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Abstract. We study the learnability of symbolic finite state automata (SFA), a model
shown useful in many applications in software verification. The state-of-the-art literature on
this topic follows the query learning paradigm, and so far all obtained results are positive.
We provide a necessary condition for efficient learnability of SFAs in this paradigm, from
which we obtain the first negative result.

The main focus of our work lies in the learnability of SFAs under the paradigm of
identification in the limit using polynomial time and data, and its strengthening efficient
identifiability, which are concerned with the existence of a systematic set of characteristic
samples from which a learner can correctly infer the target language. We provide a necessary
condition for identification of SFAs in the limit using polynomial time and data, and a
sufficient condition for efficient learnability of SFAs. From these conditions we derive a
positive and a negative result.

The performance of a learning algorithm is typically bounded as a function of the size of
the representation of the target language. Since SFAs, in general, do not have a canonical
form, and there are trade-offs between the complexity of the predicates on the transitions
and the number of transitions, we start by defining size measures for SFAs. We revisit the
complexity of procedures on SFAs and analyze them according to these measures, paying
attention to the special forms of SFAs: normalized SFAs and neat SFAs, as well as to SFAs
over a monotonic effective Boolean algebra.

This is an extended version of the paper with the same title published in CSL’22 [FFZ22].

1. Introduction

Symbolic finite state automata, SFAs for short, are an automata model in which transitions
between states correspond to predicates over a domain of concrete alphabet letters. Their
purpose is to cope with situations where the domain of concrete alphabet letters is large
or infinite. As an example for automata over finite large alphabets consider automata
over the alphabet 2AP where AP is a set of atomic propositions; these are used in model
checking [CGP01, BK08]. Another example, used in string sanitizer algorithms [HLM+11],
are automata over predicates on the Unicode alphabet which consists of over a million symbols.
An infinite alphabet is used for example in event recording automata, a determinizable class
of timed automata [AFH99] in which an alphabet letter consists of both a symbol from a
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finite alphabet, and a non-negative real number. Formally, the transition predicates in an
SFA are defined with respect to an effective Boolean algebra as defined in section 2.

SFAs have proven useful in many applications [DVLM14, PGLM15, ASJ+16, HD17,
SV17, MRA+17] and consequently have been studied as a theoretical model of automata.
Many algorithms for natural questions over these automata already exist in the literature,
in particular, Boolean operations, determinization, and emptiness [VdHT10]; minimiza-
tion [DV16]; and language inclusion [KT14]. Recently the subject of learning automata in
verification has also attracted attention, as it has been shown useful in many applications,
see Vaandrager’s survey [Vaa17].

There already exists substantial literature on learning restricted forms of SFAs [GJL10,
MM14, ASKK16, MM17, CDYS17], as well as general SFAs [DD17, AD18], and even non-
deterministic residual SFAs [CHYS19]. For other types of automata over infinite alphabets,
[HSM11] suggests learning abstractions, and [She19] presents a learning algorithm for
deterministic variable automata. All these works consider the query learning paradigm,
and provide extensions to Angluin’s L∗ algorithm for learning DFAs using membership
and equivalence queries [Ang87a]. Unique to these works is the work [AD18] which studies
the learnability of SFAs taking as a parameter the learnability of the underlying algebras,
providing positive results regarding specific Boolean algebras.

One of our contributions is to demonstrate that these positive learnability results are far
from trivial. In particular, we show that there are limitations to the power of membership
and equivalence queries when it comes to learning SFAs. To do so, we provide a necessary
condition for efficient learnability of SFAs in the query learning paradigm, from which we
obtain a negative result regarding query learning of SFAs over the propositional algebra. This
is, to the best of our knowledge, the first negative result on learning SFAs with membership
and equivalence queries and thus gives useful insights into the limitations of the L∗ framework
in this context.

The main focus of our work lies on the learning paradigm of identification in the limit
using polynomial time and data. We are interested in providing sufficient or necessary
conditions for a class of SFAs to be learnable under this paradigm. To this end, we show
that the type of the algebra, in particular whether it is monotonic or not, largely influences
the learnability of the class.

Learnability of a class of languages in a certain paradigm greatly depends on the
representation chosen for the language. For instance, regular languages are efficiently
learnable (both in the paradigm of identification in the limit using polynomial time and
data, and in the query learning paradigm using membership and equivalence queries) when
represented as DFAs but not when represented as NFAs. While we are interested in SFAs as
the representations, there are various types of SFAs (with the same expressive power), and
the learnabilty results for them may vary.

The literature on SFAs has mainly focused on a special type of SFA, termed normalized,
in which there is at most one transition between every pair of states. This minimization
of the number of transitions comes at the cost of obtaining more complex predicates. We
consider, in addition to normalized SFAs, another special type of SFAs that we term neat
SFAs, which by contrast, allows several transitions between the same pair of states, but
restricts the predicates to be basic, as formally defined in subsection 2.1.

To get on the right track, we first take a global look at the complexity of the standard
operations on SFAs, and how they vary according to the special form. We revisit the results
in the literature and analyze them along the measures we find adequate for the size of an SFA:
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the number of states (n), the number of transitions (m) and the size of the most complex
predicate (l).1 The results show that most procedures are more efficient on neat SFAs.

We then turn to study identification of SFAs in the limit using polynomial time and
data. We provide a necessary condition a class of SFAs M should meet in order to be
identified in the limit using polynomial time and data, and a sufficient condition a class of
SFAs M should meet in order to be efficiently identifiable. These conditions are expressed in
terms of the existence of certain efficiently computable functions, which we call GeneralizeM,
ConcretizeM, and DecontaminateM. We then provide positive and negative results regarding
the learnability of specific classes of SFAs in this paradigm. In particular, we show that the
class of SFAs over any monotonic algebra is efficiently identifiable.

Comparison to the conference version Preliminary results of this work appear
in [FFZ22]. This paper extends the results of [FFZ22] by adding a thorough discussion
of the different SFA types and their effect on the complexity on different automata proce-
dures; as well as a new theorem regarding efficient learnability, and additional examples for
learning SFAs. In particular, sections 3, 4, and 5, are all new, as well as Theorem 7.3 and
Examples 10.6 and 10.7.

Outline The rest of the paper is organized as follows. In section 2 we provide the necessary
definitions on effective Boolean algebras and SFAs. Section 3 introduces the special forms of
SFAs. In section 4 we discuss transformations between the special forms. Section 5 then
reviews the complexity of standard automata procedures along the mentioned parameters.

We then turn to discuss the learnability of symbolic automata. Section 6 provides a short
overview and definitions regarding learnability of SFAs. In section 7 we discuss the paradigm
of learnability in the limit using polynomial time and data, and provide an overview of
learning DFAs in this paradigm. Sections 8 and 9 present a necessary condition and a
sufficient condition for the efficient learnability of SFAs, and sections 10 and 11 use these
conditions to prove a positive result on the learnability of SFAs over monotonic algebras,
and a negative result on the learnability of SFAs over the propositional algebra. Section 12
discusses query learning of SFAs and provides a negative result. We conclude in section 13
with a short discussion.

2. Preliminaries

2.1. Effective Boolean Algebra. A Boolean Algebra A can be represented as a tuple
(D,P, J·K,⊥,>,∨, ∧,¬) where D is a set of domain elements; P is a set of predicates closed
under the Boolean connectives, where ⊥,> ∈ P; the component J·K : P → 2D is the
so-called semantics function. It satisfies the following three requirements: (i) J⊥K = ∅,
(ii) J>K = D, and (iii) for all ϕ,ψ ∈ P, Jϕ ∨ ψK = JϕK ∪ JψK, Jϕ ∧ ψK = JϕK ∩ JψK,
and J¬ϕK = D \ JψK. A Boolean Algebra is effective if all the operations above, as well as
satisfiability, are decidable. Henceforth, we implicitly assume Boolean algebras to be effective.

One way to define a Boolean algebra is by defining a set P0 of atomic formulas that
includes > and ⊥ and obtaining P by closing P0 for conjunction, disjunction and negation.
For a predicate ψ ∈ P we say that ψ is atomic if ψ ∈ P0. We say that ψ is basic if ψ is a
conjunction of atomic formulas.

We now introduce two Boolean algebras that are discussed extensively in the paper.

1Previous results have concentrated mainly on the number of states.
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The Interval Algebra is the Boolean algebra in which the domain D is the set Z∪{−∞,∞}
of integers augmented with two special symbols with their standard semantics, and the set
of atomic formulas P0 consists of intervals of the form [a, b) where a, b ∈ D. The semantics
associated with intervals is the natural one: J[a, b)K = {z ∈ D | a ≤ z and z < b}. If a ≥ b
then J[a, b)K = ∅ and we have that [a, b) is semantically equivalent to ⊥.

The Propositional Algebra is defined with respect to a set AP = {p1, p2, . . . , pk} of
atomic propositions. The set of atomic predicates P0 consists of the atomic propositions and
their negations as well as > and ⊥. The domain D consists of all the possible valuations for
these propositions, thus it is Bk where B={0, 1}. The semantics of an atomic predicate p is
given by JpiK = {v ∈ Bk | v[i] = 1}, and similarly J¬piK = {v ∈ Bk | v[i] = 0}.2

2.1.1. Predicate Size. In order to reason about the complexity of operations over the Boolean
algebra (and later, the efficient learnability of SFAs using such Boolean algebras), we need
some measure of the size of predicates. We assume the algebra is associated with a function
sizeP : P→ N returning for each predicate its size. If the algebra is defined via a set of atomic
propositions, one can assume the existence of functions sizeP : P0 → N, sizeP

∧ : N× N→ N,
sizeP

∨ : N×N→ N, sizeP
¬ : N→ N according to which the size of predicates can be inductively

computed. Note that the size is a property of the predicate, not the set of concrete elements
it represents.

Example 2.1. For the interval algebra, we define the size of one interval to be 1, and the
size of a general predicate as the size of its parse tree, where leaves are single intervals
(whose size is 1). Thus for example sizeP(([0, 50) ∨ [100, 200)) ∧ [20, 60)) is 5 whereas the
size of the semantically equivalent predicate [20, 50) is 1.

Similarly, for the propositional algebra we define the size of a predicate to be the size of
its parse tree. Note that Boolean functions from Bk to B can be represented in other ways as
well, e.g., using Binary Decision Diagrams (BDDs) [Bry86]. This would result in a different
Boolean algebra (where predicates are BDDs) with a different size measure for predicates.

2.2. Symbolic Automata. A symbolic finite automaton (SFA) is a tupleM=(A, Q, qι, F,∆)
where A is a Boolean algebra, Q is a finite set of states, qι ∈ Q is the initial state, F ⊆ Q is
the set of final states, and ∆ ⊆ Q× PA ×Q is a finite set of transitions, where PA is the set
of predicates of A.

We use the term letters for elements of D where D is the domain of A, and the term
words for elements of D∗. A run of M on a word a1a2 . . . an is a sequence of transitions
〈q0, ψ1, q1〉〈q1, ψ2, q2〉 . . . 〈qn−1, ψn, qn〉 satisfying that ai ∈ JψiK, that 〈qi, ψi+1, qi+1〉 ∈ ∆ and
that q0 = qι. Such a run is said to be accepting if qn ∈ F . A word w = a1a2 . . . an is
said to be accepted by M if there exists an accepting run of M on w. The set of words
accepted by an SFA M is denoted L(M). We use L̂(M) for the set of labeled words

L̂(M) = {(w, 1) | w ∈ L(M)} ∪ {(w, 0) | w /∈ L(M)}.
An SFA is said to be deterministic if for every state q ∈ Q and every letter a ∈ D we

have that |{〈q, ψ, q′〉 ∈ ∆ | a ∈ JψK}| ≤ 1, namely from every state and every concrete letter
there exists at most one transition. It is said to be complete if |{〈q, ψ, q′〉 ∈ ∆ | a ∈ JψK}| ≥ 1
for every q ∈ Q and a ∈ D, namely from every state and every concrete letter there exists at
least one transition. It is not hard to see that, as is the case for finite automata (over concrete

2In this case a basic formula is a monomial.
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q0 q1

[0, 100) [0, 200)

[100,∞) [200,∞)

Figure 1. The SFA M over AN

alphabets), non-determinism does not add expressive power but does add succinctness. When
A is deterministic we use ∆(q, w) to denote the state A reaches on reading the word w from
state q. If ∆(qι, w) = q then w is termed an access word to state q. If w is the smallest
access word according to lexicographic order we say that w is the lex-access word to state q.

Example 2.2. Consider the SFA M given in Figure 1. It is defined over the algebra AN
which is the interval algebra restricted to the domain D = N ∪ {∞}. The language of M is
the set of all words over D of the form w1 · d ·w2 where w1 is some word over the domain D,
the letter d satisfies 0 ≤ d < 100 and all letters of the word w2 are numbers smaller than 200.
The lex-access word to state q0 is ε, and 0 is the lex-access word to state q1.

3. Types of Symbolic Automata

Since the complexity of a learning algorithm for a class of languages L using some repre-
sentation R is measured with respect to the size of the smallest representation R ∈ R for
the unknown language L ∈ L, we first need to agree how to measure the size of an SFA.
Subsection 3.1 explains why the number of states is not a sufficient measure, and proposes
an alternative using three parameters. Optimizing different parameters leads to different
special forms which are discussed in subsection 3.2.

3.1. Size of an SFA. We note that there is a trade-off between the number of transitions
and the complexity of the transition predicates. The size of an automaton (not a symbolic
one) is typically measured by its number of states. This is since for DFAs, the size of the
alphabet is assumed to be a given constant, and the rest of the parameters, in particular the
transition relation, are at most quadratic in the number of states. In the case of SFAs the
situation is different, as the size of the predicates labeling the transitions can vary greatly.
In fact, if we measure the size of a predicate by the number of nodes in its parse dag, then
the size of a formula can grow unboundedly (and the same is true for other reasonable size
measures for predicates). The size and structure of the predicates influence the complexity
of their satisfiability check, and thus the complexity of the corresponding algorithms. On
the other hand there might be a trade-off between the size of the transition predicates and
the number of transitions; e.g., a predicate of the form ψ1 ∨ψ2 . . .∨ψk can be replaced by k
transitions, each one labeled by ψi for 1 ≤ i ≤ k.

Therefore, we measure the size of an SFA by three parameters: the number of states (n),
the maximal out-degree of a state (m) and the largest size of a predicate (l).

In addition, in order to analyze the complexity of automata algorithms discussed in
subsection 5.1 and subsection 5.2, for a class P of predicates over a Boolean algebra A, we
use the complexity measure satP(l), which is the complexity of satisfiability check for a
predicate of size l in P. We also use satP0(l) for the respective complexities when restricted
to atomic predicates.
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3.2. Special Form SFAs. We turn to define special types of SFAs, which affect the
complexity of related procedures.

Neat and Normalized SFAs The literature defines an SFA as normalized if for every
two states q and q′ there exists at most one transition from q to q′. This definition prefers
fewer transitions at the cost of potentially complicated predicates. By contrast, preferring
simple transitions at the cost of increasing the number of transitions, leads to neat SFAs.
We define an SFA to be neat if all transition predicates are basic predicates.

Feasibility The second distinction concerns the fact that an SFA can have transitions with
unsatisfiable predicates. A symbolic automaton is said to be feasible if for every 〈q, ψ, q′〉 ∈ ∆
we have that JψK 6= ∅. Feasibility is an orthogonal property to being neat or normalized.

Monotonicity The third distinction we make concerning the nature of a given SFA regards
its underlying algebra. A Boolean algebra A over domain D is said to be monotonic if the
following conditions hold.

(1) There exists a total order < on the elements of D; and
(2) There exist two elements d−∞ and d∞ such that d−∞ ≤ d and d ≤ d∞ for all d ∈ D; and
(3) An atomic predicate ψ ∈ P0 can be associated with two concrete values a and b such

that JψK = {d ∈ D : a ≤ d < b}. Henceforth, we denote an atomic predicate ψ over a
monotonic algebra as ψ = [a, b) where JψK = {d ∈ D : a ≤ d < b}. If b ≤ a then we
have that JψK = ∅ and thus the predicate is equivalent to ⊥.

The interval algebra is clearly monotonic, as is the similar algebra obtained using R
(the real numbers) instead of Z (the integers). On the other hand, the propositional algebra
is clearly non-monotonic.

Example 3.1. The SFA M from Example 2.2 (Figure 1) is defined over a monotonic
algebra, and is neat, normalized, deterministic and complete.

4. Transformations to Special Forms

We now address the task of transforming SFAs into their special forms as presented in
section 3. We discuss transformations to the special forms neat, normalized and feasible
automata, measured as suggested using 〈n,m, l〉 — the number of states, the maximal
out-degree of a state, and the largest size of a predicate.

4.1. Neat Automata. Since each predicate in a neat SFA is a conjunction of atomic
predicates, neat automata are intuitive, and the number of transitions in the SFA reflects the
complexity of the different operations, as opposed to the situation with normalized SFAs. For
the class P0 of basic formulas, satP0(l) is usually more efficient than satP(l), and in particular
is polynomial for the algebras we consider here. This is since, for a basic predicate ϕ that is
a conjunction of l atomic predicates, satisfiability testing can be reduced to checking that
there are no two atomic predicates that contradict each other. Since satisfiability checking
directly affects the complexity of various algorithms discussed in subsection 5.1, neat SFAs
allow for efficient automata operations, as we show in subsection 5.2.
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4.1.1. Transforming to Neat. Given a general SFA M of size 〈n,m, l〉, we can construct
a neat SFA M′ of size 〈n,m · 2l, l〉, by transforming each transition predicate to a DNF
formula, and turning each disjunct into an individual transition. The number of states, n,
remains the same. However, the number of transitions can grow exponentially due to the
transformation to DNF. In the worst case, the size of the most complex predicate can remain
the same after the transformation, resulting in the same l parameter for both automata.

Note that there is not necessarily a unique minimal neat SFA. For instance, a predicate
ψ over the propositional algebra with AP = {p1, p2, p3}, satisfying JψK = {[100], [101], [111]}
can be represented using the two basic transitions (p1∧¬p2) and (p1∧p2∧p3); or alternatively
using the two basic transitions (p1∧p3) and (p1∧¬p2∧¬p3), though it cannot be represented
using one basic transition.3

Although in the general case, the transformation from normalized to neat SFAs is
exponential, for monotonic algebras we have the following lemma, which follows directly
from the definition of monotonic algebras and basic predicates.

Lemma 4.1. Over a monotonic algebra, the conjunction of two atomic predicates is also
an atomic predicate; inductively, any basic formula that does not contain negations, over a
monotonic algebra, is an atomic predicate. In addition, the negation of an atomic predicate
is a disjunction of at most 2 atomic predicates.

Lemma 4.2. Let M be a normalized SFA over a monotonic algebra Amon . Then, trans-
forming M into a neat SFA M′ is linear in the size of M.

Since a DNF formula with m disjunctions is a natural representation of m basic
transitions, Lemma 4.2 follows from the following property of monotonic algebras.

Lemma 4.3. Let ψ be a general formula over a monotonic algebra Amon . Then, there exists
an equivalent DNF formula ψd of size linear in |ψ|.

Proof. First, we transform ψ into a Negation Normal Form formula ψNNF , pushing negations
inside the formula. When transforming to NNF, the number of atomic predicates (possibly
under negation) remains the same, and so is the number of conjunctions and disjunctions.
Since, by Lemma 4.1, a negation of an atomic predicate over a monotonic algebra, namely a
negation of an interval, results in at most two intervals, we get that |ψNNF | ≤ 2 · |ψ|. Note
that ψNNF does not contain any negations, as they were applied to the intervals. We now
transform ψNNF into a DNF formula ψd recursively, operating on sub-formulas of ψNNF ,
distributing conjunctions over disjunctions.

We inductively prove that JψdK = JψNNF K and |ψd| ≤ |ψNNF |. For the base case, if
ψNNF is a single interval [a, b), then [a, b) is in DNF and we are done.

For the induction step, consider the following two cases.

(1) Assume ψNNF = ψ1 ∨ ψ2. By the induction hypothesis, there exists DNF formulas ψ1d

and ψ2d such that JψidK = JψiK and |ψid| ≤ |ψi| for i = 1, 2. Then, ψd = ψ1d ∨ ψ2d is
equivalent to ψNNF and at most of the same size.

(2) Assume ψNNF = ψ1 ∧ ψ2. Again, by the induction hypothesis, instead of ψ1 ∧ ψ2 we

can consider ψ1d ∧ ψ2d where ψ1d and ψ2d are in DNF. That is ψ1d =
∨k
i=1[ai, bi) and

ψ2d =
∨l
j=1[cj , dj). Then, we have the following:

3This is related to the fact that there is no unique DNF formula – a neat automaton “breaks” the DNF to
transitions according to the disjunctions in the formula. If there is no unique DNF formula, then there is no
unique neat SFA.
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ψ1d ∧ ψ2d =

(
k∨
i=1

[ai, bi)

)
∧

 l∨
j=1

[cj , dj)

 =
k∨
i=1

l∨
j=1

(
[ai, bi) ∧ [cj , dj)

)
From properties of intervals, each conjunction [ai, bi)∧ [cj , dj) is of the form [max{ai, cj},
min{bi, dj}). The intervals in {[ai, bi) : 1 ≤ i ≤ k} do not intersect (otherwise it
would have resulted in a longer single interval), and the same for {[cj , dj) : 1 ≤
j ≤ l}. Thus, every element ai or cj can define at most one interval of the form

[max{ai, cj},min{bi, dj}). That is, the DNF formula ψd =
∨k
i=1

∨l
j=1

(
[ai, bi)∧ [cj , dj)

)
contains at most k + l intervals, as the others are empty intervals. Since the size of the
original ψNNF is k + l, we have that |ψd| ≤ |ψNNF |.

To conclude, since ψNNF is linear in the size of ψ, and the size of ψd is at most the size of
ψNNF , we have that the translation of ψ into the DNF formula ψd is linear.

4.2. Normalized Automata. Neat automata stand in contrast to normalized ones. In a
normalized SFA, there is at most one transition between every pair of states, which allows
for a succinct formulation of the condition to transit from one state to another. On the other
hand, this makes the predicates on the transitions structurally more complicated. Given a
general SFA M with parameters 〈n,m, l〉, we can easily construct a normalized SFA M′ as
follows. For every pair of states q and q′, construct a single edge labeled with the predicate∨
〈q,ϕ,q′〉∈δ ϕ. Then,M′ has size 〈n,min(n2,m), sizeP

∨m(l)〉, where we use sizeP
∨m(l) to denote

the size of m disjunctions of predicates of size at most l.
Note that there is no unique minimal normalized automaton either, since in general a

Boolean formula can have two semantically equivalent, yet syntactically different expressions
in the underlying representation system, e.g., two distinct BDDs can represent the same
formula. However, in subsection 5.2 we show that over monotonic algebras there is a
canonical minimal normalized SFA.

The complexity of satP(l) for general formulas (corresponding to normalized SFAs) is
usually exponentially higher than for basic predicates (and thus for neat SFAs). In addition,
as we show above, generating a normalized automaton is an easy operation. This motivates
working with neat automata, and generating normalized automata as a last step, if desired
(e.g., for presenting a graphical depiction of the automaton).

4.3. Feasible Automata. The motivation for feasible automata is clear; if the automaton
contains unsatisfiable transitions, then its size is larger than necessary, and the redundancy
of transitions makes it less interpretable. Thus, infeasible SFAs add complexity both
algorithmically and for the user, as they are more difficult to understand. In order to
generate a feasible SFA from a given SFA M, we need to traverse the transitions of M
and test the satisfiability of each transition. The parameters 〈n,m, l〉 of the SFA remain
the same since there is no change in the set of states, and there might be no change in
transitions as well (if they are all satisfiable).

In the following, we usually assume that the automata are feasible, and when applying
algorithms, we require the output to be feasible as well.
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Operation 〈n,m, l〉
product construction M1, M2 〈n1 × n2, m1 ×m2, sizeP

∧(l1, l2)〉
complementation of deterministic M1

4 〈n1 + 1, m1 + 1, sizeP
¬(sizeP

∨m1 (l1))〉
determinization of M1 〈2n1 , 2m1 , sizeP

∧n1×m1
(l1)〉 5

minimization of M1 〈n1,m1, sizeP
∧m1 (l1)〉

Table 1. Analysis of standard automata procedures on SFAs.

Decision Procedures Time Complexity
emptiness linear in n,m

emptiness + feasibility n×m× satP(l)

membership of γ1 · · · γt ∈ D∗
∑t

i=1 satP(sizeP
∧(l, |ψγi |)) 6

inclusion M1 ⊆M2 (n1 × n2)× (m1 ×m2)× satP(sizeP
∧(l1, l2))

Table 2. Analysis of time complexity of decision procedures for SFAs.

5. Complexity of standard automata procedures on SFAs

In this section we analyze the complexity of automata procedures on SFAs, in terms of their
effect on the parameters 〈n,m, l〉. We start in subsection 5.1 with examining general SFAs,
and then in subsection 5.2 discuss the effects on special SFAs.

5.1. Complexity of Automata Procedures for General SFAs. We turn to discuss
Boolean operations, determinization and minimization, and decision procedures (such as
emptiness and equivalence) for the different types of SFAs. For intersection and union, the
product construction of SFAs was studied in [VdHT10, HV11]. There, the authors assume a
normalized SFAs as an input, and do not delve into the effect of the construction on the
number of transitions and the complexity of the resulting predicates. Determinization of
SFAs was studied in [VdHT10], and [DV14] study minimization of SFAs, assuming the given
SFA is normalized.

Table 1 shows the sizes of the SFAs resulting from the mentioned operations, in terms
of 〈n,m, l〉. The analysis applies to all types of SFAs, not just normalized ones. The
time complexity for each operation is given in terms of the parameters 〈n,m, l〉 and the
complexity of feasibility tests for the resulting SFA, as discussed in subsection 4.3. Table 2
summarizes the time complexity of decision procedures for SFAs: emptiness, inclusion,
and membership. Again, the analysis applies to all types of SFAs. We note that in many
applications of learning in verification, the challenging part is implementing the teacher (e.g.,
in [PGB+08, CKKS20, FGPS20, FGPS22]). In such cases the complexity of membership
and equivalence queries as well as standard automata operations plays a major role.

In both tables we consider two SFAsM1 andM2 with parameters 〈ni,mi, li〉 for i = 1, 2,
over algebra A with predicates P. We use sizeP

∧m(l) for an upper bound on the size of m
conjunctions of predicates of size at most l. All SFAs are assumed to be deterministic, except
of course for the input for determinization.

4For complementation, no feasibility check is needed, since we assume a feasible input.
5To determinize transitions, conjunction may be applied n1 ×m1 times, according to the number of states

that correspond to a new deterministic state.
6Where ψγi is a predicate describing γi.
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We now briefly describe the algorithms we analyze in both tables.

Product Construction [VdHT10, HV11] The product construction for SFAs is similar
to the product of DFAs — the set of states is the product of the states of M1 and M2;
and a transition is a synchronization of transitions of M1 and M2. That is, a transition
from 〈q1, q2〉 to 〈p1, p2〉 can be made while reading a concrete letter γ, iff 〈q1, ψ1, p1〉 ∈ ∆1

and 〈q2, ψ2, p2〉 ∈ ∆2 and γ satisfies both ψ1 and ψ2. Therefore, the predicates labeling
transitions in the product construction are conjunctions of predicates from the two SFAs
M1 and M2.

Complementation In order to complement a deterministic SFA M1, we first need to
make M1 complete. In order to do so, we add one state which is a non-accepting sink, and
from each state we add at most one transition which is the negation of all other transitions
from that state. If M1 is complete, then complementation simply switches accepting and
non-accepting states, resulting in the same parameters 〈n1,m1, l1〉.
Determinization [VdHT10] In order to make an SFA deterministic, the algorithm
of [VdHT10] uses the subset construction for DFAs, resulting in an exponential blowup in the
number of states. However, in the case of SFAs this is not enough, and the predicates require
special care. Let P = {q1, · · · , qt} be a state in the deterministic SFA, where q1, . . . , qt are
states of the original SFA M1, and let ψ1, . . . , ψt be some predicates labelling outgoing
transitions from q1, . . . qt, correspondingly. Then, in order to determinize transitions, the
algorithm of [VdHT10] computes the conjunction

∧t
i=1 ψi, which labels a single transition

from the state P .

Minimization [DV14] Given a deterministic SFA M1, the output of minimization is an
equivalent deterministic SFA with a minimal number of states. When constructing such an
SFA, the number of states and transitions cannot grow. However, as in determinization,
if two states of M1 are replaced with one state, then outgoing transitions might overlap,
resulting in a non-deterministic SFA. D’Antoni and Veanes [DV14] suggest several algorithms
to cope with this difficulty. One of their approaches is to compute minterms, which are the
smallest conjunctions of outgoing transitions. Minterms then do not intersect, and thus the
output is deterministic. Their other approaches avoid computing minterms, but are able to
achieve the same goal.

Emptiness If we assume a feasible SFAM as an input, then in order to check for emptiness
we need to find an accepting state which is reachable from the initial state (as in DFAs). If
we do not assume a feasible input, we need to test the satisfiability of each transition, thus
the complexity depends on the complexity measure satP(l).

Membership Similarly to emptiness, in order to check if a concrete word γ1 · · · γn is in
L(M), we need not only check if it reaches an accepting state but also locally consider the
satisfiability of each transition. In the case of membership, we need to check whether the
letter γi satisfies the predicate on the corresponding transition.

Inclusion Deciding inclusion amounts to checking emptiness and feasibility of M1 ∩M2.
We assume here that both M1 and M2 are deterministic and complete.

5.2. Complexity of Automata Procedures for Special SFAs. We now discuss the
advantages of neat SFAs and of monotonic algebras, in the context of the algorithms presented
in the tables, and show that, in general, they are more efficient to handle compared to other
SFA types.
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5.2.1. Neat SFAs. As can be observed from Table 2, almost all decision procedures regarding
SFAs depend on satP(l). For neat SFAs it is more precise to say that they depend on satP0(l),
namely on the satisfiability of atomic predicates rather than arbitrary predicates. Since
satP0(l) is usually less costly than satP(l), most decision procedures are more efficient on
neat automata. Here, we claim that applying automata algorithms on neat SFAs preserves
their neatness, thus suggesting that neat SFAs may be preferable in many applications.

Lemma 5.1. Let M1 and M2 be neat SFAs. Then the algorithms for their product
construction, complementation, determinization and minimization discussed in subsection 5.1
result in a neat SFA.

Proof. Observing the procedures for product construction [VdHT10, HV11], determiniza-
tion [VdHT10] and minimization [DV14] constructions, one can see that they use only
conjunctions in order to construct the predicates on the output SFAs. Thus, if the predicates
on the input SFAs are basic, then so are the output predicates.

5.2.2. Monotonic Algebras. We now consider the class MAmon of SFAs over a monotonic
algebra Amon with predicates P. We first discuss sizeP

∧(l1, l2) and satP(l), as they are essential
measures in automata operations. Then we show that for M1 and M2 in the class MAmon ,
the product construction is linear in the number of transitions, adding to the efficiency of
SFAs over monotonic algebras.

Lemma 5.2. Let ψ1 and ψ2 be formulas over a monotonic algebra Amon. Then sizeP
∧(|ψ1|,

|ψ2|) is linear in |ψ1|+ |ψ2| and satP(|ψ1|) is linear in |ψ1|.

Proof. Transforming to DNF is linear, as follows from Lemma 4.3. There, we show that
the conjunction of two DNF formulas of sizes k and l has size k + l, which implies that the
conjunction of general formulas has linear size. In addition, satP(l) is trivial for a single
interval, and following Lemma 4.3, is linear for general formulas. For an interval [a, b),
satisfiability checking amounts to the question “is a < b?”.

Lemma 5.3. Let M1 and M2 be deterministic SFAs over a monotonic algebra Amon. Then
the out-degree of their product SFA M is at most m = 2 · (m1 +m2).

Proof. From Lemma 4.2 and Lemma 4.3, we can construct neat SFAs M′1 and M′2 of sizes
〈ni, 2mi, li〉 for i ∈ {1, 2}, that have the same languages as M1 and M2, respectively.
Similarly to the proof of Lemma 4.3, each transition 〈〈q1, q2〉, [a, b) ∧ [c, d), 〈p1, p2〉〉 in the
product SFA results in a predicate [max{a, c},min{b, d}). Then, for q1 ∈ Q1, every minimal
element in the set of q1’s outgoing transitions can define at most one transition in M, and
the same for a state q2 ∈ Q2, and so the number of transitions from 〈q1, q2〉 is at most
m1 +m2, as required.

Lemma 5.4. Let M be a neat SFA over a monotonic algebra. Then, transforming M into
a complete SFA M′ is polynomial in the size of M.

Proof. In order to complete M, we add a non-accepting sink r in case it does not already
exist, and at most m + 1 transitions from each state q to r, when m is the out-degree of
the SFA: Let [a, b) and [c, d) be two predicates labeling outgoing transitions of q, where c is
the minimal left end-point of a predicate such that b < c. Then, in order to complete M,
we need to add a transition to the sink, labeled by the predicate [b, c). In addition, for the
predicate [a, b) where there is no c > b that defines another predicate, if b 6= d∞ we add
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[b, d∞), and similarly we add [d−∞, a). Then, for each state we add at most m + 1 new
transitions, resulting in at most |Q| × (m+ 1) new transitions.

Definition 5.5. For predicates over a monotonic algebra, we define a canonical representa-
tion of a predicate ψ as the simplified DNF formula which is the disjunction of all maximal
disjoint intervals satisfying ψ.

Note that every predicate ψ over a monotonic algebra defines a unique partition of the
domain into maximal disjoint intervals. This unique partition corresponds to a simplified
DNF formula, which is exactly the canonical representation of ψ.

Example 5.6. The canonical representation of ψ = [0, 100)∧([50, 150)∨ [20, 40)) is [20, 40)∨
[50, 100).

Lemma 5.7. Let M be an SFA over a monotonic algebra. Then:

(1) There is a unique minimal-state neat SFA M′ such that L(M) = L(M′).
(2) There is a canonical minimal-state normalized SFA M′′ such that L(M) = L(M′′).
Proof. For a language L = L(M) for some SFA M, the minimal number of states in an
SFA corresponds, similarly to DFAs, to the number of equivalence classes in the equivalence
relation N defined by (u, v) ∈ N ⇐⇒ ∀z ∈ D∗ : (uz ∈ L ⇔ vz ∈ L) [Myh57, Ner58]. Indeed
if (u, v) ∈ N then there is no reason that reading them (from the initial state) should end
up in different states, and if (u, v) /∈ N then reading them (from the initial state) must lead
to different states.

As for transitions, we have the following.

(1) Let ψ be a general predicate labeling a transition in M. Then ψ defines a unique
partition of the domain into maximal disjoint intervals, which are exactly the transitions
in a neat SFA. Then, the minimal state neat SFA is unique, where its transitions
correspond exactly to these maximal disjoint intervals.

(2) For normalized transitions, we can use Lemma 4.3 to transform a general predicate
labeling a transition to a DNF predicate in linear time. A DNF predicate over a
monotonic algebra is in-fact a disjunction of disjoint intervals, where the construction
of Lemma 4.3 obtains the maximal disjoint intervals. Then, to obtain a canonical
representation, we order these intervals by order of their minimal elements.

6. Learning SFAs

We turn to discuss the learnability of symbolic automata. In grammatical inference, loosely
speaking, we are interested in learning a class of languages L over an alphabet Σ, from
examples which are words over Σ. Examples for classes of languages can be the set of
regular languages, the set of context-free languages, etc. A learning algorithm, aka a
learner, is expected to output some concise representation of the language from a class of
representations R for the class L. For instance, in learning the class Lreg of regular languages
one might consider the class Rdfa of DFAs, or the class Rlin of right linear grammars,
since both are capable of expressing all regular languages.7 We often say that a class of
representations R is learnable (or not) when we mean that class of languages L is learnable
(or not) via the class of representations R. The complexity of learning an unknown language

7The class of regular languages was shown learnable via various representations including DFAs [Ang87a],
NFAs [BHKL09], and AFAs (alternating finite automata) [AEF15].
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L ∈ L via R is typically measured with respect to the size of the smallest representation
RL ∈ R for L. For instance, when learning Lreg via Rdfa a learner is expected to output a
DFA for an unknown language in time that is polynomial in the number of states of the
minimal DFA for L.

In our setting we are interested in learning regular languages using as a representation
a class of SFAs over a certain algebra. To measure complexity we must agree on how to
measure the size of an SFA. Thus, as discussed in subsection 3.1 we represent the size of
an SFA using the parameters 〈n,m, l〉 of the number of states of the SFA, the number of
transitions, and the size of the largest predicate. Another important factor regarding size
and canonical forms of SFAs, is the underlying algebra, specifically, whether it is monotonic
or not.

Learning Paradigms The exact definition regarding learnability of a class depends on
the learning paradigm. In this work we consider two widely studied paradigms: identification
in the limit using polynomial time and data and learning with membership and equivalence
queries. Their definitions are provided in sections 7 and 12, respectively. Note that in
general, a positive or negative result in one paradigm, does not imply the same result in
another paradigm. We discuss this further in section 13.

Basic SFAs To provide results regarding the learnability of SFAs, we study classes of
SFAs that contain all basic SFAs, defined as follows.

Definition 6.1. An SFA M over a Boolean Algebra A with a set of predicates P is
termed basic if it is of the form Mϕ = (A, {qι, qac, qrj}, qι, {qac},∆) where ϕ ∈ P and
∆ = {〈qι, ϕ, qac〉, 〈qι,¬ϕ, qrj〉, 〈qrj ,>, qrj〉, 〈qac,>, qrj〉}. Note that Mϕ accepts only words
of length one consisting of a concrete letter satisfying ϕ, and it is minimal among all complete
deterministic SFAs accepting this language (minimal in both number of states and number
of transitions).

In the sequel, our results are regarding classes of SFAs that contain all basic SFAs Mϕ

for all ϕ ∈ P.

7. Efficient Identifiability

While in the better-known setting of active learning (namely, query learning with mqs and
eqs) the learner can select any word and query about its membership in the unknown
language, in passive learning the learner is given a set of words, and for each word w in the
set, a label bw indicating whether w is in the unknown language or not. Formally, a sample
for a language L is a finite set S consisting of labeled examples, that is, pairs of the form
〈w, bw〉 where w is a word and bw ∈ {0, 1} is its label, satisfying that bw = 1 if and only if
w ∈ L. The words that are labeled 1 are termed positive words, and those that are labeled 0
are termed negative words. Note that if L is recognized by an automaton M, we have that
S ⊆ L̂(M) (as defined in subsection 2.2). If S is a sample for L we often say that S agrees
with L. Given two words w,w′, we say that w and w′ are not equivalent with respect to S,
denoted w 6∼S w′, iff there exists z such that 〈wz, b〉, 〈w′z, b′〉 ∈ S and b 6= b′. Otherwise we
say that w and w′ are equivalent with respect to S, and denote w ∼S w′.

Given a sample S for a language L over a concrete domain D, it is possible to construct
a DFA that agrees with S in polynomial time. Indeed one can create the prefix-tree
automaton, a simple automaton that accepts all and only the positively labeled words in the
sample. Clearly the constructed automaton may not be the minimal automaton that agrees
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with S. There are several algorithms that infer such a minimal automaton, in particular
the popular RPNI [OG92], that merges the states of the prefix-tree automaton and results
in an automaton that may accept an infinite language. Obviously though, this procedure
is not guaranteed to return an automaton for the unknown language, as the sample may
not provide sufficient information. For instance if L = aL1 ∪ bL2 and the sample contains
only words starting with a, there is no way for the learner to infer L2 and hence also L
correctly. One may thus ask, given a language L, what should a sample contain in order for
a passive learning algorithm to infer L correctly, and can such sample be of polynomial size
with respect to a minimal representation (e.g., a DFA) for the language.

One approach to answer these questions is captured in the paradigm of identification
in the limit using polynomial time and data. This model was proposed by Gold [Gol78],
who also showed that it admits learning of regular languages represented by DFAs. We
follow de la Higuera’s more general definition [dlH97].8 This definition requires that for
any language L in a class of languages L represented by R, there exists a sample SL of size
polynomial in the size of the smallest representation R ∈ R of L (e.g., the smallest DFA
for L), such that a valid learner can infer the unknown language L from the information
contained in SL. The set SL is then termed a characteristic sample.9 Here, a valid learner is
an algorithm that learns the target language exactly and efficiently. In particular, a valid
learner produces in polynomial time a representation that agrees with the provided sample.
The learner also has to correctly learn the unknown language L when given the characteristic
sample SL as input. Moreover, if the input sample S subsumes SL yet is still consistent
with L, the additional information in the sample should not “confuse” the learner; the latter
still has to output a correct representation for L. (Intuitively, this requirement precludes
situations in which the sample consists of some smart encoding of the representation that
the learner simply deciphers. In particular, the learner will not be confused if an adversary
“contaminates” the characteristic sample by adding labeled examples for the target language.)
We provide the formal definition after the following informal example.

Example 7.1. For the class of DFAs, let us consider the regular language L = a∗ over the
alphabet {a, b}. Further, consider a sample set S = {〈ε, 1〉, 〈a, 1〉, 〈b, 0〉, 〈bb, 0〉, 〈ba, 0〉} for L.
There is a valid learner for the class of all DFAs that uses the sample S as a characteristic
sample for L. By definition, such a learner has to output a DFA for L when fed with S, but
also has to output equivalent DFAs whenever given any superset of S as input, as long as this
superset agrees with L. Naturally, the sample S is also consistent with the regular language
L′ = {ε, a}. However, this does not pose any problem, since the same learner can use a
characteristic sample for L′ that disagrees with L, for example, S ′ = {〈ε, 1〉, 〈a, 1〉, 〈aa, 0〉}.
When defining a system of characteristic samples like that, the core requirement is that the
size of a sample be bounded from above by a function that is polynomial in the size of the
smallest DFA for the respective target language.

8This paradigm may seem related to conformance testing. The relation between conformance testing for
Mealy machines and automata learning of DFAs has been explored in [BGJ+05].

9De la Higuera’s notion of characteristic sample is a core concept in grammatical inference, for various
reasons. Firstly, it addresses shortcomings of several other attempts to formulate polynomial-time learning in
the limit [Ang87b, Pit89]. Secondly, this notion has inspired the design of popular algorithms for learning
formal languages such as, for example, the RPNI algorithm [OG92]. Thirdly, it was shown to bear strong
relations to a classical notion of machine teaching [GM96]; models of the latter kind are currently experiencing
increased attention in the machine learning community [ZSZR18].
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Definition 7.2 (identification in the limit using polynomial time and data [dlH97]). A class
of languages L is said to be identified in the limit using polynomial time and data via
representations in a class R if there exists a learning algorithm A such that the following
two requirements are met.

(1) Given a finite sample S of labeled examples, A returns a hypothesis R ∈ R that agrees
with S in polynomial time.

(2) For every language L ∈ L, there exists a sample SL, termed a characteristic sample, of
size polynomial in the minimal representation R ∈ R for L such that the algorithm A
returns a correct hypothesis when run on any sample S for L that subsumes SL.

Note that the first condition ensures polynomial time and the second polynomial data.
However, the latter is not a worst-case measure; the algorithm may fail to return a correct
hypothesis on arbitrarily large finite samples (if they do not subsume a characteristic set).

Note also that the definition does not require the existence of an efficient algorithm that
constructs a characteristic sample for each language in the underlying class. When such
an algorithm is also available we say that the class is efficiently identifiable. The following
result shows that efficient identifiability does not trivially follow from identifiability; in fact
it makes the much stronger statement that not even computability of characteristic sets
follows from their existence.

Theorem 7.3. There exists a class of languages that possesses polynomial-size characteristic
sets, yet without the ability to construct such sets effectively.

We first prove Theorem 7.3 and then provide a definition for efficient identification.

Proof. We present a class of recursive languages that is identifiable in the limit from
polynomial time and data, while there is no (polynomial-time or other) algorithm that
constructs a characteristic sample for every language in the class, using a specific underlying
representation of the languages in the class.

For the purpose of defining such a class, let ϕ be a Gödel numbering of all partial
computable functions over the natural numbers, and let Φ be a corresponding Blum com-
plexity measure. Here ϕi refers to the ith partial computable function in the numbering ϕ.
Intuitively, Φi(j) is undefined if ϕi(j) is undefined (i.e., the computation of ϕi(j) does
not terminate); otherwise Φi(j) is the number of computational steps required until the
termination of the computation of ϕi(j). The set K = {k | ϕk(k) is defined} is called the
halting set for ϕ; this set is recursively enumerable but membership in K is not decidable.

We now define two languages for each natural number k:

Lk,1 = a∗ ∪ {bk}

Lk,2 =

{
{ai | i ≤ Φk(k)} ∪ {bk} , if k ∈ K ,

a∗ ∪ {bk} , otherwise .

Note that Lk,1 = Lk,2 if and only if k /∈ K. Now let L consist of all languages Lk,q for
k ∈ N and q ∈ {1, 2}.

There is an effective algorithm that decides membership in Lk,q, given k ∈ N and
q ∈ {1, 2}. To see that, note that, given k, q, and a word w, membership is trivial to decide
when q = 1 or when w is not of the form ai. If w = ai, then w belongs to Lk,2 if and only
if the computation of ϕk(k) does not terminate within fewer than i steps, which can be
checked effectively.
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Moreover, every language in L is regular and has a characteristic sample of size at
most 2. In particular, {〈bk, 1〉} serves as a characteristic sample for Lk,1 (and thus also

for Lk,2 in case k /∈ K), while {〈bk, 1〉, 〈aΦk(k)+1, 0〉} is a characteristic sample for Lk,2 in
case k ∈ K. Thus, using the above representation, the class L has polynomial-size (even
constant-size) characteristic samples. However, there is no algorithm to construct such
characteristic samples effectively, since otherwise such an algorithm could be used to decide
membership in K. (The latter can be verified by noting that Lk,2 ⊆ Lk,1 for all k. Therefore,
a system of characteristic samples would need to distinguish Lk,2 from Lk,1 (when k ∈ K)
by either (i) a negative example of the form 〈ai, 0〉 for Lk,2, or (ii) a positive example of the
form 〈ai, 1〉 for Lk,1, where ai /∈ Lk,2. Thus, the presence or absence of such example in the
characteristic samples for Lk,1, Lk,2 can be used to decide whether or not k ∈ K.)

Since we are concerned with learning classes of automata, we now formulate the definition
of efficient identification directly over classes of automata.

Definition 7.4 (efficient identification). A class of automata M over an alphabet Σ is said
to be efficiently identified if the following two requirements are met.

(1) There exists a polynomial time learning algorithm Infer : 2(Σ∗×{0,1}) → M such that,

for any sample S, we have S ⊆ L̂(Infer(S)).

(2) There exists a polynomial time algorithm Char : M→ 2(Σ∗×{0,1}) such that, for every

M∈M and every sample S satisfying Char(M) ⊆ S ⊆ L̂(M), the automaton Infer(S)
recognizes the same language as M.

When we apply this definition for a class of SFAs over a Boolean algebra A with
domain D and predicates P, the characteristic sample is defined over the concrete set of
letters D rather than the set of predicates P as this is the alphabet of the words accepted by
an SFA. (Inferring an SFA from a set of words labeled by predicates can be done using the
methods for inferring DFAs, by considering the alphabet to be the set of predicates.)

Throughout this section we study whether a class of SFAs M is efficiently identifiable.
That is, we are interested in the existence of algorithms InferM and CharM satisfying the
requirements of Definition 7.4. In section 8 we provide a necessary condition for a class of
SFAs to be identified in the limit using polynomial time and data. In section 9 we provide a
sufficient condition for a class of SFAs to be efficiently identifiable. On the positive side, we
show in section 10 that the class of SFAs over the interval algebra is efficiently identifiable.
On the negative side, we show in section 11 that SFAs over the general propositional algebra
cannot be identified in the limit using polynomial time and data. All classes of SFAs that
we study are assumed to contain all basic SFAs (as per Definition 6.1).

7.1. Efficient Identification of DFAs. Before investigating efficient identification of SFAs,
it is worth noting that DFAs are efficiently identifiable. We state a result that provides
more details about the nature of these algorithms, since we need it later, in section 10, to
provide our positive result. Intuitively, it says that there exists a valid learner such that
if D is a minimal DFA recognizing a certain language L then the learner can infer L from a
characteristic sample consisting of access words to each state of D and their extensions with
distinguishing words (words showing each pair of states cannot be merged) as well as one
letter extensions of the access words that are required to retrieve the transition relation. For
completeness we give a proof of this theorem in Appendix A.
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Theorem 7.5 [OG92]. The class of DFAs is efficiently identifiable via procedures CharDFA
and InferDFA. Furthermore, these procedures satisfy that if D is a minimal and complete
DFA and CharDFA(D) = SD then the following hold:

(1) SD contains a prefix-closed set A of access words. Moreover, A can be chosen to contain
only lex-access words, i.e., only the lexicographically smallest access word for each state.

(2) For every u1, u2 ∈ A it holds that u1 6∼SD u2.
(3) For every u, v ∈ A and σ ∈ Σ, if ∆(qι, uσ) 6= ∆(qι, v) then uσ 6∼SD v.

We briefly describe CharDFA and InferDFA.
The algorithm CharDFA works as follows. It first creates a prefix-closed set of access

words to states. This can be done by considering the graph of the automaton and running
an algorithm for finding a spanning tree from the initial state. Choosing one of the letters
on each edge, the access word for a state is obtained by concatenating the labels on the
unique path of the obtained tree that reaches that state. If we wish to work with lex-access
words, we can use a depth-first search algorithm that spans branches according to the order
of letters in Σ, starting from the smallest. The labels on the paths of the spanning tree
constructed this way will form the set of lex-access words.

Let S be the set of access words (or lex-access words). Next the algorithm turns to find
a distinguishing word vi,j for every pair of states si, sj ∈ S (where si 6= sj). It holds that
any pair of states of the minimal DFA has a distinguishing word of size quadratic in the size
of the DFA. Let E be the set of all such distinguishing words. Then the algorithm returns
the set SD = {〈w,D(w)〉 | w ∈ (S · E) ∪ (S · Σ · E)} where D(w) is the label D gives w
(i.e., 1 if it is accepted, and 0 otherwise). It is easy to see that SD satisfies the properties
of Theorem 7.5.

The algorithm InferDFA, given a sample of words S, infers from it in polynomial time
a DFA that agrees with S. Moreover, if S subsumes the characteristic set SD of a DFA D
then InferDFA returns a DFA that recognizes D. Let W be the set of words in the given
sample S (without their labels). Let R be the set of prefixes of W and C the set of suffixes
of W . Note that ε ∈ R and ε ∈ C. Let r0, r1, . . . be some enumeration of R and c0, c1, . . .
some enumeration of C where r0 = c0 = ε. The algorithm builds a matrix M of size |R|× |C|
whose entries take values in {0, 1, ?}, and sets the value of entry (i, j) as follows. If ricj
is not in W , it is set to ?. Otherwise it is set to 1 iff the word ricj is labeled 1 in S. We
get that ri ∼S rj iff for every k such that both M(i, k) and M(j, k) are different than ? we
have that M(i, k) = M(j, k). The algorithm sets R0 = {ε}. Once Ri is constructed, the
algorithm tries to establish whether for r ∈ Ri and σ ∈ Σ, rσ is distinguished from all words
in Ri. It does so by considering all other words r′ ∈ Ri and checking whether r ∼S r′. If rσ
is found to be distinct from all words in Ri, then Ri+1 is set to Ri ∪ {rσ}. The algorithm
proceeds until no new words are distinguished.10

Let k be the minimal iteration such that Rk = Rk′ for all k′ > k. If not all words
in Rk are in W (that is M(i, 0) =? for some ri ∈ Rk), the algorithm returns the prefix-tree
automaton. Otherwise, the states of the constructed DFA are set to be the words in Rk. The
initial state is ε and a state ri is classified as accepting iff M(i, 0) = 1 (recall that the entry
M(i, 0) stands for the value of ri · ε in S). To determine the transitions, for every r ∈ Rk
and σ ∈ Σ, recall that there exists at least one state r′ ∈ R that cannot be distinguished
from rσ. The algorithm then adds a transition from r on σ to r′.

10There is some resemblance between the partial matrix and the apartness relation of [VGRW22], used in
query learning of DFAs.
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8. Necessary Condition

We make use of the following definitions. A sequence 〈Γ1, . . . ,Γm〉 consisting of finite sets
of concrete letters Γi ⊆ D is termed a concrete partition of D if the sets are pairwise
disjoint (namely Γi ∩ Γj = ∅ for every i 6= j). Note that we do not require that in addition⋃

1≤i≤k Γi = D. We use Πconc(D) to define the set of all concrete partitions over D. A sequence

of predicates 〈ψ1, . . . , ψk〉 over a Boolean algebra A on a domain D is termed a predicate
partition if JψiK ∩ JψjK = ∅ for every i 6= j, and in addition

⋃
1≤i≤kJψiK = D. That is, here

we do require the assignments to the predicates cover the domain. We use Πpred(P) to define
the set of all predicate partitions over P. For both concrete partition and predicate partition,
we do not require that the sets Γi or JψiK are non-empty.

Definition 8.1.

• A function fc : Πpred(P) → Πconc(D) is termed concretizing if fc(〈ψ1, . . . , ψm〉) =
〈Γ1, . . . ,Γk〉 implies k = m and Γi ⊆ JψiK for all 1 ≤ i ≤ m.
• A function fg : Πconc(D) → Πpred(P) is termed generalizing if fg(〈Γ1, . . . ,Γm〉) =
〈ψ1, . . . , ψk〉 implies k = m and JψiK ⊇ Γi for all 1 ≤ i ≤ m.

Note that fg and fc are defined over partitions of any size. In Theorem 8.2 we use their
dyadic restriction, that is, a concretizing and a generalizing functions that are defined only
over partitions of size two.

We say that fg (resp. fc) is efficient if it can be computed in polynomial time. Note that
if fc is efficient then the sets Γi in the constructed concrete partition are of polynomial size.

We are now ready to provide a necessary condition for identifiability in the limit using
polynomial time and data.

Theorem 8.2. Let MA be a class of SFAs over a Boolean algebra A, that contain all basic
SFAs over A. If MA is identified in the limit using polynomial time and data, then there exist
efficient dyadic concretizing and generalizing functions ConcretizeA : Πpred(P) → Πconc(D)
and GeneralizeA : Πconc(D)→ Πpred(P) satisfying that

if ConcretizeA(〈ψ1, ψ2〉) = 〈Γ1,Γ2〉
and GeneralizeA(〈Γ′1,Γ′2〉) = 〈ϕ1, ϕ2〉
where Γi ⊆ Γ′i for every 1 ≤ i ≤ 2

then JϕiK = JψiK for every 1 ≤ i ≤ 2.

Proof. Assume that MA is identified in the limit using polynomial time and data. That
is, there exist two algorithms CharSFA : MA → 2D

∗×{0,1} and InferSFA : 2D
∗×{0,1} → MA

satisfying the requirements of Definition 7.2. We show that efficient dyadic concretizing and
generalizing functions do exist.

We start with the definition of ConcretizeA . Let 〈ϕ1, ϕ2〉 be the argument of ConcretizeA .
Note that ϕ2 = ¬ϕ1 by the definition of a predicate partition. The implementation of
ConcretizeA invokes CharSFA on the SFA Mϕ1 accepting all words of length one consisting
of a concrete letter satisfying ϕ1, as defined in Definition 6.1. Let S be the returned sample.
Let Γ1 be the set of positively labeled words in the sample. Note that all such words are
of size one, namely they are letters. Let Γ2 be the set of letters that are first letters in a
negative word in the sample. Then ConcretizeA returns 〈Γ1,Γ2〉.

We turn to the definition of GeneralizeA . Given 〈Γ1,Γ2〉 the implementation of GeneralizeA
invokes InferSFA on sample S = {(γ, 1) | γ ∈ Γ1}∪{(γ, 0) | γ ∈ Γ2}∪{(γγ′, 0) | γ, γ′ ∈ Γ1∪Γ2}.
That is, all one-letter words in Γ1 are positively labeled, all one-letter words in Γ2 are
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negatively labeled, and all words of length 2 using some of the given concrete letters are
negatively labeled. LetM be the returned SFA when given S ′, such that S ′ ⊇ S, as an input.
Let Ψ1 be the set of all predicates labeling some edge from the initial state to an accepting
state, and let Ψ2 be the set of all predicates labeling some edge from the initial state to a
rejecting state. Let ϕ = (

∨
ψ∈Ψ1

ψ) ∧ (
∧
ψ∈Ψ2

¬ψ). Then GeneralizeA returns 〈ϕ,¬ϕ〉.
It is not hard to verify that the constructed methods ConcretizeA and GeneralizeA satisfy

the requirements of the theorem.

The following example shows the existence of functions Concretize and Generalize for
the interval algebra.

Example 8.3. Consider the class MAN of SFAs over the algebra AN of Example 2.2 and
consider the functions ConcretizeAN(〈 [d1, d

′
1), [d2, d

′
2), . . . , [dm, d

′
m)〉) = 〈{d1}, . . . , {dm}〉 and

GeneralizeAN(〈Γ1, . . . ,Γm〉) = 〈 [min Γ1,min Γ̂1), [min Γ2,min Γ̂2), . . . , [min Γm,∞)〉 where

Γ̂i =
⋃
j 6=i Γj for every 1 ≤ i < m. Then, ConcretizeAN and GeneralizeAN satisfy the variadic

generalization of the conditions of Theorem 8.2.

We would like to relate the necessary condition on the learnability of a class of SFAs
over a Boolean algebra A to the learnability of the Boolean algebra A itself. For this
we need to first define efficient identifiability of a Boolean algebra A. Since to learn an
unknown predicate we need to supply two sets, one of negative examples and one of positive
examples, it makes sense to say that a Boolean algebra A with predicates P over domain D
is efficiently identifiable if there exist efficient dyadic concretizing and generalizing functions,
ConcretizeA : Πpred(P) → Πconc(D) and GeneralizeA : Πconc(D) → Πpred(P) satisfying the
criteria of Theorem 8.2. Using this terminology we can state the following corollary.

Corollary 8.4. Efficient identifiability of the Boolean algebra A is a necessary condition
for identification in the limit using polynomial time and data of any class of SFAs over A,
that contains all basic SFAs over A.

9. Sufficient Condition

We turn to discuss a sufficient condition for the efficient identifaibility of a class of SFAs MA
over a Boolean algebra A. To prove that MA is efficiently identifiable, we need to supply
two algorithms CharSFAMA and InferSFAMA as required in Definition 7.4. The idea is
to reduce the problem to efficient identifiablity of DFAs, namely to use the algorithms
CharDFA and InferDFA provided in Theorem 7.5. The implementation of CharSFA,
given an SFAM, will transform it into a DFA DM by applying ConcretizeA on the partitions
induced by the states of the SFA. The resulting DFA DM will not be equivalent to the given
SFA M, but it may be used to create a sample of words SM that is a characteristic set
for M, see Figure 2.

To implement InferSFA we would like to use InferDFA to obtain, as a first step, a DFA
from the given sample, then at the second step, apply GeneralizeA on the concrete-partitions
induced by the DFA states. A subtle issue that we need to cope with is that inference
should succeed also on samples subsuming the characteristic sample. The fact that this
holds for inference of the DFA does not suffice, since we are guaranteed that the inference
of the DFA will not be confused if the sample contains more labeled words, as long as the
new words are over the same alphabet. In our case the alphabet of the sample can be a
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XX:

Algorithm 3 DecontaminateMAm
– finding the necessary letters for a characteristic sample

Input: set S over alphabet Σ
Output: set S ′ over alphabet Σ′

1 function DecontaminateMAm
(S)

2 Aw := {ϵ}, Σ′ := {d−∞}, σmax := d−∞
3 repeat
4 for all u ∈ Aw, by lexicographic order do
5 for all σ ∈ Σ, by lexicographic order do
6 if σ > σmax and uσ ̸∼S uσmax then
7 if ∀σ′. σmax < σ′ < σ : uσ′ ∼S uσmax then
8 Σ′ := Σ′ ∪ {σ}
9 if ∀u′ ∈ Aw. uσ ̸∼S u′ then Aw := Aw ∪ {uσ}

10 σmax := σ

11 σmax := d−∞
12 until Σ′ is remained unchanged
13 return S ′ := S ∩ Σ′∗

SFA
M

DFA
DM

Sample
SM

CharSFA

Sample
S

Sample
S ′

DFA
DS

SFA
MS

InferSFA

Concretize CharDFA

DecontaminateGeneralize InferDFA

Figure 1 A schematic description of algorithms CharSFA and InferSFAFigure 2. A schematic description of algorithms CharSFA and InferSFA

XX:

Algorithm 1 ConcretizeMA (M)

Input: An SFA M, function ConcretizeA

Output: A DFA DM
1 function ConcretizeMA (M = ⟨A, Q, qι, F,∆⟩)
2 ΓM :=

⋃
q∈Q ConcretizeA(πq)

3 ∆D := ∅
4 for all q, q′ ∈ Q,ψ ∈ πq, d ∈ ΓM do
5 if ⟨q, ψ, q′⟩ ∈ ∆ and d ∈ JψK then
6 ∆D := ∆D ∪ ⟨q, d, q′⟩
7 return DM := ⟨ΓM, Q, qι, F,∆D⟩

Algorithm 2 GeneralizeMA (M)

Input: A DFA D, function GeneralizeA

Output: An SFA M
1 function GeneralizeMA (D = ⟨Σ, Q, qι, F,∆D⟩)
2 ∆M := ∅
3 for all q ∈ Q do
4 for all qi ∈ Q do Γi := {γ | ⟨q, γ, qi⟩ ∈ ∆D}
5 ⟨ψ1, . . . , ψn⟩ := GeneralizeA(⟨Γ1, . . . ,Γn⟩)
6 for all qi ∈ Q do ∆M := ∆M ∪ ⟨q, ψi, qi⟩
7 return M := ⟨A, Q, qι, F,∆M⟩

Algorithm 1. ConcretizeMA (M)

XX:

Algorithm 1 ConcretizeMA (M)

Input: An SFA M, function ConcretizeA

Output: A DFA DM
1 function ConcretizeMA (M = ⟨A, Q, qι, F,∆⟩)
2 ΓM :=

⋃
q∈Q ConcretizeA(πq)

3 ∆D := ∅
4 for all q, q′ ∈ Q,ψ ∈ πq, d ∈ ΓM do
5 if ⟨q, ψ, q′⟩ ∈ ∆ and d ∈ JψK then
6 ∆D := ∆D ∪ ⟨q, d, q′⟩
7 return DM := ⟨ΓM, Q, qι, F,∆D⟩

Algorithm 2 GeneralizeMA (M)

Input: A DFA D, function GeneralizeA

Output: An SFA M
1 function GeneralizeMA (D = ⟨Σ, Q, qι, F,∆D⟩)
2 ∆M := ∅
3 for all q ∈ Q do
4 for all qi ∈ Q do Γi := {γ | ⟨q, γ, qi⟩ ∈ ∆D}
5 ⟨ψ1, . . . , ψn⟩ := GeneralizeA(⟨Γ1, . . . ,Γn⟩)
6 for all qi ∈ Q do ∆M := ∆M ∪ ⟨q, ψi, qi⟩
7 return M := ⟨A, Q, qι, F,∆M⟩

Algorithm 2. GeneralizeMA (M)

strict subset of the concrete letters D (and if D is infinite, this surely will be the case).
Example 10.7 in section 10 illustrates this problem for the class of SFAs over a monotonic
algebra Am , for which the respective methods ConcretizeAm and GeneralizeAm exist. So, we
need an additional step to remove words from the given sample if they are not over the
alphabet of the characteristic sample. We call a method implementing this DecontaminateMA .

Formally, we first define the extension of ConcretizeA and GeneralizeA to automata instead
of partitions, which we term ConcretizeMA and GeneralizeMA (with M in the subscript).

• The formal definition of ConcretizeMA is given in Algorithm 1. LetM = (A, Q, qι, F,∆) be
an SFA. Then ConcretizeMA (M) is the DFA DM = (Σ, Q, qι, F,∆D) where ∆D is defined as
follows. For each state q ∈ Q let πq = 〈ψ1, . . . , ψm〉 be the predicate partition consisting of
all predicates labeling a transition exiting q inM. Intuitively, in D, the outgoing transitions
of each state q correspond to ConcretizeA(πq). That is, let ConcretizeA(πq) = 〈Γ1, . . . ,Γm〉.
Then, if 〈q, ψi, q′〉 ∈ ∆, then 〈q, γ, q′〉 ∈ ∆D for every γ ∈ Γi.
• The formal definition of GeneralizeMA is given in Algorithm 2. Let D = (Σ, Q, qι, F,∆D)

be a DFA. We define GeneralizeMA (D) with respect to an algebra A as follows. Let M =
(A, Q, qι, F,∆M) where ∆M is defined as follows. For each state q ∈ Q let 〈Γ1, . . . ,Γm〉 be
the concrete partition consisting of letters labeling outgoing transitions from q. Note that
〈Γ1, . . . ,Γm〉 is a concrete partition, since D is a DFA. Let GeneralizeA(〈Γ1, . . . ,Γm〉) =
〈ψ1, . . . , ψm〉. Then, 〈q, ψi, q′〉 ∈ ∆M if Γi is the set of letters labeling transitions from q
to q′ in D.

We are now ready to define the conditions the decontaminating function has to satisfy.
We recall that the role of the decontaminating function is to identify words in the sample
that are not over the alphabet ΓD of the characteristic sample (note that ΓD is not known
to the decontaminating function).

Definition 9.1. A function fd : 2(D∗×{0,1}) → 2(D∗×{0,1}) is called decontaminating for a
class of SFAs M and a respective ConcretizeM function if the following holds. LetM∈M be
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an SFA, and let D = ConcretizeM(M). Let SD = CharDFA(D). Then, for every S ′ ⊇ SD
such that S ′ agrees with M, it holds that SD ⊆ fd(S ′) ⊆ (S ′ ∩ ΓD), where ΓD is the
alphabet of SD.

As before we say that fd is efficient if it can be computed in polynomial time.

Example 9.2. Intuitively, InferDFA is only promised to be correct if it is applied on a
sample set S ′ over the alphabet of the original DFA. For DFAs, this is always the case.
However for SFAs, the concrete alphabet D usually contains more letters than appear in the
characteristic set S. If ΓD is the set of letters in S then S ′ might contain letters in D \ ΓD,
i.e., letters that are not from the alphabet of the characteristic set. Consider, for example,
the characteristic set S over the interval algebra:

S = {〈ε, 0〉, 〈0, 1〉, 〈100, 0〉, 〈200, 0〉, 〈0 · 0, 1〉, 〈0 · 100, 1〉, 〈0 · 200, 0〉}
and consider the set S ′ ⊇ S that contains, in addition to the words in S, also the word
150 · 100. Since the letter 150 is not part of any word in the original set S, we cannot apply
InferDFA as it is, but we first need to remove it from S ′. Note that words that are not in S
but are over the alphabet {0, 100, 200} do not pose a problem, as InferDFA can handle
supersets over the same alphabet as the set S. See Examples 10.6 and 10.7 in section 10 for
more details.

We now provide the sufficient condition for efficient identifiability.

Theorem 9.3. Let MA be a class of SFAs over a Boolean algebra A. If there exist an
efficient decontaminating function DecontaminateMA and efficient functions ConcretizeA and
GeneralizeA satisfying that

if ConcretizeA(〈ψ1, . . . , ψm〉) = 〈Γ1, . . . ,Γm〉
and GeneralizeA(〈Γ′1, . . . ,Γ′m〉) = 〈ϕ1, . . . , ϕm〉

where Γi ⊆ Γ′i for every 1 ≤ i ≤ m
then JϕiK = JψiK for every 1 ≤ i ≤ m

then the class MA is efficiently identifiable.

Given functions ConcretizeA , GeneralizeA and DecontaminateMA for a class MA of SFAs
over a Boolean algebra A, meeting the criteria of Theorem 9.3, we show that MA can
be efficiently identified by providing two algorithms CharSFA and InferSFA, described
below. These algorithms make use of the respective algorithms CharDFA and InferDFA
guaranteed in Theorem 7.5, as well as the methods provided by the theorem.

We briefly describe these two algorithms, and then turn to prove Theorem 9.3. The
algorithm CharSFA receives an SFA M∈M, and returns a characteristic sample for it. It
does so by applying ConcretizeMA (M) (Algorithm 1) to construct a DFA DM and generating
the sample SM using the algorithm CharDFA applied on the DFA DM.

Algorithm InferSFA, given a sample set S, if S subsumes a characteristic set of an
SFA M, returns an equivalent SFA. Otherwise InferSFA returns an SFA that agrees with
the sample S. First, it applies DecontaminateMA to find a subset S ′ ⊆ S over the alphabet
of the subsumed characteristic sample, if such a subsumed sample exists. Then it uses S ′ to
construct a DFA by applying the inference algorithm InferDFA on S ′. From this DFA it
constructs an SFA,MS , by applying GeneralizeMA (Algorithm 2). If the resulting automaton
disagrees with the given sample it resorts to returning the prefix-tree automaton. In order
to construct the symbolic prefix-tree automaton we first construct the prefix-tree DFA A for
the set S, and then apply GeneralizeMA (A) to get an SFA that agrees with S.
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In brief, we define:

• CharSFA(M) = CharDFA(ConcretizeMA (M))

• InferSFA(S)=

{
MS := GeneralizeMA (InferDFA(DecontaminateMA (S))) if S⊆ L̂(MS)

The symbolic prefix-tree automaton of S otherwise

In section 10 we provide methods ConcretizeA , GeneralizeA and DecontaminateMA for
SFAs over monotonic algebras, deriving their identification in the limit result. We now
prove Theorem 9.3.

Proof of Theorem 9.3. Given functions ConcretizeA , GeneralizeA , and DecontaminateMA , we
show that the algorithms CharSFA and InferSFA satisfy the requirements of Definition 7.4.

For the first condition, given that CharDFA, DecontaminateMA and GeneralizeA run
in polynomial time, and that the prefix-tree automaton can be constructed in polynomial
time, it is clear that so does InferSFA. In addition, the test performed in the definition of
InferSFA ensures the output agrees with the sample.

For the second condition, note that the sample generated by CharSFA is polynomial in
the size of DM, from the correctness of CharDFA. In addition, since ConcretizeA is efficient,
DM is polynomial in the size of M, and thus SM generated by CharSFA is polynomial
inM as well. It is left to show that given SM is the concrete sample produced by CharSFA
when running on an SFA M, then when InferSFA runs on any sample S ⊇ SM it returns
an SFA for L(M). Since DecontaminateMA is a decontaminating function, and S ⊇ SM,
it holds that the set S ′ = DecontaminateMA (S) is such that S ′ ⊇ SM and is only over the
alphabet ΓM, which is the alphabet of the DFA DM generated in Algorithm 1.

From the correctness of InferDFA, given S ′ ⊇ SM, applying InferDFA on the out-
put S ′ of DecontaminateMA results in a DFA D that is equivalent to DM constructed in
Algorithm 1. Since DM is complete with respect to its alphabet ΓM, for state q of D, the
concrete partition 〈Γ1, . . . ,Γn〉 generated in Algorithm 2, line 4, covers ΓM and subsumes the
output of ConcretizeMA on πq (Algorithm 1, line 2). Thus, since GeneralizeA and ConcretizeA
satisfy the criteria of Theorem 9.3, it holds that the constructed predicates agree with the
original predicates. In addition, since S, and therefore S ′, agrees withM, the test performed
in the definition of InferSFA succeeds and the returned SFA is equivalent to M.

10. Positive Result

We present the following positive result regarding monotonic algebras.

Theorem 10.1. Let MAm be the set of SFAs over a monotonic Boolean algebra Am . Then
MAm is efficiently identifiable.

In order to prove Theorem 10.1, we show that the sufficient condition holds for the case
of monotonic algebras. Example 10.6 demonstrates how to apply CharSFA and InferSFA
in order to learn an SFA over the algebra AN.

Proposition 10.2. There exist functions ConcretizeAm and GeneralizeAm for a monotonic
Boolean algebra Am , satisfying the criteria of Theorem 9.3.

Proof. Let D be the domain of Am . We provide the functions ConcretizeAm and GeneralizeAm

and prove that the criteria of Theorem 9.3 hold for them. For ease of presentation, for
the function ConcretizeAm we consider basic predicates. Note that for monotonic algebras,
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(a)

(b)

Figure 3. Visualisation of Example 10.3

basic predicates are in fact intervals, as a conjunction of intervals is an interval. We can
assume all predicates are basic since, as we show in Lemma 4.3, for monotonic algebras the
transformation from a general formula to a DNF formula of basic predicates is linear. Then,
each basic predicate in the formula corresponds to a different predicate in the predicate
partition. The definitions of ConcretizeAm and GeneralizeAm are generalizations of the functions
ConcretizeAN and GeneralizeAN given in Example 8.3. We define ConcretizeAm (〈ψ1, . . . ψm〉) =
〈Γ1, . . . ,Γm〉 where we set Γi = { min{d ∈ D | d ∈ JψiK} } for 1 ≤ i ≤ m. Since Am is
monotonic, Γi is well-defined and contains a single element, thus ConcretizeAm is an efficient
concretizing function.

We define GeneralizeAm (〈Γ1, . . . ,Γm〉) = 〈ψ1, . . . , ψm〉, where ψi is defined as follows. Let
Γ =

⋃
1≤i≤m Γi. First, for all 1 ≤ i ≤ m we set ψi = ⊥. Then, we iteratively look for the

minimal element γ ∈ Γ. Let i be such that γ ∈ Γi, and let γ′ be the minimal element in Γ
satisfying γ′ /∈ Γi. We then set ψi = ψi ∨ [γ, γ′), and remove all elements γ ≤ γ′′ < γ′ from Γ.
We repeat the process until for the found γ ∈ Γj , there is no γ′ > γ such that γ′ /∈ Γj . In
that case, we define ψj = ψj ∨ [γ, d∞). Then, Γi ⊆ JψiK and the predicates are disjoint, thus
GeneralizeAm is an efficient generalizing function. See Example 10.3 and Figure 3.

Now, let 〈Γ1, . . . ,Γm〉 be the concrete partition obtained from ConcretizeAm when ap-
plied on the predicate partition 〈ψ1, . . . , ψm〉. Assume further that the predicate partition
〈Γ′1, . . . ,Γ′m〉 satisfies Γi ⊆ Γ′i ⊆ JψiK for 1 ≤ i ≤ m. In particular, min(Γ′i) = min(Γi),
since Γi contains the minimal elements in JψiK, and Γi ⊆ Γ′i ⊆ JψiK. Thus applying
GeneralizeAm will result in the same interval, satisfying the criterion of Theorem 9.3.

Example 10.3. Let Γ1 = {0, 100, 400, 500} and Γ2 = {150, 200} over the algebra AN with
domain N∪ {∞}, see Figure 3a. Then, GeneralizeAN sets Γ = {0, 100, 150, 200, 400, 500}, and
finds the minimal element in Γ, which is 0. Since 0 ∈ Γ1, it then looks for the minimal element
γ ∈ Γ such that γ /∈ Γ1, and finds 150 ∈ Γ2. Therefore ψ1 = [0, 150) and we remove from Γ
all elements in [0, 150), that is, we remove 0 and 100, and we have Γ = {150, 200, 400, 500}.
Next, it finds the minimal element in the updated Γ, which is 150 and is in Γ2. The minimal
element in Γ \ Γ2 is 400. Then, ψ2 is set to be ψ2 = [150, 400) and Γ = {400, 500}. Now,
ψ1 = [0, 150) ∨ [400,∞) since 400 ∈ Γ1 and there is no greater element that is not in Γ1

(Figure 3b).

To show that any class of SFAs MAm over a monotonic algebra Am is efficiently identifi-
able, we define in Algorithm 3 an algorithm that implements a decontaminating function
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XX:

Algorithm 3 DecontaminateMAm
– finding the necessary letters for a characteristic sample

Input: set S over alphabet Σ
Output: set S ′ over alphabet Σ′

1 function DecontaminateMAm
(S)

2 Aw := {ϵ}, Σ′ := {d−∞}, σmax := d−∞
3 repeat
4 for all u ∈ Aw, by lexicographic order do
5 for all σ ∈ Σ, by lexicographic order do
6 if σ > σmax and uσ ̸∼S uσmax then
7 if ∀σ′. σmax < σ′ < σ : uσ′ ∼S uσmax then
8 Σ′ := Σ′ ∪ {σ}
9 if ∀u′ ∈ Aw. uσ ̸∼S u′ then Aw := Aw ∪ {uσ}

10 σmax := σ

11 σmax := d−∞
12 until Σ′ is remained unchanged
13 return S ′ := S ∩ Σ′∗

SFA
M

DFA
DM

Sample
SM

CharSFA

Sample
S

Sample
S ′

DFA
DS

SFA
MS

InferSFA

Concretize CharDFA

DecontaminateGeneralize InferDFA

Figure 1 A schematic description of algorithms CharSFA and InferSFA

Algorithm 3. DecontaminateMAm
– finding the necessary letters for a characteristic sample

DecontaminateMAm
, that fulfills the requirements of Theorem 9.3. Loosely speaking, the

idea of the algorithm is to simultaneously collect elements into two sets Aw and Σ′ such
that Aw will consist of the minimal representative according to the lexicographic order of
each equivalence class in ∼S and Σ′ will consist of minimal letters aiding to distinguish
these words. When this process terminates the algorithm returns the subset of words in the
sample that consist of only letters in Σ′.

Lemma 10.4. Assume the input to DecontaminateMAm
is S, where S ⊇ SM for some

M ∈ MAm such that SM = CharDFA(ConcretizeMAm
(M)), and DM = ConcretizeMAm

(M)
is over the alphabet ΓM. Then for Σ′ constructed by DecontaminateMAm

(Algorithm 3) it
holds that Σ′=ΓM.

Proof. Let M = (A, Q, qι, F,∆M), DM = ConcretizeMAm
(M) and SM = CharDFA(DM).

Assume DM = (ΓM, Q, qι, F,∆D). We inductively show that for DecontaminateMAm
given

in Algorithm 3, if its input S satisfies S ⊇ SM then the set Aw is exactly the set of all
lex-access words (lexicographically smallest access words) of states in DM and that Σ′ = ΓM
(where ΓM is the alphabet of DM).

First, we show that every u ∈ Aw is a lex-access word and that Σ′ ⊆ ΓM.
For the base case, we consider Aw = {ε} and Σ′ = {d−∞}. From item 1 of Theorem 7.5,

we can assume access words are minimal according to the lexicographic order. Thus, ε ∈ Aw
is indeed a lex-access word (of the state qι). For d−∞ ∈ Σ′, it holds that ΓM contains the
minimal element of D since it contains all concretizations of intervals, the SFA is complete
and ConcretizeAm returns the minimal element of each interval. Therefore d−∞ ∈ ΓM.

For the induction step, assume that Aw contains only lex-access words and that the
current Σ′ is a subset of ΓM. Then, when considering u ∈ Aw in line 4, it holds that u is a
lex-access word of some state q. Then, σ is added to Σ′ only if uσ 6∼S ud−∞. Since S agrees
with M, it holds that ∆M(qι, uσ) 6= ∆M(qι, ud−∞) and σ is a minimal element with that
property. Then, σ must be a minimal element of an interval labeling an outgoing transition
from q, therefore is in ΓM. Inductively this holds for all elements added to Σ′ in the current
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iteration. This proves that Σ′ ⊆ ΓM. Assume now that Aw contains only lex-access words
and let uσ be a word added to Aw in line 9. Thus, for all u′ ∈ Aw it holds that uσ 6∼S u′.

Claim. In this setting, uσ 6∼S u′ implies uσ 6∼SM u′.
Proof. Since we assume all words already in Aw are lex-access words, then in particular
u is a lex-access word. In addition, σ ∈ Σ′ and thus σ ∈ ΓM. Since uσ 6∼S u′ there is
z ∈ Σ∗ such that 〈uσz, b1〉, 〈u′z, b2〉 ∈ S and b1 6= b2. Since S agrees with M it holds
that ∆M(qι, uσ) 6= ∆M(qι, u

′). Now, uσ and u′ are all in ΓM since from line 9 we have
Aw ⊆ Σ′∗, and thus ∆DM(qι, uσ) 6= ∆DM(qι, v), and from item 3 of Theorem 7.5 it holds
that uσ 6∼SM u′. This proves the claim.

Then, for all u′ ∈ Aw we have ∆D(qι, uσ) 6= ∆D(qι, u
′). Then, since we traverse words

and letters in lexicographic order, uσ is a lex-access word for ∆D(qι, uσ). This concludes
the first direction.

For the second direction, we show that every lex-access word is in Aw and that ΓM ⊆ Σ′.
Let uσ be a lex-access word (for ε it holds that ε ∈ Aw). For all lex-access words u′

found in previous iterations it holds that uσ 6∼SM u′ from item 2 of Theorem 7.5, and thus
uσ 6∼S u′ since SM ⊆ S. Then, uσ satisfies the condition of line 9 and is added to Aw.

To prove ΓM ⊆ Σ′, let σ ∈ ΓM. From the construction of ConcretizeAm it holds that σ
is the left endpoint of some interval that is an outgoing transition from qι. Then, indeed σ
is found in the first iteration of line 4. Inductively, let σ label an outgoing transition of q for
some q ∈ Q and let uq be the lex-access word of q. Since Aw contains all lex-access words,
it holds that uq ∈ Aw, and then the outgoing transitions of q will be considered in some
following iteration. Thus, all minimal letters indicating new intervals are added to Σ′ and
we have that ΓM ⊆ Σ′. We conclude that Σ′ = ΓM.

Proposition 10.5. The sufficient condition of Theorem 9.3 holds for the class MAm of SFAs
over a monotonic Boolean algebra Am .

Proof. In Proposition 10.2 we have shown that there exist functions ConcretizeAm and
GeneralizeAm for a monotonic Boolean algebra Am , satisfying the criteria of Theorem 9.3.
It is left to show that DecontaminateMAm

is an efficient decontaminating function. Assume
that S ⊇ SM where SM = CharDFA(ConcretizeMAm

(M)), and ConcretizeMAm
(M) is over

alphabet ΓM. In Lemma 10.4 we showed that under these assumptions it holds that the
alphabet Σ′ of the returned sample S ′ is ΓM. Then, for the set S ′ returned in line 13
(Algorithm 3) it holds that S ′ = S ∩ Γ∗M. Since S ⊇ SM and Γ∗M ⊇ SM, it holds that
S ′ ⊇ SM and S ′ is defined over the alphabet ΓM. Therefore, DecontaminateMAm

is a
decontaminating function. In addition, it runs in time polynomial in the size of S, thus the
conditions of Theorem 9.3 are met.

We now provide an example for efficient identification of SFAs over the interval algebra
(Example 10.6), and an example for the need of a decontaminating function (Example 10.7).

Example 10.6. Continuing Example 8.3, let M be the SFA from Figure 1 and consider
the class MAN of SFAs over the interval algebra. Algorithm CharSFA computes the set ΓM
using the function ConcretizeMAN

given in Example 8.3. That is, for the predicates labeling

outgoing transitions from q0 we have ConcretizeAN(〈[0, 100), [100,∞)〉) = 〈{0}, {100}〉; and for
outgoing transitions from q1, it holds that ConcretizeAN(〈[0, 200), [200,∞)〉) = 〈{0}, {200}〉.
Then, ΓM = {0, 100, 200}, and CharSFA constructs the DFA over ΓM where concrete
transitions agree with symbolic transitions of the original SFA. See Figure 4 for the resulting
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q0 q1

0 0, 100

100, 200 200

Figure 4. The DFA DM constructed in CharSFA
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q3

[0, 100)
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[100, ∞)

[0, 100)

[100, ∞)

[0, 100)

[0,∞)

Figure 5. The SFA M1

0
100

150

0 100

0

100 0
250

Figure 6. The prefix-tree automa-
ton for the set S ′ of Example 10.7

DFA. Then, using CharDFA, it returns the sample set:

SM = {〈ε, 0〉, 〈0, 1〉, 〈100, 0〉, 〈200, 0〉, 〈0 · 0, 1〉, 〈0 · 100, 1〉, 〈0 · 200, 0〉}.

Now, assume algorithm InferSFA is given the set S = SM∪{〈150, 0〉} over the alphabet
Σ = {0, 100, 150, 200}. The algorithm applies DecontaminateMAN

that generates the set S ′
over ΓM. To do so, it first finds the set ΓM of all elements that are a minimal left point
of some interval, and then chooses from S the words over ΓM. It does so as follows. First,
note that 100 ∼S 150, 100 ∼S 200 and 150 ∼S 200, while 0 6∼S 100, 150, 200. Since 0 is
the minimal element it has to be in ΓM; and since 100 is the minimal element that is not
equivalent to 0 it has to define a new interval and thus is in ΓM as well. Next, we consider
suffixes of words over {0, 100}. These are 0 · 0 and 0 · 100 which are equivalent, and 0 · 200
which is not equivalent to the former. Since 100 is equivalent to 0 it does not define a new
interval now, but 200 does as it is the minimal (and only) element that is not equivalent
to 0 when considering suffixes of 0. Then, we deduce that ΓM = {0, 100, 200} and thus
S ′ = {〈ε, 0〉, 〈0, 1〉, 〈100, 0〉, 〈200, 0〉, 〈0 · 0, 1〉, 〈0 · 100, 1〉, 〈0 · 200, 0〉}.

Now Algorithm InferSFA is applied to the set S ′ and the resulting DFA would be
the DFA DM of Figure 4. Then it applies GeneralizeMAN

described in Example 8.3 and the
result will be the original SFA of Figure 1. That is, for outgoing transitions of q0 it applies
GeneralizeAN(〈{0}, {100, 200}〉) = 〈[0, 100), [100,∞)〉 and for outgoing transitions of q1 it
applies GeneralizeAN(〈{0, 100}, {200}〉) = 〈[0, 200), [200,∞)〉 and uses these predicates to
annotate the corresponding transitions in the SFA.

Example 10.7. Consider the SFAM1 of Figure 5. Applying CharDFA(ConcretizeMAN
(M1))

results in the following S.

S = {〈ε, 0〉, 〈0, 1〉, 〈100, 1〉, 〈0 · 0, 1〉, 〈0 · 100, 0〉, 〈100 · 100, 1〉, 〈100 · 0, 0〉, 〈0 · 100 · 0, 0〉}
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qι

q1

q2

q3

0, 150

100

100

0, 250

100

0

0, 100, 150 qι

q1

q2

q3

0

100, 150

100

0

100, 250

0

0, 100, 150

Figure 7. Two DFAs that are consistent with the set S ′ of Example 10.7.

Now, let S ′ = S ∪ {〈150, 1〉, 〈150 · 250, 1〉}. Note that S ′ is consistent with L(M1).
When trying to learn an SFA from S ′ and applying InferDFA(S ′), the algorithm cannot
distinguish between the words 150 and 100, as well as between 0 and 150. The same holds
also for 0 · 0 vs. 150 · 250, and 100 · 100 vs. 150 · 250.

Figure 7 presents two DFAs that are both consistent with the set S ′. Since S ′ does not
contain any characteristic sample for DFAs over the alphabet {0, 100, 150, 250}, InferDFA
concludes that S ′ does not subsume any characteristic sample, and returns the prefix-tree
automaton, given in Figure 6.

This example illustrates that InferSFA cannot classify 150 and 150·250 by only applying
InferDFA, without reasoning about the predicates of the algebra. To this end we provide
the function DecontaminateMA , which is able, in the case of a monotonic algebra, to find
which letters are the ones that should be used to define new predicates.

11. Negative Result

The result of Theorem 10.1 does not extend to the non-monotonic case, as stated in
Theorem 11.1 regarding SFAs over the general propositional algebra. Let DB = {Bk}k∈N.
Recall that B = {0, 1} and Bk is the set of all valuations of k atomic propositions. Let
PB = {PBk}k∈N where PBk is the set of predicates over at most k atomic propositions. Let AB
be the Boolean algebra defined over the discrete domain DB and the set of predicates PB, and
the usual operators ∨, ∧ and ¬. Let MAB be the class of SFAs over the Boolean algebra AB.
We show that unless P = NP , this class of SFAs is not efficiently identifiable.11

Theorem 11.1. The class MAB is not efficiently identifiable unless P = NP .

Proof. We show that there is no pair of efficient dyadic concretizing and generalizing
functions fc : Πpred(PB)→ Πconc(DB) and fg : Πconc(DB)→ Πpred(PB) unless P = NP . From
Theorem 8.2 it follows that MB is not efficiently identifiable unless P = NP .

11This result may be contrasted with [AD18] who provide a positive learnability result regarding SFAs
over the OBDDs algebra. The result of [AD18] is with respect to query learning, while Theorem 11.1 concerns
efficient identifiability in the limit. As we discuss in section 13, one cannot derive efficient learnability from a
positive result in the query learning setting. Moreover, in Theorem 11.1 (as well as in Corollary 12.3 and the
discussion in section 12) we refer to efficient learnability with respect the propositional algebra as defined
in subsection 2.1 where the size is measured with respect to the number of atomic propositions, while [AD18]
refer to the size of the SFAs in which the predicates are OBDDs, whose size is measured by the number of
nodes in the OBDD. However, the number of nodes in an OBDD can be exponential in the number of atomic
propositions. Therefore, our result has no conflict with the result of [AD18].
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Assume towards contradiction that such a pair of functions exist. We provide a
polynomial time algorithm ASAT for SAT. On a predicate ϕ, the algorithm ASAT invokes
fc(〈ϕ,¬ϕ〉). Suppose the returned concrete partition is 〈Γ1,Γ2〉. Then ASAT returns “true”
if and only if Γ1 6= ∅. Correctness follows from the fact that if there exists a system of
characteristic samples for PB then the set of positive examples associated with a satisfiable
predicate ϕ must be non-empty, as otherwise fg cannot distinguish ϕ from ⊥.

12. Query Learning

The paradigm of query learning stipulates that the learner can interact with an oracle
(teacher) by asking it several types of allowed queries. In this section we consider these
queries to be membership queries (mq) and equivalence queries (eq). We say that a class M
of automata is efficiently learnable using mqs / eqs / both mqs and eqs if there is an
algorithm that for every language L with a representation in M asks a polynomial number
of mqs / eqs / both mqs and eqs and outputs an automaton in M that is polynomial in
the minimal representation of L in M.

Angluin showed, on the negative side, that regular languages cannot be efficiently learned
(in the exact model) from only mqs [Ang81] or only eqs [Ang90]. On the positive side, she
showed that regular languages, represented as DFAs, can be efficiently learned using both
mqs and eqs [Ang87a]. The celebrated algorithm, termed L∗, was extended to learning
many other classes of languages and representations, e.g., [Sak90, BV96, AV10, BHKL09,
AEF15, MP95, AF16, NFZ21]. See the survey [Fis18] for more references.

In particular, an extension of L∗, termed MAT∗, to learn SFAs was provided in [AD18]
which proved that SFAs over an algebra A can be efficiently learned using MAT∗ if and
only if the underlying algebra is efficiently learnable, and the size of disjunctions of k
predicates does not grow exponentially in k.12 From this it was concluded that SFAs over the
following underlying algebras are efficiently learnable: Boolean algebras over finite domains,
equality algebra, tree automata algebra, and SFAs algebra. Efficient learning of SFAs over a
monotonic algebra using mqs and eqs was established in [CDYS17], which improved the
results of [MM14, MM17] by using a binary search instead of a helpful teacher.

The result of [AD18] provides means to establish new positive results on learning classes
of SFAs using mqs and eqs, but it does not provide means for obtaining negative results
for query learning of SFAs using mqs and eqs. We strengthen this result by providing
a learnability result that is independent of the use of a specific learning algorithm. In
particular, we show that efficient learnability of a Boolean algebra A using mqs and eqs is a
necessary condition for the learnability of a class of SFAs over A, as we state in Theorem 12.1.

Theorem 12.1. A class of SFAs M over a Boolean algebra A, that contains all basic SFAs
over A, is polynomially learnable using mqs and eqs, only if A is polynomially learnable
using mqs and eqs.

Proof. Assume that M is polynomially learnable using mqs and eqs, using an algorithm QM.
We show that there exists a polynomial learning algorithm QA for the algebra A using mqs
and eqs. The algorithm QA uses QM as a subroutine, and behaves as a teacher for QM.
Whenever QM asks an M-mq on word γ1 . . . γk, if k > 1 then QA answers “no”. If k= 1
then the M-mq is essentially an A-mq, thus QA issues this query and passes the answer

12As is the case, for instance, in the OBDD (Ordered Binary Decisions Diagrams) algebra [Bry86].
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to QM. Whenever QM asks a M-eq on SFA M, if M is not of the form Mψ for some ψ
(as defined in Definition 6.1) then QA answers “no” to the M-eq and returns some word
w ∈ L(M) s.t. |w| > 1 and w was not provided before, as a counterexample. To this aim it
can record the largest counterexample given so far (according to the lexicographic order)
and return the next one in this order. Otherwise (if the SFA is of the form Mψ for some ψ)
QA asks an A-eq on ψ. If the answer is “yes” then QA terminates and returns ψ as the
result of the learning algorithm; if the answer to the A-eq on ψ is “no”, then the provided
counterexample 〈γ, bγ〉 is passed back to QM together with the answer “no” to the M-eq. It
is easy to verify that QA terminates correctly in polynomial time.

From Theorem 12.1 we derive what we believe to be the first negative result on learning
SFAs from mqs and eqs, as we show that SFAs over ABk , the propositional algebra over k
variables, are not polynomially learnable using mqs and eqs. Polynomiality is measured
with respect to the parameters 〈n,m, l〉 representing the size of the SFA and the number k of
atomic propositions. Note that the algebra ABk is a restriction of the algebra AB considered
in section 11 and therefore implies a negative result also with regard to the algebra AB
considered there.

We achieve this by showing that no learning algorithm A for the propositional algebra
using mqs and eqs can do better than asking 2k mqs/eqs, where k is the number of atomic
propositions.13 We assume the learning algorithm is sound, that is, if S+

i and S−i are the
sets of positive and negative examples observed by the algorithm up to stage i, then at
stage i+ 1 the algorithm will not ask a mq for a word in S+

i ∪S
−
i or an eq for an automaton

that rejects a word in S+
i or accepts a word in S−i .

Proposition 12.2. Let A be a sound learning algorithm for the propositional algebra over Bk.
There exists a target predicate ψ of size k, for which A will be forced to ask at least 2k − 1
queries (either mq or eq).

Proof. Since A is sound, at stage i+ 1 we have S+
i+1 ⊇ S

+
i and S−i+1 ⊇ S

−
i and at least one

inclusion is strict. Since the size of the concrete alphabet is 2k, for every round i < 2k, an
adversarial teacher can answer both mqs and eqs negatively. In the case of an eq there
must be an element in Bk \ (S−i ∪ S

+
i ) with which the provided automaton disagrees. The

adversary will return one such element as a counterexample. This forces A to ask at least
2k−1 queries. Note that for any element v in Bk there exists a predicate ϕv of size k such
that JϕvK = {v}.

Corollary 12.3. SFAs over the propositional algebra ABk with k propositions cannot be
learned in poly(k) time using mqs and eqs.

The propositional algebra ABk is a special case of the n-dimensional boxes algebra.
Learning n-dimensional boxes was studied using mqs and eqs [GGM94, BGGM98, BK98],
as well as in the PAC setting [BK00]. The algorithms presented in [GGM94, BGGM98, BK98,
BK00] are mostly exponential in n. Alternatively, [GGM94, BGGM98] suggest algorithms
that are exponential in the number of boxes in the union. In [BK98] a linear query learning
algorithm for unions of disjoint boxes is presented. Since n-dimensional boxes subsume the
propositional algebra, Corollary 12.3 implies the following.

13In [Nak00] Boolean formulas represented using OBDDs are claimed to be polynomially learnable with
mqs and eqs. However, [Nak00] measures the size of an OBDD by its number of nodes, which can be
exponential in the number of propositions.
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Corollary 12.4. The class of SFAs over the n-dimensional boxes algebra cannot be learned
in poly(n) time using mqs and eqs.

13. Discussion

We examined the question of learnability of a class of SFAs over certain algebras where
the main focus of our study is on passive learning. We provided a necessary condition for
identification of SFAs in the limit using polynomial time and data, as well as a necessary
condition for efficient learning of SFAs using membership and equivalence queries. We
note that a positive result on learning deterministic SFAs using mqs and eqs implies a
positive result for identification of deterministic SFAs in the limit using polynomial time
and data. The latter follows because a systematic set of characteristic samples {SL}L∈L
for a class of languages L may be obtained by collecting the words observed by the query
learner when learning L, and given the SFA is deterministic, the words in the sample can be
restricted to ones of polynomial size, thus the size of the sample is polynomial in the size
of the SFA.14 However, it does not imply a positive result regarding the stronger notion of
efficient identifiability, as the latter requires the set to be also constructed efficiently, and
the complexity analysis for query learning does not include the complexity of the teacher in
computing queries, e.g., deciding equivalence and in constructing counterexamples. We thus
provided a sufficient condition for efficient identification of a class of SFAs, and showed that
the class of SFAs over any monotonic algebra satisfies these conditions.

We hope that these sufficient or necessary conditions will help to obtain more positive
and negative results for learning of SFAs, and spark an interest in investigating characteristic
samples in other automata models used in verification.
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Appendix A. Efficient Identification of DFAs

It was shown by [Gol78, OG92] that DFAs are identifiable in the limit using polynomial
time and data. Since the proof of Proposition 10.5 relies on some properties of the involved
procedures and for completeness of the presentation, we provide a complete description of
the procedures showing that DFAs are identifiable in the limit using polynomial time and
data, and that they satisfy the required properties.

Theorem 7.5 (restated) [OG92] I. The class of DFAs is efficiently identifiable via procedures

CharDFA and InferDFA. II. Furthermore, these procedures satisfy that if D is a minimal

and complete DFA and CharDFA(D) = SD then the following holds:

(1) SD contains a prefix-closed set A of access words. Moreover, A can be chosen to contain
only lex-access words, i.e., only the lexicographically smallest access word for each state.

(2) For every u1, u2 ∈ A it holds that u1 6∼SD u2.
(3) For every u, v ∈ A and σ ∈ Σ, if ∆(qι, uσ) 6= ∆(qι, v) then uσ 6∼SD v.

To prove Theorem 7.5 we first show, in subsection A.1, that given a DFA D =
〈Σ, Q, qι, F,∆〉 we can construct a polynomial-sized sample of words SD that agrees with
D and satisfies the required properties. In subsection A.2 we show an algorithm that (i)
can infer in polynomial time from a given sample S a DFA that agrees with S, and (ii) if
it is given the set SD, or any set S ⊇ SD that agrees with D, then it infers a DFA that is
equivalent to D. All this together proves Theorem 7.5 (and explains why we can refer to SD
as the characteristic sample).

A.1. Constructing a characteristic set. The algorithm CharDFA works as follows. It
first creates a prefix-closed set of access words to states. This can be done by considering
the graph of the automaton and running an algorithm for finding a spanning tree from the
initial state. Choosing one of the letters on each edge, the access word for a state is obtained
by concatenating the labels on the unique path of the obtained tree that reaches that state.
If we wish to work with lex-access words, we can use a depth-first search algorithm that
spans branches according to the order of letters in Σ, starting from the smallest. The labels
on the paths of the spanning tree constructed this way will form the set of lex-access words.

Let S be the set of access words (or lex-access words). Next the algorithm turns to find
a distinguishing word vi,j for every pair of state si, sj ∈ S (where si 6= sj). Lemma A.1 below
states that any pair of states of the minimal DFA has a distinguishing word of size quadratic
in the size of the DFA. Let E be the set of all such distinguishing words. We may assume
ε ∈ E.15 Then the algorithm returns the set SD = {〈w,D(w)〉 | w ∈ (S · E) ∪ (S · Σ · E)}
where D(w) is the label D gives w (i.e., 1 if it is accepted, and 0 otherwise).

It is easy to see that SD satisfies the properties of Theorem 7.5.

Lemma A.1. Let D = 〈Σ, Q, qι, F,∆〉 be a minimal DFA, and let q1, q2 ∈ Q s.t. q1 6= q2.
There exists a polynomial time procedure that returns a word v of size at most |Q|2 such that
∆(q1, v) is accepting iff ∆(q2, v) is rejecting.

15Unless D accepts all words or rejects all words, it has at least one accepting state and one rejecting
state, and ε is the shortest word distinguishing these states. If all states of D are accepting (or all rejecting)
the algorithm returns SD = {〈ε, 1〉} (resp. SD = {〈ε, 0〉}).
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Proof. We can apply the product construction to Di = 〈Σ, Q, qi, F,∆〉 for i ∈ {1, 2} and
search for a path from the initial state (q1, q2) to a state in F × (Q \ F ) or (Q \ F ) × F
to find a word that leads to an accepting state when read from q1 and a rejecting state
when read from q2 or vice versa. Since a shortest simple path in a graph is bounded by the
number of nodes, the shortest such word is of length at most |Q|2. The shortest path can be
found using breadth-first search algorithms that run in time linear in the number of vertices
and edges, thus polynomial in the size of the DFA.

Since computing a spanning tree (in particular via DFS) and finding shortest paths can
be done in polynomial time this shows that for DFAs we can construct the characteristic set
in polynomial time. That is, while Definition 7.2 only requires that the characteristic set be
of polynomial size, for DFAs we can show that it can also be computed in polynomial time.

A.2. Inferring a DFA. Next we describe algorithm InferDFA that given a sample of
words S, infers from it in polynomial time a DFA that agrees with S. And moreover, if
S subsumes the characteristic set SD of a DFA D then InferDFA returns a DFA that
recognizes D.

Let W be the set of words in the given sample S (without their labels). Let R be the set
of prefixes of W and C the set of suffixes of W . Note that ε ∈ R and ε ∈ C. Let r0, r1, . . .
be some enumeration of R and c0, c1, . . . some enumeration of C where r0 = c0 = ε. In the
sequel we often use iw for the index of w in R. The algorithm builds a matrix M of size
|R| × |C| whose entries take values in {0, 1, ?}. The algorithm set the value of entry (i, j) as
follows. If ricj is not in W , it is set to ?. Otherwise it is set to 1 iff the word ricj is labeled
1 in S. We get that ri ∼S rj iff for every k such that both M(i, k) and M(j, k) are different
from ? we have that M(i, k) = M(j, k).

The algorithm sets R0 = {ε}. Once Ri is constructed, the algorithm tries to establish
whether rσ for r ∈ Ri and σ ∈ Σ is distinguished from all words in Ri. It does so by
considering all other words r′ ∈ Ri and checking whether r ∼S r′. If rσ is found to be
distinct from all words in Ri, then Ri+1 is set to Ri ∪ {rσ}. The algorithm proceeds until
no new words are distinguished. Let k be minimal such that Rk = Rk′ for all k′ > k, and let
R = Rk. If not all words in R are in W (that is M(i, 0) = ? for some ri ∈ R), the algorithm
returns the prefix-tree automaton.16 Otherwise, the states of the constructed DFA are set to
be the words in R. The initial state is ε and a state ri is classified as accepting iff M(i, 0) = 1
(recall that the entry M(i, 0) stands for the value of ri · ε in S). To determine the transitions,
for every r ∈ R and σ ∈ Σ, recall that there exists at least one state r′ ∈ R that cannot be
distinguished from rσ. The algorithm then adds a transition from r on σ to r′.

Proposition A.2.

(1) Algorithm InferDFA runs in polynomial time and returns a DFA that agrees with the
given sample S.

(2) Let SD be the sample constructed for a DFA D by algorithm CharDFA, and let S ⊇ SD.
Then algorithm InferDFA returns a DFA that recognized the same language as D.

16The prefix-tree automaton is the automaton obtained by placing all words in a tree data structure
(sharing common prefixes) and labeling a state accepting iff the unique word reaching that state is in the
sample and is labeled 1.
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Proof.

(1) The number of prefixes (or suffixes) of a set of words is bounded by the size of the longest
word times the size of the set. Thus M is of polynomial size, and so is its construction.
The number of iterations required for converging the Ri sets is bounded by |W |. The
prefix-tree automaton can be computed in polynomial time. Determining acceptance is
polynomial in |R|, and determining the transitions is polynomial in |R| × |Σ|. Thus the
overall running time of the algorithm is polynomial.

Clearly, if the algorithm returns the prefix-tree automaton then it agrees with the
given sample S. We claim that it agrees with the given sample also in the second case.
We show, by induction on the length of the word, that for every w ∈ W , if w reaches
state r of the constructed DFA, then w ∼S r. Since w is in the sample, and r is in the
sample (otherwise the algorithm would return the prefix-tree automaton), it follows that
M(iw, 0) = M(ir, 0) hence the DFA agrees with the sample on w.

For the base case we have that |w| = 0 then the DFA accepts if r0 is accepting, which
holds iff M(0, 0) = 1. Indeed this entry is filled with the label of ε in S. Consider now
w = vσ for some v ∈ Σ∗ and σ ∈ Σ. Assume the DFA reaches state s` on reading v
and sm after reading w. By induction hypothesis, we know that r` ∼S v. From the
construction of the algorithm it follows that r`σ ∼S sm as otherwise, reading σ from
r` would lead to a different state. If rm 6∼S w then there exists a suffix ci ∈ C s.t.
M(m, i) 6= M(iw, i). But then σci is also in C, denote it by cj . Then M(`, j) 6= M(iv, j)
contradicting that r` ∼S v.

(2) Next we show that if S subsumes SD then the returned DFA agrees with D. Let
w1, . . . , wn be the set of accessible words chosen by CharDFA. Since S consists of
a distinguished word for every pair of access words wi, wj of D, algorithm InferDFA
will determine wi 6∼S wj and R will consist of at least n states. It may not consist of
more states, since the sample has to agree with the language of D and every word w
agrees with some state of D on all possible suffixes, thus InferDFA cannot determine
that w corresponds to a new distinct state. Since S · Σ · E was placed in S, for every
distinguished state w and every σ ∈ Σ the algorithm InferDFA can determine the
transition from w upon reading σ. Since S · ε is placed in S, algorithm InferDFA can
correctly label acceptance of states. Thus the obtained DFA is isomorphic to the original
DFA.

We can thus conclude that DFAs are identifiable in the limit using polynomial time and
data. Furthermore, they satisfy the properties of Theorem 7.5.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
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