ;FZ

)
. (6.1)



Vol. 19:2 LNL POLYCATEGORIES AND DOCTRINES OF LINEAR LOGIC 1:39

This information uniquely determines the other linear homsets by the F-isomorphism:

P
(
X1, . . . , Xn | FY ; FZ

) ∼= P(X1, . . . , Xn, Y | ;FZ
)
.

However, passing back along these isomorphisms yields multicategorical composition oper-
ations on the linear homsets (6.1):

P
(
Υ, X | ;FY

)
× P

(
Θ | ;FX

) ∼= P(Υ | FX ; FY
)
× P

(
Θ | ;FX

)
→ P

(
Υ,Θ | ;FY

)
.

This composition treats the universal morphisms χ ∈ P
(
X | ;FX

)
as identities. Moreover,

naturality of the F-isomorphisms implies that these operations are associative in the limited
sense that the two composite functions

P
(
Θ3, Y | ;FZ

)
× P

(
Θ2, X | ;FY

)
× P

(
Θ1 | ;FX

)
→ P

(
Θ3,Θ2,Θ1 | ;FZ

)
are equal. However, because of the restricted universal property of F, nothing forces the
two composite functions

P
(
Θ3, X, Y | ;FZ

)
× P

(
Θ2 | ;FY

)
× P

(
Θ1 | ;FX

)
⇒ P

(
Θ3,Θ2,Θ1 | ;FZ

)
(6.2)

to be equal, as they would be if the homsets (6.1) formed a (cartesian) multicategory. This
means the linear homsets (6.1) have the structure of a cartesian pre-multicategory in the
sense of [SL13].

Finally, composing with the universal morphism χ ∈ P
(
X | ;FX

)
provides a function

P
(
Θ ;X

)
→ P

(
Θ | ;FX

)
that respects the cartesian actions, identities, and compositions. Moreover, the linear mor-
phisms in the image of this map are central, meaning that the two morphisms (6.2) are
equal if one of the morphisms into FX or FY is in this image. Thus, we conclude that a
strictly well-sorted D-category can be identified with a cartesian Freyd multicategory in the
sense of [SL13]: a cartesian multicategory V of “values”, a cartesian pre-multicategory C of
“computations”, and an identity-on-objects functor return : V → C that preserves centrality.
(I am indebted to Max New for this observation.)

A similar doctrine with |D| = symskew yields symmetric Freyd multicategories. How-
ever, I don’t believe there is a sorted doctrine such that the strictly well-sorted D-categories
can be identified with bare (cartesian or symmetric) pre-multicategories. We can “remove”
the extra information of the nonlinear morphisms by requiring either that the only nonlinear
morphisms are projections, or that the nonlinear morphisms coincide with the central linear
ones; but neither of these conditions is enforcable doctrinally. (Similarly, a duploid [MM13]
is an adjunction of ordinary categories with certain restrictions: adjunctions can be mod-
eled doctrinally over the base adj from Example 4.9, but the duploid conditions are not
doctrinal.)

A nonlinear product X × Y in a cartesian Freyd multicategory is the same as a ten-
sor in the sense of [SL13]: a (pre)multicategorical tensor in V that is preserved by return.
As shown in [SL13, §8], a cartesian Freyd multicategory with all such tensors (and units)
is equivalent to a Freyd-category in the sense of [PT99]: a cartesian monoidal category
V, a symmetric premonoidal category [PR97] C, and an identity-on-objects symmetric pre-
monoidal functor return : V → C that preserves centrality. (Alternatively, one can use the
characterization of Freyd-categories from [Lev04], which is akin to those of CBPV structures
in Proposition 3.13.)
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Similarly, a nonlinear coproduct X + Y in a cartesian Freyd multicategory is the same
as a sum in the sense of [SL13]. Finally, a cartesian Freyd multicategory has function spaces
in the sense of of [SL13, §6] if and only if it has our mixed homs →�. The latter means that
for any nonlinear object X and linear object FY , there is a nonlinear object X→�FY , with
a universal linear morphism χ ∈ P

(
X →� FY,X | ;FY

)
inducing a bijection

P
(
Θ, X | ;FY

) ∼= P(Θ ;X →� FY
)

between computations and values, as in [SL13, (4)].

Unlike D-completeness, well-sortedness is a coreflective property.

Proposition 6.11. For any sorted doctrine D, the 2-category of well-sorted D-sketches is
coreflective in D -Sketch, and the coreflector preserves D-completeness.

Proof. The coreflection of a D-sketch S is its full sub-lnl-polycategory S ′ containing all
objects of S that lie over primitive sorts, and precisely those objects lying over derived
sorts that are the vertex of a proto-extremal lift of the sorting cone. Its proto-extremal
cones are precisely those of S that land in this subcategory.

If S is D-complete, S ′ is clearly still realized and saturated. To see that S ′ is also still
precomplete, note that by construction it still has proto-universal lifts of the sorting cones.
But by definition, any non-sorting D-cone must have a primitive vertex, and therefore the
proto-universal lifts of such cones in S still lie in S ′.

Example 6.12. Over a Kleisli sorted doctrine, the well-sorted coreflection of an lnl ad-
junction is the Kleisli adjunction of its comonad. Similarly, over the doctrine of linearly
distributive categories with storage from Example 6.7, the well-sorted coreflection of a lin-
early distributive lnl adjunction (Proposition 3.15(iii)) is the double-Kleisli adjunction of
its induced monad/comonad pair (Proposition 3.18).

Finally, we remark on what it takes for a doctrine map to preserve well-sortedness.

Definition 6.13. Let D1 and D2 be sorted doctrines. A doctrine map F : D1 → D2 is
sorted if it preserves primitive sorts, derived sorts, and sorting cones, and moreover for any
derived sort R of D1, any sorting D2-cone with vertex F (R) is the image of some sorting
D1-cone with vertex R.

Proposition 6.14. If F : D1 → D2 is a sorted doctrine map, then F∗ and F∗ from Propo-
sition 5.8 preserve well-sortedness.

Proof. For F∗, let π : S → |D1| be a well-sorted D1-sketch, let R be a derived D2-sort, and
let S ∈ (Fπ)−1(R). Then π(S) is a derived D1-sort. So since S is well-sorted, there is a
proto-extremal lift of its sorting cone GR that maps the vertex to S. But by assumption,
FGR is the sorting D2-cone of F (R), while by definition this lift of it is also proto-extremal
in F∗(S). Thus, F∗(S) is well-sorted.

For F∗, let π : S → |D2| be a well-sorted D2-sketch and R a derived D1-sort. An object
of F∗(S) over R is an object S ∈ π−1(F (R)). Since F (R) is a derived D2-sort and S is
well-sorted, there is a proto-extremal lift of its sorting cone GF (R) that maps the vertex to
S. By assumption, GF (R) is the image of the sorting D1-cone GR, and this proto-extremal
lift of GF (R) induces a proto-extremal lift of GR to F∗(S) mapping the vertex to S. Thus,
F∗(S) is well-sorted.
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7. The doctrinal completion of a sketch

We will now show that any D-sketch can be completed to a D-category in a universal way.
Recall (see e.g. [AR94]) that an object P of a category is said to be injective with respect
to a set of morphisms I if for any morphism A → B in I, any morphism A → P can be
extended to B (not necessarily uniquely):

A P

B

The class of all I-injective objects is called a small-injectivity class (“small-” since I is
a set rather than a proper class). If we require the extensions to be unique, we obtain the
related notions of orthogonal object and small-orthogonality class. In a category with
pushouts, P is orthogonal to A → B if and only if it is injective with respect to A → B and
its codiagonal B +A B → B; thus every small-orthogonality class is also a small-injectivity
class.

Theorem 7.1. If D is small, then the D-complete sketches are a small-injectivity class in
D-Sketch.

Proof. Given any D-cone G : C → |D|, we regard it as a D-sketch in which the only proto-
extremal cone is G itself. We also regard its reduct as a D-sketch via the composite ∂C ↪→
C → |D|, with no proto-extremal cones at all. Then a D-sketch P is precomplete if and only
if it is injective to the inclusions of D-sketches ∂C ↪→ C.

Similarly, given any D-cone G : C → |D|, any expansion of it (Definition 4.14), and
any extension of G to GΨ : C/Ψ → |D|, we regard C/Ψ and its corresponding pre-expansion
∂(C/Ψ) as D-sketches via GΨ and its restriction to ∂(C/Ψ), in which the only proto-extremal
cone is G. Then a D-sketch P is realized if and only if it is orthogonal to the set of inclusions
of D-sketches ∂(C/Ψ) ↪→ C/Ψ, indexed over all G, Ψ, and GΨ.

Finally, given an abstract cone C with vertex K, let C∼= denote the lnl polycategory
that is C with an additional signed object K ′ isomorphic to K. There is a fold map C∼= → C
that collapses K and K ′ both to K, which has two sections s, s′ : C → C∼= sending K to
K and K ′ respectively. If G : C → D is a D-cone, we can regard C∼= as a D-sketch via the
composite C∼= → C → |D|, in which both s and s′ are proto-extremal. We can also regard
it as a D-sketch in which only s is proto-extremal; we denote this sketch by C′∼=. Then a
D-sketch is saturated if and only if it is injective with respect to the set of inclusions of
D-sketches C′∼= ↪→ C∼=.

Let ID denote the set of all the morphisms

∂C ↪→ C ∂(C/Ψ) ↪→ C/Ψ
C′∼= ↪→ C∼= C/Ψ +∂(C/Ψ) C/Ψ → C/Ψ

as C ranges over the D-cones. Then a sketch is D-complete if and only if it is injective with
respect to ID.

Remark 7.2. The proof shows that realized D-sketches are actually a small-orthogonality
class. Saturated D-sketches are also a small-orthogonality class, since the inclusions C′∼= ↪→
C∼= are epimorphic (being the identity on underlying lnl polycategories).
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Corollary 7.3. If D is small, then every D-sketch S has a weak D-reflection, i.e. a map

S → ŜD such that ŜD is D-complete and any map from S to a D-complete sketch factors

through ŜD.

Proof. This is a standard construction applying to any small-injectivity class, known as
Quillen’s small object argument; see e.g. [Hov99, 2.1.14] or [Hir03, 10.5.16] or [Rie14, 12.2.2].
Let S0 = S. Given Sn, define inductively Sn+1 as the pushout∐

ι,uAι Sn

∐
ι,u Bι Sn+1

p

where the coproducts are over all ι : A → B in the generating set ID and all u : A → Sn.
Continue the iteration into transfinite ordinals n by taking colimits at limit stages. Then
since D-Sketch is locally presentable, there is a sufficiently large ordinal κ such that any
map A → Sκ, for any i : A → B, factors through Sn for some n < κ, and hence extends to B
through Sn+1. Thus, if we define ŜD = Sκ, it is D-complete. Moreover, given a D-complete
sketch T , we can extend a map S → T to each stage Sn inductively, using the completeness
of T at successor stages.

The factorization ŜD → T constructed in Corollary 7.3 is not in general unique, but we
will show that it is unique up to unique isomorphism.

There is an additional wrinkle, however: if D contains operations such as (, (·)∗ that
are contravariant in some arguments, then D-completion cannot be expected to behave well
with respect to noninvertible 2-cells. Thus we have to formulate its universal property with
respect to D-Sketchg, where Kg denotes the underlying (2,1)-category of a 2-category K ,
containing only the invertible 2-cells.

Theorem 7.4. For any small lnl doctrine D and D-sketch S, there is a D-complete sketch

ŜD and a map S → ŜD such that for any D-complete sketch P, the precomposition functor

D-Sketchg(ŜD,P) → D-Sketchg(S,P) is a surjective equivalence of categories. In particu-
lar, the sub-2-category of D-complete sketches in D-Sketchg (which, recall, is equivalent to
D-Catg) is pseudo-reflective.

Proof. In Corollary 7.3, ŜD was constructed as a transfinite composite of pushouts of the
generators. Since surjective equivalences are closed under pullbacks and inverse transfinite
composites, it suffices (see e.g. [Hov99, 4.2.4]) to show that for any D-complete sketch
π : P → |D| and any morphism ι : A → B in ID, the induced map D-Sketchg(B,P) →
D-Sketchg(A,P) is a surjective equivalence. Since it is always surjective on objects, it
remains to prove that it is fully faithful. Referring to the construction of ID, there are four
cases we need to consider.

When ι is an inclusion ∂C ↪→ C for some D-cone G : C → |D|, we must show that
given two π-extremal lifts H,K : C → P of G, any isomorphism α : H ′ ∼= K ′ between their
reducts H ′,K ′ : ∂C → P can be uniquely extended to a compatible isomorphism H ∼= K.
By composing the transitions of K with the components of α and their inverses (depending
on the sign of the relevant signed object), we obtain the data for a pre-expansion of H by a
single object, namely the vertex of K. Thus, extremality of H induces a map between the
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vertices of H and K (with direction depending on the sign of that vertex). Similarly, we
obtain a map in the other direction, and the two are inverses.

When ι is an inclusion ∂(C/Ψ) ↪→ C/Ψ, we must show that given two expansions H,K :
C/Ψ → P of π-extremal lifts, any isomorphism α : H ′ ∼= K ′ between their corresponding
pre-expansions H ′,K ′ : ∂(C/Ψ) → P is also an isomorphism H ∼= K. Since the inclusion
∂(C/Ψ) ↪→ C/Ψ is bijective on objects, this is just an extra naturality condition with respect
to the factorization morphism. But the two sides of this desired naturality square each fit
into an expansion of H whose expanders are those of K composed with components of α
or their inverses; hence they are equal.

Finally, when ι is a codiagonal C/Ψ +∂(C/Ψ) C/Ψ → C/Ψ or an inclusion C′∼= ↪→ C∼=, full-

faithfulness is automatic since these ι’s are bijective on objects and full.

Proposition 7.5. For any sorted doctrine D and any well-sorted D-sketch S, the completion

ŜD is also well-sorted.

Proof. Let S be well-sorted, and let (ŜD)′ → ŜD be the well-sorted coreflection of ŜD. Since

S is well-sorted, the map S → ŜD factors through (ŜD)′. But by Proposition 6.11, (ŜD)′ is

D-complete, so the universal property of ŜD induces a map ŜD → (ŜD)′ that is a section of

the coreflection, up to isomorphism. This implies that ŜD is also well-sorted.

8. The sequent calculus of a doctrine

Let D be an lnl doctrine and S an lnl polycategory with a map π : S → |D|, which
we regard as a D-sketch with no proto-extremal cones. Then Theorem 7.4 implies that S
generates a free D-category ŜD. We now extract a sequent calculus that presents such free
D-categories from the proof of Theorem 7.4.

For simplicity, for now we suppose that D is unsorted, |D| is subterminal, and all the
cones of D are discrete (have no nonidentity abstract transitions) and also finite. This
restriction on cones includes cones for universal morphisms, as in Definition 4.16, and also
for finite products and coproducts, as in Definition 4.18. These are the primary universal
properties that are traditionally considered in logic. Under these assumptions, we can
replace the construction of Corollary 7.3 by the following simplified version.

(i) First perform the small object argument starting at S0 = S, using only the inclusions
∂C ↪→ C for D-cones C, and when n > 0 restricting the coproduct to include only the
morphisms u : ∂C → Sn that do not factor through Sn−1. After a countable iteration,
this produces a precomplete sketch Sω.

(ii) Next perform the small object argument starting at Sω, using only the inclusions
∂(C/Ψ) ↪→ C/Ψ and their codiagonals C/Ψ +∂(C/Ψ)C/Ψ → C/Ψ. After a further countable

iteration, this produces a realized sketch Sω+ω. Moreover, since these inclusions and
codiagonals are bijective on objects and each ∂C is discrete, Sω+ω is still precomplete.

(iii) Finally, perform one step of the small object argument using the map C′∼= ↪→ C∼=. This

is sufficient to produce a saturated sketch ŜD = Sω+ω+1, which is still precomplete
and realized, and hence D-complete.

In particular, these changes make the argument completely constructive. (The negation
in (i) may not seem constructive, but the inclusion of Sn−1 into Sn is decidable on objects
because each ∂C ↪→ C is.)
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A ∈ Sτ

A typeτ
C a D-cone ∂C = {rτ11 , . . . , r

τn
n } R1 typeτ1 · · · Rn typeτn⊙

C [R1, . . . , Rn] typeτC

(a) Type-forming rules

R typeτ

` R−, R+

` Φ,K ` K•,Ψ
` Φ,Ψ

` Ψ σ : Φ→ Ψ a structural map

` Φ

(b) Structural rules

f ∈ S(Φ)

` Φ

(c) Generator rule

C a D-cone with vertex rε ∂C = {rτ11 , . . . , r
τn
n }

R1 typeτ1 · · · Rn typeτn f ∈ C(rε1i1 , . . . , r
ε`
i`
, rε) an abstract projection

` Rε1i1 , . . . , R
ε`
i`
,
⊙
C [R1, . . . , Rn]ε

(d) Noninvertible logical rule

C a D-cone with vertex rε of class τC ∂C = {rτ11 , . . . , r
τn
n }

R1 typeτ1 · · · Rn typeτn S1 typeσ1 · · · Sm typeσm

|D|(τ−εC , ση1
1 , . . . , σ

ηm
m ) 6= ∅{

` Rε1i1 , . . . , R
ε`
i`
, Sη1

1 , . . . , Sηmm
}
f∈C(rε1i1 ,...,r

ε`
i`
,rε) an abstract projection

`
⊙
C [R1, . . . , Rn]−ε, Sη1

1 , . . . , Sηmm

(e) Invertible logical rule

Figure 2. LNL Sequent calculus

We can now describe ŜD using a sequent calculus, defined formally in Figure 2. There
are two classes of types, linear and nonlinear, written A typeL and X typeNL. Generically,
we write R typeτ for an arbitrary class τ ∈ {L,NL}. The first rule in Figure 2a says that
every object of S determines a type of the appropriate class.

By assumption, the reduct ∂C of each D-cone is a discrete lnl polycategory with finitely
many objects. We assume the objects of each ∂C are ordered as {rτ11 , . . . , r

τn
n }, the notation

meaning that ri is of class τi, and the vertex k of class τC . The second rule in Figure 2a
says that every such cone induces an operation on types. The notation

⊙
C [R1, . . . , Rn] is

chosen to be generic over the cone C, but for particular choices of C we use the notations of
Section 2, e.g. A ⊗ B, FX, X oA, A&B, etc.
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Proposition 8.1. There is a bijection between the valid judgments R typeτ and the τ -objects

of ŜD.

Proof. Define the height of R typeτ recursively: the height of an object of S is zero, while
that of

⊙
C [R1, . . . , Rn] is one more than the maximum height of R1, . . . , Rn. (If n = 0, the

height of
⊙
C [ ] is 1.) I claim that there is a bijection between the valid judgments R typeτ

of height ≤ n and the τ -objects of Sn. This is true for n = 0. The objects of Sn+1 are
those of Sn plus a new vertex for each u : ∂C → Sn not factoring through Sn−1. But the
latter are the applications of the

⊙
C-rule with at least one premise of height n, hence whose

conclusion has height n+ 1.

We denote the sequents in entries-only style as ` Φ, where Φ is an admissible list of
signed types, defined analogously to the semantic case in Section 4. The structural rules are
shown in Figure 2b. The first is the identity rule and the second is the cut rule. The third
incorporates exchange for all types, plus contraction and weakening for nonlinear types,
as in Section 4. Similarly, the generator rule in Figure 2c says that every morphism of S
induces a derivation of a sequent.

We may write Θ | Γ ` ∆ for ` Θ−,Γ−,∆+, and Θ ` X for ` Θ−, X+. In this notation,
the identity and cut rules multifurcate into linear and nonlinear versions:

A typeL

· | A ` A
X typeNL

X ` X
Υ ` X Θ, X ` Y

Θ,Υ ` Y

Θ′ | Γ′ ` ∆′, A Θ | Γ, A ` ∆

Θ,Θ′ | Γ,Γ′ ` ∆,∆′
Υ ` X Θ, X | Γ ` ∆

Θ,Υ | Γ ` ∆
.

We divide the logical rules into invertible (right rules for negative types and left rules
for positive types) and noninvertible (left rules for negative types and right rules for positive
types). The generic noninvertible rule is in Figure 2d. Here ε and the εj ’s are signs +,−.
For instance, if C is the cone for ⊗, with objects a, b and vertex c, there is one abstract
projection f ∈ C(a−, b−, c+) and the rule becomes

A typeL B typeL

· | A,B ` A ⊗ B
.

If C is the cone for &, with objects a, b and vertex c, there are two abstract projections
f ∈ C(a+, c−) and g ∈ C(b+, c−), and the rule becomes two:

A typeL B typeL

· | A&B ` A
A typeL B typeL

· | A&B ` B
.

The rules for the modalities are

X typeNL

X | · ` FX

A typeL

UA | · ` A
X typeNL

X | F

X ` ·
A typeL

U

A | A ` ·
Unlike noninvertible rules in most common sequent calculi, ours does not build in a cut.

But we can always apply a cut afterwards, since the latter is primitive in our system. (We
leave cut-elimination for future study.) Since the modalities are the most novel aspect of
this calculus, we list their derived cut-containing rules:

Θ ` X
Θ | · ` FX

Θ | Γ, A ` ∆

Θ,UA | Γ ` ∆

Θ ` X
Θ | F

X ` ·
Θ | Γ ` ∆, A

Θ,

U

A | Γ ` ∆
.
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If |D| = lnlmulti, so ∆ is a singleton, these rules for F and U specialize to the noninvertible
rules of [Ben95]. If instead |D| = cbpv, so ∆ is a singleton and Γ is empty, we obtain the
rules of [Lev03].

Proposition 8.2. There is a surjection from the derivations of ` Φ using only the structural,
generator, and noninvertible rules to the hom-set Sω(Φ).

Proof. Such a function is defined by induction on derivations: the structural rules use that
Sω is an lnl polycategory, the generator rule uses the functor S → Sω, and the noninvertible
rule uses the images of abstract projections under the proto-extremal cones of Sω, which
exist (by construction, in fact uniquely) since it is precomplete. We show inductively that
it is surjective onto morphisms in Sn.

For n = 0 this follows from the generator rule. Since Sn+1 is a pushout, its mor-
phisms are generated by the operations in an lnl polycategory (identities, composition,
and structural actions) from those of Sn and those of the cones C. The latter arise from the
noninvertible rules, while the lnl polycategory operations are reflected by the structural
rules.

Finally, the generic invertible rule is shown in figure Figure 2e, where −ε reverses a sign.
The requirement |D|(τ−εC , ση1

1 , . . . , σ
ηm
m ) 6= ∅ ensures that we do not produce sequents not

allowed by |D|, e.g. the universal properties of limits and colimits are restricted as necessary
in an lnl multicategory. (Recall we are assuming |D| to be subterminal, so its nonempty
homsets are singletons.)

For instance, if C is the cone for ⊗ as above, the rule becomes

` A−, B−,Ψ
` (A ⊗ B)−,Ψ

=
Θ | Γ, A,B ` ∆

Θ | Γ, A ⊗ B ` ∆

while if C is the cone for & as above, the rule becomes

` A+,Ψ ` B+,Ψ

` (A&B)+,Ψ
=

Θ | Γ ` ∆, A Θ | Γ ` ∆, B

Θ | Γ ` ∆, A&B.

Similarly, the rules for other common connectives such as (,⊕,1,⊥,`,×,→, 1 specialize
to the usual ones for classical or intuitionistic multiplicative-additive linear logic or intu-
itionistic nonlinear logic.

For the modalities, the invertible rules are:

Θ, X | Γ ` ∆

Θ | Γ,FX ` ∆

Θ | · ` A
Θ ` UA

Θ, X | Γ ` ∆

Θ | Γ ` ∆,

F

X

Θ | A ` ·
Θ ` U

A

As before, if |D| = lnlmulti or |D| = cbpv, these rules for F and U specialize to those
of [Ben95] or [Lev03] respectively. Similarly, the rules for � and o, with appropriate cuts
added:

Θ ` A� B Θ′ | Γ ` A
Θ,Θ′ | Γ ` B

Θ | A ` B
Θ ` A� B

Θ ` X Θ′ | Γ ` A
Θ,Θ′ | Γ ` X oA

Θ | Γ ` X oA Θ′, X | Γ′, A ` ∆

Θ,Θ′ | Γ,Γ′ ` ∆

specialize when |D| = ecbv (so Γ is a singleton and Γ′ = ∅) to those of [MS14] (modulo
changes of notation, and additive maintenance for the nonlinear context).
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Proposition 8.3. There is a surjection from derivations of ` Φ, in the full sequent calculus

of Figure 2, to the hom-set ŜD(Φ).

Proof. As before, the function is defined inductively on derivations, with the invertible
logical rule resulting from realizedness. Also as before, we prove surjectivity onto Sω+n

by induction. The base case Sω is Proposition 8.2; while the morphisms of Sω+n+1 are
generated by the lnl polycategory operations (structural rules) from those of Sω+n and the
factorizations in each C/Ψ (invertible logical rules).

The equivalence relation on derivations of ` Φ whose quotient is ŜD(Φ) can also be
described syntactically. It is generated by the composition operation of S, the structural
axioms of an lnl polycategory, the principal “β-reduction” rule that reduces a cut of the
form

. . . f ∈ C(rε1i1 , . . . , r
ε`
i`
, rε) abs. proj.

` Rε1
i1
, . . . , Rε`

i`
,
⊙
C [R1, . . . , Rn]ε

. . .
{
` Rε1

i1
, . . . , Rε`

i`
, Ψ
}
f abs. proj.

`
⊙
C [R1, . . . , Rn]−ε,Ψ

` Rε1
i1
, . . . , Rε`

i`
, Ψ

to the derivation of ` Rε1i1 , . . . , R
ε`
i`
,Ψ on the right that is indexed by the specific abstract

projection f specified on the left, and the “η-conversion” rule that two derivations of
`
⊙
C [R1, . . . , Rn]−ε, Sη1

1 , . . . , Sηmm are equal if they become equal upon cutting with the
noninvertible rule ` Rε1i1 , . . . , R

ε`
i`
,
⊙
C [R1, . . . , Rn]ε.

Remark 8.4. We have constructed ŜD by a categorical iterative procedure, and then shown
that we can extract a sequent calculus from this construction. As pointed out by a referee,
we could also have specified the sequent calculus first and then used it to construct the

free D-completion ŜD. We regard the equivalence between the two as the most interesting
observation. It is ultimately a matter of personal preference which side of the equivalence
one prefers to start from, although the categorical approach does have the advantage of
quotienting the morphisms by the appropriate equivalence relation automatically.

We have described this sequent calculus for a restricted class of doctrines, to reduce
the syntactic bureaucracy. However, analogous calculi can be formulated for any doctrine,
with the following modifications.

If D contains infinite cones, its sequent calculus has infinitely many rules, some with
infinitely many premises. This is hard to implement, of course, but mathematically un-
problematic. If D contains non-discrete cones, the type-formation rules have sequents and
equalities of sequents as premises. Thus both judgments and their equalities are mutually
inductive, as in a dependent type theory.

If |D| is not subterminal, then the syntactic classes of types must be indexed by objects
of |D|, and the sequents must likewise be indexed by morphisms of |D|. The result is
a “fibrational” calculus similar to that of [LSR17], though without 2-cells in the “mode
theory” |D|. For instance, if |D| = plmulti as in Remark 2.4, each sequent is labeled by
a permutation of its context; this essentially serves to neuter the exchange rule, leading to
a variant of ordered logic. Similarly, if |D| = linpol or lnlpol as in Example 5.4, each
linear type is labeled as positive or negative.

Finally, if D is sorted and S lies only over primitive sorts, we can omit the syntactic
classes of types corresponding to derived sorts, or equivalently consider the action of sorting
cones to be an implicit coercion. In addition, in this case usually some of the sequents will
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be redundant, corresponding to hom-sets that are always canonically isomorphic to some
other hom-sets, and can be omitted from the syntax.

For example, a Kleisli sorted doctrine with |D| = lnlmulti yields split-context calculi
for intuitionistic linear logic like those of [Bar96, Wad94], with only one class of types that
can appear in both parts of the context. Types in the nonlinear part have an implicit
application of U, so it makes sense to change notation and write FA as !A. Moreover,
since P

(
Θ ; UA

) ∼= P(Θ | ;A), the nonlinear morphisms are determined by the linear ones;
thus we can dispense with the nonlinear sequents entirely, essentially defining them by the
invertible rule for U. The remaining logical rules for the exponentials then become:

Θ | · ` A
Θ | · ` !A

Θ, A | Γ ` ∆

Θ | Γ, !A ` ∆

Θ | Γ, A ` ∆

Θ, A | Γ ` ∆

The first two appear verbatim in [Bar96, Wad94], while the third is admissible [Bar96,
Lemma 2.5]. The cut rule that mixes linear and nonlinear sequents also has to be restated
in this notation, alongside the one for purely linear sequents:

Θ′ | Γ′ ` ∆′, A Θ | Γ, A ` ∆

Θ,Θ′ | Γ,Γ′ ` ∆,∆′
Υ | · ` A Θ, A | Γ ` ∆

Θ,Υ | Γ ` ∆
.

These cut rules both appear in [Bar96, Lemma 3.1] (“Linear Cut” and “Intuitionistic Cut”)
and in [Wad94] (“Cut” and the derivable “Cut-Int”).

Something similar happens in [EMS12] with |D| = cbpv, although in this case the
computation types are merely included in the value types by an implicit U, rather than
identified with them. This includes the above rules for !A (meaning FA) with Γ = ∅, and
the (arity-restricted, cut-including) rules for →( (their “→”):

Θ ` X Θ′ | Γ ` X →(B

Θ,Θ′ | Γ ` B
Θ, X | Γ ` B

Θ | Γ ` X →(B
.

Likewise, for Example 6.9 with |D| = symskew, the rules for restricted ⊗ and( (with one
tight input — the “stoup” — and the other loose) specialize to those of [UVZ18, UVZ20,
Vel21, UVW22].

As a final example, in the double-Kleisli sorted doctrine of Example 6.7, we can write
the sequents as Θ | Γ ` ∆ | Υ, where Θ and Υ consist of types lying over the “left-hand”
and “right-hand” derived sorts respectively. Types in Θ have an implicit U and types in
Υ have an implicit

U

, so we write F and

F

as ! and ? respectively. Again we can define
the nonlinear sequents by the invertible rules for U and

U

— although when translating a
nonlinear sequent Θ,Υ ` A in this way, we have to pay attention to whether A is being
regarded as a left-hand type or a right-hand type: in the former case the sequent becomes
Θ | · ` A | Υ, while in the latter case it becomes Θ | A ` · | Υ (due to the different universal
properties of U and

U

). The remaining logical rules then become:

Θ | · ` A | Υ
Θ | · ` !A | Υ

Θ, A | Γ ` ∆ | Υ
Θ | Γ, !A ` ∆ | Υ

Θ | Γ, A ` ∆ | Υ
Θ, A | Γ ` ∆ | Υ

Θ | A ` · | Υ
Θ | ?A ` · | Υ

Θ | Γ ` ∆ | Υ, A
Θ | Γ ` ∆, ?A | Υ

Θ | Γ ` ∆, A | Υ
Θ | Γ ` ∆ | Υ, A
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and the cut rules multifurcate further into:

Θ′ | Γ′ ` ∆′, A | Υ′ Θ | Γ, A ` ∆ | Υ
Θ,Θ′ | Γ,Γ′ ` ∆,∆′ | Υ,Υ′

Θ′ | · ` A | Υ′ Θ, A | Γ ` ∆ | Υ
Θ,Θ′ | Γ ` ∆ | Υ,Υ′

Θ′ | A ` · | Υ′ Θ | Γ ` ∆ | Υ, A
Θ,Θ′ | Γ ` ∆ | Υ,Υ′

.

These are all precisely the relevant logical and structural rules of [Gir93].

9. Adjunctions induced by doctrine maps

Our last goal is to show that a doctrine map F : D1 → D2 induces a pseudo 2-adjunction
relating D1-categories to D2-categories, combining the adjunctions from Proposition 5.8
and Theorem 7.4.

Theorem 9.1. For any morphism F : D1 → D2 of small doctrines, there is an induced
pseudo 2-adjunction

F̂∗ : D1-Catg � D2-Catg : F̂∗.

Proof. Identifying Di-categories with Di-complete sketches, we define F̂∗ to be the F∗ from
Proposition 5.8 restricted to D2-complete inputs. This takes values in D1-complete sketches
because the F∗ from Proposition 5.8 maps ID1 into ID2 , up to isomorphism. Now we can

define F̂∗(S) = (̂F∗S)D2
, and compute

D2-Catg(F̂∗(S), T ) = D2-Catg((̂F∗S)D2
, T ) ' D2-Sketchg(F∗S, T )

∼= D1-Sketchg(S,F∗T ) ∼= D1-Catg(S, F̂∗T ).

Theorem 9.2. For any sorted map F : D1 → D2 of small sorted doctrines, there is an
induced pseudo 2-adjunction

F̃∗ : D1-sCatg � D2-sCatg : F̃∗.

Proof. It suffices to show that both functors in Theorem 9.1 preserve well-sortedness. For

F̂∗ = F∗ this follows from Proposition 6.14. For F̂∗, let S be a well-sorted D1-complete sketch.
By Proposition 6.14, F∗(S) is a well-sorted (incomplete) D2-sketch; thus by Proposition 7.5,

F̂∗(S) = (̂F∗S)D2
is also well-sorted.

Remark 9.3. If D2 (hence also D1) contains only “totally covariant” operations, then
Theorems 9.1 and 9.2 extend to pseudo 2-adjunctions D1-Cat � D2-Cat and D1-sCat �
D2-sCat including the noninvertible 2-cells.

We conclude with examples. In fact, nearly all the obvious forgetful functors between

classes of lnl polycategories discussed in Section 3 are of the form F̂∗ for some (sorted)
doctrine map F, and therefore have left pseudo-adjoints.

To start with, we consider maps between doctrines that have no cones. These induce

F̂∗ functors including the following.

• The underlying lnl multicategory of an lnl polycategory.
• The underlying cartesian multicategory, and the underlying symmetric polycategory, of

an lnl multicategory or lnl polycategory.
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• The underlying symmetric multicategory of a symmetric polycategory, lnl multicategory,
or lnl polycategory.

Thus, all of these forgetful functors have left pseudo-adjoints, which extend to non-invertible
2-cells as in Remark 9.3.

By adding appropriate cones to the doctrines, we obtain more F̂∗ functors, such as the
following. In each case we must check that the putative doctrine map actually preserves
the specified cones. This basically means that every specified kind of universal property in
the domain doctrine is also specified in the codomain, which is essentially just the assertion
that the forgetful functor in question exists.

• The underlying symmetric monoidal category of a linearly distributive category.
• The underlying closed symmetric monoidal category of a ∗-autonomous category. To

represent this using a doctrine morphism, we need to explicitly include a (-cone in the
doctrine for ∗-autonomous categories (to be the image of the (-cone in the doctrine for
closed symmetric monoidal categories). Since internal-homs can be derived from duals,
and hence are automatically preserved by ∗-autonomous functors, this yields an equivalent
2-category of D-categories.
• The underlying linearly distributive category of a ∗-autonomous category. As in the

previous example, for this we need to include redundant `- and ⊥-cones in the doctrine
for ∗-autonomous categories.
• The underlying symmetric monoidal category, and the underlying cartesian monoidal

category, of an lnl adjunction.
• The underlying ∗-autonomous category, and the underlying cartesian monoidal category,

of a ∗-autonomous lnl adjunction.
• The underlying CBPV pre-structure of an lnl adjunction, the underlying EEC+ model

of a closed lnl adjunction with products and coproducts, and so on.

Thus, all of these forgetful functors have left pseudo-adjoints as well. Those with no con-
travariant operations (such as( and (·)∗) extend to non-invertible 2-cells as in Remark 9.3.
We can also add any desired limits and colimits to these doctrines.

Finally, we consider sorted maps of doctrines containing some derived sorts. In the
simplest case, the domain doctrine has all sorts primitive, in which case a doctrine map is

sorted just when it maps every sort to a primitive one. This yields F̂∗ functors such as the
following.

• The underlying (closed) symmetric monoidal category of a (closed) symmetric monoidal
category with a linear exponential comonad.
• The underlying linearly distributive category of a linearly distributive category with stor-

age.
• The underlying (symmetric) multicategory of a (symmetric) skew multicategory.

If the domain has primitive sorts, we have to check the rest of Definition 6.13. This yields

F̂∗ functors such as the following, all with left pseudo-adjoints.

• The underlying symmetric monoidal category with linear exponential comonad of a lin-
early distributive category with storage. Here the unique derived (nonlinear) sort in the
domain maps to the derived nonlinear sort of left-hand objects in the codomain (see
Example 6.7).
• The underlying linearly distributive category with storage of a ∗-autonomous category

with storage.
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• The underlying (symmetric) skew monoidal category of a lax (symmetric) monoidal co-
monad, as in [Szl12, Definition 7.4] or [Vel21, Example 2]. Here the underlying functor
of the doctrine map symskew → smadj is defined by l 7→ p and t 7→ n, where smadj
has p derived and n primitive.
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Table 3. Subterminal and other small lnl polycategories
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