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Abstract. First, we extend Leifer-Milner RPO theory, by giving general conditions to
obtain IPO labeled transition systems (and bisimilarities) with a reduced set of transitions,
and possibly finitely branching. Moreover, we study the weak variant of Leifer-Milner
theory, by giving general conditions under which the weak bisimilarity is a congruence.
Then, we apply such extended RPO technique to the lambda-calculus, endowed with lazy
and call by value reduction strategies. We show that, contrary to process calculi, one
can deal directly with the lambda-calculus syntax and apply Leifer-Milner technique to
a category of contexts, provided that we work in the framework of weak bisimilarities.
However, even in the case of the transition system with minimal contexts, the resulting
bisimilarity is infinitely branching, due to the fact that, in standard context categories,
parametric rules such as the beta-rule can be represented only by infinitely many ground
rules. To overcome this problem, we introduce the general notion of second-order context
category. We show that, by carrying out the RPO construction in this setting, the lazy
observational equivalence can be captured as a weak bisimilarity equivalence on a finitely
branching transition system. This result is achieved by considering an encoding of lambda-
calculus in Combinatory Logic.

1. Introduction

Recently, much attention has been devoted to derive labeled transition systems and

bisimilarity congruences from reactive systems, in the context of process languages and

graph rewriting, [Sew02, LM00, SS03, GM05, BGK06, BKM06, EK06]. In the theory of

process algebras, the operational semantics of CCS was originally given via a labeled transi-

tion system (lts), while more recent process calculi have been presented via reactive systems

plus structural rules. Reactive systems naturally induce behavioral equivalences which are

congruences w.r.t. contexts, while lts’s naturally induce bisimilarity equivalences with coin-

ductive characterizations. However, such equivalences are not congruences in general, or

else it is an heavy, ad-hoc task to prove that they are congruences.
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Generalizing [Sew02], Leifer and Milner [LM00] presented a general categorical method

for deriving a transition system from a reactive system, in such a way that the induced

bisimilarity is a congruence. The labels in Leifer-Milner’s transition system are those con-

texts which are minimal for a given reaction to fire. Minimal contexts are identified via

the categorical notion of relative pushout (RPO). Leifer-Milner’s central result guarantees

that, under a suitable categorical condition, the induced bisimilarity is a congruence w.r.t.

all contexts.

In the literature, some case studies have been carried out, especially in the setting of

process calculi, for testing the expressivity of Leifer-Milner’s approach. Some difficulties

have arisen in applying the approach directly to such languages, viewed as Lawvere theo-

ries, because of structural rules. To overcome this problem, two different approaches have

been considered. The first approach consists in using more complex categorical construc-

tions, where structural rules are accounted for explicitly, [Lei01, SS03, SS05]. In the second

approach, intermediate encodings have been considered in graph theory, for which the ap-

proach of “borrowed contexts” has been developed [EK06], and in Milner’s bigraph theory.

Here structural rules are avoided, since structurally equivalent terms are equated in the

target language.

Moreover, the following further issues have arisen in applying Leifer-Milner’s technique.

(i) Leifer-Milner’s bisimilarity is still redundant, and many labels have to be eliminated

a posteriori, by an ad-hoc reasoning. Thus general results are called for, in order to

reduce the complexity of the bisimilarity a priori.

(ii) In some cases it is useful to consider weak variants of Leifer-Milner technique. However,

for the weak bisimilarity we only have a partial congruence result, stating that such

bisimilarity is a congruence w.r.t. a certain class of contexts. However, in many

concrete cases, the weak bisimilarity turn out to be a full congruence. Thus it will be

useful to study general conditions under which this happens.

(iii) When Leifer-Milner technique is applied in the standard setting of term and context

categories (Lawvere theories), the rules in the rewriting system cannot be represented

parametrically, but only at a ground level through a (infinite) series of possible instan-

tiations. As a consequence, the bisimilarity turns out to be infinitely branching. In

[KSS05], a generalization of Leifer-Milner technique for dealing with parametric rules

has been introduced. This approach is rather complex and not completely satisfac-

tory. An alternative approach (which is considered in the present paper) consists in

studying second-order versions of term and context categories, which allow paramet-

ric representations of rewriting rules, and carrying out Leifer-Milner technique in this

setting.

In this paper, we address all the above issues. In particular, in the first part of the paper,

we extend Leifer-Milner theory, by providing general results for reducing the complexity

of the bisimilarity, and by studying conditions under which the weak bisimilarity is a full

congruence. Then, we focus on the prototypical example of reactive system given by the

λ-calculus, endowed with lazy and call by value (cbv) reduction strategies. We show that,

in principle, contrary to most of the case studies considered in the literature, one could

deal directly with the λ-calculus syntax and apply Leifer-Milner technique to the category
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of term contexts induced by the λ-terms, provided that we work in the setting of weak

bisimilarities. Applying our general results, we get quite economical weak bisimilarities

which are congruences and we recover exactly both lazy and cbv contextual equivalences.

As a by-product, we also get an alternative proof of the Context Lemma for the lazy case.

However, the bisimilarities that we obtain are still infinitely branching. This is mainly due

to the fact that, in the category of contexts, the β-rule cannot be described parametrically,

but it needs to be described extensionally using an infinite set of pairs of ground terms. In

order to overcome this problem, we consider the combinatory logic and we introduce the

general notion of category of second-order term contexts, which provide a solution to the

third issue above. Our main result amounts to the fact that, by carrying out Leifer-Milner’s

construction in this setting, the lazy contextual equivalence can be captured as a weak

bisimilarity equivalence on a (finitely branching) transition system, while for the cbv case,

the finitely branching transition system induces a bisimilarity which is strictly included

in the contextual equivalence. Technically, these results are achieved by considering an

encoding of the lazy (cbv) λ-calculus in KS Combinatory Logic (CL), endowed with a lazy

(cbv) reduction strategy, and by showing that the lazy (cbv) contextual equivalence on

λ-calculus can be recovered as a lazy (cbv) equivalence on CL. It is necessary to consider

such encoding, since the approach of second-order context categories proposed in this paper

works for reaction rules which are “local”, that is, the reaction does not act on the whole

term, but only locally. But the substitution operation on λ-calculus is not local.

Finally, the correspondence results obtained in this paper about the observational equiv-

alences on λ-calculus and CL are interesting per se and, although natural and ultimately

elementary, had not appeared previously in the literature.

Summary. In Section 2, we summarize the theory of reactive systems of [LM00]. In Sec-

tion 3, we extend such theory with new general results about weak bisimilarity, and about

the “pruning” of Leifer-Milner lts and the induced bisimilarity. In Section 4, we present the

λ-calculus together with lazy and cbv reduction strategies and observational equivalences,

and we discuss the RPO approach applied to the λ-calculus endowed with a structure of

context category. In Section 5, we focus on Combinatory Logic (CL), we show how to re-

cover on CL the lazy and cbv strategies and observational equivalences, and we discuss the

RPO approach applied to CL, viewed as a context category. In Section 6, we introduce the

notion of second-order context category, and we apply the RPO approach to CL viewed as

a second-order rewriting system, thus obtaining a characterization of the lazy observational

equivalence as a weak bisimilarity on a finitely branching lts. Final remarks and directions

for future work appear in Section 7.

The present paper extends [DHL08]. The main new contribution of the present paper

is the extension of Leifer-Milner theory, which appears in Section 3. This allows to deal

with the λ-calculus in the subsequent sections in a smoother way, to get stronger results

about the lts and the induced bisimilarity, both for the lazy and for the cbv case, and also

to provide an alternative proof of the Context Lemma in the lazy case.
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2. The Theory of Reactive Systems

In this section, we summarize the theory of reactive systems proposed in [LM00] to

derive lts’s and bisimulation congruences from a given reduction semantics. Moreover, we

discuss weak variants of Leifer-Milner’s bisimilarity equivalence.

The theory of [LM00] is based on a categorical formulation of the notion of reactive

system, whereby contexts are modeled as arrows of a category, terms are arrows having as

domain 0 (a special object which denotes no holes), and reaction rules are pairs of terms.

Definition 2.1 (Reactive System). A reactive system C consists of:

• a category C;

• a distinguished object 0 ∈ |C|;
• a composition-reflecting subcategory D of reactive contexts;

• a set of pairs R ⊆
⋃

I∈|C| C[0, I] × C[0, I] of reaction rules.

The reactive contexts are those in which a reaction can occur. By composition-reflecting

we mean that dd′ ∈ D implies d, d′ ∈ D.

Reactive systems on term languages can be viewed as a special case of reactive systems

in the sense of Leifer-Milner by instantiating C as a suitable category of term and contexts,

also called the (free) Lawvere category, [LM00]. In this view, we often call terms the arrows

with domains 0, and contexts the other arrows.

From the set of reaction rules one generates the reaction relation by closing them under

all reactive contexts:

Definition 2.2 (Reaction Relation). Given a reaction system with reactive contexts D and

reaction rules R, the reaction relation → is defined by:

t → u iff t = dl, u = dr for some d ∈ D and 〈l, r〉 ∈ R .

The behavior of a reactive system is expressed as an unlabeled transition system. On

the other hand, many useful behavioral equivalences are only defined for lts’s. The passage

from reactive systems to lts’s is obtained as follows.

Definition 2.3 (Context Labeled Transition System). Given a reactive system C, the

associated context lts is defined as follows:

• states: arrows t : 0 → I in C, for any I;

• transitions: t
c

−→C u iff c ∈ C and ct → u (i.e., ct and u are in the reaction relation).

In the case of a reactive system defined on a category of contexts, a state is a term t, and

an associated label is a context c such that ct reduces. In the following, we will consider

also lts’s obtained by reducing the set of transitions of the context lts. In the sequel, we

will use the word lts to refer to any such lts obtained from a context lts.

Any lts induces a bisimilarity relation as follows:

Definition 2.4 (Bisimilarity). Let
c

−→ be a lts.
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Figure 1: Redex Square and Relative Pushout.

(i) A symmetric relation R ⊆
⋃

I∈C C(0, I)×C(0, I) on the states of the lts is a bisimulation

if:

〈a, b〉 ∈ R ∧ a
f

−→ a′ =⇒ ∃b′. b
f

−→ b′ ∧ 〈a′, b′〉 ∈ R .

(ii) We call bisimilarity the largest bisimulation.

(iii) The bisimilarity on the context lts is called context bisimilarity ∼C .

It is easy to check that the context bisimilarity is a congruence w.r.t. all contexts, i.e.,

if a ∼C b, then for any context c, ca ∼C cb. However, intuitively only those contexts

which contain the minimal amount of information for a reaction to fire are relevant, while

the others are redundant. Moreover, often context bisimilarity gives an equivalence which

is too coarse, as we will see also in this paper. Thus, in [LM00], the authors proposed a

categorical criterion for identifying the “smallest context allowing a reaction”. They defined

relative pushouts (RPOs), of which idem relative pushouts (IPOs) are a special case. One

can define a lts using IPOs. Leifer-Milner’s central result consists in showing that, under

a suitable categorical condition, such lts is well-behaved, in the sense that the induced

bisimilarity is a congruence.

Definition 2.5 (RPO/IPO).

(i) Let C be a category and let us consider the commutative diagram in Fig. 1(i). Any

tuple 〈I5, e, f, g〉 which makes diagram in Fig. 1(ii) commute is called a candidate

for (i). A relative pushout (RPO) is the smallest such candidate, i.e., it satisfies the

universal property that given any other candidate 〈I6, e
′, f ′, g′〉, there exists a unique

mediating morphism h : I5 → I6 such that both diagrams in Fig. 1(iii) and Fig. 1(iv)

commute.

(ii) A commutative square such as diagram (i) in Fig 1 is an idem pushout (IPO) if

〈I4, c, d, id I4〉 is its RPO.

Definition 2.6 (IPO Transition System).

(1) States: arrows t : 0 → I in C, for any I;

(2) Transitions: t
c

−→I dr iff d ∈ D, ct = dl, 〈l, r〉 ∈ R and the diagram in Fig. 1(i) is an

IPO.
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Figure 2: IPO pasting.

Let ∼I denote the bisimilarity induced by the IPO lts.

Definition 2.7 (Redex Square). Let C be a reactive system and t : 0 → I2 an arrow in

C. A redex square (see Fig. 1(i)) consists of a left-hand side l : 0 → I3 of a reaction rule

〈l : 0 → I3, r : 0 → I3〉 ∈ R, a context c : I2 → I4 and a reactive context d : I3 → I4 such

that ct = dl.

A reactive system C is said to have redex RPOs if every redex square has an RPO.

The following is a fundamental lemma stating a property of IPO squares.

Lemma 2.8 (IPO pasting, [LM00]). Suppose that the square in Fig. 2(i) has an RPO and

that both squares in Fig. 2(ii) commute.

(i) If the two squares of Fig. 2(ii) are IPOs so is the outer rectangle.

(ii) It the outer rectangle and the left square of Fig. 2(ii) are IPOs so is the right square.

From the above lemma Leifer and Milner derived their central result:

Theorem 2.9 ([LM00]). Let C be a reactive system having redex RPOs. Then the IPO

bisimilarity ∼I is a congruence w.r.t. all contexts, i.e., if a ∼I b then for all c of the

appropriate type, ca ∼I cb.

2.1. Weak Bisimilarity. For dealing with the λ-calculus, it will be useful to consider the

weak versions of the context and IPO lts’s defined above, together with the corresponding

notions of weak bisimilarities.

One can proceed in general, by defining a weak lts from a given lts:

Definition 2.10 (Weak lts and Bisimilarity). Let
α

−→ be a lts, and let τ be a label (iden-

tifying an unobservable action).

(i) We define the weak lts
α

=⇒ by

t
α

=⇒ u iff

{
t

τ
−→∗ u if α = τ

t
τ

−→∗ t′
α

−→ u′ τ
−→∗ u otherwise ,

where
τ

−→∗ denotes the reflexive and transitive closure of
τ

−→.

(ii) Let us call weak bisimilarity the bisimilarity induced by the weak lts.
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The above definition differs from the one proposed in [LM00], where, in case α 6= τ ,
α

=⇒ is

defined by
α

−→ ◦
τ

−→∗. We cannot use the latter, since it discriminates λ-terms which are

equivalent in the usual semantics.

The following easy lemma gives a useful characterization of the weak bisimilarity,

whereby any
α

−→-transition is mimicked by a
α

=⇒-transition:

Lemma 2.11. Let
α

−→ be a lts and let
α

=⇒ be the corresponding weak lts. The induced weak

bisimilarity is the greatest symmetric relation R s.t.:

〈a, b〉 ∈ R ∧ a
f

−→ a′ =⇒ ∃b′. b
f

=⇒ b′ ∧ 〈a′, b′〉 ∈ R .

The following lemma provides a coinduction “up-to” principle, which will be useful in

the sequel:

Lemma 2.12. Let
α

−→ be a lts and let
α

=⇒ be the corresponding weak lts. The induced weak

bisimilarity is the greatest symmetric relation R s.t.:

〈a, b〉 ∈ R ∧ a
f

=⇒′a′ =⇒ ∃b′. b
f

=⇒ b′ ∧ 〈a′, b′〉 ∈ R∗ ,

where
f

=⇒′ denotes
τ

−→∗ ◦
f

−→ (f is possibly τ), and R∗ denotes the reflexive and transitive

closure of R.

Proof. Let us call “bisimulation up-to” a relation R as in the statement of the lemma. In

order to prove the claim, it is sufficient to prove that, if R is a bisimulation up-to, then

R∗ is a bisimulation. Let R be a bisimulation up-to. First, one can easily check that

(aR∗b ∧ a =⇒ a′) =⇒ ∃b′. (b =⇒ b′ ∧ a′R∗b′) (by induction on the length of the

chain a R . . .R b). Now, let a = a0 R a1 . . . an−1 R an = b and a
f

=⇒ a′. We prove that

∃b′. (b
f

=⇒ b′ ∧ a′R∗b′), by induction on n ≥ 0. If n = 0, the claim is immediate. If n > 0

and a
f

=⇒′ a′′ =⇒ a′, then, since R is a bisimulation up-to, a1
f

=⇒ a′′1 ∧ a′′R∗a′′1, and, by

what we have proved before, ∃a′1. (a′′1 =⇒ a′1 ∧ a′R∗a′1). Finally, by induction hypothesis,

∃b′. (b
f

=⇒ b′ ∧ a′1R
∗b′). Hence a′R∗b′.

For dealing with the λ-calculus, we will consider a notion of weak IPO bisimilarity,

where the identity context is unobservable. Such notions of weak IPO bisimilarities are

not congruences w.r.t. all contexts, in general, however, as observed in [LM00] (end of

Section 5), they are congruences at least w.r.t. reactive contexts:

Theorem 2.13. Let C be a reactive system having redex RPOs. Then the weak IPO

bisimilarity ≈I , where the identity context is unobservable, is a congruence w.r.t. reactive

contexts.

3. Extending the Theory of Reactive Systems

In this section, we present some original results concerning the lts obtained by the RPO

construction. These results concern two issues:

Weak-bisimilarity: Since in the λ-calculus the weak bisimilarity is the equivalence to be

used, we present some general conditions assuring that the weak bisimilarity, on the lts

obtained by an IPO construction, is a congruence w.r.t. all contexts.
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Pruning the lts tree: In order to obtain a feasible lts, i.e., a lts with a reduced set of

transitions, possibly finitely branching, it is often necessary to prune the lts obtained

by an IPO construction. We present some general conditions allowing to prune IPO lts,

without modifying the induced (weak)-bisimilarity.

We present our results in two different versions, the first one is quite simple, but it does not

apply to our particular case, so we present a second version that is more involved but suits

our needs. We choose to present the simple first version of our results as an introduction to

the second one, and also because it can have applications in modeling languages different

from the λ-calculus.

Some preliminary definitions are necessary.

Definition 3.1. Given a lts obtained by the IPO construction:

• Given a set of labels L, the L-restricted IPO lts is the lts obtained by removing from

the IPO lts all transitions not labeled by elements in L. We denote by ≈L the weak

bisimilarity induced by the L-restricted IPO lts.

• We denote by R the set of labels that are reactive contexts. We denote by ≈R the weak

bisimilarity induced by the R-restricted IPO lts.

• In a reactive system, we say that the family of IPO transitions with label f : I0 → I1 is

definable by contexts if there exists a list of contexts e1, . . . , eh : I0 → I1 such that, for all

t : 0 → I0, we have that: ∀i. t
f

−→I eit and t
f

−→I t′ =⇒ ∃i. t′ = eit.

Intuitively, a family of IPO transitions with label f : I0 → I1 is definable by contexts if f is

an IPO for any arrow t : 0 → I0 and the IPO transitions on f can be described by contexts,

that is, they do not modify the internal structure of the term t.

Proposition 3.2. Let C be a reactive system having redex RPOs. If any IPO context is

either reactive or definable by contexts (or both), then the weak IPO bisimilarity ≈I (with

the identity IPO context unobservable) is a congruence. Moreover ≈I coincides with ≈R.

Proof. Consider the relation S = { 〈ct, cu〉 | t ≈R u, c context }. It is immediate that

≈I⊆≈R, and from this, ≈I⊆ {〈ct, cu〉 | t ≈I u, c context} ⊆ S. If we prove also the

inclusion S ⊆≈I , then all relations are equal and ≈I coincides with its contextual closure,

i.e., it is congruence. By Lemma 2.11, in order to prove S ⊆≈I it is sufficient to show that,

for any 〈ct, cu〉 ∈ S, if ct
f

−→I t′ then there exists u′ s.t. cu
f

=⇒I u′ with t′Su′.

Consider the following diagram:

0
t //

l
��

I0
c //

f ′

��

I2

f
��

I3
d

// I1
d′

// I4

where the outermost rectangle is the IPO inducing the transition ct
f

−→I t′, namely t′ = d′dr

with 〈l, r〉 a reaction rule, while the left square is a RPO of the redex square. By Lemma 2.8,

the IPO pasting property, we have that also the right-hand square of the diagram is an IPO.

There are two cases to consider:
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(i) If the context f ′ is definable by contexts, since t
f ′

−→I dr, there exists a context e such

that dr = et and t′ = d′et, it follows that u
f ′

−→I eu. That is, there exist a reaction

rule 〈l1, r1〉 and a reactive context d1 s.t. eu = d1r1, and the left-hand square of the

following diagram is a IPO.

0
u //

l1
��

I0
c //

f ′

��

I2

f
��

I3
d1

// I1
d′

// I4

Since the right-hand square is IPO, by the IPO pasting property, Lemma 2.8, also the

outermost rectangle is an IPO. It follows that cu
f

−→I d′d1r1 = d′eu, which implies

the claim.

(ii) If the context f ′ is reactive, then it so also the context d′f ′ (composition of reactive

contexts) and the context c (reactive contexts are composition-reflecting). Moreover,

by the definition of bisimilarity, there exists u0 such that u
f ′

=⇒I u0 (which means

u
Id

−→I
∗ u1

f ′

−→I u2
Id

−→I
∗ u0) with u0 ≈R dr. Since c is reactive and squares of the

form

I0
c //

Id
��

I2

Id
��

I1 c
// I3

are IPOs, by composition of IPO squares (and by induction) it is easy to prove that

cu
Id

−→I
∗ cu1

f
−→I d′u2

Id
−→I

∗ d′u0, which implies the claim.

For dealing with the λ-calculus, we present a second proposition that is similar in spirit

to Proposition 3.2, although it is not a direct generalization. The second proposition consid-

ers both the category of unary linear term contexts and a category of “multi-holed” linear

term contexts. The category of unary contexts is the most suitable for the IPO construc-

tion, while the category of multi-holed contexts is useful to represent some transitions (in

the lts) through insertions of terms in suitable contexts.

The following definition formalizes the relation existing between the two categories of

contexts.

Definition 3.3. A category D is a list extension of a category C if the following hold:

• C contains a distinguished object 0.

• The objects of D are finite lists of objects of C different from 0.

• By identifying 0 with the empty list 〈 〉, and any other object I in C with the singleton

list 〈I〉, C is a full subcategory of D.

• There exists a concatenation functor ⊗ from D×D to D acting as concatenation on objects

〈I0, . . . , In〉 ⊗ 〈J0, . . . , Jm〉 = 〈I0, . . . , In, J0, . . . , Jm〉 and being associative on arrows.

In the spirit of the previous remark we will call unary (single-holed) contexts the arrows in

C (with domain different from 0), and multi-holed contexts the arrows in D.

Two other definitions are necessary.
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Definition 3.4. Given a reactive system C on a category C, and a category D, list extension

of C:

(i) we define a multi-holed context g : 〈I0, . . . , In〉 → I IPO uniform if for any context

f : I → J appearing as label in the IPO lts, there exists a list of multi-holed contexts

g1 : 〈I1,0, . . . , I1,n1〉 → J, . . . , gh : 〈Ih,0, . . . , Ih,nh
〉 → J , and a list of functions l1 :

{0, . . . , n1} → {0, . . . , n}, . . . , lh : {0, . . . , nh} → {0, . . . , n} such that, for any n-tuple

of C terms t0 : 0 → I0, . . . , tn : 0 → In, we have that:

− ∀i. g(t0 ⊗ . . . ⊗ tn)
f

−→I gi(tli(0) ⊗ . . . ⊗ tli(ni)) and

− g(t0 ⊗ . . . ⊗ tn)
f

−→I t′ =⇒ ∃i. t′ = gi(tli(0) ⊗ . . . ⊗ tli(ni));

(ii) a context g : 〈I0, . . . , In〉 → I has a reactive index i if for any list of n terms t0 : 0 →
I0, . . . , ti−1, ti+1, . . . , tn : 0 → In, the context g(t0 ⊗ . . .⊗ ti−1 ⊗ idIi ⊗ ti+1 ⊗ . . .⊗ tn) :

Ii → I, seen as a context in C, is reactive.

Intuitively, a context g is IPO uniform if the behavior wrt the IPO reaction of the term

g(tli(0) ⊗ . . . ⊗ tli(ni)) does not depend on the terms tli(0), . . . , tli(ni). We remark that the

notion of “uniform” is not a generalization of the notion of “definable by contexts”.

Proposition 3.5. Let C be a reactive system having redex RPOs.

(i) The weak IPO bisimilarity ≈I (with the identity IPO context unobservable) is a con-

gruence if there exists a category D, list extension of C such that any (multi-holed)

context g : 〈I0, . . . , In〉 → I is either IPO uniform or it has a reactive index (or both).

(ii) Moreover, if the reaction relation is deterministic, i.e., any term can react in at most

one possible way, then the relation ≈I coincides with ≈R.

Proof. Here we present only the proof of point (ii). The proof of point (i) is almost identical

and can be derived, from the present proof, by substituting the relation ≈R with ≈I , and

by simplifying some steps.

By repeating the same arguments used at the beginning of the proof of Proposition 3.2,

it is sufficient to prove that the relation

S = { 〈 g(t0 ⊗ . . . ⊗ tn), g(u0 ⊗ . . . ⊗ un) 〉 | g : 〈I0, . . . , In〉 → I, ∀i. ti ≈R ui }

is contained in the weak bisimilarity. By Lemma 2.12, it is sufficient to show that for any

〈g(t0 ⊗ . . .⊗ tn), g(u0 ⊗ . . .⊗ un)〉 ∈ S and IPO-transition f , if g(t0 ⊗ . . .⊗ tn)
f

=⇒I t, with
f

−→I the last step of the chain of reactions, then there exists u s.t. g(u0 ⊗ . . . ⊗ un)
f

=⇒I u

with tS∗u. The proof is by double induction on the number of steps of the transition

g(t0 ⊗ . . . ⊗ tn)
f

=⇒I t, and on the number n of holes in the list context g.

The basic case is when g(t0 ⊗ . . . ⊗ tn)
f

=⇒I t in 0 steps (f = id), in this case there is

nothing to prove.

Now suppose g(t0 ⊗ . . . ⊗ tn)
f ′

−→I t′
f ′′

=⇒I t, in this case (f ′ = id ∧ f ′′ = f) or

(f ′ = f ∧ f ′′ = id ∧ t′ = t),

There are two cases to consider:

(i) The context g is IPO-uniform: in this case there exists a context e : 〈I ′0, . . . , I
′
n′〉 → J1

and a function l : {0, . . . n′} → {0, . . . , n} such that t′ = e(tl(0) ⊗ . . . ⊗ tl(n′)) and

g(u0 ⊗ . . .⊗un)
f ′

−→I e(ul(0) ⊗ . . .⊗ul(n′)). By application of the inductive hypothesis,
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on a smaller number of transitions steps, there exists u s.t. e(ul(0) ⊗ . . .⊗ul(n′))
f ′′

=⇒I u

with tS∗u, and from which the claim follows.

(ii) The context g has a reactive index i, for the sake of simplicity, assume i = 0. Consider

the arrow g′ = g(t0 ⊗ idI1 ⊗ . . . ⊗ idIn) : 〈I1, . . . , In〉 → I. Since g′(t1 ⊗ . . . ⊗ tn) =

g(t0 ⊗ . . . ⊗ tn)
f

=⇒I t, by inductive hypothesis, on the number of holes in the multi-

holed contexts, there exists u such that g′(u1⊗ . . .⊗un) = g(t0⊗u1⊗ . . .⊗un)
f

=⇒I u,

with tS∗u.

Now consider the context g′′ = g(IdI0 ⊗ u1 ⊗ . . . ⊗ un) : Io → I. The context g′′ is

reactive and g′′(t0)
f

=⇒I u. To obtain the claim, it remains to prove that there exists

u′ s.t. g′′(u0) = g(u0 ⊗ . . . ⊗ un)
f

=⇒I u′, with uS∗u′.

More generally we prove that for any reactive context go : J0 → J1, any IPO context

f : J1 → J2, and any pair of terms to, uo, if to ≈R uo and go(to)
f

=⇒I t′o then there

exists u′
o s.t. go(uo)

f
=⇒I u′

o and t′oS
∗u′

o. The proof is by induction on the number of

steps in the transition g′′(t0)
f

=⇒I t′o. The basic case is when the reaction is of zero

steps; in this case there is nothing to prove.

For the inductive case consider the following diagram of IPO squares defining the

first reaction in the chain

0
to //

l
��

J0
go //

f ′′

��

J1

f ′

��
J3

d
// J4

d′
// J5

We need to consider two cases. The first one is where f ′ is a reactive context (f ′ ∈

{f, Id}). Since reactive contexts are composition-reflecting, then also the IPO context

f ′′ is reactive. By the definition of bisimilarity, uo
f ′′

=⇒I ui with ui ≈R dr. By reactivity

of go, using suitable IPO pasting diagrams, we can prove go(uo)
f ′

=⇒I d′ui. Now by

applying the inductive hypothesis to the reduction d′(dr)
f

=⇒I t′o, we obtain the claim.

The second case is where f ′ is a non reactive context (f ′ = f). Since reactive

contexts are compositional reflecting, then also the IPO context f ′′ is non reactive

and therefore, by hypothesis, IPO uniform. Notice that the context Id is an IPO

context for the term f ′′(to), by the IPO uniformity of f ′′, Id is an IPO context also

for f ′′(uo) and there exist a list context g′〈J1, . . . J1〉 → J s.t. to
f ′′

−→I g′(to, . . . , to) and

also uo
f ′′

−→I g′(uo, . . . , uo). Notice that, if the reduction relation is deterministic, two

terms that reduce one to the other via τ transitions are weakly bisimilar. It follows that

go(to)
f

−→I d′g′(t0, . . . , t0) ≈R t′o and, by IPO pasting, go(uo)
f

−→I d′g′(uo, . . . , uo),

from which we derive the claim.

Remark 3.6. Propositions 3.2 and 3.5 above, about congruence of the weak IPO bisimilar-

ity, are more related than what they look at first glance. From one side, by exploiting the

fact that the composition of a non-reactive context with any context gives a non-reactive

context, one can show that, if the non-reactive IPOs are definable by contexts, then any

non-reactive context is IPO-uniform. Note that the condition of “definability by context”

is in general simpler to verify than the one of “IPO-uniformity”, and so we prefer to present

the given formulation of Proposition 3.2. On the other side, it would be possible to extend
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the notion of “definability by context” to the case of list extension categories, however to

this aim it would be necessary to present a series of new definitions, necessary to lift the

IPO construction to the list extension categories. For the sake of simplicity, we prefer to

avoid the introduction of these further notions.

4. The Lambda Calculus

First, we recall the λ-calculus syntax together with lazy and cbv reduction strategies and

observational equivalences. Then, we show how to apply the RPO technique to λ-calculus,

viewed as a context category, and we discuss some problematic issues.

4.1. Syntax, Reduction Strategies, Observational Equivalences.

Definition 4.1 (Syntax). The set of λ-terms Λ is defined by

(Λ ∋) M ::= x | MM | λx.M ,

where x ∈ Var is an infinite set of variables. Let FV (M) denote the set of free variables in

M , and let us denote by Λ0 the set of closed λ-terms.

As usual, λ-terms are taken up-to α-conversion, and application associates to the left.

We consider the standard notions of β-rule and βV -rule:

Definition 4.2.

(i) β-rule: (λx.M)N →β M [N/x];

(ii) βV -rule: (λx.M)N →βV
M [N/x], if N is a variable or a λ-abstraction.

As usual, we denote by =β and =βV
the corresponding conversions.

A reduction strategy on the λ-calculus determines, for each term which is not a value,

a suitable β-redex appearing in it to be contracted. The lazy and cbv reduction strategies

are defined on closed λ-terms as follows:

Definition 4.3 (Reduction Strategies).

(i) The lazy strategy →l⊆ Λ0 × Λ0 reduces the leftmost β-redex, not appearing within a

λ-abstraction. Formally, →l is defined by the rules:

(λx.M)N →l M [N/x]

N →l N ′

NP →l N ′P

(ii) The call by value strategy →v⊆ Λ0 ×Λ0 reduces the leftmost βV -redex, not appearing

within a λ-abstraction. Formally, →v is defined by the following rules:

(λx.M)V →v M [V/x]

N →v N ′

NP →v N ′P

N →v N ′

(λx.M)N →v (λx.M)N ′

where V is a closed value, i.e., a λ-abstraction.
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We denote by →∗
σ the reflexive and transitive closure of a strategy →σ, for σ ∈ {l, v}, by

Valσ the set of values, i.e., the set of terms on which the reduction strategy halts (which

coincides with the set of λ-abstractions in both cases), and by M ⇓σ the fact that there

exists V ∈ Valσ such that M →∗
σ V .

As we will see in Section 4.2 below, each strategy defines a (deterministic) reactive

system on λ-terms in the sense of Definition 2.1. To this aim, it is useful to notice that

the above reduction strategies can be alternatively determined by specifying suitable sets of

reactive contexts (see Remark 4.5 below), which are subsets of the following unary contexts,

i.e., contexts with a single hole:

Definition 4.4 (Unary Contexts). Let P ∈ Λ. The unary contexts are:

C[ ] ::= [ ] | PC[ ] | C[ ]P | λx.C[ ] .

The closed unary contexts are the unary contexts with no free variables.

Remark 4.5.

(i) The lazy strategy →l is the closure of the β-rule under the reactive contexts, corre-

sponding to the closed applicative contexts: D[ ] ::= [ ] | D[ ]P , where P ∈ Λ0.

(ii) The cbv strategy →v is the closure of the βV -rule under the following closed reactive

contexts: D[ ] ::= [ ] | D[ ]P | (λx.M)D[ ] , where P, λx.M ∈ Λ0.

Each strategy induces an observational (contextual) equivalence à la Morris on closed terms,

when we consider programs as black boxes and only observe their “halting properties”.

Definition 4.6 (σ-observational Equivalence). Let →σ be a reduction strategy and let

M,N ∈ Λ0. The observational equivalence ≈σ is defined by

M ≈σ N iff for any closed unary context C[ ]. C[M ] ⇓σ⇔ C[N ] ⇓σ .

The definition of ≈σ can be extended to open terms by considering closing (by-value)

substitutions, i.e., for M,N ∈ Λ s.t. FV (M,N) ⊆ {x1, . . . , xn}, we define:

M≈̂σN iff for all closing (by-value) substitutions ~P ,M [~P/~x] ≈σ N [~P/~x] .

Remark 4.7. Often in the literature, the observational equivalence is defined by considering

multi-holed contexts. However, it is easy to see that the two notions of observational

equivalences, obtained by considering just unary or all multi-holed contexts, coincide.

The problem of reducing the set of contexts in which we need to check the behavior

of two terms has been widely studied in the literature. In particular, for both strategies

in Definition 4.3 above, a Context Lemma holds, which allows us to restrict ourselves to

applicative contexts of the shape [ ]~P ([ ]~V ), where ~P (~V ) denotes a list of closed terms

(values). Let us denote by ≈app
σ the observational equivalence which checks the behavior of

terms only in applicative (by-value) contexts. This admits a coinductive characterization

as follows:

Definition 4.8 (Applicative σ-bisimilarity).

(i) A relation R ⊆ Λ0 × Λ0 is
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− an applicative lazy bisimulation if the following holds:

〈M,N〉 ∈ R =⇒ (M ⇓l ⇔ N ⇓l) ∧ ∀P ∈ Λ0. 〈MP,NP 〉 ∈ R.

− an applicative cbv bisimulation if the following holds:

〈M,N〉 ∈ R =⇒ (M ⇓v ⇔ N ⇓v) ∧ ∀V closed value. 〈MV,NV 〉 ∈ R.

(ii) The applicative equivalence ≈app
σ is the largest applicative bisimulation.

The following is a well-known result [AO93, EHR92]:

Lemma 4.9 (Context Lemma). ≈σ=≈app
σ .

By the Context Lemma, the class of contexts in which we have to check the behavior

of terms is smaller, however it is still infinite, thus the applicative bisimilarity is infinitely

branching. In the following, we will study alternative coinductive characterizations of the

observational equivalences, arising from the application of Leifer-Milner technique.

4.2. Lambda Calculus as a Reactive System. Both lazy and cbv λ-calculus can be

endowed with a structure of reactive system in the sense of Definition 2.1, by considering

corresponding context categories.

Definition 4.10 (Lazy, cbv λ-reactive Systems). Cλ
σ, for σ ∈ {l, v}, consists of

• the category whose objects are 0, 1, where the morphisms from 0 to 1 are the closed terms

(up-to α-equivalence), the morphisms from 1 to 1 are the unary closed contexts (up-to

α-equivalence), and composition is context insertion;

• the subcategory of reactive contexts is determined by the reactive contexts for the lazy

and cbv strategy, respectively, presented in Remark 4.5;

• the (infinitely many) reaction rules are (λx.M)N →βσ M [N/x], for all M,N , where →βl

is →β-rule, while →βv is →βV
-rule.

The above definition is well-posed, in particular the subcategory of reactive contexts is

composition-reflecting.

One can easily check that the reactive system Cλ
σ has redex RPOs; this fact can be

proved by rephrasing the corresponding proof for the category of term contexts of [Sew02].

Here it is essential the fact that we consider only closed terms and closed contexts.

Lemma 4.11. The reactive system Cλ
σ, for σ ∈ {l, v}, has redex RPOs.

The IPO contexts of a closed term for the lazy and cbv reactive systems are summarized

in the second columns of the tables in Fig. 3. Intuitively, such contexts are minimal for the

given reduction to fire. Vice versa, contexts different from the ones above are not IPO; e.g.

C[ ]P , for terms of the shape λx.M , is not IPO if C[ ] is different from λx.C1[ ] and [ ],

because otherwise the reduction can fire already in C[ ].

The strong versions of context and IPO bisimilarities are too fine, since they take

into account reaction steps, and tell apart β-convertible terms. Trivially, I and II, where

I = λx.x, are equivalent neither in the context bisimilarity nor in the IPO bisimilarity, since

I
[ ]

6→, while II
[ ]
→ (both in the lazy and cbv case). On the other hand, one can easily check
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Lazy IPO lts’s

term IPO contexts reactive IPO contexts

λx.M [ ]P, (λx.C[ ])P , PC[ ] [ ]P

(λx.M)N ~P [ ], (λx.C[ ])P , PC[ ] [ ]

Cbv IPO lts’s

term M IPO contexts reactive IPO contexts

λx.M1 [ ]P, (λx.C[ ])P , RC[ ], (λx.Q)C1[ ] [ ]P , (λx.Q)[ ]

(λx.M1)N ~P [ ], (λx.C[ ])P , RC[ ], (λx.Q)C1[ ] [ ]

where R is not a value and C1[M ] is a value.

Figure 3: IPO contexts for the lazy/cbv lts’s.

that the weak context bisimilarity, where the identity context [ ] is unobservable, equates

all closed terms. The appropriate notion is that of weak IPO bisimilarity, which, as we will

see, turns out to capture exactly the lazy and cbv equivalences.

It is interesting to observe that also the observational equivalence and the applicative

bisimilarity can be characterized as weak bisimilarities on suitable context lts’s. In fact it is

easy to prove that the observational equivalence ≈σ coincides with the weak bisimilarity on

a restriction of the context lts built on Cλ
σ, defined by M

C[ ]
−→ N iff M

C[ ]
−→C N and M ⇓σ.

Similarly, the applicative equivalence can be characterized by considering only applicative

contexts in the lts.

In the following we will show that all these lts’s induce the same notion of equivalence.

Moreover, using the results of Section 3, we will show that the set of IPO contexts in the

weak IPO bisimilarity to be considered can be significantly simplified. Then, from the fact

that the weak IPO lts is the smallest of the ones above, it follows that it induces the simplest

proofs that two terms are bisimilar.

Now, let us denote by ≈σI , for σ ∈ {l, v}, the lazy/cbv weak IPO bisimilarity, where

the identity context is unobservable. In order to prove that ≈σI is a congruence w.r.t. all

contexts, we need to consider the category Dλ
σ , list extension of Cλ

σ , where the objects are

finite lists 〈1, . . . , 1〉, and an arrow

〈1, . . . , 1〉︸ ︷︷ ︸
n

→ 〈1, . . . , 1〉︸ ︷︷ ︸
m

is a m-tuple of possibly closed multi-holed contexts 〈C1, . . . , Cm〉 with n holes all together.

Multi-holed contexts are defined by

C[ ] ::= [ ] | P | C[ ]C[ ] | λx.C[ ] .

Then, in the lazy case one can show that any closed multi-holed context either is IPO

uniform or it is of the shape [ ]C1[ ] . . . Ck[ ] with the first hole reactive. Namely, if C[ ] is of

the shape [ ]C1[ ] . . . Ck[ ], then clearly the first hole is reactive. Otherwise, it is of the shape

PC1[ ] . . . Ck[ ] or (λx.C0[ ])C1[ ] . . . Ck[ ]. In the first case, the reduction (if any) involves

only P or at most PC1[ ], where C1[ ] together with the term put in the holes, plays only a
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passive role as argument. In the latter case, since the term put in the holes is closed, again

it will be not affected by the substitution induced by the reduction. Similarly, for the cbv

case, all the multi-holed contexts are IPO uniform, apart from the contexts ranging on the

following grammar, which have a reactive hole:

D[ ] ::= [ ] | D[ ]C[ ] | (λx.C[ ])D[ ] ,

where C is a closed multi-holed context. Moreover, the reduction relation is obviously

deterministic. Thus, by applying Proposition 3.5, we have:

Corollary 4.12.

(i) For all M,N ∈ Λ0, for any closed unary context C[ ],

M ≈σI N =⇒ C[M ] ≈σI C[N ] .

(ii) Moreover

≈σI = ≈σR ,

where ≈σR denotes the weak IPO bisimilarity where only reactive contexts are consid-

ered (see the third columns in the tables of Fig. 3).

Now, we are left to prove that the IPO bisimilarity coincides with the original observational

equivalence. Notice that, in the above proposition, we also provide a new alternative proof

of the Context Lemma for the lazy case.

Proposition 4.13. ≈l = ≈app
l = ≈lI and ≈v = ≈vI .

Proof. For the lazy case, we proceed by proving the following chain of inclusions:

≈l ⊆ ≈app
l ⊆ ≈lR ⊆ ≈lI ⊆ ≈l . (4.1)

The first inclusion, ≈l ⊆ ≈app
l , holds by definition. The third inclusion, ≈lR ⊆ ≈lI ,

follows by Corollary 4.12(ii). The others are proved as follows:

• ≈app
l ⊆ ≈lR. We prove that ≈app

l is a “weak IPO reactive bisimulation”. Let M ≈app
l N .

Assume M
C[ ]
→I M ′ in the IPO reactive system. By case analysis on M and C[ ] we show

that ∃N ′. N
C[ ]
⇒ N ′ ∧ M ′ ≈app

l N ′.

If M ≡ (λx.M1)Q~P and C[ ] ≡ [ ], then N
[ ]
⇒ N , M ′ =β M ≈app

l N , hence closedness

of ≈app
l under β-conversion establishes the claim.

If M ≡ λx.M1 and C[ ] ≡ [ ]P , then, since M ≈app
l N , ∃λx.N1. N

[ ]
⇒ λx.N1

[ ]P
→ N ′.

Then M ′ =β MP ≈app
l NP =β N ′, and closedness of ≈l under β-conversion establishes

the claim.

• ≈lI ⊆ ≈l. Let M ≈lI N . We have to show that, for any unary closed context C[ ],

C[M ] ⇓ ⇔ C[N ] ⇓. From M ≈lI N , by Corollary 4.12(i), we have C[M ] ≈lI C[N ].

Now assume that C[M ] ⇓l, then there exists M ′ such that C[M ]
[ ]P
⇒ M ′, hence also there

exists N ′ such that C[N ]
[ ]P
⇒ N ′, thus C[N ] ⇓l.



RPO, SECOND-ORDER CONTEXTS, AND λ-CALCULUS ∗ 17

The above argument provides a new proof of the Context Lemma.

For the cbv case, considering the applicative equivalence ≈app
v does not help, but one

can prove directly:

≈v ⊆ ≈vR ⊆ ≈vI ⊆ ≈v (4.2)

• ≈v ⊆ ≈vR. One can easily check that ≈v is a “weak IPO reactive bisimulation”, using

the fact that ≈v is closed under β-reduction.

• ≈vR ⊆ ≈vI . Immediate by Corollary 4.12(ii).

• ≈vI ⊆ ≈v. Let M ≈vI N . We have to show that, for any unary context C[ ],

C[M ] ⇓v⇐⇒ C[N ] ⇓v. From M ≈vI N , by Corollary 4.12(i), we have C[M ] ≈vI C[N ].

Now assume that C[M ] ⇓v, then there exists M ′ such that C[M ]
[ ]V
⇒ M ′, hence also there

exists N ′ such that C[N ]
[ ]V
⇒ N ′, thus C[N ] ⇓v.

Remark 4.14. Corollary 4.12(ii) allows us to reduce the set of IPO contexts to be consid-

ered in the IPO bisimilarities. For the lazy case, only applicative contexts can be considered

(see the first table in Figure 3), while for the cbv case, the set of reactive IPO contexts is

larger (see the second table in Figure 3). However, also for the cbv case, one can prove that

applicative (by-value) IPO contexts are sufficient. We omit the details.

Proposition 4.13 above gives us interesting characterizations of lazy and cbv observa-

tional equivalences, in terms of lts’s where the labels are significantly reduced. However,

such lts’s (and bisimilarities) are still infinitely branching, e.g. λx.M
P

−→I , for all P ∈ Λ0.

This is due to the fact that the context categories underlying the reactive systems Cλ
l and

Cλ
v allow only for a ground representation of the β-rule through infinitely many ground

rules. In order to overcome this problem, one should look for alternative categories which

allow for a parametric representation of the β-rule as (λx.X)Y → X[Y/x], where X,Y

are parameters. To this aim, we introduce the category of second-order term contexts (see

Section 6 below). However, as we will see, this approach works only if the reaction rules

are “local”, that is, they do not act on the whole term, but only locally. In particular, the

operation of substitution on the λ-calculus is not local and thus it is not describable by

a finite set of reaction rules. To avoid this problem, in the following section we consider

encodings of the λ-calculus into Combinatory Logic (CL) endowed with suitable strategies

and equivalences, which turn out to correspond to lazy and cbv equivalences.

5. Combinatory Logic

In this section, we focus on Combinatory Logic [HS86] with Curry’s combinators K,S,

and we study its relationships with the λ-calculus endowed with lazy and cbv reduction

strategies. An interesting result that we prove is that we can define suitable reduction

strategies on CL-terms, inducing observational equivalences which correspond to lazy and

cbv equivalences on λ-calculus. As a consequence, we can safely shift our attention from the

reactive system of λ-calculus to the simpler reactive system of CL. In this section, we apply

Leifer-Milner construction to CL viewed as a (standard) context category, and we study

weak versions of context and IPO bisimilarities. Our main result is that we can recover

lazy and cbv observational equivalences as weak IPO equivalences on CL∗, a variant of
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standard CL. Here the approach is first-order, thus the IPO equivalences are still infinitely

branching. However, the results in this section are both interesting in themselves, and

useful for our subsequent investigation of Section 6, where CL is viewed as a second-order

rewriting system, and a characterization of the lazy observational equivalence as a finitely

branching IPO bisimilarity is given.

In [Sew02], a construction, similar to Leifer-Milner construction, has been applied to

the Combinary Logic case. However, in that paper, it has been left open the question of

whether the weak bisimilarity on the derived LTS is a congruence. In this paper, using

Proposition 3.5, we can positively answer that question.

Definition 5.1 (Combinatory Terms). The set of combinatory terms is defined by:

(CL ∋) M ::= x | K | S | MM ,

where K, S are combinators. Let CL0 denote the set of closed CL-terms.

5.1. Correspondence with the λ-calculus. Let Λ(K,S) denote the set of λ-terms built

over constants K,S. The following is a well-known encoding:

Definition 5.2 (λ-encoding). Let T : Λ(K,S) → CL be the transformation defined as

follows:

T (x) = x

T (MN) = T (M)T (N)

T (λx.x) = SKK

T (λx.y) = Ky

T (C) = C if C ∈ {K,S}

T (λx.MN) = ST (λx.M)T (λx.N)

T (λx.λy.M) = T (λx.T (λy.M))

T (λx.C) = KT (C) if C ∈ {K,S}

In particular, if we restrict the domain of T to Λ, we get an encoding of λ-terms into CL.

Vice versa, there is a natural embedding of CL into the λ-calculus E : CL → Λ:

E(K) = λxy.x E(S) = λxyz.(xz)(yz) E(x) = x E(MN) = E(M)E(N)

The following lemma holds:

Lemma 5.3. For all M ∈ Λ, E(T (M)) =σ M , for σ ∈ {β, βV }.

Proof. First, one can easily prove that, if M is λ-free, then ET (λx.M) =σ λx.M (by

induction on M). Then, using the fact that T (M) is λ-free for all M , by definition of T ,

one gets that T 2(M) = T (M) for all M . Finally, we are ready to prove the claim in its full

generality by induction on M . The only non-trivial case is when M = λx.λy.N . Then we

have ET (λx.λy.N) = ET (λx.T (λy.N)), where T (λy.N) = PQ is λ-free. Then

ET (λx.λy.N) = ET (λx.PQ) = E(S)ET (λx.P )ET (λx.Q)

= (λxyz.(xz)(yz))ET (λx.P )ET (λx.Q)

=σ (λxyz.(xz)(yz))λx.Pλx.Q , since PQ is λ-free,

=σ λx.PQ =σ λx.ET (PQ) , since PQ is λ-free,

= λx.ET T (λy.N) = λx.ET (λy.N) , since T 2 = T ,

=σ λx.λy.N , by induction hypothesis.
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5.1.1. Lazy/cbv observational equivalence on CL. Usually, the set of combinatory terms are

endowed with the following reaction rules:

KMN → M SMNP → (MP )(NP )

We will also consider a cbv version of the above rules, reducing CL redexes only when the

arguments are values, i.e., terms on the following grammar:

V ::= K | S | KV |SV | SV V .

The cbv rules are the following:

KV1V2 → V1 SV1V2V3 → (V1V3)(V2V3)

Definition 5.4 (Lazy/cbv Reduction Strategy on CL).

(i) The lazy reduction strategy →l ⊆ CL0 × CL0 reduces the leftmost outermost CL-

redex. Formally:

SM1M2M3 →l (M1M3)(M2M3) KM1M2 →l M1

M →l M ′

MP →l M ′P

(ii) The cbv strategy →v ⊆ CL0 × CL0 is defined by

SV1V2V3 →v (V1V3)(V2V3) KV1V2 →v V1

M1 →v M ′
1

KM1 →v KM ′
1

M2 →v M ′
2

KV1M2 →v KV1M
′
2

M1 →v M ′
1

SM1 →v SM ′
1

M2 →v M ′
2

SV1M2 →v SV1M
′
2

M3 →v M ′
3

SV1V2M3 →v SV1V2M
′
3

M →v M ′

MP →v M ′P

where V1, V2, V3 are values.

Definition 5.5 (Unary Contexts on CL). The set of unary contexts on CL is defined by

C[ ] ::= [ ] | C[ ]P | PC[ ] .

Alternatively we could define the lazy strategy →l as the closure of the standard CL-

reaction rules under the following reactive contexts (which coincide with the applicative

ones):

D[ ] ::= [ ] | D[ ]P .

Similarly, we could define the cbv strategy →v as the closure of the cbv reaction rules under

the following reactive contexts:

D[ ] ::= [ ] | D[ ]P | KD[ ] | KV D[ ] | SD[ ] | SV D[ ] | SV1V2D[ ].

Let ↓σ denote the convergence relation on CL, for σ ∈ {l, v}.

Definition 5.6 (Lazy/cbv Equivalence on CL).

(i) A relation R ⊆ CL0 × CL0 is a

− CL lazy bisimulation if:

〈M,N〉 ∈ R =⇒ (M ↓l ⇔ N ↓l) ∧ ∀P ∈ CL0. 〈MP,NP 〉 ∈ R .



20 P. DI GIANANTONIO, F. HONSELL, AND M. LENISA

− CL cbv bisimulation if:

〈M,N〉 ∈ R =⇒ (M ↓v ⇔ N ↓v) ∧ ∀ closed value V ∈ CL0. 〈MV,NV 〉 ∈ R .

(ii) Let ≃σ ⊆ CL0 × CL0 be the largest CL lazy/cbv bisimulation.

(iii) Let ≃̂σ ⊆ CL×CL denote the extension of ≃σ to open terms defined by: for M,N ∈
CL s.t. FV (M,N) ⊆ {x1, . . . , xn}, M≃̂σN iff for all closing (by-value) substitutions
~P , M [~P/~x] ≃σ N [~P/~x].

Notice that we use two different symbols for equivalences (≈ and ≃), in this way we distin-

guish the equivalence relation on λ-terms from the corresponding relation on CL.

The following theorem is interesting per se:

Theorem 5.7. For all M,N ∈ Λ, M ≈̂σ N ⇐⇒ T (M) ≃̂σ T (N) .

Proof of Theorem 5.7. We carry out the proof of the above theorem for the lazy case,

the proof for the cbv case being similar.

Lemma 5.8.

(i) For all M ∈ CL0, M ↓l ⇐⇒ E(M) ⇓l.

(ii) For all M ∈ Λ0, M ⇓l ⇐⇒ T (M) ↓l .

Proof.

(i) By definition of the lazy strategies on λ-terms and on CL-terms.

(ii) (⇒) Let M ⇓l. Then, since by Lemma 5.3 E(T (M)) =β M , and ≈l is closed under

β-conversion, we have also E(T (M)) ⇓l. Thus, by (i), T (M) ↓l.

(⇐) Let T (M) ↓l. By (i), E(T (M)) ⇓l, by Lemma 5.3, M =β E(T (M)), thus M ⇓l.

Lemma 5.9. For all M,N ∈ CL0, if E(M) =β E(N), then M ≃l N .

Proof. The proof follows from the fact that R = {〈M,N〉 ∈ CL0 | E(M) =β E(N)} is a

CL lazy bisimulation. Namely M ↓l iff N ↓l, because, by Lemma 5.8(i), M ↓l iff E(M) ↓l

and N ↓l iff E(N) ↓l, and ≈app
l is closed under β-conversion. Moreover, for any P ∈ CL0,

〈MP,NP 〉 ∈ R, since E(MP ) = E(M)E(P ) =β E(N)E(P ) = E(NP ).

Lemma 5.10. ∀P ∈ CL0, P ≃l T (E(P )).

Proof. We prove that R = {(P ~R,T (E(P ))~R) | P, ~R ∈ CL0} is a bisimulation. To this

aim, it is sufficient to prove that, for all P, ~R, P ~R ↓l ⇔ T (E(P ))~R ⇓l. By Lemma 5.8,

P ~R ↓l ⇔ E(P ~R) ⇓l. Now E(P ~R) = E(P )E(~R) =β (E ◦ T ◦ E(P ))E(~R) = E((T ◦ E(P ))~R).

Finally, by Lemma 5.8, E((T ◦ E(P ))~R ⇓l ⇐⇒ T (E(P ))~R ↓l.

Lemma 5.11. Let M ∈ Λ and let ~P be closed such that M [~P/~x] ∈ Λ0, then

T (M [~P/~x]) ≃l T (M)[T (~P )/~x] .

Proof. By Lemma 5.9, it is sufficient to show that E(T (M [~P/~x])) =β E(T (M)[T (~P )/~x]).

Now E(T (M [~P/~x])) =β M [~P/~x], by Lemma 5.3. On the other hand, from the definition

of E , one can prove by induction that E(T (M)[T (~P )/~x]) = ET (M)[ET (~P )/~x], which, by

Lemma 5.3, =β M [~P/~x].
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Now we proceed to prove Theorem 5.7 (⇒). Assuming M≈̂lN , we have to prove

that, for all closing ~P , T (M)[~P/~x] ≃l T (N)[~P/~x]. From M≈̂lN it follows M [E(~P )/~x] ≈l

N [E(~P )/~x]. By Lemmata 5.8, 5.10, using the fact that ≃l is a congruence, we have

T (M [E(~P )/~x]) ≃l T (N [E(~P )/~x]). By Lemma 5.11, T (M)[T E(~P )/~x] ≃l T (N)[T E(~P )/~x],

hence by Lemma 5.11, using the fact that ≃l is a congruence, we have T (M)[~P/~x] ≃l

T (N)[~P/~x].

In order to prove Theorem 5.7 (⇐), assume T (M)≃̂lT (N). We have to prove that,

for all closing ~P , M [~P/~x] ≈l N [~P/~x]. From T (M)≃̂lT (N) it follows T (M)[T (~P )/~x] ≃l

T (N)[T (~P )/~x]. From Lemma 5.11, we have T (M [~P/~x]) ≃l T (N [~P/~x]). By Lemma 5.8,

we have M [~P/~x] ≈l N [~P/~x].

5.2. The First-order Approach: CL as a Context Category. We endow CL with a

structure of reactive system in the sense of [LM00], by considering the context category of

closed unary contexts:

Definition 5.12 (Lazy, cbv CL Reactive Systems). C1
σ, for σ ∈ {l, v}, consists of:

• the context category whose objects are 0, 1, where the morphisms from 0 to 1 are the

closed terms, the morphisms from 1 to 1 are the closed unary contexts, and composition

is context substitution;

• the subcategory of reactive contexts is determined by the reactive contexts for the lazy

and cbv strategy, respectively, presented in Definition 5.4;

• the reaction rules are the standard CL reduction rules for the lazy case, and the cbv

reduction rules for the cbv case.

Lemma 5.13. The reactive systems C1
σ have redex RPOs.

One can easily check that the IPO contexts are the following.

• Lazy. The IPO contexts for a given term M are:

− [ ]~P , where ~P has the minimal length for the top-level reaction of M to fire,

− KC[ ]P1, KP1C[ ], KP1
~QC[ ], for any C[ ], ~Q, P1,

− SC[ ]P1P2, SP1C[ ]P2, SP1P2C[ ], SP1P2
~QC[ ], for any P1, P2, C[ ], ~Q.

• Cbv.

For M not a value, the following contexts are IPOs:

− [ ],

For M value, the following contexts are IPOs:

− [ ]V1 . . . Vi, where i is the minimum number of arguments necessary for the top-level

reaction of M to fire,

− [ ]V1 . . . ViP , where P is not a value, and i, possibly 0, is less than the minimum number

of arguments necessary for the top-level reaction of M to fire,

− V C[ ]V1 . . . Vi where V and C[M ] are values and i + 1 is the minimum number of

arguments necessary for the top-level reaction of V to fire, in more detail: KC[ ]V ,

KV C[ ], SC[ ]V1V2, SV1C[ ]V2, SV1V2C[ ],

− V C[ ]V1 . . . ViP , where V and C[M ] are values, P is not a value, and i + 1 is less than

the minimum number of arguments necessary for the top-level reaction of V to fire, in

more detail: KC[ ]P , SC[ ]P , SC[ ]V1P , SV1C[ ]P .
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For any term M , the following contexts are IPOs:

− PC[ ], where P is not a value and C[ ] is any context.

For any of the above contexts there is a reduction rule which applies, and the context

is minimal for the given reduction to fire. By case analysis, one can show that all the other

contexts are not IPO contexts.

The strong versions of context and IPO bisimilarities are too fine, since, as in the λ-

calculus case, they take into account reduction steps, and tell apart β-convertible terms.

Thus we consider weak variants of such equivalences, where the identity context [ ] is un-

observable. Weak context bisimilarity is too coarse, since it equates all terms. However, we

will prove that the weak IPO bisimilarity “almost” coincides with the lazy/cbv equivalence.

Moreover, we will show how to recover the exact correspondence by considering a suitable

variant of CL.

First of all, let ≃σI , for σ ∈ {l, v}, denote the lazy/cbv weak IPO bisimilarity obtained

by considering the identity context as unobservable. Similarly to the case of the λ-calculus,

we can define a list extension category by taking the category of multi-holed contexts. In

this category all contexts with no reactive indexes are IPO uniform. In the lazy case, the

contexts with a reactive index are of the shape [ ]C1[ ] . . . Ck[ ] (with the leftmost hole being

reactive), and the remaining ones have not reactive indexes and are IPO uniform. For the

cbv case, one can show that the multi-holed contexts with a reactive index are given by the

grammar:

D[ ] ::= [ ] | D[ ]C[ ] | KD[ ] | KV D[ ] | SD[ ] | SV D[ ] | SV1V2D[ ] ,

where C[ ] is any closed multi-holed context.

Thus, by Proposition 3.5(i), we have:

Proposition 5.14. For all M,N ∈ CL0, for any closed unary context C[ ],

M ≃σI N =⇒ C[M ] ≃σI C[N ] .

The rest of this section is devoted to compare the lazy/cbv weak IPO bisimilarity ≃σI

with the lazy/cbv equivalence on CL ≃σ defined in Definition 5.6. The following lemma

can be easily proved by coinduction, using Proposition 5.14.

Lemma 5.15. ≃σI ⊆ ≃σ.

Proof. We prove that ≃σI is a lazy/cbv bisimulation on CL. Let M ≃σI N . If M ↓σ, then

also N ↓σ, since a convergent term has different IPO-transitions from a divergent term. We

are left to prove that for all P , MP ≃σI NP . But this follows from Proposition 5.14.

However, the converse inclusion ≃σ ⊆ ≃σI does not hold, since for instance K ≃σ

S(KK)(SKK), because, e.g. for the lazy case, for all P , S(KK)(SKK)P →∗ KP . But

K 6≃σI S(KK)(SKK). Namely S(KK)(SKK)
[ ]V
−→I , while K

[ ]V

6→I . The problem, which was

already noticed in [Sew02], arises since the equivalence ≃σI tells apart terms whose top-level

combinators expect a different number of arguments to reduce. In order to overcome this

problem, we consider an extended calculus, CL∗, where the combinators K and S become

unary, at the price of adding new intermediate combinators and intermediate reductions

(the reactive contexts are the ones in Definition 5.12).
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Definition 5.16. The CL∗ lazy combinatory calculus is defined by

• Terms:

M ::= x | K | S | K′M | S′M | S′′MN | MN

where K, K′, S, S′, S′′ are combinators.

• Rules:

KM → K′M K′MN → M

SM → S′M S′MN → S′′MN S′′MNP → (MP )(NP )

The CL∗ cbv combinatory calculus is defined by

• Terms:

M ::= x | K | S | MN | K′V | S′V | S′′V V

Values:

V ::= K | K′V | S | S′V | S′′V V

where K, K′, S, S′, S′′ are combinators.

• Rules:

KV1 → K′V1 K′V1V2 → V1

SV1 → S′V1 S′V1V2 → S′′V1V2 S′′V1V2V3 → (V1V3)(V2V3)

Notice that the calculus in the above definition is well-defined, since the set of terms is

closed under the reaction rules. One can define lazy/cbv reduction strategies on CL∗ as in

Definition 5.4, or as the closures of the reaction rules under the following reactive contexts:

Definition 5.17 (CL∗ Reactive Contexts).

• Lazy. D[ ] ::= [ ] | D[ ]P .

• Cbv. D[ ] ::= [ ] | D[ ]P | V D[ ].

Let ≃∗
σ be the lazy/cbv equivalence defined on CL∗, similarly as in Definition 5.6 for CL.

There is a trivial embedding of CL-terms into CL∗. Moreover, one can easily check that,

when restricted to terms of CL, ≃∗
σ coincides with ≃σ.

Analogously to the CL case, we define the reactive system over CL∗. In the context

category, the unary closed contexts are defined by the grammar

C[ ] ::= [ ] | C[ ]M | MC[ ]

where M is a closed term. Notice that, under the above definition, expressions like K′[ ]

do not represent unary closed context. In defining the IPO transitions, it is important to

observe that C[M ] is a value iff M is a value and C[ ] is the identity context [ ]. Let us

denote by ≃∗
σI the weak IPO bisimilarity obtained by considering the lazy/cbv reactive

system over CL∗. Since CL∗-terms expect at most one argument, the IPO contexts for CL∗

are simpler than the ones for CL, and they are summarized in Figure 4.

Similarly to the previous case, one can consider the multi-holed contexts category as

a list extension category. In this category all contexts are either IPO uniform or have a

reactive index. Moreover, the reduction relation is deterministic. Thus Proposition 3.5

applies and we have:
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Lazy IPO lts’s on CL∗

term M IPO contexts reactive IPO contexts

M value [ ]P, PC[ ] [ ]P
M not a value [ ], PC[ ] [ ]

Cbv IPO lts’s on CL∗

term M IPO contexts reactive IPO contexts

M value [ ]P, RC[ ], V [ ] [ ]P , V [ ]

M not a value [ ], RC[ ] [ ]

where R is not a value, V is a value, C[ ] is a generic unary context.

Figure 4: IPO contexts for the lazy/cbv lts’s on CL∗.

Proposition 5.18.

(i) The equivalence ≃∗
σI is a congruence w.r.t. unary contexts.

(ii) ≃∗
σI = ≃∗

σR, where ≃∗
σR denotes the IPO bisimilarity where only reactive IPO contexts

are considered.

By Proposition 5.18(ii) above, the weak IPO equivalence can be significantly simplified.

Namely, in the lazy case, we obtain the weak IPO bisimilarity ≃lR, where only applicative

IPO contexts are considered (see Figure 4). In the cbv case, Proposition 5.18 allows us to

reduce ourselves to contexts of the shape [ ], [ ]P, V [ ] (see Figure 4). However, one can

prove that also in this case we can consider only applicative by-value contexts. We skip the

details of such proof.

Moreover, we have K ≃∗
σI S(KK)(SKK). More in general, the weak IPO bisimilarity

≃∗
σI coincides with the lazy/cbv equivalence on CL:

Theorem 5.19. For all M,N ∈ CL0, M ≃∗
σI N ⇐⇒ M ≃σ N .

Proof. (⊆) One can show that ≃∗
σI ⊆ ≃∗

σ by coinduction, as in the proof of Lemma 5.15,

by showing that ≃∗
σI is a bisimulation on CL∗, also using Proposition 5.18. Then, since ≃∗

σ

coincides with ≃σ on CL-terms, we obtain the claim.

(⊇) By coinduction, showing that ≃σ is a weak IPO bisimulation on CL∗.

As a consequence of Theorem 5.7 and Theorem 5.19 above, we can recover the lazy/cbv

observational equivalence on λ-terms as weak IPO bisimilarity on CL∗.

Proposition 5.20. For all M,N ∈ Λ0, M ≈σ N ⇐⇒ T (M) ≃∗
σI T (N).

However, such notions of weak IPO bisimilarities still suffer of the problem of being

infinitely branching, since the IPO contexts are [ ], [ ]P for the lazy case, and [ ], [ ]V for

the cbv case, for all P, V ∈ (CL∗)0.

This problem will be solved in the next section, where we introduce the notion of

second-order context category, and we endow CL∗ with such a structure.
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6. Second-order Term Contexts

The definition of term context category [LM00] can be generalized to a definition of

second-order term context category. The generalization is obtained by extending the term

syntax with function (second-order) variables, that is, variables not standing for terms but

instead for functions on terms. The formal definition is the following

Definition 6.1 (Category of Second-order Term Contexts). Let Σ be a signature for a term

language. The category of second-order term contexts over Σ is defined by: objects are finite

lists of naturals 〈n1, . . . , nk〉, an arrow 〈m1, . . . ,mh〉 → 〈n1, . . . , nk〉 is a k-tuple 〈t1, . . . , tk〉,
where the term ti is defined over the signature Σ∪{Fm1

1 , . . . , Fmh
h }∪{Xi,1 . . . ,Xi,ni}, where

Fmi
i is a function variable of arity mi, Xi,j is a ground variable. The category of second-

order linear term contexts is the subcategory whose arrows are n-tuples of terms, satisfying

the condition that the n-tuples have to contain exactly one use of each function variable

Fmi
i and ground variable Xi,j. The category of second-order function-linear term contexts,

T ∗
2 (Σ), is the subcategory whose arrows are n-tuples of terms, satisfying the condition that

the n-tuples have to contain exactly one use of each function variable Fmi
i , moreover no

function variable appears inside the argument of another function variable.

Remark. Notice that the above definition of second-order linear term contexts is different

from that given in the conference version of the present paper, [DHL08]. The modification

was necessary because the original definition was incorrect (second-order linear contexts

were not closed by composition).

In the following we are going to use just a subcategory of the category of second-order

function-linear term contexts, however, at this point, we prefer to present the original idea

of second-order term contexts in its full generality.

Example 6.2. Given the signature of natural numbers {0, S,+}, examples of second-order

linear contexts representing arrows in 〈2, 0〉 → 〈0, 2〉 are:

〈F 0
2 (), F 2

1 (S(X2,2)+X2,1)〉, 〈F
2
1 (0, 0), F 0

2 ()+(X2,1+X2,2)〉, 〈F
2
1 (0, F 0

2 ()), (X2,1+X2,2)〉

Note that the last context is not function-linear. Examples of second-order function-linear

contexts are:

〈F 0
2 (), F 2

1 (X2,2, 0)〉, 〈F 2
1 (0, 0), F 0

2 () + X2,2 + X2,2〉, 〈F 2
1 (0, 0) + F 0

2 (),X2,2 + X2,2〉

None of the above contexts is linear. Examples of second-order contexts that are neither

function-linear nor linear are:

〈0, F 2
1 (X1,2,X2,2)〉, 〈F 2

1 (0, F 0
2 ()),X2,2〉, 〈F 2

1 (0, 0), (F 0
2 () + X1,2) + (F 0

2 () + X2,2)〉

Intuitively, an arrow in 〈2, 0〉 → 〈0, 2〉 represents a pair of contexts containing two holes

F 2
1 , F 0

2 , where F 2
1 is a hole that must be filled by a term representing a function with two

arguments while F 0
2 is a hole that must be filled by a term representing function with no

arguments, i.e., a ground term. The first context in the pair 〈2, 0〉 → 〈0, 2〉 represents

a function with no arguments, while the second context represent a function with two

arguments X2,1,X2,2.

One can check that the standard category of term contexts over Σ coincides with the

subcategory whose objects are the lists containing only copies of the natural number 0; in
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fact this subcategory uses function variables with no arguments and the ground variables

do not appear.

The identity arrow on the object 〈n1, . . . , nk〉 is:

〈Fn1
1 (X1,1, . . . X1,n1), . . . , F

nk
k (Xk,1, . . . Xk,nk

)〉

In order to define composition in the categories of second-order term contexts, it is

convenient to consider the λ-closure of the tuple of terms representing arrows and to define

arrow composition through β-reduction.

The λ-closure of a term t on the signature Σ ∪ {Fm1
1 , . . . , Fmh

h } ∪ {X1, . . . ,Xn} is

λλλFm1
1 . . . Fmh

h .λλλX1 . . . Xn.t, which, for brevity, can also be written as λλλ~F .λλλ ~X.t. In general,

given a second-order context 〈t1, . . . , tk〉 : 〈m1, . . . ,mh〉 → 〈n1, . . . , nk〉, we consider the

λ-closure: λλλ~F .〈λλλ ~X1.t1, . . . ,λλλ ~Xk.tk〉. The composition between the morphisms:

λλλ~F .〈λλλ ~X1.s1, . . . ,λλλ ~Xk.sk〉 : 〈l1, . . . , lh〉 → 〈m1, . . . ,mk〉

λλλ~G.〈λλλ~Y1.t1, . . . ,λλλ~Yj.tj〉 : 〈m1, . . . ,mk〉 → 〈n1, . . . , nj〉

is the β-normal form of the λ-expression

λλλ~F .(λλλ~G.〈λλλ~Y1.t1, . . . ,λλλ~Yj .tj〉)(λλλ ~X1.s1, . . . ,λλλ ~Xk.sk) : 〈l1, . . . , lh〉 → 〈n1, . . . , nj〉

To give an example, the composition between

λλλF.λλλX1.F (X1, 0) : 〈2〉 → 〈1〉 and λλλG.λλλY1Y2.G(S(Y1)) + Y2 : 〈1〉 → 〈2〉

is given by:

λλλF.(λλλG.λλλY1Y2.G(S(Y1)) + Y2)(λλλX1.F (X1, 0))

→βλλλF.λλλY1Y2.(λλλX1.F (X1, 0))(S(Y1))) + Y2)

→βλλλF.λλλY1Y2.F ((S(Y1), 0) + Y2) : 〈2〉 → 〈2〉 .

In other words, the composition is given by a j-tuple of expressions ti in which every

function variable Gl is substituted by the corresponding expression sl, with the ground

variables of sl substituted by the corresponding parameters of Gl in ti.

Note that the identity morphism is defined as a λ-term implementing the identity

function, while composition on morphisms is defined by the function composition in the

λ-setting. Given this correspondence, it is easy to prove that the categorical properties for

the identity hold, while the associativity of composition essentially follows from the unicity

of the normal form.

Finally one need to prove that composition preserve linearity and function-linearity.

For what concerns linearity, it is a well-known result that linear λ-terms are closed by β-

reduction. From this fact one can immediately prove that second-order linear contexts are

closed by composition.

Preservation of function-linearity can be proved similarly. First we generalize the notion

of function-linearity to λ-terms stating that a function-linear λ-term is a typed lambda-term

with constants, where

• all the variables and constants have either a ground type or a first-order function type;
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• each bound function variable (e.g. F ) appears exactly once in the term, and only inside

the arguments of constants (e.g. S(F (0) + 0), or inside the arguments of λ-expressions

having a second-order function type (e.g. (λλλGλλλY.G(Y ) + Y )(λλλX.F (X + S(0)))). That

is, no function variable appears inside the argument of an expression that has first order

function type and is not a constant (e.g. G(S(F (0)) + 0) and (λλλX.X + X)(F (0))).

It is straightforward to prove that function-linear λ-terms are closed by β-reduction and

that, given two function-linear second-order contexts, the term, whose β-normal form defines

composition, is a function-linear λ-term. From this the claim follows.

The main general result on second-order term contexts is the following:

Proposition 6.3. For any signature Σ, in the category of second-order (linear) (function-

linear) term contexts over Σ, any commuting square, having as initial vertex the empty list

ǫ, has an RPO.

Proof. First we present the proof for the special case useful in this paper, namely we consider

the restricted category containing as objects the lists with at most one element. Given

two arrows with domain the empty list: t1 : ǫ → 〈n1〉 and t2 : ǫ → 〈n2〉, and two

arrows s1 : 〈n1〉 → 〈m〉, s2 : 〈n2〉 → 〈m〉 completing t1 and t2 into a commuting square

(s1◦t1 = s1◦t1 : ǫ → 〈m〉), the corresponding RPO for this commuting square is inductively

defined on the structures of s1, s2. There are several cases to consider:

(i) s1 = c1(s1,1, . . . , s1,k1) and s2 = c2(s2,1, . . . , s2,k2), with c1, c2 function symbols in

the signature Σ. Necessarily c1 = c2 (and k1 = k2). We have to consider in which

subterms of s1 and s2 the function variables, Fn1
1 and Fn2

2 , appear. If Fn1
1 and Fn2

2

appear in corresponding subterms, that is, there is an i such that all Fn1
1 appears

in s1,i and all Fn2
2 in s2,i, then we have that s1,i and s2,i, together with t1, t2, form

a commuting square, and the RPO, inductively defined, for this second commuting

square, immediately induces the RPO for s1 and s2. The subcase where Fn1
1 and Fn2

2

do not appear in corresponding subterms is treated at point (iii).

(ii) s1 = Fn1
1 (s1,1, . . . , s1,n1) and s2 = Fn2

2 (s2,1, . . . , s2,n2), and, for the general case, Fn1
1 ,

Fn2
2 not appearing in the subterms sh,i. In this case, we have that

t1[s11/X1,1, . . . , s1,n1/X1,n1 ] = t2[s21/X2,1, . . . , s2,n2/X2,n2 ] ,

that is, there is a unifier i.e., a substitution making t1 and t2 equal. Consider the most

general unifier (mgu) for t1 and t2, this is given by tuples of terms, s′1,1, . . . , s
′
1,n1

and

s′2,1, . . . , s
′
2,n2

, such that t1[s
′
11

/X1,1, . . . , s
′
1,n1

/X1,n1 ] = t2[s
′
21

/X2,1, . . . , s
′
2,n2

/X2,n2 ].

Fn1
1 (s′1,1, . . . , s

′
1,n1

) : 〈n1〉 → 〈m′〉 and Fn2
2 (s′2,1, . . . , s

′
2,n2

) : 〈n2〉 → 〈m′〉 complete t1
and t2 into a commuting square that is also an RPO, in fact any other pair of arrows

completing t1 and t2 into a commuting square and factorizing the original one needs

to be of the form Fn1
1 (s′′1,1, . . . , s

′′
1,n1

) : 〈n1〉 → 〈m′′〉 and Fn2
2 (s′′2,1, . . . , s

′′
2,n2

) : 〈n1〉 →
〈m′′〉, with the two sequences 〈s′′1,i〉 and 〈s′′2,i〉 defining a unifier for t1, t2. The unique

arrow factorizing the two commuting squares is Fm′
(s′′′1 , . . . s′′′m′), where 〈s′′′i 〉 is given
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by the mgu property.

〈m′′〉

〈n1〉
F

n1
1 (s′1,1,...,s′1,n1

)
//

F
n1
1 (s′′1,1,...,s′′1,n1

)

55

〈m′〉

F m′
(s′′′1 ,...s′′′

m′ )

OO

〈n2〉
F

n2
2 (s′2,1,...,s′2,n2

)
oo

F
n2
2 (s′′2,1,...,s′′2,n2

)

ii

ǫ
t1

iiSSSSSSSSSSSSSSSSSS
t2

55kkkkkkkkkkkkkkkkkk

(iii) In this point we consider all the remaining cases, that is, where: s1 = c1(s1,1, . . . , s1,k1),

s2 = c2(s2,1, . . . , s2,k2) and either Fn1
1 and Fn2

2 do not appear in corresponding sub-

terms, or c1 = Fn1
1 or c2 = Fn2

2 . Let us consider the term s′1 obtained from s1 by

substituting any maximal subterm so not containing Fn1
1 by a ground variable Xso .

For example, if s1 = c1(s1,1, c2(s1,2,1, F
n1
1 (s1,2,2,1, s1,2,2,2), s1,2,3)) then s′1 is the term

c1(Xs1,1 , c2(Xs1,2,1 , F
n1
1 (Xs1,2,2,1 ,Xs1,2,2,2),Xs1,2,3)), and analogously for the term s2.

Let s′′1 = s′1◦t1, and s′′1 = s′2◦t2. Now we have that: s′′1[s1,~l1
/Xs

1, ~l1
, . . . , s

1, ~lm1
/Xs

1, ~lm1

] =

s′′2[s2, ~j1
/Xs1, ~j1

, . . . , s1, ~jm2
/Xs1, ~jm2

] that is, there exists a unifier for s′′1 and s′′2, we can

consider the most general unifier, given by a pair tuples of terms s′
1,~l1

, . . . , s
1, ~lm1

and s2, ~j1
, . . . , s1, ~jm2

. By repeating the arguments used at point (ii), we have that

s′1[s
′
1,~l1

/Xs
1, ~l1

, . . . , s′
1, ~lm1

/Xs
1, ~lm1

] and s′2[s
′
2, ~j1

/Xs1, ~j1
, . . . , s′

1, ~jm2

/Xs1, ~jm2
] form an RPO.

The proof for the general case is now almost immediate. The RPO for the square

〈m1, . . . mk〉

〈n1,1, . . . n1,j1〉

〈s1,1,...,s1,k〉
88qqqqqqqqqq

〈n2,1, . . . n2,j2〉

〈s2,1,...,s2,k〉
ffMMMMMMMMMM

ǫ
〈t1,1,...,t1,j1

〉

ffNNNNNNNNNNNN
〈t2,1,...,t2,j2

〉

88pppppppppppp

can be obtained by combining the RPO’s for the k diagrams

mi

〈n1,1, . . . n1,j1〉

s1,i

;;xxxxxxxx

〈n2,1, . . . n2,j2〉

s2,i

ccFFFFFFFF

ǫ
〈t1,1,...,t1,j1

〉

ccGGGGGGGGG 〈t2,1,...,t2,j2
〉

;;wwwwwwwww

for 1 ≤ i ≤ k

into a sequence. In turn, the RPO for these diagrams can be obtained by essentially

repeating the construction presented for the unary case. Finally, it is immediate to prove

that the presented construction preserve linearity and function-linearity of arrows.
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The above proposition holds also for the case of linear second-order contexts and the

prove remains almost the same.

6.1. CL∗ as Second-order Rewriting System. In this section, we consider the second-

order context category for the combinatory calculus CL∗ and we show that the weak

IPO lazy bisimilarity thus obtained coincides with the lazy observational equivalence on

λ-calculus, while for the cbv case we get a finer equivalence. Interestingly, the second-order

open bisimilarity gives a uniform characterization also on open terms.

Note that the terms of CL are defined by the signature ΣCL = {K,S, app}, where app

is the binary operation of application that is usually omitted. So the term SKK actually

stands for app(app(S,K),K).

First we deal with the lazy case, then we will sketch also the cbv case.

6.1.1. The Lazy Second-order Reactive System.

Definition 6.4 (Lazy Second-order Reactive System on CL∗). The lazy second-order reac-

tive system C2∗
l consists of:

• the function-linear category whose objects are the lists with at most one element, and

whose arrows ǫ → 〈n〉 are the terms of CL∗ with, at most, n (first order) metavariables,

Mn ::= X1 | . . . |Xn | K | S | K′Mn | S′Mn | S′′MnMn | MnMn

and whose arrows 〈m〉 → 〈n〉 are the second-order contexts defined by:

C
m,n ::= F (Mn

1 , . . . ,Mn
m) | Mn

C
m,n | C

m,nMn

• the reactive contexts are all the second-order applicative contexts of the shape

F (Mn
1 , . . . ,Mn

m)Nn
1 . . . Nn

k ;

• the reaction rules are

KX1 → K′X1 K′X1X2 → X1

SX1 → S′X1 S′X1X2 → S′′X1X2 S′′X1X2X3 → (X1X3)(X2X3)

where KX1,SX1 : ǫ → 〈1〉, K′X1X2,S
′X1X2 : ǫ → 〈2〉 and S′′X1X2X3 : ǫ → 〈3〉.

Second-order contexts as defined above can be represented by C[F (M1, . . . ,Mm)], where C[ ]

is a unary first-order context on CL∗ (with metavariables). To maintain the notation for con-

texts used in Sections 4, 5, in the sequel a second-order context C[F (M1, . . . ,Mm)] : 〈m〉 →
〈n〉 will be more conveniently written as C[ ]θ, where θ is a substitution s.t. θ(Xi) = Mi for

all i = 1, . . . ,m, moreover we write M
C[ ]θ
→ M ′ iff C[Mθ] → M ′. Given Proposition 6.3,

and the underlined RPOs construction, we have:

Corollary 6.5. The reactive system C2∗
l has redex RPOs.
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term M IPO contexts reactive IPO contexts

X [ ]{AY/X}, [ ]{A/X}Y , A~Y C1[ ]∅ [ ]{AY/X}, [ ]{A/X}Y

XP0
~P [ ]{A~Y /X}, A~Y C1[ ]∅ [ ]{A~Y /X}

C~P , M value [ ]∅X, A~Y C1[ ]∅ [ ]∅X

C~P , M not value [ ]∅, A~Y C1[ ]∅ [ ]∅

where
A ∈ {K,S,K′Z1,S

′Z1,S
′′Z1Z2 | Z1, Z2 fresh}

C ∈ {K,S,K′,S′,S′′}
C1[ ] ranges over C[ ] ::= [ ] | C[ ]Z | ZC[ ]

Figure 5: Second-order IPO contexts for the lazy CL∗.

Example: Let M = XM1. Some of the IPO reductions of M are the following:

XM1

[ ]{K/X}
−→ K′M1; XM1

[ ]{K′Y/X}
−→ Y ; XM1

[ ]{K′/X}Y
−→ M1; XM1

[ ]{S/X}
−→ S′M1;

XM1

[ ]{S′Y/X}
−→ S′′Y M1; XM1

[ ]{S′/X}Y
−→ S′′M1Y ; XM1

[ ]{S′′Y Z/X}
−→ (Y M1)(ZM1);

XM1

[ ]{S′′Y/X}Z
−→ (Y Z)(M1Z); XM1

[ ]{S′′/X}Y Z
−→ (M1Z)(Y Z); XM1

[ ]{KY/X}
−→ K′Y M1;

XM1

[ ]{KY1Y2/X}
−→ K′Y1Y2M1.

Notice that [ ]{KY1...Yn/X} is an IPO context for any n.

In general, the IPO contexts are summarized in Figure 5.

Using Proposition 3.5, we can prove that the weak IPO bisimilarity ≃2∗
lI is a congruence,

and it has a simpler characterization in terms of applicative contexts. Namely, we can

consider as list extension category the category of all function-linear term contexts. In the

alternative notation, a second-order linear term contexts can be written as C[ θ1, . . . , θn ],

where C[ 1, . . . , n] is a first-order multi-holed context and θ1, . . . , θn are n substitutions,

each one acting on the term put in the corresponding hole. By repeating the arguments for

the first-order case, one can show that any second-order linear term context either is IPO

uniform or it has a reactive index. Then, by Proposition 3.5, we have:

Proposition 6.6.

(i) For all terms of CL∗ M,N , for any substitution θ and for any (possibly open) first-

order context C[ ],

M ≃2∗
lI N =⇒ C[Mθ] ≃2∗

lI C[Nθ] .

(ii) ≃2∗
lI = ≃2∗

lR, where ≃2∗
lR denotes the weak IPO bisimilarity, where only reactive IPO

contexts are considered (see Figure 5).

By Proposition 6.6(ii) above, the notion of IPO bisimilarity turns out to be much simpler,

but it is still infinitely branching (when the term is of the shape XP0
~P we have infinitely

many IPO contexts [ ]{A~Y /X}). However, one can prove that also the contexts [ ]{A~Y /X},

for any |~Y | ≥ 1 can be eliminated. This requires an “ad-hoc” reasoning:
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term M IPO contexts

X [ ]{A/X}Y

XP0
~P [ ]{A/X}

C~P , M value [ ]∅X

C~P , M not value [ ]∅

where
A ∈ {K,S,K′Z1,S

′Z1,S
′′Z1Z2 | Z1, Z2 fresh}

C ∈ {K,S,K′,S′,S′′}

Figure 6: Finitely branching second-order IPO contexts for the lazy CL∗.

Proposition 6.7. The lazy weak IPO bisimilarity ≃2∗
lI has a finitely branching characteri-

zation in terms of the second-order IPO contexts of Figure 6.

Proof. (sketch) Let ≃2∗
lF be the reduced bisimilarity obtained from ≃2∗

lR by not considering

the contexts [ ]
{A~Y /X}

, for any |~Y | ≥ 1. Then ≃2∗
lR ⊆ ≃2∗

lF . In order to show the converse,

one can first prove that the following is a weak IPO bisimulation: R = {(M ′, N ′) | ∃θ. (M ′ ⌢

Mθ ∧ N ′ ⌢ Nθ ∧ M ≃2∗
lF N}, where M ⌢ N means that M and N are KS-convertible.

Finally, we are left to prove that the second-order weak IPO bisimilarity exactly recover

the lazy observational equivalence. More in general, we will prove that the two equivalences

coincide on open terms. Namely, we can view open terms with n free variables as arrows

from ǫ to 〈n〉 (by identifying variables with metavariables). Thus we have directly a notion

of equivalence on open terms. We will show that this equivalence coincides with the usual

extension to open terms of the observational equivalence by substitution. This gives a

uniform finitely branching characterization of the observational equivalence on all (closed

and open) terms.

Proposition 6.8. For all M,N ∈ Λ, M≈̂lN ⇐⇒ T (M) ≃2∗
lI T (N).

Proof of Proposition 6.8. We will show that ≃2∗
lI coincides with the natural extension

to open terms of the first-order IPO bisimilarity ≃∗
lI of Section 5.2.

Definition 6.9. Let ≃̂∗
lI be the extension of ≃∗

lI to open terms of CL∗ defined by, for all

M,N CL∗-terms such that FV (M), FV (N) ⊆ {X1, . . . ,Xn},

M≃̂∗
lIN iff ∀θ : {X1, . . . ,Xn} → (CL∗)0. Mθ ≃∗

lI Nθ .

Lemma 6.10. ≃2∗
lR ⊆ ≃̂∗

lR.

Proof. We show that R = {(Mθ,Nθ) | M ≃2∗
lR N ∧ Mθ,Nθ ∈ (CL∗)0} is a first-order

bisimulation. From M ≃2∗
lR N , by Proposition 6.6, we have Mθ ≃2∗

lR Nθ. Assume Mθ
[ ]
→IM

′,

since Mθ ≃2∗
lI Nθ, then Nθ

[ ]
⇒IN

′, M ′ ≃2∗
RI N ′ and (M ′, N ′) ∈ R. Now assume Mθ

[ ]P
→IM

′,

then Mθ
[ ]X
→IM

′′ with M ′′[P/X] = M ′, since Mθ ≃2∗
lI Nθ then also Nθ

[ ]X
⇒IN

′′with M ′′ ≃2∗
lI

N ′′. Thus Nθ
[ ]P
⇒IN

′ and N ′′[P/X] = N ′ is closed. Thus (M ′, N ′) ∈ R.
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Lemma 6.11. Let M ∈ CL∗, M →l M ′. Then M≃̂∗
lIM

′.

Proof. The proof follows from the fact that ∀θ. Mθ →∗
l M ′θ and ≃∗

lI is closed under →l.

Lemma 6.12. ≃̂∗
lR ⊆ ≃2∗

lR.

Proof. We show that R = {(M,N) | M≃̂∗
lRN} is a second-order bisimulation. If M

[ ]θ ~X
→I M ′,

then there are two cases.

(i) M = C ~M , for a combinator C on CL∗. Then θ = ∅, and for any closing θ and closed ~P

such that | ~X | = |~P |, Mθ
~P

→I M ′′ and M ′′ = M ′θ[~P/X]. Since Mθ ≃∗
lR Nθ, then Nθ

~P
⇒I N ′′

and M ′′ ≃∗
lR N ′′. There are two subcases: either ~X = [ ] or ~X = X. In the first subcase, we

have M →I M ′ (second-order) and N ⇒ N (second-order), thus by Lemma 6.11 M ′≃̂∗
lRN ,

and hence (M ′, N) ∈ R. In the second subcase, i.e., ~X = X, M is a value different from a

variable, then one can check that also N must reduce to a value different from a variable,

thus N
[ ]∅X
⇒ N ′ and N ′′ = N ′θ[P/X]. Thus M ′≃̂∗

lRN ′, and hence (M ′, N ′) ∈ R.

(ii) M = X ~M . Since for any closing θ, Mθ ≃∗
lR Nθ, then also N

[ ]θ ~X
⇒I N ′. Moreover, for

any θ closing Mθ,Nθ, for any ~P such that |~P | = | ~X |, we have Mθθ
~P

→I M ′′, Nθθ
~P

→I N ′′,

M ′′ = M ′θ[~P/ ~X], N ′′ = N ′θ[~P/ ~X ]. Thus for all θ
′
. M ′θ

′
≃∗

lR Nθ
′
, hence (M ′, N ′) ∈R.

6.1.2. The Cbv Second-order Reactive System. The main difference between the cbv and the

lazy case is that the variables in the cbv case are meant to represent values, consequently

cbv substitutions have to map variables into values.

First of all, the values on CL∗ are defined by:

V ::= X | K | K′V | S | S′V | S′′V V .

Definition 6.13 (Cbv Second-order Reactive System on CL∗). The cbv second-order reac-

tive system C2∗
v consists of:

• the function-linear category whose objects are the lists with at most one element, and

whose arrows ǫ → 〈n〉 are the terms of CL∗ with, at most, n (first order) metavariables,

and whose arrows 〈m〉 → 〈n〉 are the second-order contexts defined, briefly, by:

C ::= F (V1, . . . , Vm) | MC | CM

where the values V1, . . . , Vm and the term N are built using n variables.

• the reactive contexts are defined by

D ::= F (V1, . . . , Vm) | DM | V D ;

• the reaction rules are

KX1 → K′X1 K′X1X2 → X1

SX1 → S′X1 S′X1X2 → S′′X1X2 S′′X1X2X3 → (X1X2)(X1X3) .

By Proposition 6.3, we have:

Corollary 6.14. The reactive system C2∗
v has redex RPOs.
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term M IPO contexts reactive IPO contexts

X [ ]{A/X}Y , A[ ]∅, RC1[ ]∅, [ ]{A/X}Y , A[ ]∅
M a value but not a variable [ ]∅X, A[ ]∅, RC1[ ]∅ [ ]∅X, A[ ]∅
M reducible [ ]∅, RC1[ ]∅ [ ]∅
M contains a critical variable [ ]{A/Cr(M)}, RC1[ ]∅ [ ]{A/Cr(M)}

where
A ∈ {K,S,K′X1,S

′X1,S
′′X1X2 | X1,X2 fresh}

R ranges over R ::= AZ | XR | RT
C1[ ] ranges over C[ ] ::= [ ] | C[ ]T | TC[ ]

with T ranging over T ::= X | (TT )

Figure 7: Second-order IPO contexts for cbv CL∗.

As in the lazy case, a second-order context C : 〈m〉 → 〈n〉 will be more conveniently

denoted by C[ ]θ, where C[ ] is a unary first-order context and θ is a cbv substitution, i.e.,

s.t. θ(Xi) is a value, for all i = 1, . . . ,m.

According to our definition, there are terms that are neither values nor they are re-

ducible (they do not contain any redex), the term XY is an example. A term M of this

kind can be transformed in a reducible one by substituting a single specific variable with a

value. We call critical variable a variable of this kind.

Definition 6.15. The critical variable of a second-order term M , Cr(M), if it exists, is

recursively defined by:

Cr(V ) = ∅ ,

Cr(XV ) = X ,

Cr(V M) = Cr(M) , if M is not a value,

Cr(MN) = Cr(M) , if M is not a value.

The second-order IPO contexts for cbv are summarized in Figure 7. In that figure, the

symbol R ranges over most general reducible terms. That is, any reducible term can be

obtained by instantiating the variables of a term contained in that grammar. The symbol

T is used to represent general terms; remember that variables represent general values.

As for the previous case, by Proposition 3.5 and by considering as list extension category

the category of all by-value function-linear term contexts, we have:

Proposition 6.16.

(i) For all terms of CL∗ M,N , for any substitution θ and for any (possibly open) first-

order context C[ ],

M ≃2∗
vI N =⇒ C[Mθ] ≃2∗

vI C[Nθ] .

(ii) ≃2∗
vI = ≃2∗

vR, where ≃2∗
vR denotes the weak IPO bisimilarity, where only reactive IPO

contexts are considered.

It is important to notice that the reactive IPO contexts provide directly a finitely branching

lts for the cbv combinatory logic (notice that, contrary to the lazy case, for the cbv case
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IPO contexts of the shape [ ]{A~Y /X}, for |~Y | ≥ 1, do not exist, since substitutions have to

map variables into values).

The cbv weak IPO bisimilarity turns out to be strictly included in the cbv contextual

equivalence. Namely, if we consider

T (λx.x) = SKK , and

T (λxy.xy) = S[S(KS)(S(KK)(SKK))][S(S(KS)(KK))(KK)]

then T (λx.x) ≈v T (λxy.xy), however T (λx.x) 6≃2∗
vI T (λxy.xy), because

T (λxy.xy)
[ ]∅X
⇒ S′′(K′X)(S′′KK)

[ ]∅Y
−→, while T (λx.x)

[ ]∅X
⇒ X

[ ]∅Y

6⇒ .

The problem arises from the fact that in the second-order cbv bisimilarity we observe the

existence of a critical variable, while in the contextual equivalence we do not.

7. Final Remarks and Directions for Future Work

There are several other attempts to deal with parametric rules in the literature. In his

seminal paper [Sew02], Sewell presents two different constructions, one based on ground

reaction rules and the other based on parametric rules. The RPO construction can be seen

as a categorical account of the ground rules construction. Parametric rules, in the form they

are defined in [Sew02], do not have an obvious categorical presentation. In [KSS05], the

authors introduce the notion of luxes to generalize the RPO approach to cases where the

rewriting rules are given by pairs of arrows having a domain different from 0. Luxes can be

seen as a categorical account of the parametric rules approach of Sewell. When instantiated

to the category of contexts, the luxes approach allows to express rewriting rules not formed

by pairs of ground terms but, instead formed by pairs of contexts (open terms), and so

allowing parametricity. Compared to our approach, based on the notion of second-order

context, the approach of luxes is more abstract and it can be applied to a wider range of

cases (categories). However, if we compare the two approaches in the particular case of

context categories, we find that the luxes approach has a more restricted way to instantiate

a given parametric rule. This restriction results in a not completely satisfactory treatment

of the λ-calculus. It remains the open question of substituting the notion of second-order

context with a more abstract and general one. This will allow to recover the extra generality

of luxes.

A possible alternative approach for dealing with the λ-calculus in Leifer-Milner’s RPO

setting, it that of using suitable encodings in the (bi)graph framework [Mil06]. However,

we feel that our term solution based on second-order context categories and CL is simpler

and more direct. Alternatively, in place of CL, one could also consider a λ-calculus with

explicit substitutions, in order to obtain a convenient encoding of the β-rule, allowing for a

representation as a second-order reactive system. This is an experiment to be done. Here

we have chosen CL, since it is simpler; moreover, the correspondence between the standard

λ-calculus and the one with explicit substitutions deserves further study.

We have considered lazy and cbv strategies, however also other strategies, e.g. head and

normalizing could be dealt with, possibly at the price of some complications due to the
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fact that such strategies are usually defined on open terms. It would be also interesting to

explore non-deterministic strategies on λ-calculus.
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