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Abstract. By the Riesz representation theorem using the Riemann-Stieltjes integral, lin-
ear continuous functionals on the set of continuous functions from the unit interval into the
reals can either be characterized by functions of bounded variation from the unit interval
into the reals, or by signed measures on the Borel-subsets. Each of these objects has an
(even minimal) Jordan decomposition into non-negative or non-decreasing objects. Using
the representation approach to computable analysis, a computable version of the Riesz
representation theorem has been proved by Jafarikhah, Lu and Weihrauch. In this article
we extend this result. We study the computable relation between three Banach spaces,
the space of linear continuous functionals with operator norm, the space of (normalized)
functions of bounded variation with total variation norm, and the space of bounded signed
Borel measures with variation norm. We introduce natural representations for defining
computability. We prove that the canonical linear bijections between these spaces and
their inverses are computable. We also prove that Jordan decomposition is computable on
each of these spaces.

1. Introduction

Let C[0; 1] be the set of continuous functions h : [0; 1] → R. By the Riesz representation
theorem for every linear continuous function F : C[0; 1] → R there is a function g : [0; 1] → R

of bounded variation such that F (h) =
∫
h dg for every continuous function h ∈ C[0; 1]. For

every function g : [0; 1] → R of bounded variation there is a signed Borel measure µ on the
unit interval of finite variation norm such that

∫
h dg =

∫
h dµ for every continuous function

h ∈ C[0; 1]. Finally for every signed Borel measure µ on the unit interval of finite variation
norm the function h 7→

∫
h dµ for h ∈ C[0; 1] is linear and continuous.

By the Jordan decomposition theorem for every function g : [0; 1] → R of bounded
variation there are non decreasing functions g+, g− : [0; 1] → R such that g = g+ − g−.
Similar decomposition theorems have been proved for Functionals F and measures µ: for
every linear continuous functional F : C[0; 1] → R there are two non-negative functionals F+
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and F− such that F = F+−F−, and for every signed Borel measure µ on the unit interval
of finite variation norm there are non-negative measures µ+, µ− such that µ = µ+ −µ−. In
each case there is a minimal decomposition [8, 9, 10, 12, 14, 17, 7, 1, 2, 16].

In this article we study computability of all of these existence theorems. Computability
of the Riesz representation theorem and its converse have been proved in [15] with a revised
proof in [11]. Computability of (µ, h) 7→

∫
h dµ for continuous h and non-negative bounded

Borel measure µ has been proved in [19]. In this article we extend these results.
We study the computable relation between three Banach spaces, the space of linear

continuous functionals with operator norm, the space of (normalized) functions of bounded
variation with total variation norm, and the space of bounded signed Borel measures with
variation norm. We introduce natural representations for defining computability. We prove
that the canonical linear bijections F 7→ g, g 7→ µ and µ 7→ F between these spaces and their
inverses are computable. We also prove that (minimal) Jordan decomposition is computable
on each of these spaces.

In Section 2 we summarize some definitions and basic facts from classical analysis on
linear continuous functionals F : C[0; 1] → R, functions of bounded variation and the
Riemann-Stieltjes integral, and on signed measures on the Borel sets of the unit interval.
We consider only functions g : [0; 1] → R of bounded variation which are normalized in the
sense that g(0) = 0 and for all 0 < y < 1, limxրy g(x) = g(y).

In Section 3 we outline very shortly some general concepts from the representation
approach to computable analysis [20, 5]. For defining computability we introduce and
discuss representations of the functionals, of the functions of bounded variation and of the
signed measures and also representations of the subspaces of non-negative or non-decreasing
objects, respectively. While in [15, 11] partial functions of bounded variation are considered
in this article we use total normalized functions with a representation which is very closely
related to the one used for the partial functions.

In Section 4 first we prove for the special case of non-negative functionals F , non-
decreasing functions g and non-negative measures µ that the mappings F 7→ g, g 7→ µ
and µ 7→ F such that F (h) =

∫
h dg,

∫
h dg =

∫
h dµ and

∫
h dµ = F (h) are computable

w.r.t the “non-negative” representations. Then we prove our main results: On the spaces
of linear continuous functionals with operator norm, the space of normalized functions of
bounded variation with variation norm and the space of signed measures with finite variation
norm the operators F 7→ g, g 7→ µ and µ 7→ F are computable. Furthermore, the Jordan
decompositions F 7→ (F+, F−), g 7→ (g+, g−) and µ 7→ (µ+, µ−) are computable. The
results can be expressed in such a way that a number of representations of the space of
linear continuous functionals are equivalent.

The results can be generalized easily from the unit interval to arbitrary intervals [a; b]
with computable endpoints. More generally, the results can be proved computably uniform
in a, b, where a and b are given by their standard representation via fast converging Cauchy
sequences of rational numbers.

In [13, 22] Jordan decomposition of computable real functions and of polynomial time
computable functions on the unit interval has been studied. However, they do not inves-
tigate computability of the Jordan decomposition operator but ask whether computability
or polynomial computability is preserved under Jordan decomposition. Ko [13] has shown
that there is a polynomial time computable function f of bounded variation which is not
the difference of two non-decreasing polynomial time computable functions. This has been
strengthened by Zheng and Rettinger who have proved that there is a polynomial time
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computable function of bounded variation with polynomial modulus of absolute continuity
which is not the difference of two non-decreasing computable functions.

2. Basics from the classical theory

We summarize some definitions and results about functions of bounded variation and from
(non-computable) measure theory which are scattered across many sources [8, 9, 10, 12, 14,
17, 7, 1, 2, 16, 15, 11] or can be derived easily from there. For convenience we consider only
the closed unit interval [0; 1] for functions, measures etc.

Let C[0; 1] be the space of continuous functions h : [0; 1] → R with norm ‖h‖ =
sup{|h(x)| | x ∈ [0; 1]}. Let C ′[0; 1] be the space of linear continuous functionals F :
C[0; 1] → R with norm ‖F‖ = sup{|F (h)| | h ∈ C[0; 1], ‖h‖ ≤ 1}. For every non-negative
F ∈ C ′[0; 1] (that is, F (h) ≥ 0 if h ≥ 0), ‖F‖ = F (1I) (where 1I(x) = 1 for 0 ≤ x ≤ 1).

We shortly introduce functions g : [0, 1] → R of bounded variation and the Riemann-
Stieltjes integral

∫
h dg for continuous functions h : [0; 1] → R. A partition of a real

interval [a; b] (a < b) is a sequence Z = (x0, x1, . . . , xn), n ≥ 0, of real numbers such that
a = x0 < x1 . . . < xn = b. The partition Z has precision k, if xi − xi−1 < 2−k for 1 ≤ i ≤ n.
A partition Z ′ = (x′0, x

′
1, . . . , x

′
m), is finer than Z, if {x0, x1, . . . , xn}⊆{x′0, x

′
1, . . . , x

′
m}. For

a function g : [0; 1] → R, for 0 ≤ a < b ≤ 1 and a partition Z of the interval [a; b] define

S(g, Z) :=

n∑

i=1

|g(xi)− g(xi−1)| , (2.1)

V b
a (g) := sup{S(g, Z)|Z is a partition of [a; b]} . (2.2)

The function g : [0; 1] → R is of bounded variation if its variation Var(g) := V 1
0 (g) is finite.

For a function of bounded variation the total variation function /g/ : [0; 1] → R is defined
by /g/(0) := 0 and /g/(x) := V x

0 (g).
In the following let h : [0; 1] → R be a continuous function and let g : [0; 1] → R be a

function of bounded variation. For any partition Z = (x0, x1, . . . , xn) of [0; 1] define

S(g, h, Z) :=
n∑

i=1

h(xi)(g(xi)− g(xi−1)). (2.3)

Since h is continuous and its domain is compact, it has a (uniform) modulus of continuity,

i.e., a function m : N → N such that |h(x)−h(y)| ≤ 2−k if |x−y| ≤ 2−m(k). We may assume
that the function m is non-decreasing.

Lemma 2.1 ([15]). Let h : [0; 1] → R be a continuous function with modulus of continuity
m : N → N and let g be a function of bounded variation. Then there is a unique number
I ∈ R such that

|I − S(g, h, Z)| ≤ 2−kVar(g)

for all k ∈ N and for every partition Z of [0; 1] with precision m(k + 1).

The number I from Lemma 2.1 is called the Riemann-Stieltjes integral and is denoted
by

∫
hdg. The operator Fg : h 7→

∫
h dg is linear and continuous on C[0; 1].

Notice that by Lemma 2.1 the integral
∫
h dg is determined already by the values of

the function g on 0 and 1 and on an arbitrary dense set X, since there are partitions of
arbitrary precision that contain points only from the set X. If g is of bounded variation,
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then limyրx g(y) and limyցx g(y) exist for all 0 ≤ x ≤ 1. Functions of bounded variation can
be normalized without changing the Riemann-Stieltjes integral over continuous functions.

Let BV be the set of functions g : [0; 1] → R of bounded variation such that

g(0) = 0 and (∀ 0 < x < 1) g(x) = lim
yրx

g(y) . (2.4)

Lemma 2.2.

(1) Every g ∈ BV is left-continuous.
(2) For every g ∈ BV, Var(g) = ‖Fg‖.
(3) For every function g of bounded variation there is a unique function g′ ∈ BV such that∫

h dg =
∫
h dg′ for all functions h ∈ C[0; 1].

The function g′ can be defined by

g′(0) := 0, g′(1) := g(1) − g(0) and g′(x) := limyրx g(y) − g(0) for 0 < x < 1. (2.5)

For every non-decreasing function g ∈ BV, Var(g) = g(1).

Let BM be the set of signed measures µ with finite variation norm ‖µ‖m on the Borel
subsets of the unit interval [0; 1] defined by ‖µ‖m := supπ

∑
I∈π |µ(I)| where π runs over

all finite partitions of the unit interval into intervals (open, semi-open, closed). If µ is
non-negative, then ‖µ‖m = µ([0; 1]).

The following theorem summarizes the relation between the three spaces introduced
above.

Theorem 2.3. The spaces (C ′[0; 1], ‖ . ‖), (BV,Var) and (BM, ‖ . ‖m) are Banach spaces.

(1) There is a unique linear homeomorphism TFV : C ′[0; 1] → BV such that
TFV(F ) = g implies (∀h ∈ C[0; 1])F (h) =

∫
h dg.

(2) There is a unique linear homeomorphism TVM : BV → BM such that
TVM(g) = µ implies (∀h ∈ C[0; 1])

∫
h dg =

∫
h dµ.

(3) There is a unique linear homeomorphism TMF : BM → C ′[0; 1] such that
TMF(µ) = F implies (∀h ∈ C[0; 1])

∫
h dµ = F (h).

The functions TFV, TVM and TFV preserve the norms. Moreover, if F is non-negative then
TFV(F ) is non-decreasing, if g is non-decreasing then TVM(g) is non-negative, and if µ is
non-negative then TMF(µ) in non-negative.

The three spaces are not separable. Theorem 2.3(1) includes the Riesz representation
theorem [10]. For real numbers x define x+ := (|x| + x)/2 and x− := (|x| − x)/2. Then
x+ and x− are non-negative numbers such that x = x+ − x−. Moreover, x+ and x− are
minimal, that is, x+ ≤ y+ and x− ≤ y− if y+, y− are non-negative such that x = y+ − y−.
By the Jordan decomposition theorem, this kind of decomposition can be generalized to
functionals F ∈ C ′[0; 1], to functions g ∈ BV and to signed measures µ ∈ BM.

Definition 2.4.

(1) For F ∈ C ′[0; 1] the Jordan decomposition is a pair (F+, F−) of non-negative functionals
in C ′[0; 1] such that F = F+−F−, and if G+, G− ∈ C ′[0; 1] are non-negative functionals
such that F = G+ −G− then F+ ≤ G+ and F− ≤ G−.

(2) For g ∈ BV the Jordan decomposition is a pair (g+, g−) of non-decreasing functions in
BV such that g = g+ − g−, and if t+, t− ∈ BV are non-decreasing functions such that
g = t+ − t− then g+ ≤ t+ and g− ≤ t−.
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(3) For µ ∈ BM the Jordan decomposition is a pair (µ+, µ−) of non-negative measures in
BM such that µ = µ+ − µ−, and if ν+, ν− ∈ BM are non-negative measures such that
µ = ν+ − ν− then µ+ ≤ ν+ and µ− ≤ ν−.

If a Jordan decomposition exists then it is unique by the minimality condition. Notice that
some authors do not require minimality for Jordan decomposition.

Theorem 2.5.

(1) Every F ∈ C ′[0; 1] has a Jordan decomposition. If F+, F− ∈ C ′[0; 1] are non-negative
and F = F+ − F−, then
(F+, F−) is the Jordan decomposition of F iff ‖F‖ = ‖F+‖+ ‖F−‖.

(2) Every g ∈ BV has a Jordan decomposition. If g+, g− ∈ BV are non-decreasing and
g = g+ − g−, then
(g+, g−) is the Jordan decomposition of g iff Var(g) = Var(g+) + Var(g−).

(3) Every measure µ ∈ BM has a Jordan decomposition. If µ+, µ− ∈ BM are non-negative
measures and µ = µ+ − µ−, then
(µ+, µ−) is the Jordan decomposition of µ iff ‖µ‖m = ‖µ+‖m + ‖µ−‖m.

Corollary 2.6.

(1) If (F+, F−) is the Jordan decomposition of F then (TFV(F
+), (TFV(F

−)) is the Jordan
decomposition of TFV(F ).

(2) If (g+, g−) is the Jordan decomposition of g then (TVM(g+), (TVM(g−)) is the Jordan
decomposition of TVM(g).

(3) If (µ+, µ−) is the Jordan decomposition of µ then (TMF(µ
+), (TMF(µ

−)) is the Jordan
decomposition of TMF(µ).

Proof. Let (F+, F−) be the Jordan decomposition of F := F+ − F−. Let g+ := TFV(F
+)

and g− := TFV(F
−). Then g+ − g− = TFV(F

+ − F−). By Theorems 2.3 and 2.5,
Var(g+ − g−) = ‖F+ − F−‖ = ‖F+‖+ ‖F−‖ = Var(g+) + Var(g−),

hence by Theorem 2.5, (g+,−g−) is the Jordan decomposition of (g+ − g−). Therefore,
(TFV(F

+), TFV(F
−)) is the Jordan decomposition of TFV(F ).

The other statements can be proved accordingly.

3. The concepts of computability

In this section we define computability on the three spaces from Theorem 2.3. Since the
spaces are not separable, Cauchy representations [20, Chapter 8.1] are not available.

For studying computability we use the representation approach (TTE, Type 2 Theory
of Effectivity) for computable analysis [20, 5]. Let Σ be a finite alphabet. Computable
functions on Σ∗ (the set of finite sequences over Σ) and Σω (the set of infinite sequences
over Σ) are defined by Turing machines which map sequences to sequences (finite or infinite).
On Σ∗ and Σω finite or countable tuplings (injections from cartesian products of Σ∗ and
Σω to Σ∗ or Σω) will be denoted by 〈 〉 [20, Definition 2.1.7]. The tupling functions and the
projections of their inverses are computable.

In TTE, sequences from Σ∗ or Σω are used as “names” of abstract objects such as
rational numbers, real numbers, real functions or points of a metric space. We consider
computability of multi-functions w.r.t. representations [20, 5], [21, Sections 3,6,8,9]. A
representation of a set X is a function δ : ⊆ C → X where C = Σ∗ or C = Σω. If δ(p) = x
we call p a δ-name of x.
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For representations γ : ⊆ Y → M and γ0 : ⊆ Y0 → M0, a function h : ⊆ Y → Y0 is a
(γ, γ0)-realization of a function f : ⊆M → M0, iff for all p ∈ Y and x ∈ M ,

γ(p) = x ∈ dom(f) =⇒ γ0 ◦ h(p) = f(x) , (3.1)

that is, h(p) is a name of some f(x), if p is a name of x ∈ dom(f). The function f is
called (γ, γ0)-computable, if it has a computable (γ, γ0)-realization and (γ, γ0)-continuous
if it has a continuous realization. The definitions can be generalized straightforwardly to
multivariate functions f : ⊆M1 × . . . ×Mn → M0 for represented sets Mi.

For two representations δi : ⊆ Yi → Mi (i = 1, 2), δ1 is reducible to δ2, δ1 ≤ δ2, iff there
is a computable function h : ⊆Y1 → Y2 such that (∀ p ∈ dom(δ1)) δ1(p) = δ2h(p) (if p is a
δ1-name of x then h(p) is a δ2-name of x). The two representations are equivalent, δ1 ≡ δ2,
iff δ1 ≤ δ2 and δ2 ≤ δ1.

Let δi : ⊆ Σω → Mi (i = 1, 2) be representations. The canonical representation [δ1, δ2]
of the product M1 ×M2 is defined by

[δ1, δ2]〈p1, p2〉 = (δ1(p1), δ(p2)) . (3.2)

There is a representation [δ1 → δ2] of the set of (δ1, δ2)-continuous functions f : M1 → M2

which is determined uniquely up to equivalence by (U) and (S)[20].

(U) The apply function (f, x) 7→ f(x) is ([δ1 → δ2], δ1, δ2)-computable, (3.3)

(S) If for some representation γ of a set of (δ1, δ2)-continuous functions
(f, x) 7→ f(x) is (γ, δ1, δ2)-computable then γ ≤ [δ1 → δ2].

(3.4)

(U) corresponds to the “universal Turing machine theorem” and (S) to the “smn-theorem”
from computability theory. Roughly speaking, [δ1 → δ2] is (up to equivalence) the “weakest”
representation of the set of (δ1, δ2)-continuous functions for which the apply function is
computable. The generalized Turing machines in [18] are useful tools for defining new
computable functions on represented sets from given ones.

We use various canonical notations ν : ⊆ Σ∗ → X: νN for the natural numbers, νQ for
the rational numbers, νPg for the polygon functions on [0; 1] whose graphs have rational
vertices, and νI for the set RI of open intervals (a; b)⊆(0; 1) with rational endpoints. For
functionsm : N → N we use the canonical representation δB : ⊆ Σω → B = {m | m : N → N}

defined by δB(p) = m if p = 1m(0)01m(1)01m(2)0 . . .. For the real numbers we use the Cauchy
representation ρ : ⊆ Σω → R, ρ(p) = x if p is (encodes) a sequence (ai)i∈N of rational
numbers such that for all i, |x− ai| ≤ 2−i, and the lower representation ρ<, ρ<(p) = x iff p
is (encodes) a sequence (ai)i∈N of rational numbers such that x = supi ai. By the Weierstraß
approximation theorem the countable set Pg of polygon functions with rational vertices is
dense in C[0; 1]. Therefore, C[0; 1] with notation νPg of the set Pg is a computable metric
space [20] for which we use the Cauchy representation δC defined as follows: δC(p) = h if p
is (encodes) a sequence (hi)i∈N of polygons hi ∈ Pg such that for all i, ‖h−hi‖ ≤ 2−i [20].

Since the representations ρ and δC are admissible, a functional G : C[0; 1] → R is
continuous iff it is (δC , ρ)-continuous [20]. Therefore, [δC → ρ] is a representation of the
continuous functionals G : C[0; 1] → R. This representation is tailored for evaluation
(G,h) 7→ G(h) (3.3) (3.4). We use it for the subspace C ′[0; 1] of the linear continuous
functionals. The norm on C ′[0; 1] is ([δC → ρ], ρ<)-computable but not ([δC → ρ], ρ)-
computable. Since for computations we will need the ρ-name of the norm we include it in
the name.
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Definition 3.1. Define a representation δCF of C ′[0; 1] by

δCF〈p, q〉 = F : ⇐⇒ [δC → ρ](p) = F and ρ(q) = ‖F‖ .

This is the representation of the dual of C[0; 1] space as suggested in Section 15 (see also
Definition 3.9) of [V.Brattka: ”Computability of Banach Space Principles”] in the case that
this dual is not separable. It is admissible and admits computability of scalar multiplication,
the norm and the rapid Lim-operator, but vector addition is not computable. This yields a
good justification for using δCF.

In [15, 11] a computable version of the Riesz representation theorem is proved. In these
articles the concept of bounded variation is generalized straightforwardly to the set BVC
with representation δBV C of partial functions g : ⊆ [0; 1] → R with countable dense domain
containing {0, 1} which are continuous on dom(g) \ {0, 1}. Remember that a function of
bounded variation has at most countably many points of continuity. The integral

∫
h dg

for continuous h and an arbitrary function g of bounded variation is defined already by
any restriction of g to a countable dense subset containing {0, 1} [11]. Every (partial)
function g ∈ BVC can be extended uniquely to a normalized (total) function ext(g) ∈ BV
by ext(g)(x) := limyրx, y∈dom(g) g(y) for x 6∈ dom(g). Then

∫
h dg =

∫
h d ext(g) for all

h ∈ C[0; 1] an Var(g) = Var(ext(g)). In this article instead of δBVC we use the representation
δV := ext ◦ δBVC of the normalized functions. The variation is not (δV , ρ)-computable but
only (δV , ρ<)-computable. Since for computations we will need the ρ-name of the variation
we include it in the name. Notice that for computing the Riemann-Stieltjes integral

∫
h dg

a δV -name and an upper bound of Var(g) suffice [15, 11].

Definition 3.2. Define representations δV and δBV of BV as follows:

(1) δV(p) = g iff there are p0, q0, p1, q1, . . . ∈ Σω such that p = 〈〈p0, q0〉, 〈p1, q1〉, . . .〉, ρ(p0) =
ρ(q0) = 0, ρ(p1) = 1, g ◦ ρ(pi) = ρ(qi) for all i ∈ N, Ap := {ρ(pi) | i ≥ 2} is a dense
subset of (0; 1) and g is continuous on Ap.

(2) δBV〈p, q〉 = g : ⇐⇒ δV(p) = g and ρ(q) = Var(g).

A computable version of the Riesz representation theorem and its converse have been
proved in [15, 11]. The results can be formulated as follows.

Theorem 3.3 (Computable Riesz representation [15, 11]).
The function (F, z) 7→ g mapping every functional F ∈ C ′[0; 1] and its norm z to the
(unique) function g ∈ BV such that F (h) =

∫
h dg (for all h ∈ C[0; 1]) is ([δC → ρ], ρ, δV)-

computable.

Theorem 3.4 ([15, 11]). The operator (g, l) 7→ F , mapping every g ∈ BV and every l ∈ N

with Var(g) ≤ 2l to the functional F defined by F (h) =
∫
h dg for all h ∈ C[0; 1], is

(δV, νN, [δC → ρ])-computable.

By a slight generalization of the representation δm of the probability measures on the
Borel sets of the unit interval defined and studied in [19] we obtain a representation of the
bounded non-negative Borel measures on the unit interval. Let Int := {(a, b), [0; b), (a; 1], [0; 1] |
a, b ∈ Q, 0 ≤ a < b ≤ 1} be the set of all rational open subintervals of [0; 1].
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Definition 3.5. Let BM+ be the set of non-negative bounded measures.

(1) Define a representation δm of the set BM+ as follows. For p, q ∈ Σω and µ ∈ BM+,
δm〈p, q〉 = µ iff ρ(q) = µ([0; 1]) and p is (encodes) a list of all (a, J) ∈ Q× Int such that
a < µ(J).

(2) Define a representation of BM by δBM〈p, q, r〉 = µ iff µ = δm(p)−δm(q) and ‖µ‖m = ρ(r).

Roughly speaking by this definition, δm is the greatest (or ”poorest”) representation γ
of the bounded non-negative measures such that µ([0; 1]) can be computed and a < µ(J)
(a ∈ Q and J ∈ Int) can be enumerated. By the next theorem the representation δm is
the greatest representation of the non-negative bounded measures for which µ([0; 1]) and
integration of continuous functions are computable.

Theorem 3.6.

(1) The function µ 7→ µ([0; 1]) is (δm, ρ)-computable, and the function
(µ, h) 7→

∫
h dµ is (δm, δC , ρ)-computable.

(2) If for some representation γ of BM the function µ 7→ µ([0; 1]) is (γ, ρ)-computable, and
the function (µ, h) 7→

∫
h dµ is (γ, δC , ρ)-computable then γ ≤ δm.

Proof.

(1) The first statement is obvious, the second one can be derived easily from the special
case for measures with µ([0; 1]) = 1 [19, Theorem 3.6].

(2) This can be deduced from [19, Theorem 4.2].

4. Computable equivalence of the three concepts and computable Jordan

decomposition

We will now apply the representations introduced in Section 3:
– δCF for the space of linear continuous functionals F : C[0; 1] → R and [δC → ρ] for the
subset of non-negative ones,
– δBV for the set BV of (normalized) functions of bounded variations and δV for the subset
of non-decreasing ones,
– δBM for the set of signed measures and δm for the subset of non-negative ones.

For all these representations the norm or the variation can be computed from the
names. For the representations δCF, δBV and δBM it is included explicitly in the names, for
the other representation norms can be computed from names: ‖F‖ = F (1I), Var(g) = g(1),
‖µ‖m = µ([0; 1]).

Let TFV, TVM and TMF be the linear homeomorphisms from Theorem 2.3 and let T+
FV,

T+
VM and T+

MF be their restrictions to the spaces of non-negative or non-decreasing objects,
respectively.

Theorem 4.1.

(1) The operator T+
FV is ([δC → ρ], δV)-computable.

(2) The operator T+
VM is (δV, δm)-computable.

(3) The operator T+
MF is (δm, [δC → ρ])-computable.

Proof.

(1) If F is non-decreasing then ‖F‖ = F (1I). By Theorem 3.3, the restriction is ([δC →
ρ], δV)-computable.
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(2) Suppose, δV(p) = g is non-decreasing with dense set Ap (Definition 3.2). From the
classical theory we know that for 0 ≤ a < b ≤ 1 the measure µ := T+

VM(g) satisfies

µ([0; b)) = sup
b′<b

g(b′)

µ((a; b)) = sup
a<a′<b′<b

(g(b′)− g(a′))

and
µ((a; 1]) = sup

a<a′
(g(1) − g(a′)).

Since limyրx g(y) and limyցx g(y) exist for all 0 < x < 1 it suffices to choose a′ and b′

from the dense set Ap. Therefore,

µ([0; b)) = sup{g(b′) | b′ < b, b′ ∈ Ap} ,

µ((a; b)) = sup{g(b′)− g(a′) | a < a′ < b′ < b, a′, b′ ∈ Ap} ,

µ((a; 1]) = sup{g(1) − g(a′) | a < a′, a′ ∈ Ap} .

The name p of g contains a list of all ((ρ, ρ)-names of) (x, g(x)) with x ∈ Ap. Since
x < y is r.e., for rational numbers a < b we can compute a list of all d ∈ Q such that
d < g(b′) − g(a′) for some a′, b′ ∈ Ap and a < a′ < b′ < b, which is a list of all d ∈ Q

such that d < µ((a; b)). Correspondingly, for a rational number b > 0 we can compute
a list of all d ∈ Q such that d < µ([0; b)) and for a rational number a < 1 we can
compute a list of all d ∈ Q such that d < µ((a; 1]). Combining these enumerations
for p we can enumerate a list of (d, J) ∈ Q × Int (Int is defined before Definition 3.5)
such that d < µ(J). Furthermore, from p = 〈〈p0, q0〉, 〈p1, q1〉, . . .〉 we can compute
µ([0; 1]) = g(1) = ρ(q1). Therefore, we can compute a δm-name of the measure µ.

(3) This follows from Theorem 3.6(1).

By the following theorems the linear homeomorphisms TFV, TVM and TMF from Theo-
rem 2.3 are computable, and Jordan decomposition on the three spaces is computable.

Theorem 4.2.

(1) The operator TFV : C ′[0; 1] → BV mapping functionals to functions of bounded variation
is (δCF, δBV)-computable.

(2) The operator TVM : BV → BM mapping functions of bounded variation to signed mea-
sures is (δBV, δBM)-computable.

(3) The operator TMF : BM → C ′[0; 1] mapping signed measures to functionals is (δBM, δCF)-
computable.

Theorem 4.3 (Computable Jordan decomposition).

(1) Jordan decomposition F 7→ (F+, F−) on C ′[0; 1] is
(δCF, [[δC → ρ, ], [δC → ρ]])-computable.
Its inverse is ([[δC → ρ, ], [δC → ρ]], δCF)-computable.

(2) Jordan decomposition g 7→ (g+, g−) on BV is (δBV, [δV, δV])-computable.
Its inverse is ([δV, δV], δBV)-computable.

(3) Jordan decomposition µ 7→ (µ+, µ−) on BM is (δBM, [δm, δm])-computable.
Its inverse is ([δm, δm], δBM)-computable.
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Since f 7→ ‖f‖ for non-negative continuous f is ([δC → ρ], ρ)-computable in (1) of the
theorem [δC → ρ] can be replaced by δCF. Correspondingly, in (2) of the theorem δV can
be replaced by δBV and in (3) of the theorem δm can be replaced by δBM.

Proof. This is a merged proof of Theorems 4.2 and 4.3. Almost all statements follow easily
from what has already been proved. The only non-trivial part is the proof for the Jordan
decomposition g 7→ (g+, g−). In the following (F+, F−), (g+, g−) and (µ+, µ−) will denote
Jordan decompositions. By Theorem 4.1 and Corollary 2.6,

(F+, F−) 7→ (g+, g−) 7→ (µ+, µ−) 7→ (F+, F−) are computable (4.1)

w.r.t the representations [δC → ρ], δV and δm.

F 7→ g (Theorem 4.2(1)) This follows immediately from Theorem 3.3.

g 7→ (g+, g−) (first part of Theorem 4.3(2)) Let g ∈ BV with Jordan decomposition
(g+, g−). From the classical theory we know g+ = (/g/+ g)/2 and g− = (/g/− g)/2 where
/g/ ∈ BV is the (non-decreasing) total variation function of g (see Section 2 after (2.2)).

Suppose δBV(〈p, q〉) = g. Let Ap be the dense set from Definition 3.2. The functions
/g/, g+ and g− are determined uniquely by their restrictions to the dense subset Ap∪{0, 1},
hence it suffices to find /g/(x), g+(x) and g−(x) for all x ∈ Ap ∪ {0, 1}.

Call a partition Z = (a = x0 < x1 < . . . < xn = b) of [a; b] a partition “from Ap”, if
{x0, . . . , xn}⊆{0, 1} ∪Ap. Suppose x ∈ Ap.

Since g is left-continuous by Lemma 2.2, and Ap is dense, for every partition Z of [0;x]
and every ε there is some partition Z ′ of [0;x] from Ap, such that |S(g, Z) − S(g, Z ′)| < ε.
Therefore,

V x
0 (g) = sup{S(g, Z) | Z is a partition of [0;x] from Ap}

By Definition 3.2, p can be written as p = 〈〈p0, q0〉, 〈p1, q1〉, . . .〉 such that ρ(p0) = ρ(q0) = 0,
ρ(p1) = 1 and g ◦ ρ(pk) = ρ(qk) for all k ∈ N.

Let xk := ρ(pk) and yk := ρ(qk) = g(xk). We want to compute a sequence t :=
〈〈p0, r0〉, 〈p1, r1〉, . . .〉 such that ρ(rk) = /g/(xk) = V xk

0 (g). Since /g/ is continuous in x if g
is continuous in x, then δV(t) = /g/.

Since /g/(0) = 0 we can choose r0 := q0. Since /g/(1) = Var(g) = ρ(q) (remember that
δBV(〈p, q〉) = g) we can choose r1 := q.

For k ≥ 2 let Π(k) be the set of all sequences σ = (i0, i1, . . . , im) such that i0 = 0 im = k
and xi0 < xi1 < . . . < xim . For σ = (i0, i1, . . . , im) let Pσ be the partition (xi0 , xi1 , . . . , xim)
of [0, xk] from Ap. Then V xk

0 (g) = supσ∈Π(k) S(g, Pσ).

Since the relation x < y for real numbers is (ρ, ρ)-enumerable, from p and k the set Π(k)
can be enumerated, Π(k) = (σ0, σ1, . . .). Since S(g, Pσ) can be computed from p and σ (2.1),
a ρ<-name of V xk

0 (g) = supk S(g, Pσk
) can be computed from p and k. Correspondingly,

a ρ<-name of V 1
xk
(g) = sup{S(g, Z) | Z is a partition of [xk; 1] from Ap} can be computed

from p and k.
Since V x

0 (g)+V 1
x (g) = V 1

0 (g) = Var(g) and ρ-name of Var(g) is given as an input, from
p, q with ρ(q) = Var(g) and k a ρ-name rk of /g/(xk) can be computed. Therefore, some
computable function G : ⊆ Σω → Σω maps every δBV-name 〈p, q〉 of g where δV(p) = g and
p = 〈〈p0, q0〉, 〈p1, q1〉, . . .〉 to some δV-name t = 〈〈p0, r0〉, 〈p1, r1〉, . . .〉 of /g/.

On these names, g+ = (/g/ + g)/2 and g− = (/g/ − g)/2 can be computed: there
are computable functions s, d on Σω such that (ρ(p) + ρ(q))/2 = ρ ◦ s(p, q) and (ρ(p) −
ρ(q))/2 = ρ ◦ d(p, q). Then t+ := 〈〈p0, s(q0, r0)〉, 〈p1, s(q1, r1)〉, . . .〉 is a δV-name of g+ and
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t− := 〈〈p0, d(q0, r0)〉, 〈p1, d(q1, r1)〉, . . .〉 is a δV-name of g−. In summary, t+ and t−, hence
〈t+, t−〉 can be computed from 〈p, q〉. Therefore, Jordan decomposition g 7→ (g+, g−) on
BV is (δBV, [δV, δV])-computable.

(µ+, µ−) 7→ µ (second part of Theorem 4.3(3)) By Theorem 2.5, from δm-names of a
Jordan decomposition (µ+, µ−) we can compute a δBM-name of µ.

g 7→ µ (Theorem 4.2(2)) Compute as follows: g 7→ (g+, g−) 7→ (µ+, µ−) 7→ µ.

µ 7→ F (Theorem 4.2(3)) Suppose δBM〈p, q, r〉 = µ, hence µ = µ+ − µ− where µ+ =
δm(p) and µ− = δm(q) and ‖µ‖m = ρ(r). By Theorem 4.1(3) we can compute [δC → ρ]-
names of functionals G+ := TMF(µ

+) and G− := TMF(µ
−) such that F := TMF(µ) = G+ −

G−. By a standard argument we can compute a [δC → ρ]-name of F . Since ‖F‖ = ‖µ‖m
by Theorem 2.3, we can compute a δCF-name of F .

(g+, g−) 7→ g (second part of Theorem 4.3(2)) Compute as follows: (g+, g−) 7→
(µ+, µ−) 7→ µ 7→ F 7→ g.

µ 7→ (µ+, µ−) (first part of Theorem 4.3(3)) Compute as follows: µ 7→ F 7→ g 7→
(g+, g−) 7→ (µ+, µ−).

F 7→ (F+, F−) (first part of Theorem 4.3(1)) Compute as follows: F 7→ g 7→
(g+, g−) 7→ (F+, F−).

(F+, F−) 7→ F (second part of Theorem 4.3(1)) Compute as follows: (F+, F−) 7→
(g+, g−) 7→ g 7→ µ 7→ F .

Corollary 4.4.

(1) The inverses (T+
FV)

−1, (T+
VM)−1 and (T+

MF)
−1 are computable.

(2) The inverses T−1
FV, T

−1
VM and T−1

MF are computable.

(3) δCF ≡ T−1
FV ◦ δBV ≡ TMF ◦ δBM (accordingly for δBV and δBM).

Proof.

(1) For all F ∈ C ′[0; 1], T+
MF ◦ T+

VM ◦ T+
FV(F ) = F , hence T+

MF ◦ T+
VM = (T+

FV)
−1 which is

computable by Theorem 4.1. The other statements are proved accordingly.
(2) As above, but with Theorem 4.2.
(3) Straightforward by 2. and Theorem 4.2.

We introduce further representations of our spaces by differences of functions:

• γF〈p, q, r〉 = F iff F = [δC → ρ](p)− [δC → ρ](q) and ‖F‖ = ρ(r),

• γV〈p, q, r〉 = g iff g = δV(p)− δV(q) and Var(g) = ρ(r),

• γFJ〈p, q〉 = F iff ([δC → ρ](p), [δC → ρ](q)) is the Jordan decomposition of F ,

• γVJ〈p, q〉 = g iff (δV(p), δV(q)) is the Jordan decomposition of g,

• γMJ〈p, q〉 = µ iff (δm(p), δm(q)) is the Jordan decomposition of µ.

Corollary 4.5. δCF ≡ γF ≡ γFJ, δBV ≡ γV ≡ γVJ, δBM ≡ γMJ.

Proof. Straightforward by Theorems 4.2 and 4.3.
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Notice that for each of these representations a name of a functional F contains a name
of ‖F‖ or allows to compute it easily. On the Banach spaces (C ′[0; 1], ‖ . ‖), (BV,Var) and
(BM, ‖ . ‖m) with representations δCF, δBV and δBM, respectively, addition is not computable
since the norm of the sum cannot be computed. Adding the norm in a representation of
the dual space is discussed in [3, 4, 6]. But for non-negative functionals F :

Corollary 4.6. The sum

(1) of non-negative functionals from C ′[0; 1] is computable w.r.t. [δC → ρ],
(2) of non-decreasing functions from BV is computable w.r.t δV,
(3) of non-negative bounded measures from BM is computable w.r.t δm.

Proof.

(1) Straightforward [20, Theorem 6.2.1].
(2) This follows from [19, Theorem 3.1].
(3) Since for non-decreasing g1, g2, g1 + g2 = (T+

VM)−1(T+
VM(g1) + T+

VM(g2)), by 3. of
this corollary, Theorem 4.1 and Corollary 4.4 the sum on non-decreasing functions is
computable w.r.t. δV.

For functions of bounded variation there is no simple proof since for g1 = δV(p1) and
g2 = δV(g2) in general Ap1 6= Ap2 (see Definition 3.2).
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